MyArxiv
Computer Vision and Pattern Recognition
SVAD: From Single Image to 3D Avatar via Synthetic Data Generation with Video Diffusion and Data Augmentation CVPR 2025
Creating high-quality animatable 3D human avatars from a single image remains a significant challenge in computer vision due to the inherent difficulty of reconstructing complete 3D information from a single viewpoint. Current approaches face a clear limitation: 3D Gaussian Splatting (3DGS) methods produce high-quality results but require multiple views or video sequences, while video diffusion models can generate animations from single images but struggle with consistency and identity preservation. We present SVAD, a novel approach that addresses these limitations by leveraging complementary strengths of existing techniques. Our method generates synthetic training data through video diffusion, enhances it with identity preservation and image restoration modules, and utilizes this refined data to train 3DGS avatars. Comprehensive evaluations demonstrate that SVAD outperforms state-of-the-art (SOTA) single-image methods in maintaining identity consistency and fine details across novel poses and viewpoints, while enabling real-time rendering capabilities. Through our data augmentation pipeline, we overcome the dependency on dense monocular or multi-view training data typically required by traditional 3DGS approaches. Extensive quantitative, qualitative comparisons show our method achieves superior performance across multiple metrics against baseline models. By effectively combining the generative power of diffusion models with both the high-quality results and rendering efficiency of 3DGS, our work establishes a new approach for high-fidelity avatar generation from a single image input.
comment: Accepted by CVPR 2025 SyntaGen Workshop, Project Page: https://yc4ny.github.io/SVAD/
3D Scene Generation: A Survey
3D scene generation seeks to synthesize spatially structured, semantically meaningful, and photorealistic environments for applications such as immersive media, robotics, autonomous driving, and embodied AI. Early methods based on procedural rules offered scalability but limited diversity. Recent advances in deep generative models (e.g., GANs, diffusion models) and 3D representations (e.g., NeRF, 3D Gaussians) have enabled the learning of real-world scene distributions, improving fidelity, diversity, and view consistency. Recent advances like diffusion models bridge 3D scene synthesis and photorealism by reframing generation as image or video synthesis problems. This survey provides a systematic overview of state-of-the-art approaches, organizing them into four paradigms: procedural generation, neural 3D-based generation, image-based generation, and video-based generation. We analyze their technical foundations, trade-offs, and representative results, and review commonly used datasets, evaluation protocols, and downstream applications. We conclude by discussing key challenges in generation capacity, 3D representation, data and annotations, and evaluation, and outline promising directions including higher fidelity, physics-aware and interactive generation, and unified perception-generation models. This review organizes recent advances in 3D scene generation and highlights promising directions at the intersection of generative AI, 3D vision, and embodied intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/hzxie/Awesome-3D-Scene-Generation.
comment: Project Page: https://github.com/hzxie/Awesome-3D-Scene-Generation
DiffusionSfM: Predicting Structure and Motion via Ray Origin and Endpoint Diffusion CVPR 2025
Current Structure-from-Motion (SfM) methods typically follow a two-stage pipeline, combining learned or geometric pairwise reasoning with a subsequent global optimization step. In contrast, we propose a data-driven multi-view reasoning approach that directly infers 3D scene geometry and camera poses from multi-view images. Our framework, DiffusionSfM, parameterizes scene geometry and cameras as pixel-wise ray origins and endpoints in a global frame and employs a transformer-based denoising diffusion model to predict them from multi-view inputs. To address practical challenges in training diffusion models with missing data and unbounded scene coordinates, we introduce specialized mechanisms that ensure robust learning. We empirically validate DiffusionSfM on both synthetic and real datasets, demonstrating that it outperforms classical and learning-based approaches while naturally modeling uncertainty.
comment: CVPR 2025. Project website: https://qitaozhao.github.io/DiffusionSfM
Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation
Recent progress in unified models for image understanding and generation has been impressive, yet most approaches remain limited to single-modal generation conditioned on multiple modalities. In this paper, we present Mogao, a unified framework that advances this paradigm by enabling interleaved multi-modal generation through a causal approach. Mogao integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance, which allow it to harness the strengths of both autoregressive models for text generation and diffusion models for high-quality image synthesis. These practical improvements also make Mogao particularly effective to process interleaved sequences of text and images arbitrarily. To further unlock the potential of unified models, we introduce an efficient training strategy on a large-scale, in-house dataset specifically curated for joint text and image generation. Extensive experiments show that Mogao not only achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs. Its emergent capabilities in zero-shot image editing and compositional generation highlight Mogao as a practical omni-modal foundation model, paving the way for future development and scaling the unified multi-modal systems.
comment: Mogao Technical Report
Flow-GRPO: Training Flow Matching Models via Online RL
We propose Flow-GRPO, the first method integrating online reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original inference timestep number, significantly improving sampling efficiency without performance degradation. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For complex compositions, RL-tuned SD3.5 generates nearly perfect object counts, spatial relations, and fine-grained attributes, boosting GenEval accuracy from $63\%$ to $95\%$. In visual text rendering, its accuracy improves from $59\%$ to $92\%$, significantly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, little to no reward hacking occurred, meaning rewards did not increase at the cost of image quality or diversity, and both remained stable in our experiments.
comment: Code: https://github.com/yifan123/flow_grpo
Generating Physically Stable and Buildable LEGO Designs from Text
We introduce LegoGPT, the first approach for generating physically stable LEGO brick models from text prompts. To achieve this, we construct a large-scale, physically stable dataset of LEGO designs, along with their associated captions, and train an autoregressive large language model to predict the next brick to add via next-token prediction. To improve the stability of the resulting designs, we employ an efficient validity check and physics-aware rollback during autoregressive inference, which prunes infeasible token predictions using physics laws and assembly constraints. Our experiments show that LegoGPT produces stable, diverse, and aesthetically pleasing LEGO designs that align closely with the input text prompts. We also develop a text-based LEGO texturing method to generate colored and textured designs. We show that our designs can be assembled manually by humans and automatically by robotic arms. We also release our new dataset, StableText2Lego, containing over 47,000 LEGO structures of over 28,000 unique 3D objects accompanied by detailed captions, along with our code and models at the project website: https://avalovelace1.github.io/LegoGPT/.
comment: Project page: https://avalovelace1.github.io/LegoGPT/
StreamBridge: Turning Your Offline Video Large Language Model into a Proactive Streaming Assistant
We present StreamBridge, a simple yet effective framework that seamlessly transforms offline Video-LLMs into streaming-capable models. It addresses two fundamental challenges in adapting existing models into online scenarios: (1) limited capability for multi-turn real-time understanding, and (2) lack of proactive response mechanisms. Specifically, StreamBridge incorporates (1) a memory buffer combined with a round-decayed compression strategy, supporting long-context multi-turn interactions, and (2) a decoupled, lightweight activation model that can be effortlessly integrated into existing Video-LLMs, enabling continuous proactive responses. To further support StreamBridge, we construct Stream-IT, a large-scale dataset tailored for streaming video understanding, featuring interleaved video-text sequences and diverse instruction formats. Extensive experiments show that StreamBridge significantly improves the streaming understanding capabilities of offline Video-LLMs across various tasks, outperforming even proprietary models such as GPT-4o and Gemini 1.5 Pro. Simultaneously, it achieves competitive or superior performance on standard video understanding benchmarks.
SITE: towards Spatial Intelligence Thorough Evaluation
Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships, underpinning disciplines from neuroscience to robotics. We introduce SITE, a benchmark dataset towards SI Thorough Evaluation in a standardized format of multi-choice visual question-answering, designed to assess large vision-language models' spatial intelligence across diverse visual modalities (single-image, multi-image, and video) and SI factors (figural to environmental scales, spatial visualization and orientation, intrinsic and extrinsic, static and dynamic). Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science, which prompt us to design two novel types of tasks about view-taking and dynamic scenes. Extensive experiments reveal that leading models fall behind human experts especially in spatial orientation, a fundamental SI factor. Moreover, we demonstrate a positive correlation between a model's spatial reasoning proficiency and its performance on an embodied AI task.
Adaptive Markup Language Generation for Contextually-Grounded Visual Document Understanding CVPR2025
Visual Document Understanding has become essential with the increase of text-rich visual content. This field poses significant challenges due to the need for effective integration of visual perception and textual comprehension, particularly across diverse document types with complex layouts. Moreover, existing fine-tuning datasets for this domain often fall short in providing the detailed contextual information for robust understanding, leading to hallucinations and limited comprehension of spatial relationships among visual elements. To address these challenges, we propose an innovative pipeline that utilizes adaptive generation of markup languages, such as Markdown, JSON, HTML, and TiKZ, to build highly structured document representations and deliver contextually-grounded responses. We introduce two fine-grained structured datasets: DocMark-Pile, comprising approximately 3.8M pretraining data pairs for document parsing, and DocMark-Instruct, featuring 624k fine-tuning data annotations for grounded instruction following. Extensive experiments demonstrate that our proposed model significantly outperforms existing state-of-theart MLLMs across a range of visual document understanding benchmarks, facilitating advanced reasoning and comprehension capabilities in complex visual scenarios. Our code and models are released at https://github. com/Euphoria16/DocMark.
comment: CVPR2025
TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation
Pioneering token-based works such as Chameleon and Emu3 have established a foundation for multimodal unification but face challenges of high training computational overhead and limited comprehension performance due to a lack of high-level semantics. In this paper, we introduce TokLIP, a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens and incorporating CLIP-level semantics while enabling end-to-end multimodal autoregressive training with standard VQ tokens. TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. Unlike previous approaches (e.g., VILA-U) that discretize high-level features, TokLIP disentangles training objectives for comprehension and generation, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. Our empirical results demonstrate that TokLIP achieves exceptional data efficiency, empowering visual tokens with high-level semantic understanding while enhancing low-level generative capacity, making it well-suited for autoregressive Transformers in both comprehension and generation tasks. The code and models are available at https://github.com/TencentARC/TokLIP.
comment: Technical Report
PillarMamba: Learning Local-Global Context for Roadside Point Cloud via Hybrid State Space Model
Serving the Intelligent Transport System (ITS) and Vehicle-to-Everything (V2X) tasks, roadside perception has received increasing attention in recent years, as it can extend the perception range of connected vehicles and improve traffic safety. However, roadside point cloud oriented 3D object detection has not been effectively explored. To some extent, the key to the performance of a point cloud detector lies in the receptive field of the network and the ability to effectively utilize the scene context. The recent emergence of Mamba, based on State Space Model (SSM), has shaken up the traditional convolution and transformers that have long been the foundational building blocks, due to its efficient global receptive field. In this work, we introduce Mamba to pillar-based roadside point cloud perception and propose a framework based on Cross-stage State-space Group (CSG), called PillarMamba. It enhances the expressiveness of the network and achieves efficient computation through cross-stage feature fusion. However, due to the limitations of scan directions, state space model faces local connection disrupted and historical relationship forgotten. To address this, we propose the Hybrid State-space Block (HSB) to obtain the local-global context of roadside point cloud. Specifically, it enhances neighborhood connections through local convolution and preserves historical memory through residual attention. The proposed method outperforms the state-of-the-art methods on the popular large scale roadside benchmark: DAIR-V2X-I. The code will be released soon.
EDmamba: A Simple yet Effective Event Denoising Method with State Space Model
Event cameras excel in high-speed vision due to their high temporal resolution, high dynamic range, and low power consumption. However, as dynamic vision sensors, their output is inherently noisy, making efficient denoising essential to preserve their ultra-low latency and real-time processing capabilities. Existing event denoising methods struggle with a critical dilemma: computationally intensive approaches compromise the sensor's high-speed advantage, while lightweight methods often lack robustness across varying noise levels. To address this, we propose a novel event denoising framework based on State Space Models (SSMs). Our approach represents events as 4D event clouds and includes a Coarse Feature Extraction (CFE) module that extracts embedding features from both geometric and polarity-aware subspaces. The model is further composed of two essential components: A Spatial Mamba (S-SSM) that models local geometric structures and a Temporal Mamba (T-SSM) that captures global temporal dynamics, efficiently propagating spatiotemporal features across events. Experiments demonstrate that our method achieves state-of-the-art accuracy and efficiency, with 88.89K parameters, 0.0685s per 100K events inference time, and a 0.982 accuracy score, outperforming Transformer-based methods by 2.08% in denoising accuracy and 36X faster.
GeomHair: Reconstruction of Hair Strands from Colorless 3D Scans
We propose a novel method that reconstructs hair strands directly from colorless 3D scans by leveraging multi-modal hair orientation extraction. Hair strand reconstruction is a fundamental problem in computer vision and graphics that can be used for high-fidelity digital avatar synthesis, animation, and AR/VR applications. However, accurately recovering hair strands from raw scan data remains challenging due to human hair's complex and fine-grained structure. Existing methods typically rely on RGB captures, which can be sensitive to the environment and can be a challenging domain for extracting the orientation of guiding strands, especially in the case of challenging hairstyles. To reconstruct the hair purely from the observed geometry, our method finds sharp surface features directly on the scan and estimates strand orientation through a neural 2D line detector applied to the renderings of scan shading. Additionally, we incorporate a diffusion prior trained on a diverse set of synthetic hair scans, refined with an improved noise schedule, and adapted to the reconstructed contents via a scan-specific text prompt. We demonstrate that this combination of supervision signals enables accurate reconstruction of both simple and intricate hairstyles without relying on color information. To facilitate further research, we introduce Strands400, the largest publicly available dataset of hair strands with detailed surface geometry extracted from real-world data, which contains reconstructed hair strands from the scans of 400 subjects.
comment: 15 pages, 9 figures, 1 table
Threshold Modulation for Online Test-Time Adaptation of Spiking Neural Networks IJCNN 2025
Recently, spiking neural networks (SNNs), deployed on neuromorphic chips, provide highly efficient solutions on edge devices in different scenarios. However, their ability to adapt to distribution shifts after deployment has become a crucial challenge. Online test-time adaptation (OTTA) offers a promising solution by enabling models to dynamically adjust to new data distributions without requiring source data or labeled target samples. Nevertheless, existing OTTA methods are largely designed for traditional artificial neural networks and are not well-suited for SNNs. To address this gap, we propose a low-power, neuromorphic chip-friendly online test-time adaptation framework, aiming to enhance model generalization under distribution shifts. The proposed approach is called Threshold Modulation (TM), which dynamically adjusts the firing threshold through neuronal dynamics-inspired normalization, being more compatible with neuromorphic hardware. Experimental results on benchmark datasets demonstrate the effectiveness of this method in improving the robustness of SNNs against distribution shifts while maintaining low computational cost. The proposed method offers a practical solution for online test-time adaptation of SNNs, providing inspiration for the design of future neuromorphic chips. The demo code is available at github.com/NneurotransmitterR/TM-OTTA-SNN.
comment: Accepted by IJCNN 2025. \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
OcularAge: A Comparative Study of Iris and Periocular Images for Pediatric Age Estimation
Estimating a child's age from ocular biometric images is challenging due to subtle physiological changes and the limited availability of longitudinal datasets. Although most biometric age estimation studies have focused on facial features and adult subjects, pediatric-specific analysis, particularly of the iris and periocular regions, remains relatively unexplored. This study presents a comparative evaluation of iris and periocular images for estimating the ages of children aged between 4 and 16 years. We utilized a longitudinal dataset comprising more than 21,000 near-infrared (NIR) images, collected from 288 pediatric subjects over eight years using two different imaging sensors. A multi-task deep learning framework was employed to jointly perform age prediction and age-group classification, enabling a systematic exploration of how different convolutional neural network (CNN) architectures, particularly those adapted for non-square ocular inputs, capture the complex variability inherent in pediatric eye images. The results show that periocular models consistently outperform iris-based models, achieving a mean absolute error (MAE) of 1.33 years and an age-group classification accuracy of 83.82%. These results mark the first demonstration that reliable age estimation is feasible from children's ocular images, enabling privacy-preserving age checks in child-centric applications. This work establishes the first longitudinal benchmark for pediatric ocular age estimation, providing a foundation for designing robust, child-focused biometric systems. The developed models proved resilient across different imaging sensors, confirming their potential for real-world deployment. They also achieved inference speeds of less than 10 milliseconds per image on resource-constrained VR headsets, demonstrating their suitability for real-time applications.
Joint Super-Resolution and Segmentation for 1-m Impervious Surface Area Mapping in China's Yangtze River Economic Belt
We propose a novel joint framework by integrating super-resolution and segmentation, called JointSeg, which enables the generation of 1-meter ISA maps directly from freely available Sentinel-2 imagery. JointSeg was trained on multimodal cross-resolution inputs, offering a scalable and affordable alternative to traditional approaches. This synergistic design enables gradual resolution enhancement from 10m to 1m while preserving fine-grained spatial textures, and ensures high classification fidelity through effective cross-scale feature fusion. This method has been successfully applied to the Yangtze River Economic Belt (YREB), a region characterized by complex urban-rural patterns and diverse topography. As a result, a comprehensive ISA mapping product for 2021, referred to as ISA-1, was generated, covering an area of over 2.2 million square kilometers. Quantitative comparisons against the 10m ESA WorldCover and other benchmark products reveal that ISA-1 achieves an F1-score of 85.71%, outperforming bilinear-interpolation-based segmentation by 9.5%, and surpassing other ISA datasets by 21.43%-61.07%. In densely urbanized areas (e.g., Suzhou, Nanjing), ISA-1 reduces ISA overestimation through improved discrimination of green spaces and water bodies. Conversely, in mountainous regions (e.g., Ganzi, Zhaotong), it identifies significantly more ISA due to its enhanced ability to detect fragmented anthropogenic features such as rural roads and sparse settlements, demonstrating its robustness across diverse landscapes. Moreover, we present biennial ISA maps from 2017 to 2023, capturing spatiotemporal urbanization dynamics across representative cities. The results highlight distinct regional growth patterns: rapid expansion in upstream cities, moderate growth in midstream regions, and saturation in downstream metropolitan areas.
Time of the Flight of the Gaussians: Optimizing Depth Indirectly in Dynamic Radiance Fields
We present a method to reconstruct dynamic scenes from monocular continuous-wave time-of-flight (C-ToF) cameras using raw sensor samples that achieves similar or better accuracy than neural volumetric approaches and is 100x faster. Quickly achieving high-fidelity dynamic 3D reconstruction from a single viewpoint is a significant challenge in computer vision. In C-ToF radiance field reconstruction, the property of interest-depth-is not directly measured, causing an additional challenge. This problem has a large and underappreciated impact upon the optimization when using a fast primitive-based scene representation like 3D Gaussian splatting, which is commonly used with multi-view data to produce satisfactory results and is brittle in its optimization otherwise. We incorporate two heuristics into the optimization to improve the accuracy of scene geometry represented by Gaussians. Experimental results show that our approach produces accurate reconstructions under constrained C-ToF sensing conditions, including for fast motions like swinging baseball bats. https://visual.cs.brown.edu/gftorf
Hearing and Seeing Through CLIP: A Framework for Self-Supervised Sound Source Localization WACV 2024
Large-scale vision-language models demonstrate strong multimodal alignment and generalization across diverse tasks. Among them, CLIP stands out as one of the most successful approaches. In this work, we extend the application of CLIP to sound source localization, proposing a self-supervised method operates without explicit text input. We introduce a framework that maps audios into tokens compatible with CLIP's text encoder, producing audio-driven embeddings. These embeddings are used to generate sounding region masks, from which visual features are extracted and aligned with the audio embeddings through a contrastive audio-visual correspondence objective. Our findings show that alignment knowledge of pre-trained multimodal foundation model enables our method to generate more complete and compact localization for sounding objects. We further propose an LLM-guided extension that distills object-aware audio-visual scene understanding into the model during training to enhance alignment. Extensive experiments across five diverse tasks demonstrate that our method, in all variants, outperforms state-of-the-art approaches and achieves strong generalization in zero-shot settings.
comment: Journal Extension of WACV 2024 paper (arXiv:2311.04066). Code is available at https://github.com/swimmiing/ACL-SSL
Progressive Inertial Poser: Progressive Real-Time Kinematic Chain Estimation for 3D Full-Body Pose from Three IMU Sensors
The motion capture system that supports full-body virtual representation is of key significance for virtual reality. Compared to vision-based systems, full-body pose estimation from sparse tracking signals is not limited by environmental conditions or recording range. However, previous works either face the challenge of wearing additional sensors on the pelvis and lower-body or rely on external visual sensors to obtain global positions of key joints. To improve the practicality of the technology for virtual reality applications, we estimate full-body poses using only inertial data obtained from three Inertial Measurement Unit (IMU) sensors worn on the head and wrists, thereby reducing the complexity of the hardware system. In this work, we propose a method called Progressive Inertial Poser (ProgIP) for human pose estimation, which combines neural network estimation with a human dynamics model, considers the hierarchical structure of the kinematic chain, and employs a multi-stage progressive network estimation with increased depth to reconstruct full-body motion in real time. The encoder combines Transformer Encoder and bidirectional LSTM (TE-biLSTM) to flexibly capture the temporal dependencies of the inertial sequence, while the decoder based on multi-layer perceptrons (MLPs) transforms high-dimensional features and accurately projects them onto Skinned Multi-Person Linear (SMPL) model parameters. Quantitative and qualitative experimental results on multiple public datasets show that our method outperforms state-of-the-art methods with the same inputs, and is comparable to recent works using six IMU sensors.
Aesthetics Without Semantics
While it is easy for human observers to judge an image as beautiful or ugly, aesthetic decisions result from a combination of entangled perceptual and cognitive (semantic) factors, making the understanding of aesthetic judgements particularly challenging from a scientific point of view. Furthermore, our research shows a prevailing bias in current databases, which include mostly beautiful images, further complicating the study and prediction of aesthetic responses. We address these limitations by creating a database of images with minimal semantic content and devising, and next exploiting, a method to generate images on the ugly side of aesthetic valuations. The resulting Minimum Semantic Content (MSC) database consists of a large and balanced collection of 10,426 images, each evaluated by 100 observers. We next use established image metrics to demonstrate how augmenting an image set biased towards beautiful images with ugly images can modify, or even invert, an observed relationship between image features and aesthetics valuation. Taken together, our study reveals that works in empirical aesthetics attempting to link image content and aesthetic judgements may magnify, underestimate, or simply miss interesting effects due to a limitation of the range of aesthetic values they consider.
comment: Parts of this work were presented in abstract format at the Vision Science of Art Conference (VSAC2016), the Iberian Conference on Perception (CIP2022), and the European Conference on Visual Perception (ECVP2022). See Perception 51, No1 (Suppl.) pp139, 2022)
Feature-Augmented Deep Networks for Multiscale Building Segmentation in High-Resolution UAV and Satellite Imagery
Accurate building segmentation from high-resolution RGB imagery remains challenging due to spectral similarity with non-building features, shadows, and irregular building geometries. In this study, we present a comprehensive deep learning framework for multiscale building segmentation using RGB aerial and satellite imagery with spatial resolutions ranging from 0.4m to 2.7m. We curate a diverse, multi-sensor dataset and introduce feature-augmented inputs by deriving secondary representations including Principal Component Analysis (PCA), Visible Difference Vegetation Index (VDVI), Morphological Building Index (MBI), and Sobel edge filters from RGB channels. These features guide a Res-U-Net architecture in learning complex spatial patterns more effectively. We also propose training policies incorporating layer freezing, cyclical learning rates, and SuperConvergence to reduce training time and resource usage. Evaluated on a held-out WorldView-3 image, our model achieves an overall accuracy of 96.5%, an F1-score of 0.86, and an Intersection over Union (IoU) of 0.80, outperforming existing RGB-based benchmarks. This study demonstrates the effectiveness of combining multi-resolution imagery, feature augmentation, and optimized training strategies for robust building segmentation in remote sensing applications.
comment: in preparation for journal submission, 25 pages, 11 figures
Mapping User Trust in Vision Language Models: Research Landscape, Challenges, and Prospects
The rapid adoption of Vision Language Models (VLMs), pre-trained on large image-text and video-text datasets, calls for protecting and informing users about when to trust these systems. This survey reviews studies on trust dynamics in user-VLM interactions, through a multi-disciplinary taxonomy encompassing different cognitive science capabilities, collaboration modes, and agent behaviours. Literature insights and findings from a workshop with prospective VLM users inform preliminary requirements for future VLM trust studies.
Augmented Deep Contexts for Spatially Embedded Video Coding CVPR
Most Neural Video Codecs (NVCs) only employ temporal references to generate temporal-only contexts and latent prior. These temporal-only NVCs fail to handle large motions or emerging objects due to limited contexts and misaligned latent prior. To relieve the limitations, we propose a Spatially Embedded Video Codec (SEVC), in which the low-resolution video is compressed for spatial references. Firstly, our SEVC leverages both spatial and temporal references to generate augmented motion vectors and hybrid spatial-temporal contexts. Secondly, to address the misalignment issue in latent prior and enrich the prior information, we introduce a spatial-guided latent prior augmented by multiple temporal latent representations. At last, we design a joint spatial-temporal optimization to learn quality-adaptive bit allocation for spatial references, further boosting rate-distortion performance. Experimental results show that our SEVC effectively alleviates the limitations in handling large motions or emerging objects, and also reduces 11.9% more bitrate than the previous state-of-the-art NVC while providing an additional low-resolution bitstream. Our code and model are available at https://github.com/EsakaK/SEVC.
comment: 15 pages,CVPR
PRE-Mamba: A 4D State Space Model for Ultra-High-Frequent Event Camera Deraining
Event cameras excel in high temporal resolution and dynamic range but suffer from dense noise in rainy conditions. Existing event deraining methods face trade-offs between temporal precision, deraining effectiveness, and computational efficiency. In this paper, we propose PRE-Mamba, a novel point-based event camera deraining framework that fully exploits the spatiotemporal characteristics of raw event and rain. Our framework introduces a 4D event cloud representation that integrates dual temporal scales to preserve high temporal precision, a Spatio-Temporal Decoupling and Fusion module (STDF) that enhances deraining capability by enabling shallow decoupling and interaction of temporal and spatial information, and a Multi-Scale State Space Model (MS3M) that captures deeper rain dynamics across dual-temporal and multi-spatial scales with linear computational complexity. Enhanced by frequency-domain regularization, PRE-Mamba achieves superior performance (0.95 SR, 0.91 NR, and 0.4s/M events) with only 0.26M parameters on EventRain-27K, a comprehensive dataset with labeled synthetic and real-world sequences. Moreover, our method generalizes well across varying rain intensities, viewpoints, and even snowy conditions.
Benchmarking Ophthalmology Foundation Models for Clinically Significant Age Macular Degeneration Detection
Self-supervised learning (SSL) has enabled Vision Transformers (ViTs) to learn robust representations from large-scale natural image datasets, enhancing their generalization across domains. In retinal imaging, foundation models pretrained on either natural or ophthalmic data have shown promise, but the benefits of in-domain pretraining remain uncertain. To investigate this, we benchmark six SSL-pretrained ViTs on seven digital fundus image (DFI) datasets totaling 70,000 expert-annotated images for the task of moderate-to-late age-related macular degeneration (AMD) identification. Our results show that iBOT pretrained on natural images achieves the highest out-of-distribution generalization, with AUROCs of 0.80-0.97, outperforming domain-specific models, which achieved AUROCs of 0.78-0.96 and a baseline ViT-L with no pretraining, which achieved AUROCs of 0.68-0.91. These findings highlight the value of foundation models in improving AMD identification and challenge the assumption that in-domain pretraining is necessary. Furthermore, we release BRAMD, an open-access dataset (n=587) of DFIs with AMD labels from Brazil.
comment: 10 pages, 3 figures
PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
comment: Tech report. Project page: https://nianticlabs.github.io/placeit3d/
MTL-UE: Learning to Learn Nothing for Multi-Task Learning ICML 2025
Most existing unlearnable strategies focus on preventing unauthorized users from training single-task learning (STL) models with personal data. Nevertheless, the paradigm has recently shifted towards multi-task data and multi-task learning (MTL), targeting generalist and foundation models that can handle multiple tasks simultaneously. Despite their growing importance, MTL data and models have been largely neglected while pursuing unlearnable strategies. This paper presents MTL-UE, the first unified framework for generating unlearnable examples for multi-task data and MTL models. Instead of optimizing perturbations for each sample, we design a generator-based structure that introduces label priors and class-wise feature embeddings which leads to much better attacking performance. In addition, MTL-UE incorporates intra-task and inter-task embedding regularization to increase inter-class separation and suppress intra-class variance which enhances the attack robustness greatly. Furthermore, MTL-UE is versatile with good supports for dense prediction tasks in MTL. It is also plug-and-play allowing integrating existing surrogate-dependent unlearnable methods with little adaptation. Extensive experiments show that MTL-UE achieves superior attacking performance consistently across 4 MTL datasets, 3 base UE methods, 5 model backbones, and 5 MTL task-weighting strategies.
comment: Accepted by ICML 2025
White Light Specular Reflection Data Augmentation for Deep Learning Polyp Detection
Colorectal cancer is one of the deadliest cancers today, but it can be prevented through early detection of malignant polyps in the colon, primarily via colonoscopies. While this method has saved many lives, human error remains a significant challenge, as missing a polyp could have fatal consequences for the patient. Deep learning (DL) polyp detectors offer a promising solution. However, existing DL polyp detectors often mistake white light reflections from the endoscope for polyps, which can lead to false positives.To address this challenge, in this paper, we propose a novel data augmentation approach that artificially adds more white light reflections to create harder training scenarios. Specifically, we first generate a bank of artificial lights using the training dataset. Then we find the regions of the training images that we should not add these artificial lights on. Finally, we propose a sliding window method to add the artificial light to the areas that fit of the training images, resulting in augmented images. By providing the model with more opportunities to make mistakes, we hypothesize that it will also have more chances to learn from those mistakes, ultimately improving its performance in polyp detection. Experimental results demonstrate the effectiveness of our new data augmentation method.
comment: 5 pages, 4 Figures, paper accepted by the ISBI (International Symposium on Biomedical Imaging) 2025 Conference
PADriver: Towards Personalized Autonomous Driving
In this paper, we propose PADriver, a novel closed-loop framework for personalized autonomous driving (PAD). Built upon Multi-modal Large Language Model (MLLM), PADriver takes streaming frames and personalized textual prompts as inputs. It autoaggressively performs scene understanding, danger level estimation and action decision. The predicted danger level reflects the risk of the potential action and provides an explicit reference for the final action, which corresponds to the preset personalized prompt. Moreover, we construct a closed-loop benchmark named PAD-Highway based on Highway-Env simulator to comprehensively evaluate the decision performance under traffic rules. The dataset contains 250 hours videos with high-quality annotation to facilitate the development of PAD behavior analysis. Experimental results on the constructed benchmark show that PADriver outperforms state-of-the-art approaches on different evaluation metrics, and enables various driving modes.
Does CLIP perceive art the same way we do?
CLIP has emerged as a powerful multimodal model capable of connecting images and text through joint embeddings, but to what extent does it "see" the same way humans do - especially when interpreting artworks? In this paper, we investigate CLIP's ability to extract high-level semantic and stylistic information from paintings, including both human-created and AI-generated imagery. We evaluate its perception across multiple dimensions: content, scene understanding, artistic style, historical period, and the presence of visual deformations or artifacts. By designing targeted probing tasks and comparing CLIP's responses to human annotations and expert benchmarks, we explore its alignment with human perceptual and contextual understanding. Our findings reveal both strengths and limitations in CLIP's visual representations, particularly in relation to aesthetic cues and artistic intent. We further discuss the implications of these insights for using CLIP as a guidance mechanism during generative processes, such as style transfer or prompt-based image synthesis. Our work highlights the need for deeper interpretability in multimodal systems, especially when applied to creative domains where nuance and subjectivity play a central role.
Multi-Objective Reinforcement Learning for Adaptive Personalized Autonomous Driving
Human drivers exhibit individual preferences regarding driving style. Adapting autonomous vehicles to these preferences is essential for user trust and satisfaction. However, existing end-to-end driving approaches often rely on predefined driving styles or require continuous user feedback for adaptation, limiting their ability to support dynamic, context-dependent preferences. We propose a novel approach using multi-objective reinforcement learning (MORL) with preference-driven optimization for end-to-end autonomous driving that enables runtime adaptation to driving style preferences. Preferences are encoded as continuous weight vectors to modulate behavior along interpretable style objectives$\unicode{x2013}$including efficiency, comfort, speed, and aggressiveness$\unicode{x2013}$without requiring policy retraining. Our single-policy agent integrates vision-based perception in complex mixed-traffic scenarios and is evaluated in diverse urban environments using the CARLA simulator. Experimental results demonstrate that the agent dynamically adapts its driving behavior according to changing preferences while maintaining performance in terms of collision avoidance and route completion.
Diffusion Model Quantization: A Review
Recent success of large text-to-image models has empirically underscored the exceptional performance of diffusion models in generative tasks. To facilitate their efficient deployment on resource-constrained edge devices, model quantization has emerged as a pivotal technique for both compression and acceleration. This survey offers a thorough review of the latest advancements in diffusion model quantization, encapsulating and analyzing the current state of the art in this rapidly advancing domain. First, we provide an overview of the key challenges encountered in the quantization of diffusion models, including those based on U-Net architectures and Diffusion Transformers (DiT). We then present a comprehensive taxonomy of prevalent quantization techniques, engaging in an in-depth discussion of their underlying principles. Subsequently, we perform a meticulous analysis of representative diffusion model quantization schemes from both qualitative and quantitative perspectives. From a quantitative standpoint, we rigorously benchmark a variety of methods using widely recognized datasets, delivering an extensive evaluation of the most recent and impactful research in the field. From a qualitative standpoint, we categorize and synthesize the effects of quantization errors, elucidating these impacts through both visual analysis and trajectory examination. In conclusion, we outline prospective avenues for future research, proposing novel directions for the quantization of generative models in practical applications. The list of related papers, corresponding codes, pre-trained models and comparison results are publicly available at the survey project homepage https://github.com/TaylorJocelyn/Diffusion-Model-Quantization.
comment: 40 pages, 8 figures
HQC-NBV: A Hybrid Quantum-Classical View Planning Approach
Efficient view planning is a fundamental challenge in computer vision and robotic perception, critical for tasks ranging from search and rescue operations to autonomous navigation. While classical approaches, including sampling-based and deterministic methods, have shown promise in planning camera viewpoints for scene exploration, they often struggle with computational scalability and solution optimality in complex settings. This study introduces HQC-NBV, a hybrid quantum-classical framework for view planning that leverages quantum properties to efficiently explore the parameter space while maintaining robustness and scalability. We propose a specific Hamiltonian formulation with multi-component cost terms and a parameter-centric variational ansatz with bidirectional alternating entanglement patterns that capture the hierarchical dependencies between viewpoint parameters. Comprehensive experiments demonstrate that quantum-specific components provide measurable performance advantages. Compared to the classical methods, our approach achieves up to 49.2% higher exploration efficiency across diverse environments. Our analysis of entanglement architecture and coherence-preserving terms provides insights into the mechanisms of quantum advantage in robotic exploration tasks. This work represents a significant advancement in integrating quantum computing into robotic perception systems, offering a paradigm-shifting solution for various robot vision tasks.
EAM: Enhancing Anything with Diffusion Transformers for Blind Super-Resolution
Utilizing pre-trained Text-to-Image (T2I) diffusion models to guide Blind Super-Resolution (BSR) has become a predominant approach in the field. While T2I models have traditionally relied on U-Net architectures, recent advancements have demonstrated that Diffusion Transformers (DiT) achieve significantly higher performance in this domain. In this work, we introduce Enhancing Anything Model (EAM), a novel BSR method that leverages DiT and outperforms previous U-Net-based approaches. We introduce a novel block, $\Psi$-DiT, which effectively guides the DiT to enhance image restoration. This block employs a low-resolution latent as a separable flow injection control, forming a triple-flow architecture that effectively leverages the prior knowledge embedded in the pre-trained DiT. To fully exploit the prior guidance capabilities of T2I models and enhance their generalization in BSR, we introduce a progressive Masked Image Modeling strategy, which also reduces training costs. Additionally, we propose a subject-aware prompt generation strategy that employs a robust multi-modal model in an in-context learning framework. This strategy automatically identifies key image areas, provides detailed descriptions, and optimizes the utilization of T2I diffusion priors. Our experiments demonstrate that EAM achieves state-of-the-art results across multiple datasets, outperforming existing methods in both quantitative metrics and visual quality.
Improved Brain Tumor Detection in MRI: Fuzzy Sigmoid Convolution in Deep Learning IJCNN 2025
Early detection and accurate diagnosis are essential to improving patient outcomes. The use of convolutional neural networks (CNNs) for tumor detection has shown promise, but existing models often suffer from overparameterization, which limits their performance gains. In this study, fuzzy sigmoid convolution (FSC) is introduced along with two additional modules: top-of-the-funnel and middle-of-the-funnel. The proposed methodology significantly reduces the number of trainable parameters without compromising classification accuracy. A novel convolutional operator is central to this approach, effectively dilating the receptive field while preserving input data integrity. This enables efficient feature map reduction and enhances the model's tumor detection capability. In the FSC-based model, fuzzy sigmoid activation functions are incorporated within convolutional layers to improve feature extraction and classification. The inclusion of fuzzy logic into the architecture improves its adaptability and robustness. Extensive experiments on three benchmark datasets demonstrate the superior performance and efficiency of the proposed model. The FSC-based architecture achieved classification accuracies of 99.17%, 99.75%, and 99.89% on three different datasets. The model employs 100 times fewer parameters than large-scale transfer learning architectures, highlighting its computational efficiency and suitability for detecting brain tumors early. This research offers lightweight, high-performance deep-learning models for medical imaging applications.
comment: IEEE IJCNN 2025 has accepted the paper
Concept-Based Unsupervised Domain Adaptation ICML 2025
Concept Bottleneck Models (CBMs) enhance interpretability by explaining predictions through human-understandable concepts but typically assume that training and test data share the same distribution. This assumption often fails under domain shifts, leading to degraded performance and poor generalization. To address these limitations and improve the robustness of CBMs, we propose the Concept-based Unsupervised Domain Adaptation (CUDA) framework. CUDA is designed to: (1) align concept representations across domains using adversarial training, (2) introduce a relaxation threshold to allow minor domain-specific differences in concept distributions, thereby preventing performance drop due to over-constraints of these distributions, (3) infer concepts directly in the target domain without requiring labeled concept data, enabling CBMs to adapt to diverse domains, and (4) integrate concept learning into conventional domain adaptation (DA) with theoretical guarantees, improving interpretability and establishing new benchmarks for DA. Experiments demonstrate that our approach significantly outperforms the state-of-the-art CBM and DA methods on real-world datasets.
comment: Accepted by ICML 2025
Biomed-DPT: Dual Modality Prompt Tuning for Biomedical Vision-Language Models
Prompt learning is one of the most effective paradigms for adapting pre-trained vision-language models (VLMs) to the biomedical image classification tasks in few shot scenarios. However, most of the current prompt learning methods only used the text prompts and ignored the particular structures (such as the complex anatomical structures and subtle pathological features) in the biomedical images. In this work, we propose Biomed-DPT, a knowledge-enhanced dual modality prompt tuning technique. In designing the text prompt, Biomed-DPT constructs a dual prompt including the template-driven clinical prompts and the large language model (LLM)-driven domain-adapted prompts, then extracts the clinical knowledge from the domain-adapted prompts through the knowledge distillation technique. In designing the vision prompt, Biomed-DPT introduces the zero vector as a soft prompt to leverage attention re-weighting so that the focus on non-diagnostic regions and the recognition of non-critical pathological features are avoided. Biomed-DPT achieves an average classification accuracy of 66.14\% across 11 biomedical image datasets covering 9 modalities and 10 organs, with performance reaching 78.06\% in base classes and 75.97\% in novel classes, surpassing the Context Optimization (CoOp) method by 6.20\%, 3.78\%, and 8.04\%, respectively. Our code are available at \underline{https://github.com/Kanyooo/Biomed-DPT}.
PaniCar: Securing the Perception of Advanced Driving Assistance Systems Against Emergency Vehicle Lighting
The safety of autonomous cars has come under scrutiny in recent years, especially after 16 documented incidents involving Teslas (with autopilot engaged) crashing into parked emergency vehicles (police cars, ambulances, and firetrucks). While previous studies have revealed that strong light sources often introduce flare artifacts in the captured image, which degrade the image quality, the impact of flare on object detection performance remains unclear. In this research, we unveil PaniCar, a digital phenomenon that causes an object detector's confidence score to fluctuate below detection thresholds when exposed to activated emergency vehicle lighting. This vulnerability poses a significant safety risk, and can cause autonomous vehicles to fail to detect objects near emergency vehicles. In addition, this vulnerability could be exploited by adversaries to compromise the security of advanced driving assistance systems (ADASs). We assess seven commercial ADASs (Tesla Model 3, "manufacturer C", HP, Pelsee, AZDOME, Imagebon, Rexing), four object detectors (YOLO, SSD, RetinaNet, Faster R-CNN), and 14 patterns of emergency vehicle lighting to understand the influence of various technical and environmental factors. We also evaluate four SOTA flare removal methods and show that their performance and latency are insufficient for real-time driving constraints. To mitigate this risk, we propose Caracetamol, a robust framework designed to enhance the resilience of object detectors against the effects of activated emergency vehicle lighting. Our evaluation shows that on YOLOv3 and Faster RCNN, Caracetamol improves the models' average confidence of car detection by 0.20, the lower confidence bound by 0.33, and reduces the fluctuation range by 0.33. In addition, Caracetamol is capable of processing frames at a rate of between 30-50 FPS, enabling real-time ADAS car detection.
Probabilistic Embeddings for Frozen Vision-Language Models: Uncertainty Quantification with Gaussian Process Latent Variable Models UAI 2025
Vision-Language Models (VLMs) learn joint representations by mapping images and text into a shared latent space. However, recent research highlights that deterministic embeddings from standard VLMs often struggle to capture the uncertainties arising from the ambiguities in visual and textual descriptions and the multiple possible correspondences between images and texts. Existing approaches tackle this by learning probabilistic embeddings during VLM training, which demands large datasets and does not leverage the powerful representations already learned by large-scale VLMs like CLIP. In this paper, we propose GroVE, a post-hoc approach to obtaining probabilistic embeddings from frozen VLMs. GroVE builds on Gaussian Process Latent Variable Model (GPLVM) to learn a shared low-dimensional latent space where image and text inputs are mapped to a unified representation, optimized through single-modal embedding reconstruction and cross-modal alignment objectives. Once trained, the Gaussian Process model generates uncertainty-aware probabilistic embeddings. Evaluation shows that GroVE achieves state-of-the-art uncertainty calibration across multiple downstream tasks, including cross-modal retrieval, visual question answering, and active learning.
comment: UAI 2025, 22 pages
Research on Anomaly Detection Methods Based on Diffusion Models
Anomaly detection is a fundamental task in machine learning and data mining, with significant applications in cybersecurity, industrial fault diagnosis, and clinical disease monitoring. Traditional methods, such as statistical modeling and machine learning-based approaches, often face challenges in handling complex, high-dimensional data distributions. In this study, we explore the potential of diffusion models for anomaly detection, proposing a novel framework that leverages the strengths of diffusion probabilistic models (DPMs) to effectively identify anomalies in both image and audio data. The proposed method models the distribution of normal data through a diffusion process and reconstructs input data via reverse diffusion, using a combination of reconstruction errors and semantic discrepancies as anomaly indicators. To enhance the framework's performance, we introduce multi-scale feature extraction, attention mechanisms, and wavelet-domain representations, enabling the model to capture fine-grained structures and global dependencies in the data. Extensive experiments on benchmark datasets, including MVTec AD and UrbanSound8K, demonstrate that our method outperforms state-of-the-art anomaly detection techniques, achieving superior accuracy and robustness across diverse data modalities. This research highlights the effectiveness of diffusion models in anomaly detection and provides a robust and efficient solution for real-world applications.
comment: 6 pages, 3 table
Automated vision-based assistance tools in bronchoscopy: stenosis severity estimation
Purpose: Subglottic stenosis refers to the narrowing of the subglottis, the airway between the vocal cords and the trachea. Its severity is typically evaluated by estimating the percentage of obstructed airway. This estimation can be obtained from CT data or through visual inspection by experts exploring the region. However, visual inspections are inherently subjective, leading to less consistent and robust diagnoses. No public methods or datasets are currently available for automated evaluation of this condition from bronchoscopy video. Methods: We propose a pipeline for automated subglottic stenosis severity estimation during the bronchoscopy exploration, without requiring the physician to traverse the stenosed region. Our approach exploits the physical effect of illumination decline in endoscopy to segment and track the lumen and obtain a 3D model of the airway. This 3D model is obtained from a single frame and is used to measure the airway narrowing. Results: Our pipeline is the first to enable automated and robust subglottic stenosis severity measurement using bronchoscopy images. The results show consistency with ground-truth estimations from CT scans and expert estimations, and reliable repeatability across multiple estimations on the same patient. Our evaluation is performed on our new Subglottic Stenosis Dataset of real bronchoscopy procedures data. Conclusion: We demonstrate how to automate evaluation of subglottic stenosis severity using only bronchoscopy. Our approach can assist with and shorten diagnosis and monitoring procedures, with automated and repeatable estimations and less exploration time, and save radiation exposure to patients as no CT is required. Additionally, we release the first public benchmark for subglottic stenosis severity assessment.
An Active Contour Model for Silhouette Vectorization using Bézier Curves
In this paper, we propose an active contour model for silhouette vectorization using cubic B\'ezier curves. Among the end points of the B\'ezier curves, we distinguish between corner and regular points where the orientation of the tangent vector is prescribed. By minimizing the distance of the B\'ezier curves to the silhouette boundary, the active contour model optimizes the location of the B\'ezier curves end points, the orientation of the tangent vectors in the regular points, and the estimation of the B\'ezier curve parameters. This active contour model can use the silhouette vectorization obtained by any method as an initial guess. The proposed method significantly reduces the average distance between the silhouette boundary and its vectorization obtained by the world-class graphic software Inkscape, Adobe Illustrator, and a curvature-based vectorization method, which we introduce for comparison. Our method also allows us to impose additional regularity on the B\'ezier curves by reducing their lengths.
comment: 14 pages, 5 figures and 1 table
MDAA-Diff: CT-Guided Multi-Dose Adaptive Attention Diffusion Model for PET Denoising
Acquiring high-quality Positron Emission Tomography (PET) images requires administering high-dose radiotracers, which increases radiation exposure risks. Generating standard-dose PET (SPET) from low-dose PET (LPET) has become a potential solution. However, previous studies have primarily focused on single low-dose PET denoising, neglecting two critical factors: discrepancies in dose response caused by inter-patient variability, and complementary anatomical constraints derived from CT images. In this work, we propose a novel CT-Guided Multi-dose Adaptive Attention Denoising Diffusion Model (MDAA-Diff) for multi-dose PET denoising. Our approach integrates anatomical guidance and dose-level adaptation to achieve superior denoising performance under low-dose conditions. Specifically, this approach incorporates a CT-Guided High-frequency Wavelet Attention (HWA) module, which uses wavelet transforms to separate high-frequency anatomical boundary features from CT images. These extracted features are then incorporated into PET imaging through an adaptive weighted fusion mechanism to enhance edge details. Additionally, we propose the Dose-Adaptive Attention (DAA) module, a dose-conditioned enhancement mechanism that dynamically integrates dose levels into channel-spatial attention weight calculation. Extensive experiments on 18F-FDG and 68Ga-FAPI datasets demonstrate that MDAA-Diff outperforms state-of-the-art approaches in preserving diagnostic quality under reduced-dose conditions. Our code is publicly available.
MDE-Edit: Masked Dual-Editing for Multi-Object Image Editing via Diffusion Models
Multi-object editing aims to modify multiple objects or regions in complex scenes while preserving structural coherence. This task faces significant challenges in scenarios involving overlapping or interacting objects: (1) Inaccurate localization of target objects due to attention misalignment, leading to incomplete or misplaced edits; (2) Attribute-object mismatch, where color or texture changes fail to align with intended regions due to cross-attention leakage, creating semantic conflicts (\textit{e.g.}, color bleeding into non-target areas). Existing methods struggle with these challenges: approaches relying on global cross-attention mechanisms suffer from attention dilution and spatial interference between objects, while mask-based methods fail to bind attributes to geometrically accurate regions due to feature entanglement in multi-object scenarios. To address these limitations, we propose a training-free, inference-stage optimization approach that enables precise localized image manipulation in complex multi-object scenes, named MDE-Edit. MDE-Edit optimizes the noise latent feature in diffusion models via two key losses: Object Alignment Loss (OAL) aligns multi-layer cross-attention with segmentation masks for precise object positioning, and Color Consistency Loss (CCL) amplifies target attribute attention within masks while suppressing leakage to adjacent regions. This dual-loss design ensures localized and coherent multi-object edits. Extensive experiments demonstrate that MDE-Edit outperforms state-of-the-art methods in editing accuracy and visual quality, offering a robust solution for complex multi-object image manipulation tasks.
comment: 9 pages, 7 figures
X-Driver: Explainable Autonomous Driving with Vision-Language Models
End-to-end autonomous driving has advanced significantly, offering benefits such as system simplicity and stronger driving performance in both open-loop and closed-loop settings than conventional pipelines. However, existing frameworks still suffer from low success rates in closed-loop evaluations, highlighting their limitations in real-world deployment. In this paper, we introduce X-Driver, a unified multi-modal large language models(MLLMs) framework designed for closed-loop autonomous driving, leveraging Chain-of-Thought(CoT) and autoregressive modeling to enhance perception and decision-making. We validate X-Driver across multiple autonomous driving tasks using public benchmarks in CARLA simulation environment, including Bench2Drive[6]. Our experimental results demonstrate superior closed-loop performance, surpassing the current state-of-the-art(SOTA) while improving the interpretability of driving decisions. These findings underscore the importance of structured reasoning in end-to-end driving and establish X-Driver as a strong baseline for future research in closed-loop autonomous driving.
DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions CVPR 2025
Deep learning (DL) has surpassed human performance on standard benchmarks, driving its widespread adoption in computer vision tasks. One such task is disparity estimation, estimating the disparity between matching pixels in stereo image pairs, which is crucial for safety-critical applications like medical surgeries and autonomous navigation. However, DL-based disparity estimation methods are highly susceptible to distribution shifts and adversarial attacks, raising concerns about their reliability and generalization. Despite these concerns, a standardized benchmark for evaluating the robustness of disparity estimation methods remains absent, hindering progress in the field. To address this gap, we introduce DispBench, a comprehensive benchmarking tool for systematically assessing the reliability of disparity estimation methods. DispBench evaluates robustness against synthetic image corruptions such as adversarial attacks and out-of-distribution shifts caused by 2D Common Corruptions across multiple datasets and diverse corruption scenarios. We conduct the most extensive performance and robustness analysis of disparity estimation methods to date, uncovering key correlations between accuracy, reliability, and generalization. Open-source code for DispBench: https://github.com/shashankskagnihotri/benchmarking_robustness/tree/disparity_estimation/final/disparity_estimation
comment: Accepted at CVPR 2025 Workshop on Synthetic Data for Computer Vision
Nonlinear Motion-Guided and Spatio-Temporal Aware Network for Unsupervised Event-Based Optical Flow ICRA 2025
Event cameras have the potential to capture continuous motion information over time and space, making them well-suited for optical flow estimation. However, most existing learning-based methods for event-based optical flow adopt frame-based techniques, ignoring the spatio-temporal characteristics of events. Additionally, these methods assume linear motion between consecutive events within the loss time window, which increases optical flow errors in long-time sequences. In this work, we observe that rich spatio-temporal information and accurate nonlinear motion between events are crucial for event-based optical flow estimation. Therefore, we propose E-NMSTFlow, a novel unsupervised event-based optical flow network focusing on long-time sequences. We propose a Spatio-Temporal Motion Feature Aware (STMFA) module and an Adaptive Motion Feature Enhancement (AMFE) module, both of which utilize rich spatio-temporal information to learn spatio-temporal data associations. Meanwhile, we propose a nonlinear motion compensation loss that utilizes the accurate nonlinear motion between events to improve the unsupervised learning of our network. Extensive experiments demonstrate the effectiveness and superiority of our method. Remarkably, our method ranks first among unsupervised learning methods on the MVSEC and DSEC-Flow datasets. Our project page is available at https://wynelio.github.io/E-NMSTFlow.
comment: Accepted to ICRA 2025. Project Page: https://wynelio.github.io/E-NMSTFlow
SSH-Net: A Self-Supervised and Hybrid Network for Noisy Image Watermark Removal
Visible watermark removal is challenging due to its inherent complexities and the noise carried within images. Existing methods primarily rely on supervised learning approaches that require paired datasets of watermarked and watermark-free images, which are often impractical to obtain in real-world scenarios. To address this challenge, we propose SSH-Net, a Self-Supervised and Hybrid Network specifically designed for noisy image watermark removal. SSH-Net synthesizes reference watermark-free images using the watermark distribution in a self-supervised manner and adopts a dual-network design to address the task. The upper network, focused on the simpler task of noise removal, employs a lightweight CNN-based architecture, while the lower network, designed to handle the more complex task of simultaneously removing watermarks and noise, incorporates Transformer blocks to model long-range dependencies and capture intricate image features. To enhance the model's effectiveness, a shared CNN-based feature encoder is introduced before dual networks to extract common features that both networks can leverage. Our code will be available at https://github.com/wenyang001/SSH-Net.
comment: Under Review in JVCI
PIDiff: Image Customization for Personalized Identities with Diffusion Models
Text-to-image generation for personalized identities aims at incorporating the specific identity into images using a text prompt and an identity image. Based on the powerful generative capabilities of DDPMs, many previous works adopt additional prompts, such as text embeddings and CLIP image embeddings, to represent the identity information, while they fail to disentangle the identity information and background information. As a result, the generated images not only lose key identity characteristics but also suffer from significantly reduced diversity. To address this issue, previous works have combined the W+ space from StyleGAN with diffusion models, leveraging this space to provide a more accurate and comprehensive representation of identity features through multi-level feature extraction. However, the entanglement of identity and background information in in-the-wild images during training prevents accurate identity localization, resulting in severe semantic interference between identity and background. In this paper, we propose a novel fine-tuning-based diffusion model for personalized identities text-to-image generation, named PIDiff, which leverages the W+ space and an identity-tailored fine-tuning strategy to avoid semantic entanglement and achieves accurate feature extraction and localization. Style editing can also be achieved by PIDiff through preserving the characteristics of identity features in the W+ space, which vary from coarse to fine. Through the combination of the proposed cross-attention block and parameter optimization strategy, PIDiff preserves the identity information and maintains the generation capability for in-the-wild images of the pre-trained model during inference. Our experimental results validate the effectiveness of our method in this task.
comment: 9 pages, 11 figures
The City that Never Settles: Simulation-based LiDAR Dataset for Long-Term Place Recognition Under Extreme Structural Changes
Large-scale construction and demolition significantly challenge long-term place recognition (PR) by drastically reshaping urban and suburban environments. Existing datasets predominantly reflect limited or indoor-focused changes, failing to adequately represent extensive outdoor transformations. To bridge this gap, we introduce the City that Never Settles (CNS) dataset, a simulation-based dataset created using the CARLA simulator, capturing major structural changes-such as building construction and demolition-across diverse maps and sequences. Additionally, we propose TCR_sym, a symmetric version of the original TCR metric, enabling consistent measurement of structural changes irrespective of source-target ordering. Quantitative comparisons demonstrate that CNS encompasses more extensive transformations than current real-world benchmarks. Evaluations of state-of-the-art LiDAR-based PR methods on CNS reveal substantial performance degradation, underscoring the need for robust algorithms capable of handling significant environmental changes. Our dataset is available at https://github.com/Hyunho111/CNS_dataset.
Visual Affordances: Enabling Robots to Understand Object Functionality
Human-robot interaction for assistive technologies relies on the prediction of affordances, which are the potential actions a robot can perform on objects. Predicting object affordances from visual perception is formulated differently for tasks such as grasping detection, affordance classification, affordance segmentation, and hand-object interaction synthesis. In this work, we highlight the reproducibility issue in these redefinitions, making comparative benchmarks unfair and unreliable. To address this problem, we propose a unified formulation for visual affordance prediction, provide a comprehensive and systematic review of previous works highlighting strengths and limitations of methods and datasets, and analyse what challenges reproducibility. To favour transparency, we introduce the Affordance Sheet, a document to detail the proposed solution, the datasets, and the validation. As the physical properties of an object influence the interaction with the robot, we present a generic framework that links visual affordance prediction to the physical world. Using the weight of an object as an example for this framework, we discuss how estimating object mass can affect the affordance prediction. Our approach bridges the gap between affordance perception and robot actuation, and accounts for the complete information about objects of interest and how the robot interacts with them to accomplish its task.
comment: 24 pages, 12 figures, 10 tables. Project website at https://apicis.github.io/aff-survey/
RepSNet: A Nucleus Instance Segmentation model based on Boundary Regression and Structural Re-parameterization
Pathological diagnosis is the gold standard for tumor diagnosis, and nucleus instance segmentation is a key step in digital pathology analysis and pathological diagnosis. However, the computational efficiency of the model and the treatment of overlapping targets are the major challenges in the studies of this problem. To this end, a neural network model RepSNet was designed based on a nucleus boundary regression and a structural re-parameterization scheme for segmenting and classifying the nuclei in H\&E-stained histopathological images. First, RepSNet estimates the boundary position information (BPI) of the parent nucleus for each pixel. The BPI estimation incorporates the local information of the pixel and the contextual information of the parent nucleus. Then, the nucleus boundary is estimated by aggregating the BPIs from a series of pixels using a proposed boundary voting mechanism (BVM), and the instance segmentation results are computed from the estimated nucleus boundary using a connected component analysis procedure. The BVM intrinsically achieves a kind of synergistic belief enhancement among the BPIs from various pixels. Therefore, different from the methods available in literature that obtain nucleus boundaries based on a direct pixel recognition scheme, RepSNet computes its boundary decisions based on some guidances from macroscopic information using an integration mechanism. In addition, RepSNet employs a re-parametrizable encoder-decoder structure. This model can not only aggregate features from some receptive fields with various scales which helps segmentation accuracy improvement, but also reduce the parameter amount and computational burdens in the model inference phase through the structural re-parameterization technique. Extensive experiments demonstrated the superiorities of RepSNet compared to several typical benchmark models.
comment: 25 pages, 7 figures, 5 tables
FG-CLIP: Fine-Grained Visual and Textual Alignment ICML 2025
Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model's ability to distinguish subtle semantic differences. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP's effectiveness in capturing fine-grained image details and improving overall model performance. The related data, code, and models are available at https://github.com/360CVGroup/FG-CLIP.
comment: Accepted at ICML 2025
ULFine: Unbiased Lightweight Fine-tuning for Foundation-Model-Assisted Long-Tailed Semi-Supervised Learning
Based on the success of large-scale visual foundation models like CLIP in various downstream tasks, this paper initially attempts to explore their impact on Long-Tailed Semi-Supervised Learning (LTSSL) by employing the foundation model with three strategies: Linear Probing (LP), Lightweight Fine-Tuning (LFT), and Full Fine-Tuning (FFT). Our analysis presents the following insights: i) Compared to LTSSL algorithms trained from scratch, FFT results in a decline in model performance, whereas LP and LFT, although boosting overall model performance, exhibit negligible benefits to tail classes. ii) LP produces numerous false pseudo-labels due to \textit{underlearned} training data, while LFT can reduce the number of these false labels but becomes overconfident about them owing to \textit{biased fitting} training data. This exacerbates the pseudo-labeled and classifier biases inherent in LTSSL, limiting performance improvement in the tail classes. With these insights, we propose a Unbiased Lightweight Fine-tuning strategy, \textbf{ULFine}, which mitigates the overconfidence via confidence-aware adaptive fitting of textual prototypes and counteracts the pseudo-labeled and classifier biases via complementary fusion of dual logits. Extensive experiments demonstrate that ULFine markedly decreases training costs by over ten times and substantially increases prediction accuracies compared to state-of-the-art methods.
Direct Image Classification from Fourier Ptychographic Microscopy Measurements without Reconstruction SC
The computational imaging technique of Fourier Ptychographic Microscopy (FPM) enables high-resolution imaging with a wide field of view and can serve as an extremely valuable tool, e.g. in the classification of cells in medical applications. However, reconstructing a high-resolution image from tens or even hundreds of measurements is computationally expensive, particularly for a wide field of view. Therefore, in this paper, we investigate the idea of classifying the image content in the FPM measurements directly without performing a reconstruction step first. We show that Convolutional Neural Networks (CNN) can extract meaningful information from measurement sequences, significantly outperforming the classification on a single band-limited image (up to 12 %) while being significantly more efficient than a reconstruction of a high-resolution image. Furthermore, we demonstrate that a learned multiplexing of several raw measurements allows maintaining the classification accuracy while reducing the amount of data (and consequently also the acquisition time) significantly.
comment: ISCS 2025
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model ICML'25
The introduction of the Segment Anything Model (SAM) has paved the way for numerous semantic segmentation applications. For several tasks, quantifying the uncertainty of SAM is of particular interest. However, the ambiguous nature of the class-agnostic foundation model SAM challenges current uncertainty quantification (UQ) approaches. This paper presents a theoretically motivated uncertainty quantification model based on a Bayesian entropy formulation jointly respecting aleatoric, epistemic, and the newly introduced task uncertainty. We use this formulation to train USAM, a lightweight post-hoc UQ method. Our model traces the root of uncertainty back to under-parameterised models, insufficient prompts or image ambiguities. Our proposed deterministic USAM demonstrates superior predictive capabilities on the SA-V, MOSE, ADE20k, DAVIS, and COCO datasets, offering a computationally cheap and easy-to-use UQ alternative that can support user-prompting, enhance semi-supervised pipelines, or balance the tradeoff between accuracy and cost efficiency.
comment: Accepted to ICML'25
xTrace: A Facial Expressive Behaviour Analysis Tool for Continuous Affect Recognition
Recognising expressive behaviours in face videos is a long-standing challenge in Affective Computing. Despite significant advancements in recent years, it still remains a challenge to build a robust and reliable system for naturalistic and in-the-wild facial expressive behaviour analysis in real time. This paper addresses two key challenges in building such a system: (1). The paucity of large-scale labelled facial affect video datasets with extensive coverage of the 2D emotion space, and (2). The difficulty of extracting facial video features that are discriminative, interpretable, robust, and computationally efficient. Toward addressing these challenges, we introduce xTrace, a robust tool for facial expressive behaviour analysis and predicting continuous values of dimensional emotions, namely valence and arousal, from in-the-wild face videos. To address challenge (1), our affect recognition model is trained on the largest facial affect video data set, containing ~450k videos that cover most emotion zones in the dimensional emotion space, making xTrace highly versatile in analysing a wide spectrum of naturalistic expressive behaviours. To address challenge (2), xTrace uses facial affect descriptors that are not only explainable, but can also achieve a high degree of accuracy and robustness with low computational complexity. The key components of xTrace are benchmarked against three existing tools: MediaPipe, OpenFace, and Augsburg Affect Toolbox. On an in-the-wild validation set composed of 50k videos, xTrace achieves 0.86 mean CCC and 0.13 mean absolute error values. We present a detailed error analysis of affect predictions from xTrace, illustrating (a). its ability to recognise emotions with high accuracy across most bins in the 2D emotion space, (b). its robustness to non-frontal head pose angles, and (c). a strong correlation between its uncertainty estimates and its accuracy.
ADNP-15: An Open-Source Histopathological Dataset for Neuritic Plaque Segmentation in Human Brain Whole Slide Images with Frequency Domain Image Enhancement for Stain Normalization
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by amyloid-beta plaques and tau neurofibrillary tangles, which serve as key histopathological features. The identification and segmentation of these lesions are crucial for understanding AD progression but remain challenging due to the lack of large-scale annotated datasets and the impact of staining variations on automated image analysis. Deep learning has emerged as a powerful tool for pathology image segmentation; however, model performance is significantly influenced by variations in staining characteristics, necessitating effective stain normalization and enhancement techniques. In this study, we address these challenges by introducing an open-source dataset (ADNP-15) of neuritic plaques (i.e., amyloid deposits combined with a crown of dystrophic tau-positive neurites) in human brain whole slide images. We establish a comprehensive benchmark by evaluating five widely adopted deep learning models across four stain normalization techniques, providing deeper insights into their influence on neuritic plaque segmentation. Additionally, we propose a novel image enhancement method that improves segmentation accuracy, particularly in complex tissue structures, by enhancing structural details and mitigating staining inconsistencies. Our experimental results demonstrate that this enhancement strategy significantly boosts model generalization and segmentation accuracy. All datasets and code are open-source, ensuring transparency and reproducibility while enabling further advancements in the field.
Image-Text Relation Prediction for Multilingual Tweets
Various social networks have been allowing media uploads for over a decade now. Still, it has not always been clear what is their relation with the posted text or even if there is any at all. In this work, we explore how multilingual vision-language models tackle the task of image-text relation prediction in different languages, and construct a dedicated balanced benchmark data set from Twitter posts in Latvian along with their manual translations into English. We compare our results to previous work and show that the more recently released vision-language model checkpoints are becoming increasingly capable at this task, but there is still much room for further improvement.
Split Matching for Inductive Zero-shot Semantic Segmentation
Zero-shot Semantic Segmentation (ZSS) aims to segment categories that are not annotated during training. While fine-tuning vision-language models has achieved promising results, these models often overfit to seen categories due to the lack of supervision for unseen classes. As an alternative to fully supervised approaches, query-based segmentation has shown great latent in ZSS, as it enables object localization without relying on explicit labels. However, conventional Hungarian matching, a core component in query-based frameworks, needs full supervision and often misclassifies unseen categories as background in the setting of ZSS. To address this issue, we propose Split Matching (SM), a novel assignment strategy that decouples Hungarian matching into two components: one for seen classes in annotated regions and another for latent classes in unannotated regions (referred to as unseen candidates). Specifically, we partition the queries into seen and candidate groups, enabling each to be optimized independently according to its available supervision. To discover unseen candidates, we cluster CLIP dense features to generate pseudo masks and extract region-level embeddings using CLS tokens. Matching is then conducted separately for the two groups based on both class-level similarity and mask-level consistency. Additionally, we introduce a Multi-scale Feature Enhancement (MFE) module that refines decoder features through residual multi-scale aggregation, improving the model's ability to capture spatial details across resolutions. SM is the first to introduce decoupled Hungarian matching under the inductive ZSS setting, and achieves state-of-the-art performance on two standard benchmarks.
SOAP: Style-Omniscient Animatable Portraits
Creating animatable 3D avatars from a single image remains challenging due to style limitations (realistic, cartoon, anime) and difficulties in handling accessories or hairstyles. While 3D diffusion models advance single-view reconstruction for general objects, outputs often lack animation controls or suffer from artifacts because of the domain gap. We propose SOAP, a style-omniscient framework to generate rigged, topology-consistent avatars from any portrait. Our method leverages a multiview diffusion model trained on 24K 3D heads with multiple styles and an adaptive optimization pipeline to deform the FLAME mesh while maintaining topology and rigging via differentiable rendering. The resulting textured avatars support FACS-based animation, integrate with eyeballs and teeth, and preserve details like braided hair or accessories. Extensive experiments demonstrate the superiority of our method over state-of-the-art techniques for both single-view head modeling and diffusion-based generation of Image-to-3D. Our code and data are publicly available for research purposes at https://github.com/TingtingLiao/soap.
Adaptive Contextual Embedding for Robust Far-View Borehole Detection
In controlled blasting operations, accurately detecting densely distributed tiny boreholes from far-view imagery is critical for operational safety and efficiency. However, existing detection methods often struggle due to small object scales, highly dense arrangements, and limited distinctive visual features of boreholes. To address these challenges, we propose an adaptive detection approach that builds upon existing architectures (e.g., YOLO) by explicitly leveraging consistent embedding representations derived through exponential moving average (EMA)-based statistical updates. Our method introduces three synergistic components: (1) adaptive augmentation utilizing dynamically updated image statistics to robustly handle illumination and texture variations; (2) embedding stabilization to ensure consistent and reliable feature extraction; and (3) contextual refinement leveraging spatial context for improved detection accuracy. The pervasive use of EMA in our method is particularly advantageous given the limited visual complexity and small scale of boreholes, allowing stable and robust representation learning even under challenging visual conditions. Experiments on a challenging proprietary quarry-site dataset demonstrate substantial improvements over baseline YOLO-based architectures, highlighting our method's effectiveness in realistic and complex industrial scenarios.
Driving with Context: Online Map Matching for Complex Roads Using Lane Markings and Scenario Recognition
Accurate online map matching is fundamental to vehicle navigation and the activation of intelligent driving functions. Current online map matching methods are prone to errors in complex road networks, especially in multilevel road area. To address this challenge, we propose an online Standard Definition (SD) map matching method by constructing a Hidden Markov Model (HMM) with multiple probability factors. Our proposed method can achieve accurate map matching even in complex road networks by carefully leveraging lane markings and scenario recognition in the designing of the probability factors. First, the lane markings are generated by a multi-lane tracking method and associated with the SD map using HMM to build an enriched SD map. In areas covered by the enriched SD map, the vehicle can re-localize itself by performing Iterative Closest Point (ICP) registration for the lane markings. Then, the probability factor accounting for the lane marking detection can be obtained using the association probability between adjacent lanes and roads. Second, the driving scenario recognition model is applied to generate the emission probability factor of scenario recognition, which improves the performance of map matching on elevated roads and ordinary urban roads underneath them. We validate our method through extensive road tests in Europe and China, and the experimental results show that our proposed method effectively improves the online map matching accuracy as compared to other existing methods, especially in multilevel road area. Specifically, the experiments show that our proposed method achieves $F_1$ scores of 98.04% and 94.60% on the Zenseact Open Dataset and test data of multilevel road areas in Shanghai respectively, significantly outperforming benchmark methods. The implementation is available at https://github.com/TRV-Lab/LMSR-OMM.
comment: 9 pages and 12 figures. Under review at IEEE RA-L
Automated Thoracolumbar Stump Rib Detection and Analysis in a Large CT Cohort
Thoracolumbar stump ribs are one of the essential indicators of thoracolumbar transitional vertebrae or enumeration anomalies. While some studies manually assess these anomalies and describe the ribs qualitatively, this study aims to automate thoracolumbar stump rib detection and analyze their morphology quantitatively. To this end, we train a high-resolution deep-learning model for rib segmentation and show significant improvements compared to existing models (Dice score 0.997 vs. 0.779, p-value < 0.01). In addition, we use an iterative algorithm and piece-wise linear interpolation to assess the length of the ribs, showing a success rate of 98.2%. When analyzing morphological features, we show that stump ribs articulate more posteriorly at the vertebrae (-19.2 +- 3.8 vs -13.8 +- 2.5, p-value < 0.01), are thinner (260.6 +- 103.4 vs. 563.6 +- 127.1, p-value < 0.01), and are oriented more downwards and sideways within the first centimeters in contrast to full-length ribs. We show that with partially visible ribs, these features can achieve an F1-score of 0.84 in differentiating stump ribs from regular ones. We publish the model weights and masks for public use.
StabStitch++: Unsupervised Online Video Stitching with Spatiotemporal Bidirectional Warps
We retarget video stitching to an emerging issue, named warping shake, which unveils the temporal content shakes induced by sequentially unsmooth warps when extending image stitching to video stitching. Even if the input videos are stable, the stitched video can inevitably cause undesired warping shakes and affect the visual experience. To address this issue, we propose StabStitch++, a novel video stitching framework to realize spatial stitching and temporal stabilization with unsupervised learning simultaneously. First, different from existing learning-based image stitching solutions that typically warp one image to align with another, we suppose a virtual midplane between original image planes and project them onto it. Concretely, we design a differentiable bidirectional decomposition module to disentangle the homography transformation and incorporate it into our spatial warp, evenly spreading alignment burdens and projective distortions across two views. Then, inspired by camera paths in video stabilization, we derive the mathematical expression of stitching trajectories in video stitching by elaborately integrating spatial and temporal warps. Finally, a warp smoothing model is presented to produce stable stitched videos with a hybrid loss to simultaneously encourage content alignment, trajectory smoothness, and online collaboration. Compared with StabStitch that sacrifices alignment for stabilization, StabStitch++ makes no compromise and optimizes both of them simultaneously, especially in the online mode. To establish an evaluation benchmark and train the learning framework, we build a video stitching dataset with a rich diversity in camera motions and scenes. Experiments exhibit that StabStitch++ surpasses current solutions in stitching performance, robustness, and efficiency, offering compelling advancements in this field by building a real-time online video stitching system.
comment: TPAMI2025; https://github.com/nie-lang/StabStitch2. arXiv admin note: text overlap with arXiv:2403.06378
Inter-Diffusion Generation Model of Speakers and Listeners for Effective Communication ICMR 2025
Full-body gestures play a pivotal role in natural interactions and are crucial for achieving effective communication. Nevertheless, most existing studies primarily focus on the gesture generation of speakers, overlooking the vital role of listeners in the interaction process and failing to fully explore the dynamic interaction between them. This paper innovatively proposes an Inter-Diffusion Generation Model of Speakers and Listeners for Effective Communication. For the first time, we integrate the full-body gestures of listeners into the generation framework. By devising a novel inter-diffusion mechanism, this model can accurately capture the complex interaction patterns between speakers and listeners during communication. In the model construction process, based on the advanced diffusion model architecture, we innovatively introduce interaction conditions and the GAN model to increase the denoising step size. As a result, when generating gesture sequences, the model can not only dynamically generate based on the speaker's speech information but also respond in realtime to the listener's feedback, enabling synergistic interaction between the two. Abundant experimental results demonstrate that compared with the current state-of-the-art gesture generation methods, the model we proposed has achieved remarkable improvements in the naturalness, coherence, and speech-gesture synchronization of the generated gestures. In the subjective evaluation experiments, users highly praised the generated interaction scenarios, believing that they are closer to real life human communication situations. Objective index evaluations also show that our model outperforms the baseline methods in multiple key indicators, providing more powerful support for effective communication.
comment: accepted by ICMR 2025
Federated Deconfounding and Debiasing Learning for Out-of-Distribution Generalization IJCAI-25
Attribute bias in federated learning (FL) typically leads local models to optimize inconsistently due to the learning of non-causal associations, resulting degraded performance. Existing methods either use data augmentation for increasing sample diversity or knowledge distillation for learning invariant representations to address this problem. However, they lack a comprehensive analysis of the inference paths, and the interference from confounding factors limits their performance. To address these limitations, we propose the \underline{Fed}erated \underline{D}econfounding and \underline{D}ebiasing \underline{L}earning (FedDDL) method. It constructs a structured causal graph to analyze the model inference process, and performs backdoor adjustment to eliminate confounding paths. Specifically, we design an intra-client deconfounding learning module for computer vision tasks to decouple background and objects, generating counterfactual samples that establish a connection between the background and any label, which stops the model from using the background to infer the label. Moreover, we design an inter-client debiasing learning module to construct causal prototypes to reduce the proportion of the background in prototype components. Notably, it bridges the gap between heterogeneous representations via causal prototypical regularization. Extensive experiments on 2 benchmarking datasets demonstrate that \methodname{} significantly enhances the model capability to focus on main objects in unseen data, leading to 4.5\% higher Top-1 Accuracy on average over 9 state-of-the-art existing methods.
comment: IJCAI-25 Accepted
ReAlign: Bilingual Text-to-Motion Generation via Step-Aware Reward-Guided Alignment
Bilingual text-to-motion generation, which synthesizes 3D human motions from bilingual text inputs, holds immense potential for cross-linguistic applications in gaming, film, and robotics. However, this task faces critical challenges: the absence of bilingual motion-language datasets and the misalignment between text and motion distributions in diffusion models, leading to semantically inconsistent or low-quality motions. To address these challenges, we propose BiHumanML3D, a novel bilingual human motion dataset, which establishes a crucial benchmark for bilingual text-to-motion generation models. Furthermore, we propose a Bilingual Motion Diffusion model (BiMD), which leverages cross-lingual aligned representations to capture semantics, thereby achieving a unified bilingual model. Building upon this, we propose Reward-guided sampling Alignment (ReAlign) method, comprising a step-aware reward model to assess alignment quality during sampling and a reward-guided strategy that directs the diffusion process toward an optimally aligned distribution. This reward model integrates step-aware tokens and combines a text-aligned module for semantic consistency and a motion-aligned module for realism, refining noisy motions at each timestep to balance probability density and alignment. Experiments demonstrate that our approach significantly improves text-motion alignment and motion quality compared to existing state-of-the-art methods. Project page: https://wengwanjiang.github.io/ReAlign-page/.
comment: 17 pages, 9 figures
AI and Vision based Autonomous Navigation of Nano-Drones in Partially-Known Environments
The miniaturisation of sensors and processors, the advancements in connected edge intelligence, and the exponential interest in Artificial Intelligence are boosting the affirmation of autonomous nano-size drones in the Internet of Robotic Things ecosystem. However, achieving safe autonomous navigation and high-level tasks such as exploration and surveillance with these tiny platforms is extremely challenging due to their limited resources. This work focuses on enabling the safe and autonomous flight of a pocket-size, 30-gram platform called Crazyflie 2.1 in a partially known environment. We propose a novel AI-aided, vision-based reactive planning method for obstacle avoidance under the ambit of Integrated Sensing, Computing and Communication paradigm. We deal with the constraints of the nano-drone by splitting the navigation task into two parts: a deep learning-based object detector runs on the edge (external hardware) while the planning algorithm is executed onboard. The results show the ability to command the drone at $\sim8$ frames-per-second and a model performance reaching a COCO mean-average-precision of $60.8$. Field experiments demonstrate the feasibility of the solution with the drone flying at a top speed of $1$ m/s while steering away from an obstacle placed in an unknown position and reaching the target destination. The outcome highlights the compatibility of the communication delay and the model performance with the requirements of the real-time navigation task. We provide a feasible alternative to a fully onboard implementation that can be extended to autonomous exploration with nano-drones.
comment: in DCOSS-IoT 2025, Wi-DroIT 2025
General Transform: A Unified Framework for Adaptive Transform to Enhance Representations
Discrete transforms, such as the discrete Fourier transform, are widely used in machine learning to improve model performance by extracting meaningful features. However, with numerous transforms available, selecting an appropriate one often depends on understanding the dataset's properties, making the approach less effective when such knowledge is unavailable. In this work, we propose General Transform (GT), an adaptive transform-based representation designed for machine learning applications. Unlike conventional transforms, GT learns data-driven mapping tailored to the dataset and task of interest. Here, we demonstrate that models incorporating GT outperform conventional transform-based approaches across computer vision and natural language processing tasks, highlighting its effectiveness in diverse learning scenarios.
DenseGrounding: Improving Dense Language-Vision Semantics for Ego-Centric 3D Visual Grounding ICLR 2025
Enabling intelligent agents to comprehend and interact with 3D environments through natural language is crucial for advancing robotics and human-computer interaction. A fundamental task in this field is ego-centric 3D visual grounding, where agents locate target objects in real-world 3D spaces based on verbal descriptions. However, this task faces two significant challenges: (1) loss of fine-grained visual semantics due to sparse fusion of point clouds with ego-centric multi-view images, (2) limited textual semantic context due to arbitrary language descriptions. We propose DenseGrounding, a novel approach designed to address these issues by enhancing both visual and textual semantics. For visual features, we introduce the Hierarchical Scene Semantic Enhancer, which retains dense semantics by capturing fine-grained global scene features and facilitating cross-modal alignment. For text descriptions, we propose a Language Semantic Enhancer that leverages large language models to provide rich context and diverse language descriptions with additional context during model training. Extensive experiments show that DenseGrounding significantly outperforms existing methods in overall accuracy, with improvements of 5.81% and 7.56% when trained on the comprehensive full dataset and smaller mini subset, respectively, further advancing the SOTA in egocentric 3D visual grounding. Our method also achieves 1st place and receives the Innovation Award in the CVPR 2024 Autonomous Grand Challenge Multi-view 3D Visual Grounding Track, validating its effectiveness and robustness.
comment: Accepted by ICLR 2025
CAG-VLM: Fine-Tuning of a Large-Scale Model to Recognize Angiographic Images for Next-Generation Diagnostic Systems
Coronary angiography (CAG) is the gold-standard imaging modality for evaluating coronary artery disease, but its interpretation and subsequent treatment planning rely heavily on expert cardiologists. To enable AI-based decision support, we introduce a two-stage, physician-curated pipeline and a bilingual (Japanese/English) CAG image-report dataset. First, we sample 14,686 frames from 539 exams and annotate them for key-frame detection and left/right laterality; a ConvNeXt-Base CNN trained on this data achieves 0.96 F1 on laterality classification, even on low-contrast frames. Second, we apply the CNN to 243 independent exams, extract 1,114 key frames, and pair each with its pre-procedure report and expert-validated diagnostic and treatment summary, yielding a parallel corpus. We then fine-tune three open-source VLMs (PaliGemma2, Gemma3, and ConceptCLIP-enhanced Gemma3) via LoRA and evaluate them using VLScore and cardiologist review. Although PaliGemma2 w/LoRA attains the highest VLScore, Gemma3 w/LoRA achieves the top clinician rating (mean 7.20/10); we designate this best-performing model as CAG-VLM. These results demonstrate that specialized, fine-tuned VLMs can effectively assist cardiologists in generating clinical reports and treatment recommendations from CAG images.
ViCTr: Vital Consistency Transfer for Pathology Aware Image Synthesis
Synthesizing medical images remains challenging due to limited annotated pathological data, modality domain gaps, and the complexity of representing diffuse pathologies such as liver cirrhosis. Existing methods often struggle to maintain anatomical fidelity while accurately modeling pathological features, frequently relying on priors derived from natural images or inefficient multi-step sampling. In this work, we introduce ViCTr (Vital Consistency Transfer), a novel two-stage framework that combines a rectified flow trajectory with a Tweedie-corrected diffusion process to achieve high-fidelity, pathology-aware image synthesis. First, we pretrain ViCTr on the ATLAS-8k dataset using Elastic Weight Consolidation (EWC) to preserve critical anatomical structures. We then fine-tune the model adversarially with Low-Rank Adaptation (LoRA) modules for precise control over pathology severity. By reformulating Tweedie's formula within a linear trajectory framework, ViCTr supports one-step sampling, reducing inference from 50 steps to just 4, without sacrificing anatomical realism. We evaluate ViCTr on BTCV (CT), AMOS (MRI), and CirrMRI600+ (cirrhosis) datasets. Results demonstrate state-of-the-art performance, achieving a Medical Frechet Inception Distance (MFID) of 17.01 for cirrhosis synthesis 28% lower than existing approaches and improving nnUNet segmentation by +3.8% mDSC when used for data augmentation. Radiologist reviews indicate that ViCTr-generated liver cirrhosis MRIs are clinically indistinguishable from real scans. To our knowledge, ViCTr is the first method to provide fine-grained, pathology-aware MRI synthesis with graded severity control, closing a critical gap in AI-driven medical imaging research.
An Efficient Method for Accurate Pose Estimation and Error Correction of Cuboidal Objects IROS 2022
The proposed system outlined in this paper is a solution to a use case that requires the autonomous picking of cuboidal objects from an organized or unorganized pile with high precision. This paper presents an efficient method for precise pose estimation of cuboid-shaped objects, which aims to reduce errors in target pose in a time-efficient manner. Typical pose estimation methods like global point cloud registrations are prone to minor pose errors for which local registration algorithms are generally used to improve pose accuracy. However, due to the execution time overhead and uncertainty in the error of the final achieved pose, an alternate, linear time approach is proposed for pose error estimation and correction. This paper presents an overview of the solution followed by a detailed description of individual modules of the proposed algorithm.
comment: Accepted in IEEE/RSJ IROS 2022 Workshop on Mobile Manipulation and Embodied Intelligence (MOMA)
ADD: Physics-Based Motion Imitation with Adversarial Differential Discriminators
Multi-objective optimization problems, which require the simultaneous optimization of multiple terms, are prevalent across numerous applications. Existing multi-objective optimization methods often rely on manually tuned aggregation functions to formulate a joint optimization target. The performance of such hand-tuned methods is heavily dependent on careful weight selection, a time-consuming and laborious process. These limitations also arise in the setting of reinforcement-learning-based motion tracking for physically simulated characters, where intricately crafted reward functions are typically used to achieve high-fidelity results. Such solutions not only require domain expertise and significant manual adjustment, but also limit the applicability of the resulting reward function across diverse skills. To bridge this gap, we present a novel adversarial multi-objective optimization technique that is broadly applicable to a range of multi-objective optimization problems, including motion tracking. The proposed adversarial differential discriminator receives a single positive sample, yet is still effective at guiding the optimization process. We demonstrate that our technique can enable characters to closely replicate a variety of acrobatic and agile behaviors, achieving comparable quality to state-of-the-art motion-tracking methods, without relying on manually tuned reward functions. Results are best visualized through https://youtu.be/rz8BYCE9E2w.
comment: 19 pages, 15 figures
MoRe-3DGSMR: Motion-resolved reconstruction framework for free-breathing pulmonary MRI based on 3D Gaussian representation
This study presents an unsupervised, motion-resolved reconstruction framework for high-resolution, free-breathing pulmonary magnetic resonance imaging (MRI), utilizing a three-dimensional Gaussian representation (3DGS). The proposed method leverages 3DGS to address the challenges of motion-resolved 3D isotropic pulmonary MRI reconstruction by enabling data smoothing between voxels for continuous spatial representation. Pulmonary MRI data acquisition is performed using a golden-angle radial sampling trajectory, with respiratory motion signals extracted from the center of k-space in each radial spoke. Based on the estimated motion signal, the k-space data is sorted into multiple respiratory phases. A 3DGS framework is then applied to reconstruct a reference image volume from the first motion state. Subsequently, a patient-specific convolutional neural network is trained to estimate the deformation vector fields (DVFs), which are used to generate the remaining motion states through spatial transformation of the reference volume. The proposed reconstruction pipeline is evaluated on six datasets from six subjects and bench-marked against three state-of-the-art reconstruction methods. The experimental findings demonstrate that the proposed reconstruction framework effectively reconstructs high-resolution, motion-resolved pulmonary MR images. Compared with existing approaches, it achieves superior image quality, reflected by higher signal-to-noise ratio and contrast-to-noise ratio. The proposed unsupervised 3DGS-based reconstruction method enables accurate motion-resolved pulmonary MRI with isotropic spatial resolution. Its superior performance in image quality metrics over state-of-the-art methods highlights its potential as a robust solution for clinical pulmonary MR imaging.
T2VTextBench: A Human Evaluation Benchmark for Textual Control in Video Generation Models
Thanks to recent advancements in scalable deep architectures and large-scale pretraining, text-to-video generation has achieved unprecedented capabilities in producing high-fidelity, instruction-following content across a wide range of styles, enabling applications in advertising, entertainment, and education. However, these models' ability to render precise on-screen text, such as captions or mathematical formulas, remains largely untested, posing significant challenges for applications requiring exact textual accuracy. In this work, we introduce T2VTextBench, the first human-evaluation benchmark dedicated to evaluating on-screen text fidelity and temporal consistency in text-to-video models. Our suite of prompts integrates complex text strings with dynamic scene changes, testing each model's ability to maintain detailed instructions across frames. We evaluate ten state-of-the-art systems, ranging from open-source solutions to commercial offerings, and find that most struggle to generate legible, consistent text. These results highlight a critical gap in current video generators and provide a clear direction for future research aimed at enhancing textual manipulation in video synthesis.
Building-Guided Pseudo-Label Learning for Cross-Modal Building Damage Mapping
Accurate building damage assessment using bi-temporal multi-modal remote sensing images is essential for effective disaster response and recovery planning. This study proposes a novel Building-Guided Pseudo-Label Learning Framework to address the challenges of mapping building damage from pre-disaster optical and post-disaster SAR images. First, we train a series of building extraction models using pre-disaster optical images and building labels. To enhance building segmentation, we employ multi-model fusion and test-time augmentation strategies to generate pseudo-probabilities, followed by a low-uncertainty pseudo-label training method for further refinement. Next, a change detection model is trained on bi-temporal cross-modal images and damaged building labels. To improve damage classification accuracy, we introduce a building-guided low-uncertainty pseudo-label refinement strategy, which leverages building priors from the previous step to guide pseudo-label generation for damaged buildings, reducing uncertainty and enhancing reliability. Experimental results on the 2025 IEEE GRSS Data Fusion Contest dataset demonstrate the effectiveness of our approach, which achieved the highest mIoU score (54.28%) and secured first place in the competition.
FF-PNet: A Pyramid Network Based on Feature and Field for Brain Image Registration
In recent years, deformable medical image registration techniques have made significant progress. However, existing models still lack efficiency in parallel extraction of coarse and fine-grained features. To address this, we construct a new pyramid registration network based on feature and deformation field (FF-PNet). For coarse-grained feature extraction, we design a Residual Feature Fusion Module (RFFM), for fine-grained image deformation, we propose a Residual Deformation Field Fusion Module (RDFFM). Through the parallel operation of these two modules, the model can effectively handle complex image deformations. It is worth emphasizing that the encoding stage of FF-PNet only employs traditional convolutional neural networks without any attention mechanisms or multilayer perceptrons, yet it still achieves remarkable improvements in registration accuracy, fully demonstrating the superior feature decoding capabilities of RFFM and RDFFM. We conducted extensive experiments on the LPBA and OASIS datasets. The results show our network consistently outperforms popular methods in metrics like the Dice Similarity Coefficient.
Canny2Palm: Realistic and Controllable Palmprint Generation for Large-scale Pre-training
Palmprint recognition is a secure and privacy-friendly method of biometric identification. One of the major challenges to improve palmprint recognition accuracy is the scarcity of palmprint data. Recently, a popular line of research revolves around the synthesis of virtual palmprints for large-scale pre-training purposes. In this paper, we propose a novel synthesis method named Canny2Palm that extracts palm textures with Canny edge detector and uses them to condition a Pix2Pix network for realistic palmprint generation. By re-assembling palmprint textures from different identities, we are able to create new identities by seeding the generator with new assemblies. Canny2Palm not only synthesizes realistic data following the distribution of real palmprints but also enables controllable diversity to generate large-scale new identities. On open-set palmprint recognition benchmarks, models pre-trained with Canny2Palm synthetic data outperform the state-of-the-art with up to 7.2% higher identification accuracy. Moreover, the performance of models pre-trained with Canny2Palm continues to improve given 10,000 synthetic IDs while those with existing methods already saturate, demonstrating the potential of our method for large-scale pre-training.
Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models
Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.
comment: 75 Pages,10 figures; Project: https://github.com/HITsz-TMG/Awesome-Large-Multimodal-Reasoning-Models
A Simple Detector with Frame Dynamics is a Strong Tracker CVPR
Infrared object tracking plays a crucial role in Anti-Unmanned Aerial Vehicle (Anti-UAV) applications. Existing trackers often depend on cropped template regions and have limited motion modeling capabilities, which pose challenges when dealing with tiny targets. To address this, we propose a simple yet effective infrared tiny-object tracker that enhances tracking performance by integrating global detection and motion-aware learning with temporal priors. Our method is based on object detection and achieves significant improvements through two key innovations. First, we introduce frame dynamics, leveraging frame difference and optical flow to encode both prior target features and motion characteristics at the input level, enabling the model to better distinguish the target from background clutter. Second, we propose a trajectory constraint filtering strategy in the post-processing stage, utilizing spatio-temporal priors to suppress false positives and enhance tracking robustness. Extensive experiments show that our method consistently outperforms existing approaches across multiple metrics in challenging infrared UAV tracking scenarios. Notably, we achieve state-of-the-art performance in the 4th Anti-UAV Challenge, securing 1st place in Track 1 and 2nd place in Track 2.
comment: 2025 CVPR Anti-UAV Workshop
GlyphMastero: A Glyph Encoder for High-Fidelity Scene Text Editing CVPR 2025
Scene text editing, a subfield of image editing, requires modifying texts in images while preserving style consistency and visual coherence with the surrounding environment. While diffusion-based methods have shown promise in text generation, they still struggle to produce high-quality results. These methods often generate distorted or unrecognizable characters, particularly when dealing with complex characters like Chinese. In such systems, characters are composed of intricate stroke patterns and spatial relationships that must be precisely maintained. We present GlyphMastero, a specialized glyph encoder designed to guide the latent diffusion model for generating texts with stroke-level precision. Our key insight is that existing methods, despite using pretrained OCR models for feature extraction, fail to capture the hierarchical nature of text structures - from individual strokes to stroke-level interactions to overall character-level structure. To address this, our glyph encoder explicitly models and captures the cross-level interactions between local-level individual characters and global-level text lines through our novel glyph attention module. Meanwhile, our model implements a feature pyramid network to fuse the multi-scale OCR backbone features at the global-level. Through these cross-level and multi-scale fusions, we obtain more detailed glyph-aware guidance, enabling precise control over the scene text generation process. Our method achieves an 18.02\% improvement in sentence accuracy over the state-of-the-art multi-lingual scene text editing baseline, while simultaneously reducing the text-region Fr\'echet inception distance by 53.28\%.
comment: CVPR 2025
Advanced 3D Imaging Approach to TSV/TGV Metrology and Inspection Using Only Optical Microscopy
This paper introduces an innovative approach to silicon and glass via inspection, which combines hybrid field microscopy with photometric stereo. Conventional optical microscopy techniques are generally limited to superficial inspections and struggle to effectively visualize the internal structures of silicon and glass vias. By utilizing various lighting conditions for 3D reconstruction, the proposed method surpasses these limitations. By integrating photometric stereo to the traditional optical microscopy, the proposed method not only enhances the capability to detect micro-scale defects but also provides a detailed visualization of depth and edge abnormality, which are typically not visible with conventional optical microscopy inspection. The experimental results demonstrated that the proposed method effectively captures intricate surface details and internal structures. Quantitative comparisons between the reconstructed models and actual measurements present the capability of the proposed method to significantly improve silicon and glass via inspection process. As a result, the proposed method achieves enhanced cost-effectiveness while maintaining high accuracy and repeatability, suggesting substantial advancements in silicon and glass via inspection techniques
comment: 6 pages, 6 figures, Submitted to arXiv for preprint
SpatialPrompting: Keyframe-driven Zero-Shot Spatial Reasoning with Off-the-Shelf Multimodal Large Language Models
This study introduces SpatialPrompting, a novel framework that harnesses the emergent reasoning capabilities of off-the-shelf multimodal large language models to achieve zero-shot spatial reasoning in three-dimensional (3D) environments. Unlike existing methods that rely on expensive 3D-specific fine-tuning with specialized 3D inputs such as point clouds or voxel-based features, SpatialPrompting employs a keyframe-driven prompt generation strategy. This framework uses metrics such as vision-language similarity, Mahalanobis distance, field of view, and image sharpness to select a diverse and informative set of keyframes from image sequences and then integrates them with corresponding camera pose data to effectively abstract spatial relationships and infer complex 3D structures. The proposed framework not only establishes a new paradigm for flexible spatial reasoning that utilizes intuitive visual and positional cues but also achieves state-of-the-art zero-shot performance on benchmark datasets, such as ScanQA and SQA3D, across several metrics. The proposed method effectively eliminates the need for specialized 3D inputs and fine-tuning, offering a simpler and more scalable alternative to conventional approaches.
comment: 18 pages, 11 figures
Pro2SAM: Mask Prompt to SAM with Grid Points for Weakly Supervised Object Localization ECCV 2024
Weakly Supervised Object Localization (WSOL), which aims to localize objects by only using image-level labels, has attracted much attention because of its low annotation cost in real applications. Current studies focus on the Class Activation Map (CAM) of CNN and the self-attention map of transformer to identify the region of objects. However, both CAM and self-attention maps can not learn pixel-level fine-grained information on the foreground objects, which hinders the further advance of WSOL. To address this problem, we initiatively leverage the capability of zero-shot generalization and fine-grained segmentation in Segment Anything Model (SAM) to boost the activation of integral object regions. Further, to alleviate the semantic ambiguity issue accrued in single point prompt-based SAM, we propose an innovative mask prompt to SAM (Pro2SAM) network with grid points for WSOL task. First, we devise a Global Token Transformer (GTFormer) to generate a coarse-grained foreground map as a flexible mask prompt, where the GTFormer jointly embeds patch tokens and novel global tokens to learn foreground semantics. Secondly, we deliver grid points as dense prompts into SAM to maximize the probability of foreground mask, which avoids the lack of objects caused by a single point/box prompt. Finally, we propose a pixel-level similarity metric to come true the mask matching from mask prompt to SAM, where the mask with the highest score is viewed as the final localization map. Experiments show that the proposed Pro2SAM achieves state-of-the-art performance on both CUB-200-2011 and ILSVRC, with 84.03\% and 66.85\% Top-1 Loc, respectively.
comment: Accepted by ECCV 2024
OWT: A Foundational Organ-Wise Tokenization Framework for Medical Imaging
Recent advances in representation learning often rely on holistic, black-box embeddings that entangle multiple semantic components, limiting interpretability and generalization. These issues are especially critical in medical imaging. To address these limitations, we propose an Organ-Wise Tokenization (OWT) framework with a Token Group-based Reconstruction (TGR) training paradigm. Unlike conventional approaches that produce holistic features, OWT explicitly disentangles an image into separable token groups, each corresponding to a distinct organ or semantic entity. Our design ensures each token group encapsulates organ-specific information, boosting interpretability, generalization, and efficiency while allowing fine-grained control in downstream tasks. Experiments on CT and MRI datasets demonstrate the effectiveness of OWT in not only achieving strong image reconstruction and segmentation performance, but also enabling novel semantic-level generation and retrieval applications that are out of reach for standard holistic embedding methods. These findings underscore the potential of OWT as a foundational framework for semantically disentangled representation learning, offering broad scalability and applicability to real-world medical imaging scenarios and beyond.
Cross-Branch Orthogonality for Improved Generalization in Face Deepfake Detection
Remarkable advancements in generative AI technology have given rise to a spectrum of novel deepfake categories with unprecedented leaps in their realism, and deepfakes are increasingly becoming a nuisance to law enforcement authorities and the general public. In particular, we observe alarming levels of confusion, deception, and loss of faith regarding multimedia content within society caused by face deepfakes, and existing deepfake detectors are struggling to keep up with the pace of improvements in deepfake generation. This is primarily due to their reliance on specific forgery artifacts, which limits their ability to generalise and detect novel deepfake types. To combat the spread of malicious face deepfakes, this paper proposes a new strategy that leverages coarse-to-fine spatial information, semantic information, and their interactions while ensuring feature distinctiveness and reducing the redundancy of the modelled features. A novel feature orthogonality-based disentanglement strategy is introduced to ensure branch-level and cross-branch feature disentanglement, which allows us to integrate multiple feature vectors without adding complexity to the feature space or compromising generalisation. Comprehensive experiments on three public benchmarks: FaceForensics++, Celeb-DF, and the Deepfake Detection Challenge (DFDC) show that these design choices enable the proposed approach to outperform current state-of-the-art methods by 5% on the Celeb-DF dataset and 7% on the DFDC dataset in a cross-dataset evaluation setting.
Learning from Loss Landscape: Generalizable Mixed-Precision Quantization via Adaptive Sharpness-Aware Gradient Aligning
Mixed Precision Quantization (MPQ) has become an essential technique for optimizing neural network by determining the optimal bitwidth per layer. Existing MPQ methods, however, face a major hurdle: they require a computationally expensive search for quantization policies on large-scale datasets. To resolve this issue, we introduce a novel approach that first searches for quantization policies on small datasets and then generalizes them to large-scale datasets. This approach simplifies the process, eliminating the need for large-scale quantization fine-tuning and only necessitating model weight adjustment. Our method is characterized by three key techniques: sharpness-aware minimization for enhanced quantization generalization, implicit gradient direction alignment to handle gradient conflicts among different optimization objectives, and an adaptive perturbation radius to accelerate optimization. Both theoretical analysis and experimental results validate our approach. Using the CIFAR10 dataset (just 0.5\% the size of ImageNet training data) for MPQ policy search, we achieved equivalent accuracy on ImageNet with a significantly lower computational cost, while improving efficiency by up to 150% over the baselines.
Auto-regressive transformation for image alignment
Existing methods for image alignment struggle in cases involving feature-sparse regions, extreme scale and field-of-view differences, and large deformations, often resulting in suboptimal accuracy. Robustness to these challenges improves through iterative refinement of the transformation field while focusing on critical regions in multi-scale image representations. We thus propose Auto-Regressive Transformation (ART), a novel method that iteratively estimates the coarse-to-fine transformations within an auto-regressive framework. Leveraging hierarchical multi-scale features, our network refines the transformations using randomly sampled points at each scale. By incorporating guidance from the cross-attention layer, the model focuses on critical regions, ensuring accurate alignment even in challenging, feature-limited conditions. Extensive experiments across diverse datasets demonstrate that ART significantly outperforms state-of-the-art methods, establishing it as a powerful new method for precise image alignment with broad applicability.
Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model
The Segment Anything Model (SAM) is a popular vision foundation model; however, its high computational and memory demands make deployment on resource-constrained devices challenging. While Post-Training Quantization (PTQ) is a practical approach for reducing computational overhead, existing PTQ methods rely on fixed bit-width quantization, leading to suboptimal accuracy and efficiency. To address this limitation, we propose Mix-QSAM, a mixed-precision PTQ framework for SAM. First, we introduce a layer-wise importance score, derived using Kullback-Leibler (KL) divergence, to quantify each layer's contribution to the model's output. Second, we introduce cross-layer synergy, a novel metric based on causal mutual information, to capture dependencies between adjacent layers. This ensures that highly interdependent layers maintain similar bit-widths, preventing abrupt precision mismatches that degrade feature propagation and numerical stability. Using these metrics, we formulate an Integer Quadratic Programming (IQP) problem to determine optimal bit-width allocation under model size and bit-operation constraints, assigning higher precision to critical layers while minimizing bit-width in less influential layers. Experimental results demonstrate that Mix-QSAM consistently outperforms existing PTQ methods on instance segmentation and object detection tasks, achieving up to 20% higher average precision under 6-bit and 4-bit mixed-precision settings, while maintaining computational efficiency.
comment: 12 pages, 2 Figures
D-CODA: Diffusion for Coordinated Dual-Arm Data Augmentation
Learning bimanual manipulation is challenging due to its high dimensionality and tight coordination required between two arms. Eye-in-hand imitation learning, which uses wrist-mounted cameras, simplifies perception by focusing on task-relevant views. However, collecting diverse demonstrations remains costly, motivating the need for scalable data augmentation. While prior work has explored visual augmentation in single-arm settings, extending these approaches to bimanual manipulation requires generating viewpoint-consistent observations across both arms and producing corresponding action labels that are both valid and feasible. In this work, we propose Diffusion for COordinated Dual-arm Data Augmentation (D-CODA), a method for offline data augmentation tailored to eye-in-hand bimanual imitation learning that trains a diffusion model to synthesize novel, viewpoint-consistent wrist-camera images for both arms while simultaneously generating joint-space action labels. It employs constrained optimization to ensure that augmented states involving gripper-to-object contacts adhere to constraints suitable for bimanual coordination. We evaluate D-CODA on 5 simulated and 3 real-world tasks. Our results across 2250 simulation trials and 300 real-world trials demonstrate that it outperforms baselines and ablations, showing its potential for scalable data augmentation in eye-in-hand bimanual manipulation. Our project website is at: https://dcodaaug.github.io/D-CODA/.
MonoCoP: Chain-of-Prediction for Monocular 3D Object Detection
Accurately predicting 3D attributes is crucial for monocular 3D object detection (Mono3D), with depth estimation posing the greatest challenge due to the inherent ambiguity in mapping 2D images to 3D space. While existing methods leverage multiple depth cues (e.g., estimating depth uncertainty, modeling depth error) to improve depth accuracy, they overlook that accurate depth prediction requires conditioning on other 3D attributes, as these attributes are intrinsically inter-correlated through the 3D to 2D projection, which ultimately limits overall accuracy and stability. Inspired by Chain-of-Thought (CoT) in large language models (LLMs), this paper proposes MonoCoP, which leverages a Chain-of-Prediction (CoP) to predict attributes sequentially and conditionally via three key designs. First, it employs a lightweight AttributeNet (AN) for each 3D attribute to learn attribute-specific features. Next, MonoCoP constructs an explicit chain to propagate these learned features from one attribute to the next. Finally, MonoCoP uses a residual connection to aggregate features for each attribute along the chain, ensuring that later attribute predictions are conditioned on all previously processed attributes without forgetting the features of earlier ones. Experimental results show that our MonoCoP achieves state-of-the-art (SoTA) performance on the KITTI leaderboard without requiring additional data and further surpasses existing methods on the Waymo and nuScenes frontal datasets.
TetWeave: Isosurface Extraction using On-The-Fly Delaunay Tetrahedral Grids for Gradient-Based Mesh Optimization SIGGRAPH 2025
We introduce TetWeave, a novel isosurface representation for gradient-based mesh optimization that jointly optimizes the placement of a tetrahedral grid used for Marching Tetrahedra and a novel directional signed distance at each point. TetWeave constructs tetrahedral grids on-the-fly via Delaunay triangulation, enabling increased flexibility compared to predefined grids. The extracted meshes are guaranteed to be watertight, two-manifold and intersection-free. The flexibility of TetWeave enables a resampling strategy that places new points where reconstruction error is high and allows to encourage mesh fairness without compromising on reconstruction error. This leads to high-quality, adaptive meshes that require minimal memory usage and few parameters to optimize. Consequently, TetWeave exhibits near-linear memory scaling relative to the vertex count of the output mesh - a substantial improvement over predefined grids. We demonstrate the applicability of TetWeave to a broad range of challenging tasks in computer graphics and vision, such as multi-view 3D reconstruction, mesh compression and geometric texture generation.
comment: ACM Trans. Graph. 44, 4. SIGGRAPH 2025. 19 pages, 21 figures
HunyuanCustom: A Multimodal-Driven Architecture for Customized Video Generation
Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation. All the code and models are available at https://hunyuancustom.github.io.
Defining and Quantifying Creative Behavior in Popular Image Generators
Creativity of generative AI models has been a subject of scientific debate in the last years, without a conclusive answer. In this paper, we study creativity from a practical perspective and introduce quantitative measures that help the user to choose a suitable AI model for a given task. We evaluated our measures on a number of popular image-to-image generation models, and the results of this suggest that our measures conform to human intuition.
FA-KPConv: Introducing Euclidean Symmetries to KPConv via Frame Averaging IJCNN 2025
We present Frame-Averaging Kernel-Point Convolution (FA-KPConv), a neural network architecture built on top of the well-known KPConv, a widely adopted backbone for 3D point cloud analysis. Even though invariance and/or equivariance to Euclidean transformations are required for many common tasks, KPConv-based networks can only approximately achieve such properties when training on large datasets or with significant data augmentations. Using Frame Averaging, we allow to flexibly customize point cloud neural networks built with KPConv layers, by making them exactly invariant and/or equivariant to translations, rotations and/or reflections of the input point clouds. By simply wrapping around an existing KPConv-based network, FA-KPConv embeds geometrical prior knowledge into it while preserving the number of learnable parameters and not compromising any input information. We showcase the benefit of such an introduced bias for point cloud classification and point cloud registration, especially in challenging cases such as scarce training data or randomly rotated test data.
comment: 8 pages, 2 figures, accepted at IJCNN 2025
Advances in Automated Fetal Brain MRI Segmentation and Biometry: Insights from the FeTA 2024 Challenge
Accurate fetal brain tissue segmentation and biometric analysis are essential for studying brain development in utero. The FeTA Challenge 2024 advanced automated fetal brain MRI analysis by introducing biometry prediction as a new task alongside tissue segmentation. For the first time, our diverse multi-centric test set included data from a new low-field (0.55T) MRI dataset. Evaluation metrics were also expanded to include the topology-specific Euler characteristic difference (ED). Sixteen teams submitted segmentation methods, most of which performed consistently across both high- and low-field scans. However, longitudinal trends indicate that segmentation accuracy may be reaching a plateau, with results now approaching inter-rater variability. The ED metric uncovered topological differences that were missed by conventional metrics, while the low-field dataset achieved the highest segmentation scores, highlighting the potential of affordable imaging systems when paired with high-quality reconstruction. Seven teams participated in the biometry task, but most methods failed to outperform a simple baseline that predicted measurements based solely on gestational age, underscoring the challenge of extracting reliable biometric estimates from image data alone. Domain shift analysis identified image quality as the most significant factor affecting model generalization, with super-resolution pipelines also playing a substantial role. Other factors, such as gestational age, pathology, and acquisition site, had smaller, though still measurable, effects. Overall, FeTA 2024 offers a comprehensive benchmark for multi-class segmentation and biometry estimation in fetal brain MRI, underscoring the need for data-centric approaches, improved topological evaluation, and greater dataset diversity to enable clinically robust and generalizable AI tools.
Learning from Similarity Proportion Loss for Classifying Skeletal Muscle Recovery Stages MICCAI2024
Evaluating the regeneration process of damaged muscle tissue is a fundamental analysis in muscle research to measure experimental effect sizes and uncover mechanisms behind muscle weakness due to aging and disease. The conventional approach to assessing muscle tissue regeneration involves whole-slide imaging and expert visual inspection of the recovery stages based on the morphological information of cells and fibers. There is a need to replace these tasks with automated methods incorporating machine learning techniques to ensure a quantitative and objective analysis. Given the limited availability of fully labeled data, a possible approach is Learning from Label Proportions (LLP), a weakly supervised learning method using class label proportions. However, current LLP methods have two limitations: (1) they cannot adapt the feature extractor for muscle tissues, and (2) they treat the classes representing recovery stages and cell morphological changes as nominal, resulting in the loss of ordinal information. To address these issues, we propose Ordinal Scale Learning from Similarity Proportion (OSLSP), which uses a similarity proportion loss derived from two bag combinations. OSLSP can update the feature extractor by using class proportion attention to the ordinal scale of the class. Our model with OSLSP outperforms large-scale pre-trained and fine-tuning models in classification tasks of skeletal muscle recovery stages.
comment: MICCAI2024 workshop ADSMI in Morocco (oral) [Peer-reviewed]
MAISY: Motion-Aware Image SYnthesis for Medical Image Motion Correction
Patient motion during medical image acquisition causes blurring, ghosting, and distorts organs, which makes image interpretation challenging. Current state-of-the-art algorithms using Generative Adversarial Network (GAN)-based methods with their ability to learn the mappings between corrupted images and their ground truth via Structural Similarity Index Measure (SSIM) loss effectively generate motion-free images. However, we identified the following limitations: (i) they mainly focus on global structural characteristics and therefore overlook localized features that often carry critical pathological information, and (ii) the SSIM loss function struggles to handle images with varying pixel intensities, luminance factors, and variance. In this study, we propose Motion-Aware Image SYnthesis (MAISY) which initially characterize motion and then uses it for correction by: (a) leveraging the foundation model Segment Anything Model (SAM), to dynamically learn spatial patterns along anatomical boundaries where motion artifacts are most pronounced and, (b) introducing the Variance-Selective SSIM (VS-SSIM) loss which adaptively emphasizes spatial regions with high pixel variance to preserve essential anatomical details during artifact correction. Experiments on chest and head CT datasets demonstrate that our model outperformed the state-of-the-art counterparts, with Peak Signal-to-Noise Ratio (PSNR) increasing by 40%, SSIM by 10%, and Dice by 16%.
Automated detection of underdiagnosed medical conditions via opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
Rethinking Video Super-Resolution: Towards Diffusion-Based Methods without Motion Alignment
In this work, we rethink the approach to video super-resolution by introducing a method based on the Diffusion Posterior Sampling framework, combined with an unconditional video diffusion transformer operating in latent space. The video generation model, a diffusion transformer, functions as a space-time model. We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge, thus eliminating the need for explicit estimation of optical flows or motion parameters for pixel alignment. Furthermore, a single instance of the proposed video diffusion transformer model can adapt to different sampling conditions without re-training. Empirical results on synthetic and real-world datasets illustrate the feasibility of diffusion-based, alignment-free video super-resolution.
Free Discontinuity Regression: With an Application to the Economic Effects of Internet Shutdowns
Sharp, multidimensional changepoints-abrupt shifts in a regression surface whose locations and magnitudes are unknown-arise in settings as varied as gene-expression profiling, financial covariance breaks, climate-regime detection, and urban socioeconomic mapping. Despite their prevalence, there are no current approaches that jointly estimate the location and size of the discontinuity set in a one-shot approach with statistical guarantees. We therefore introduce Free Discontinuity Regression (FDR), a fully nonparametric estimator that simultaneously (i) smooths a regression surface, (ii) segments it into contiguous regions, and (iii) provably recovers the precise locations and sizes of its jumps. By extending a convex relaxation of the Mumford-Shah functional to random spatial sampling and correlated noise, FDR overcomes the fixed-grid and i.i.d. noise assumptions of classical image-segmentation approaches, thus enabling its application to real-world data of any dimension. This yields the first identification and uniform consistency results for multivariate jump surfaces: under mild SBV regularity, the estimated function, its discontinuity set, and all jump sizes converge to their true population counterparts. Hyperparameters are selected automatically from the data using Stein's Unbiased Risk Estimate, and large-scale simulations up to three dimensions validate the theoretical results and demonstrate good finite-sample performance. Applying FDR to an internet shutdown in India reveals a 25-35% reduction in economic activity around the estimated shutdown boundaries-much larger than previous estimates. By unifying smoothing, segmentation, and effect-size recovery in a general statistical setting, FDR turns free-discontinuity ideas into a practical tool with formal guarantees for modern multivariate data.
comment: 24 pages, 3 figures, 2 tables; authors listed alphabetically; code available at https://github.com/Davidvandijcke/fdr
USTEP: Spatio-Temporal Predictive Learning under A Unified View
Spatio-temporal predictive learning plays a crucial role in self-supervised learning, with wide-ranging applications across a diverse range of fields. Previous approaches for temporal modeling fall into two categories: recurrent-based and recurrent-free methods. The former, while meticulously processing frames one by one, neglect short-term spatio-temporal information redundancies, leading to inefficiencies. The latter naively stack frames sequentially, overlooking the inherent temporal dependencies. In this paper, we re-examine the two dominant temporal modeling approaches within the realm of spatio-temporal predictive learning, offering a unified perspective. Building upon this analysis, we introduce USTEP (Unified Spatio-TEmporal Predictive learning), an innovative framework that reconciles the recurrent-based and recurrent-free methods by integrating both micro-temporal and macro-temporal scales. Extensive experiments on a wide range of spatio-temporal predictive learning demonstrate that USTEP achieves significant improvements over existing temporal modeling approaches, thereby establishing it as a robust solution for a wide range of spatio-temporal applications.
comment: Accepted by TPAMI
AirMorph: Topology-Preserving Deep Learning for Pulmonary Airway Analysis
Accurate anatomical labeling and analysis of the pulmonary structure and its surrounding anatomy from thoracic CT is getting increasingly important for understanding the etilogy of abnormalities or supporting targetted therapy and early interventions. Whilst lung and airway cell atlases have been attempted, there is a lack of fine-grained morphological atlases that are clinically deployable. In this work, we introduce AirMorph, a robust, end-to-end deep learning pipeline enabling fully automatic and comprehensive airway anatomical labeling at lobar, segmental, and subsegmental resolutions that can be used to create digital atlases of the lung. Evaluated across large-scale multi-center datasets comprising diverse pulmonary conditions, the AirMorph consistently outperformed existing segmentation and labeling methods in terms of accuracy, topological consistency, and completeness. To simplify clinical interpretation, we further introduce a compact anatomical signature quantifying critical morphological airway features, including stenosis, ectasia, tortuosity, divergence, length, and complexity. When applied to various pulmonary diseases such as pulmonary fibrosis, emphysema, atelectasis, consolidation, and reticular opacities, it demonstrates strong discriminative power, revealing disease-specific morphological patterns with high interpretability and explainability. Additionally, AirMorph supports efficient automated branching pattern analysis, potentially enhancing bronchoscopic navigation planning and procedural safety, offering a valuable clinical tool for improved diagnosis, targeted treatment, and personalized patient care.
comment: Under Review
Label-Efficient Deep Learning in Medical Image Analysis: Challenges and Future Directions
Deep learning has significantly advanced medical imaging analysis (MIA), achieving state-of-the-art performance across diverse clinical tasks. However, its success largely depends on large-scale, high-quality labeled datasets, which are costly and time-consuming to obtain due to the need for expert annotation. To mitigate this limitation, label-efficient deep learning methods have emerged to improve model performance under limited supervision by leveraging labeled, unlabeled, and weakly labeled data. In this survey, we systematically review over 350 peer-reviewed studies and present a comprehensive taxonomy of label-efficient learning methods in MIA. These methods are categorized into four labeling paradigms: no label, insufficient label, inexact label, and label refinement. For each category, we analyze representative techniques across imaging modalities and clinical applications, highlighting shared methodological principles and task-specific adaptations. We also examine the growing role of health foundation models (HFMs) in enabling label-efficient learning through large-scale pre-training and transfer learning, enhancing the use of limited annotations in downstream tasks. Finally, we identify current challenges and future directions to facilitate the translation of label-efficient learning from research promise to everyday clinical care.
comment: Under Review
Two Views Are Better than One: Monocular 3D Pose Estimation with Multiview Consistency
Deducing a 3D human pose from a single 2D image is inherently challenging because multiple 3D poses can correspond to the same 2D representation. 3D data can resolve this pose ambiguity, but it is expensive to record and requires an intricate setup that is often restricted to controlled lab environments. We propose a method that improves the performance of deep learning-based monocular 3D human pose estimation models by using multiview data only during training, but not during inference. We introduce a novel loss function, consistency loss, which operates on two synchronized views. This approach is simpler than previous models that require 3D ground truth or intrinsic and extrinsic camera parameters. Our consistency loss penalizes differences in two pose sequences after rigid alignment. We also demonstrate that our consistency loss substantially improves performance for fine-tuning without requiring 3D data. Furthermore, we show that using our consistency loss can yield state-of-the-art performance when training models from scratch in a semi-supervised manner. Our findings provide a simple way to capture new data, e.g in a new domain. This data can be added using off-the-shelf cameras with no calibration requirements. We make all our code and data publicly available.
Evaluating Deep Learning Models for Breast Cancer Classification: A Comparative Study
This study evaluates the effectiveness of deep learning models in classifying histopathological images for early and accurate detection of breast cancer. Eight advanced models, including ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, and SqueezeNet, were compared using a dataset of 277,524 image patches. The Vision Transformer (ViT) model, with its attention-based mechanisms, achieved the highest validation accuracy of 94%, outperforming conventional CNNs. The study demonstrates the potential of advanced machine learning methods to enhance precision and efficiency in breast cancer diagnosis in clinical settings.
comment: 4 pages, 2 figures, 2 tables
Transformer-based assignment decision network for multiple object tracking
Data association is a crucial component for any multiple object tracking (MOT) method that follows the tracking-by-detection paradigm. To generate complete trajectories such methods employ a data association process to establish assignments between detections and existing targets during each timestep. Recent data association approaches try to solve either a multi-dimensional linear assignment task or a network flow minimization problem or tackle it via multiple hypotheses tracking. However, during inference an optimization step that computes optimal assignments is required for every sequence frame inducing additional complexity to any given solution. To this end, in the context of this work we introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of any explicit optimization during inference. In particular, TADN can directly infer assignment pairs between detections and active targets in a single forward pass of the network. We have integrated TADN in a rather simple MOT framework, designed a novel training strategy for efficient end-to-end training and demonstrated the high potential of our approach for online visual tracking-by-detection MOT on several popular benchmarks, i.e. MOT17, MOT20 and UA-DETRAC. Our proposed approach demonstrates strong performance in most evaluation metrics despite its simple nature as a tracker lacking significant auxiliary components such as occlusion handling or re-identification. The implementation of our method is publicly available at https://github.com/psaltaath/tadn-mot.
comment: Preprint version. Under consideration at Computer Vision and Image Understanding
Interact with me: Joint Egocentric Forecasting of Intent to Interact, Attitude and Social Actions ICME
For efficient human-agent interaction, an agent should proactively recognize their target user and prepare for upcoming interactions. We formulate this challenging problem as the novel task of jointly forecasting a person's intent to interact with the agent, their attitude towards the agent and the action they will perform, from the agent's (egocentric) perspective. So we propose \emph{SocialEgoNet} - a graph-based spatiotemporal framework that exploits task dependencies through a hierarchical multitask learning approach. SocialEgoNet uses whole-body skeletons (keypoints from face, hands and body) extracted from only 1 second of video input for high inference speed. For evaluation, we augment an existing egocentric human-agent interaction dataset with new class labels and bounding box annotations. Extensive experiments on this augmented dataset, named JPL-Social, demonstrate \emph{real-time} inference and superior performance (average accuracy across all tasks: 83.15\%) of our model outperforming several competitive baselines. The additional annotations and code will be available upon acceptance.
comment: Accepted to ICME, 2025. Camera-ready Version
Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: In this study, we investigate the training of foundation models using federated learning to address data-sharing limitations and enable collaborative model training without data transfer for minimally invasive surgery. Methods: Inspired by the EndoViT study, we adapt the Masked Autoencoder for federated learning, enhancing it with adaptive Sharpness-Aware Minimization (FedSAM) and Stochastic Weight Averaging (SWA). Our model is pretrained on the Endo700k dataset collection and later fine-tuned and evaluated for tasks such as Semantic Segmentation, Action Triplet Recognition, and Surgical Phase Recognition. Results: Our findings demonstrate that integrating adaptive FedSAM into the federated MAE approach improves pretraining, leading to a reduction in reconstruction loss per patch. The application of FL-EndoViT in surgical downstream tasks results in performance comparable to CEN-EndoViT. Furthermore, FL-EndoViT exhibits advantages over CEN-EndoViT in surgical scene segmentation when data is limited and in action triplet recognition when large datasets are used. Conclusion: These findings highlight the potential of federated learning for privacy-preserving training of surgical foundation models, offering a robust and generalizable solution for surgical data science. Effective collaboration requires adapting federated learning methods, such as the integration of FedSAM, which can accommodate the inherent data heterogeneity across institutions. In future, exploring FL in video-based models may enhance these capabilities by incorporating spatiotemporal dynamics crucial for real-world surgical environments.
comment: Preprint submitted to IEEE TMI
CloudTrack: Scalable UAV Tracking with Cloud Semantics
Nowadays, unmanned aerial vehicles (UAVs) are commonly used in search and rescue scenarios to gather information in the search area. The automatic identification of the person searched for in aerial footage could increase the autonomy of such systems, reduce the search time, and thus increase the missed person's chances of survival. In this paper, we present a novel approach to perform semantically conditioned open vocabulary object tracking that is specifically designed to cope with the limitations of UAV hardware. Our approach has several advantages. It can run with verbal descriptions of the missing person, e.g., the color of the shirt, it does not require dedicated training to execute the mission and can efficiently track a potentially moving person. Our experimental results demonstrate the versatility and efficacy of our approach.
comment: 7 pages, 3 figures
How Do Multimodal Large Language Models Handle Complex Multimodal Reasoning? Placing Them in An Extensible Escape Game
The rapid advancing of Multimodal Large Language Models (MLLMs) has spurred interest in complex multimodal reasoning tasks in the real-world and virtual environment, which require coordinating multiple abilities, including visual perception, visual reasoning, spatial awareness, and target deduction. However, existing evaluations primarily assess the final task completion, often degrading assessments to isolated abilities such as visual grounding and visual question answering. Less attention is given to comprehensively and quantitatively analyzing reasoning process in multimodal environments, which is crucial for understanding model behaviors and underlying reasoning mechanisms beyond merely task success. To address this, we introduce MM-Escape, an extensible benchmark for investigating multimodal reasoning, inspired by real-world escape games. MM-Escape emphasizes intermediate model behaviors alongside final task completion. To achieve this, we develop EscapeCraft, a customizable and open environment that enables models to engage in free-form exploration for assessing multimodal reasoning. Extensive experiments show that MLLMs, regardless of scale, can successfully complete the simplest room escape tasks, with some exhibiting human-like exploration strategies. Yet, performance dramatically drops as task difficulty increases. Moreover, we observe that performance bottlenecks vary across models, revealing distinct failure modes and limitations in their multimodal reasoning abilities, such as repetitive trajectories without adaptive exploration, getting stuck in corners due to poor visual spatial awareness, and ineffective use of acquired props, such as the key. We hope our work sheds light on new challenges in multimodal reasoning, and uncovers potential improvements in MLLMs capabilities.
Vision Transformers for Efficient Indoor Pathloss Radio Map Prediction
Indoor pathloss prediction is a fundamental task in wireless network planning, yet it remains challenging due to environmental complexity and data scarcity. In this work, we propose a deep learning-based approach utilizing a vision transformer (ViT) architecture with DINO-v2 pretrained weights to model indoor radio propagation. Our method processes a floor map with additional features of the walls to generate indoor pathloss maps. We systematically evaluate the effects of architectural choices, data augmentation strategies, and feature engineering techniques. Our findings indicate that extensive augmentation significantly improves generalization, while feature engineering is crucial in low-data regimes. Through comprehensive experiments, we demonstrate the robustness of our model across different generalization scenarios.
comment: Work partly supported by the RA Science Committee grant No. 22rl-052 (DISTAL) and the EU under Italian National Recovery and Resilience Plan of NextGenerationEU on "Telecommunications of the Future" (PE00000001 - program "RESTART")
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.
Expanding Event Modality Applications through a Robust CLIP-Based Encoder
This paper introduces a powerful encoder that transfers CLIP`s capabilities to event-based data, enhancing its utility and expanding its applicability across diverse domains. While large-scale datasets have significantly advanced image-based models, the scarcity of comprehensive event datasets has limited performance potential in event modality. To address this challenge, we adapt CLIP`s architecture to align event embeddings with image embeddings, supporting zero-shot learning and preserving text alignment while mitigating catastrophic forgetting. Our encoder achieves strong performance in object recognition, with competitive results in zero-shot and few-shot learning tasks. Notably, it generalizes effectively to events extracted from video data without requiring additional training, highlighting its versatility. Additionally, we integrate this encoder within a cross-modality framework that facilitates interaction across five modalities-Image, Event, Text, Sound, and Depth-expanding the possibilities for cross-modal applications. Overall, this work underscores the transformative potential of a robust event encoder, broadening the scope and utility of event-based data across various fields.
Search is All You Need for Few-shot Anomaly Detection
Few-shot anomaly detection (FSAD) has emerged as a crucial yet challenging task in industrial inspection, where normal distribution modeling must be accomplished with only a few normal images. While existing approaches typically employ multi-modal foundation models combining language and vision modalities for prompt-guided anomaly detection, these methods often demand sophisticated prompt engineering and extensive manual tuning. In this paper, we demonstrate that a straightforward nearest-neighbor search framework can surpass state-of-the-art performance in both single-class and multi-class FSAD scenarios. Our proposed method, VisionAD, consists of four simple yet essential components: (1) scalable vision foundation models that extract universal and discriminative features; (2) dual augmentation strategies - support augmentation to enhance feature matching adaptability and query augmentation to address the oversights of single-view prediction; (3) multi-layer feature integration that captures both low-frequency global context and high-frequency local details with minimal computational overhead; and (4) a class-aware visual memory bank enabling efficient one-for-all multi-class detection. Extensive evaluations across MVTec-AD, VisA, and Real-IAD benchmarks demonstrate VisionAD's exceptional performance. Using only 1 normal images as support, our method achieves remarkable image-level AUROC scores of 97.4%, 94.8%, and 70.8% respectively, outperforming current state-of-the-art approaches by significant margins (+1.6%, +3.2%, and +1.4%). The training-free nature and superior few-shot capabilities of VisionAD make it particularly appealing for real-world applications where samples are scarce or expensive to obtain. Code is available at https://github.com/Qiqigeww/VisionAD.
REHEARSE-3D: A Multi-modal Emulated Rain Dataset for 3D Point Cloud De-raining
Sensor degradation poses a significant challenge in autonomous driving. During heavy rainfall, the interference from raindrops can adversely affect the quality of LiDAR point clouds, resulting in, for instance, inaccurate point measurements. This, in turn, can potentially lead to safety concerns if autonomous driving systems are not weather-aware, i.e., if they are unable to discern such changes. In this study, we release a new, large-scale, multi-modal emulated rain dataset, REHEARSE-3D, to promote research advancements in 3D point cloud de-raining. Distinct from the most relevant competitors, our dataset is unique in several respects. First, it is the largest point-wise annotated dataset, and second, it is the only one with high-resolution LiDAR data (LiDAR-256) enriched with 4D Radar point clouds logged in both daytime and nighttime conditions in a controlled weather environment. Furthermore, REHEARSE-3D involves rain-characteristic information, which is of significant value not only for sensor noise modeling but also for analyzing the impact of weather at a point level. Leveraging REHEARSE-3D, we benchmark raindrop detection and removal in fused LiDAR and 4D Radar point clouds. Our comprehensive study further evaluates the performance of various statistical and deep-learning models. Upon publication, the dataset and benchmark models will be made publicly available at: https://sporsho.github.io/REHEARSE3D.
SeriesBench: A Benchmark for Narrative-Driven Drama Series Understanding CVPR 2025
With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on standalone videos and mainly assess "visual elements" like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a series. To address this challenge, we propose SeriesBench, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, PC-DCoT. Extensive results on SeriesBench indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while PC-DCoT enables these MLLMs to achieve performance improvements. Overall, our SeriesBench and PC-DCoT highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.
comment: 29 pages, 15 figures, CVPR 2025
3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark
3D spatial reasoning is the ability to analyze and interpret the positions, orientations, and spatial relationships of objects within the 3D space. This allows models to develop a comprehensive understanding of the 3D scene, enabling their applicability to a broader range of areas, such as autonomous navigation, robotics, and AR/VR. While large multi-modal models (LMMs) have achieved remarkable progress in a wide range of image and video understanding tasks, their capabilities to perform 3D spatial reasoning on diverse natural images are less studied. In this work we present the first comprehensive 3D spatial reasoning benchmark, 3DSRBench, with 2,772 manually annotated visual question-answer pairs across 12 question types. We conduct robust and thorough evaluation of 3D spatial reasoning capabilities by balancing the data distribution and adopting a novel FlipEval strategy. To further study the robustness of 3D spatial reasoning w.r.t. camera 3D viewpoints, our 3DSRBench includes two subsets with 3D spatial reasoning questions on paired images with common and uncommon viewpoints. We benchmark a wide range of open-sourced and proprietary LMMs, uncovering their limitations in various aspects of 3D awareness, such as height, orientation, location, and multi-object reasoning, as well as their degraded performance on images with uncommon camera viewpoints. Our 3DSRBench provide valuable findings and insights about the future development of LMMs with strong 3D reasoning capabilities. Our project page and dataset is available https://3dsrbench.github.io.
comment: Project page: https://3dsrbench.github.io
Nexus-Gen: A Unified Model for Image Understanding, Generation, and Editing
Unified multimodal large language models (MLLMs) aim to integrate multimodal understanding and generation abilities through a single framework. Despite their versatility, existing open-source unified models exhibit performance gaps against domain-specific architectures. To bridge this gap, we present Nexus-Gen, a unified model that synergizes the language reasoning capabilities of LLMs with the image synthesis power of diffusion models. To align the embedding space of the LLM and diffusion model, we conduct a dual-phase alignment training process. (1) The autoregressive LLM learns to predict image embeddings conditioned on multimodal inputs, while (2) the vision decoder is trained to reconstruct high-fidelity images from these embeddings. During training the LLM, we identified a critical discrepancy between the autoregressive paradigm's training and inference phases, where error accumulation in continuous embedding space severely degrades generation quality. To avoid this issue, we introduce a prefilled autoregression strategy that prefills input sequence with position-embedded special tokens instead of continuous embeddings. Through dual-phase training, Nexus-Gen has developed the integrated capability to comprehensively address the image understanding, generation and editing tasks. All models, datasets, and codes are published at https://github.com/modelscope/Nexus-Gen.git to facilitate further advancements across the field.
FindAnything: Open-Vocabulary and Object-Centric Mapping for Robot Exploration in Any Environment
Geometrically accurate and semantically expressive map representations have proven invaluable to facilitate robust and safe mobile robot navigation and task planning. Nevertheless, real-time, open-vocabulary semantic understanding of large-scale unknown environments is still an open problem. In this paper we present FindAnything, an open-world mapping and exploration framework that incorporates vision-language information into dense volumetric submaps. Thanks to the use of vision-language features, FindAnything bridges the gap between pure geometric and open-vocabulary semantic information for a higher level of understanding while allowing to explore any environment without the help of any external source of ground-truth pose information. We represent the environment as a series of volumetric occupancy submaps, resulting in a robust and accurate map representation that deforms upon pose updates when the underlying SLAM system corrects its drift, allowing for a locally consistent representation between submaps. Pixel-wise vision-language features are aggregated from efficient SAM (eSAM)-generated segments, which are in turn integrated into object-centric volumetric submaps, providing a mapping from open-vocabulary queries to 3D geometry that is scalable also in terms of memory usage. The open-vocabulary map representation of FindAnything achieves state-of-the-art semantic accuracy in closed-set evaluations on the Replica dataset. This level of scene understanding allows a robot to explore environments based on objects or areas of interest selected via natural language queries. Our system is the first of its kind to be deployed on resource-constrained devices, such as MAVs, leveraging vision-language information for real-world robotic tasks.
comment: 11 pages, 5 figures
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines NAACL 2025
Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.
comment: Best Theme Paper at NAACL 2025
Balanced 3DGS: Gaussian-wise Parallelism Rendering with Fine-Grained Tiling
3D Gaussian Splatting (3DGS) is increasingly attracting attention in both academia and industry owing to its superior visual quality and rendering speed. However, training a 3DGS model remains a time-intensive task, especially in load imbalance scenarios where workload diversity among pixels and Gaussian spheres causes poor renderCUDA kernel performance. We introduce Balanced 3DGS, a Gaussian-wise parallelism rendering with fine-grained tiling approach in 3DGS training process, perfectly solving load-imbalance issues. First, we innovatively introduce the inter-block dynamic workload distribution technique to map workloads to Streaming Multiprocessor(SM) resources within a single GPU dynamically, which constitutes the foundation of load balancing. Second, we are the first to propose the Gaussian-wise parallel rendering technique to significantly reduce workload divergence inside a warp, which serves as a critical component in addressing load imbalance. Based on the above two methods, we further creatively put forward the fine-grained combined load balancing technique to uniformly distribute workload across all SMs, which boosts the forward renderCUDA kernel performance by up to 7.52x. Besides, we present a self-adaptive render kernel selection strategy during the 3DGS training process based on different load-balance situations, which effectively improves training efficiency.
MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion ICLR 25
Estimating geometry from dynamic scenes, where objects move and deform over time, remains a core challenge in computer vision. Current approaches often rely on multi-stage pipelines or global optimizations that decompose the problem into subtasks, like depth and flow, leading to complex systems prone to errors. In this paper, we present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes. Our key insight is that by simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes. However, this approach presents a significant challenge: the scarcity of suitable training data, namely dynamic, posed videos with depth labels. Despite this, we show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics, even without an explicit motion representation. Based on this, we introduce new optimizations for several downstream video-specific tasks and demonstrate strong performance on video depth and camera pose estimation, outperforming prior work in terms of robustness and efficiency. Moreover, MonST3R shows promising results for primarily feed-forward 4D reconstruction.
comment: Accepted by ICLR 25, Project page: https://monst3r-project.github.io/
PhysFlow: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation CVPR 2025
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce PhysFlow, a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
comment: CVPR 2025. Homepage: https://zhuomanliu.github.io/PhysFlow/
Adaptive Rate Control for Deep Video Compression with Rate-Distortion Prediction
Deep video compression has made significant progress in recent years, achieving rate-distortion performance that surpasses that of traditional video compression methods. However, rate control schemes tailored for deep video compression have not been well studied. In this paper, we propose a neural network-based $\lambda$-domain rate control scheme for deep video compression, which determines the coding parameter $\lambda$ for each to-be-coded frame based on the rate-distortion-$\lambda$ (R-D-$\lambda$) relationships directly learned from uncompressed frames, achieving high rate control accuracy efficiently without the need for pre-encoding. Moreover, this content-aware scheme is able to mitigate inter-frame quality fluctuations and adapt to abrupt changes in video content. Specifically, we introduce two neural network-based predictors to estimate the relationship between bitrate and $\lambda$, as well as the relationship between distortion and $\lambda$ for each frame. Then we determine the coding parameter $\lambda$ for each frame to achieve the target bitrate. Experimental results demonstrate that our approach achieves high rate control accuracy at the mini-GOP level with low time overhead and mitigates inter-frame quality fluctuations across video content of varying resolutions.
MambaNUT: Nighttime UAV Tracking via Mamba-based Adaptive Curriculum Learning
Harnessing low-light enhancement and domain adaptation, nighttime UAV tracking has made substantial strides. However, over-reliance on image enhancement, limited high-quality nighttime data, and a lack of integration between daytime and nighttime trackers hinder the development of an end-to-end trainable framework. Additionally, current ViT-based trackers demand heavy computational resources due to their reliance on the self-attention mechanism. In this paper, we propose a novel pure Mamba-based tracking framework (MambaNUT) that employs a state space model with linear complexity as its backbone, incorporating a single-stream architecture that integrates feature learning and template-search coupling within Vision Mamba. We introduce an adaptive curriculum learning (ACL) approach that dynamically adjusts sampling strategies and loss weights, thereby improving the model's ability of generalization. Our ACL is composed of two levels of curriculum schedulers: (1) sampling scheduler that transforms the data distribution from imbalanced to balanced, as well as from easier (daytime) to harder (nighttime) samples; (2) loss scheduler that dynamically assigns weights based on the size of the training data and IoU of individual instances. Exhaustive experiments on multiple nighttime UAV tracking benchmarks demonstrate that the proposed MambaNUT achieves state-of-the-art performance while requiring lower computational costs. The code will be available at https://github.com/wuyou3474/MambaNUT.
Generalizable Human Gaussians from Single-View Image ICLR 2025
In this work, we tackle the task of learning 3D human Gaussians from a single image, focusing on recovering detailed appearance and geometry including unobserved regions. We introduce a single-view generalizable Human Gaussian Model (HGM), which employs a novel generate-then-refine pipeline with the guidance from human body prior and diffusion prior. Our approach uses a ControlNet to refine rendered back-view images from coarse predicted human Gaussians, then uses the refined image along with the input image to reconstruct refined human Gaussians. To mitigate the potential generation of unrealistic human poses and shapes, we incorporate human priors from the SMPL-X model as a dual branch, propagating image features from the SMPL-X volume to the image Gaussians using sparse convolution and attention mechanisms. Given that the initial SMPL-X estimation might be inaccurate, we gradually refine it with our HGM model. We validate our approach on several publicly available datasets. Our method surpasses previous methods in both novel view synthesis and surface reconstruction. Our approach also exhibits strong generalization for cross-dataset evaluation and in-the-wild images.
comment: ICLR 2025: https://jinnan-chen.github.io/projects/HGM/
A nonlinear elasticity model in computer vision
The purpose of this paper is to analyze a nonlinear elasticity model introduced by the authors for comparing two images, regarded as bounded open subsets of $\R^n$ together with associated vector-valued intensity maps. Optimal transformations between the images are sought as minimisers of an integral functional among orientation-preserving homeomorphisms. The existence of minimisers is proved under natural coercivity and polyconvexity conditions, assuming only that the intensity functions are bounded measurable. Variants of the existence theorem are also proved, first under the constraint that finite sets of landmark points in the two images are mapped one to the other, and second when one image is to be compared to an unknown part of another. The question is studied as to whether for images related by an affine mapping the unique minimiser is given by that affine mapping. For a natural class of functional integrands an example is given guaranteeing that this property holds for pairs of images in which the second is a scaling of the first by a constant factor. However for the property to hold for arbitrary pairs of affinely related images it is shown that the integrand has to depend on the gradient of the transformation as a convex function of its determinant alone. This suggests a new model in which the integrand depends also on second derivatives of the transformation, and an example is given for which both existence of minimisers is assured and the above property holds for all pairs of affinely related images.
comment: The paper has been substantially revised. In particular the section on metrics has been rewritten to correct an error, and a new result added on the existence of discrete morphing sequences in the mass-conserving case. In the mass-conserving case there is a new formulation of the question concerning whether the minimizing deformation for affinely related images is the corresponding affine map
Semantic Shift Estimation via Dual-Projection and Classifier Reconstruction for Exemplar-Free Class-Incremental Learning ICML 2025
Exemplar-Free Class-Incremental Learning (EFCIL) aims to sequentially learn from distinct categories without retaining exemplars but easily suffers from catastrophic forgetting of learned knowledge. While existing EFCIL methods leverage knowledge distillation to alleviate forgetting, they still face two critical challenges: semantic shift and decision bias. Specifically, the embeddings of old tasks shift in the embedding space after learning new tasks, and the classifier becomes biased towards new tasks due to training solely with new data, thereby hindering the balance between old and new knowledge. To address these issues, we propose the Dual-Projection Shift Estimation and Classifier Reconstruction (DPCR) approach for EFCIL. DPCR effectively estimates semantic shift through a dual-projection, which combines a learnable transformation with a row-space projection to capture both task-wise and category-wise shifts. Furthermore, to mitigate decision bias, DPCR employs ridge regression to reformulate classifier training as a reconstruction process. This reconstruction exploits previous information encoded in covariance and prototype of each class after calibration with estimated shift, thereby reducing decision bias. Extensive experiments demonstrate that, across various datasets, DPCR effectively balances old and new tasks, outperforming state-of-the-art EFCIL methods.
comment: Accepted by ICML 2025
DGSolver: Diffusion Generalist Solver with Universal Posterior Sampling for Image Restoration
Diffusion models have achieved remarkable progress in universal image restoration. While existing methods speed up inference by reducing sampling steps, substantial step intervals often introduce cumulative errors. Moreover, they struggle to balance the commonality of degradation representations and restoration quality. To address these challenges, we introduce \textbf{DGSolver}, a diffusion generalist solver with universal posterior sampling. We first derive the exact ordinary differential equations for generalist diffusion models and tailor high-order solvers with a queue-based accelerated sampling strategy to improve both accuracy and efficiency. We then integrate universal posterior sampling to better approximate manifold-constrained gradients, yielding a more accurate noise estimation and correcting errors in inverse inference. Extensive experiments show that DGSolver outperforms state-of-the-art methods in restoration accuracy, stability, and scalability, both qualitatively and quantitatively. Code and models will be available at https://github.com/MiliLab/DGSolver.
Transforming faces into video stories -- VideoFace2.0
Face detection and face recognition have been in the focus of vision community since the very beginnings. Inspired by the success of the original Videoface digitizer, a pioneering device that allowed users to capture video signals from any source, we have designed an advanced video analytics tool to efficiently create structured video stories, i.e. identity-based information catalogs. VideoFace2.0 is the name of the developed system for spatial and temporal localization of each unique face in the input video, i.e. face re-identification (ReID), which also allows their cataloging, characterization and creation of structured video outputs for later downstream tasks. Developed near real-time solution is primarily designed to be utilized in application scenarios involving TV production, media analysis, and as an efficient tool for creating large video datasets necessary for training machine learning (ML) models in challenging vision tasks such as lip reading and multimodal speech recognition. Conducted experiments confirm applicability of the proposed face ReID algorithm that is combining the concepts of face detection, face recognition and passive tracking-by-detection in order to achieve robust and efficient face ReID. The system is envisioned as a compact and modular extensions of the existing video production equipment. Presented results are based on test implementation that achieves between 18-25 fps on consumer type notebook. Ablation experiments also confirmed that the proposed algorithm brings relative gain in the reduction of number of false identities in the range of 73%-93%. We hope that the presented work and shared code implementation will stimulate further interest in development of similar, application specific video analysis tools, and lower the entry barrier for production of high-quality multi-modal datasets in the future.
comment: 4 Pages, 2 Figures, 1 Table, 1 Algorithm; Associated VideoFace2.0 code, test videos and results visualizations are available at https://github.com/brkljac/VideoFace2.0 ; Preprint accepted for publication at the 14th Mediterranean Conference on Embedded Computing (MECO), 10-14 June 2025, Budva, Montenegro
LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of objects and the location of their internal structures within deformable objects is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgical interventions. We demonstrate LUDO's abilities for autonomous targeting of internal regions of interest (ROIs) in deformable objects. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various ROIs inside deformable objects. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
Locality-aware Cross-modal Correspondence Learning for Dense Audio-Visual Events Localization
Dense-localization Audio-Visual Events (DAVE) aims to identify time boundaries and corresponding categories for events that are both audible and visible in a long video, where events may co-occur and exhibit varying durations. However, complex audio-visual scenes often involve asynchronization between modalities, making accurate localization challenging. Existing DAVE solutions extract audio and visual features through unimodal encoders, and fuse them via dense cross-modal interaction. However, independent unimodal encoding struggles to emphasize shared semantics between modalities without cross-modal guidance, while dense cross-modal attention may over-attend to semantically unrelated audio-visual features. To address these problems, we present LoCo, a Locality-aware cross-modal Correspondence learning framework for DAVE. LoCo leverages the local temporal continuity of audio-visual events as important guidance to filter irrelevant cross-modal signals and enhance cross-modal alignment throughout both unimodal and cross-modal encoding stages. i) Specifically, LoCo applies Local Correspondence Feature (LCF) Modulation to enforce unimodal encoders to focus on modality-shared semantics by modulating agreement between audio and visual features based on local cross-modal coherence. ii) To better aggregate cross-modal relevant features, we further customize Local Adaptive Cross-modal (LAC) Interaction, which dynamically adjusts attention regions in a data-driven manner. This adaptive mechanism focuses attention on local event boundaries and accommodates varying event durations. By incorporating LCF and LAC, LoCo provides solid performance gains and outperforms existing DAVE methods.
Look Twice Before You Answer: Memory-Space Visual Retracing for Hallucination Mitigation in Multimodal Large Language Models ICML 2025
Despite their impressive capabilities, multimodal large language models (MLLMs) are prone to hallucinations, i.e., the generated content that is nonsensical or unfaithful to input sources. Unlike in LLMs, hallucinations in MLLMs often stem from the sensitivity of text decoder to visual tokens, leading to a phenomenon akin to "amnesia" about visual information. To address this issue, we propose MemVR, a novel decoding paradigm inspired by common cognition: when the memory of an image seen the moment before is forgotten, people will look at it again for factual answers. Following this principle, we treat visual tokens as supplementary evidence, re-injecting them into the MLLM through Feed Forward Network (FFN) as "key-value memory" at the middle trigger layer. This "look-twice" mechanism occurs when the model exhibits high uncertainty during inference, effectively enhancing factual alignment. Comprehensive experimental evaluations demonstrate that MemVR significantly mitigates hallucination across various MLLMs and excels in general benchmarks without incurring additional time overhead. The implementation is available from https://github.com/1zhou-Wang/MemVR
comment: Accepted by ICML 2025
SceneCraft: Layout-Guided 3D Scene Generation NeurIPS 2024
The creation of complex 3D scenes tailored to user specifications has been a tedious and challenging task with traditional 3D modeling tools. Although some pioneering methods have achieved automatic text-to-3D generation, they are generally limited to small-scale scenes with restricted control over the shape and texture. We introduce SceneCraft, a novel method for generating detailed indoor scenes that adhere to textual descriptions and spatial layout preferences provided by users. Central to our method is a rendering-based technique, which converts 3D semantic layouts into multi-view 2D proxy maps. Furthermore, we design a semantic and depth conditioned diffusion model to generate multi-view images, which are used to learn a neural radiance field (NeRF) as the final scene representation. Without the constraints of panorama image generation, we surpass previous methods in supporting complicated indoor space generation beyond a single room, even as complicated as a whole multi-bedroom apartment with irregular shapes and layouts. Through experimental analysis, we demonstrate that our method significantly outperforms existing approaches in complex indoor scene generation with diverse textures, consistent geometry, and realistic visual quality. Code and more results are available at: https://orangesodahub.github.io/SceneCraft
comment: NeurIPS 2024. Code: https://github.com/OrangeSodahub/SceneCraft Project Page: https://orangesodahub.github.io/SceneCraft
Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding NeurIPS 2024
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks. Code: https://github.com/YunzeMan/Lexicon3D
comment: NeurIPS 2024. Project page: https://yunzeman.github.io/lexicon3d Github: https://github.com/YunzeMan/Lexicon3D
Leveraging Depth Maps and Attention Mechanisms for Enhanced Image Inpainting
Existing deep learning-based image inpainting methods typically rely on convolutional networks with RGB images to reconstruct images. However, relying exclusively on RGB images may neglect important depth information, which plays a critical role in understanding the spatial and structural context of a scene. Just as human vision leverages stereo cues to perceive depth, incorporating depth maps into the inpainting process can enhance the model's ability to reconstruct images with greater accuracy and contextual awareness. In this paper, we propose a novel approach that incorporates both RGB and depth images for enhanced image inpainting. Our models employ a dual encoder architecture, where one encoder processes the RGB image and the other handles the depth image. The encoded features from both encoders are then fused in the decoder using an attention mechanism, effectively integrating the RGB and depth representations. We use two different masking strategies, line and square, to test the robustness of the model under different types of occlusions. To further analyze the effectiveness of our approach, we use Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations to examine the regions of interest the model focuses on during inpainting. We show that incorporating depth information alongside the RGB image significantly improves the reconstruction quality. Through both qualitative and quantitative comparisons, we demonstrate that the depth-integrated model outperforms the baseline, with attention mechanisms further enhancing inpainting performance, as evidenced by multiple evaluation metrics and visualization.
DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps IJCAI 2025
The recent surge in advanced generative models, such as diffusion models and generative adversarial networks (GANs), has led to an alarming rise in AI-generated images across various domains on the web. While such technologies offer benefits such as democratizing artistic creation, they also pose challenges in misinformation, digital forgery, and authenticity verification. Additionally, the uncredited use of AI-generated images in media and marketing has sparked significant backlash from online communities. In response to this, we introduce DejAIvu, a Chrome Web extension that combines real-time AI-generated image detection with saliency-based explainability while users browse the web. Using an ONNX-optimized deep learning model, DejAIvu automatically analyzes images on websites such as Google Images, identifies AI-generated content using model inference, and overlays a saliency heatmap to highlight AI-related artifacts. Our approach integrates efficient in-browser inference, gradient-based saliency analysis, and a seamless user experience, ensuring that AI detection is both transparent and interpretable. We also evaluate DejAIvu across multiple pretrained architectures and benchmark datasets, demonstrating high accuracy and low latency, making it a practical and deployable tool for enhancing AI image accountability. The code for this system can be found at https://github.com/Noodulz/dejAIvu.
comment: 5 pages, 3 figures. Accepted to IJCAI 2025 Demo Track. Revised version will be uploaded soon
LIVS: A Pluralistic Alignment Dataset for Inclusive Public Spaces ICML 2025
We introduce the Local Intersectional Visual Spaces (LIVS) dataset, a benchmark for multi-criteria alignment, developed through a two-year participatory process with 30 community organizations to support the pluralistic alignment of text-to-image (T2I) models in inclusive urban planning. The dataset encodes 37,710 pairwise comparisons across 13,462 images, structured along six criteria - Accessibility, Safety, Comfort, Invitingness, Inclusivity, and Diversity - derived from 634 community-defined concepts. Using Direct Preference Optimization (DPO), we fine-tune Stable Diffusion XL to reflect multi-criteria spatial preferences and evaluate the LIVS dataset and the fine-tuned model through four case studies: (1) DPO increases alignment with annotated preferences, particularly when annotation volume is high; (2) preference patterns vary across participant identities, underscoring the need for intersectional data; (3) human-authored prompts generate more distinctive visual outputs than LLM-generated ones, influencing annotation decisiveness; and (4) intersectional groups assign systematically different ratings across criteria, revealing the limitations of single-objective alignment. While DPO improves alignment under specific conditions, the prevalence of neutral ratings indicates that community values are heterogeneous and often ambiguous. LIVS provides a benchmark for developing T2I models that incorporate local, stakeholder-driven preferences, offering a foundation for context-aware alignment in spatial design.
comment: ICML 2025
Quaternionic Reweighted Amplitude Flow for Phase Retrieval in Image Reconstruction
Quaternionic signal processing provides powerful tools for efficiently managing color signals by preserving the intrinsic correlations among signal dimensions through quaternion algebra. In this paper, we address the quaternionic phase retrieval problem by systematically developing novel algorithms based on an amplitude-based model. Specifically, we propose the Quaternionic Reweighted Amplitude Flow (QRAF) algorithm, which is further enhanced by three of its variants: incremental, accelerated, and adapted QRAF algorithms. In addition, we introduce the Quaternionic Perturbed Amplitude Flow (QPAF) algorithm, which has linear convergence. Extensive numerical experiments on both synthetic data and real images, demonstrate that our proposed methods significantly improve recovery performance and computational efficiency compared to state-of-the-art approaches.
Boosting Adverse Weather Crowd Counting via Multi-queue Contrastive Learning
Currently, most crowd counting methods have outstanding performance under normal weather conditions. However, our experimental validation reveals two key obstacles limiting the accuracy improvement of crowd counting models: 1) the domain gap between the adverse weather and the normal weather images; 2) the weather class imbalance in the training set. To address the problems, we propose a two-stage crowd counting method named Multi-queue Contrastive Learning (MQCL). Specifically, in the first stage, our target is to equip the backbone network with weather-awareness capabilities. In this process, a contrastive learning method named multi-queue MoCo designed by us is employed to enable representation learning under weather class imbalance. After the first stage is completed, the backbone model is "mature" enough to extract weather-related representations. On this basis, we proceed to the second stage, in which we propose to refine the representations under the guidance of contrastive learning, enabling the conversion of the weather-aware representations to the normal weather domain. Through such representation and conversion, the model achieves robust counting performance under both normal and adverse weather conditions. Extensive experimental results show that, compared to the baseline, MQCL reduces the counting error under adverse weather conditions by 22%, while introducing only about 13% increase in computational burden, which achieves state-of-the-art performance.
comment: 8 pages, 5 figures
Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network
Underwater images normally suffer from degradation due to the transmission medium of water bodies. Both traditional prior-based approaches and deep learning-based methods have been used to address this problem. However, the inflexible assumption of the former often impairs their effectiveness in handling diverse underwater scenes, while the generalization of the latter to unseen images is usually weakened by insufficient data. In this study, we leverage both the physics-based Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE). To this end, we propose a novel Physics-Aware Triple-Stream Underwater Image Enhancement Network, i.e., PATS-UIENet, which comprises a Direct Signal Transmission Estimation Steam (D-Stream), a Backscatter Signal Transmission Estimation Steam (B-Stream) and an Ambient Light Estimation Stream (A-Stream). This network fulfills the UIE task by explicitly estimating the degradation parameters of a revised IFM. We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data. To our knowledge, such a physics-aware deep network and the IFM-inspired semi-supervised learning framework have not been used for the UIE task before. Our method performs better than, or at least comparably to, sixteen baselines across six testing sets in the degradation estimation and UIE tasks. These promising results should be due to the fact that the proposed method can not only model the degradation but also learn the characteristics of diverse underwater scenes.
comment: 13 pages, 10 figures
IntelliCardiac: An Intelligent Platform for Cardiac Image Segmentation and Classification
Precise and effective processing of cardiac imaging data is critical for the identification and management of the cardiovascular diseases. We introduce IntelliCardiac, a comprehensive, web-based medical image processing platform for the automatic segmentation of 4D cardiac images and disease classification, utilizing an AI model trained on the publicly accessible ACDC dataset. The system, intended for patients, cardiologists, and healthcare professionals, offers an intuitive interface and uses deep learning models to identify essential heart structures and categorize cardiac diseases. The system supports analysis of both the right and left ventricles as well as myocardium, and then classifies patient's cardiac images into five diagnostic categories: dilated cardiomyopathy, myocardial infarction, hypertrophic cardiomyopathy, right ventricular abnormality, and no disease. IntelliCardiac combines a deep learning-based segmentation model with a two-step classification pipeline. The segmentation module gains an overall accuracy of 92.6%. The classification module, trained on characteristics taken from segmented heart structures, achieves 98% accuracy in five categories. These results exceed the performance of the existing state-of-the-art methods that integrate both segmentation and classification models. IntelliCardiac, which supports real-time visualization, workflow integration, and AI-assisted diagnostics, has great potential as a scalable, accurate tool for clinical decision assistance in cardiac imaging and diagnosis.
HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning
Structured pruning is one of the most popular approaches to effectively compress the heavy deep neural networks (DNNs) into compact sub-networks while retaining performance. The existing methods suffer from multi-stage procedures along with significant engineering efforts and human expertise. The Only-Train-Once (OTO) series has been recently proposed to resolve the many pain points by streamlining the workflow by automatically conducting (i) search space generation, (ii) structured sparse optimization, and (iii) sub-network construction. However, the built-in sparse optimizers in the OTO series, i.e., the Half-Space Projected Gradient (HSPG) family, have limitations that require hyper-parameter tuning and the implicit controls of the sparsity exploration, consequently requires intervening by human expertise. To address such limitations, we propose a Hybrid Efficient Structured Sparse Optimizer (HESSO). HESSO could automatically and efficiently train a DNN to produce a high-performing subnetwork. Meanwhile, it is almost tuning-free and enjoys user-friendly integration for generic training applications. To address another common issue of irreversible performance collapse observed in pruning DNNs, we further propose a Corrective Redundant Identification Cycle (CRIC) for reliably identifying indispensable structures. We numerically demonstrate the efficacy of HESSO and its enhanced version HESSO-CRIC on a variety of applications ranging from computer vision to natural language processing, including large language model. The numerical results showcase that HESSO can achieve competitive even superior performance to varying state-of-the-arts and support most DNN architectures. Meanwhile, CRIC can effectively prevent the irreversible performance collapse and further enhance the performance of HESSO on certain applications.
comment: 19 pages, 6 figures
FieldNet: Efficient Real-Time Shadow Removal for Enhanced Vision in Field Robotics
Shadows significantly hinder computer vision tasks in outdoor environments, particularly in field robotics, where varying lighting conditions complicate object detection and localisation. We present FieldNet, a novel deep learning framework for real-time shadow removal, optimised for resource-constrained hardware. FieldNet introduces a probabilistic enhancement module and a novel loss function to address challenges of inconsistent shadow boundary supervision and artefact generation, achieving enhanced accuracy and simplicity without requiring shadow masks during inference. Trained on a dataset of 10,000 natural images augmented with synthetic shadows, FieldNet outperforms state-of-the-art methods on benchmark datasets (ISTD, ISTD+, SRD), with up to $9$x speed improvements (66 FPS on Nvidia 2080Ti) and superior shadow removal quality (PSNR: 38.67, SSIM: 0.991). Real-world case studies in precision agriculture robotics demonstrate the practical impact of FieldNet in enhancing weed detection accuracy. These advancements establish FieldNet as a robust, efficient solution for real-time vision tasks in field robotics and beyond.
comment: 22 pages, 9 figures, 8 tables. Published at Expert Systems with Applications
Image and Video Processing
OcularAge: A Comparative Study of Iris and Periocular Images for Pediatric Age Estimation
Estimating a child's age from ocular biometric images is challenging due to subtle physiological changes and the limited availability of longitudinal datasets. Although most biometric age estimation studies have focused on facial features and adult subjects, pediatric-specific analysis, particularly of the iris and periocular regions, remains relatively unexplored. This study presents a comparative evaluation of iris and periocular images for estimating the ages of children aged between 4 and 16 years. We utilized a longitudinal dataset comprising more than 21,000 near-infrared (NIR) images, collected from 288 pediatric subjects over eight years using two different imaging sensors. A multi-task deep learning framework was employed to jointly perform age prediction and age-group classification, enabling a systematic exploration of how different convolutional neural network (CNN) architectures, particularly those adapted for non-square ocular inputs, capture the complex variability inherent in pediatric eye images. The results show that periocular models consistently outperform iris-based models, achieving a mean absolute error (MAE) of 1.33 years and an age-group classification accuracy of 83.82%. These results mark the first demonstration that reliable age estimation is feasible from children's ocular images, enabling privacy-preserving age checks in child-centric applications. This work establishes the first longitudinal benchmark for pediatric ocular age estimation, providing a foundation for designing robust, child-focused biometric systems. The developed models proved resilient across different imaging sensors, confirming their potential for real-world deployment. They also achieved inference speeds of less than 10 milliseconds per image on resource-constrained VR headsets, demonstrating their suitability for real-time applications.
Joint Super-Resolution and Segmentation for 1-m Impervious Surface Area Mapping in China's Yangtze River Economic Belt
We propose a novel joint framework by integrating super-resolution and segmentation, called JointSeg, which enables the generation of 1-meter ISA maps directly from freely available Sentinel-2 imagery. JointSeg was trained on multimodal cross-resolution inputs, offering a scalable and affordable alternative to traditional approaches. This synergistic design enables gradual resolution enhancement from 10m to 1m while preserving fine-grained spatial textures, and ensures high classification fidelity through effective cross-scale feature fusion. This method has been successfully applied to the Yangtze River Economic Belt (YREB), a region characterized by complex urban-rural patterns and diverse topography. As a result, a comprehensive ISA mapping product for 2021, referred to as ISA-1, was generated, covering an area of over 2.2 million square kilometers. Quantitative comparisons against the 10m ESA WorldCover and other benchmark products reveal that ISA-1 achieves an F1-score of 85.71%, outperforming bilinear-interpolation-based segmentation by 9.5%, and surpassing other ISA datasets by 21.43%-61.07%. In densely urbanized areas (e.g., Suzhou, Nanjing), ISA-1 reduces ISA overestimation through improved discrimination of green spaces and water bodies. Conversely, in mountainous regions (e.g., Ganzi, Zhaotong), it identifies significantly more ISA due to its enhanced ability to detect fragmented anthropogenic features such as rural roads and sparse settlements, demonstrating its robustness across diverse landscapes. Moreover, we present biennial ISA maps from 2017 to 2023, capturing spatiotemporal urbanization dynamics across representative cities. The results highlight distinct regional growth patterns: rapid expansion in upstream cities, moderate growth in midstream regions, and saturation in downstream metropolitan areas.
Augmented Deep Contexts for Spatially Embedded Video Coding CVPR
Most Neural Video Codecs (NVCs) only employ temporal references to generate temporal-only contexts and latent prior. These temporal-only NVCs fail to handle large motions or emerging objects due to limited contexts and misaligned latent prior. To relieve the limitations, we propose a Spatially Embedded Video Codec (SEVC), in which the low-resolution video is compressed for spatial references. Firstly, our SEVC leverages both spatial and temporal references to generate augmented motion vectors and hybrid spatial-temporal contexts. Secondly, to address the misalignment issue in latent prior and enrich the prior information, we introduce a spatial-guided latent prior augmented by multiple temporal latent representations. At last, we design a joint spatial-temporal optimization to learn quality-adaptive bit allocation for spatial references, further boosting rate-distortion performance. Experimental results show that our SEVC effectively alleviates the limitations in handling large motions or emerging objects, and also reduces 11.9% more bitrate than the previous state-of-the-art NVC while providing an additional low-resolution bitstream. Our code and model are available at https://github.com/EsakaK/SEVC.
comment: 15 pages,CVPR
Benchmarking Ophthalmology Foundation Models for Clinically Significant Age Macular Degeneration Detection
Self-supervised learning (SSL) has enabled Vision Transformers (ViTs) to learn robust representations from large-scale natural image datasets, enhancing their generalization across domains. In retinal imaging, foundation models pretrained on either natural or ophthalmic data have shown promise, but the benefits of in-domain pretraining remain uncertain. To investigate this, we benchmark six SSL-pretrained ViTs on seven digital fundus image (DFI) datasets totaling 70,000 expert-annotated images for the task of moderate-to-late age-related macular degeneration (AMD) identification. Our results show that iBOT pretrained on natural images achieves the highest out-of-distribution generalization, with AUROCs of 0.80-0.97, outperforming domain-specific models, which achieved AUROCs of 0.78-0.96 and a baseline ViT-L with no pretraining, which achieved AUROCs of 0.68-0.91. These findings highlight the value of foundation models in improving AMD identification and challenge the assumption that in-domain pretraining is necessary. Furthermore, we release BRAMD, an open-access dataset (n=587) of DFIs with AMD labels from Brazil.
comment: 10 pages, 3 figures
White Light Specular Reflection Data Augmentation for Deep Learning Polyp Detection
Colorectal cancer is one of the deadliest cancers today, but it can be prevented through early detection of malignant polyps in the colon, primarily via colonoscopies. While this method has saved many lives, human error remains a significant challenge, as missing a polyp could have fatal consequences for the patient. Deep learning (DL) polyp detectors offer a promising solution. However, existing DL polyp detectors often mistake white light reflections from the endoscope for polyps, which can lead to false positives.To address this challenge, in this paper, we propose a novel data augmentation approach that artificially adds more white light reflections to create harder training scenarios. Specifically, we first generate a bank of artificial lights using the training dataset. Then we find the regions of the training images that we should not add these artificial lights on. Finally, we propose a sliding window method to add the artificial light to the areas that fit of the training images, resulting in augmented images. By providing the model with more opportunities to make mistakes, we hypothesize that it will also have more chances to learn from those mistakes, ultimately improving its performance in polyp detection. Experimental results demonstrate the effectiveness of our new data augmentation method.
comment: 5 pages, 4 Figures, paper accepted by the ISBI (International Symposium on Biomedical Imaging) 2025 Conference
Improved Brain Tumor Detection in MRI: Fuzzy Sigmoid Convolution in Deep Learning IJCNN 2025
Early detection and accurate diagnosis are essential to improving patient outcomes. The use of convolutional neural networks (CNNs) for tumor detection has shown promise, but existing models often suffer from overparameterization, which limits their performance gains. In this study, fuzzy sigmoid convolution (FSC) is introduced along with two additional modules: top-of-the-funnel and middle-of-the-funnel. The proposed methodology significantly reduces the number of trainable parameters without compromising classification accuracy. A novel convolutional operator is central to this approach, effectively dilating the receptive field while preserving input data integrity. This enables efficient feature map reduction and enhances the model's tumor detection capability. In the FSC-based model, fuzzy sigmoid activation functions are incorporated within convolutional layers to improve feature extraction and classification. The inclusion of fuzzy logic into the architecture improves its adaptability and robustness. Extensive experiments on three benchmark datasets demonstrate the superior performance and efficiency of the proposed model. The FSC-based architecture achieved classification accuracies of 99.17%, 99.75%, and 99.89% on three different datasets. The model employs 100 times fewer parameters than large-scale transfer learning architectures, highlighting its computational efficiency and suitability for detecting brain tumors early. This research offers lightweight, high-performance deep-learning models for medical imaging applications.
comment: IEEE IJCNN 2025 has accepted the paper
MDAA-Diff: CT-Guided Multi-Dose Adaptive Attention Diffusion Model for PET Denoising
Acquiring high-quality Positron Emission Tomography (PET) images requires administering high-dose radiotracers, which increases radiation exposure risks. Generating standard-dose PET (SPET) from low-dose PET (LPET) has become a potential solution. However, previous studies have primarily focused on single low-dose PET denoising, neglecting two critical factors: discrepancies in dose response caused by inter-patient variability, and complementary anatomical constraints derived from CT images. In this work, we propose a novel CT-Guided Multi-dose Adaptive Attention Denoising Diffusion Model (MDAA-Diff) for multi-dose PET denoising. Our approach integrates anatomical guidance and dose-level adaptation to achieve superior denoising performance under low-dose conditions. Specifically, this approach incorporates a CT-Guided High-frequency Wavelet Attention (HWA) module, which uses wavelet transforms to separate high-frequency anatomical boundary features from CT images. These extracted features are then incorporated into PET imaging through an adaptive weighted fusion mechanism to enhance edge details. Additionally, we propose the Dose-Adaptive Attention (DAA) module, a dose-conditioned enhancement mechanism that dynamically integrates dose levels into channel-spatial attention weight calculation. Extensive experiments on 18F-FDG and 68Ga-FAPI datasets demonstrate that MDAA-Diff outperforms state-of-the-art approaches in preserving diagnostic quality under reduced-dose conditions. Our code is publicly available.
SSH-Net: A Self-Supervised and Hybrid Network for Noisy Image Watermark Removal
Visible watermark removal is challenging due to its inherent complexities and the noise carried within images. Existing methods primarily rely on supervised learning approaches that require paired datasets of watermarked and watermark-free images, which are often impractical to obtain in real-world scenarios. To address this challenge, we propose SSH-Net, a Self-Supervised and Hybrid Network specifically designed for noisy image watermark removal. SSH-Net synthesizes reference watermark-free images using the watermark distribution in a self-supervised manner and adopts a dual-network design to address the task. The upper network, focused on the simpler task of noise removal, employs a lightweight CNN-based architecture, while the lower network, designed to handle the more complex task of simultaneously removing watermarks and noise, incorporates Transformer blocks to model long-range dependencies and capture intricate image features. To enhance the model's effectiveness, a shared CNN-based feature encoder is introduced before dual networks to extract common features that both networks can leverage. Our code will be available at https://github.com/wenyang001/SSH-Net.
comment: Under Review in JVCI
RepSNet: A Nucleus Instance Segmentation model based on Boundary Regression and Structural Re-parameterization
Pathological diagnosis is the gold standard for tumor diagnosis, and nucleus instance segmentation is a key step in digital pathology analysis and pathological diagnosis. However, the computational efficiency of the model and the treatment of overlapping targets are the major challenges in the studies of this problem. To this end, a neural network model RepSNet was designed based on a nucleus boundary regression and a structural re-parameterization scheme for segmenting and classifying the nuclei in H\&E-stained histopathological images. First, RepSNet estimates the boundary position information (BPI) of the parent nucleus for each pixel. The BPI estimation incorporates the local information of the pixel and the contextual information of the parent nucleus. Then, the nucleus boundary is estimated by aggregating the BPIs from a series of pixels using a proposed boundary voting mechanism (BVM), and the instance segmentation results are computed from the estimated nucleus boundary using a connected component analysis procedure. The BVM intrinsically achieves a kind of synergistic belief enhancement among the BPIs from various pixels. Therefore, different from the methods available in literature that obtain nucleus boundaries based on a direct pixel recognition scheme, RepSNet computes its boundary decisions based on some guidances from macroscopic information using an integration mechanism. In addition, RepSNet employs a re-parametrizable encoder-decoder structure. This model can not only aggregate features from some receptive fields with various scales which helps segmentation accuracy improvement, but also reduce the parameter amount and computational burdens in the model inference phase through the structural re-parameterization technique. Extensive experiments demonstrated the superiorities of RepSNet compared to several typical benchmark models.
comment: 25 pages, 7 figures, 5 tables
Direct Image Classification from Fourier Ptychographic Microscopy Measurements without Reconstruction SC
The computational imaging technique of Fourier Ptychographic Microscopy (FPM) enables high-resolution imaging with a wide field of view and can serve as an extremely valuable tool, e.g. in the classification of cells in medical applications. However, reconstructing a high-resolution image from tens or even hundreds of measurements is computationally expensive, particularly for a wide field of view. Therefore, in this paper, we investigate the idea of classifying the image content in the FPM measurements directly without performing a reconstruction step first. We show that Convolutional Neural Networks (CNN) can extract meaningful information from measurement sequences, significantly outperforming the classification on a single band-limited image (up to 12 %) while being significantly more efficient than a reconstruction of a high-resolution image. Furthermore, we demonstrate that a learned multiplexing of several raw measurements allows maintaining the classification accuracy while reducing the amount of data (and consequently also the acquisition time) significantly.
comment: ISCS 2025
ADNP-15: An Open-Source Histopathological Dataset for Neuritic Plaque Segmentation in Human Brain Whole Slide Images with Frequency Domain Image Enhancement for Stain Normalization
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by amyloid-beta plaques and tau neurofibrillary tangles, which serve as key histopathological features. The identification and segmentation of these lesions are crucial for understanding AD progression but remain challenging due to the lack of large-scale annotated datasets and the impact of staining variations on automated image analysis. Deep learning has emerged as a powerful tool for pathology image segmentation; however, model performance is significantly influenced by variations in staining characteristics, necessitating effective stain normalization and enhancement techniques. In this study, we address these challenges by introducing an open-source dataset (ADNP-15) of neuritic plaques (i.e., amyloid deposits combined with a crown of dystrophic tau-positive neurites) in human brain whole slide images. We establish a comprehensive benchmark by evaluating five widely adopted deep learning models across four stain normalization techniques, providing deeper insights into their influence on neuritic plaque segmentation. Additionally, we propose a novel image enhancement method that improves segmentation accuracy, particularly in complex tissue structures, by enhancing structural details and mitigating staining inconsistencies. Our experimental results demonstrate that this enhancement strategy significantly boosts model generalization and segmentation accuracy. All datasets and code are open-source, ensuring transparency and reproducibility while enabling further advancements in the field.
MoRe-3DGSMR: Motion-resolved reconstruction framework for free-breathing pulmonary MRI based on 3D Gaussian representation
This study presents an unsupervised, motion-resolved reconstruction framework for high-resolution, free-breathing pulmonary magnetic resonance imaging (MRI), utilizing a three-dimensional Gaussian representation (3DGS). The proposed method leverages 3DGS to address the challenges of motion-resolved 3D isotropic pulmonary MRI reconstruction by enabling data smoothing between voxels for continuous spatial representation. Pulmonary MRI data acquisition is performed using a golden-angle radial sampling trajectory, with respiratory motion signals extracted from the center of k-space in each radial spoke. Based on the estimated motion signal, the k-space data is sorted into multiple respiratory phases. A 3DGS framework is then applied to reconstruct a reference image volume from the first motion state. Subsequently, a patient-specific convolutional neural network is trained to estimate the deformation vector fields (DVFs), which are used to generate the remaining motion states through spatial transformation of the reference volume. The proposed reconstruction pipeline is evaluated on six datasets from six subjects and bench-marked against three state-of-the-art reconstruction methods. The experimental findings demonstrate that the proposed reconstruction framework effectively reconstructs high-resolution, motion-resolved pulmonary MR images. Compared with existing approaches, it achieves superior image quality, reflected by higher signal-to-noise ratio and contrast-to-noise ratio. The proposed unsupervised 3DGS-based reconstruction method enables accurate motion-resolved pulmonary MRI with isotropic spatial resolution. Its superior performance in image quality metrics over state-of-the-art methods highlights its potential as a robust solution for clinical pulmonary MR imaging.
Advanced 3D Imaging Approach to TSV/TGV Metrology and Inspection Using Only Optical Microscopy
This paper introduces an innovative approach to silicon and glass via inspection, which combines hybrid field microscopy with photometric stereo. Conventional optical microscopy techniques are generally limited to superficial inspections and struggle to effectively visualize the internal structures of silicon and glass vias. By utilizing various lighting conditions for 3D reconstruction, the proposed method surpasses these limitations. By integrating photometric stereo to the traditional optical microscopy, the proposed method not only enhances the capability to detect micro-scale defects but also provides a detailed visualization of depth and edge abnormality, which are typically not visible with conventional optical microscopy inspection. The experimental results demonstrated that the proposed method effectively captures intricate surface details and internal structures. Quantitative comparisons between the reconstructed models and actual measurements present the capability of the proposed method to significantly improve silicon and glass via inspection process. As a result, the proposed method achieves enhanced cost-effectiveness while maintaining high accuracy and repeatability, suggesting substantial advancements in silicon and glass via inspection techniques
comment: 6 pages, 6 figures, Submitted to arXiv for preprint
A Dataset and Toolkit for Multiparameter Cardiovascular Physiology Sensing on Rings
Smart rings offer a convenient way to continuously and unobtrusively monitor cardiovascular physiological signals. However, a gap remains between the ring hardware and reliable methods for estimating cardiovascular parameters, partly due to the lack of publicly available datasets and standardized analysis tools. In this work, we present $\tau$-Ring, the first open-source ring-based dataset designed for cardiovascular physiological sensing. The dataset comprises photoplethysmography signals (infrared and red channels) and 3-axis accelerometer data collected from two rings (reflective and transmissive optical paths), with 28.21 hours of raw data from 34 subjects across seven activities. $\tau$-Ring encompasses both stationary and motion scenarios, as well as stimulus-evoked abnormal physiological states, annotated with four ground-truth labels: heart rate, respiratory rate, oxygen saturation, and blood pressure. Using our proposed RingTool toolkit, we evaluated three widely-used physics-based methods and four cutting-edge deep learning approaches. Our results show superior performance compared to commercial rings, achieving best MAE values of 5.18 BPM for heart rate, 2.98 BPM for respiratory rate, 3.22\% for oxygen saturation, and 13.33/7.56 mmHg for systolic/diastolic blood pressure estimation. The open-sourced dataset and toolkit aim to foster further research and community-driven advances in ring-based cardiovascular health sensing.
Proxy Prompt: Endowing SAM and SAM 2 with Auto-Interactive-Prompt for Medical Segmentation
In this paper, we aim to address the unmet demand for automated prompting and enhanced human-model interactions of SAM and SAM2 for the sake of promoting their widespread clinical adoption. Specifically, we propose Proxy Prompt (PP), auto-generated by leveraging non-target data with a pre-annotated mask. We devise a novel 3-step context-selection strategy for adaptively selecting the most representative contextual information from non-target data via vision mamba and selective maps, empowering the guiding capability of non-target image-mask pairs for segmentation on target image/video data. To reinforce human-model interactions in PP, we further propose a contextual colorization module via a dual-reverse cross-attention to enhance interactions between target features and contextual-embedding with amplifying distinctive features of user-defined object(s). Via extensive evaluations, our method achieves state-of-the-art performance on four public datasets and yields comparable results with fully-trained models, even when trained with only 16 image masks.
IntelliCardiac: An Intelligent Platform for Cardiac Image Segmentation and Classification
Precise and effective processing of cardiac imaging data is critical for the identification and management of the cardiovascular diseases. We introduce IntelliCardiac, a comprehensive, web-based medical image processing platform for the automatic segmentation of 4D cardiac images and disease classification, utilizing an AI model trained on the publicly accessible ACDC dataset. The system, intended for patients, cardiologists, and healthcare professionals, offers an intuitive interface and uses deep learning models to identify essential heart structures and categorize cardiac diseases. The system supports analysis of both the right and left ventricles as well as myocardium, and then classifies patient's cardiac images into five diagnostic categories: dilated cardiomyopathy, myocardial infarction, hypertrophic cardiomyopathy, right ventricular abnormality, and no disease. IntelliCardiac combines a deep learning-based segmentation model with a two-step classification pipeline. The segmentation module gains an overall accuracy of 92.6%. The classification module, trained on characteristics taken from segmented heart structures, achieves 98% accuracy in five categories. These results exceed the performance of the existing state-of-the-art methods that integrate both segmentation and classification models. IntelliCardiac, which supports real-time visualization, workflow integration, and AI-assisted diagnostics, has great potential as a scalable, accurate tool for clinical decision assistance in cardiac imaging and diagnosis.
Leveraging Depth Maps and Attention Mechanisms for Enhanced Image Inpainting
Existing deep learning-based image inpainting methods typically rely on convolutional networks with RGB images to reconstruct images. However, relying exclusively on RGB images may neglect important depth information, which plays a critical role in understanding the spatial and structural context of a scene. Just as human vision leverages stereo cues to perceive depth, incorporating depth maps into the inpainting process can enhance the model's ability to reconstruct images with greater accuracy and contextual awareness. In this paper, we propose a novel approach that incorporates both RGB and depth images for enhanced image inpainting. Our models employ a dual encoder architecture, where one encoder processes the RGB image and the other handles the depth image. The encoded features from both encoders are then fused in the decoder using an attention mechanism, effectively integrating the RGB and depth representations. We use two different masking strategies, line and square, to test the robustness of the model under different types of occlusions. To further analyze the effectiveness of our approach, we use Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations to examine the regions of interest the model focuses on during inpainting. We show that incorporating depth information alongside the RGB image significantly improves the reconstruction quality. Through both qualitative and quantitative comparisons, we demonstrate that the depth-integrated model outperforms the baseline, with attention mechanisms further enhancing inpainting performance, as evidenced by multiple evaluation metrics and visualization.
Rethinking Video Super-Resolution: Towards Diffusion-Based Methods without Motion Alignment
In this work, we rethink the approach to video super-resolution by introducing a method based on the Diffusion Posterior Sampling framework, combined with an unconditional video diffusion transformer operating in latent space. The video generation model, a diffusion transformer, functions as a space-time model. We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge, thus eliminating the need for explicit estimation of optical flows or motion parameters for pixel alignment. Furthermore, a single instance of the proposed video diffusion transformer model can adapt to different sampling conditions without re-training. Empirical results on synthetic and real-world datasets illustrate the feasibility of diffusion-based, alignment-free video super-resolution.
AirMorph: Topology-Preserving Deep Learning for Pulmonary Airway Analysis
Accurate anatomical labeling and analysis of the pulmonary structure and its surrounding anatomy from thoracic CT is getting increasingly important for understanding the etilogy of abnormalities or supporting targetted therapy and early interventions. Whilst lung and airway cell atlases have been attempted, there is a lack of fine-grained morphological atlases that are clinically deployable. In this work, we introduce AirMorph, a robust, end-to-end deep learning pipeline enabling fully automatic and comprehensive airway anatomical labeling at lobar, segmental, and subsegmental resolutions that can be used to create digital atlases of the lung. Evaluated across large-scale multi-center datasets comprising diverse pulmonary conditions, the AirMorph consistently outperformed existing segmentation and labeling methods in terms of accuracy, topological consistency, and completeness. To simplify clinical interpretation, we further introduce a compact anatomical signature quantifying critical morphological airway features, including stenosis, ectasia, tortuosity, divergence, length, and complexity. When applied to various pulmonary diseases such as pulmonary fibrosis, emphysema, atelectasis, consolidation, and reticular opacities, it demonstrates strong discriminative power, revealing disease-specific morphological patterns with high interpretability and explainability. Additionally, AirMorph supports efficient automated branching pattern analysis, potentially enhancing bronchoscopic navigation planning and procedural safety, offering a valuable clinical tool for improved diagnosis, targeted treatment, and personalized patient care.
comment: Under Review
Evaluating Deep Learning Models for Breast Cancer Classification: A Comparative Study
This study evaluates the effectiveness of deep learning models in classifying histopathological images for early and accurate detection of breast cancer. Eight advanced models, including ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, and SqueezeNet, were compared using a dataset of 277,524 image patches. The Vision Transformer (ViT) model, with its attention-based mechanisms, achieved the highest validation accuracy of 94%, outperforming conventional CNNs. The study demonstrates the potential of advanced machine learning methods to enhance precision and efficiency in breast cancer diagnosis in clinical settings.
comment: 4 pages, 2 figures, 2 tables
HESSO: Towards Automatic Efficient and User Friendly Any Neural Network Training and Pruning
Structured pruning is one of the most popular approaches to effectively compress the heavy deep neural networks (DNNs) into compact sub-networks while retaining performance. The existing methods suffer from multi-stage procedures along with significant engineering efforts and human expertise. The Only-Train-Once (OTO) series has been recently proposed to resolve the many pain points by streamlining the workflow by automatically conducting (i) search space generation, (ii) structured sparse optimization, and (iii) sub-network construction. However, the built-in sparse optimizers in the OTO series, i.e., the Half-Space Projected Gradient (HSPG) family, have limitations that require hyper-parameter tuning and the implicit controls of the sparsity exploration, consequently requires intervening by human expertise. To address such limitations, we propose a Hybrid Efficient Structured Sparse Optimizer (HESSO). HESSO could automatically and efficiently train a DNN to produce a high-performing subnetwork. Meanwhile, it is almost tuning-free and enjoys user-friendly integration for generic training applications. To address another common issue of irreversible performance collapse observed in pruning DNNs, we further propose a Corrective Redundant Identification Cycle (CRIC) for reliably identifying indispensable structures. We numerically demonstrate the efficacy of HESSO and its enhanced version HESSO-CRIC on a variety of applications ranging from computer vision to natural language processing, including large language model. The numerical results showcase that HESSO can achieve competitive even superior performance to varying state-of-the-arts and support most DNN architectures. Meanwhile, CRIC can effectively prevent the irreversible performance collapse and further enhance the performance of HESSO on certain applications.
comment: 19 pages, 6 figures
Multimedia
Does CLIP perceive art the same way we do?
CLIP has emerged as a powerful multimodal model capable of connecting images and text through joint embeddings, but to what extent does it "see" the same way humans do - especially when interpreting artworks? In this paper, we investigate CLIP's ability to extract high-level semantic and stylistic information from paintings, including both human-created and AI-generated imagery. We evaluate its perception across multiple dimensions: content, scene understanding, artistic style, historical period, and the presence of visual deformations or artifacts. By designing targeted probing tasks and comparing CLIP's responses to human annotations and expert benchmarks, we explore its alignment with human perceptual and contextual understanding. Our findings reveal both strengths and limitations in CLIP's visual representations, particularly in relation to aesthetic cues and artistic intent. We further discuss the implications of these insights for using CLIP as a guidance mechanism during generative processes, such as style transfer or prompt-based image synthesis. Our work highlights the need for deeper interpretability in multimodal systems, especially when applied to creative domains where nuance and subjectivity play a central role.
SSH-Net: A Self-Supervised and Hybrid Network for Noisy Image Watermark Removal
Visible watermark removal is challenging due to its inherent complexities and the noise carried within images. Existing methods primarily rely on supervised learning approaches that require paired datasets of watermarked and watermark-free images, which are often impractical to obtain in real-world scenarios. To address this challenge, we propose SSH-Net, a Self-Supervised and Hybrid Network specifically designed for noisy image watermark removal. SSH-Net synthesizes reference watermark-free images using the watermark distribution in a self-supervised manner and adopts a dual-network design to address the task. The upper network, focused on the simpler task of noise removal, employs a lightweight CNN-based architecture, while the lower network, designed to handle the more complex task of simultaneously removing watermarks and noise, incorporates Transformer blocks to model long-range dependencies and capture intricate image features. To enhance the model's effectiveness, a shared CNN-based feature encoder is introduced before dual networks to extract common features that both networks can leverage. Our code will be available at https://github.com/wenyang001/SSH-Net.
comment: Under Review in JVCI
Learning Item Representations Directly from Multimodal Features for Effective Recommendation
Conventional multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations by amalgamating item identity (ID) embeddings with multimodal features. Nevertheless, our empirical and theoretical findings unequivocally demonstrate a pronounced optimization gradient bias in favor of acquiring representations from multimodal features over item ID embeddings. As a consequence, item ID embeddings frequently exhibit suboptimal characteristics despite the convergence of multimodal feature parameters. Given the rich informational content inherent in multimodal features, in this paper, we propose a novel model (i.e., LIRDRec) that learns item representations directly from these features to augment recommendation performance. Recognizing that features derived from each modality may capture disparate yet correlated aspects of items, we propose a multimodal transformation mechanism, integrated with modality-specific encoders, to effectively fuse features from all modalities. Moreover, to differentiate the influence of diverse modality types, we devise a progressive weight copying fusion module within LIRDRec. This module incrementally learns the weight assigned to each modality in synthesizing the final user or item representations. Finally, we utilize the powerful visual understanding of Multimodal Large Language Models (MLLMs) to convert the item images into texts and extract semantics embeddings upon the texts via LLMs. Empirical evaluations conducted on five real-world datasets validate the superiority of our approach relative to competing baselines. It is worth noting the proposed model, equipped with embeddings extracted from MLLMs and LLMs, can further improve the recommendation accuracy of NDCG@20 by an average of 4.21% compared to the original embeddings.
comment: Code: https://github.com/enoche/LIRDRec
A Multi-Agent AI Framework for Immersive Audiobook Production through Spatial Audio and Neural Narration
This research introduces an innovative AI-driven multi-agent framework specifically designed for creating immersive audiobooks. Leveraging neural text-to-speech synthesis with FastSpeech 2 and VALL-E for expressive narration and character-specific voices, the framework employs advanced language models to automatically interpret textual narratives and generate realistic spatial audio effects. These sound effects are dynamically synchronized with the storyline through sophisticated temporal integration methods, including Dynamic Time Warping (DTW) and recurrent neural networks (RNNs). Diffusion-based generative models combined with higher-order ambisonics (HOA) and scattering delay networks (SDN) enable highly realistic 3D soundscapes, substantially enhancing listener immersion and narrative realism. This technology significantly advances audiobook applications, providing richer experiences for educational content, storytelling platforms, and accessibility solutions for visually impaired audiences. Future work will address personalization, ethical management of synthesized voices, and integration with multi-sensory platforms.
TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) endeavors to understand human sentiment by leveraging language, visual, and acoustic modalities. Despite the remarkable performance exhibited by previous MSA approaches, the presence of inherent multimodal heterogeneities poses a challenge, with the contribution of different modalities varying considerably. Past research predominantly focused on improving representation learning techniques and feature fusion strategies. However, many of these efforts overlooked the variation in semantic richness among different modalities, treating each modality uniformly. This approach may lead to underestimating the significance of strong modalities while overemphasizing the importance of weak ones. Motivated by these insights, we introduce a Text-oriented Cross-Attention Network (TCAN), emphasizing the predominant role of the text modality in MSA. Specifically, for each multimodal sample, by taking unaligned sequences of the three modalities as inputs, we initially allocate the extracted unimodal features into a visual-text and an acoustic-text pair. Subsequently, we implement self-attention on the text modality and apply text-queried cross-attention to the visual and acoustic modalities. To mitigate the influence of noise signals and redundant features, we incorporate a gated control mechanism into the framework. Additionally, we introduce unimodal joint learning to gain a deeper understanding of homogeneous emotional tendencies across diverse modalities through backpropagation. Experimental results demonstrate that TCAN consistently outperforms state-of-the-art MSA methods on two datasets (CMU-MOSI and CMU-MOSEI).
Adaptive Rate Control for Deep Video Compression with Rate-Distortion Prediction
Deep video compression has made significant progress in recent years, achieving rate-distortion performance that surpasses that of traditional video compression methods. However, rate control schemes tailored for deep video compression have not been well studied. In this paper, we propose a neural network-based $\lambda$-domain rate control scheme for deep video compression, which determines the coding parameter $\lambda$ for each to-be-coded frame based on the rate-distortion-$\lambda$ (R-D-$\lambda$) relationships directly learned from uncompressed frames, achieving high rate control accuracy efficiently without the need for pre-encoding. Moreover, this content-aware scheme is able to mitigate inter-frame quality fluctuations and adapt to abrupt changes in video content. Specifically, we introduce two neural network-based predictors to estimate the relationship between bitrate and $\lambda$, as well as the relationship between distortion and $\lambda$ for each frame. Then we determine the coding parameter $\lambda$ for each frame to achieve the target bitrate. Experimental results demonstrate that our approach achieves high rate control accuracy at the mini-GOP level with low time overhead and mitigates inter-frame quality fluctuations across video content of varying resolutions.
Computation and Language
StreamBridge: Turning Your Offline Video Large Language Model into a Proactive Streaming Assistant
We present StreamBridge, a simple yet effective framework that seamlessly transforms offline Video-LLMs into streaming-capable models. It addresses two fundamental challenges in adapting existing models into online scenarios: (1) limited capability for multi-turn real-time understanding, and (2) lack of proactive response mechanisms. Specifically, StreamBridge incorporates (1) a memory buffer combined with a round-decayed compression strategy, supporting long-context multi-turn interactions, and (2) a decoupled, lightweight activation model that can be effortlessly integrated into existing Video-LLMs, enabling continuous proactive responses. To further support StreamBridge, we construct Stream-IT, a large-scale dataset tailored for streaming video understanding, featuring interleaved video-text sequences and diverse instruction formats. Extensive experiments show that StreamBridge significantly improves the streaming understanding capabilities of offline Video-LLMs across various tasks, outperforming even proprietary models such as GPT-4o and Gemini 1.5 Pro. Simultaneously, it achieves competitive or superior performance on standard video understanding benchmarks.
ComPO: Preference Alignment via Comparison Oracles
Direct alignment methods are increasingly used for aligning large language models (LLMs) with human preferences. However, these methods suffer from the issues of verbosity and likelihood displacement, which can be driven by the noisy preference pairs that induce similar likelihood for preferred and dispreferred responses. The contributions of this paper are two-fold. First, we propose a new preference alignment method based on comparison oracles and provide the convergence guarantee for its basic scheme. Second, we improve our method using some heuristics and conduct the experiments to demonstrate the flexibility and compatibility of practical scheme in improving the performance of LLMs using noisy preference pairs. Evaluations are conducted across multiple base and instruction-tuned models (Mistral-7B, Llama-3-8B and Gemma-2-9B) with benchmarks (AlpacaEval 2, MT-Bench and Arena-Hard). Experimental results show the effectiveness of our method as an alternative to addressing the limitations of existing direct alignment methods. A highlight of our work is that we evidence the importance of designing specialized methods for preference pairs with distinct likelihood margin, which complements the recent findings in \citet{Razin-2025-Unintentional}.
comment: 25 pages
Bring Reason to Vision: Understanding Perception and Reasoning through Model Merging ICML 2025
Vision-Language Models (VLMs) combine visual perception with the general capabilities, such as reasoning, of Large Language Models (LLMs). However, the mechanisms by which these two abilities can be combined and contribute remain poorly understood. In this work, we explore to compose perception and reasoning through model merging that connects parameters of different models. Unlike previous works that often focus on merging models of the same kind, we propose merging models across modalities, enabling the incorporation of the reasoning capabilities of LLMs into VLMs. Through extensive experiments, we demonstrate that model merging offers a successful pathway to transfer reasoning abilities from LLMs to VLMs in a training-free manner. Moreover, we utilize the merged models to understand the internal mechanism of perception and reasoning and how merging affects it. We find that perception capabilities are predominantly encoded in the early layers of the model, whereas reasoning is largely facilitated by the middle-to-late layers. After merging, we observe that all layers begin to contribute to reasoning, whereas the distribution of perception abilities across layers remains largely unchanged. These observations shed light on the potential of model merging as a tool for multimodal integration and interpretation.
comment: ICML 2025. Our code is publicly available at https://github.com/shiqichen17/VLM_Merging
UKElectionNarratives: A Dataset of Misleading Narratives Surrounding Recent UK General Elections AAAI
Misleading narratives play a crucial role in shaping public opinion during elections, as they can influence how voters perceive candidates and political parties. This entails the need to detect these narratives accurately. To address this, we introduce the first taxonomy of common misleading narratives that circulated during recent elections in Europe. Based on this taxonomy, we construct and analyse UKElectionNarratives: the first dataset of human-annotated misleading narratives which circulated during the UK General Elections in 2019 and 2024. We also benchmark Pre-trained and Large Language Models (focusing on GPT-4o), studying their effectiveness in detecting election-related misleading narratives. Finally, we discuss potential use cases and make recommendations for future research directions using the proposed codebook and dataset.
comment: This work was accepted at the International AAAI Conference on Web and Social Media (ICWSM 2025)
Adaptive Markup Language Generation for Contextually-Grounded Visual Document Understanding CVPR2025
Visual Document Understanding has become essential with the increase of text-rich visual content. This field poses significant challenges due to the need for effective integration of visual perception and textual comprehension, particularly across diverse document types with complex layouts. Moreover, existing fine-tuning datasets for this domain often fall short in providing the detailed contextual information for robust understanding, leading to hallucinations and limited comprehension of spatial relationships among visual elements. To address these challenges, we propose an innovative pipeline that utilizes adaptive generation of markup languages, such as Markdown, JSON, HTML, and TiKZ, to build highly structured document representations and deliver contextually-grounded responses. We introduce two fine-grained structured datasets: DocMark-Pile, comprising approximately 3.8M pretraining data pairs for document parsing, and DocMark-Instruct, featuring 624k fine-tuning data annotations for grounded instruction following. Extensive experiments demonstrate that our proposed model significantly outperforms existing state-of-theart MLLMs across a range of visual document understanding benchmarks, facilitating advanced reasoning and comprehension capabilities in complex visual scenarios. Our code and models are released at https://github. com/Euphoria16/DocMark.
comment: CVPR2025
clem:todd: A Framework for the Systematic Benchmarking of LLM-Based Task-Oriented Dialogue System Realisations
The emergence of instruction-tuned large language models (LLMs) has advanced the field of dialogue systems, enabling both realistic user simulations and robust multi-turn conversational agents. However, existing research often evaluates these components in isolation-either focusing on a single user simulator or a specific system design-limiting the generalisability of insights across architectures and configurations. In this work, we propose clem todd (chat-optimized LLMs for task-oriented dialogue systems development), a flexible framework for systematically evaluating dialogue systems under consistent conditions. clem todd enables detailed benchmarking across combinations of user simulators and dialogue systems, whether existing models from literature or newly developed ones. It supports plug-and-play integration and ensures uniform datasets, evaluation metrics, and computational constraints. We showcase clem todd's flexibility by re-evaluating existing task-oriented dialogue systems within this unified setup and integrating three newly proposed dialogue systems into the same evaluation pipeline. Our results provide actionable insights into how architecture, scale, and prompting strategies affect dialogue performance, offering practical guidance for building efficient and effective conversational AI systems.
comment: 30 pages
Ultra-FineWeb: Efficient Data Filtering and Verification for High-Quality LLM Training Data
Data quality has become a key factor in enhancing model performance with the rapid development of large language models (LLMs). Model-driven data filtering has increasingly become a primary approach for acquiring high-quality data. However, it still faces two main challenges: (1) the lack of an efficient data verification strategy makes it difficult to provide timely feedback on data quality; and (2) the selection of seed data for training classifiers lacks clear criteria and relies heavily on human expertise, introducing a degree of subjectivity. To address the first challenge, we introduce an efficient verification strategy that enables rapid evaluation of the impact of data on LLM training with minimal computational cost. To tackle the second challenge, we build upon the assumption that high-quality seed data is beneficial for LLM training, and by integrating the proposed verification strategy, we optimize the selection of positive and negative samples and propose an efficient data filtering pipeline. This pipeline not only improves filtering efficiency, classifier quality, and robustness, but also significantly reduces experimental and inference costs. In addition, to efficiently filter high-quality data, we employ a lightweight classifier based on fastText, and successfully apply the filtering pipeline to two widely-used pre-training corpora, FineWeb and Chinese FineWeb datasets, resulting in the creation of the higher-quality Ultra-FineWeb dataset. Ultra-FineWeb contains approximately 1 trillion English tokens and 120 billion Chinese tokens. Empirical results demonstrate that the LLMs trained on Ultra-FineWeb exhibit significant performance improvements across multiple benchmark tasks, validating the effectiveness of our pipeline in enhancing both data quality and training efficiency.
comment: The datasets are available on https://huggingface.co/datasets/openbmb/UltraFineWeb
TransProQA: an LLM-based literary Translation evaluation metric with Professional Question Answering
The impact of Large Language Models (LLMs) has extended into literary domains. However, existing evaluation metrics prioritize mechanical accuracy over artistic expression and tend to overrate machine translation (MT) as being superior to experienced professional human translation. In the long run, this bias could result in a permanent decline in translation quality and cultural authenticity. In response to the urgent need for a specialized literary evaluation metric, we introduce TransProQA, a novel, reference-free, LLM-based question-answering (QA) framework designed specifically for literary translation evaluation. TransProQA uniquely integrates insights from professional literary translators and researchers, focusing on critical elements in literary quality assessment such as literary devices, cultural understanding, and authorial voice. Our extensive evaluation shows that while literary-finetuned XCOMET-XL yields marginal gains, TransProQA substantially outperforms current metrics, achieving up to 0.07 gain in correlation (ACC-EQ and Kendall's tau) and surpassing the best state-of-the-art (SOTA) metrics by over 15 points in adequacy assessments. Incorporating professional translator insights as weights further improves performance, highlighting the value of translator inputs. Notably, TransProQA approaches human-level evaluation performance comparable to trained linguistic annotators. It demonstrates broad applicability to open-source models such as LLaMA3.3-70b and Qwen2.5-32b, indicating its potential as an accessible and training-free literary evaluation metric and a valuable tool for evaluating texts that require local processing due to copyright or ethical considerations.
comment: WIP
TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation
Pioneering token-based works such as Chameleon and Emu3 have established a foundation for multimodal unification but face challenges of high training computational overhead and limited comprehension performance due to a lack of high-level semantics. In this paper, we introduce TokLIP, a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens and incorporating CLIP-level semantics while enabling end-to-end multimodal autoregressive training with standard VQ tokens. TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. Unlike previous approaches (e.g., VILA-U) that discretize high-level features, TokLIP disentangles training objectives for comprehension and generation, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. Our empirical results demonstrate that TokLIP achieves exceptional data efficiency, empowering visual tokens with high-level semantic understanding while enhancing low-level generative capacity, making it well-suited for autoregressive Transformers in both comprehension and generation tasks. The code and models are available at https://github.com/TencentARC/TokLIP.
comment: Technical Report
Reasoning Models Don't Always Say What They Think
Chain-of-thought (CoT) offers a potential boon for AI safety as it allows monitoring a model's CoT to try to understand its intentions and reasoning processes. However, the effectiveness of such monitoring hinges on CoTs faithfully representing models' actual reasoning processes. We evaluate CoT faithfulness of state-of-the-art reasoning models across 6 reasoning hints presented in the prompts and find: (1) for most settings and models tested, CoTs reveal their usage of hints in at least 1% of examples where they use the hint, but the reveal rate is often below 20%, (2) outcome-based reinforcement learning initially improves faithfulness but plateaus without saturating, and (3) when reinforcement learning increases how frequently hints are used (reward hacking), the propensity to verbalize them does not increase, even without training against a CoT monitor. These results suggest that CoT monitoring is a promising way of noticing undesired behaviors during training and evaluations, but that it is not sufficient to rule them out. They also suggest that in settings like ours where CoT reasoning is not necessary, test-time monitoring of CoTs is unlikely to reliably catch rare and catastrophic unexpected behaviors.
Crosslingual Reasoning through Test-Time Scaling
Reasoning capabilities of large language models are primarily studied for English, even when pretrained models are multilingual. In this work, we investigate to what extent English reasoning finetuning with long chain-of-thoughts (CoTs) can generalize across languages. First, we find that scaling up inference compute for English-centric reasoning language models (RLMs) improves multilingual mathematical reasoning across many languages including low-resource languages, to an extent where they outperform models twice their size. Second, we reveal that while English-centric RLM's CoTs are naturally predominantly English, they consistently follow a quote-and-think pattern to reason about quoted non-English inputs. Third, we discover an effective strategy to control the language of long CoT reasoning, and we observe that models reason better and more efficiently in high-resource languages. Finally, we observe poor out-of-domain reasoning generalization, in particular from STEM to cultural commonsense knowledge, even for English. Overall, we demonstrate the potentials, study the mechanisms and outline the limitations of crosslingual generalization of English reasoning test-time scaling. We conclude that practitioners should let English-centric RLMs reason in high-resource languages, while further work is needed to improve reasoning in low-resource languages and out-of-domain contexts.
Frame In, Frame Out: Do LLMs Generate More Biased News Headlines than Humans?
Framing in media critically shapes public perception by selectively emphasizing some details while downplaying others. With the rise of large language models in automated news and content creation, there is growing concern that these systems may introduce or even amplify framing biases compared to human authors. In this paper, we explore how framing manifests in both out-of-the-box and fine-tuned LLM-generated news content. Our analysis reveals that, particularly in politically and socially sensitive contexts, LLMs tend to exhibit more pronounced framing than their human counterparts. In addition, we observe significant variation in framing tendencies across different model architectures, with some models displaying notably higher biases. These findings point to the need for effective post-training mitigation strategies and tighter evaluation frameworks to ensure that automated news content upholds the standards of balanced reporting.
ICon: In-Context Contribution for Automatic Data Selection
Data selection for instruction tuning is essential for improving the performance of Large Language Models (LLMs) and reducing training cost. However, existing automated selection methods either depend on computationally expensive gradient-based measures or manually designed heuristics, which may fail to fully exploit the intrinsic attributes of data. In this paper, we propose In-context Learning for Contribution Measurement (ICon), a novel gradient-free method that takes advantage of the implicit fine-tuning nature of in-context learning (ICL) to measure sample contribution without gradient computation or manual indicators engineering. ICon offers a computationally efficient alternative to gradient-based methods and reduces human inductive bias inherent in heuristic-based approaches. ICon comprises three components and identifies high-contribution data by assessing performance shifts under implicit learning through ICL. Extensive experiments on three LLMs across 12 benchmarks and 5 pairwise evaluation sets demonstrate the effectiveness of ICon. Remarkably, on LLaMA3.1-8B, models trained on 15% of ICon-selected data outperform full datasets by 5.42% points and exceed the best performance of widely used selection methods by 2.06% points. We further analyze high-contribution samples selected by ICon, which show both diverse tasks and appropriate difficulty levels, rather than just the hardest ones.
Scalable Chain of Thoughts via Elastic Reasoning
Large reasoning models (LRMs) have achieved remarkable progress on complex tasks by generating extended chains of thought (CoT). However, their uncontrolled output lengths pose significant challenges for real-world deployment, where inference-time budgets on tokens, latency, or compute are strictly constrained. We propose Elastic Reasoning, a novel framework for scalable chain of thoughts that explicitly separates reasoning into two phases--thinking and solution--with independently allocated budgets. At test time, Elastic Reasoning prioritize that completeness of solution segments, significantly improving reliability under tight resource constraints. To train models that are robust to truncated thinking, we introduce a lightweight budget-constrained rollout strategy, integrated into GRPO, which teaches the model to reason adaptively when the thinking process is cut short and generalizes effectively to unseen budget constraints without additional training. Empirical results on mathematical (AIME, MATH500) and programming (LiveCodeBench, Codeforces) benchmarks demonstrate that Elastic Reasoning performs robustly under strict budget constraints, while incurring significantly lower training cost than baseline methods. Remarkably, our approach also produces more concise and efficient reasoning even in unconstrained settings. Elastic Reasoning offers a principled and practical solution to the pressing challenge of controllable reasoning at scale.
Toward Reasonable Parrots: Why Large Language Models Should Argue with Us by Design
In this position paper, we advocate for the development of conversational technology that is inherently designed to support and facilitate argumentative processes. We argue that, at present, large language models (LLMs) are inadequate for this purpose, and we propose an ideal technology design aimed at enhancing argumentative skills. This involves re-framing LLMs as tools to exercise our critical thinking rather than replacing them. We introduce the concept of 'reasonable parrots' that embody the fundamental principles of relevance, responsibility, and freedom, and that interact through argumentative dialogical moves. These principles and moves arise out of millennia of work in argumentation theory and should serve as the starting point for LLM-based technology that incorporates basic principles of argumentation.
T-T: Table Transformer for Tagging-based Aspect Sentiment Triplet Extraction IJCAI2025
Aspect sentiment triplet extraction (ASTE) aims to extract triplets composed of aspect terms, opinion terms, and sentiment polarities from given sentences. The table tagging method is a popular approach to addressing this task, which encodes a sentence into a 2-dimensional table, allowing for the tagging of relations between any two words. Previous efforts have focused on designing various downstream relation learning modules to better capture interactions between tokens in the table, revealing that a stronger capability to capture relations can lead to greater improvements in the model. Motivated by this, we attempt to directly utilize transformer layers as downstream relation learning modules. Due to the powerful semantic modeling capability of transformers, it is foreseeable that this will lead to excellent improvement. However, owing to the quadratic relation between the length of the table and the length of the input sentence sequence, using transformers directly faces two challenges: overly long table sequences and unfair local attention interaction. To address these challenges, we propose a novel Table-Transformer (T-T) for the tagging-based ASTE method. Specifically, we introduce a stripe attention mechanism with a loop-shift strategy to tackle these challenges. The former modifies the global attention mechanism to only attend to a 2-dimensional local attention window, while the latter facilitates interaction between different attention windows. Extensive and comprehensive experiments demonstrate that the T-T, as a downstream relation learning module, achieves state-of-the-art performance with lower computational costs.
comment: Accepted by IJCAI2025
QualBench: Benchmarking Chinese LLMs with Localized Professional Qualifications for Vertical Domain Evaluation
The rapid advancement of Chinese large language models (LLMs) underscores the need for domain-specific evaluations to ensure reliable applications. However, existing benchmarks often lack coverage in vertical domains and offer limited insights into the Chinese working context. Leveraging qualification exams as a unified framework for human expertise evaluation, we introduce QualBench, the first multi-domain Chinese QA benchmark dedicated to localized assessment of Chinese LLMs. The dataset includes over 17,000 questions across six vertical domains, with data selections grounded in 24 Chinese qualifications to closely align with national policies and working standards. Through comprehensive evaluation, the Qwen2.5 model outperformed the more advanced GPT-4o, with Chinese LLMs consistently surpassing non-Chinese models, highlighting the importance of localized domain knowledge in meeting qualification requirements. The best performance of 75.26% reveals the current gaps in domain coverage within model capabilities. Furthermore, we present the failure of LLM collaboration with crowdsourcing mechanisms and suggest the opportunities for multi-domain RAG knowledge enhancement and vertical domain LLM training with Federated Learning.
Revealing Weaknesses in Text Watermarking Through Self-Information Rewrite Attacks ICML 2025
Text watermarking aims to subtly embed statistical signals into text by controlling the Large Language Model (LLM)'s sampling process, enabling watermark detectors to verify that the output was generated by the specified model. The robustness of these watermarking algorithms has become a key factor in evaluating their effectiveness. Current text watermarking algorithms embed watermarks in high-entropy tokens to ensure text quality. In this paper, we reveal that this seemingly benign design can be exploited by attackers, posing a significant risk to the robustness of the watermark. We introduce a generic efficient paraphrasing attack, the Self-Information Rewrite Attack (SIRA), which leverages the vulnerability by calculating the self-information of each token to identify potential pattern tokens and perform targeted attack. Our work exposes a widely prevalent vulnerability in current watermarking algorithms. The experimental results show SIRA achieves nearly 100% attack success rates on seven recent watermarking methods with only 0.88 USD per million tokens cost. Our approach does not require any access to the watermark algorithms or the watermarked LLM and can seamlessly transfer to any LLM as the attack model, even mobile-level models. Our findings highlight the urgent need for more robust watermarking.
comment: ICML 2025 Accpeted
A Benchmark Dataset and a Framework for Urdu Multimodal Named Entity Recognition
The emergence of multimodal content, particularly text and images on social media, has positioned Multimodal Named Entity Recognition (MNER) as an increasingly important area of research within Natural Language Processing. Despite progress in high-resource languages such as English, MNER remains underexplored for low-resource languages like Urdu. The primary challenges include the scarcity of annotated multimodal datasets and the lack of standardized baselines. To address these challenges, we introduce the U-MNER framework and release the Twitter2015-Urdu dataset, a pioneering resource for Urdu MNER. Adapted from the widely used Twitter2015 dataset, it is annotated with Urdu-specific grammar rules. We establish benchmark baselines by evaluating both text-based and multimodal models on this dataset, providing comparative analyses to support future research on Urdu MNER. The U-MNER framework integrates textual and visual context using Urdu-BERT for text embeddings and ResNet for visual feature extraction, with a Cross-Modal Fusion Module to align and fuse information. Our model achieves state-of-the-art performance on the Twitter2015-Urdu dataset, laying the groundwork for further MNER research in low-resource languages.
comment: 16 pages, 5 figures. Preprint
Understanding In-context Learning of Addition via Activation Subspaces
To perform in-context learning, language models must extract signals from individual few-shot examples, aggregate these into a learned prediction rule, and then apply this rule to new examples. How is this implemented in the forward pass of modern transformer models? To study this, we consider a structured family of few-shot learning tasks for which the true prediction rule is to add an integer $k$ to the input. We find that Llama-3-8B attains high accuracy on this task for a range of $k$, and localize its few-shot ability to just three attention heads via a novel optimization approach. We further show the extracted signals lie in a six-dimensional subspace, where four of the dimensions track the unit digit and the other two dimensions track overall magnitude. We finally examine how these heads extract information from individual few-shot examples, identifying a self-correction mechanism in which mistakes from earlier examples are suppressed by later examples. Our results demonstrate how tracking low-dimensional subspaces across a forward pass can provide insight into fine-grained computational structures.
comment: 16 pages
Unveiling Language-Specific Features in Large Language Models via Sparse Autoencoders
The mechanisms behind multilingual capabilities in Large Language Models (LLMs) have been examined using neuron-based or internal-activation-based methods. However, these methods often face challenges such as superposition and layer-wise activation variance, which limit their reliability. Sparse Autoencoders (SAEs) offer a more nuanced analysis by decomposing the activations of LLMs into sparse linear combination of SAE features. We introduce a novel metric to assess the monolinguality of features obtained from SAEs, discovering that some features are strongly related to specific languages. Additionally, we show that ablating these SAE features only significantly reduces abilities in one language of LLMs, leaving others almost unaffected. Interestingly, we find some languages have multiple synergistic SAE features, and ablating them together yields greater improvement than ablating individually. Moreover, we leverage these SAE-derived language-specific features to enhance steering vectors, achieving control over the language generated by LLMs.
X-Driver: Explainable Autonomous Driving with Vision-Language Models
End-to-end autonomous driving has advanced significantly, offering benefits such as system simplicity and stronger driving performance in both open-loop and closed-loop settings than conventional pipelines. However, existing frameworks still suffer from low success rates in closed-loop evaluations, highlighting their limitations in real-world deployment. In this paper, we introduce X-Driver, a unified multi-modal large language models(MLLMs) framework designed for closed-loop autonomous driving, leveraging Chain-of-Thought(CoT) and autoregressive modeling to enhance perception and decision-making. We validate X-Driver across multiple autonomous driving tasks using public benchmarks in CARLA simulation environment, including Bench2Drive[6]. Our experimental results demonstrate superior closed-loop performance, surpassing the current state-of-the-art(SOTA) while improving the interpretability of driving decisions. These findings underscore the importance of structured reasoning in end-to-end driving and establish X-Driver as a strong baseline for future research in closed-loop autonomous driving.
Reliably Bounding False Positives: A Zero-Shot Machine-Generated Text Detection Framework via Multiscaled Conformal Prediction
The rapid advancement of large language models has raised significant concerns regarding their potential misuse by malicious actors. As a result, developing effective detectors to mitigate these risks has become a critical priority. However, most existing detection methods focus excessively on detection accuracy, often neglecting the societal risks posed by high false positive rates (FPRs). This paper addresses this issue by leveraging Conformal Prediction (CP), which effectively constrains the upper bound of FPRs. While directly applying CP constrains FPRs, it also leads to a significant reduction in detection performance. To overcome this trade-off, this paper proposes a Zero-Shot Machine-Generated Text Detection Framework via Multiscaled Conformal Prediction (MCP), which both enforces the FPR constraint and improves detection performance. This paper also introduces RealDet, a high-quality dataset that spans a wide range of domains, ensuring realistic calibration and enabling superior detection performance when combined with MCP. Empirical evaluations demonstrate that MCP effectively constrains FPRs, significantly enhances detection performance, and increases robustness against adversarial attacks across multiple detectors and datasets.
Performance Evaluation of Large Language Models in Bangla Consumer Health Query Summarization
Consumer Health Queries (CHQs) in Bengali (Bangla), a low-resource language, often contain extraneous details, complicating efficient medical responses. This study investigates the zero-shot performance of nine advanced large language models (LLMs): GPT-3.5-Turbo, GPT-4, Claude-3.5-Sonnet, Llama3-70b-Instruct, Mixtral-8x22b-Instruct, Gemini-1.5-Pro, Qwen2-72b-Instruct, Gemma-2-27b, and Athene-70B, in summarizing Bangla CHQs. Using the BanglaCHQ-Summ dataset comprising 2,350 annotated query-summary pairs, we benchmarked these LLMs using ROUGE metrics against Bangla T5, a fine-tuned state-of-the-art model. Mixtral-8x22b-Instruct emerged as the top performing model in ROUGE-1 and ROUGE-L, while Bangla T5 excelled in ROUGE-2. The results demonstrate that zero-shot LLMs can rival fine-tuned models, achieving high-quality summaries even without task-specific training. This work underscores the potential of LLMs in addressing challenges in low-resource languages, providing scalable solutions for healthcare query summarization.
CodeMixBench: Evaluating Large Language Models on Code Generation with Code-Mixed Prompts
Large Language Models (LLMs) have achieved remarkable success in code generation tasks, powering various applications like code completion, debugging, and programming assistance. However, existing benchmarks such as HumanEval, MBPP, and BigCodeBench primarily evaluate LLMs on English-only prompts, overlooking the real-world scenario where multilingual developers often use code-mixed language while interacting with LLMs. To address this gap, we introduce CodeMixBench, a novel benchmark designed to evaluate the robustness of LLMs on code generation from code-mixed prompts. Built upon BigCodeBench, CodeMixBench introduces controlled code-mixing (CMD) into the natural language parts of prompts across three language pairs: Hinglish (Hindi-English), Spanish-English, and Chinese Pinyin-English. We comprehensively evaluate a diverse set of open-source code generation models ranging from 1.5B to 15B parameters. Our results show that code-mixed prompts consistently degrade Pass@1 performance compared to their English-only counterparts, with performance drops increasing under higher CMD levels for smaller models. CodeMixBench provides a realistic evaluation framework for studying multilingual code generation and highlights new challenges and directions for building robust code generation models that generalize well across diverse linguistic settings.
Teochew-Wild: The First In-the-wild Teochew Dataset with Orthographic Annotations
This paper reports the construction of the Teochew-Wild, a speech corpus of the Teochew dialect. The corpus includes 18.9 hours of in-the-wild Teochew speech data from multiple speakers, covering both formal and colloquial expressions, with precise orthographic and pinyin annotations. Additionally, we provide supplementary text processing tools and resources to propel research and applications in speech tasks for this low-resource language, such as automatic speech recognition (ASR) and text-to-speech (TTS). To the best of our knowledge, this is the first publicly available Teochew dataset with accurate orthographic annotations. We conduct experiments on the corpus, and the results validate its effectiveness in ASR and TTS tasks.
Image-Text Relation Prediction for Multilingual Tweets
Various social networks have been allowing media uploads for over a decade now. Still, it has not always been clear what is their relation with the posted text or even if there is any at all. In this work, we explore how multilingual vision-language models tackle the task of image-text relation prediction in different languages, and construct a dedicated balanced benchmark data set from Twitter posts in Latvian along with their manual translations into English. We compare our results to previous work and show that the more recently released vision-language model checkpoints are becoming increasingly capable at this task, but there is still much room for further improvement.
G-FOCUS: Towards a Robust Method for Assessing UI Design Persuasiveness
Evaluating user interface (UI) design effectiveness extends beyond aesthetics to influencing user behavior, a principle central to Design Persuasiveness. A/B testing is the predominant method for determining which UI variations drive higher user engagement, but it is costly and time-consuming. While recent Vision-Language Models (VLMs) can process automated UI analysis, current approaches focus on isolated design attributes rather than comparative persuasiveness-the key factor in optimizing user interactions. To address this, we introduce WiserUI-Bench, a benchmark designed for Pairwise UI Design Persuasiveness Assessment task, featuring 300 real-world UI image pairs labeled with A/B test results and expert rationales. Additionally, we propose G-FOCUS, a novel inference-time reasoning strategy that enhances VLM-based persuasiveness assessment by reducing position bias and improving evaluation accuracy. Experimental results show that G-FOCUS surpasses existing inference strategies in consistency and accuracy for pairwise UI evaluation. Through promoting VLM-driven evaluation of UI persuasiveness, our work offers an approach to complement A/B testing, propelling progress in scalable UI preference modeling and design optimization. Code and data will be released publicly.
comment: 31 pages, 17 figures
Scalable Multi-Stage Influence Function for Large Language Models via Eigenvalue-Corrected Kronecker-Factored Parameterization IJCAI 2025
Pre-trained large language models (LLMs) are commonly fine-tuned to adapt to downstream tasks. Since the majority of knowledge is acquired during pre-training, attributing the predictions of fine-tuned LLMs to their pre-training data may provide valuable insights. Influence functions have been proposed as a means to explain model predictions based on training data. However, existing approaches fail to compute ``multi-stage'' influence and lack scalability to billion-scale LLMs. In this paper, we propose the multi-stage influence function to attribute the downstream predictions of fine-tuned LLMs to pre-training data under the full-parameter fine-tuning paradigm. To enhance the efficiency and practicality of our multi-stage influence function, we leverage Eigenvalue-corrected Kronecker-Factored (EK-FAC) parameterization for efficient approximation. Empirical results validate the superior scalability of EK-FAC approximation and the effectiveness of our multi-stage influence function. Additionally, case studies on a real-world LLM, dolly-v2-3b, demonstrate its interpretive power, with exemplars illustrating insights provided by multi-stage influence estimates. Our code is public at https://github.com/colored-dye/multi_stage_influence_function.
comment: 9 pages, accepted by IJCAI 2025
The Pitfalls of Growing Group Complexity: LLMs and Social Choice-Based Aggregation for Group Recommendations
Large Language Models (LLMs) are increasingly applied in recommender systems aimed at both individuals and groups. Previously, Group Recommender Systems (GRS) often used social choice-based aggregation strategies to derive a single recommendation based on the preferences of multiple people. In this paper, we investigate under which conditions language models can perform these strategies correctly based on zero-shot learning and analyse whether the formatting of the group scenario in the prompt affects accuracy. We specifically focused on the impact of group complexity (number of users and items), different LLMs, different prompting conditions, including In-Context learning or generating explanations, and the formatting of group preferences. Our results show that performance starts to deteriorate when considering more than 100 ratings. However, not all language models were equally sensitive to growing group complexity. Additionally, we showed that In-Context Learning (ICL) can significantly increase the performance at higher degrees of group complexity, while adding other prompt modifications, specifying domain cues or prompting for explanations, did not impact accuracy. We conclude that future research should include group complexity as a factor in GRS evaluation due to its effect on LLM performance. Furthermore, we showed that formatting the group scenarios differently, such as rating lists per user or per item, affected accuracy. All in all, our study implies that smaller LLMs are capable of generating group recommendations under the right conditions, making the case for using smaller models that require less computing power and costs.
comment: To be published in: Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct '25), June 16--19, 2025, New York City, NY, USA Accepted at the 4th Workshop on Group Modeling, Adaptation and Personalization (GMAP), co-located at UMAP 2025
Rethinking Invariance in In-context Learning
In-Context Learning (ICL) has emerged as a pivotal capability of auto-regressive large language models, yet it is hindered by a notable sensitivity to the ordering of context examples regardless of their mutual independence. To address this issue, recent studies have introduced several variant algorithms of ICL that achieve permutation invariance. However, many of these do not exhibit comparable performance with the standard auto-regressive ICL algorithm. In this work, we identify two crucial elements in the design of an invariant ICL algorithm: information non-leakage and context interdependence, which are not simultaneously achieved by any of the existing methods. These investigations lead us to the proposed Invariant ICL (InvICL), a methodology designed to achieve invariance in ICL while ensuring the two properties. Empirically, our findings reveal that InvICL surpasses previous models, both invariant and non-invariant, in most benchmark datasets, showcasing superior generalization capabilities across varying input lengths. Code is available at https://github.com/PKU-ML/InvICL.
Latent Preference Coding: Aligning Large Language Models via Discrete Latent Codes
Large language models (LLMs) have achieved remarkable success, yet aligning their generations with human preferences remains a critical challenge. Existing approaches to preference modeling often rely on an explicit or implicit reward function, overlooking the intricate and multifaceted nature of human preferences that may encompass conflicting factors across diverse tasks and populations. To address this limitation, we introduce Latent Preference Coding (LPC), a novel framework that models the implicit factors as well as their combinations behind holistic preferences using discrete latent codes. LPC seamlessly integrates with various offline alignment algorithms, automatically inferring the underlying factors and their importance from data without relying on pre-defined reward functions and hand-crafted combination weights. Extensive experiments on multiple benchmarks demonstrate that LPC consistently improves upon three alignment algorithms (DPO, SimPO, and IPO) using three base models (Mistral-7B, Llama3-8B, and Llama3-8B-Instruct). Furthermore, deeper analysis reveals that the learned latent codes effectively capture the differences in the distribution of human preferences and significantly enhance the robustness of alignment against noise in data. By providing a unified representation for the multifarious preference factors, LPC paves the way towards developing more robust and versatile alignment techniques for the responsible deployment of powerful LLMs.
Rethinking the Relationship between the Power Law and Hierarchical Structures
Statistical analysis of corpora provides an approach to quantitatively investigate natural languages. This approach has revealed that several power laws consistently emerge across different corpora and languages, suggesting the universal principles underlying languages. Particularly, the power-law decay of correlation has been interpreted as evidence for underlying hierarchical structures in syntax, semantics, and discourse. This perspective has also been extended to child languages and animal signals. However, the argument supporting this interpretation has not been empirically tested. To address this problem, this study examines the validity of the argument for syntactic structures. Specifically, we test whether the statistical properties of parse trees align with the implicit assumptions in the argument. Using English corpora, we analyze the mutual information, deviations from probabilistic context-free grammars (PCFGs), and other properties in parse trees, as well as in the PCFG that approximates these trees. Our results indicate that the assumptions do not hold for syntactic structures and that it is difficult to apply the proposed argument to child languages and animal signals, highlighting the need to reconsider the relationship between the power law and hierarchical structures.
comment: 13 pages, 11 figures
General Transform: A Unified Framework for Adaptive Transform to Enhance Representations
Discrete transforms, such as the discrete Fourier transform, are widely used in machine learning to improve model performance by extracting meaningful features. However, with numerous transforms available, selecting an appropriate one often depends on understanding the dataset's properties, making the approach less effective when such knowledge is unavailable. In this work, we propose General Transform (GT), an adaptive transform-based representation designed for machine learning applications. Unlike conventional transforms, GT learns data-driven mapping tailored to the dataset and task of interest. Here, we demonstrate that models incorporating GT outperform conventional transform-based approaches across computer vision and natural language processing tasks, highlighting its effectiveness in diverse learning scenarios.
Chain-of-Thought Tokens are Computer Program Variables
Chain-of-thoughts (CoT) requires large language models (LLMs) to generate intermediate steps before reaching the final answer, and has been proven effective to help LLMs solve complex reasoning tasks. However, the inner mechanism of CoT still remains largely unclear. In this paper, we empirically study the role of CoT tokens in LLMs on two compositional tasks: multi-digit multiplication and dynamic programming. While CoT is essential for solving these problems, we find that preserving only tokens that store intermediate results would achieve comparable performance. Furthermore, we observe that storing intermediate results in an alternative latent form will not affect model performance. We also randomly intervene some values in CoT, and notice that subsequent CoT tokens and the final answer would change correspondingly. These findings suggest that CoT tokens may function like variables in computer programs but with potential drawbacks like unintended shortcuts and computational complexity limits between tokens. The code and data are available at https://github.com/solitaryzero/CoTs_are_Variables.
Prompt-Based LLMs for Position Bias-Aware Reranking in Personalized Recommendations
Recommender systems are essential for delivering personalized content across digital platforms by modeling user preferences and behaviors. Recently, large language models (LLMs) have been adopted for prompt-based recommendation due to their ability to generate personalized outputs without task-specific training. However, LLM-based methods face limitations such as limited context window size, inefficient pointwise and pairwise prompting, and difficulty handling listwise ranking due to token constraints. LLMs can also be sensitive to position bias, as they may overemphasize earlier items in the prompt regardless of their true relevance. To address and investigate these issues, we propose a hybrid framework that combines a traditional recommendation model with an LLM for reranking top-k items using structured prompts. We evaluate the effects of user history reordering and instructional prompts for mitigating position bias. Experiments on MovieLens-100K show that randomizing user history improves ranking quality, but LLM-based reranking does not outperform the base model. Explicit instructions to reduce position bias are also ineffective. Our evaluations reveal limitations in LLMs' ability to model ranking context and mitigate bias. Our code is publicly available at https://github.com/aminul7506/LLMForReRanking.
T2VTextBench: A Human Evaluation Benchmark for Textual Control in Video Generation Models
Thanks to recent advancements in scalable deep architectures and large-scale pretraining, text-to-video generation has achieved unprecedented capabilities in producing high-fidelity, instruction-following content across a wide range of styles, enabling applications in advertising, entertainment, and education. However, these models' ability to render precise on-screen text, such as captions or mathematical formulas, remains largely untested, posing significant challenges for applications requiring exact textual accuracy. In this work, we introduce T2VTextBench, the first human-evaluation benchmark dedicated to evaluating on-screen text fidelity and temporal consistency in text-to-video models. Our suite of prompts integrates complex text strings with dynamic scene changes, testing each model's ability to maintain detailed instructions across frames. We evaluate ten state-of-the-art systems, ranging from open-source solutions to commercial offerings, and find that most struggle to generate legible, consistent text. These results highlight a critical gap in current video generators and provide a clear direction for future research aimed at enhancing textual manipulation in video synthesis.
Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models
Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.
comment: 75 Pages,10 figures; Project: https://github.com/HITsz-TMG/Awesome-Large-Multimodal-Reasoning-Models
An Open-Source Dual-Loss Embedding Model for Semantic Retrieval in Higher Education
Recent advances in AI have catalyzed the adoption of intelligent educational tools, yet many semantic retrieval systems remain ill-suited to the unique linguistic and structural characteristics of academic content. This study presents two open-source embedding models fine-tuned for educational question answering, particularly in the context of course syllabi. A synthetic dataset of 3,197 sentence pairs, spanning synonymous terminology, paraphrased questions, and implicit-explicit mappings, was constructed through a combination of manual curation and large language model (LLM)-assisted generation. Two training strategies were evaluated: (1) a baseline model fine-tuned using MultipleNegativesRankingLoss (MNRL), and (2) a dual-loss model that combines MNRL with CosineSimilarityLoss to improve both semantic ranking and similarity calibration. Evaluations were conducted on 28 university course syllabi using a fixed set of natural language questions categorized into course, faculty, and teaching assistant information. Results demonstrate that both fine-tuned models outperform strong open-source baselines, including all-MiniLM-L6-v2 and multi-qa-MiniLM-L6-cos-v1, and that the dual-loss model narrows the performance gap with high-performing proprietary embeddings such as OpenAI's text-embedding-3 series. This work contributes reusable, domain-aligned embedding models and provides a replicable framework for educational semantic retrieval, supporting downstream applications such as academic chatbots, retrieval-augmented generation (RAG) systems, and learning management system (LMS) integrations.
comment: 17 pages, 3 Tables
Enigme: Generative Text Puzzles for Evaluating Reasoning in Language Models
Transformer-decoder language models are a core innovation in text based generative artificial intelligence. These models are being deployed as general-purpose intelligence systems in many applications. Central to their utility is the capacity to understand natural language commands and exploit the reasoning embedded in human text corpora to apply some form of reasoning process to a wide variety of novel tasks. To understand the limitations of this approach to generating reasoning we argue that we need to consider the architectural constraints of these systems. Consideration of the latent variable structure of transformer-decoder models allows us to design reasoning tasks that should probe the boundary of their capacity to reason. We present enigme, an open-source library for generating text-based puzzles to be used in training and evaluating reasoning skills within transformer-decoder models and future AI architectures.
comment: To be published in the proceedings of The 2025 11th International Conference on Engineering, Applied Sciences, and Technology (ICEAST)
SpatialPrompting: Keyframe-driven Zero-Shot Spatial Reasoning with Off-the-Shelf Multimodal Large Language Models
This study introduces SpatialPrompting, a novel framework that harnesses the emergent reasoning capabilities of off-the-shelf multimodal large language models to achieve zero-shot spatial reasoning in three-dimensional (3D) environments. Unlike existing methods that rely on expensive 3D-specific fine-tuning with specialized 3D inputs such as point clouds or voxel-based features, SpatialPrompting employs a keyframe-driven prompt generation strategy. This framework uses metrics such as vision-language similarity, Mahalanobis distance, field of view, and image sharpness to select a diverse and informative set of keyframes from image sequences and then integrates them with corresponding camera pose data to effectively abstract spatial relationships and infer complex 3D structures. The proposed framework not only establishes a new paradigm for flexible spatial reasoning that utilizes intuitive visual and positional cues but also achieves state-of-the-art zero-shot performance on benchmark datasets, such as ScanQA and SQA3D, across several metrics. The proposed method effectively eliminates the need for specialized 3D inputs and fine-tuning, offering a simpler and more scalable alternative to conventional approaches.
comment: 18 pages, 11 figures
ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning
Large Reasoning Models (LRMs) perform strongly in complex reasoning tasks via Chain-of-Thought (CoT) prompting, but often suffer from verbose outputs caused by redundant content, increasing computational overhead, and degrading user experience. Existing compression methods either operate post-hoc pruning, risking disruption to reasoning coherence, or rely on sampling-based selection, which fails to intervene effectively during generation. In this work, we introduce a confidence-guided perspective to explain the emergence of redundant reflection in LRMs, identifying two key patterns: Confidence Deficit, where the model reconsiders correct steps due to low internal confidence, and Termination Delay, where reasoning continues even after reaching a confident answer. Based on this analysis, we propose ConCISE (Confidence-guided Compression In Step-by-step Efficient Reasoning), a framework that simplifies reasoning chains by reinforcing the model's confidence during inference, thus preventing the generation of redundant reflection steps. It integrates Confidence Injection to stabilize intermediate steps and Early Stopping to terminate reasoning when confidence is sufficient. Extensive experiments demonstrate that fine-tuning LRMs on ConCISE-generated data yields significantly shorter outputs, reducing length by up to approximately 50% under SimPO, while maintaining high task accuracy. ConCISE consistently outperforms existing baselines across multiple reasoning benchmarks.
SmallPlan: Leverage Small Language Models for Sequential Path Planning with Simulation-Powered, LLM-Guided Distillation
Efficient path planning in robotics, particularly within large-scale, dynamic environments, remains a significant hurdle. While Large Language Models (LLMs) offer strong reasoning capabilities, their high computational cost and limited adaptability in dynamic scenarios hinder real-time deployment on edge devices. We present SmallPlan -- a novel framework leveraging LLMs as teacher models to train lightweight Small Language Models (SLMs) for high-level path planning tasks. In SmallPlan, the SLMs provide optimal action sequences to navigate across scene graphs that compactly represent full-scaled 3D scenes. The SLMs are trained in a simulation-powered, interleaved manner with LLM-guided supervised fine-tuning (SFT) and reinforcement learning (RL). This strategy not only enables SLMs to successfully complete navigation tasks but also makes them aware of important factors like travel distance and number of trials. Through experiments, we demonstrate that the fine-tuned SLMs perform competitively with larger models like GPT-4o on sequential path planning, without suffering from hallucination and overfitting. SmallPlan is resource-efficient, making it well-suited for edge-device deployment and advancing practical autonomous robotics.
comment: Paper is under review
The Power of Stories: Narrative Priming Shapes How LLM Agents Collaborate and Compete
According to Yuval Noah Harari, large-scale human cooperation is driven by shared narratives that encode common beliefs and values. This study explores whether such narratives can similarly nudge LLM agents toward collaboration. We use a finitely repeated public goods game in which LLM agents choose either cooperative or egoistic spending strategies. We prime agents with stories highlighting teamwork to different degrees and test how this influences negotiation outcomes. Our experiments explore four questions:(1) How do narratives influence negotiation behavior? (2) What differs when agents share the same story versus different ones? (3) What happens when the agent numbers grow? (4) Are agents resilient against self-serving negotiators? We find that story-based priming significantly affects negotiation strategies and success rates. Common stories improve collaboration, benefiting each agent. By contrast, priming agents with different stories reverses this effect, and those agents primed toward self-interest prevail. We hypothesize that these results carry implications for multi-agent system design and AI alignment.
comment: 16 pages, 8 figures. Code available at https://github.com/storyagents25/story-agents
SAPIENT: Mastering Multi-turn Conversational Recommendation with Strategic Planning and Monte Carlo Tree Search NAACL 2025
Conversational Recommender Systems (CRS) proactively engage users in interactive dialogues to elicit user preferences and provide personalized recommendations. Existing methods train Reinforcement Learning (RL)-based agent with greedy action selection or sampling strategy, and may suffer from suboptimal conversational planning. To address this, we present a novel Monte Carlo Tree Search (MCTS)-based CRS framework SAPIENT. SAPIENT consists of a conversational agent (S-agent) and a conversational planner (S-planner). S-planner builds a conversational search tree with MCTS based on the initial actions proposed by S-agent to find conversation plans. The best conversation plans from S-planner are used to guide the training of S-agent, creating a self-training loop where S-agent can iteratively improve its capability for conversational planning. Furthermore, we propose an efficient variant SAPIENT for trade-off between training efficiency and performance. Extensive experiments on four benchmark datasets validate the effectiveness of our approach, showing that SAPIENT outperforms the state-of-the-art baselines. Our code and data are accessible through https://github.com/ninglab/SAPIENT.
comment: Accepted to NAACL 2025 Main Conference
Applications of Artificial Intelligence for Cross-language Intelligibility Assessment of Dysarthric Speech
Purpose: Speech intelligibility is a critical outcome in the assessment and management of dysarthria, yet most research and clinical practices have focused on English, limiting their applicability across languages. This commentary introduces a conceptual framework--and a demonstration of how it can be implemented--leveraging artificial intelligence (AI) to advance cross-language intelligibility assessment of dysarthric speech. Method: We propose a two-tiered conceptual framework consisting of a universal speech model that encodes dysarthric speech into acoustic-phonetic representations, followed by a language-specific intelligibility assessment model that interprets these representations within the phonological or prosodic structures of the target language. We further identify barriers to cross-language intelligibility assessment of dysarthric speech, including data scarcity, annotation complexity, and limited linguistic insights into dysarthric speech, and outline potential AI-driven solutions to overcome these challenges. Conclusion: Advancing cross-language intelligibility assessment of dysarthric speech necessitates models that are both efficient and scalable, yet constrained by linguistic rules to ensure accurate and language-sensitive assessment. Recent advances in AI provide the foundational tools to support this integration, shaping future directions toward generalizable and linguistically informed assessment frameworks.
comment: 14 pages, 2 figure, 2 tables
Correctness Coverage Evaluation for Medical Multiple-Choice Question Answering Based on the Enhanced Conformal Prediction Framework
Large language models (LLMs) are increasingly adopted in medical question-answering (QA) scenarios. However, LLMs can generate hallucinations and nonfactual information, undermining their trustworthiness in high-stakes medical tasks. Conformal Prediction (CP) provides a statistically rigorous framework for marginal (average) coverage guarantees but has limited exploration in medical QA. This paper proposes an enhanced CP framework for medical multiple-choice question-answering (MCQA) tasks. By associating the non-conformance score with the frequency score of correct options and leveraging self-consistency, the framework addresses internal model opacity and incorporates a risk control strategy with a monotonic loss function. Evaluated on MedMCQA, MedQA, and MMLU datasets using four off-the-shelf LLMs, the proposed method meets specified error rate guarantees while reducing average prediction set size with increased risk level, offering a promising uncertainty evaluation metric for LLMs.
comment: Published by Mathematics
DEGAP: Dual Event-Guided Adaptive Prefixes for Templated-Based Event Argument Extraction with Slot Querying COLING 2025
Recent advancements in event argument extraction (EAE) involve incorporating useful auxiliary information into models during training and inference, such as retrieved instances and event templates. These methods face two challenges: (1) the retrieval results may be irrelevant and (2) templates are developed independently for each event without considering their possible relationship. In this work, we propose DEGAP to address these challenges through a simple yet effective components: dual prefixes, i.e. learnable prompt vectors, where the instance-oriented prefix and template-oriented prefix are trained to learn information from different event instances and templates. Additionally, we propose an event-guided adaptive gating mechanism, which can adaptively leverage possible connections between different events and thus capture relevant information from the prefix. Finally, these event-guided prefixes provide relevant information as cues to EAE model without retrieval. Extensive experiments demonstrate that our method achieves new state-of-the-art performance on four datasets (ACE05, RAMS, WIKIEVENTS, and MLEE). Further analysis shows the impact of different components.
comment: Published as a conference paper in COLING 2025
TiC-LM: A Web-Scale Benchmark for Time-Continual LLM Pretraining
Large Language Models (LLMs) trained on historical web data inevitably become outdated. We investigate evaluation strategies and update methods for LLMs as new data becomes available. We introduce a web-scale dataset for time-continual pretraining of LLMs derived from 114 dumps of Common Crawl (CC) - orders of magnitude larger than previous continual language modeling benchmarks. We also design time-stratified evaluations across both general CC data and specific domains (Wikipedia, StackExchange, and code documentation) to assess how well various continual learning methods adapt to new data while retaining past knowledge. Our findings demonstrate that, on general CC data, autoregressive meta-schedules combined with a fixed-ratio replay of older data can achieve comparable held-out loss to re-training from scratch, while requiring significantly less computation (2.6x). However, the optimal balance between incorporating new data and replaying old data differs as replay is crucial to avoid forgetting on generic web data but less so on specific domains.
comment: Code available at: https://github.com/apple/ml-tic-lm
TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) endeavors to understand human sentiment by leveraging language, visual, and acoustic modalities. Despite the remarkable performance exhibited by previous MSA approaches, the presence of inherent multimodal heterogeneities poses a challenge, with the contribution of different modalities varying considerably. Past research predominantly focused on improving representation learning techniques and feature fusion strategies. However, many of these efforts overlooked the variation in semantic richness among different modalities, treating each modality uniformly. This approach may lead to underestimating the significance of strong modalities while overemphasizing the importance of weak ones. Motivated by these insights, we introduce a Text-oriented Cross-Attention Network (TCAN), emphasizing the predominant role of the text modality in MSA. Specifically, for each multimodal sample, by taking unaligned sequences of the three modalities as inputs, we initially allocate the extracted unimodal features into a visual-text and an acoustic-text pair. Subsequently, we implement self-attention on the text modality and apply text-queried cross-attention to the visual and acoustic modalities. To mitigate the influence of noise signals and redundant features, we incorporate a gated control mechanism into the framework. Additionally, we introduce unimodal joint learning to gain a deeper understanding of homogeneous emotional tendencies across diverse modalities through backpropagation. Experimental results demonstrate that TCAN consistently outperforms state-of-the-art MSA methods on two datasets (CMU-MOSI and CMU-MOSEI).
Re-evaluating Open-ended Evaluation of Large Language Models ICLR 2025
Evaluation has traditionally focused on ranking candidates for a specific skill. Modern generalist models, such as Large Language Models (LLMs), decidedly outpace this paradigm. Open-ended evaluation systems, where candidate models are compared on user-submitted prompts, have emerged as a popular solution. Despite their many advantages, we show that the current Elo-based rating systems can be susceptible to and even reinforce biases in data, intentional or accidental, due to their sensitivity to redundancies. To address this issue, we propose evaluation as a 3-player game, and introduce novel game-theoretic solution concepts to ensure robustness to redundancy. We show that our method leads to intuitive ratings and provide insights into the competitive landscape of LLM development.
comment: Published at ICLR 2025
Benchmarking Open-Source Large Language Models on Healthcare Text Classification Tasks
The application of large language models (LLMs) to healthcare information extraction has emerged as a promising approach. This study evaluates the classification performance of five open-source LLMs: GEMMA-3-27B-IT, LLAMA3-70B, LLAMA4-109B, DEEPSEEK-R1-DISTILL-LLAMA-70B, and DEEPSEEK-V3-0324-UD-Q2_K_XL, across six healthcare-related classification tasks involving both social media data (breast cancer, changes in medication regimen, adverse pregnancy outcomes, potential COVID-19 cases) and clinical data (stigma labeling, medication change discussion). We report precision, recall, and F1 scores with 95% confidence intervals for all model-task combinations. Our findings reveal significant performance variability between LLMs, with DeepSeekV3 emerging as the strongest overall performer, achieving the highest F1 scores in four tasks. Notably, models generally performed better on social media tasks compared to clinical data tasks, suggesting potential domain-specific challenges. GEMMA-3-27B-IT demonstrated exceptionally high recall despite its smaller parameter count, while LLAMA4-109B showed surprisingly underwhelming performance compared to its predecessor LLAMA3-70B, indicating that larger parameter counts do not guarantee improved classification results. We observed distinct precision-recall trade-offs across models, with some favoring sensitivity over specificity and vice versa. These findings highlight the importance of task-specific model selection for healthcare applications, considering the particular data domain and precision-recall requirements rather than model size alone. As healthcare increasingly integrates AI-driven text classification tools, this comprehensive benchmarking provides valuable guidance for model selection and implementation while underscoring the need for continued evaluation and domain adaptation of LLMs in healthcare contexts.
comment: 5 pages
Faster, Cheaper, Better: Multi-Objective Hyperparameter Optimization for LLM and RAG Systems
While Retrieval Augmented Generation (RAG) has emerged as a popular technique for improving Large Language Model (LLM) systems, it introduces a large number of choices, parameters and hyperparameters that must be made or tuned. This includes the LLM, embedding, and ranker models themselves, as well as hyperparameters governing individual RAG components. Yet, collectively optimizing the entire configuration in a RAG or LLM system remains under-explored - especially in multi-objective settings - due to intractably large solution spaces, noisy objective evaluations, and the high cost of evaluations. In this work, we introduce the first approach for multi-objective parameter optimization of cost, latency, safety and alignment over entire LLM and RAG systems. We find that Bayesian optimization methods significantly outperform baseline approaches, obtaining a superior Pareto front on two new RAG benchmark tasks. We conclude our work with important considerations for practitioners who are designing multi-objective RAG systems, highlighting nuances such as how optimal configurations may not generalize across tasks and objectives.
Large Language Models Understanding: an Inherent Ambiguity Barrier
A lively ongoing debate is taking place, since the extraordinary emergence of Large Language Models (LLMs) with regards to their capability to understand the world and capture the meaning of the dialogues in which they are involved. Arguments and counter-arguments have been proposed based upon thought experiments, anecdotal conversations between LLMs and humans, statistical linguistic analysis, philosophical considerations, and more. In this brief paper we present a counter-argument based upon a thought experiment and semi-formal considerations leading to an inherent ambiguity barrier which prevents LLMs from having any understanding of what their amazingly fluent dialogues mean.
comment: submitted to NEURAL COMPUTATION
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Entity alignment (EA) aims at identifying equivalent entity pairs across different knowledge graphs (KGs) that refer to the same real-world identity. To circumvent the shortage of seed alignments provided for training, recent EA models utilize pseudo-labeling strategies to iteratively add unaligned entity pairs predicted with high confidence to the seed alignments for model training. However, the adverse impact of confirmation bias during pseudo-labeling has been largely overlooked, thus hindering entity alignment performance. To systematically combat confirmation bias for pseudo-labeling-based entity alignment, we propose a Unified Pseudo-Labeling framework for Entity Alignment (UPL-EA) that explicitly eliminates pseudo-labeling errors to boost the accuracy of entity alignment. UPL-EA consists of two complementary components: (1) Optimal Transport (OT)-based pseudo-labeling uses discrete OT modeling as an effective means to determine entity correspondences and reduce erroneous matches across two KGs. An effective criterion is derived to infer pseudo-labeled alignments that satisfy one-to-one correspondences; (2) Parallel pseudo-label ensembling refines pseudo-labeled alignments by combining predictions over multiple models independently trained in parallel. The ensembled pseudo-labeled alignments are thereafter used to augment seed alignments to reinforce subsequent model training for alignment inference. The effectiveness of UPL-EA in eliminating pseudo-labeling errors is both theoretically supported and experimentally validated. Our extensive results and in-depth analyses demonstrate the superiority of UPL-EA over 15 competitive baselines and its utility as a general pseudo-labeling framework for entity alignment.
Large Language Models for Outpatient Referral: Problem Definition, Benchmarking and Challenges
Large language models (LLMs) are increasingly applied to outpatient referral tasks across healthcare systems. However, there is a lack of standardized evaluation criteria to assess their effectiveness, particularly in dynamic, interactive scenarios. In this study, we systematically examine the capabilities and limitations of LLMs in managing tasks within Intelligent Outpatient Referral (IOR) systems and propose a comprehensive evaluation framework specifically designed for such systems. This framework comprises two core tasks: static evaluation, which focuses on evaluating the ability of predefined outpatient referrals, and dynamic evaluation, which evaluates capabilities of refining outpatient referral recommendations through iterative dialogues. Our findings suggest that LLMs offer limited advantages over BERT-like models, but show promise in asking effective questions during interactive dialogues.
SeriesBench: A Benchmark for Narrative-Driven Drama Series Understanding CVPR 2025
With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on standalone videos and mainly assess "visual elements" like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a series. To address this challenge, we propose SeriesBench, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, PC-DCoT. Extensive results on SeriesBench indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while PC-DCoT enables these MLLMs to achieve performance improvements. Overall, our SeriesBench and PC-DCoT highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.
comment: 29 pages, 15 figures, CVPR 2025
Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant IJCAI 2025
Quantization has gained attention as a promising solution for the cost-effective deployment of large and small language models. However, most prior work has been limited to perplexity or basic knowledge tasks and lacks a comprehensive evaluation of recent models like Llama-3.3. In this paper, we conduct a comprehensive evaluation of instruction-tuned models spanning 1B to 405B parameters, applying four quantization methods across 13 datasets. Our findings reveal that (1) quantized models generally surpass smaller FP16 baselines, yet they often struggle with instruction-following and hallucination detection; (2) FP8 consistently emerges as the most robust option across tasks, and AWQ tends to outperform GPTQ in weight-only quantization; (3) smaller models can suffer severe accuracy drops at 4-bit quantization, while 70B-scale models maintain stable performance; (4) notably, \textit{hard} tasks do not always experience the largest accuracy losses, indicating that quantization magnifies a model's inherent weaknesses rather than simply correlating with task difficulty; and (5) an LLM-based judge (MT-Bench) highlights significant performance declines in coding and STEM tasks, though reasoning may sometimes improve.
comment: Accepted in IJCAI 2025, 21 pages, 2 figure
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines NAACL 2025
Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.
comment: Best Theme Paper at NAACL 2025
Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Achieving both accuracy and diverse reasoning remains challenging for Large Language Models (LLMs) in complex domains like mathematics. A key bottleneck is evaluating intermediate reasoning steps to guide generation without costly human annotations. To address this, we first introduce a novel Process Reward Model (PRM) trained automatically using Monte Carlo Tree Search coupled with a similarity-based data augmentation technique, effectively capturing step-level reasoning quality. Leveraging this PRM, we then adapt Generative Flow Networks (GFlowNets) to operate at the reasoning step level. Unlike traditional reinforcement learning focused on maximizing a single reward, GFlowNets naturally sample diverse, high-quality solutions proportional to their rewards, as measured by our PRM. Empirical evaluation shows strong improvements in both accuracy and solution diversity on challenging mathematical benchmarks (e.g., +2.59% absolute accuracy on MATH Level 5 for Llama3.2-3B), with effective generalization to unseen datasets (+9.4% absolute on SAT MATH). Our work demonstrates the potential of PRM-guided, step-level GFlowNets for developing more robust and versatile mathematical reasoning in LLMs.
E2E-AFG: An End-to-End Model with Adaptive Filtering for Retrieval-Augmented Generation
Retrieval-augmented generation methods often neglect the quality of content retrieved from external knowledge bases, resulting in irrelevant information or potential misinformation that negatively affects the generation results of large language models. In this paper, we propose an end-to-end model with adaptive filtering for retrieval-augmented generation (E2E-AFG), which integrates answer existence judgment and text generation into a single end-to-end framework. This enables the model to focus more effectively on relevant content while reducing the influence of irrelevant information and generating accurate answers. We evaluate E2E-AFG on six representative knowledge-intensive language datasets, and the results show that it consistently outperforms baseline models across all tasks, demonstrating the effectiveness and robustness of the proposed approach.
comment: 13 pages, 3 figures, 5 tables
A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency
Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine
comment: Under review; 65 pages; 27 figures
HORAE: A Domain-Agnostic Language for Automated Service Regulation
Artificial intelligence is rapidly encroaching on the field of service regulation. However, existing AI-based regulation techniques are often tailored to specific application domains and thus are difficult to generalize in an automated manner. This paper presents Horae, a unified specification language for modeling (multimodal) regulation rules across a diverse set of domains. We showcase how Horae facilitates an intelligent service regulation pipeline by further exploiting a fine-tuned large language model named RuleGPT that automates the Horae modeling process, thereby yielding an end-to-end framework for fully automated intelligent service regulation. The feasibility and effectiveness of our framework are demonstrated over a benchmark of various real-world regulation domains. In particular, we show that our open-sourced, fine-tuned RuleGPT with 7B parameters suffices to outperform GPT-3.5 and perform on par with GPT-4o.
Optimizing LLMs for Resource-Constrained Environments: A Survey of Model Compression Techniques
Large Language Models (LLMs) have revolutionized many areas of artificial intelligence (AI), but their substantial resource requirements limit their deployment on mobile and edge devices. This survey paper provides a comprehensive overview of techniques for compressing LLMs to enable efficient inference in resource-constrained environments. We examine three primary approaches: Knowledge Distillation, Model Quantization, and Model Pruning. For each technique, we discuss the underlying principles, present different variants, and provide examples of successful applications. We also briefly discuss complementary techniques such as mixture-of-experts and early-exit strategies. Finally, we highlight promising future directions, aiming to provide a valuable resource for both researchers and practitioners seeking to optimize LLMs for edge deployment.
comment: Accepted to IEEE COMPSAC 2025
Lexicon3D: Probing Visual Foundation Models for Complex 3D Scene Understanding NeurIPS 2024
Complex 3D scene understanding has gained increasing attention, with scene encoding strategies playing a crucial role in this success. However, the optimal scene encoding strategies for various scenarios remain unclear, particularly compared to their image-based counterparts. To address this issue, we present a comprehensive study that probes various visual encoding models for 3D scene understanding, identifying the strengths and limitations of each model across different scenarios. Our evaluation spans seven vision foundation encoders, including image-based, video-based, and 3D foundation models. We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual Grounding, Segmentation, and Registration, each focusing on different aspects of scene understanding. Our evaluations yield key findings: DINOv2 demonstrates superior performance, video models excel in object-level tasks, diffusion models benefit geometric tasks, and language-pretrained models show unexpected limitations in language-related tasks. These insights challenge some conventional understandings, provide novel perspectives on leveraging visual foundation models, and highlight the need for more flexible encoder selection in future vision-language and scene-understanding tasks. Code: https://github.com/YunzeMan/Lexicon3D
comment: NeurIPS 2024. Project page: https://yunzeman.github.io/lexicon3d Github: https://github.com/YunzeMan/Lexicon3D
Quantifying Risk Propensities of Large Language Models: Ethical Focus and Bias Detection through Role-Play
As Large Language Models (LLMs) become more prevalent, concerns about their safety, ethics, and potential biases have risen. Systematically evaluating LLMs' risk decision-making tendencies and attitudes, particularly in the ethical domain, has become crucial. This study innovatively applies the Domain-Specific Risk-Taking (DOSPERT) scale from cognitive science to LLMs and proposes a novel Ethical Decision-Making Risk Attitude Scale (EDRAS) to assess LLMs' ethical risk attitudes in depth. We further propose a novel approach integrating risk scales and role-playing to quantitatively evaluate systematic biases in LLMs. Through systematic evaluation and analysis of multiple mainstream LLMs, we assessed the "risk personalities" of LLMs across multiple domains, with a particular focus on the ethical domain, and revealed and quantified LLMs' systematic biases towards different groups. This research helps understand LLMs' risk decision-making and ensure their safe and reliable application. Our approach provides a tool for identifying and mitigating biases, contributing to fairer and more trustworthy AI systems. The code and data are available.
comment: Accepted by CogSci 2025
Position: AI Evaluation Should Learn from How We Test Humans ICML 2025
As AI systems continue to evolve, their rigorous evaluation becomes crucial for their development and deployment. Researchers have constructed various large-scale benchmarks to determine their capabilities, typically against a gold-standard test set and report metrics averaged across all items. However, this static evaluation paradigm increasingly shows its limitations, including high evaluation costs, data contamination, and the impact of low-quality or erroneous items on evaluation reliability and efficiency. In this Position, drawing from human psychometrics, we discuss a paradigm shift from static evaluation methods to adaptive testing. This involves estimating the characteristics or value of each test item in the benchmark, and tailoring each model's evaluation instead of relying on a fixed test set. This paradigm provides robust ability estimation, uncovering the latent traits underlying a model's observed scores. This position paper analyze the current possibilities, prospects, and reasons for adopting psychometrics in AI evaluation. We argue that psychometrics, a theory originating in the 20th century for human assessment, could be a powerful solution to the challenges in today's AI evaluations.
comment: Accepted by ICML 2025
Drift: Decoding-time Personalized Alignments with Implicit User Preferences
Personalized alignments for individual users have been a long-standing goal in large language models (LLMs). We introduce Drift, a novel framework that personalizes LLMs at decoding time with implicit user preferences. Traditional Reinforcement Learning from Human Feedback (RLHF) requires thousands of annotated examples and expensive gradient updates. In contrast, Drift personalizes LLMs in a training-free manner, using only a few dozen examples to steer a frozen model through efficient preference modeling. Our approach models user preferences as a composition of predefined, interpretable attributes and aligns them at decoding time to enable personalized generation. Experiments on both a synthetic persona dataset (Perspective) and a real human-annotated dataset (PRISM) demonstrate that Drift significantly outperforms RLHF baselines while using only 50-100 examples. Our results and analysis show that Drift is both computationally efficient and interpretable.
comment: 19 pages, 6 figures
Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks
While Vision-Language Models (VLMs) have shown remarkable abilities in visual and language reasoning tasks, they invariably generate flawed responses. Self-correction that instructs models to refine their outputs presents a promising solution to this issue. Previous studies have mainly concentrated on Large Language Models (LLMs), while the self-correction abilities of VLMs, particularly concerning both visual and linguistic information, remain largely unexamined. This study investigates the self-correction capabilities of VLMs during both inference and fine-tuning stages. We introduce a Self-Correction Learning (SCL) approach that enables VLMs to learn from their self-generated self-correction data through Direct Preference Optimization (DPO) without relying on external feedback, facilitating self-improvement. Specifically, we collect preferred and disfavored samples based on the correctness of initial and refined responses, which are obtained by two-turn self-correction with VLMs during the inference stage. Experimental results demonstrate that although VLMs struggle to self-correct effectively during iterative inference without additional fine-tuning and external feedback, they can enhance their performance and avoid previous mistakes through preference fine-tuning when their self-generated self-correction data are categorized into preferred and disfavored samples. This study emphasizes that self-correction is not merely a refinement process; rather, it should enhance the reasoning abilities of models through additional training, enabling them to generate high-quality responses directly without further refinement.
Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models
The development of large language models (LLMs) has expanded to multi-modal systems capable of processing text, images, and speech within a unified framework. Training these models demands significantly larger datasets and computational resources compared to text-only LLMs. To address the scaling challenges, we introduce Mixture-of-Transformers (MoT), a sparse multi-modal transformer architecture that significantly reduces pretraining computational costs. MoT decouples non-embedding parameters of the model by modality -- including feed-forward networks, attention matrices, and layer normalization -- enabling modality-specific processing with global self-attention over the full input sequence. We evaluate MoT across multiple settings and model scales. In the Chameleon 7B setting (autoregressive text-and-image generation), MoT matches the dense baseline's performance using only 55.8\% of the FLOPs. When extended to include speech, MoT reaches speech performance comparable to the dense baseline with only 37.2\% of the FLOPs. In the Transfusion setting, where text and image are trained with different objectives, a 7B MoT model matches the image modality performance of the dense baseline with one third of the FLOPs, and a 760M MoT model outperforms a 1.4B dense baseline across key image generation metrics. System profiling further highlights MoT's practical benefits, achieving dense baseline image quality in 47.2\% of the wall-clock time and text quality in 75.6\% of the wall-clock time (measured on AWS p4de.24xlarge instances with NVIDIA A100 GPUs).
comment: Accepted to TMLR 2025; 48 pages
Unified Attacks to Large Language Model Watermarks: Spoofing and Scrubbing in Unauthorized Knowledge Distillation
Watermarking has emerged as a critical technique for combating misinformation and protecting intellectual property in large language models (LLMs). A recent discovery, termed watermark radioactivity, reveals that watermarks embedded in teacher models can be inherited by student models through knowledge distillation. On the positive side, this inheritance allows for the detection of unauthorized knowledge distillation by identifying watermark traces in student models. However, the robustness of watermarks against scrubbing attacks and their unforgeability in the face of spoofing attacks under unauthorized knowledge distillation remain largely unexplored. Existing watermark attack methods either assume access to model internals or fail to simultaneously support both scrubbing and spoofing attacks. In this work, we propose Contrastive Decoding-Guided Knowledge Distillation (CDG-KD), a unified framework that enables bidirectional attacks under unauthorized knowledge distillation. Our approach employs contrastive decoding to extract corrupted or amplified watermark texts via comparing outputs from the student model and weakly watermarked references, followed by bidirectional distillation to train new student models capable of watermark removal and watermark forgery, respectively. Extensive experiments show that CDG-KD effectively performs attacks while preserving the general performance of the distilled model. Our findings underscore critical need for developing watermarking schemes that are robust and unforgeable.
Safety Evaluation of DeepSeek Models in Chinese Contexts
Recently, the DeepSeek series of models, leveraging their exceptional reasoning capabilities and open-source strategy, is reshaping the global AI landscape. Despite these advantages, they exhibit significant safety deficiencies. Research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 has a 100\% attack success rate when processing harmful prompts. Additionally, multiple safety companies and research institutions have confirmed critical safety vulnerabilities in this model. As models demonstrating robust performance in Chinese and English, DeepSeek models require equally crucial safety assessments in both language contexts. However, current research has predominantly focused on safety evaluations in English environments, leaving a gap in comprehensive assessments of their safety performance in Chinese contexts. In response to this gap, this study introduces CHiSafetyBench, a Chinese-specific safety evaluation benchmark. This benchmark systematically evaluates the safety of DeepSeek-R1 and DeepSeek-V3 in Chinese contexts, revealing their performance across safety categories. The experimental results quantify the deficiencies of these two models in Chinese contexts, providing key insights for subsequent improvements. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmark and periodically update this report to provide more comprehensive and accurate assessment outcomes. Please refer to the latest version of the paper for the most recent evaluation results and conclusions.
comment: 12 pages, 2 tables, 7 figures
ValuesRAG: Enhancing Cultural Alignment Through Retrieval-Augmented Contextual Learning
Ensuring cultural values alignment in Large Language Models (LLMs) remains a critical challenge, as these models often embed Western-centric biases from their training data, leading to misrepresentations and fairness concerns in cross-cultural applications. Existing approaches such as role assignment and few-shot learning struggle to address these limitations effectively due to their reliance on pre-trained knowledge, limited scalability, and inability to capture nuanced cultural values. To address these issues, we propose ValuesRAG, a novel and effective framework that applies Retrieval-Augmented Generation (RAG) with In-Context Learning (ICL) to integrate cultural and demographic knowledge dynamically during text generation. Leveraging the World Values Survey (WVS) dataset, ValuesRAG first generates summaries of values for each individual. We subsequently curate several representative regional datasets to serve as test datasets and retrieve relevant summaries of values based on demographic features, followed by a reranking step to select the top-k relevant summaries. We evaluate ValuesRAG using 6 diverse regional datasets and show that it consistently outperforms baselines: including zero-shot, role-assignment, few-shot, and hybrid methods, both in main experiments and ablation settings. Notably, ValuesRAG achieves the best overall performance over prior methods, demonstrating its effectiveness in fostering culturally aligned and inclusive AI systems. Our findings underscore the potential of dynamic retrieval-based methods to bridge the gap between global LLM capabilities and localized cultural values.
comment: preprint
Scaling Synthetic Data Creation with 1,000,000,000 Personas
We propose a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. To fully exploit this methodology at scale, we introduce Persona Hub -- a collection of 1 billion diverse personas automatically curated from web data. These 1 billion personas (~13% of the world's total population), acting as distributed carriers of world knowledge, can tap into almost every perspective encapsulated within the LLM, thereby facilitating the creation of diverse synthetic data at scale for various scenarios. By showcasing Persona Hub's use cases in synthesizing high-quality mathematical and logical reasoning problems, instructions (i.e., user prompts), knowledge-rich texts, game NPCs and tools (functions) at scale, we demonstrate persona-driven data synthesis is versatile, scalable, flexible, and easy to use, potentially driving a paradigm shift in synthetic data creation and applications in practice, which may have a profound impact on LLM research and development.
comment: Work in progress
Human-Computer Interaction
GesPrompt: Leveraging Co-Speech Gestures to Augment LLM-Based Interaction in Virtual Reality
Large Language Model (LLM)-based copilots have shown great potential in Extended Reality (XR) applications. However, the user faces challenges when describing the 3D environments to the copilots due to the complexity of conveying spatial-temporal information through text or speech alone. To address this, we introduce GesPrompt, a multimodal XR interface that combines co-speech gestures with speech, allowing end-users to communicate more naturally and accurately with LLM-based copilots in XR environments. By incorporating gestures, GesPrompt extracts spatial-temporal reference from co-speech gestures, reducing the need for precise textual prompts and minimizing cognitive load for end-users. Our contributions include (1) a workflow to integrate gesture and speech input in the XR environment, (2) a prototype VR system that implements the workflow, and (3) a user study demonstrating its effectiveness in improving user communication in VR environments.
A Pain Assessment Framework based on multimodal data and Deep Machine Learning methods
From the original abstract: This thesis initially aims to study the pain assessment process from a clinical-theoretical perspective while exploring and examining existing automatic approaches. Building on this foundation, the primary objective of this Ph.D. project is to develop innovative computational methods for automatic pain assessment that achieve high performance and are applicable in real clinical settings. A primary goal is to thoroughly investigate and assess significant factors, including demographic elements that impact pain perception, as recognized in pain research, through a computational standpoint. Within the limits of the available data in this research area, our goal was to design, develop, propose, and offer automatic pain assessment pipelines for unimodal and multimodal configurations that are applicable to the specific requirements of different scenarios. The studies published in this Ph.D. thesis showcased the effectiveness of the proposed methods, achieving state-of-the-art results. Additionally, they paved the way for exploring new approaches in artificial intelligence, foundation models, and generative artificial intelligence.
Mapping User Trust in Vision Language Models: Research Landscape, Challenges, and Prospects
The rapid adoption of Vision Language Models (VLMs), pre-trained on large image-text and video-text datasets, calls for protecting and informing users about when to trust these systems. This survey reviews studies on trust dynamics in user-VLM interactions, through a multi-disciplinary taxonomy encompassing different cognitive science capabilities, collaboration modes, and agent behaviours. Literature insights and findings from a workshop with prospective VLM users inform preliminary requirements for future VLM trust studies.
Dukawalla: Voice Interfaces for Small Businesses in Africa
Small and medium sized businesses often struggle with data driven decision making do to a lack of advanced analytics tools, especially in African countries where they make up a majority of the workforce. Though many tools exist they are not designed to fit into the ways of working of SMB workers who are mobile first, have limited time to learn new workflows, and for whom social and business are tightly coupled. To address this, the Dukawalla prototype was created. This intelligent assistant bridges the gap between raw business data, and actionable insights by leveraging voice interaction and the power of generative AI. Dukawalla provides an intuitive way for business owners to interact with their data, aiding in informed decision making. This paper examines Dukawalla's deployment across SMBs in Nairobi, focusing on their experiences using this voice based assistant to streamline data collection and provide business insights
Uncertainty-Aware Scarf Plots
Multiple challenges emerge when analyzing eye-tracking data with areas of interest (AOIs) because recordings are subject to different sources of uncertainties. Previous work often presents gaze data without considering those inaccuracies in the data. To address this issue, we developed uncertainty-aware scarf plot visualizations that aim to make analysts aware of uncertainties with respect to the position-based mapping of gaze to AOIs and depth dependency in 3D scenes. Additionally, we also consider uncertainties in automatic AOI annotation. We showcase our approach in comparison to standard scarf plots in an augmented reality scenario.
comment: 2025 Symposium on Eye Tracking Research and Applications (ETRA '25)
Theatrical Language Processing: Exploring AI-Augmented Improvisational Acting and Scriptwriting with LLMs
The increasing convergence of artificial intelligence has opened new avenues, including its emerging role in enhancing creativity. It is reshaping traditional creative practices such as actor improvisation, which often struggles with predictable patterns, limited interaction, and a lack of engaging stimuli. In this paper, we introduce a new concept, Theatrical Language Processing (TLP), and an AI-driven creativity support tool, Scribble.ai, designed to augment actors' creative expression and spontaneity through interactive practice. We conducted a user study involving tests and interviews with fourteen participants. Our findings indicate that: (1) Actors expanded their creativity when faced with AI-produced irregular scenarios; (2) The AI's unpredictability heightened their problem-solving skills, specifically in interpreting unfamiliar situations; (3) However, AI often generated excessively detailed scripts, which limited interpretive freedom and hindered subtext exploration. Based on these findings, we discuss the new potential in enhancing creative expressions in film and theater studies through an AI-driven tool.
comment: ISEA2025 (30th International Symposium on Electronic/Emerging Art)
Fairness Perceptions in Regression-based Predictive Models
Regression-based predictive analytics used in modern kidney transplantation is known to inherit biases from training data. This leads to social discrimination and inefficient organ utilization, particularly in the context of a few social groups. Despite this concern, there is limited research on fairness in regression and its impact on organ utilization and placement. This paper introduces three novel divergence-based group fairness notions: (i) independence, (ii) separation, and (iii) sufficiency to assess the fairness of regression-based analytics tools. In addition, fairness preferences are investigated from crowd feedback, in order to identify a socially accepted group fairness criterion for evaluating these tools. A total of 85 participants were recruited from the Prolific crowdsourcing platform, and a Mixed-Logit discrete choice model was used to model fairness feedback and estimate social fairness preferences. The findings clearly depict a strong preference towards the separation and sufficiency fairness notions, and that the predictive analytics is deemed fair with respect to gender and race groups, but unfair in terms of age groups.
A Multi-Agent AI Framework for Immersive Audiobook Production through Spatial Audio and Neural Narration
This research introduces an innovative AI-driven multi-agent framework specifically designed for creating immersive audiobooks. Leveraging neural text-to-speech synthesis with FastSpeech 2 and VALL-E for expressive narration and character-specific voices, the framework employs advanced language models to automatically interpret textual narratives and generate realistic spatial audio effects. These sound effects are dynamically synchronized with the storyline through sophisticated temporal integration methods, including Dynamic Time Warping (DTW) and recurrent neural networks (RNNs). Diffusion-based generative models combined with higher-order ambisonics (HOA) and scattering delay networks (SDN) enable highly realistic 3D soundscapes, substantially enhancing listener immersion and narrative realism. This technology significantly advances audiobook applications, providing richer experiences for educational content, storytelling platforms, and accessibility solutions for visually impaired audiences. Future work will address personalization, ethical management of synthesized voices, and integration with multi-sensory platforms.
From First Draft to Final Insight: A Multi-Agent Approach for Feedback Generation
Producing large volumes of high-quality, timely feedback poses significant challenges to instructors. To address this issue, automation technologies-particularly Large Language Models (LLMs)-show great potential. However, current LLM-based research still shows room for improvement in terms of feedback quality. Our study proposed a multi-agent approach performing "generation, evaluation, and regeneration" (G-E-RG) to further enhance feedback quality. In the first-generation phase, six methods were adopted, combining three feedback theoretical frameworks and two prompt methods: zero-shot and retrieval-augmented generation with chain-of-thought (RAG_CoT). The results indicated that, compared to first-round feedback, G-E-RG significantly improved final feedback across six methods for most dimensions. Specifically:(1) Evaluation accuracy for six methods increased by 3.36% to 12.98% (p<0.001); (2) The proportion of feedback containing four effective components rose from an average of 27.72% to an average of 98.49% among six methods, sub-dimensions of providing critiques, highlighting strengths, encouraging agency, and cultivating dialogue also showed great enhancement (p<0.001); (3) There was a significant improvement in most of the feature values (p<0.001), although some sub-dimensions (e.g., strengthening the teacher-student relationship) still require further enhancement; (4) The simplicity of feedback was effectively enhanced (p<0.001) for three methods.
comment: 14 pages, to be published at the 26th International Conference on Artificial Intelligence in Education (AIED '25)
A Dataset and Toolkit for Multiparameter Cardiovascular Physiology Sensing on Rings
Smart rings offer a convenient way to continuously and unobtrusively monitor cardiovascular physiological signals. However, a gap remains between the ring hardware and reliable methods for estimating cardiovascular parameters, partly due to the lack of publicly available datasets and standardized analysis tools. In this work, we present $\tau$-Ring, the first open-source ring-based dataset designed for cardiovascular physiological sensing. The dataset comprises photoplethysmography signals (infrared and red channels) and 3-axis accelerometer data collected from two rings (reflective and transmissive optical paths), with 28.21 hours of raw data from 34 subjects across seven activities. $\tau$-Ring encompasses both stationary and motion scenarios, as well as stimulus-evoked abnormal physiological states, annotated with four ground-truth labels: heart rate, respiratory rate, oxygen saturation, and blood pressure. Using our proposed RingTool toolkit, we evaluated three widely-used physics-based methods and four cutting-edge deep learning approaches. Our results show superior performance compared to commercial rings, achieving best MAE values of 5.18 BPM for heart rate, 2.98 BPM for respiratory rate, 3.22\% for oxygen saturation, and 13.33/7.56 mmHg for systolic/diastolic blood pressure estimation. The open-sourced dataset and toolkit aim to foster further research and community-driven advances in ring-based cardiovascular health sensing.
Interact with me: Joint Egocentric Forecasting of Intent to Interact, Attitude and Social Actions ICME
For efficient human-agent interaction, an agent should proactively recognize their target user and prepare for upcoming interactions. We formulate this challenging problem as the novel task of jointly forecasting a person's intent to interact with the agent, their attitude towards the agent and the action they will perform, from the agent's (egocentric) perspective. So we propose \emph{SocialEgoNet} - a graph-based spatiotemporal framework that exploits task dependencies through a hierarchical multitask learning approach. SocialEgoNet uses whole-body skeletons (keypoints from face, hands and body) extracted from only 1 second of video input for high inference speed. For evaluation, we augment an existing egocentric human-agent interaction dataset with new class labels and bounding box annotations. Extensive experiments on this augmented dataset, named JPL-Social, demonstrate \emph{real-time} inference and superior performance (average accuracy across all tasks: 83.15\%) of our model outperforming several competitive baselines. The additional annotations and code will be available upon acceptance.
comment: Accepted to ICME, 2025. Camera-ready Version
Facilitating Instructors-LLM Collaboration for Problem Design in Introductory Programming Classrooms
Advancements in Large Language Models (LLMs), such as ChatGPT, offer significant opportunities to enhance instructional support in introductory programming courses. While extensive research has explored the effectiveness of LLMs in supporting student learning, limited studies have examined how these models can assist instructors in designing instructional activities. This work investigates how instructors' expertise in effective activity design can be integrated with LLMs' ability to generate novel and targeted programming problems, facilitating more effective activity creation for programming classrooms. To achieve this, we employ a participatory design approach to develop an instructor-authoring tool that incorporates LLM support, fostering collaboration between instructors and AI in generating programming exercises. This tool also allows instructors to specify common student mistakes and misconceptions, which informs the adaptive feedback generation process. We conduct case studies with three instructors, analyzing how they use our system to design programming problems for their introductory courses. Through these case studies, we assess instructors' perceptions of the usefulness and limitations of LLMs in authoring problem statements for instructional purposes. Additionally, we compare the efficiency, quality, effectiveness, and coverage of designed activities when instructors create problems with and without structured LLM prompting guidelines. Our findings provide insights into the potential of LLMs in enhancing instructor workflows and improving programming education and provide guidelines for designing effective AI-assisted problem-authoring interfaces.
comment: Accepted at CHI 2025 Workshop on Augmented Educators and AI: Shaping the Future of Human and AI Cooperation in Learning
LIVS: A Pluralistic Alignment Dataset for Inclusive Public Spaces ICML 2025
We introduce the Local Intersectional Visual Spaces (LIVS) dataset, a benchmark for multi-criteria alignment, developed through a two-year participatory process with 30 community organizations to support the pluralistic alignment of text-to-image (T2I) models in inclusive urban planning. The dataset encodes 37,710 pairwise comparisons across 13,462 images, structured along six criteria - Accessibility, Safety, Comfort, Invitingness, Inclusivity, and Diversity - derived from 634 community-defined concepts. Using Direct Preference Optimization (DPO), we fine-tune Stable Diffusion XL to reflect multi-criteria spatial preferences and evaluate the LIVS dataset and the fine-tuned model through four case studies: (1) DPO increases alignment with annotated preferences, particularly when annotation volume is high; (2) preference patterns vary across participant identities, underscoring the need for intersectional data; (3) human-authored prompts generate more distinctive visual outputs than LLM-generated ones, influencing annotation decisiveness; and (4) intersectional groups assign systematically different ratings across criteria, revealing the limitations of single-objective alignment. While DPO improves alignment under specific conditions, the prevalence of neutral ratings indicates that community values are heterogeneous and often ambiguous. LIVS provides a benchmark for developing T2I models that incorporate local, stakeholder-driven preferences, offering a foundation for context-aware alignment in spatial design.
comment: ICML 2025
Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies
Cities are not monolithic; they are arenas of negotiation among groups that hold varying needs, values, and experiences. Conventional methods of urban assessment -- from standardized surveys to AI-driven evaluations -- frequently rely on a single consensus metric (e.g., an average measure of inclusivity or safety). Although such aggregations simplify design decisions, they risk obscuring the distinct perspectives of marginalized populations. In this paper, we present findings from a community-centered study in Montreal involving 35 residents with diverse demographic and social identities, particularly wheelchair users, seniors, and LGBTQIA2+ individuals. Using rating and ranking tasks on 20 urban sites, we observe that disagreements are systematic rather than random, reflecting structural inequalities, differing cultural values, and personal experiences of safety and accessibility. Based on these empirical insights, we propose negotiative alignment, an AI framework that treats disagreement as an essential input to be preserved, analyzed, and addressed. Negotiative alignment builds on pluralistic models by dynamically updating stakeholder preferences through multi-agent negotiation mechanisms, ensuring no single perspective is marginalized. We outline how this framework can be integrated into urban analytics -- and other decision-making contexts -- to retain minority viewpoints, adapt to changing stakeholder concerns, and enhance fairness and accountability. The study demonstrates that preserving and engaging with disagreement, rather than striving for an artificial consensus, can produce more equitable and responsive AI-driven outcomes in urban design.
comment: 16 pages, 13 figures
The Right to AI ICML 2025
This paper proposes a Right to AI, which asserts that individuals and communities should meaningfully participate in the development and governance of the AI systems that shape their lives. Motivated by the increasing deployment of AI in critical domains and inspired by Henri Lefebvre's concept of the Right to the City, we reconceptualize AI as a societal infrastructure, rather than merely a product of expert design. In this paper, we critically evaluate how generative agents, large-scale data extraction, and diverse cultural values bring new complexities to AI oversight. The paper proposes that grassroots participatory methodologies can mitigate biased outcomes and enhance social responsiveness. It asserts that data is socially produced and should be managed and owned collectively. Drawing on Sherry Arnstein's Ladder of Citizen Participation and analyzing nine case studies, the paper develops a four-tier model for the Right to AI that situates the current paradigm and envisions an aspirational future. It proposes recommendations for inclusive data ownership, transparent design processes, and stakeholder-driven oversight. We also discuss market-led and state-centric alternatives and argue that participatory approaches offer a better balance between technical efficiency and democratic legitimacy.
comment: ICML 2025
From Perception to Decision: Assessing the Role of Chart Types Affordances in High-Level Decision Tasks
Visualization design influences how people perceive data patterns, yet most research focuses on low-level analytic tasks, such as finding correlations. The extent to which these perceptual affordances translate to high-level decision-making in the real world remains underexplored. Through a case study of academic mentorship selection using bar charts and pie charts, we investigated whether chart types differentially influence how students evaluate faculty research profiles. Our crowdsourced experiment revealed only minimal differences in decision outcomes between chart types, suggesting that perceptual affordances established in controlled analytical tasks may not directly translate to high-level decision scenarios. These findings emphasize the importance of evaluating visualizations within real-world contexts and highlight the need to distinguish between perceptual and decision affordances when developing visualization guidelines.
Computer Vision and Pattern Recognition
EchoInk-R1: Exploring Audio-Visual Reasoning in Multimodal LLMs via Reinforcement Learning
Multimodal large language models (MLLMs) have advanced perception across text, vision, and audio, yet they often struggle with structured cross-modal reasoning, particularly when integrating audio and visual signals. We introduce EchoInk-R1, a reinforcement learning framework that enhances such reasoning in MLLMs. Built upon the Qwen2.5-Omni-7B foundation and optimized with Group Relative Policy Optimization (GRPO), EchoInk-R1 tackles multiple-choice question answering over synchronized audio-image pairs. To enable this, we curate AVQA-R1-6K, a dataset pairing such audio-image inputs with multiple-choice questions derived from OmniInstruct-v1. EchoInk-R1-7B achieves 85.77% accuracy on the validation set, outperforming the base model, which scores 80.53%, using only 562 reinforcement learning steps. Beyond accuracy, EchoInk-R1 demonstrates reflective reasoning by revisiting initial interpretations and refining responses when facing ambiguous multimodal inputs. These results suggest that lightweight reinforcement learning fine-tuning enhances cross-modal reasoning in MLLMs. EchoInk-R1 is the first framework to unify audio, visual, and textual modalities for general open-world reasoning via reinforcement learning. Code and data are publicly released to facilitate further research.
PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer SIGGRAPH 2025
Shape primitive abstraction, which decomposes complex 3D shapes into simple geometric elements, plays a crucial role in human visual cognition and has broad applications in computer vision and graphics. While recent advances in 3D content generation have shown remarkable progress, existing primitive abstraction methods either rely on geometric optimization with limited semantic understanding or learn from small-scale, category-specific datasets, struggling to generalize across diverse shape categories. We present PrimitiveAnything, a novel framework that reformulates shape primitive abstraction as a primitive assembly generation task. PrimitiveAnything includes a shape-conditioned primitive transformer for auto-regressive generation and an ambiguity-free parameterization scheme to represent multiple types of primitives in a unified manner. The proposed framework directly learns the process of primitive assembly from large-scale human-crafted abstractions, enabling it to capture how humans decompose complex shapes into primitive elements. Through extensive experiments, we demonstrate that PrimitiveAnything can generate high-quality primitive assemblies that better align with human perception while maintaining geometric fidelity across diverse shape categories. It benefits various 3D applications and shows potential for enabling primitive-based user-generated content (UGC) in games. Project page: https://primitiveanything.github.io
comment: SIGGRAPH 2025. 14 pages, 15 figures
On Path to Multimodal Generalist: General-Level and General-Bench ICML'25
The Multimodal Large Language Model (MLLM) is currently experiencing rapid growth, driven by the advanced capabilities of LLMs. Unlike earlier specialists, existing MLLMs are evolving towards a Multimodal Generalist paradigm. Initially limited to understanding multiple modalities, these models have advanced to not only comprehend but also generate across modalities. Their capabilities have expanded from coarse-grained to fine-grained multimodal understanding and from supporting limited modalities to arbitrary ones. While many benchmarks exist to assess MLLMs, a critical question arises: Can we simply assume that higher performance across tasks indicates a stronger MLLM capability, bringing us closer to human-level AI? We argue that the answer is not as straightforward as it seems. This project introduces General-Level, an evaluation framework that defines 5-scale levels of MLLM performance and generality, offering a methodology to compare MLLMs and gauge the progress of existing systems towards more robust multimodal generalists and, ultimately, towards AGI. At the core of the framework is the concept of Synergy, which measures whether models maintain consistent capabilities across comprehension and generation, and across multiple modalities. To support this evaluation, we present General-Bench, which encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over 700 tasks and 325,800 instances. The evaluation results that involve over 100 existing state-of-the-art MLLMs uncover the capability rankings of generalists, highlighting the challenges in reaching genuine AI. We expect this project to pave the way for future research on next-generation multimodal foundation models, providing a robust infrastructure to accelerate the realization of AGI. Project page: https://generalist.top/
comment: ICML'25, 305 pages, 115 tables, 177 figures, project page: https://generalist.top/
Merging and Disentangling Views in Visual Reinforcement Learning for Robotic Manipulation
Vision is well-known for its use in manipulation, especially using visual servoing. To make it robust, multiple cameras are needed to expand the field of view. That is computationally challenging. Merging multiple views and using Q-learning allows the design of more effective representations and optimization of sample efficiency. Such a solution might be expensive to deploy. To mitigate this, we introduce a Merge And Disentanglement (MAD) algorithm that efficiently merges views to increase sample efficiency while augmenting with single-view features to allow lightweight deployment and ensure robust policies. We demonstrate the efficiency and robustness of our approach using Meta-World and ManiSkill3. For project website and code, see https://aalmuzairee.github.io/mad
comment: For project website and code, see https://aalmuzairee.github.io/mad
Person Recognition at Altitude and Range: Fusion of Face, Body Shape and Gait
We address the problem of whole-body person recognition in unconstrained environments. This problem arises in surveillance scenarios such as those in the IARPA Biometric Recognition and Identification at Altitude and Range (BRIAR) program, where biometric data is captured at long standoff distances, elevated viewing angles, and under adverse atmospheric conditions (e.g., turbulence and high wind velocity). To this end, we propose FarSight, a unified end-to-end system for person recognition that integrates complementary biometric cues across face, gait, and body shape modalities. FarSight incorporates novel algorithms across four core modules: multi-subject detection and tracking, recognition-aware video restoration, modality-specific biometric feature encoding, and quality-guided multi-modal fusion. These components are designed to work cohesively under degraded image conditions, large pose and scale variations, and cross-domain gaps. Extensive experiments on the BRIAR dataset, one of the most comprehensive benchmarks for long-range, multi-modal biometric recognition, demonstrate the effectiveness of FarSight. Compared to our preliminary system, this system achieves a 34.1% absolute gain in 1:1 verification accuracy (TAR@0.1% FAR), a 17.8% increase in closed-set identification (Rank-20), and a 34.3% reduction in open-set identification errors (FNIR@1% FPIR). Furthermore, FarSight was evaluated in the 2025 NIST RTE Face in Video Evaluation (FIVE), which conducts standardized face recognition testing on the BRIAR dataset. These results establish FarSight as a state-of-the-art solution for operational biometric recognition in challenging real-world conditions.
comment: 18 pages, 12 figures
FastMap: Revisiting Dense and Scalable Structure from Motion
We propose FastMap, a new global structure from motion method focused on speed and simplicity. Previous methods like COLMAP and GLOMAP are able to estimate high-precision camera poses, but suffer from poor scalability when the number of matched keypoint pairs becomes large. We identify two key factors leading to this problem: poor parallelization and computationally expensive optimization steps. To overcome these issues, we design an SfM framework that relies entirely on GPU-friendly operations, making it easily parallelizable. Moreover, each optimization step runs in time linear to the number of image pairs, independent of keypoint pairs or 3D points. Through extensive experiments, we show that FastMap is one to two orders of magnitude faster than COLMAP and GLOMAP on large-scale scenes with comparable pose accuracy.
comment: Project webpage: https://jiahao.ai/fastmap
OpenVision: A Fully-Open, Cost-Effective Family of Advanced Vision Encoders for Multimodal Learning
OpenAI's CLIP, released in early 2021, have long been the go-to choice of vision encoder for building multimodal foundation models. Although recent alternatives such as SigLIP have begun to challenge this status quo, to our knowledge none are fully open: their training data remains proprietary and/or their training recipes are not released. This paper fills this gap with OpenVision, a fully-open, cost-effective family of vision encoders that match or surpass the performance of OpenAI's CLIP when integrated into multimodal frameworks like LLaVA. OpenVision builds on existing works -- e.g., CLIPS for training framework and Recap-DataComp-1B for training data -- while revealing multiple key insights in enhancing encoder quality and showcasing practical benefits in advancing multimodal models. By releasing vision encoders spanning from 5.9M to 632.1M parameters, OpenVision offers practitioners a flexible trade-off between capacity and efficiency in building multimodal models: larger models deliver enhanced multimodal performance, while smaller versions enable lightweight, edge-ready multimodal deployments.
Dynamic Network Flow Optimization for Task Scheduling in PTZ Camera Surveillance Systems
This paper presents a novel approach for optimizing the scheduling and control of Pan-Tilt-Zoom (PTZ) cameras in dynamic surveillance environments. The proposed method integrates Kalman filters for motion prediction with a dynamic network flow model to enhance real-time video capture efficiency. By assigning Kalman filters to tracked objects, the system predicts future locations, enabling precise scheduling of camera tasks. This prediction-driven approach is formulated as a network flow optimization, ensuring scalability and adaptability to various surveillance scenarios. To further reduce redundant monitoring, we also incorporate group-tracking nodes, allowing multiple objects to be captured within a single camera focus when appropriate. In addition, a value-based system is introduced to prioritize camera actions, focusing on the timely capture of critical events. By adjusting the decay rates of these values over time, the system ensures prompt responses to tasks with imminent deadlines. Extensive simulations demonstrate that this approach improves coverage, reduces average wait times, and minimizes missed events compared to traditional master-slave camera systems. Overall, our method significantly enhances the efficiency, scalability, and effectiveness of surveillance systems, particularly in dynamic and crowded environments.
comment: 7 pages, 3 Figures, Accepted at AIRC 2025
MonoCoP: Chain-of-Prediction for Monocular 3D Object Detection
Accurately predicting 3D attributes is crucial for monocular 3D object detection (Mono3D), with depth estimation posing the greatest challenge due to the inherent ambiguity in mapping 2D images to 3D space. While existing methods leverage multiple depth cues (e.g., estimating depth uncertainty, modeling depth error) to improve depth accuracy, they overlook that accurate depth prediction requires conditioning on other 3D attributes, as these attributes are intrinsically inter-correlated through the 3D to 2D projection, which ultimately limits overall accuracy and stability. Inspired by Chain-of-Thought (CoT) in large language models (LLMs), this paper proposes MonoCoP, which leverages a Chain-of-Prediction (CoP) to predict attributes sequentially and conditionally via three key designs. First, it employs a lightweight AttributeNet (AN) for each 3D attribute to learn attribute-specific features. Next, MonoCoP constructs an explicit chain to propagate these learned features from one attribute to the next. Finally, MonoCoP uses a residual connection to aggregate features for each attribute along the chain, ensuring that later attribute predictions are conditioned on all previously processed attributes without forgetting the features of earlier ones. Experimental results show that our MonoCoP achieves state-of-the-art (SoTA) performance on the KITTI leaderboard without requiring additional data and further surpasses existing methods on the Waymo and nuScenes frontal datasets.
TetWeave: Isosurface Extraction using On-The-Fly Delaunay Tetrahedral Grids for Gradient-Based Mesh Optimization SIGGRAPH 2025
We introduce TetWeave, a novel isosurface representation for gradient-based mesh optimization that jointly optimizes the placement of a tetrahedral grid used for Marching Tetrahedra and a novel directional signed distance at each point. TetWeave constructs tetrahedral grids on-the-fly via Delaunay triangulation, enabling increased flexibility compared to predefined grids. The extracted meshes are guaranteed to be watertight, two-manifold and intersection-free. The flexibility of TetWeave enables a resampling strategy that places new points where reconstruction error is high and allows to encourage mesh fairness without compromising on reconstruction error. This leads to high-quality, adaptive meshes that require minimal memory usage and few parameters to optimize. Consequently, TetWeave exhibits near-linear memory scaling relative to the vertex count of the output mesh - a substantial improvement over predefined grids. We demonstrate the applicability of TetWeave to a broad range of challenging tasks in computer graphics and vision, such as multi-view 3D reconstruction, mesh compression and geometric texture generation.
comment: ACM Trans. Graph. 44, 4. SIGGRAPH 2025. 19 pages, 21 figures
Active Sampling for MRI-based Sequential Decision Making
Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling
comment: Under Review
Componential Prompt-Knowledge Alignment for Domain Incremental Learning ICML2025
Domain Incremental Learning (DIL) aims to learn from non-stationary data streams across domains while retaining and utilizing past knowledge. Although prompt-based methods effectively store multi-domain knowledge in prompt parameters and obtain advanced performance through cross-domain prompt fusion, we reveal an intrinsic limitation: component-wise misalignment between domain-specific prompts leads to conflicting knowledge integration and degraded predictions. This arises from the random positioning of knowledge components within prompts, where irrelevant component fusion introduces interference.To address this, we propose Componential Prompt-Knowledge Alignment (KA-Prompt), a novel prompt-based DIL method that introduces component-aware prompt-knowledge alignment during training, significantly improving both the learning and inference capacity of the model. KA-Prompt operates in two phases: (1) Initial Componential Structure Configuring, where a set of old prompts containing knowledge relevant to the new domain are mined via greedy search, which is then exploited to initialize new prompts to achieve reusable knowledge transfer and establish intrinsic alignment between new and old prompts. (2) Online Alignment Preservation, which dynamically identifies the target old prompts and applies adaptive componential consistency constraints as new prompts evolve. Extensive experiments on DIL benchmarks demonstrate the effectiveness of our KA-Prompt. Our source code is available at https://github.com/zhoujiahuan1991/ICML2025-KA-Prompt
comment: Accpted by ICML2025
Registration of 3D Point Sets Using Exponential-based Similarity Matrix
Point cloud registration is a fundamental problem in computer vision and robotics, involving the alignment of 3D point sets captured from varying viewpoints using depth sensors such as LiDAR or structured light. In modern robotic systems, especially those focused on mapping, it is essential to merge multiple views of the same environment accurately. However, state-of-the-art registration techniques often struggle when large rotational differences exist between point sets or when the data is significantly corrupted by sensor noise. These challenges can lead to misalignments and, consequently, to inaccurate or distorted 3D reconstructions. In this work, we address both these limitations by proposing a robust modification to the classic Iterative Closest Point (ICP) algorithm. Our method, termed Exponential Similarity Matrix ICP (ESM-ICP), integrates a Gaussian-inspired exponential weighting scheme to construct a similarity matrix that dynamically adapts across iterations. This matrix facilitates improved estimation of both rotational and translational components during alignment. We demonstrate the robustness of ESM-ICP in two challenging scenarios: (i) large rotational discrepancies between the source and target point clouds, and (ii) data corrupted by non-Gaussian noise. Our results show that ESM-ICP outperforms traditional geometric registration techniques as well as several recent learning-based methods. To encourage reproducibility and community engagement, our full implementation is made publicly available on GitHub. https://github.com/aralab-unr/ESM_ICP
RAFT: Robust Augmentation of FeaTures for Image Segmentation
Image segmentation is a powerful computer vision technique for scene understanding. However, real-world deployment is stymied by the need for high-quality, meticulously labeled datasets. Synthetic data provides high-quality labels while reducing the need for manual data collection and annotation. However, deep neural networks trained on synthetic data often face the Syn2Real problem, leading to poor performance in real-world deployments. To mitigate the aforementioned gap in image segmentation, we propose RAFT, a novel framework for adapting image segmentation models using minimal labeled real-world data through data and feature augmentations, as well as active learning. To validate RAFT, we perform experiments on the synthetic-to-real "SYNTHIA->Cityscapes" and "GTAV->Cityscapes" benchmarks. We managed to surpass the previous state of the art, HALO. SYNTHIA->Cityscapes experiences an improvement in mIoU* upon domain adaptation of 2.1%/79.9%, and GTAV->Cityscapes experiences a 0.4%/78.2% improvement in mIoU. Furthermore, we test our approach on the real-to-real benchmark of "Cityscapes->ACDC", and again surpass HALO, with a gain in mIoU upon adaptation of 1.3%/73.2%. Finally, we examine the effect of the allocated annotation budget and various components of RAFT upon the final transfer mIoU.
DFVO: Learning Darkness-free Visible and Infrared Image Disentanglement and Fusion All at Once
Visible and infrared image fusion is one of the most crucial tasks in the field of image fusion, aiming to generate fused images with clear structural information and high-quality texture features for high-level vision tasks. However, when faced with severe illumination degradation in visible images, the fusion results of existing image fusion methods often exhibit blurry and dim visual effects, posing major challenges for autonomous driving. To this end, a Darkness-Free network is proposed to handle Visible and infrared image disentanglement and fusion all at Once (DFVO), which employs a cascaded multi-task approach to replace the traditional two-stage cascaded training (enhancement and fusion), addressing the issue of information entropy loss caused by hierarchical data transmission. Specifically, we construct a latent-common feature extractor (LCFE) to obtain latent features for the cascaded tasks strategy. Firstly, a details-extraction module (DEM) is devised to acquire high-frequency semantic information. Secondly, we design a hyper cross-attention module (HCAM) to extract low-frequency information and preserve texture features from source images. Finally, a relevant loss function is designed to guide the holistic network learning, thereby achieving better image fusion. Extensive experiments demonstrate that our proposed approach outperforms state-of-the-art alternatives in terms of qualitative and quantitative evaluations. Particularly, DFVO can generate clearer, more informative, and more evenly illuminated fusion results in the dark environments, achieving best performance on the LLVIP dataset with 63.258 dB PSNR and 0.724 CC, providing more effective information for high-level vision tasks. Our code is publicly accessible at https://github.com/DaVin-Qi530/DFVO.
Edge-GPU Based Face Tracking for Face Detection and Recognition Acceleration
Cost-effective machine vision systems dedicated to real-time and accurate face detection and recognition in public places are crucial for many modern applications. However, despite their high performance, which could be reached using specialized edge or cloud AI hardware accelerators, there is still room for improvement in throughput and power consumption. This paper aims to suggest a combined hardware-software approach that optimizes face detection and recognition systems on one of the latest edge GPUs, namely NVIDIA Jetson AGX Orin. First, it leverages the simultaneous usage of all its hardware engines to improve processing time. This offers an improvement over previous works where these tasks were mainly allocated automatically and exclusively to the CPU or, to a higher extent, to the GPU core. Additionally, the paper suggests integrating a face tracker module to avoid redundantly running the face recognition algorithm for every frame but only when a new face appears in the scene. The results of extended experiments suggest that simultaneous usage of all the hardware engines that are available in the Orin GPU and tracker integration into the pipeline yield an impressive throughput of 290 FPS (frames per second) on 1920 x 1080 input size frames containing in average of 6 faces/frame. Additionally, a substantial saving of power consumption of around 800 mW was achieved when compared to running the task on the CPU/GPU engines only and without integrating a tracker into the Orin GPU\'92s pipeline. This hardware-codesign approach can pave the way to design high-performance machine vision systems at the edge, critically needed in video monitoring in public places where several nearby cameras are usually deployed for a same scene.
comment: 10 pages, 12 figures
Text2CT: Towards 3D CT Volume Generation from Free-text Descriptions Using Diffusion Model
Generating 3D CT volumes from descriptive free-text inputs presents a transformative opportunity in diagnostics and research. In this paper, we introduce Text2CT, a novel approach for synthesizing 3D CT volumes from textual descriptions using the diffusion model. Unlike previous methods that rely on fixed-format text input, Text2CT employs a novel prompt formulation that enables generation from diverse, free-text descriptions. The proposed framework encodes medical text into latent representations and decodes them into high-resolution 3D CT scans, effectively bridging the gap between semantic text inputs and detailed volumetric representations in a unified 3D framework. Our method demonstrates superior performance in preserving anatomical fidelity and capturing intricate structures as described in the input text. Extensive evaluations show that our approach achieves state-of-the-art results, offering promising potential applications in diagnostics, and data augmentation.
HunyuanCustom: A Multimodal-Driven Architecture for Customized Video Generation
Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation. All the code and models are available at https://hunyuancustom.github.io.
Leveraging Simultaneous Usage of Edge GPU Hardware Engines for Video Face Detection and Recognition
Video face detection and recognition in public places at the edge is required in several applications, such as security reinforcement and contactless access to authorized venues. This paper aims to maximize the simultaneous usage of hardware engines available in edge GPUs nowadays by leveraging the concurrency and pipelining of tasks required for face detection and recognition. This also includes the video decoding task, which is required in most face monitoring applications as the video streams are usually carried via Gbps Ethernet network. This constitutes an improvement over previous works where the tasks are usually allocated to a single engine due to the lack of a unified and automated framework that simultaneously explores all hardware engines. In addition, previously, the input faces were usually embedded in still images or within raw video streams that overlook the burst delay caused by the decoding stage. The results on real-life video streams suggest that simultaneously using all the hardware engines available in the recent NVIDIA edge Orin GPU, higher throughput, and a slight saving of power consumption of around 300 mW, accounting for around 5%, have been achieved while satisfying the real-time performance constraint. The performance gets even higher by considering several video streams simultaneously. Further performance improvement could have been obtained if the number of shuffle layers that were created by the tensor RT framework for the face recognition task was lower. Thus, the paper suggests some hardware improvements to the existing edge GPU processors to enhance their performance even higher.
comment: 10 pages, 11 figures
Defining and Quantifying Creative Behavior in Popular Image Generators
Creativity of generative AI models has been a subject of scientific debate in the last years, without a conclusive answer. In this paper, we study creativity from a practical perspective and introduce quantitative measures that help the user to choose a suitable AI model for a given task. We evaluated our measures on a number of popular image-to-image generation models, and the results of this suggest that our measures conform to human intuition.
"I Can See Forever!": Evaluating Real-time VideoLLMs for Assisting Individuals with Visual Impairments
The visually impaired population, especially the severely visually impaired, is currently large in scale, and daily activities pose significant challenges for them. Although many studies use large language and vision-language models to assist the blind, most focus on static content and fail to meet real-time perception needs in dynamic and complex environments, such as daily activities. To provide them with more effective intelligent assistance, it is imperative to incorporate advanced visual understanding technologies. Although real-time vision and speech interaction VideoLLMs demonstrate strong real-time visual understanding, no prior work has systematically evaluated their effectiveness in assisting visually impaired individuals. In this work, we conduct the first such evaluation. First, we construct a benchmark dataset (VisAssistDaily), covering three categories of assistive tasks for visually impaired individuals: Basic Skills, Home Life Tasks, and Social Life Tasks. The results show that GPT-4o achieves the highest task success rate. Next, we conduct a user study to evaluate the models in both closed-world and open-world scenarios, further exploring the practical challenges of applying VideoLLMs in assistive contexts. One key issue we identify is the difficulty current models face in perceiving potential hazards in dynamic environments. To address this, we build an environment-awareness dataset named SafeVid and introduce a polling mechanism that enables the model to proactively detect environmental risks. We hope this work provides valuable insights and inspiration for future research in this field.
comment: 12 pages, 6 figures
Efficient Flow Matching using Latent Variables
Flow matching models have shown great potential in image generation tasks among probabilistic generative models. Building upon the ideas of continuous normalizing flows, flow matching models generalize the transport path of the diffusion models from a simple prior distribution to the data. Most flow matching models in the literature do not explicitly model the underlying structure/manifold in the target data when learning the flow from a simple source distribution like the standard Gaussian. This leads to inefficient learning, especially for many high-dimensional real-world datasets, which often reside in a low-dimensional manifold. Existing strategies of incorporating manifolds, including data with underlying multi-modal distribution, often require expensive training and hence frequently lead to suboptimal performance. To this end, we present \texttt{Latent-CFM}, which provides simplified training/inference strategies to incorporate multi-modal data structures using pretrained deep latent variable models. Through experiments on multi-modal synthetic data and widely used image benchmark datasets, we show that \texttt{Latent-CFM} exhibits improved generation quality with significantly less training ($\sim 50\%$ less in some cases) and computation than state-of-the-art flow matching models. Using a 2d Darcy flow dataset, we demonstrate that our approach generates more physically accurate samples than competitive approaches. In addition, through latent space analysis, we demonstrate that our approach can be used for conditional image generation conditioned on latent features.
FA-KPConv: Introducing Euclidean Symmetries to KPConv via Frame Averaging IJCNN 2025
We present Frame-Averaging Kernel-Point Convolution (FA-KPConv), a neural network architecture built on top of the well-known KPConv, a widely adopted backbone for 3D point cloud analysis. Even though invariance and/or equivariance to Euclidean transformations are required for many common tasks, KPConv-based networks can only approximately achieve such properties when training on large datasets or with significant data augmentations. Using Frame Averaging, we allow to flexibly customize point cloud neural networks built with KPConv layers, by making them exactly invariant and/or equivariant to translations, rotations and/or reflections of the input point clouds. By simply wrapping around an existing KPConv-based network, FA-KPConv embeds geometrical prior knowledge into it while preserving the number of learnable parameters and not compromising any input information. We showcase the benefit of such an introduced bias for point cloud classification and point cloud registration, especially in challenging cases such as scarce training data or randomly rotated test data.
comment: 8 pages, 2 figures, accepted at IJCNN 2025
CAD-Llama: Leveraging Large Language Models for Computer-Aided Design Parametric 3D Model Generation
Recently, Large Language Models (LLMs) have achieved significant success, prompting increased interest in expanding their generative capabilities beyond general text into domain-specific areas. This study investigates the generation of parametric sequences for computer-aided design (CAD) models using LLMs. This endeavor represents an initial step towards creating parametric 3D shapes with LLMs, as CAD model parameters directly correlate with shapes in three-dimensional space. Despite the formidable generative capacities of LLMs, this task remains challenging, as these models neither encounter parametric sequences during their pretraining phase nor possess direct awareness of 3D structures. To address this, we present CAD-Llama, a framework designed to enhance pretrained LLMs for generating parametric 3D CAD models. Specifically, we develop a hierarchical annotation pipeline and a code-like format to translate parametric 3D CAD command sequences into Structured Parametric CAD Code (SPCC), incorporating hierarchical semantic descriptions. Furthermore, we propose an adaptive pretraining approach utilizing SPCC, followed by an instruction tuning process aligned with CAD-specific guidelines. This methodology aims to equip LLMs with the spatial knowledge inherent in parametric sequences. Experimental results demonstrate that our framework significantly outperforms prior autoregressive methods and existing LLM baselines.
Learning Real Facial Concepts for Independent Deepfake Detection IJCAI 2025
Deepfake detection models often struggle with generalization to unseen datasets, manifesting as misclassifying real instances as fake in target domains. This is primarily due to an overreliance on forgery artifacts and a limited understanding of real faces. To address this challenge, we propose a novel approach RealID to enhance generalization by learning a comprehensive concept of real faces while assessing the probabilities of belonging to the real and fake classes independently. RealID comprises two key modules: the Real Concept Capture Module (RealC2) and the Independent Dual-Decision Classifier (IDC). With the assistance of a MultiReal Memory, RealC2 maintains various prototypes for real faces, allowing the model to capture a comprehensive concept of real class. Meanwhile, IDC redefines the classification strategy by making independent decisions based on the concept of the real class and the presence of forgery artifacts. Through the combined effect of the above modules, the influence of forgery-irrelevant patterns is alleviated, and extensive experiments on five widely used datasets demonstrate that RealID significantly outperforms existing state-of-the-art methods, achieving a 1.74% improvement in average accuracy.
comment: Accepted by IJCAI 2025
RLMiniStyler: Light-weight RL Style Agent for Arbitrary Sequential Neural Style Generation IJCAI2025
Arbitrary style transfer aims to apply the style of any given artistic image to another content image. Still, existing deep learning-based methods often require significant computational costs to generate diverse stylized results. Motivated by this, we propose a novel reinforcement learning-based framework for arbitrary style transfer RLMiniStyler. This framework leverages a unified reinforcement learning policy to iteratively guide the style transfer process by exploring and exploiting stylization feedback, generating smooth sequences of stylized results while achieving model lightweight. Furthermore, we introduce an uncertainty-aware multi-task learning strategy that automatically adjusts loss weights to adapt to the content and style balance requirements at different training stages, thereby accelerating model convergence. Through a series of experiments across image various resolutions, we have validated the advantages of RLMiniStyler over other state-of-the-art methods in generating high-quality, diverse artistic image sequences at a lower cost. Codes are available at https://github.com/fengxiaoming520/RLMiniStyler.
comment: IJCAI2025
DeCLIP: Decoupled Learning for Open-Vocabulary Dense Perception
Dense visual prediction tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense prediction often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The ``content'' features are aligned with image crop representations to improve local discriminability, while ``context'' features learn to retain the spatial correlations under the guidance of vision foundation models, such as DINO. Extensive experiments demonstrate that DeCLIP significantly outperforms existing methods across multiple open-vocabulary dense prediction tasks, including object detection and semantic segmentation. Code is available at \textcolor{magenta}{https://github.com/xiaomoguhz/DeCLIP}.
MFSeg: Efficient Multi-frame 3D Semantic Segmentation ICRA 2025
We propose MFSeg, an efficient multi-frame 3D semantic segmentation framework. By aggregating point cloud sequences at the feature level and regularizing the feature extraction and aggregation process, MFSeg reduces computational overhead while maintaining high accuracy. Moreover, by employing a lightweight MLP-based point decoder, our method eliminates the need to upsample redundant points from past frames. Experiments on the nuScenes and Waymo datasets show that MFSeg outperforms existing methods, demonstrating its effectiveness and efficiency.
comment: ICRA 2025
Deep residual learning with product units
We propose a deep product-unit residual neural network (PURe) that integrates product units into residual blocks to improve the expressiveness and parameter efficiency of deep convolutional networks. Unlike standard summation neurons, product units enable multiplicative feature interactions, potentially offering a more powerful representation of complex patterns. PURe replaces conventional convolutional layers with 2D product units in the second layer of each residual block, eliminating nonlinear activation functions to preserve structural information. We validate PURe on three benchmark datasets. On Galaxy10 DECaLS, PURe34 achieves the highest test accuracy of 84.89%, surpassing the much deeper ResNet152, while converging nearly five times faster and demonstrating strong robustness to Poisson noise. On ImageNet, PURe architectures outperform standard ResNet models at similar depths, with PURe34 achieving a top-1 accuracy of 80.27% and top-5 accuracy of 95.78%, surpassing deeper ResNet variants (ResNet50, ResNet101) while utilizing significantly fewer parameters and computational resources. On CIFAR-10, PURe consistently outperforms ResNet variants across varying depths, with PURe272 reaching 95.01% test accuracy, comparable to ResNet1001 but at less than half the model size. These results demonstrate that PURe achieves a favorable balance between accuracy, efficiency, and robustness. Compared to traditional residual networks, PURe not only achieves competitive classification performance with faster convergence and fewer parameters, but also demonstrates greater robustness to noise. Its effectiveness across diverse datasets highlights the potential of product-unit-based architectures for scalable and reliable deep learning in computer vision.
SwinLip: An Efficient Visual Speech Encoder for Lip Reading Using Swin Transformer
This paper presents an efficient visual speech encoder for lip reading. While most recent lip reading studies have been based on the ResNet architecture and have achieved significant success, they are not sufficiently suitable for efficiently capturing lip reading features due to high computational complexity in modeling spatio-temporal information. Additionally, using a complex visual model not only increases the complexity of lip reading models but also induces delays in the overall network for multi-modal studies (e.g., audio-visual speech recognition, speech enhancement, and speech separation). To overcome the limitations of Convolutional Neural Network (CNN)-based models, we apply the hierarchical structure and window self-attention of the Swin Transformer to lip reading. We configure a new lightweight scale of the Swin Transformer suitable for processing lip reading data and present the SwinLip visual speech encoder, which efficiently reduces computational load by integrating modified Convolution-augmented Transformer (Conformer) temporal embeddings with conventional spatial embeddings in the hierarchical structure. Through extensive experiments, we have validated that our SwinLip successfully improves the performance and inference speed of the lip reading network when applied to various backbones for word and sentence recognition, reducing computational load. In particular, our SwinLip demonstrated robust performance in both English LRW and Mandarin LRW-1000 datasets and achieved state-of-the-art performance on the Mandarin LRW-1000 dataset with less computation compared to the existing state-of-the-art model.
Predicting Road Surface Anomalies by Visual Tracking of a Preceding Vehicle
A novel approach to detect road surface anomalies by visual tracking of a preceding vehicle is proposed. The method is versatile, predicting any kind of road anomalies, such as potholes, bumps, debris, etc., unlike direct observation methods that rely on training visual detectors of those cases. The method operates in low visibility conditions or in dense traffic where the anomaly is occluded by a preceding vehicle. Anomalies are detected predictively, i.e., before a vehicle encounters them, which allows to pre-configure low-level vehicle systems (such as chassis) or to plan an avoidance maneuver in case of autonomous driving. A challenge is that the signal coming from camera-based tracking of a preceding vehicle may be weak and disturbed by camera ego motion due to vibrations affecting the ego vehicle. Therefore, we propose an efficient method to compensate camera pitch rotation by an iterative robust estimator. Our experiments on both controlled setup and normal traffic conditions show that road anomalies can be detected reliably at a distance even in challenging cases where the ego vehicle traverses imperfect road surfaces. The method is effective and performs in real time on standard consumer hardware.
comment: Accepted to the IEEE Intelligent Vehicles Symposium (IV), 2025
Geometry-Aware Texture Generation for 3D Head Modeling with Artist-driven Control CVPR
Creating realistic 3D head assets for virtual characters that match a precise artistic vision remains labor-intensive. We present a novel framework that streamlines this process by providing artists with intuitive control over generated 3D heads. Our approach uses a geometry-aware texture synthesis pipeline that learns correlations between head geometry and skin texture maps across different demographics. The framework offers three levels of artistic control: manipulation of overall head geometry, adjustment of skin tone while preserving facial characteristics, and fine-grained editing of details such as wrinkles or facial hair. Our pipeline allows artists to make edits to a single texture map using familiar tools, with our system automatically propagating these changes coherently across the remaining texture maps needed for realistic rendering. Experiments demonstrate that our method produces diverse results with clean geometries. We showcase practical applications focusing on intuitive control for artists, including skin tone adjustments and simplified editing workflows for adding age-related details or removing unwanted features from scanned models. This integrated approach aims to streamline the artistic workflow in virtual character creation.
comment: 11 pages, 9 figures, AI for Creative Visual Content Generation Editing and Understanding (CVEU), CVPRW 2025
DATA: Multi-Disentanglement based Contrastive Learning for Open-World Semi-Supervised Deepfake Attribution
Deepfake attribution (DFA) aims to perform multiclassification on different facial manipulation techniques, thereby mitigating the detrimental effects of forgery content on the social order and personal reputations. However, previous methods focus only on method-specific clues, which easily lead to overfitting, while overlooking the crucial role of common forgery features. Additionally, they struggle to distinguish between uncertain novel classes in more practical open-world scenarios. To address these issues, in this paper we propose an innovative multi-DisentAnglement based conTrastive leArning framework, DATA, to enhance the generalization ability on novel classes for the open-world semi-supervised deepfake attribution (OSS-DFA) task. Specifically, since all generation techniques can be abstracted into a similar architecture, DATA defines the concept of 'Orthonormal Deepfake Basis' for the first time and utilizes it to disentangle method-specific features, thereby reducing the overfitting on forgery-irrelevant information. Furthermore, an augmented-memory mechanism is designed to assist in novel class discovery and contrastive learning, which aims to obtain clear class boundaries for the novel classes through instance-level disentanglements. Additionally, to enhance the standardization and discrimination of features, DATA uses bases contrastive loss and center contrastive loss as auxiliaries for the aforementioned modules. Extensive experimental evaluations show that DATA achieves state-of-the-art performance on the OSS-DFA benchmark, e.g., there are notable accuracy improvements in 2.55% / 5.7% under different settings, compared with the existing methods.
comment: Accepted by IEEE TMM on 17-Jan-2025; Submitted to IEEE TMM on 11-Jul-2024
Tetrahedron-Net for Medical Image Registration
Medical image registration plays a vital role in medical image processing. Extracting expressive representations for medical images is crucial for improving the registration quality. One common practice for this end is constructing a convolutional backbone to enable interactions with skip connections among feature extraction layers. The de facto structure, U-Net-like networks, has attempted to design skip connections such as nested or full-scale ones to connect one single encoder and one single decoder to improve its representation capacity. Despite being effective, it still does not fully explore interactions with a single encoder and decoder architectures. In this paper, we embrace this observation and introduce a simple yet effective alternative strategy to enhance the representations for registrations by appending one additional decoder. The new decoder is designed to interact with both the original encoder and decoder. In this way, it not only reuses feature presentation from corresponding layers in the encoder but also interacts with the original decoder to corporately give more accurate registration results. The new architecture is concise yet generalized, with only one encoder and two decoders forming a ``Tetrahedron'' structure, thereby dubbed Tetrahedron-Net. Three instantiations of Tetrahedron-Net are further constructed regarding the different structures of the appended decoder. Our extensive experiments prove that superior performance can be obtained on several representative benchmarks of medical image registration. Finally, such a ``Tetrahedron'' design can also be easily integrated into popular U-Net-like architectures including VoxelMorph, ViT-V-Net, and TransMorph, leading to consistent performance gains.
Label-efficient Single Photon Images Classification via Active Learning
Single-photon LiDAR achieves high-precision 3D imaging in extreme environments through quantum-level photon detection technology. Current research primarily focuses on reconstructing 3D scenes from sparse photon events, whereas the semantic interpretation of single-photon images remains underexplored, due to high annotation costs and inefficient labeling strategies. This paper presents the first active learning framework for single-photon image classification. The core contribution is an imaging condition-aware sampling strategy that integrates synthetic augmentation to model variability across imaging conditions. By identifying samples where the model is both uncertain and sensitive to these conditions, the proposed method selectively annotates only the most informative examples. Experiments on both synthetic and real-world datasets show that our approach outperforms all baselines and achieves high classification accuracy with significantly fewer labeled samples. Specifically, our approach achieves 97% accuracy on synthetic single-photon data using only 1.5% labeled samples. On real-world data, we maintain 90.63% accuracy with just 8% labeled samples, which is 4.51% higher than the best-performing baseline. This illustrates that active learning enables the same level of classification performance on single-photon images as on classical images, opening doors to large-scale integration of single-photon data in real-world applications.
Balancing Accuracy, Calibration, and Efficiency in Active Learning with Vision Transformers Under Label Noise
Fine-tuning pre-trained convolutional neural networks on ImageNet for downstream tasks is well-established. Still, the impact of model size on the performance of vision transformers in similar scenarios, particularly under label noise, remains largely unexplored. Given the utility and versatility of transformer architectures, this study investigates their practicality under low-budget constraints and noisy labels. We explore how classification accuracy and calibration are affected by symmetric label noise in active learning settings, evaluating four vision transformer configurations (Base and Large with 16x16 and 32x32 patch sizes) and three Swin Transformer configurations (Tiny, Small, and Base) on CIFAR10 and CIFAR100 datasets, under varying label noise rates. Our findings show that larger ViT models (ViTl32 in particular) consistently outperform their smaller counterparts in both accuracy and calibration, even under moderate to high label noise, while Swin Transformers exhibit weaker robustness across all noise levels. We find that smaller patch sizes do not always lead to better performance, as ViTl16 performs consistently worse than ViTl32 while incurring a higher computational cost. We also find that information-based Active Learning strategies only provide meaningful accuracy improvements at moderate label noise rates, but they result in poorer calibration compared to models trained on randomly acquired labels, especially at high label noise rates. We hope these insights provide actionable guidance for practitioners looking to deploy vision transformers in resource-constrained environments, where balancing model complexity, label noise, and compute efficiency is critical in model fine-tuning or distillation.
WDMamba: When Wavelet Degradation Prior Meets Vision Mamba for Image Dehazing
In this paper, we reveal a novel haze-specific wavelet degradation prior observed through wavelet transform analysis, which shows that haze-related information predominantly resides in low-frequency components. Exploiting this insight, we propose a novel dehazing framework, WDMamba, which decomposes the image dehazing task into two sequential stages: low-frequency restoration followed by detail enhancement. This coarse-to-fine strategy enables WDMamba to effectively capture features specific to each stage of the dehazing process, resulting in high-quality restored images. Specifically, in the low-frequency restoration stage, we integrate Mamba blocks to reconstruct global structures with linear complexity, efficiently removing overall haze and producing a coarse restored image. Thereafter, the detail enhancement stage reinstates fine-grained information that may have been overlooked during the previous phase, culminating in the final dehazed output. Furthermore, to enhance detail retention and achieve more natural dehazing, we introduce a self-guided contrastive regularization during network training. By utilizing the coarse restored output as a hard negative example, our model learns more discriminative representations, substantially boosting the overall dehazing performance. Extensive evaluations on public dehazing benchmarks demonstrate that our method surpasses state-of-the-art approaches both qualitatively and quantitatively. Code is available at https://github.com/SunJ000/WDMamba.
CountDiffusion: Text-to-Image Synthesis with Training-Free Counting-Guidance Diffusion
Stable Diffusion has advanced text-to-image synthesis, but training models to generate images with accurate object quantity is still difficult due to the high computational cost and the challenge of teaching models the abstract concept of quantity. In this paper, we propose CountDiffusion, a training-free framework aiming at generating images with correct object quantity from textual descriptions. CountDiffusion consists of two stages. In the first stage, an intermediate denoising result is generated by the diffusion model to predict the final synthesized image with one-step denoising, and a counting model is used to count the number of objects in this image. In the second stage, a correction module is used to correct the object quantity by changing the attention map of the object with universal guidance. The proposed CountDiffusion can be plugged into any diffusion-based text-to-image (T2I) generation models without further training. Experiment results demonstrate the superiority of our proposed CountDiffusion, which improves the accurate object quantity generation ability of T2I models by a large margin.
comment: 8 pages, 9 figures, 3 tables
Multi-turn Consistent Image Editing
Many real-world applications, such as interactive photo retouching, artistic content creation, and product design, require flexible and iterative image editing. However, existing image editing methods primarily focus on achieving the desired modifications in a single step, which often struggles with ambiguous user intent, complex transformations, or the need for progressive refinements. As a result, these methods frequently produce inconsistent outcomes or fail to meet user expectations. To address these challenges, we propose a multi-turn image editing framework that enables users to iteratively refine their edits, progressively achieving more satisfactory results. Our approach leverages flow matching for accurate image inversion and a dual-objective Linear Quadratic Regulators (LQR) for stable sampling, effectively mitigating error accumulation. Additionally, by analyzing the layer-wise roles of transformers, we introduce a adaptive attention highlighting method that enhances editability while preserving multi-turn coherence. Extensive experiments demonstrate that our framework significantly improves edit success rates and visual fidelity compared to existing methods.
MoDE: Mixture of Diffusion Experts for Any Occluded Face Recognition
With the continuous impact of epidemics, people have become accustomed to wearing masks. However, most current occluded face recognition (OFR) algorithms lack prior knowledge of occlusions, resulting in poor performance when dealing with occluded faces of varying types and severity in reality. Recognizing occluded faces is still a significant challenge, which greatly affects the convenience of people's daily lives. In this paper, we propose an identity-gated mixture of diffusion experts (MoDE) for OFR. Each diffusion-based generative expert estimates one possible complete image for occluded faces. Considering the random sampling process of the diffusion model, which introduces inevitable differences and variations between the inpainted faces and the real ones. To ensemble effective information from multi-reconstructed faces, we introduce an identity-gating network to evaluate the contribution of each reconstructed face to the identity and adaptively integrate the predictions in the decision space. Moreover, our MoDE is a plug-and-play module for most existing face recognition models. Extensive experiments on three public face datasets and two datasets in the wild validate our advanced performance for various occlusions in comparison with the competing methods.
comment: 8 pages,7 figures
TS-Diff: Two-Stage Diffusion Model for Low-Light RAW Image Enhancement IJCNN
This paper presents a novel Two-Stage Diffusion Model (TS-Diff) for enhancing extremely low-light RAW images. In the pre-training stage, TS-Diff synthesizes noisy images by constructing multiple virtual cameras based on a noise space. Camera Feature Integration (CFI) modules are then designed to enable the model to learn generalizable features across diverse virtual cameras. During the aligning stage, CFIs are averaged to create a target-specific CFI$^T$, which is fine-tuned using a small amount of real RAW data to adapt to the noise characteristics of specific cameras. A structural reparameterization technique further simplifies CFI$^T$ for efficient deployment. To address color shifts during the diffusion process, a color corrector is introduced to ensure color consistency by dynamically adjusting global color distributions. Additionally, a novel dataset, QID, is constructed, featuring quantifiable illumination levels and a wide dynamic range, providing a comprehensive benchmark for training and evaluation under extreme low-light conditions. Experimental results demonstrate that TS-Diff achieves state-of-the-art performance on multiple datasets, including QID, SID, and ELD, excelling in denoising, generalization, and color consistency across various cameras and illumination levels. These findings highlight the robustness and versatility of TS-Diff, making it a practical solution for low-light imaging applications. Source codes and models are available at https://github.com/CircccleK/TS-Diff
comment: International Joint Conference on Neural Networks (IJCNN)
HDiffTG: A Lightweight Hybrid Diffusion-Transformer-GCN Architecture for 3D Human Pose Estimation IJCNN
We propose HDiffTG, a novel 3D Human Pose Estimation (3DHPE) method that integrates Transformer, Graph Convolutional Network (GCN), and diffusion model into a unified framework. HDiffTG leverages the strengths of these techniques to significantly improve pose estimation accuracy and robustness while maintaining a lightweight design. The Transformer captures global spatiotemporal dependencies, the GCN models local skeletal structures, and the diffusion model provides step-by-step optimization for fine-tuning, achieving a complementary balance between global and local features. This integration enhances the model's ability to handle pose estimation under occlusions and in complex scenarios. Furthermore, we introduce lightweight optimizations to the integrated model and refine the objective function design to reduce computational overhead without compromising performance. Evaluation results on the Human3.6M and MPI-INF-3DHP datasets demonstrate that HDiffTG achieves state-of-the-art (SOTA) performance on the MPI-INF-3DHP dataset while excelling in both accuracy and computational efficiency. Additionally, the model exhibits exceptional robustness in noisy and occluded environments. Source codes and models are available at https://github.com/CirceJie/HDiffTG
comment: 8 pages, 4 figures, International Joint Conference on Neural Networks (IJCNN)
Object-Shot Enhanced Grounding Network for Egocentric Video CVPR 2025
Egocentric video grounding is a crucial task for embodied intelligence applications, distinct from exocentric video moment localization. Existing methods primarily focus on the distributional differences between egocentric and exocentric videos but often neglect key characteristics of egocentric videos and the fine-grained information emphasized by question-type queries. To address these limitations, we propose OSGNet, an Object-Shot enhanced Grounding Network for egocentric video. Specifically, we extract object information from videos to enrich video representation, particularly for objects highlighted in the textual query but not directly captured in the video features. Additionally, we analyze the frequent shot movements inherent to egocentric videos, leveraging these features to extract the wearer's attention information, which enhances the model's ability to perform modality alignment. Experiments conducted on three datasets demonstrate that OSGNet achieves state-of-the-art performance, validating the effectiveness of our approach. Our code can be found at https://github.com/Yisen-Feng/OSGNet.
comment: Accepted by CVPR 2025
Bridging Geometry-Coherent Text-to-3D Generation with Multi-View Diffusion Priors and Gaussian Splatting
Score Distillation Sampling (SDS) leverages pretrained 2D diffusion models to advance text-to-3D generation but neglects multi-view correlations, being prone to geometric inconsistencies and multi-face artifacts in the generated 3D content. In this work, we propose Coupled Score Distillation (CSD), a framework that couples multi-view joint distribution priors to ensure geometrically consistent 3D generation while enabling the stable and direct optimization of 3D Gaussian Splatting. Specifically, by reformulating the optimization as a multi-view joint optimization problem, we derive an effective optimization rule that effectively couples multi-view priors to guide optimization across different viewpoints while preserving the diversity of generated 3D assets. Additionally, we propose a framework that directly optimizes 3D Gaussian Splatting (3D-GS) with random initialization to generate geometrically consistent 3D content. We further employ a deformable tetrahedral grid, initialized from 3D-GS and refined through CSD, to produce high-quality, refined meshes. Quantitative and qualitative experimental results demonstrate the efficiency and competitive quality of our approach.
RGB-Event Fusion with Self-Attention for Collision Prediction
Ensuring robust and real-time obstacle avoidance is critical for the safe operation of autonomous robots in dynamic, real-world environments. This paper proposes a neural network framework for predicting the time and collision position of an unmanned aerial vehicle with a dynamic object, using RGB and event-based vision sensors. The proposed architecture consists of two separate encoder branches, one for each modality, followed by fusion by self-attention to improve prediction accuracy. To facilitate benchmarking, we leverage the ABCD [8] dataset collected that enables detailed comparisons of single-modality and fusion-based approaches. At the same prediction throughput of 50Hz, the experimental results show that the fusion-based model offers an improvement in prediction accuracy over single-modality approaches of 1% on average and 10% for distances beyond 0.5m, but comes at the cost of +71% in memory and + 105% in FLOPs. Notably, the event-based model outperforms the RGB model by 4% for position and 26% for time error at a similar computational cost, making it a competitive alternative. Additionally, we evaluate quantized versions of the event-based models, applying 1- to 8-bit quantization to assess the trade-offs between predictive performance and computational efficiency. These findings highlight the trade-offs of multi-modal perception using RGB and event-based cameras in robotic applications.
A Weak Supervision Learning Approach Towards an Equitable Parking Lot Occupancy Estimation
The scarcity and high cost of labeled high-resolution imagery have long challenged remote sensing applications, particularly in low-income regions where high-resolution data are scarce. In this study, we propose a weak supervision framework that estimates parking lot occupancy using 3m resolution satellite imagery. By leveraging coarse temporal labels -- based on the assumption that parking lots of major supermarkets and hardware stores in Germany are typically full on Saturdays and empty on Sundays -- we train a pairwise comparison model that achieves an AUC of 0.92 on large parking lots. The proposed approach minimizes the reliance on expensive high-resolution images and holds promise for scalable urban mobility analysis. Moreover, the method can be adapted to assess transit patterns and resource allocation in vulnerable communities, providing a data-driven basis to improve the well-being of those most in need.
CM1 -- A Dataset for Evaluating Few-Shot Information Extraction with Large Vision Language Models
The automatic extraction of key-value information from handwritten documents is a key challenge in document analysis. A reliable extraction is a prerequisite for the mass digitization efforts of many archives. Large Vision Language Models (LVLM) are a promising technology to tackle this problem especially in scenarios where little annotated training data is available. In this work, we present a novel dataset specifically designed to evaluate the few-shot capabilities of LVLMs. The CM1 documents are a historic collection of forms with handwritten entries created in Europe to administer the Care and Maintenance program after World War Two. The dataset establishes three benchmarks on extracting name and birthdate information and, furthermore, considers different training set sizes. We provide baseline results for two different LVLMs and compare performances to an established full-page extraction model. While the traditional full-page model achieves highly competitive performances, our experiments show that when only a few training samples are available the considered LVLMs benefit from their size and heavy pretraining and outperform the classical approach.
An Enhanced YOLOv8 Model for Real-Time and Accurate Pothole Detection and Measurement
Potholes cause vehicle damage and traffic accidents, creating serious safety and economic problems. Therefore, early and accurate detection of potholes is crucial. Existing detection methods are usually only based on 2D RGB images and cannot accurately analyze the physical characteristics of potholes. In this paper, a publicly available dataset of RGB-D images (PothRGBD) is created and an improved YOLOv8-based model is proposed for both pothole detection and pothole physical features analysis. The Intel RealSense D415 depth camera was used to collect RGB and depth data from the road surfaces, resulting in a PothRGBD dataset of 1000 images. The data was labeled in YOLO format suitable for segmentation. A novel YOLO model is proposed based on the YOLOv8n-seg architecture, which is structurally improved with Dynamic Snake Convolution (DSConv), Simple Attention Module (SimAM) and Gaussian Error Linear Unit (GELU). The proposed model segmented potholes with irregular edge structure more accurately, and performed perimeter and depth measurements on depth maps with high accuracy. The standard YOLOv8n-seg model achieved 91.9% precision, 85.2% recall and 91.9% mAP@50. With the proposed model, the values increased to 93.7%, 90.4% and 93.8% respectively. Thus, an improvement of 1.96% in precision, 6.13% in recall and 2.07% in mAP was achieved. The proposed model performs pothole detection as well as perimeter and depth measurement with high accuracy and is suitable for real-time applications due to its low model complexity. In this way, a lightweight and effective model that can be used in deep learning-based intelligent transportation solutions has been acquired.
SToLa: Self-Adaptive Touch-Language Framework with Tactile Commonsense Reasoning in Open-Ended Scenarios
This paper explores the challenges of integrating tactile sensing into intelligent systems for multimodal reasoning, particularly in enabling commonsense reasoning about the open-ended physical world. We identify two key challenges: modality discrepancy, where existing large touch-language models often treat touch as a mere sub-modality of language, and open-ended tactile data scarcity, where current datasets lack the diversity, open-endness and complexity needed for reasoning. To overcome these challenges, we introduce SToLa, a Self-Adaptive Touch-Language framework. SToLa utilizes Mixture of Experts (MoE) to dynamically process, unify, and manage tactile and language modalities, capturing their unique characteristics. Crucially, we also present a comprehensive tactile commonsense reasoning dataset and benchmark featuring free-form questions and responses, 8 physical properties, 4 interactive characteristics, and diverse commonsense knowledge. Experiments show SToLa exhibits competitive performance compared to existing models on the PhysiCLeAR benchmark and self-constructed datasets, proving the effectiveness of the Mixture of Experts architecture in multimodal management and the performance advantages for open-scenario tactile commonsense reasoning tasks.
VideoPath-LLaVA: Pathology Diagnostic Reasoning Through Video Instruction Tuning
We present VideoPath-LLaVA, the first large multimodal model (LMM) in computational pathology that integrates three distinct image scenarios, single patch images, automatically keyframe-extracted clips, and manually segmented video pathology images, to mimic the natural diagnostic process of pathologists. By generating detailed histological descriptions and culminating in a definitive sign-out diagnosis, VideoPath-LLaVA bridges visual narratives with diagnostic reasoning. Central to our approach is the VideoPath-Instruct dataset, comprising 4278 video and diagnosis-specific chain-of-thought instructional pairs sourced from educational histopathology videos on YouTube. Although high-quality data is critical for enhancing diagnostic reasoning, its creation is time-intensive and limited in volume. To overcome this challenge, we transfer knowledge from existing single-image instruction datasets to train on weakly annotated, keyframe-extracted clips, followed by fine-tuning on manually segmented videos. VideoPath-LLaVA establishes a new benchmark in pathology video analysis and offers a promising foundation for future AI systems that support clinical decision-making through integrated visual and diagnostic reasoning. Our code, data, and model are publicly available at https://github.com/trinhvg/VideoPath-LLaVA.
S3D: Sketch-Driven 3D Model Generation CVPR'25
Generating high-quality 3D models from 2D sketches is a challenging task due to the inherent ambiguity and sparsity of sketch data. In this paper, we present S3D, a novel framework that converts simple hand-drawn sketches into detailed 3D models. Our method utilizes a U-Net-based encoder-decoder architecture to convert sketches into face segmentation masks, which are then used to generate a 3D representation that can be rendered from novel views. To ensure robust consistency between the sketch domain and the 3D output, we introduce a novel style-alignment loss that aligns the U-Net bottleneck features with the initial encoder outputs of the 3D generation module, significantly enhancing reconstruction fidelity. To further enhance the network's robustness, we apply augmentation techniques to the sketch dataset. This streamlined framework demonstrates the effectiveness of S3D in generating high-quality 3D models from sketch inputs. The source code for this project is publicly available at https://github.com/hailsong/S3D.
comment: Accepted as a short paper to the GMCV Workshop at CVPR'25
DOTA: Deformable Optimized Transformer Architecture for End-to-End Text Recognition with Retrieval-Augmented Generation
Text recognition in natural images remains a challenging yet essential task, with broad applications spanning computer vision and natural language processing. This paper introduces a novel end-to-end framework that combines ResNet and Vision Transformer backbones with advanced methodologies, including Deformable Convolutions, Retrieval-Augmented Generation, and Conditional Random Fields (CRF). These innovations collectively enhance feature representation and improve Optical Character Recognition (OCR) performance. Specifically, the framework substitutes standard convolution layers in the third and fourth blocks with Deformable Convolutions, leverages adaptive dropout for regularization, and incorporates CRF for more refined sequence modeling. Extensive experiments conducted on six benchmark datasets IC13, IC15, SVT, IIIT5K, SVTP, and CUTE80 validate the proposed method's efficacy, achieving notable accuracies: 97.32% on IC13, 58.26% on IC15, 88.10% on SVT, 74.13% on IIIT5K, 82.17% on SVTP, and 66.67% on CUTE80, resulting in an average accuracy of 77.77%. These results establish a new state-of-the-art for text recognition, demonstrating the robustness of the approach across diverse and challenging datasets.
Learning from Similarity Proportion Loss for Classifying Skeletal Muscle Recovery Stages MICCAI2024
Evaluating the regeneration process of damaged muscle tissue is a fundamental analysis in muscle research to measure experimental effect sizes and uncover mechanisms behind muscle weakness due to aging and disease. The conventional approach to assessing muscle tissue regeneration involves whole-slide imaging and expert visual inspection of the recovery stages based on the morphological information of cells and fibers. There is a need to replace these tasks with automated methods incorporating machine learning techniques to ensure a quantitative and objective analysis. Given the limited availability of fully labeled data, a possible approach is Learning from Label Proportions (LLP), a weakly supervised learning method using class label proportions. However, current LLP methods have two limitations: (1) they cannot adapt the feature extractor for muscle tissues, and (2) they treat the classes representing recovery stages and cell morphological changes as nominal, resulting in the loss of ordinal information. To address these issues, we propose Ordinal Scale Learning from Similarity Proportion (OSLSP), which uses a similarity proportion loss derived from two bag combinations. OSLSP can update the feature extractor by using class proportion attention to the ordinal scale of the class. Our model with OSLSP outperforms large-scale pre-trained and fine-tuning models in classification tasks of skeletal muscle recovery stages.
comment: MICCAI2024 workshop ADSMI in Morocco (oral) [Peer-reviewed]
R^3-VQA: "Read the Room" by Video Social Reasoning
"Read the room" is a significant social reasoning capability in human daily life. Humans can infer others' mental states from subtle social cues. Previous social reasoning tasks and datasets lack complexity (e.g., simple scenes, basic interactions, incomplete mental state variables, single-step reasoning, etc.) and fall far short of the challenges present in real-life social interactions. In this paper, we contribute a valuable, high-quality, and comprehensive video dataset named R^3-VQA with precise and fine-grained annotations of social events and mental states (i.e., belief, intent, desire, and emotion) as well as corresponding social causal chains in complex social scenarios. Moreover, we include human-annotated and model-generated QAs. Our task R^3-VQA includes three aspects: Social Event Understanding, Mental State Estimation, and Social Causal Reasoning. As a benchmark, we comprehensively evaluate the social reasoning capabilities and consistencies of current state-of-the-art large vision-language models (LVLMs). Comprehensive experiments show that (i) LVLMs are still far from human-level consistent social reasoning in complex social scenarios; (ii) Theory of Mind (ToM) prompting can help LVLMs perform better on social reasoning tasks. We provide some of our dataset and codes in supplementary material and will release our full dataset and codes upon acceptance.
Vision Graph Prompting via Semantic Low-Rank Decomposition ICML 2025
Vision GNN (ViG) demonstrates superior performance by representing images as graph structures, providing a more natural way to capture irregular semantic patterns beyond traditional grid or sequence-based representations. To efficiently adapt ViG to downstream tasks, parameter-efficient fine-tuning techniques like visual prompting become increasingly essential. However, existing prompting methods are primarily designed for Transformer-based models, neglecting the rich topological relationships among nodes and edges in graph-based representations, limiting their capacity to model complex semantics. In this paper, we propose Vision Graph Prompting (VGP), a novel framework tailored for vision graph structures. Our core insight reveals that semantically connected components in the graph exhibit low-rank properties. Building on this observation, we introduce a semantic low-rank prompting method that decomposes low-rank semantic features and integrates them with prompts on vision graph topologies, capturing both global structural patterns and fine-grained semantic dependencies. Extensive experiments demonstrate our method significantly improves ViG's transfer performance on diverse downstream tasks, achieving results comparable to full fine-tuning while maintaining parameter efficiency. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-VGP.
comment: Accepted by ICML 2025
GAPrompt: Geometry-Aware Point Cloud Prompt for 3D Vision Model ICML 2025
Pre-trained 3D vision models have gained significant attention for their promising performance on point cloud data. However, fully fine-tuning these models for downstream tasks is computationally expensive and storage-intensive. Existing parameter-efficient fine-tuning (PEFT) approaches, which focus primarily on input token prompting, struggle to achieve competitive performance due to their limited ability to capture the geometric information inherent in point clouds. To address this challenge, we propose a novel Geometry-Aware Point Cloud Prompt (GAPrompt) that leverages geometric cues to enhance the adaptability of 3D vision models. First, we introduce a Point Prompt that serves as an auxiliary input alongside the original point cloud, explicitly guiding the model to capture fine-grained geometric details. Additionally, we present a Point Shift Prompter designed to extract global shape information from the point cloud, enabling instance-specific geometric adjustments at the input level. Moreover, our proposed Prompt Propagation mechanism incorporates the shape information into the model's feature extraction process, further strengthening its ability to capture essential geometric characteristics. Extensive experiments demonstrate that GAPrompt significantly outperforms state-of-the-art PEFT methods and achieves competitive results compared to full fine-tuning on various benchmarks, while utilizing only 2.19% of trainable parameters. Our code is available at https://github.com/zhoujiahuan1991/ICML2025-VGP.
comment: Accepted by ICML 2025
One2Any: One-Reference 6D Pose Estimation for Any Object CVPR 2025
6D object pose estimation remains challenging for many applications due to dependencies on complete 3D models, multi-view images, or training limited to specific object categories. These requirements make generalization to novel objects difficult for which neither 3D models nor multi-view images may be available. To address this, we propose a novel method One2Any that estimates the relative 6-degrees of freedom (DOF) object pose using only a single reference-single query RGB-D image, without prior knowledge of its 3D model, multi-view data, or category constraints. We treat object pose estimation as an encoding-decoding process, first, we obtain a comprehensive Reference Object Pose Embedding (ROPE) that encodes an object shape, orientation, and texture from a single reference view. Using this embedding, a U-Net-based pose decoding module produces Reference Object Coordinate (ROC) for new views, enabling fast and accurate pose estimation. This simple encoding-decoding framework allows our model to be trained on any pair-wise pose data, enabling large-scale training and demonstrating great scalability. Experiments on multiple benchmark datasets demonstrate that our model generalizes well to novel objects, achieving state-of-the-art accuracy and robustness even rivaling methods that require multi-view or CAD inputs, at a fraction of compute.
comment: accepted by CVPR 2025
MAISY: Motion-Aware Image SYnthesis for MedicalImage Motion Correction
Patient motion during medical image acquisition causes blurring, ghosting, and distorts organs, which makes image interpretation challenging.Current state-of-the-art algorithms using Generative Adversarial Network (GAN)-based methods with their ability to learn the mappings between corrupted images and their ground truth via Structural Similarity Index Measure (SSIM) loss effectively generate motion-free images. However, we identified the following limitations: (i) they mainly focus on global structural characteristics and therefore overlook localized features that often carry critical pathological information, and (ii) the SSIM loss function struggles to handle images with varying pixel intensities, luminance factors, and variance. In this study, we propose Motion-Aware Image SYnthesis (MAISY) which initially characterize motion and then uses it for correction by: (a) leveraging the foundation model Segment Anything Model (SAM), to dynamically learn spatial patterns along anatomical boundaries where motion artifacts are most pronounced and, (b) introducing the Variance-Selective SSIM (VS-SSIM) loss which adaptively emphasizes spatial regions with high pixel variance to preserve essential anatomical details during artifact correction. Experiments on chest and head CT datasets demonstrate that our model outperformed the state-of-the-art counterparts, with Peak Signal-to-Noise Ratio (PSNR) increasing by 40%, SSIM by 10%, and Dice by 16%.
3D Brain MRI Classification for Alzheimer Diagnosis Using CNN with Data Augmentation
A three-dimensional convolutional neural network was developed to classify T1-weighted brain MRI scans as healthy or Alzheimer. The network comprises 3D convolution, pooling, batch normalization, dense ReLU layers, and a sigmoid output. Using stochastic noise injection and five-fold cross-validation, the model achieved test set accuracy of 0.912 and area under the ROC curve of 0.961, an improvement of approximately 0.027 over resizing alone. Sensitivity and specificity both exceeded 0.90. These results align with prior work reporting up to 0.10 gain via synthetic augmentation. The findings demonstrate the effectiveness of simple augmentation for 3D MRI classification and motivate future exploration of advanced augmentation methods and architectures such as 3D U-Net and vision transformers.
Scalable Aerial GNSS Localization for Marine Robots
Accurate localization is crucial for water robotics, yet traditional onboard Global Navigation Satellite System (GNSS) approaches are difficult or ineffective due to signal reflection on the water's surface and its high cost of aquatic GNSS receivers. Existing approaches, such as inertial navigation, Doppler Velocity Loggers (DVL), SLAM, and acoustic-based methods, face challenges like error accumulation and high computational complexity. Therefore, a more efficient and scalable solution remains necessary. This paper proposes an alternative approach that leverages an aerial drone equipped with GNSS localization to track and localize a marine robot once it is near the surface of the water. Our results show that this novel adaptation enables accurate single and multi-robot marine robot localization.
comment: International Conference on Robotics and Automation 2025 Workshop Robots in the Wild
SMMT: Siamese Motion Mamba with Self-attention for Thermal Infrared Target Tracking
Thermal infrared (TIR) object tracking often suffers from challenges such as target occlusion, motion blur, and background clutter, which significantly degrade the performance of trackers. To address these issues, this paper pro-poses a novel Siamese Motion Mamba Tracker (SMMT), which integrates a bidirectional state-space model and a self-attention mechanism. Specifically, we introduce the Motion Mamba module into the Siamese architecture to ex-tract motion features and recover overlooked edge details using bidirectional modeling and self-attention. We propose a Siamese parameter-sharing strate-gy that allows certain convolutional layers to share weights. This approach reduces computational redundancy while preserving strong feature represen-tation. In addition, we design a motion edge-aware regression loss to improve tracking accuracy, especially for motion-blurred targets. Extensive experi-ments are conducted on four TIR tracking benchmarks, including LSOTB-TIR, PTB-TIR, VOT-TIR2015, and VOT-TIR 2017. The results show that SMMT achieves superior performance in TIR target tracking.
SEVA: Leveraging Single-Step Ensemble of Vicinal Augmentations for Test-Time Adaptation
Test-Time adaptation (TTA) aims to enhance model robustness against distribution shifts through rapid model adaptation during inference. While existing TTA methods often rely on entropy-based unsupervised training and achieve promising results, the common practice of a single round of entropy training is typically unable to adequately utilize reliable samples, hindering adaptation efficiency. In this paper, we discover augmentation strategies can effectively unleash the potential of reliable samples, but the rapidly growing computational cost impedes their real-time application. To address this limitation, we propose a novel TTA approach named Single-step Ensemble of Vicinal Augmentations (SEVA), which can take advantage of data augmentations without increasing the computational burden. Specifically, instead of explicitly utilizing the augmentation strategy to generate new data, SEVA develops a theoretical framework to explore the impacts of multiple augmentations on model adaptation and proposes to optimize an upper bound of the entropy loss to integrate the effects of multiple rounds of augmentation training into a single step. Furthermore, we discover and verify that using the upper bound as the loss is more conducive to the selection mechanism, as it can effectively filter out harmful samples that confuse the model. Combining these two key advantages, the proposed efficient loss and a complementary selection strategy can simultaneously boost the potential of reliable samples and meet the stringent time requirements of TTA. The comprehensive experiments on various network architectures across challenging testing scenarios demonstrate impressive performances and the broad adaptability of SEVA. The code will be publicly available.
AS3D: 2D-Assisted Cross-Modal Understanding with Semantic-Spatial Scene Graphs for 3D Visual Grounding
3D visual grounding aims to localize the unique target described by natural languages in 3D scenes. The significant gap between 3D and language modalities makes it a notable challenge to distinguish multiple similar objects through the described spatial relationships. Current methods attempt to achieve cross-modal understanding in complex scenes via a target-centered learning mechanism, ignoring the perception of referred objects. We propose a novel 2D-assisted 3D visual grounding framework that constructs semantic-spatial scene graphs with referred object discrimination for relationship perception. The framework incorporates a dual-branch visual encoder that utilizes 2D pre-trained attributes to guide the multi-modal object encoding. Furthermore, our cross-modal interaction module uses graph attention to facilitate relationship-oriented information fusion. The enhanced object representation and iterative relational learning enable the model to establish effective alignment between 3D vision and referential descriptions. Experimental results on the popular benchmarks demonstrate our superior performance compared to state-of-the-art methods, especially in addressing the challenges of multiple similar distractors.
FoodTrack: Estimating Handheld Food Portions with Egocentric Video CVPR 2025
Accurately tracking food consumption is crucial for nutrition and health monitoring. Traditional approaches typically require specific camera angles, non-occluded images, or rely on gesture recognition to estimate intake, making assumptions about bite size rather than directly measuring food volume. We propose the FoodTrack framework for tracking and measuring the volume of hand-held food items using egocentric video which is robust to hand occlusions and flexible with varying camera and object poses. FoodTrack estimates food volume directly, without relying on intake gestures or fixed assumptions about bite size, offering a more accurate and adaptable solution for tracking food consumption. We achieve absolute percentage loss of approximately 7.01% on a handheld food object, improving upon a previous approach that achieved a 16.40% mean absolute percentage error in its best case, under less flexible conditions.
comment: Accepted as extended abstract at CVPR 2025 Metafood workshop
Person-In-Situ: Scene-Consistent Human Image Insertion with Occlusion-Aware Pose Control
Compositing human figures into scene images has broad applications in areas such as entertainment and advertising. However, existing methods often cannot handle occlusion of the inserted person by foreground objects and unnaturally place the person in the frontmost layer. Moreover, they offer limited control over the inserted person's pose. To address these challenges, we propose two methods. Both allow explicit pose control via a 3D body model and leverage latent diffusion models to synthesize the person at a contextually appropriate depth, naturally handling occlusions without requiring occlusion masks. The first is a two-stage approach: the model first learns a depth map of the scene with the person through supervised learning, and then synthesizes the person accordingly. The second method learns occlusion implicitly and synthesizes the person directly from input data without explicit depth supervision. Quantitative and qualitative evaluations show that both methods outperform existing approaches by better preserving scene consistency while accurately reflecting occlusions and user-specified poses.
TerraFusion: Joint Generation of Terrain Geometry and Texture Using Latent Diffusion Models
3D terrain models are essential in fields such as video game development and film production. Since surface color often correlates with terrain geometry, capturing this relationship is crucial to achieving realism. However, most existing methods generate either a heightmap or a texture, without sufficiently accounting for the inherent correlation. In this paper, we propose a method that jointly generates terrain heightmaps and textures using a latent diffusion model. First, we train the model in an unsupervised manner to randomly generate paired heightmaps and textures. Then, we perform supervised learning of an external adapter to enable user control via hand-drawn sketches. Experiments show that our approach allows intuitive terrain generation while preserving the correlation between heightmaps and textures.
CRAFT: Cultural Russian-Oriented Dataset Adaptation for Focused Text-to-Image Generation
Despite the fact that popular text-to-image generation models cope well with international and general cultural queries, they have a significant knowledge gap regarding individual cultures. This is due to the content of existing large training datasets collected on the Internet, which are predominantly based on Western European or American popular culture. Meanwhile, the lack of cultural adaptation of the model can lead to incorrect results, a decrease in the generation quality, and the spread of stereotypes and offensive content. In an effort to address this issue, we examine the concept of cultural code and recognize the critical importance of its understanding by modern image generation models, an issue that has not been sufficiently addressed in the research community to date. We propose the methodology for collecting and processing the data necessary to form a dataset based on the cultural code, in particular the Russian one. We explore how the collected data affects the quality of generations in the national domain and analyze the effectiveness of our approach using the Kandinsky 3.1 text-to-image model. Human evaluation results demonstrate an increase in the level of awareness of Russian culture in the model.
comment: This is arxiv version of the paper which was accepted for the Doklady Mathematics Journal in 2024
ORXE: Orchestrating Experts for Dynamically Configurable Efficiency
This paper presents ORXE, a modular and adaptable framework for achieving real-time configurable efficiency in AI models. By leveraging a collection of pre-trained experts with diverse computational costs and performance levels, ORXE dynamically adjusts inference pathways based on the complexity of input samples. Unlike conventional approaches that require complex metamodel training, ORXE achieves high efficiency and flexibility without complicating the development process. The proposed system utilizes a confidence-based gating mechanism to allocate appropriate computational resources for each input. ORXE also supports adjustments to the preference between inference cost and prediction performance across a wide range during runtime. We implemented a training-free ORXE system for image classification tasks, evaluating its efficiency and accuracy across various devices. The results demonstrate that ORXE achieves superior performance compared to individual experts and other dynamic models in most cases. This approach can be extended to other applications, providing a scalable solution for diverse real-world deployment scenarios.
Visual Imitation Enables Contextual Humanoid Control
How can we teach humanoids to climb staircases and sit on chairs using the surrounding environment context? Arguably, the simplest way is to just show them-casually capture a human motion video and feed it to humanoids. We introduce VIDEOMIMIC, a real-to-sim-to-real pipeline that mines everyday videos, jointly reconstructs the humans and the environment, and produces whole-body control policies for humanoid robots that perform the corresponding skills. We demonstrate the results of our pipeline on real humanoid robots, showing robust, repeatable contextual control such as staircase ascents and descents, sitting and standing from chairs and benches, as well as other dynamic whole-body skills-all from a single policy, conditioned on the environment and global root commands. VIDEOMIMIC offers a scalable path towards teaching humanoids to operate in diverse real-world environments.
comment: Project website: https://www.videomimic.net/
Breaking Annotation Barriers: Generalized Video Quality Assessment via Ranking-based Self-Supervision
Video quality assessment (VQA) is essential for quantifying perceptual quality in various video processing workflows, spanning from camera capture systems to over-the-top streaming platforms. While recent supervised VQA models have made substantial progress, the reliance on manually annotated datasets -- a process that is labor-intensive, costly, and difficult to scale up -- has hindered further optimization of their generalization to unseen video content and distortions. To bridge this gap, we introduce a self-supervised learning framework for VQA to learn quality assessment capabilities from large-scale, unlabeled web videos. Our approach leverages a \textbf{learning-to-rank} paradigm to train a large multimodal model (LMM) on video pairs automatically labeled via two manners, including quality pseudo-labeling by existing VQA models and relative quality ranking based on synthetic distortion simulations. Furthermore, we introduce a novel \textbf{iterative self-improvement training strategy}, where the trained model acts an improved annotator to iteratively refine the annotation quality of training data. By training on a dataset $10\times$ larger than the existing VQA benchmarks, our model: (1) achieves zero-shot performance on in-domain VQA benchmarks that matches or surpasses supervised models; (2) demonstrates superior out-of-distribution (OOD) generalization across diverse video content and distortions; and (3) sets a new state-of-the-art when fine-tuned on human-labeled datasets. Extensive experimental results validate the effectiveness of our self-supervised approach in training generalized VQA models. The datasets and code will be publicly released to facilitate future research.
PAHA: Parts-Aware Audio-Driven Human Animation with Diffusion Model
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose PAHA, an end-to-end audio-driven upper-body human animation framework with diffusion model. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
Uncertainty-Aware Prototype Semantic Decoupling for Text-Based Person Search in Full Images
Text-based pedestrian search (TBPS) in full images aims to locate a target pedestrian in untrimmed images using natural language descriptions. However, in complex scenes with multiple pedestrians, existing methods are limited by uncertainties in detection and matching, leading to degraded performance. To address this, we propose UPD-TBPS, a novel framework comprising three modules: Multi-granularity Uncertainty Estimation (MUE), Prototype-based Uncertainty Decoupling (PUD), and Cross-modal Re-identification (ReID). MUE conducts multi-granularity queries to identify potential targets and assigns confidence scores to reduce early-stage uncertainty. PUD leverages visual context decoupling and prototype mining to extract features of the target pedestrian described in the query. It separates and learns pedestrian prototype representations at both the coarse-grained cluster level and the fine-grained individual level, thereby reducing matching uncertainty. ReID evaluates candidates with varying confidence levels, improving detection and retrieval accuracy. Experiments on CUHK-SYSU-TBPS and PRW-TBPS datasets validate the effectiveness of our framework.
comment: 9pages,5figures
DCS-ST for Classification of Breast Cancer Histopathology Images with Limited Annotations
Deep learning methods have shown promise in classifying breast cancer histopathology images, but their performance often declines with limited annotated data, a critical challenge in medical imaging due to the high cost and expertise required for annotations.
Sharpness-Aware Minimization with Z-Score Gradient Filtering for Neural Networks
Sharpness-Aware Minimization (SAM) improves neural network generalization by optimizing the worst-case loss within a neighborhood of parameters, yet it perturbs parameters using the entire gradient vector, including components with low statistical significance. We introduce ZSharp, a refined sharpness-aware optimization method that incorporates layer-wise Z-score normalization followed by percentile-based filtering. This process selects only the most statistically significant gradient components-those with large standardized magnitudes-for constructing the perturbation direction. ZSharp retains the standard two-phase SAM structure of ascent and descent while modifying the ascent step to focus on sharper, curvature-relevant directions. We evaluate ZSharp on CIFAR-10, CIFAR-100, and Tiny-ImageNet using a range of models including ResNet, VGG, and Vision Transformers. Across all architectures and datasets, ZSharp consistently achieves higher test accuracy compared to SAM, ASAM, and Friendly-SAM. These results indicate that Z-score-based gradient filtering can enhance the sharpness sensitivity of the update direction, leading to improved generalization in deep neural network training.
Vision-Language Models Create Cross-Modal Task Representations ICML 2025
Autoregressive vision-language models (VLMs) can handle many tasks within a single model, yet the representations that enable this capability remain opaque. We find that VLMs align conceptually equivalent inputs into a shared task vector, which is invariant to modality (text, image) and format (examples, instruction), and may simplify VLM processing. We measure this alignment via cross-modal transfer -- the ability of a task vector derived in one modality to trigger the correct generation in another -- on a range of tasks and model architectures. Although the task vector is highly compressed, we find that this single vector outperforms prompting the model with the full task information, unique to this cross-modal case. Furthermore, we show that task vectors can be transferred from a base language model to its fine-tuned vision-language counterpart, and that they can be derived solely from instructions without the need for examples. Taken together, our findings shed light on how VLMs internally process task information, and how they map different modalities into common semantic representations. Project page: https://vlm-cross-modal-reps.github.io.
comment: ICML 2025
Uncertainty for SVBRDF Acquisition using Frequency Analysis
This paper aims to quantify uncertainty for SVBRDF acquisition in multi-view captures. Under uncontrolled illumination and unstructured viewpoints, there is no guarantee that the observations contain enough information to reconstruct the appearance properties of a captured object. We study this ambiguity, or uncertainty, using entropy and accelerate the analysis by using the frequency domain, rather than the domain of incoming and outgoing viewing angles. The result is a method that computes a map of uncertainty over an entire object within a millisecond. We find that the frequency model allows us to recover SVBRDF parameters with competitive performance, that the accelerated entropy computation matches results with a physically-based path tracer, and that there is a positive correlation between error and uncertainty. We then show that the uncertainty map can be applied to improve SVBRDF acquisition using capture guidance, sharing information on the surface, and using a diffusion model to inpaint uncertain regions. Our code is available at https://github.com/rubenwiersma/svbrdf_uncertainty.
comment: Project page: https://svbrdf-uncertainty.github.io
Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
Text-to-image (T2I) models are increasingly used in impactful real-life applications. As such, there is a growing need to audit these models to ensure that they generate desirable, task-appropriate images. However, systematically inspecting the associations between prompts and generated content in a human-understandable way remains challenging. To address this, we propose Concept2Concept, a framework where we characterize conditional distributions of vision language models using interpretable concepts and metrics that can be defined in terms of these concepts. This characterization allows us to use our framework to audit models and prompt-datasets. To demonstrate, we investigate several case studies of conditional distributions of prompts, such as user-defined distributions or empirical, real-world distributions. Lastly, we implement Concept2Concept as an open-source interactive visualization tool to facilitate use by non-technical end-users. A demo is available at https://tinyurl.com/Concept2ConceptDemo.
Efficiency Meets Fidelity: A Novel Quantization Framework for Stable Diffusion
Text-to-image generation via Stable Diffusion models (SDM) have demonstrated remarkable capabilities. However, their computational intensity, particularly in the iterative denoising process, hinders real-time deployment in latency-sensitive applications. While Recent studies have explored post-training quantization (PTQ) and quantization-aware training (QAT) methods to compress Diffusion models, existing methods often overlook the consistency between results generated by quantized models and those from floating-point models. This consistency is paramount for professional applications where both efficiency and output reliability are essential. To ensure that quantized SDM generates high-quality and consistent images, we propose an efficient quantization framework for SDM. Our framework introduces a Serial-to-Parallel pipeline that simultaneously maintains training-inference consistency and ensures optimization stability. Building upon this foundation, we further develop several techniques including multi-timestep activation quantization, time information precalculation, inter-layer distillation, and selective freezing, to achieve high-fidelity generation in comparison to floating-point models while maintaining quantization efficiency. Through comprehensive evaluation across multiple Stable Diffusion variants (v1-4, v2-1, XL 1.0, and v3), our method demonstrates superior performance over state-of-the-art approaches with shorter training times. Under W4A8 quantization settings, we achieve significant improvements in both distribution similarity and visual fidelity, while preserving a high image quality.
Enhancing Virtual Try-On with Synthetic Pairs and Error-Aware Noise Scheduling CVPR 2025
Given an isolated garment image in a canonical product view and a separate image of a person, the virtual try-on task aims to generate a new image of the person wearing the target garment. Prior virtual try-on works face two major challenges in achieving this goal: a) the paired (human, garment) training data has limited availability; b) generating textures on the human that perfectly match that of the prompted garment is difficult, often resulting in distorted text and faded textures. Our work explores ways to tackle these issues through both synthetic data as well as model refinement. We introduce a garment extraction model that generates (human, synthetic garment) pairs from a single image of a clothed individual. The synthetic pairs can then be used to augment the training of virtual try-on. We also propose an Error-Aware Refinement-based Schr\"odinger Bridge (EARSB) that surgically targets localized generation errors for correcting the output of a base virtual try-on model. To identify likely errors, we propose a weakly-supervised error classifier that localizes regions for refinement, subsequently augmenting the Schr\"odinger Bridge's noise schedule with its confidence heatmap. Experiments on VITON-HD and DressCode-Upper demonstrate that our synthetic data augmentation enhances the performance of prior work, while EARSB improves the overall image quality. In user studies, our model is preferred by the users in an average of 59% of cases.
comment: Accepted in CVPR 2025
LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation
CLIP is a foundational multimodal model that aligns image and text features into a shared representation space via contrastive learning on large-scale image-text pairs. Its effectiveness primarily stems from the use of natural language as rich supervision. Motivated by the remarkable advancements in large language models (LLMs), this work explores how LLMs' superior text understanding and extensive open-world knowledge can enhance CLIP's capability, especially for processing longer and more complex image captions. We propose an efficient post-training strategy that integrates LLMs into pretrained CLIP. To address the challenge posed by the autoregressive nature of LLMs, we introduce a caption-to-caption contrastive fine-tuning framework, significantly enhancing the discriminative quality of LLM outputs. Extensive experiments demonstrate that our approach outperforms LoRA-based methods, achieving nearly fourfold faster training with superior performance. Furthermore, we validate substantial improvements over state-of-the-art models such as CLIP, EVA02, and SigLip2 across various zero-shot multimodal retrieval tasks, cross-lingual retrieval tasks, and multimodal language model pretraining.
VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling
In this work, we systematically study music generation conditioned solely on the video. First, we present a large-scale dataset comprising 360K video-music pairs, including various genres such as movie trailers, advertisements, and documentaries. Furthermore, we propose VidMuse, a simple framework for generating music aligned with video inputs. VidMuse stands out by producing high-fidelity music that is both acoustically and semantically aligned with the video. By incorporating local and global visual cues, VidMuse enables the creation of musically coherent audio tracks that consistently match the video content through Long-Short-Term modeling. Through extensive experiments, VidMuse outperforms existing models in terms of audio quality, diversity, and audio-visual alignment. The code and datasets are available at https://vidmuse.github.io/.
comment: The code and datasets are available at https://github.com/ZeyueT/VidMuse/
Enhancing Target-unspecific Tasks through a Features Matrix ICML 2025
Recent developments in prompt learning of large vision-language models have significantly improved performance in target-specific tasks. However, these prompt optimizing methods often struggle to tackle the target-unspecific or generalizable tasks effectively. It may be attributed to the fact that overfitting training causes the model to forget its general knowledge having strong promotion on target-unspecific tasks. To alleviate this issue, we propose a novel Features Matrix (FM) regularization approach designed to enhance these models on target-unspecific tasks. Our method extracts and leverages general knowledge, shaping a Features Matrix (FM). Specifically, the FM captures the semantics of diverse inputs from a deep and fine perspective, preserving essential general knowledge, which mitigates the risk of overfitting. Representative evaluations demonstrate that: 1) the FM is compatible with existing frameworks as a generic and flexible module, and 2) the FM significantly showcases its effectiveness in enhancing target-unspecific tasks, achieving state-of-the-art performance.
comment: ICML 2025
XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis 3DV 2025
Comprehensive testing of autonomous systems through simulation is essential to ensure the safety of autonomous driving vehicles. This requires the generation of safety-critical scenarios that extend beyond the limitations of real-world data collection, as many of these scenarios are rare or rarely encountered on public roads. However, evaluating most existing novel view synthesis (NVS) methods relies on sporadic sampling of image frames from the training data, comparing the rendered images with ground-truth images. Unfortunately, this evaluation protocol falls short of meeting the actual requirements in closed-loop simulations. Specifically, the true application demands the capability to render novel views that extend beyond the original trajectory (such as cross-lane views), which are challenging to capture in the real world. To address this, this paper presents a synthetic dataset for novel driving view synthesis evaluation, which is specifically designed for autonomous driving simulations. This unique dataset includes testing images captured by deviating from the training trajectory by $1-4$ meters. It comprises six sequences that cover various times and weather conditions. Each sequence contains $450$ training images, $120$ testing images, and their corresponding camera poses and intrinsic parameters. Leveraging this novel dataset, we establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multicamera settings. The experimental findings underscore the significant gap in current approaches, revealing their inadequate ability to fulfill the demanding prerequisites of cross-lane or closed-loop simulation.
comment: Accepted to 3DV 2025, project page: https://3d-aigc.github.io/XLD/
Bayesian computation with generative diffusion models by Multilevel Monte Carlo
Generative diffusion models have recently emerged as a powerful strategy to perform stochastic sampling in Bayesian inverse problems, delivering remarkably accurate solutions for a wide range of challenging applications. However, diffusion models often require a large number of neural function evaluations per sample in order to deliver accurate posterior samples. As a result, using diffusion models as stochastic samplers for Monte Carlo integration in Bayesian computation can be highly computationally expensive, particularly in applications that require a substantial number of Monte Carlo samples for conducting uncertainty quantification analyses. This cost is especially high in large-scale inverse problems such as computational imaging, which rely on large neural networks that are expensive to evaluate. With quantitative imaging applications in mind, this paper presents a Multilevel Monte Carlo strategy that significantly reduces the cost of Bayesian computation with diffusion models. This is achieved by exploiting cost-accuracy trade-offs inherent to diffusion models to carefully couple models of different levels of accuracy in a manner that significantly reduces the overall cost of the calculation, without reducing the final accuracy. The proposed approach achieves a $4\times$-to-$8\times$ reduction in computational cost w.r.t. standard techniques across three benchmark imaging problems.
comment: 13 images
Ming-Lite-Uni: Advancements in Unified Architecture for Natural Multimodal Interaction
We introduce Ming-Lite-Uni, an open-source multimodal framework featuring a newly designed unified visual generator and a native multimodal autoregressive model tailored for unifying vision and language. Specifically, this project provides an open-source implementation of the integrated MetaQueries and M2-omni framework, while introducing the novel multi-scale learnable tokens and multi-scale representation alignment strategy. By leveraging a fixed MLLM and a learnable diffusion model, Ming-Lite-Uni enables native multimodal AR models to perform both text-to-image generation and instruction based image editing tasks, expanding their capabilities beyond pure visual understanding. Our experimental results demonstrate the strong performance of Ming-Lite-Uni and illustrate the impressive fluid nature of its interactive process. All code and model weights are open-sourced to foster further exploration within the community. Notably, this work aligns with concurrent multimodal AI milestones - such as ChatGPT-4o with native image generation updated in March 25, 2025 - underscoring the broader significance of unified models like Ming-Lite-Uni on the path toward AGI. Ming-Lite-Uni is in alpha stage and will soon be further refined.
comment: https://github.com/inclusionAI/Ming/tree/main/Ming-unify
Question-Answering Dense Video Events SIGIR'25
This paper presents question-answering on dense video events, a novel task that answers and grounds dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events over extended periods of time. To facilitate the study, we construct DeVE-QA -- a dataset featuring 78K questions about 26K events on 10.6K long videos. Our benchmarking shows that state-of-the-art MLLMs struggle on DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.8% and 2.1% for G(round)QA accuracy on DeVE-QA~and NExT-GQA, respectively. Our data and code will be released upon acceptance.
comment: Accepted to SIGIR'25
XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models ACL 2024
The latest breakthroughs in large vision-language models, such as Bard and GPT-4, have showcased extraordinary abilities in performing a wide range of tasks. Such models are trained on massive datasets comprising billions of public image-text pairs with diverse tasks. However, their performance on task-specific domains, such as radiology, is still under-investigated and potentially limited due to a lack of sophistication in understanding biomedical images. On the other hand, conversational medical models have exhibited remarkable success but have mainly focused on text-based analysis. In this paper, we introduce XrayGPT, a novel conversational medical vision-language model that can analyze and answer open-ended questions about chest radiographs. Specifically, we align both medical visual encoder (MedClip) with a fine-tuned large language model (Vicuna), using a simple linear transformation. This alignment enables our model to possess exceptional visual conversation abilities, grounded in a deep understanding of radiographs and medical domain knowledge. To enhance the performance of LLMs in the medical context, we generate ~217k interactive and high-quality summaries from free-text radiology reports. These summaries serve to enhance the performance of LLMs through the fine-tuning process. Our approach opens up new avenues the research for advancing the automated analysis of chest radiographs. Our open-source demos, models, and instruction sets are available at: https://github.com/mbzuai-oryx/XrayGPT.
comment: Accepted at ACL 2024-BIONLP Workshop. Code: https://github.com/mbzuai-oryx/XrayGPT
Deep Learning for Sea Surface Temperature Reconstruction under Cloud Occlusion
Sea Surface Temperature (SST) reconstructions from satellite images affected by cloud gaps have been extensively documented in the past three decades. Here we describe several Machine Learning models to fill the cloud-occluded areas starting from MODIS Aqua nighttime L3 images. To tackle this challenge, we employed a type of Convolutional Neural Network model (U-net) to reconstruct cloud-covered portions of satellite imagery while preserving the integrity of observed values in cloud-free areas. We demonstrate the outstanding precision of U-net with respect to available products done using OI interpolation algorithms. Our best-performing architecture show 50% lower root mean square errors over established gap-filling methods.
Illumination and Shadows in Head Rotation: experiments with Denoising Diffusion Models
Accurately modeling the effects of illumination and shadows during head rotation is critical in computer vision for enhancing image realism and reducing artifacts. This study delves into the latent space of denoising diffusion models to identify compelling trajectories that can express continuous head rotation under varying lighting conditions. A key contribution of our work is the generation of additional labels from the CelebA dataset,categorizing images into three groups based on prevalent illumination direction: left, center, and right. These labels play a crucial role in our approach, enabling more precise manipulations and improved handling of lighting variations. Leveraging a recent embedding technique for Denoising Diffusion Implicit Models (DDIM), our method achieves noteworthy manipulations, encompassing a wide rotation angle of $\pm 30$ degrees, while preserving individual distinct characteristics even under challenging illumination conditions. Our methodology involves computing trajectories that approximate clouds of latent representations of dataset samples with different yaw rotations through linear regression. Specific trajectories are obtained by analyzing subsets of data that share significant attributes with the source image, including light direction. Notably, our approach does not require any specific training of the generative model for the task of rotation; we merely compute and follow specific trajectories in the latent space of a pre-trained face generation model. This article showcases the potential of our approach and its current limitations through a qualitative discussion of notable examples. This study contributes to the ongoing advancements in representation learning and the semantic investigation of the latent space of generative models.
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
mWhisper-Flamingo for Multilingual Audio-Visual Noise-Robust Speech Recognition
Audio-Visual Speech Recognition (AVSR) combines lip-based video with audio and can improve performance in noise, but most methods are trained only on English data. One limitation is the lack of large-scale multilingual video data, which makes it hard to train models from scratch. In this work, we propose mWhisper-Flamingo for multilingual AVSR which combines the strengths of a pre-trained audio model (Whisper) and video model (AV-HuBERT). To enable better multi-modal integration and improve the noisy multilingual performance, we introduce decoder modality dropout where the model is trained both on paired audio-visual inputs and separate audio/visual inputs. mWhisper-Flamingo achieves state-of-the-art WER on MuAViC, an AVSR dataset of 9 languages. Audio-visual mWhisper-Flamingo consistently outperforms audio-only Whisper on all languages in noisy conditions.
comment: Accepted in Signal Processing Letters. Code at https://github.com/roudimit/whisper-flamingo
MultiSensor-Home: A Wide-area Multi-modal Multi-view Dataset for Action Recognition and Transformer-based Sensor Fusion
Multi-modal multi-view action recognition is a rapidly growing field in computer vision, offering significant potential for applications in surveillance. However, current datasets often fail to address real-world challenges such as wide-area distributed settings, asynchronous data streams, and the lack of frame-level annotations. Furthermore, existing methods face difficulties in effectively modeling inter-view relationships and enhancing spatial feature learning. In this paper, we introduce the MultiSensor-Home dataset, a novel benchmark designed for comprehensive action recognition in home environments, and also propose the Multi-modal Multi-view Transformer-based Sensor Fusion (MultiTSF) method. The proposed MultiSensor-Home dataset features untrimmed videos captured by distributed sensors, providing high-resolution RGB and audio data along with detailed multi-view frame-level action labels. The proposed MultiTSF method leverages a Transformer-based fusion mechanism to dynamically model inter-view relationships. Furthermore, the proposed method integrates a human detection module to enhance spatial feature learning, guiding the model to prioritize frames with human activity to enhance action the recognition accuracy. Experiments on the proposed MultiSensor-Home and the existing MM-Office datasets demonstrate the superiority of MultiTSF over the state-of-the-art methods. Quantitative and qualitative results highlight the effectiveness of the proposed method in advancing real-world multi-modal multi-view action recognition. The source code is available at https://github.com/thanhhff/MultiTSF.
comment: The 19th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2025)
Advances in Automated Fetal Brain MRI Segmentation and Biometry: Insights from the FeTA 2024 Challenge
Accurate fetal brain tissue segmentation and biometric analysis are essential for studying brain development in utero. The FeTA Challenge 2024 advanced automated fetal brain MRI analysis by introducing biometry prediction as a new task alongside tissue segmentation. For the first time, our diverse multi-centric test set included data from a new low-field (0.55T) MRI dataset. Evaluation metrics were also expanded to include the topology-specific Euler characteristic difference (ED). Sixteen teams submitted segmentation methods, most of which performed consistently across both high- and low-field scans. However, longitudinal trends indicate that segmentation accuracy may be reaching a plateau, with results now approaching inter-rater variability. The ED metric uncovered topological differences that were missed by conventional metrics, while the low-field dataset achieved the highest segmentation scores, highlighting the potential of affordable imaging systems when paired with high-quality reconstruction. Seven teams participated in the biometry task, but most methods failed to outperform a simple baseline that predicted measurements based solely on gestational age, underscoring the challenge of extracting reliable biometric estimates from image data alone. Domain shift analysis identified image quality as the most significant factor affecting model generalization, with super-resolution pipelines also playing a substantial role. Other factors, such as gestational age, pathology, and acquisition site, had smaller, though still measurable, effects. Overall, FeTA 2024 offers a comprehensive benchmark for multi-class segmentation and biometry estimation in fetal brain MRI, underscoring the need for data-centric approaches, improved topological evaluation, and greater dataset diversity to enable clinically robust and generalizable AI tools.
End-to-end Surface Optimization for Light Control
Designing a freeform surface to reflect or refract light to achieve a target distribution is a challenging inverse problem. In this paper, we propose an end-to-end optimization strategy for an optical surface mesh. Our formulation leverages a novel differentiable rendering model, and is directly driven by the difference between the resulting light distribution and the target distribution. We also enforce geometric constraints related to fabrication requirements, to facilitate CNC milling and polishing of the designed surface. To address the issue of local minima, we formulate a face-based optimal transport problem between the current mesh and the target distribution, which makes effective large changes to the surface shape. The combination of our optimal transport update and rendering-guided optimization produces an optical surface design with a resulting image closely resembling the target, while the geometric constraints in our optimization help to ensure consistency between the rendering model and the final physical results. The effectiveness of our algorithm is demonstrated on a variety of target images using both simulated rendering and physical prototypes.
comment: This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Graphics, https://doi.org/10.1145/3732284
EcoWeedNet: A Lightweight and Automated Weed Detection Method for Sustainable Next-Generation Agricultural Consumer Electronics
Sustainable agriculture plays a crucial role in ensuring world food security for consumers. A critical challenge faced by sustainable precision agriculture is weed growth, as weeds compete for essential resources with crops, such as water, soil nutrients, and sunlight, which notably affect crop yields. The adoption of automated computer vision technologies and ground agricultural consumer electronic vehicles in precision agriculture offers sustainable, low-carbon solutions. However, prior works suffer from issues such as low accuracy and precision, as well as high computational expense. This work proposes EcoWeedNet, a novel model that enhances weed detection performance without introducing significant computational complexity, aligning with the goals of low-carbon agricultural practices. The effectiveness of the proposed model is demonstrated through comprehensive experiments on the CottonWeedDet12 benchmark dataset, which reflects real-world scenarios. EcoWeedNet achieves performance comparable to that of large models (mAP@0.5 = 95.2%), yet with significantly fewer parameters (approximately 4.21% of the parameters of YOLOv4), lower computational complexity and better computational efficiency 6.59% of the GFLOPs of YOLOv4). These key findings indicate EcoWeedNet's deployability on low-power consumer hardware, lower energy consumption, and hence reduced carbon footprint, thereby emphasizing the application prospects of EcoWeedNet in next-generation sustainable agriculture. These findings provide the way forward for increased application of environmentally-friendly agricultural consumer technologies.
Stereo Anywhere: Robust Zero-Shot Deep Stereo Matching Even Where Either Stereo or Mono Fail CVPR 2025
We introduce Stereo Anywhere, a novel stereo-matching framework that combines geometric constraints with robust priors from monocular depth Vision Foundation Models (VFMs). By elegantly coupling these complementary worlds through a dual-branch architecture, we seamlessly integrate stereo matching with learned contextual cues. Following this design, our framework introduces novel cost volume fusion mechanisms that effectively handle critical challenges such as textureless regions, occlusions, and non-Lambertian surfaces. Through our novel optical illusion dataset, MonoTrap, and extensive evaluation across multiple benchmarks, we demonstrate that our synthetic-only trained model achieves state-of-the-art results in zero-shot generalization, significantly outperforming existing solutions while showing remarkable robustness to challenging cases such as mirrors and transparencies.
comment: CVPR 2025. Code: https://github.com/bartn8/stereoanywhere - Project page: https://stereoanywhere.github.io/
Weakly-supervised Audio Temporal Forgery Localization via Progressive Audio-language Co-learning Network IJCAI2025
Audio temporal forgery localization (ATFL) aims to find the precise forgery regions of the partial spoof audio that is purposefully modified. Existing ATFL methods rely on training efficient networks using fine-grained annotations, which are obtained costly and challenging in real-world scenarios. To meet this challenge, in this paper, we propose a progressive audio-language co-learning network (LOCO) that adopts co-learning and self-supervision manners to prompt localization performance under weak supervision scenarios. Specifically, an audio-language co-learning module is first designed to capture forgery consensus features by aligning semantics from temporal and global perspectives. In this module, forgery-aware prompts are constructed by using utterance-level annotations together with learnable prompts, which can incorporate semantic priors into temporal content features dynamically. In addition, a forgery localization module is applied to produce forgery proposals based on fused forgery-class activation sequences. Finally, a progressive refinement strategy is introduced to generate pseudo frame-level labels and leverage supervised semantic contrastive learning to amplify the semantic distinction between real and fake content, thereby continuously optimizing forgery-aware features. Extensive experiments show that the proposed LOCO achieves SOTA performance on three public benchmarks.
comment: 9pages, 5figures. This paper has been accepted for IJCAI2025
DA-Mamba: Domain Adaptive Hybrid Mamba-Transformer Based One-Stage Object Detection
Recent 2D CNN-based domain adaptation approaches struggle with long-range dependencies due to limited receptive fields, making it difficult to adapt to target domains with significant spatial distribution changes. While transformer-based domain adaptation methods better capture distant relationships through self-attention mechanisms that facilitate more effective cross-domain feature alignment, their quadratic computational complexity makes practical deployment challenging for object detection tasks across diverse domains. Inspired by the global modeling and linear computation complexity of the Mamba architecture, we present the first domain-adaptive Mamba-based one-stage object detection model, termed DA-Mamba. Specifically, we combine Mamba's efficient state-space modeling with attention mechanisms to address domain-specific spatial and channel-wise variations. Our design leverages domain-adaptive spatial and channel-wise scanning within the Mamba block to extract highly transferable representations for efficient sequential processing, while cross-attention modules generate long-range, mixed-domain spatial features to enable robust soft alignment across domains. Besides, motivated by the observation that hybrid architectures introduce feature noise in domain adaptation tasks, we propose an entropy-based knowledge distillation framework with margin ReLU, which adaptively refines multi-level representations by suppressing irrelevant activations and aligning uncertainty across source and target domains. Finally, to prevent overfitting caused by the mixed-up features generated through cross-attention mechanisms, we propose entropy-driven gating attention with random perturbations that simultaneously refine target features and enhance model generalization.
FAST: Federated Active Learning with Foundation Models for Communication-efficient Sampling and Training
Federated Active Learning (FAL) has emerged as a promising framework to leverage large quantities of unlabeled data across distributed clients while preserving data privacy. However, real-world deployments remain limited by high annotation costs and communication-intensive sampling processes, particularly in a cross-silo setting, when clients possess substantial local datasets. This paper addresses the crucial question: What is the best practice to reduce communication costs in human-in-the-loop learning with minimal annotator effort? Existing FAL methods typically rely on iterative annotation processes that separate active sampling from federated updates, leading to multiple rounds of expensive communication and annotation. In response, we introduce FAST, a two-pass FAL framework that harnesses foundation models for weak labeling in a preliminary pass, followed by a refinement pass focused exclusively on the most uncertain samples. By leveraging representation knowledge from foundation models and integrating refinement steps into a streamlined workflow, FAST substantially reduces the overhead incurred by iterative active sampling. Extensive experiments on diverse medical and natural image benchmarks demonstrate that FAST outperforms existing FAL methods by an average of 4.36% while reducing communication rounds eightfold under a limited 5% labeling budget.
CLEAR: Cue Learning using Evolution for Accurate Recognition Applied to Sustainability Data Extraction
Large Language Model (LLM) image recognition is a powerful tool for extracting data from images, but accuracy depends on providing sufficient cues in the prompt - requiring a domain expert for specialized tasks. We introduce Cue Learning using Evolution for Accurate Recognition (CLEAR), which uses a combination of LLMs and evolutionary computation to generate and optimize cues such that recognition of specialized features in images is improved. It achieves this by auto-generating a novel domain-specific representation and then using it to optimize suitable textual cues with a genetic algorithm. We apply CLEAR to the real-world task of identifying sustainability data from interior and exterior images of buildings. We investigate the effects of using a variable-length representation compared to fixed-length and show how LLM consistency can be improved by refactoring from categorical to real-valued estimates. We show that CLEAR enables higher accuracy compared to expert human recognition and human-authored prompts in every task with error rates improved by up to two orders of magnitude and an ablation study evincing solution concision.
comment: 9 pages plus 2 pages of supplemental material
RoBridge: A Hierarchical Architecture Bridging Cognition and Execution for General Robotic Manipulation
Operating robots in open-ended scenarios with diverse tasks is a crucial research and application direction in robotics. While recent progress in natural language processing and large multimodal models has enhanced robots' ability to understand complex instructions, robot manipulation still faces the procedural skill dilemma and the declarative skill dilemma in open environments. Existing methods often compromise cognitive and executive capabilities. To address these challenges, in this paper, we propose RoBridge, a hierarchical intelligent architecture for general robotic manipulation. It consists of a high-level cognitive planner (HCP) based on a large-scale pre-trained vision-language model (VLM), an invariant operable representation (IOR) serving as a symbolic bridge, and a generalist embodied agent (GEA). RoBridge maintains the declarative skill of VLM and unleashes the procedural skill of reinforcement learning, effectively bridging the gap between cognition and execution. RoBridge demonstrates significant performance improvements over existing baselines, achieving a 75% success rate on new tasks and an 83% average success rate in sim-to-real generalization using only five real-world data samples per task. This work represents a significant step towards integrating cognitive reasoning with physical execution in robotic systems, offering a new paradigm for general robotic manipulation.
comment: project page: https://abliao.github.io/RoBridge/
MonoForce: Learnable Image-conditioned Physics Engine
We propose a novel model for the prediction of robot trajectories on rough offroad terrain from the onboard camera images. This model enforces the laws of classical mechanics through a physics-aware neural symbolic layer while preserving the ability to learn from large-scale data as it is end-to-end differentiable. The proposed hybrid model integrates a black-box component that predicts robot-terrain interaction forces with a neural-symbolic layer. This layer includes a differentiable physics engine that computes the robot's trajectory by querying these forces at the points of contact with the terrain. As the proposed architecture comprises substantial geometrical and physics priors, the resulting model can also be seen as a learnable physics engine conditioned on real images that delivers $10^4$ trajectories per second. We argue and empirically demonstrate that this architecture reduces the sim-to-real gap and mitigates out-of-distribution sensitivity. The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications including model predictive control, trajectory shooting, supervised and reinforcement learning or SLAM. The codes and data are publicly available.
comment: Code: https://github.com/ctu-vras/monoforce
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
With a growing interest in understanding neural network prediction strategies, Concept Activation Vectors (CAVs) have emerged as a popular tool for modeling human-understandable concepts in the latent space. Commonly, CAVs are computed by leveraging linear classifiers optimizing the separability of latent representations of samples with and without a given concept. However, in this paper we show that such a separability-oriented computation leads to solutions, which may diverge from the actual goal of precisely modeling the concept direction. This discrepancy can be attributed to the significant influence of distractor directions, i.e., signals unrelated to the concept, which are picked up by filters (i.e., weights) of linear models to optimize class-separability. To address this, we introduce pattern-based CAVs, solely focussing on concept signals, thereby providing more accurate concept directions. We evaluate various CAV methods in terms of their alignment with the true concept direction and their impact on CAV applications, including concept sensitivity testing and model correction for shortcut behavior caused by data artifacts. We demonstrate the benefits of pattern-based CAVs using the Pediatric Bone Age, ISIC2019, and FunnyBirds datasets with VGG, ResNet, ReXNet, EfficientNet, and Vision Transformer as model architectures.
Antidote: A Unified Framework for Mitigating LVLM Hallucinations in Counterfactual Presupposition and Object Perception CVPR 2025
Large Vision-Language Models (LVLMs) have achieved impressive results across various cross-modal tasks. However, hallucinations, i.e., the models generating counterfactual responses, remain a challenge. Though recent studies have attempted to alleviate object perception hallucinations, they focus on the models' response generation, and overlooking the task question itself. This paper discusses the vulnerability of LVLMs in solving counterfactual presupposition questions (CPQs), where the models are prone to accept the presuppositions of counterfactual objects and produce severe hallucinatory responses. To this end, we introduce "Antidote", a unified, synthetic data-driven post-training framework for mitigating both types of hallucination above. It leverages synthetic data to incorporate factual priors into questions to achieve self-correction, and decouple the mitigation process into a preference optimization problem. Furthermore, we construct "CP-Bench", a novel benchmark to evaluate LVLMs' ability to correctly handle CPQs and produce factual responses. Applied to the LLaVA series, Antidote can simultaneously enhance performance on CP-Bench by over 50%, POPE by 1.8-3.3%, and CHAIR & SHR by 30-50%, all without relying on external supervision from stronger LVLMs or human feedback and introducing noticeable catastrophic forgetting issues.
comment: Accepted to CVPR 2025
RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance
Conversational AI tools that can generate and discuss clinically correct radiology reports for a given medical image have the potential to transform radiology. Such a human-in-the-loop radiology assistant could facilitate a collaborative diagnostic process, thus saving time and improving the quality of reports. Towards this goal, we introduce RaDialog, the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog. RaDialog effectively integrates visual image features and structured pathology findings with a large language model (LLM) while simultaneously adapting it to a specialized domain using parameter-efficient fine-tuning. To keep the conversational abilities of the underlying LLM, we propose a comprehensive, semi-automatically labeled, image-grounded instruct dataset for chest X-ray radiology tasks. By training with this dataset, our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions, serving as a foundational step toward clinical dialog systems. Our code is available on github: https://github.com/ChantalMP/RaDialog.
comment: Accepted for publication at MIDL 2025
Replace Anyone in Videos
The field of controllable human-centric video generation has witnessed remarkable progress, particularly with the advent of diffusion models. However, achieving precise and localized control over human motion in videos, such as replacing or inserting individuals while preserving desired motion patterns, still remains a formidable challenge. In this work, we present the ReplaceAnyone framework, which focuses on localized human replacement and insertion featuring intricate backgrounds. Specifically, we formulate this task as an image-conditioned video inpainting paradigm with pose guidance, utilizing a unified end-to-end video diffusion architecture that facilitates image-conditioned video inpainting within masked regions. To prevent shape leakage and enable granular local control, we introduce diverse mask forms involving both regular and irregular shapes. Furthermore, we implement an enriched visual guidance mechanism to enhance appearance alignment, a hybrid inpainting encoder to further preserve the detailed background information in the masked video, and a two-phase optimization methodology to simplify the training difficulty. ReplaceAnyone enables seamless replacement or insertion of characters while maintaining the desired pose motion and reference appearance within a single framework. Extensive experimental results demonstrate the effectiveness of our method in generating realistic and coherent video content. The proposed ReplaceAnyone can be seamlessly applied not only to traditional 3D-UNet base models but also to DiT-based video models such as Wan2.1. The code will be available at https://github.com/ali-vilab/UniAnimate-DiT.
Training-Free Sketch-Guided Diffusion with Latent Optimization
Based on recent advanced diffusion models, Text-to-image (T2I) generation models have demonstrated their capabilities to generate diverse and high-quality images. However, leveraging their potential for real-world content creation, particularly in providing users with precise control over the image generation result, poses a significant challenge. In this paper, we propose an innovative training-free pipeline that extends existing text-to-image generation models to incorporate a sketch as an additional condition. To generate new images with a layout and structure closely resembling the input sketch, we find that these core features of a sketch can be tracked with the cross-attention maps of diffusion models. We introduce latent optimization, a method that refines the noisy latent at each intermediate step of the generation process using cross-attention maps to ensure that the generated images adhere closely to the desired structure outlined in the reference sketch. Through latent optimization, our method enhances the accuracy of image generation, offering users greater control and customization options in content creation.
comment: 8 pages
No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves
Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance generation quality of the diffusion transformers. However, existing approaches necessitate to either introduce an additional and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation Alignment (SRA), a simple yet straightforward method that obtain representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in earlier layer with higher noise to that in later layer with lower noise to progressively enhance the overall representation learning during only generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that heavily dependent on powerful external representation priors.
comment: Self-Representation Alignment for Diffusion Transformers
LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition
In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.
comment: 8 pages, 6 figures
TranSplat: Lighting-Consistent Cross-Scene Object Transfer with 3D Gaussian Splatting
We present TranSplat, a 3D scene rendering algorithm that enables realistic cross-scene object transfer (from a source to a target scene) based on the Gaussian Splatting framework. Our approach addresses two critical challenges: (1) precise 3D object extraction from the source scene, and (2) faithful relighting of the transferred object in the target scene without explicit material property estimation. TranSplat fits a splatting model to the source scene, using 2D object masks to drive fine-grained 3D segmentation. Following user-guided insertion of the object into the target scene, along with automatic refinement of position and orientation, TranSplat derives per-Gaussian radiance transfer functions via spherical harmonic analysis to adapt the object's appearance to match the target scene's lighting environment. This relighting strategy does not require explicitly estimating physical scene properties such as BRDFs. Evaluated on several synthetic and real-world scenes and objects, TranSplat yields excellent 3D object extractions and relighting performance compared to recent baseline methods and visually convincing cross-scene object transfers. We conclude by discussing the limitations of the approach.
Enhancing Test Time Adaptation with Few-shot Guidance
Deep neural networks often encounter significant performance drops while facing with domain shifts between training (source) and test (target) data. To address this issue, Test Time Adaptation (TTA) methods have been proposed to adapt pre-trained source model to handle out-of-distribution streaming target data. Although these methods offer some relief, they lack a reliable mechanism for domain shift correction, which can often be erratic in real-world applications. In response, we develop Few-Shot Test Time Adaptation (FS-TTA), a novel and practical setting that utilizes a few-shot support set on top of TTA. Adhering to the principle of few inputs, big gains, FS-TTA reduces blind exploration in unseen target domains. Furthermore, we propose a two-stage framework to tackle FS-TTA, including (i) fine-tuning the pre-trained source model with few-shot support set, along with using feature diversity augmentation module to avoid overfitting, (ii) implementing test time adaptation based on prototype memory bank guidance to produce high quality pseudo-label for model adaptation. Through extensive experiments on three cross-domain classification benchmarks, we demonstrate the superior performance and reliability of our FS-TTA and framework.
comment: 17 pages, 8 figures
Advancements and limitations of LLMs in replicating human color-word associations
Color-word associations play a fundamental role in human cognition and design applications. Large Language Models (LLMs) have become widely available and have demonstrated intelligent behaviors in various benchmarks with natural conversation skills. However, their ability to replicate human color-word associations remains understudied. We compared multiple generations of LLMs (from GPT-3 to GPT-4o) against human color-word associations using data collected from over 10,000 Japanese participants, involving 17 colors and 80 words (10 word from eight categories) in Japanese. Our findings reveal a clear progression in LLM performance across generations, with GPT-4o achieving the highest accuracy in predicting the best voted word for each color and category. However, the highest median performance was approximately 50% even for GPT-4o with visual inputs (chance level of 10%). Moreover, we found performance variations across word categories and colors: while LLMs tended to excel in categories such as Rhythm and Landscape, they struggled with categories such as Emotions. Interestingly, color discrimination ability estimated from our color-word association data showed high correlation with human color discrimination patterns, consistent with previous studies. Thus, despite reasonable alignment in basic color discrimination, humans and LLMs still diverge systematically in the words they assign to those colors. Our study highlights both the advancements in LLM capabilities and their persistent limitations, raising the possibility of systematic differences in semantic memory structures between humans and LLMs in representing color-word associations.
comment: 20 pages, 7 figures, 3 tables
Image-GS: Content-Adaptive Image Representation via 2D Gaussians SIGGRAPH 2025
Neural image representations have emerged as a promising approach for encoding and rendering visual data. Combined with learning-based workflows, they demonstrate impressive trade-offs between visual fidelity and memory footprint. Existing methods in this domain, however, often rely on fixed data structures that suboptimally allocate memory or compute-intensive implicit models, hindering their practicality for real-time graphics applications. Inspired by recent advancements in radiance field rendering, we introduce Image-GS, a content-adaptive image representation based on 2D Gaussians. Leveraging a custom differentiable renderer, Image-GS reconstructs images by adaptively allocating and progressively optimizing a group of anisotropic, colored 2D Gaussians. It achieves a favorable balance between visual fidelity and memory efficiency across a variety of stylized images frequently seen in graphics workflows, especially for those showing non-uniformly distributed features and in low-bitrate regimes. Moreover, it supports hardware-friendly rapid random access for real-time usage, requiring only 0.3K MACs to decode a pixel. Through error-guided progressive optimization, Image-GS naturally constructs a smooth level-of-detail hierarchy. We demonstrate its versatility with several applications, including texture compression, semantics-aware compression, and joint image compression and restoration.
comment: ACM SIGGRAPH 2025 Conference Proceedings
Probability Density Geodesics in Image Diffusion Latent Space CVPR2025
Diffusion models indirectly estimate the probability density over a data space, which can be used to study its structure. In this work, we show that geodesics can be computed in diffusion latent space, where the norm induced by the spatially-varying inner product is inversely proportional to the probability density. In this formulation, a path that traverses a high density (that is, probable) region of image latent space is shorter than the equivalent path through a low density region. We present algorithms for solving the associated initial and boundary value problems and show how to compute the probability density along the path and the geodesic distance between two points. Using these techniques, we analyze how closely video clips approximate geodesics in a pre-trained image diffusion space. Finally, we demonstrate how these techniques can be applied to training-free image sequence interpolation and extrapolation, given a pre-trained image diffusion model.
comment: CVPR2025
Opening Articulated Structures in the Real World
What does it take to build mobile manipulation systems that can competently operate on previously unseen objects in previously unseen environments? This work answers this question using opening of articulated structures as a mobile manipulation testbed. Specifically, our focus is on the end-to-end performance on this task without any privileged information, i.e. the robot starts at a location with the novel target articulated object in view, and has to approach the object and successfully open it. We first develop a system for this task, and then conduct 100+ end-to-end system tests across 13 real world test sites. Our large-scale study reveals a number of surprising findings: a) modular systems outperform end-to-end learned systems for this task, even when the end-to-end learned systems are trained on 1000+ demonstrations, b) perception, and not precise end-effector control, is the primary bottleneck to task success, and c) state-of-the-art articulation parameter estimation models developed in isolation struggle when faced with robot-centric viewpoints. Overall, our findings highlight the limitations of developing components of the pipeline in isolation and underscore the need for system-level research, providing a pragmatic roadmap for building generalizable mobile manipulation systems. Videos, code, and models are available on the project website: https://arjung128.github.io/opening-articulated-structures/
comment: Accepted to RSS 2025. Project webpage: https://arjung128.github.io/opening-articulated-structures/
DynamicControl: Adaptive Condition Selection for Improved Text-to-Image Generation
To enhance the controllability of text-to-image diffusion models, current ControlNet-like models have explored various control signals to dictate image attributes. However, existing methods either handle conditions inefficiently or use a fixed number of conditions, which does not fully address the complexity of multiple conditions and their potential conflicts. This underscores the need for innovative approaches to manage multiple conditions effectively for more reliable and detailed image synthesis. To address this issue, we propose a novel framework, DynamicControl, which supports dynamic combinations of diverse control signals, allowing adaptive selection of different numbers and types of conditions. Our approach begins with a double-cycle controller that generates an initial real score sorting for all input conditions by leveraging pre-trained conditional generation models and discriminative models. This controller evaluates the similarity between extracted conditions and input conditions, as well as the pixel-level similarity with the source image. Then, we integrate a Multimodal Large Language Model (MLLM) to build an efficient condition evaluator. This evaluator optimizes the ordering of conditions based on the double-cycle controller's score ranking. Our method jointly optimizes MLLMs and diffusion models, utilizing MLLMs' reasoning capabilities to facilitate multi-condition text-to-image (T2I) tasks. The final sorted conditions are fed into a parallel multi-control adapter, which learns feature maps from dynamic visual conditions and integrates them to modulate ControlNet, thereby enhancing control over generated images. Through both quantitative and qualitative comparisons, DynamicControl demonstrates its superiority over existing methods in terms of controllability, generation quality and composability under various conditional controls.
PNE-SGAN: Probabilistic NDT-Enhanced Semantic Graph Attention Network for LiDAR Loop Closure Detection
LiDAR loop closure detection (LCD) is crucial for consistent Simultaneous Localization and Mapping (SLAM) but faces challenges in robustness and accuracy. Existing methods, including semantic graph approaches, often suffer from coarse geometric representations and lack temporal robustness against noise, dynamics, and viewpoint changes. We introduce PNE-SGAN, a Probabilistic NDT-Enhanced Semantic Graph Attention Network, to overcome these limitations. PNE-SGAN enhances semantic graphs by using Normal Distributions Transform (NDT) covariance matrices as rich, discriminative geometric node features, processed via a Graph Attention Network (GAT). Crucially, it integrates graph similarity scores into a probabilistic temporal filtering framework (modeled as an HMM/Bayes filter), incorporating uncertain odometry for motion modeling and utilizing forward-backward smoothing to effectively handle ambiguities. Evaluations on challenging KITTI sequences (00 and 08) demonstrate state-of-the-art performance, achieving Average Precision of 96.2\% and 95.1\%, respectively. PNE-SGAN significantly outperforms existing methods, particularly in difficult bidirectional loop scenarios where others falter. By synergizing detailed NDT geometry with principled probabilistic temporal reasoning, PNE-SGAN offers a highly accurate and robust solution for LiDAR LCD, enhancing SLAM reliability in complex, large-scale environments.
comment: We discovered a critical implementation bug in Section 4 (probabilistic NDT-based semantic graph attention module) that invalidates the results shown in Figures 3-4
MSA-UNet3+: Multi-Scale Attention UNet3+ with New Supervised Prototypical Contrastive Loss for Coronary DSA Image Segmentation
Accurate segmentation of coronary Digital Subtraction Angiography images is essential to diagnose and treat coronary artery diseases. Despite advances in deep learning, challenges such as high intra-class variance and class imbalance limit precise vessel delineation. Most existing approaches for coronary DSA segmentation cannot address these issues. Also, existing segmentation network's encoders do not directly generate semantic embeddings, which could enable the decoder to reconstruct segmentation masks effectively from these well-defined features. We propose a Supervised Prototypical Contrastive Loss that fuses supervised and prototypical contrastive learning to enhance coronary DSA image segmentation. The supervised contrastive loss enforces semantic embeddings in the encoder, improving feature differentiation. The prototypical contrastive loss allows the model to focus on the foreground class while alleviating the high intra-class variance and class imbalance problems by concentrating only on the hard-to-classify background samples. We implement the proposed SPCL loss within an MSA-UNet3+: a Multi-Scale Attention-Enhanced UNet3+ architecture. The architecture integrates key components: a Multi-Scale Attention Encoder and a Multi-Scale Dilated Bottleneck designed to enhance multi-scale feature extraction and a Contextual Attention Fusion Module built to keep fine-grained details while improving contextual understanding. Experiments on a private coronary DSA dataset show that MSA-UNet3+ outperforms state-of-the-art methods, achieving the highest Dice coefficient and F1-score and significantly reducing ASD and ACD. The developed framework provides clinicians with precise vessel segmentation, enabling accurate identification of coronary stenosis and supporting informed diagnostic and therapeutic decisions. The code will be released at https://github.com/rayanmerghani/MSA-UNet3plus.
comment: Work in progress
SceneLLM: Implicit Language Reasoning in LLM for Dynamic Scene Graph Generation
Dynamic scenes contain intricate spatio-temporal information, crucial for mobile robots, UAVs, and autonomous driving systems to make informed decisions. Parsing these scenes into semantic triplets for accurate Scene Graph Generation (SGG) is highly challenging due to the fluctuating spatio-temporal complexity. Inspired by the reasoning capabilities of Large Language Models (LLMs), we propose SceneLLM, a novel framework that leverages LLMs as powerful scene analyzers for dynamic SGG. Our framework introduces a Video-to-Language (V2L) mapping module that transforms video frames into linguistic signals (scene tokens), making the input more comprehensible for LLMs. To better encode spatial information, we devise a Spatial Information Aggregation (SIA) scheme, inspired by the structure of Chinese characters, which encodes spatial data into tokens. Using Optimal Transport (OT), we generate an implicit language signal from the frame-level token sequence that captures the video's spatio-temporal information. To further improve the LLM's ability to process this implicit linguistic input, we apply Low-Rank Adaptation (LoRA) to fine-tune the model. Finally, we use a transformer-based SGG predictor to decode the LLM's reasoning and predict semantic triplets. Our method achieves state-of-the-art results on the Action Genome (AG) benchmark, and extensive experiments show the effectiveness of SceneLLM in understanding and generating accurate dynamic scene graphs.
comment: 29 pages, 7 figures
Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency
Recent advancements in Large Vision-Language Models (LVLMs) have significantly enhanced their ability to integrate visual and linguistic information, achieving near-human proficiency in tasks like object recognition, captioning, and visual question answering. However, current benchmarks typically focus on knowledge-centric evaluations that assess domain-specific expertise, often neglecting the core ability to reason about fundamental mathematical elements and visual concepts. We identify a gap in evaluating elementary-level math problems, which rely on explicit visual dependencies-requiring models to discern, integrate, and reason across multiple images while incorporating commonsense knowledge, all of which are crucial for advancing toward broader AGI capabilities. To address this gap, we introduce VCBENCH, a comprehensive benchmark for multimodal mathematical reasoning with explicit visual dependencies. VCBENCH includes 1,720 problems across six cognitive domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing substantial performance disparities, with even the top models unable to exceed 50% accuracy. Our findings highlight the ongoing challenges in visual-mathematical integration and suggest avenues for future LVLM advancements.The project can be found at https://alibaba-damo-academy.github.io/VCBench/.
comment: Home page: https://alibaba-damo-academy.github.io/VCBench/
VividListener: Expressive and Controllable Listener Dynamics Modeling for Multi-Modal Responsive Interaction
Generating responsive listener head dynamics with nuanced emotions and expressive reactions is crucial for practical dialogue modeling in various virtual avatar animations. Previous studies mainly focus on the direct short-term production of listener behavior. They overlook the fine-grained control over motion variations and emotional intensity, especially in long-sequence modeling. Moreover, the lack of long-term and large-scale paired speaker-listener corpora including head dynamics and fine-grained multi-modality annotations (e.g., text-based expression descriptions, emotional intensity) also limits the application of dialogue modeling.Therefore, we first newly collect a large-scale multi-turn dataset of 3D dyadic conversation containing more than 1.4M valid frames for multi-modal responsive interaction, dubbed ListenerX. Additionally, we propose VividListener, a novel framework enabling fine-grained, expressive and controllable listener dynamics modeling. This framework leverages multi-modal conditions as guiding principles for fostering coherent interactions between speakers and listeners.Specifically, we design the Responsive Interaction Module (RIM) to adaptively represent the multi-modal interactive embeddings. RIM ensures the listener dynamics achieve fine-grained semantic coordination with textual descriptions and adjustments, while preserving expressive reaction with speaker behavior. Meanwhile, we design the Emotional Intensity Tags (EIT) for emotion intensity editing with multi-modal information integration, applying to both text descriptions and listener motion amplitude.Extensive experiments conducted on our newly collected ListenerX dataset demonstrate that VividListener achieves state-of-the-art performance, realizing expressive and controllable listener dynamics.
Token Coordinated Prompt Attention is Needed for Visual Prompting
Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.
Adaptive Aggregation Weights for Federated Segmentation of Pancreas MRI
Federated learning (FL) enables collaborative model training across institutions without sharing sensitive data, making it an attractive solution for medical imaging tasks. However, traditional FL methods, such as Federated Averaging (FedAvg), face difficulties in generalizing across domains due to variations in imaging protocols and patient demographics across institutions. This challenge is particularly evident in pancreas MRI segmentation, where anatomical variability and imaging artifacts significantly impact performance. In this paper, we conduct a comprehensive evaluation of FL algorithms for pancreas MRI segmentation and introduce a novel approach that incorporates adaptive aggregation weights. By dynamically adjusting the contribution of each client during model aggregation, our method accounts for domain-specific differences and improves generalization across heterogeneous datasets. Experimental results demonstrate that our approach enhances segmentation accuracy and reduces the impact of domain shift compared to conventional FL methods while maintaining privacy-preserving capabilities. Significant performance improvements are observed across multiple hospitals (centers).
comment: This paper has been accepted to ISBI 2025
Cyclic Vision-Language Manipulator: Towards Reliable and Fine-Grained Image Interpretation for Automated Report Generation
Despite significant advancements in automated report generation, the opaqueness of text interpretability continues to cast doubt on the reliability of the content produced. This paper introduces a novel approach to identify specific image features in X-ray images that influence the outputs of report generation models. Specifically, we propose Cyclic Vision-Language Manipulator CVLM, a module to generate a manipulated X-ray from an original X-ray and its report from a designated report generator. The essence of CVLM is that cycling manipulated X-rays to the report generator produces altered reports aligned with the alterations pre-injected into the reports for X-ray generation, achieving the term "cyclic manipulation". This process allows direct comparison between original and manipulated X-rays, clarifying the critical image features driving changes in reports and enabling model users to assess the reliability of the generated texts. Empirical evaluations demonstrate that CVLM can identify more precise and reliable features compared to existing explanation methods, significantly enhancing the transparency and applicability of AI-generated reports.
FrontierNet: Learning Visual Cues to Explore
Exploration of unknown environments is crucial for autonomous robots; it allows them to actively reason and decide on what new data to acquire for different tasks, such as mapping, object discovery, and environmental assessment. Existing solutions, such as frontier-based exploration approaches, rely heavily on 3D map operations, which are limited by map quality and, more critically, often overlook valuable context from visual cues. This work aims at leveraging 2D visual cues for efficient autonomous exploration, addressing the limitations of extracting goal poses from a 3D map. We propose a visual-only frontier-based exploration system, with FrontierNet as its core component. FrontierNet is a learning-based model that (i) proposes frontiers, and (ii) predicts their information gain, from posed RGB images enhanced by monocular depth priors. Our approach provides an alternative to existing 3D-dependent goal-extraction approaches, achieving a 15\% improvement in early-stage exploration efficiency, as validated through extensive simulations and real-world experiments. The project is available at https://github.com/cvg/FrontierNet.
Image and Video Processing
Edge-GPU Based Face Tracking for Face Detection and Recognition Acceleration
Cost-effective machine vision systems dedicated to real-time and accurate face detection and recognition in public places are crucial for many modern applications. However, despite their high performance, which could be reached using specialized edge or cloud AI hardware accelerators, there is still room for improvement in throughput and power consumption. This paper aims to suggest a combined hardware-software approach that optimizes face detection and recognition systems on one of the latest edge GPUs, namely NVIDIA Jetson AGX Orin. First, it leverages the simultaneous usage of all its hardware engines to improve processing time. This offers an improvement over previous works where these tasks were mainly allocated automatically and exclusively to the CPU or, to a higher extent, to the GPU core. Additionally, the paper suggests integrating a face tracker module to avoid redundantly running the face recognition algorithm for every frame but only when a new face appears in the scene. The results of extended experiments suggest that simultaneous usage of all the hardware engines that are available in the Orin GPU and tracker integration into the pipeline yield an impressive throughput of 290 FPS (frames per second) on 1920 x 1080 input size frames containing in average of 6 faces/frame. Additionally, a substantial saving of power consumption of around 800 mW was achieved when compared to running the task on the CPU/GPU engines only and without integrating a tracker into the Orin GPU\'92s pipeline. This hardware-codesign approach can pave the way to design high-performance machine vision systems at the edge, critically needed in video monitoring in public places where several nearby cameras are usually deployed for a same scene.
comment: 10 pages, 12 figures
Leveraging Simultaneous Usage of Edge GPU Hardware Engines for Video Face Detection and Recognition
Video face detection and recognition in public places at the edge is required in several applications, such as security reinforcement and contactless access to authorized venues. This paper aims to maximize the simultaneous usage of hardware engines available in edge GPUs nowadays by leveraging the concurrency and pipelining of tasks required for face detection and recognition. This also includes the video decoding task, which is required in most face monitoring applications as the video streams are usually carried via Gbps Ethernet network. This constitutes an improvement over previous works where the tasks are usually allocated to a single engine due to the lack of a unified and automated framework that simultaneously explores all hardware engines. In addition, previously, the input faces were usually embedded in still images or within raw video streams that overlook the burst delay caused by the decoding stage. The results on real-life video streams suggest that simultaneously using all the hardware engines available in the recent NVIDIA edge Orin GPU, higher throughput, and a slight saving of power consumption of around 300 mW, accounting for around 5%, have been achieved while satisfying the real-time performance constraint. The performance gets even higher by considering several video streams simultaneously. Further performance improvement could have been obtained if the number of shuffle layers that were created by the tensor RT framework for the face recognition task was lower. Thus, the paper suggests some hardware improvements to the existing edge GPU processors to enhance their performance even higher.
comment: 10 pages, 11 figures
Securing Immersive 360 Video Streams through Attribute-Based Selective Encryption
Delivering high-quality, secure 360{\deg} video content introduces unique challenges, primarily due to the high bitrates and interactive demands of immersive media. Traditional HTTPS-based methods, although widely used, face limitations in computational efficiency and scalability when securing these high-resolution streams. To address these issues, this paper proposes a novel framework integrating Attribute-Based Encryption (ABE) with selective encryption techniques tailored specifically for tiled 360{\deg} video streaming. Our approach employs selective encryption of frames at varying levels to reduce computational overhead while ensuring robust protection against unauthorized access. Moreover, we explore viewport-adaptive encryption, dynamically encrypting more frames within tiles occupying larger portions of the viewer's field of view. This targeted method significantly enhances security in critical viewing areas without unnecessary overhead in peripheral regions. We deploy and evaluate our proposed approach using the CloudLab testbed, comparing its performance against traditional HTTPS streaming. Experimental results demonstrate that our ABE-based model achieves reduced computational load on intermediate caches, improves cache hit rates, and maintains comparable visual quality to HTTPS, as assessed by Video Multimethod Assessment Fusion (VMAF).
comment: 8 pages plus references, 10 figures, some with subfigures
Detecting Concept Drift in Neural Networks Using Chi-squared Goodness of Fit Testing
As the adoption of deep learning models has grown beyond human capacity for verification, meta-algorithms are needed to ensure reliable model inference. Concept drift detection is a field dedicated to identifying statistical shifts that is underutilized in monitoring neural networks that may encounter inference data with distributional characteristics diverging from their training data. Given the wide variety of model architectures, applications, and datasets, it is important that concept drift detection algorithms are adaptable to different inference scenarios. In this paper, we introduce an application of the $\chi^2$ Goodness of Fit Hypothesis Test as a drift detection meta-algorithm applied to a multilayer perceptron, a convolutional neural network, and a transformer trained for machine vision as they are exposed to simulated drift during inference. To that end, we demonstrate how unexpected drops in accuracy due to concept drift can be detected without directly examining the inference outputs. Our approach enhances safety by ensuring models are continually evaluated for reliability across varying conditions.
comment: 8 pages, 6 figures, 1 table
HYAMD High-Resolution Fundus Image Dataset for age related macular degeneration (AMD) Diagnosis
The Hillel Yaffe Age Related Macular Degeneration (HYAMD) dataset is a longitudinal collection of 1,560 Digital Fundus Images (DFIs) from 325 patients examined at the Hillel Yaffe Medical Center (Hadera, Israel) between 2021 and 2024. The dataset includes an AMD cohort of 147 patients (aged 54-94) with varying stages of AMD and a control group of 190 diabetic retinopathy (DR) patients (aged 24-92). AMD diagnoses were based on comprehensive clinical ophthalmic evaluations, supported by Optical Coherence Tomography (OCT) and OCT angiography. Non-AMD DFIs were sourced from DR patients without concurrent AMD, diagnosed using macular OCT, fluorescein angiography, and widefield imaging. HYAMD provides gold-standard annotations, ensuring AMD labels were assigned following a full clinical assessment. Images were captured with a DRI OCT Triton (Topcon) camera, offering a 45 deg field of view and 1960 x 1934 pixel resolution. To the best of our knowledge, HYAMD is the first open-access retinal dataset from an Israeli sample, designed to support AMD identification using machine learning models.
Enhanced SCanNet with CBAM and Dice Loss for Semantic Change Detection
Semantic Change Detection (SCD) in remote sensing imagery requires accurately identifying land-cover changes across multi-temporal image pairs. Despite substantial advancements, including the introduction of transformer-based architectures, current SCD models continue to struggle with challenges such as noisy inputs, subtle class boundaries, and significant class imbalance. In this study, we propose enhancing the Semantic Change Network (SCanNet) by integrating the Convolutional Block Attention Module (CBAM) and employing Dice loss during training. CBAM sequentially applies channel attention to highlight feature maps with the most meaningful content, followed by spatial attention to pinpoint critical regions within these maps. This sequential approach ensures precise suppression of irrelevant features and spatial noise, resulting in more accurate and robust detection performance compared to attention mechanisms that apply both processes simultaneously or independently. Dice loss, designed explicitly for handling class imbalance, further boosts sensitivity to minority change classes. Quantitative experiments conducted on the SECOND dataset demonstrate consistent improvements. Qualitative analysis confirms these improvements, showing clearer segmentation boundaries and more accurate recovery of small-change regions. These findings highlight the effectiveness of attention mechanisms and Dice loss in improving feature representation and addressing class imbalance in semantic change detection tasks.
comment: 7 pages, 3 figures, conference
A Dataset and Toolkit for Multiparameter Cardiovascular Physiology Sensing on Rings
Smart rings offer a convenient way to continuously and unobtrusively monitor cardiovascular physiological signals. However, a gap remains between the ring hardware and reliable methods for estimating cardiovascular parameters, partly due to the lack of publicly available datasets and standardized analysis tools. In this work, we present $\tau$-Ring, the first open-source ring-based dataset designed for cardiovascular physiological sensing. The dataset comprises photoplethysmography signals (infrared and red channels) and 3-axis accelerometer data collected from two rings (reflective and transmissive optical paths), with 28.21 hours of raw data from 34 subjects across seven activities. $\tau$-Ring encompasses both stationary and motion scenarios, as well as stimulus-evoked abnormal physiological states, annotated with four ground-truth labels: heart rate, respiratory rate, oxygen saturation, and blood pressure. Using our proposed RingTool toolkit, we evaluated three widely-used physics-based methods and four cutting-edge deep learning approaches. Our results show superior performance compared to commercial rings, achieving best MAE values of 5.18 BPM for heart rate, 2.98 BPM for respiratory rate, 3.22\% for oxygen saturation, and 13.33/7.56 mmHg for systolic/diastolic blood pressure estimation. The open-sourced dataset and toolkit aim to foster further research and community-driven advances in ring-based cardiovascular health sensing.
3D Brain MRI Classification for Alzheimer Diagnosis Using CNN with Data Augmentation
A three-dimensional convolutional neural network was developed to classify T1-weighted brain MRI scans as healthy or Alzheimer. The network comprises 3D convolution, pooling, batch normalization, dense ReLU layers, and a sigmoid output. Using stochastic noise injection and five-fold cross-validation, the model achieved test set accuracy of 0.912 and area under the ROC curve of 0.961, an improvement of approximately 0.027 over resizing alone. Sensitivity and specificity both exceeded 0.90. These results align with prior work reporting up to 0.10 gain via synthetic augmentation. The findings demonstrate the effectiveness of simple augmentation for 3D MRI classification and motivate future exploration of advanced augmentation methods and architectures such as 3D U-Net and vision transformers.
Device-Free Localization Using Multi-Link MIMO Channels in Distributed Antenna Networks
This paper presented a novel device-free localization (DFL) framework based on distributed antenna networks (DANs), targeting integrated sensing and communication (ISAC) in future 6G radio access networks (RANs). In the proposed approach, radio tomographic imaging (RTI) leverages the spatial and temporal diversity of multi-link multiple-input multiple-output (MIMO) channels in DANs to improve localization accuracy. Furthermore, a prototype system was developed using software-defined radios (SDRs) operating in the sub-6 GHz band, and comprehensive evaluations were conducted under indoor conditions involving varying node densities and target types. The results demonstrate that the framework achieves sub-meter localization accuracy in most scenarios and maintains robust performance under complex multipath environments. In addition, the use of Bayesian optimization to fine-tune key parameters, such as sparsity and path thickness, led to significant improvements in image reconstruction quality and target estimation accuracy. These results demonstrate the feasibility and effectiveness of DAN-based DFL systems for accurate, robust, and scalable localization.
Convergent Complex Quasi-Newton Proximal Methods for Gradient-Driven Denoisers in Compressed Sensing MRI Reconstruction
In compressed sensing (CS) MRI, model-based methods are pivotal to achieving accurate reconstruction. One of the main challenges in model-based methods is finding an effective prior to describe the statistical distribution of the target image. Plug-and-Play (PnP) and REgularization by Denoising (RED) are two general frameworks that use denoisers as the prior. While PnP/RED methods with convolutional neural networks (CNNs) based denoisers outperform classical hand-crafted priors in CS MRI, their convergence theory relies on assumptions that do not hold for practical CNNs. The recently developed gradient-driven denoisers offer a framework that bridges the gap between practical performance and theoretical guarantees. However, the numerical solvers for the associated minimization problem remain slow for CS MRI reconstruction. This paper proposes a complex quasi-Newton proximal method that achieves faster convergence than existing approaches. To address the complex domain in CS MRI, we propose a modified Hessian estimation method that guarantees Hermitian positive definiteness. Furthermore, we provide a rigorous convergence analysis of the proposed method for nonconvex settings. Numerical experiments on both Cartesian and non-Cartesian sampling trajectories demonstrate the effectiveness and efficiency of our approach.
comment: 12 pages, 10 figures, https://hongtao-argmin.github.io/CQNPM-GD-CSMRI/
Advancing 3D Medical Image Segmentation: Unleashing the Potential of Planarian Neural Networks in Artificial Intelligence
Our study presents PNN-UNet as a method for constructing deep neural networks that replicate the planarian neural network (PNN) structure in the context of 3D medical image data. Planarians typically have a cerebral structure comprising two neural cords, where the cerebrum acts as a coordinator, and the neural cords serve slightly different purposes within the organism's neurological system. Accordingly, PNN-UNet comprises a Deep-UNet and a Wide-UNet as the nerve cords, with a densely connected autoencoder performing the role of the brain. This distinct architecture offers advantages over both monolithic (UNet) and modular networks (Ensemble-UNet). Our outcomes on a 3D MRI hippocampus dataset, with and without data augmentation, demonstrate that PNN-UNet outperforms the baseline UNet and several other UNet variants in image segmentation.
comment: 36 pages, 8 figures, 21 tables
Cross-organ all-in-one parallel compressed sensing magnetic resonance imaging
Recent advances in deep learning-based parallel compressed sensing magnetic resonance imaging (p-CSMRI) have significantly improved reconstruction quality. However, current p-CSMRI methods often require training separate deep neural network (DNN) for each organ due to anatomical variations, creating a barrier to developing generalized medical image reconstruction systems. To address this, we propose CAPNet (cross-organ all-in-one deep unfolding p-CSMRI network), a unified framework that implements a p-CSMRI iterative algorithm via three specialized modules: auxiliary variable module, prior module, and data consistency module. Recognizing that p-CSMRI systems often employ varying sampling ratios for different organs, resulting in organ-specific artifact patterns, we introduce an artifact generation submodule, which extracts and integrates artifact features into the data consistency module to enhance the discriminative capability of the overall network. For the prior module, we design an organ structure-prompt generation submodule that leverages structural features extracted from the segment anything model (SAM) to create cross-organ prompts. These prompts are strategically incorporated into the prior module through an organ structure-aware Mamba submodule. Comprehensive evaluations on a cross-organ dataset confirm that CAPNet achieves state-of-the-art reconstruction performance across multiple anatomical structures using a single unified model. Our code will be published at https://github.com/shibaoshun/CAPNet.
EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events CVPR 2025
Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.
comment: 19 pages, 11 figures, 11 tables. Accepted to CVPR 2025 (Highlight)
Active Sampling for MRI-based Sequential Decision Making
Despite the superior diagnostic capability of Magnetic Resonance Imaging (MRI), its use as a Point-of-Care (PoC) device remains limited by high cost and complexity. To enable such a future by reducing the magnetic field strength, one key approach will be to improve sampling strategies. Previous work has shown that it is possible to make diagnostic decisions directly from k-space with fewer samples. Such work shows that single diagnostic decisions can be made, but if we aspire to see MRI as a true PoC, multiple and sequential decisions are necessary while minimizing the number of samples acquired. We present a novel multi-objective reinforcement learning framework enabling comprehensive, sequential, diagnostic evaluation from undersampled k-space data. Our approach during inference actively adapts to sequential decisions to optimally sample. To achieve this, we introduce a training methodology that identifies the samples that contribute the best to each diagnostic objective using a step-wise weighting reward function. We evaluate our approach in two sequential knee pathology assessment tasks: ACL sprain detection and cartilage thickness loss assessment. Our framework achieves diagnostic performance competitive with various policy-based benchmarks on disease detection, severity quantification, and overall sequential diagnosis, while substantially saving k-space samples. Our approach paves the way for the future of MRI as a comprehensive and affordable PoC device. Our code is publicly available at https://github.com/vios-s/MRI_Sequential_Active_Sampling
comment: Under Review
Text2CT: Towards 3D CT Volume Generation from Free-text Descriptions Using Diffusion Model
Generating 3D CT volumes from descriptive free-text inputs presents a transformative opportunity in diagnostics and research. In this paper, we introduce Text2CT, a novel approach for synthesizing 3D CT volumes from textual descriptions using the diffusion model. Unlike previous methods that rely on fixed-format text input, Text2CT employs a novel prompt formulation that enables generation from diverse, free-text descriptions. The proposed framework encodes medical text into latent representations and decodes them into high-resolution 3D CT scans, effectively bridging the gap between semantic text inputs and detailed volumetric representations in a unified 3D framework. Our method demonstrates superior performance in preserving anatomical fidelity and capturing intricate structures as described in the input text. Extensive evaluations show that our approach achieves state-of-the-art results, offering promising potential applications in diagnostics, and data augmentation.
Tetrahedron-Net for Medical Image Registration
Medical image registration plays a vital role in medical image processing. Extracting expressive representations for medical images is crucial for improving the registration quality. One common practice for this end is constructing a convolutional backbone to enable interactions with skip connections among feature extraction layers. The de facto structure, U-Net-like networks, has attempted to design skip connections such as nested or full-scale ones to connect one single encoder and one single decoder to improve its representation capacity. Despite being effective, it still does not fully explore interactions with a single encoder and decoder architectures. In this paper, we embrace this observation and introduce a simple yet effective alternative strategy to enhance the representations for registrations by appending one additional decoder. The new decoder is designed to interact with both the original encoder and decoder. In this way, it not only reuses feature presentation from corresponding layers in the encoder but also interacts with the original decoder to corporately give more accurate registration results. The new architecture is concise yet generalized, with only one encoder and two decoders forming a ``Tetrahedron'' structure, thereby dubbed Tetrahedron-Net. Three instantiations of Tetrahedron-Net are further constructed regarding the different structures of the appended decoder. Our extensive experiments prove that superior performance can be obtained on several representative benchmarks of medical image registration. Finally, such a ``Tetrahedron'' design can also be easily integrated into popular U-Net-like architectures including VoxelMorph, ViT-V-Net, and TransMorph, leading to consistent performance gains.
Label-efficient Single Photon Images Classification via Active Learning
Single-photon LiDAR achieves high-precision 3D imaging in extreme environments through quantum-level photon detection technology. Current research primarily focuses on reconstructing 3D scenes from sparse photon events, whereas the semantic interpretation of single-photon images remains underexplored, due to high annotation costs and inefficient labeling strategies. This paper presents the first active learning framework for single-photon image classification. The core contribution is an imaging condition-aware sampling strategy that integrates synthetic augmentation to model variability across imaging conditions. By identifying samples where the model is both uncertain and sensitive to these conditions, the proposed method selectively annotates only the most informative examples. Experiments on both synthetic and real-world datasets show that our approach outperforms all baselines and achieves high classification accuracy with significantly fewer labeled samples. Specifically, our approach achieves 97% accuracy on synthetic single-photon data using only 1.5% labeled samples. On real-world data, we maintain 90.63% accuracy with just 8% labeled samples, which is 4.51% higher than the best-performing baseline. This illustrates that active learning enables the same level of classification performance on single-photon images as on classical images, opening doors to large-scale integration of single-photon data in real-world applications.
Deep residual learning with product units
We propose a deep product-unit residual neural network (PURe) that integrates product units into residual blocks to improve the expressiveness and parameter efficiency of deep convolutional networks. Unlike standard summation neurons, product units enable multiplicative feature interactions, potentially offering a more powerful representation of complex patterns. PURe replaces conventional convolutional layers with 2D product units in the second layer of each residual block, eliminating nonlinear activation functions to preserve structural information. We validate PURe on three benchmark datasets. On Galaxy10 DECaLS, PURe34 achieves the highest test accuracy of 84.89%, surpassing the much deeper ResNet152, while converging nearly five times faster and demonstrating strong robustness to Poisson noise. On ImageNet, PURe architectures outperform standard ResNet models at similar depths, with PURe34 achieving a top-1 accuracy of 80.27% and top-5 accuracy of 95.78%, surpassing deeper ResNet variants (ResNet50, ResNet101) while utilizing significantly fewer parameters and computational resources. On CIFAR-10, PURe consistently outperforms ResNet variants across varying depths, with PURe272 reaching 95.01% test accuracy, comparable to ResNet1001 but at less than half the model size. These results demonstrate that PURe achieves a favorable balance between accuracy, efficiency, and robustness. Compared to traditional residual networks, PURe not only achieves competitive classification performance with faster convergence and fewer parameters, but also demonstrates greater robustness to noise. Its effectiveness across diverse datasets highlights the potential of product-unit-based architectures for scalable and reliable deep learning in computer vision.
TS-Diff: Two-Stage Diffusion Model for Low-Light RAW Image Enhancement IJCNN
This paper presents a novel Two-Stage Diffusion Model (TS-Diff) for enhancing extremely low-light RAW images. In the pre-training stage, TS-Diff synthesizes noisy images by constructing multiple virtual cameras based on a noise space. Camera Feature Integration (CFI) modules are then designed to enable the model to learn generalizable features across diverse virtual cameras. During the aligning stage, CFIs are averaged to create a target-specific CFI$^T$, which is fine-tuned using a small amount of real RAW data to adapt to the noise characteristics of specific cameras. A structural reparameterization technique further simplifies CFI$^T$ for efficient deployment. To address color shifts during the diffusion process, a color corrector is introduced to ensure color consistency by dynamically adjusting global color distributions. Additionally, a novel dataset, QID, is constructed, featuring quantifiable illumination levels and a wide dynamic range, providing a comprehensive benchmark for training and evaluation under extreme low-light conditions. Experimental results demonstrate that TS-Diff achieves state-of-the-art performance on multiple datasets, including QID, SID, and ELD, excelling in denoising, generalization, and color consistency across various cameras and illumination levels. These findings highlight the robustness and versatility of TS-Diff, making it a practical solution for low-light imaging applications. Source codes and models are available at https://github.com/CircccleK/TS-Diff
comment: International Joint Conference on Neural Networks (IJCNN)
Fast Sign Retrieval via Sub-band Convolution: An Elementary Extension of Binary Classification
To efficiently compress the sign information of images, we address a sign retrieval problem for the block-wise discrete cosine transformation (DCT): reconstruction of the signs of DCT coefficients from their amplitudes. To this end, we propose a fast sign retrieval method on the basis of binary classification machine learning. We first introduce 3D representations of the amplitudes and signs, where we pack amplitudes/signs belonging to the same frequency band into a 2D slice, referred to as the sub-band block. We then retrieve the signs from the 3D amplitudes via binary classification, where each sign is regarded as a binary label. We implement a binary classification algorithm using convolutional neural networks, which are advantageous for efficiently extracting features in the 3D amplitudes. Experimental results demonstrate that our method achieves accurate sign retrieval with an overwhelmingly low computation cost.
Proxy Prompt: Endowing SAM and SAM 2 with Auto-Interactive-Prompt for Medical Segmentation
In this paper, we aim to address the unmet demand for automated prompting and enhanced human-model interactions of SAM and SAM2 for the sake of promoting their widespread clinical adoption. Specifically, we propose Proxy Prompt (PP), auto-generated by leveraging non-target data with a pre-annotated mask. We devise a novel 3-step context-selection strategy for adaptively selecting the most representative contextual information from non-target data via vision mamba and selective maps, empowering the guiding capability of non-target image-mask pairs for segmentation on target image/video data. To reinforce human-model interactions in PP, we further propose a contextual colorization module via a dual-reverse cross-attention to enhance interactions between target features and contextual-embedding with amplifying distinctive features of user-defined object(s). Via extensive evaluations, our method achieves state-of-the-art performance on four public datasets and yields comparable results with fully-trained models, even when trained with only 16 image masks.
Adaptive Aggregation Weights for Federated Segmentation of Pancreas MRI
Federated learning (FL) enables collaborative model training across institutions without sharing sensitive data, making it an attractive solution for medical imaging tasks. However, traditional FL methods, such as Federated Averaging (FedAvg), face difficulties in generalizing across domains due to variations in imaging protocols and patient demographics across institutions. This challenge is particularly evident in pancreas MRI segmentation, where anatomical variability and imaging artifacts significantly impact performance. In this paper, we conduct a comprehensive evaluation of FL algorithms for pancreas MRI segmentation and introduce a novel approach that incorporates adaptive aggregation weights. By dynamically adjusting the contribution of each client during model aggregation, our method accounts for domain-specific differences and improves generalization across heterogeneous datasets. Experimental results demonstrate that our approach enhances segmentation accuracy and reduces the impact of domain shift compared to conventional FL methods while maintaining privacy-preserving capabilities. Significant performance improvements are observed across multiple hospitals (centers).
comment: This paper has been accepted to ISBI 2025
An automated end-to-end deep learning-based framework for lung cancer diagnosis by detecting and classifying the lung nodules
Lung cancer is a leading cause of cancer-related deaths worldwide, and early detection is crucial for improving patient outcomes. Nevertheless, early diagnosis of cancer is a major challenge, particularly in low-resource settings where access to medical resources and trained radiologists is limited. The objective of this study is to propose an automated end-to-end deep learning-based framework for the early detection and classification of lung nodules, specifically for low-resource settings. The proposed framework consists of three stages: lung segmentation using a modified 3D U-Net named 3D Res-U-Net, nodule detection using YOLO-v5, and classification with a Vision Transformer-based architecture. We evaluated the proposed framework on a publicly available dataset, LUNA16. The proposed framework's performance was measured using the respective domain's evaluation matrices. The proposed framework achieved a 98.82% lung segmentation dice score while detecting the lung nodule with 0.76 mAP@50 from the segmented lung, at a low false-positive rate. The performance of both networks of the proposed framework was compared with other studies and found to outperform them regarding segmentation and detection accuracy. Additionally, our proposed Vision transformer network obtained an accuracy of 93.57%, which is 1.21% higher than the state-of-the-art networks. Our proposed end-to-end deep learning-based framework can effectively segment lungs, and detect and classify lung nodules, specifically in low-resource settings with limited access to radiologists. The proposed framework outperforms existing studies regarding all the respective evaluation metrics. The proposed framework can potentially improve the accuracy and efficiency of lung cancer screening in low-resource settings, ultimately leading to better patient outcomes.
Large Scale MRI Collection and Segmentation of Cirrhotic Liver
Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets. Here, we present CirrMRI600+, the first comprehensive dataset comprising 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted sequences, totaling nearly 40,000 annotated slices) with expert-validated segmentation labels for cirrhotic livers. The dataset includes demographic information, clinical parameters, and histopathological validation where available. Additionally, we provide benchmark results from 11 state-of-the-art deep learning experiments to establish performance standards. CirrMRI600+ enables the development and validation of advanced computational methods for cirrhotic liver analysis, potentially accelerating progress toward automated Cirrhosis visual staging and personalized treatment planning.
MaskAttn-UNet: A Mask Attention-Driven Framework for Universal Low-Resolution Image Segmentation
Low-resolution image segmentation is crucial in real-world applications such as robotics, augmented reality, and large-scale scene understanding, where high-resolution data is often unavailable due to computational constraints. To address this challenge, we propose MaskAttn-UNet, a novel segmentation framework that enhances the traditional U-Net architecture via a mask attention mechanism. Our model selectively emphasizes important regions while suppressing irrelevant backgrounds, thereby improving segmentation accuracy in cluttered and complex scenes. Unlike conventional U-Net variants, MaskAttn-UNet effectively balances local feature extraction with broader contextual awareness, making it particularly well-suited for low-resolution inputs. We evaluate our approach on three benchmark datasets with input images rescaled to 128x128 and demonstrate competitive performance across semantic, instance, and panoptic segmentation tasks. Our results show that MaskAttn-UNet achieves accuracy comparable to state-of-the-art methods at significantly lower computational cost than transformer-based models, making it an efficient and scalable solution for low-resolution segmentation in resource-constrained scenarios.
Integrating AI for Human-Centric Breast Cancer Diagnostics: A Multi-Scale and Multi-View Swin Transformer Framework
Despite advancements in Computer-Aided Diagnosis (CAD) systems, breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Recent breakthroughs in Artificial Intelligence (AI) have shown significant promise in development of advanced Deep Learning (DL) architectures for breast cancer diagnosis through mammography. In this context, the paper focuses on the integration of AI within a Human-Centric workflow to enhance breast cancer diagnostics. Key challenges are, however, largely overlooked such as reliance on detailed tumor annotations and susceptibility to missing views, particularly during test time. To address these issues, we propose a hybrid, multi-scale and multi-view Swin Transformer-based framework (MSMV-Swin) that enhances diagnostic robustness and accuracy. The proposed MSMV-Swin framework is designed to work as a decision-support tool, helping radiologists analyze multi-view mammograms more effectively. More specifically, the MSMV-Swin framework leverages the Segment Anything Model (SAM) to isolate the breast lobe, reducing background noise and enabling comprehensive feature extraction. The multi-scale nature of the proposed MSMV-Swin framework accounts for tumor-specific regions as well as the spatial characteristics of tissues surrounding the tumor, capturing both localized and contextual information. The integration of contextual and localized data ensures that MSMV-Swin's outputs align with the way radiologists interpret mammograms, fostering better human-AI interaction and trust. A hybrid fusion structure is then designed to ensure robustness against missing views, a common occurrence in clinical practice when only a single mammogram view is available.
Multimedia
EchoInk-R1: Exploring Audio-Visual Reasoning in Multimodal LLMs via Reinforcement Learning
Multimodal large language models (MLLMs) have advanced perception across text, vision, and audio, yet they often struggle with structured cross-modal reasoning, particularly when integrating audio and visual signals. We introduce EchoInk-R1, a reinforcement learning framework that enhances such reasoning in MLLMs. Built upon the Qwen2.5-Omni-7B foundation and optimized with Group Relative Policy Optimization (GRPO), EchoInk-R1 tackles multiple-choice question answering over synchronized audio-image pairs. To enable this, we curate AVQA-R1-6K, a dataset pairing such audio-image inputs with multiple-choice questions derived from OmniInstruct-v1. EchoInk-R1-7B achieves 85.77% accuracy on the validation set, outperforming the base model, which scores 80.53%, using only 562 reinforcement learning steps. Beyond accuracy, EchoInk-R1 demonstrates reflective reasoning by revisiting initial interpretations and refining responses when facing ambiguous multimodal inputs. These results suggest that lightweight reinforcement learning fine-tuning enhances cross-modal reasoning in MLLMs. EchoInk-R1 is the first framework to unify audio, visual, and textual modalities for general open-world reasoning via reinforcement learning. Code and data are publicly released to facilitate further research.
Score Distillation Sampling for Audio: Source Separation, Synthesis, and Beyond
We introduce Audio-SDS, a generalization of Score Distillation Sampling (SDS) to text-conditioned audio diffusion models. While SDS was initially designed for text-to-3D generation using image diffusion, its core idea of distilling a powerful generative prior into a separate parametric representation extends to the audio domain. Leveraging a single pretrained model, Audio-SDS enables a broad range of tasks without requiring specialized datasets. In particular, we demonstrate how Audio-SDS can guide physically informed impact sound simulations, calibrate FM-synthesis parameters, and perform prompt-specified source separation. Our findings illustrate the versatility of distillation-based methods across modalities and establish a robust foundation for future work using generative priors in audio tasks.
comment: See the project website at https://research.nvidia.com/labs/toronto-ai/Audio-SDS/
"I Can See Forever!": Evaluating Real-time VideoLLMs for Assisting Individuals with Visual Impairments
The visually impaired population, especially the severely visually impaired, is currently large in scale, and daily activities pose significant challenges for them. Although many studies use large language and vision-language models to assist the blind, most focus on static content and fail to meet real-time perception needs in dynamic and complex environments, such as daily activities. To provide them with more effective intelligent assistance, it is imperative to incorporate advanced visual understanding technologies. Although real-time vision and speech interaction VideoLLMs demonstrate strong real-time visual understanding, no prior work has systematically evaluated their effectiveness in assisting visually impaired individuals. In this work, we conduct the first such evaluation. First, we construct a benchmark dataset (VisAssistDaily), covering three categories of assistive tasks for visually impaired individuals: Basic Skills, Home Life Tasks, and Social Life Tasks. The results show that GPT-4o achieves the highest task success rate. Next, we conduct a user study to evaluate the models in both closed-world and open-world scenarios, further exploring the practical challenges of applying VideoLLMs in assistive contexts. One key issue we identify is the difficulty current models face in perceiving potential hazards in dynamic environments. To address this, we build an environment-awareness dataset named SafeVid and introduce a polling mechanism that enables the model to proactively detect environmental risks. We hope this work provides valuable insights and inspiration for future research in this field.
comment: 12 pages, 6 figures
Securing Immersive 360 Video Streams through Attribute-Based Selective Encryption
Delivering high-quality, secure 360{\deg} video content introduces unique challenges, primarily due to the high bitrates and interactive demands of immersive media. Traditional HTTPS-based methods, although widely used, face limitations in computational efficiency and scalability when securing these high-resolution streams. To address these issues, this paper proposes a novel framework integrating Attribute-Based Encryption (ABE) with selective encryption techniques tailored specifically for tiled 360{\deg} video streaming. Our approach employs selective encryption of frames at varying levels to reduce computational overhead while ensuring robust protection against unauthorized access. Moreover, we explore viewport-adaptive encryption, dynamically encrypting more frames within tiles occupying larger portions of the viewer's field of view. This targeted method significantly enhances security in critical viewing areas without unnecessary overhead in peripheral regions. We deploy and evaluate our proposed approach using the CloudLab testbed, comparing its performance against traditional HTTPS streaming. Experimental results demonstrate that our ABE-based model achieves reduced computational load on intermediate caches, improves cache hit rates, and maintains comparable visual quality to HTTPS, as assessed by Video Multimethod Assessment Fusion (VMAF).
comment: 8 pages plus references, 10 figures, some with subfigures
Automatic Music Transcription using Convolutional Neural Networks and Constant-Q transform
Automatic music transcription (AMT) is the problem of analyzing an audio recording of a musical piece and detecting notes that are being played. AMT is a challenging problem, particularly when it comes to polyphonic music. The goal of AMT is to produce a score representation of a music piece, by analyzing a sound signal containing multiple notes played simultaneously. In this work, we design a processing pipeline that can transform classical piano audio files in .wav format into a music score representation. The features from the audio signals are extracted using the constant-Q transform, and the resulting coefficients are used as an input to the convolutional neural network (CNN) model.
comment: 6 pages
HDiffTG: A Lightweight Hybrid Diffusion-Transformer-GCN Architecture for 3D Human Pose Estimation IJCNN
We propose HDiffTG, a novel 3D Human Pose Estimation (3DHPE) method that integrates Transformer, Graph Convolutional Network (GCN), and diffusion model into a unified framework. HDiffTG leverages the strengths of these techniques to significantly improve pose estimation accuracy and robustness while maintaining a lightweight design. The Transformer captures global spatiotemporal dependencies, the GCN models local skeletal structures, and the diffusion model provides step-by-step optimization for fine-tuning, achieving a complementary balance between global and local features. This integration enhances the model's ability to handle pose estimation under occlusions and in complex scenarios. Furthermore, we introduce lightweight optimizations to the integrated model and refine the objective function design to reduce computational overhead without compromising performance. Evaluation results on the Human3.6M and MPI-INF-3DHP datasets demonstrate that HDiffTG achieves state-of-the-art (SOTA) performance on the MPI-INF-3DHP dataset while excelling in both accuracy and computational efficiency. Additionally, the model exhibits exceptional robustness in noisy and occluded environments. Source codes and models are available at https://github.com/CirceJie/HDiffTG
comment: 8 pages, 4 figures, International Joint Conference on Neural Networks (IJCNN)
RFNNS: Robust Fixed Neural Network Steganography with Popular Deep Generative Models
Image steganography is a technique that conceals secret information in a cover image to achieve covert communication. Recent research has demonstrated that Fixed Neural Network Steganography (FNNS) exhibits significant practical advantages, as it enables stable and efficient steganographic embedding and extraction without requiring neural network training. However, the stego image generated by existing FNNS methods suffers from considerable distortion and exhibits poor robustness, severely reducing the security and practicality of steganography. To address the aforementioned issues, we propose a Robust Fixed Neural Network Steganography (RFNNS). In RFNNS, we introduce a texture-aware localization technique to add perturbations carrying secret image information to complex texture areas that are less perceptible to the human eye, thereby ensuring the quality of the stego image. To enhance robustness, a robust steganographic perturbation generation (RSPG) strategy is designed, which enables slight perturbations to be accurately decoded even after common image attacks. Subsequently, the generated robust perturbations are combined with the AI-generated cover image to produce the stego image. The receiver only needs to share the secret key and employ the same decoding network structure to accurately extract the secret image from the attacked stego image. Experimental results demonstrate that RFNNS achieves enhanced performance in terms of security, including imperceptibility and anti-steganalysis performance. Furthermore, RFNNS demonstrates superior robustness against common image attacks, such as JPEG compression, Gaussian noise, and contrast adjustment, across diverse embedding capacities, outperforming existing SOTA FNNS methods.
EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events CVPR 2025
Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.
comment: 19 pages, 11 figures, 11 tables. Accepted to CVPR 2025 (Highlight)
PAHA: Parts-Aware Audio-Driven Human Animation with Diffusion Model
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose PAHA, an end-to-end audio-driven upper-body human animation framework with diffusion model. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
Weakly-supervised Audio Temporal Forgery Localization via Progressive Audio-language Co-learning Network IJCAI2025
Audio temporal forgery localization (ATFL) aims to find the precise forgery regions of the partial spoof audio that is purposefully modified. Existing ATFL methods rely on training efficient networks using fine-grained annotations, which are obtained costly and challenging in real-world scenarios. To meet this challenge, in this paper, we propose a progressive audio-language co-learning network (LOCO) that adopts co-learning and self-supervision manners to prompt localization performance under weak supervision scenarios. Specifically, an audio-language co-learning module is first designed to capture forgery consensus features by aligning semantics from temporal and global perspectives. In this module, forgery-aware prompts are constructed by using utterance-level annotations together with learnable prompts, which can incorporate semantic priors into temporal content features dynamically. In addition, a forgery localization module is applied to produce forgery proposals based on fused forgery-class activation sequences. Finally, a progressive refinement strategy is introduced to generate pseudo frame-level labels and leverage supervised semantic contrastive learning to amplify the semantic distinction between real and fake content, thereby continuously optimizing forgery-aware features. Extensive experiments show that the proposed LOCO achieves SOTA performance on three public benchmarks.
comment: 9pages, 5figures. This paper has been accepted for IJCAI2025
EEmo-Bench: A Benchmark for Multi-modal Large Language Models on Image Evoked Emotion Assessment
The furnishing of multi-modal large language models (MLLMs) has led to the emergence of numerous benchmark studies, particularly those evaluating their perception and understanding capabilities. Among these, understanding image-evoked emotions aims to enhance MLLMs' empathy, with significant applications such as human-machine interaction and advertising recommendations. However, current evaluations of this MLLM capability remain coarse-grained, and a systematic and comprehensive assessment is still lacking. To this end, we introduce EEmo-Bench, a novel benchmark dedicated to the analysis of the evoked emotions in images across diverse content categories. Our core contributions include: 1) Regarding the diversity of the evoked emotions, we adopt an emotion ranking strategy and employ the Valence-Arousal-Dominance (VAD) as emotional attributes for emotional assessment. In line with this methodology, 1,960 images are collected and manually annotated. 2) We design four tasks to evaluate MLLMs' ability to capture the evoked emotions by single images and their associated attributes: Perception, Ranking, Description, and Assessment. Additionally, image-pairwise analysis is introduced to investigate the model's proficiency in performing joint and comparative analysis. In total, we collect 6,773 question-answer pairs and perform a thorough assessment on 19 commonly-used MLLMs. The results indicate that while some proprietary and large-scale open-source MLLMs achieve promising overall performance, the analytical capabilities in certain evaluation dimensions remain suboptimal. Our EEmo-Bench paves the path for further research aimed at enhancing the comprehensive perceiving and understanding capabilities of MLLMs concerning image-evoked emotions, which is crucial for machine-centric emotion perception and understanding.
VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling
In this work, we systematically study music generation conditioned solely on the video. First, we present a large-scale dataset comprising 360K video-music pairs, including various genres such as movie trailers, advertisements, and documentaries. Furthermore, we propose VidMuse, a simple framework for generating music aligned with video inputs. VidMuse stands out by producing high-fidelity music that is both acoustically and semantically aligned with the video. By incorporating local and global visual cues, VidMuse enables the creation of musically coherent audio tracks that consistently match the video content through Long-Short-Term modeling. Through extensive experiments, VidMuse outperforms existing models in terms of audio quality, diversity, and audio-visual alignment. The code and datasets are available at https://vidmuse.github.io/.
comment: The code and datasets are available at https://github.com/ZeyueT/VidMuse/
Question-Answering Dense Video Events SIGIR'25
This paper presents question-answering on dense video events, a novel task that answers and grounds dense-event questions in long videos, thus challenging MLLMs to faithfully comprehend and reason about multiple events over extended periods of time. To facilitate the study, we construct DeVE-QA -- a dataset featuring 78K questions about 26K events on 10.6K long videos. Our benchmarking shows that state-of-the-art MLLMs struggle on DeVE-QA. For improvement, we propose DeVi, a novel training-free MLLM approach that highlights a hierarchical captioning module, a temporal event memory module, and a self-consistency checking module to respectively detect, contextualize and memorize, and ground dense-events in long videos for question answering. Extensive experiments show that DeVi is superior at answering dense-event questions and grounding relevant video moments. Compared with existing MLLMs, it achieves a remarkable increase of 4.8% and 2.1% for G(round)QA accuracy on DeVE-QA~and NExT-GQA, respectively. Our data and code will be released upon acceptance.
comment: Accepted to SIGIR'25
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models
Music generation has attracted growing interest with the advancement of deep generative models. However, generating music conditioned on textual descriptions, known as text-to-music, remains challenging due to the complexity of musical structures and high sampling rate requirements. Despite the task's significance, prevailing generative models exhibit limitations in music quality, computational efficiency, and generalization. This paper introduces JEN-1, a universal high-fidelity model for text-to-music generation. JEN-1 is a diffusion model incorporating both autoregressive and non-autoregressive training. Through in-context learning, JEN-1 performs various generation tasks including text-guided music generation, music inpainting, and continuation. Evaluations demonstrate JEN-1's superior performance over state-of-the-art methods in text-music alignment and music quality while maintaining computational efficiency. Our demos are available at https://jenmusic.ai/audio-demos
comment: Github Demo Page: https://gogoduck912.github.io/Jen1-Demo-Page/
Computation and Language
ZeroSearch: Incentivize the Search Capability of LLMs without Searching
Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a reinforcement learning framework that incentivizes the search capabilities of LLMs without interacting with real search engines. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both relevant and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.
Overcoming Data Scarcity in Generative Language Modelling for Low-Resource Languages: A Systematic Review
Generative language modelling has surged in popularity with the emergence of services such as ChatGPT and Google Gemini. While these models have demonstrated transformative potential in productivity and communication, they overwhelmingly cater to high-resource languages like English. This has amplified concerns over linguistic inequality in natural language processing (NLP). This paper presents the first systematic review focused specifically on strategies to address data scarcity in generative language modelling for low-resource languages (LRL). Drawing from 54 studies, we identify, categorise and evaluate technical approaches, including monolingual data augmentation, back-translation, multilingual training, and prompt engineering, across generative tasks. We also analyse trends in architecture choices, language family representation, and evaluation methods. Our findings highlight a strong reliance on transformer-based models, a concentration on a small subset of LRLs, and a lack of consistent evaluation across studies. We conclude with recommendations for extending these methods to a wider range of LRLs and outline open challenges in building equitable generative language systems. Ultimately, this review aims to support researchers and developers in building inclusive AI tools for underrepresented languages, a necessary step toward empowering LRL speakers and the preservation of linguistic diversity in a world increasingly shaped by large-scale language technologies.
comment: This work is currently under review. Please do not cite without permission
Beyond Theorem Proving: Formulation, Framework and Benchmark for Formal Problem-Solving
As a seemingly self-explanatory task, problem-solving has been a significant component of science and engineering. However, a general yet concrete formulation of problem-solving itself is missing. With the recent development of AI-based problem-solving agents, the demand for process-level verifiability is rapidly increasing yet underexplored. To fill these gaps, we present a principled formulation of problem-solving as a deterministic Markov decision process; a novel framework, FPS (Formal Problem-Solving), which utilizes existing FTP (formal theorem proving) environments to perform process-verified problem-solving; and D-FPS (Deductive FPS), decoupling solving and answer verification for better human-alignment. The expressiveness, soundness and completeness of the frameworks are proven. We construct three benchmarks on problem-solving: FormalMath500, a formalization of a subset of the MATH500 benchmark; MiniF2F-Solving and PutnamBench-Solving, adaptations of FTP benchmarks MiniF2F and PutnamBench. For faithful, interpretable, and human-aligned evaluation, we propose RPE (Restricted Propositional Equivalence), a symbolic approach to determine the correctness of answers by formal verification. We evaluate four prevalent FTP models and two prompting methods as baselines, solving at most 23.77% of FormalMath500, 27.47% of MiniF2F-Solving, and 0.31% of PutnamBench-Solving.
comment: 42 pages, 3 figures
Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs
Sparse large language models (LLMs) with Mixture of Experts (MoE) and close to a trillion parameters are dominating the realm of most capable language models. However, the massive model scale poses significant challenges for the underlying software and hardware systems. In this paper, we aim to uncover a recipe to harness such scale on Ascend NPUs. The key goals are better usage of the computing resources under the dynamic sparse model structures and materializing the expected performance gain on the actual hardware. To select model configurations suitable for Ascend NPUs without repeatedly running the expensive experiments, we leverage simulation to compare the trade-off of various model hyperparameters. This study led to Pangu Ultra MoE, a sparse LLM with 718 billion parameters, and we conducted experiments on the model to verify the simulation results. On the system side, we dig into Expert Parallelism to optimize the communication between NPU devices to reduce the synchronization overhead. We also optimize the memory efficiency within the devices to further reduce the parameter and activation management overhead. In the end, we achieve an MFU of 30.0% when training Pangu Ultra MoE, with performance comparable to that of DeepSeek R1, on 6K Ascend NPUs, and demonstrate that the Ascend system is capable of harnessing all the training stages of the state-of-the-art language models. Extensive experiments indicate that our recipe can lead to efficient training of large-scale sparse language models with MoE. We also study the behaviors of such models for future reference.
Detecting Spelling and Grammatical Anomalies in Russian Poetry Texts
The quality of natural language texts in fine-tuning datasets plays a critical role in the performance of generative models, particularly in computational creativity tasks such as poem or song lyric generation. Fluency defects in generated poems significantly reduce their value. However, training texts are often sourced from internet-based platforms without stringent quality control, posing a challenge for data engineers to manage defect levels effectively. To address this issue, we propose the use of automated linguistic anomaly detection to identify and filter out low-quality texts from training datasets for creative models. In this paper, we present a comprehensive comparison of unsupervised and supervised text anomaly detection approaches, utilizing both synthetic and human-labeled datasets. We also introduce the RUPOR dataset, a collection of Russian-language human-labeled poems designed for cross-sentence grammatical error detection, and provide the full evaluation code. Our work aims to empower the community with tools and insights to improve the quality of training datasets for generative models in creative domains.
Miipher-2: A Universal Speech Restoration Model for Million-Hour Scale Data Restoration
Training data cleaning is a new application for generative model-based speech restoration (SR). This paper introduces Miipher-2, an SR model designed for million-hour scale data, for training data cleaning for large-scale generative models like large language models. Key challenges addressed include generalization to unseen languages, operation without explicit conditioning (e.g., text, speaker ID), and computational efficiency. Miipher-2 utilizes a frozen, pre-trained Universal Speech Model (USM), supporting over 300 languages, as a robust, conditioning-free feature extractor. To optimize efficiency and minimize memory, Miipher-2 incorporates parallel adapters for predicting clean USM features from noisy inputs and employs the WaneFit neural vocoder for waveform synthesis. These components were trained on 3,000 hours of multi-lingual, studio-quality recordings with augmented degradations, while USM parameters remained fixed. Experimental results demonstrate Miipher-2's superior or comparable performance to conventional SR models in word-error-rate, speaker similarity, and both objective and subjective sound quality scores across all tested languages. Miipher-2 operates efficiently on consumer-grade accelerators, achieving a real-time factor of 0.0078, enabling the processing of a million-hour speech dataset in approximately three days using only 100 such accelerators.
OBLIVIATE: Robust and Practical Machine Unlearning for Large Language Models
Large language models (LLMs) trained over extensive corpora risk memorizing sensitive, copyrighted, or toxic content. To address this, we propose OBLIVIATE, a robust unlearning framework that removes targeted data while preserving model utility. The framework follows a structured process: extracting target tokens, building retain sets, and fine-tuning with a tailored loss function comprising three components -- masking, distillation, and world fact. Using low-rank adapters (LoRA), it ensures efficiency without compromising unlearning quality. We conduct experiments on multiple datasets, including the Harry Potter series, WMDP, and TOFU, using a comprehensive suite of metrics: forget quality (new document-level memorization score), model utility, and fluency. Results demonstrate its effectiveness in resisting membership inference attacks, minimizing the impact on retained data, and maintaining robustness across diverse scenarios.
comment: 18 pages, 2 figures
YABLoCo: Yet Another Benchmark for Long Context Code Generation ICSE 2025
Large Language Models demonstrate the ability to solve various programming tasks, including code generation. Typically, the performance of LLMs is measured on benchmarks with small or medium-sized context windows of thousands of lines of code. At the same time, in real-world software projects, repositories can span up to millions of LoC. This paper closes this gap by contributing to the long context code generation benchmark (YABLoCo). The benchmark featured a test set of 215 functions selected from four large repositories with thousands of functions. The dataset contained metadata of functions, contexts of the functions with different levels of dependencies, docstrings, functions bodies, and call graphs for each repository. This paper presents three key aspects of the contribution. First, the benchmark aims at function body generation in large repositories in C and C++, two languages not covered by previous benchmarks. Second, the benchmark contains large repositories from 200K to 2,000K LoC. Third, we contribute a scalable evaluation pipeline for efficient computing of the target metrics and a tool for visual analysis of generated code. Overall, these three aspects allow for evaluating code generation in large repositories in C and C++.
comment: Presented at LLM4Code 2025 Workshop co-located wtih ICSE 2025
Large Means Left: Political Bias in Large Language Models Increases with Their Number of Parameters
With the increasing prevalence of artificial intelligence, careful evaluation of inherent biases needs to be conducted to form the basis for alleviating the effects these predispositions can have on users. Large language models (LLMs) are predominantly used by many as a primary source of information for various topics. LLMs frequently make factual errors, fabricate data (hallucinations), or present biases, exposing users to misinformation and influencing opinions. Educating users on their risks is key to responsible use, as bias, unlike hallucinations, cannot be caught through data verification. We quantify the political bias of popular LLMs in the context of the recent vote of the German Bundestag using the score produced by the Wahl-O-Mat. This metric measures the alignment between an individual's political views and the positions of German political parties. We compare the models' alignment scores to identify factors influencing their political preferences. Doing so, we discover a bias toward left-leaning parties, most dominant in larger LLMs. Also, we find that the language we use to communicate with the models affects their political views. Additionally, we analyze the influence of a model's origin and release date and compare the results to the outcome of the recent vote of the Bundestag. Our results imply that LLMs are prone to exhibiting political bias. Large corporations with the necessary means to develop LLMs, thus, knowingly or unknowingly, have a responsibility to contain these biases, as they can influence each voter's decision-making process and inform public opinion in general and at scale.
The Aloe Family Recipe for Open and Specialized Healthcare LLMs
Purpose: With advancements in Large Language Models (LLMs) for healthcare, the need arises for competitive open-source models to protect the public interest. This work contributes to the field of open medical LLMs by optimizing key stages of data preprocessing and training, while showing how to improve model safety (through DPO) and efficacy (through RAG). The evaluation methodology used, which includes four different types of tests, defines a new standard for the field. The resultant models, shown to be competitive with the best private alternatives, are released with a permisive license. Methods: Building on top of strong base models like Llama 3.1 and Qwen 2.5, Aloe Beta uses a custom dataset to enhance public data with synthetic Chain of Thought examples. The models undergo alignment with Direct Preference Optimization, emphasizing ethical and policy-aligned performance in the presence of jailbreaking attacks. Evaluation includes close-ended, open-ended, safety and human assessments, to maximize the reliability of results. Results: Recommendations are made across the entire pipeline, backed by the solid performance of the Aloe Family. These models deliver competitive performance across healthcare benchmarks and medical fields, and are often preferred by healthcare professionals. On bias and toxicity, the Aloe Beta models significantly improve safety, showing resilience to unseen jailbreaking attacks. For a responsible release, a detailed risk assessment specific to healthcare is attached to the Aloe Family models. Conclusion: The Aloe Beta models, and the recipe that leads to them, are a significant contribution to the open-source medical LLM field, offering top-of-the-line performance while maintaining high ethical requirements. This work sets a new standard for developing and reporting aligned LLMs in healthcare.
comment: arXiv admin note: substantial text overlap with arXiv:2405.01886
Benchmarking LLMs' Swarm intelligence
Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) when operating under strict constraints-such as limited local perception and communication, characteristic of natural swarms-remains largely unexplored, particularly concerning the nuances of swarm intelligence. Existing benchmarks often do not fully capture the unique challenges of decentralized coordination that arise when agents operate with incomplete spatio-temporal information. To bridge this gap, we introduce SwarmBench, a novel benchmark designed to systematically evaluate the swarm intelligence capabilities of LLMs acting as decentralized agents. SwarmBench features five foundational MAS coordination tasks within a configurable 2D grid environment, forcing agents to rely primarily on local sensory input (k x k view) and local communication. We propose metrics for coordination effectiveness and analyze emergent group dynamics. Evaluating several leading LLMs in a zero-shot setting, we find significant performance variations across tasks, highlighting the difficulties posed by local information constraints. While some coordination emerges, results indicate limitations in robust planning and strategy formation under uncertainty in these decentralized scenarios. Assessing LLMs under swarm-like conditions is crucial for realizing their potential in future decentralized systems. We release SwarmBench as an open, extensible toolkit-built upon a customizable and scalable physical system with defined mechanical properties. It provides environments, prompts, evaluation scripts, and the comprehensive experimental datasets generated, aiming to foster reproducible research into LLM-based MAS coordination and the theoretical underpinnings of Embodied MAS. Our code repository is available at https://github.com/x66ccff/swarmbench.
GASCADE: Grouped Summarization of Adverse Drug Event for Enhanced Cancer Pharmacovigilance
In the realm of cancer treatment, summarizing adverse drug events (ADEs) reported by patients using prescribed drugs is crucial for enhancing pharmacovigilance practices and improving drug-related decision-making. While the volume and complexity of pharmacovigilance data have increased, existing research in this field has predominantly focused on general diseases rather than specifically addressing cancer. This work introduces the task of grouped summarization of adverse drug events reported by multiple patients using the same drug for cancer treatment. To address the challenge of limited resources in cancer pharmacovigilance, we present the MultiLabeled Cancer Adverse Drug Reaction and Summarization (MCADRS) dataset. This dataset includes pharmacovigilance posts detailing patient concerns regarding drug efficacy and adverse effects, along with extracted labels for drug names, adverse drug events, severity, and adversity of reactions, as well as summaries of ADEs for each drug. Additionally, we propose the Grouping and Abstractive Summarization of Cancer Adverse Drug events (GASCADE) framework, a novel pipeline that combines the information extraction capabilities of Large Language Models (LLMs) with the summarization power of the encoder-decoder T5 model. Our work is the first to apply alignment techniques, including advanced algorithms like Direct Preference Optimization, to encoder-decoder models using synthetic datasets for summarization tasks. Through extensive experiments, we demonstrate the superior performance of GASCADE across various metrics, validated through both automated assessments and human evaluations. This multitasking approach enhances drug-related decision-making and fosters a deeper understanding of patient concerns, paving the way for advancements in personalized and responsive cancer care. The code and dataset used in this work are publicly available.
LLM-Independent Adaptive RAG: Let the Question Speak for Itself
Large Language Models~(LLMs) are prone to hallucinations, and Retrieval-Augmented Generation (RAG) helps mitigate this, but at a high computational cost while risking misinformation. Adaptive retrieval aims to retrieve only when necessary, but existing approaches rely on LLM-based uncertainty estimation, which remain inefficient and impractical. In this study, we introduce lightweight LLM-independent adaptive retrieval methods based on external information. We investigated 27 features, organized into 7 groups, and their hybrid combinations. We evaluated these methods on 6 QA datasets, assessing the QA performance and efficiency. The results show that our approach matches the performance of complex LLM-based methods while achieving significant efficiency gains, demonstrating the potential of external information for adaptive retrieval.
comment: 11 pages, 5 figures, 2 tables
VideoPath-LLaVA: Pathology Diagnostic Reasoning Through Video Instruction Tuning
We present VideoPath-LLaVA, the first large multimodal model (LMM) in computational pathology that integrates three distinct image scenarios, single patch images, automatically keyframe-extracted clips, and manually segmented video pathology images, to mimic the natural diagnostic process of pathologists. By generating detailed histological descriptions and culminating in a definitive sign-out diagnosis, VideoPath-LLaVA bridges visual narratives with diagnostic reasoning. Central to our approach is the VideoPath-Instruct dataset, comprising 4278 video and diagnosis-specific chain-of-thought instructional pairs sourced from educational histopathology videos on YouTube. Although high-quality data is critical for enhancing diagnostic reasoning, its creation is time-intensive and limited in volume. To overcome this challenge, we transfer knowledge from existing single-image instruction datasets to train on weakly annotated, keyframe-extracted clips, followed by fine-tuning on manually segmented videos. VideoPath-LLaVA establishes a new benchmark in pathology video analysis and offers a promising foundation for future AI systems that support clinical decision-making through integrated visual and diagnostic reasoning. Our code, data, and model are publicly available at https://github.com/trinhvg/VideoPath-LLaVA.
Large Language Models are often politically extreme, usually ideologically inconsistent, and persuasive even in informational contexts
Large Language Models (LLMs) are a transformational technology, fundamentally changing how people obtain information and interact with the world. As people become increasingly reliant on them for an enormous variety of tasks, a body of academic research has developed to examine these models for inherent biases, especially political biases, often finding them small. We challenge this prevailing wisdom. First, by comparing 31 LLMs to legislators, judges, and a nationally representative sample of U.S. voters, we show that LLMs' apparently small overall partisan preference is the net result of offsetting extreme views on specific topics, much like moderate voters. Second, in a randomized experiment, we show that LLMs can promulgate their preferences into political persuasiveness even in information-seeking contexts: voters randomized to discuss political issues with an LLM chatbot are as much as 5 percentage points more likely to express the same preferences as that chatbot. Contrary to expectations, these persuasive effects are not moderated by familiarity with LLMs, news consumption, or interest in politics. LLMs, especially those controlled by private companies or governments, may become a powerful and targeted vector for political influence.
comment: 61 pages, 29 figures
Can Language Models Understand Social Behavior in Clinical Conversations?
Effective communication between providers and their patients influences health and care outcomes. The effectiveness of such conversations has been linked not only to the exchange of clinical information, but also to a range of interpersonal behaviors; commonly referred to as social signals, which are often conveyed through non-verbal cues and shape the quality of the patient-provider relationship. Recent advances in large language models (LLMs) have demonstrated an increasing ability to infer emotional and social behaviors even when analyzing only textual information. As automation increases also in clinical settings, such as for transcription of patient-provider conversations, there is growing potential for LLMs to automatically analyze and extract social behaviors from these interactions. To explore the foundational capabilities of LLMs in tracking social signals in clinical dialogue, we designed task-specific prompts and evaluated model performance across multiple architectures and prompting styles using a highly imbalanced, annotated dataset spanning 20 distinct social signals such as provider dominance, patient warmth, etc. We present the first system capable of tracking all these 20 coded signals, and uncover patterns in LLM behavior. Further analysis of model configurations and clinical context provides insights for enhancing LLM performance on social signal processing tasks in healthcare settings.
Unmasking the Canvas: A Dynamic Benchmark for Image Generation Jailbreaking and LLM Content Safety
Existing large language models (LLMs) are advancing rapidly and produce outstanding results in image generation tasks, yet their content safety checks remain vulnerable to prompt-based jailbreaks. Through preliminary testing on platforms such as ChatGPT, MetaAI, and Grok, we observed that even short, natural prompts could lead to the generation of compromising images ranging from realistic depictions of forged documents to manipulated images of public figures. We introduce Unmasking the Canvas (UTC Benchmark; UTCB), a dynamic and scalable benchmark dataset to evaluate LLM vulnerability in image generation. Our methodology combines structured prompt engineering, multilingual obfuscation (e.g., Zulu, Gaelic, Base64), and evaluation using Groq-hosted LLaMA-3. The pipeline supports both zero-shot and fallback prompting strategies, risk scoring, and automated tagging. All generations are stored with rich metadata and curated into Bronze (non-verified), Silver (LLM-aided verification), and Gold (manually verified) tiers. UTCB is designed to evolve over time with new data sources, prompt templates, and model behaviors. Warning: This paper includes visual examples of adversarial inputs designed to test model safety. All outputs have been redacted to ensure responsible disclosure.
Enhancing Granular Sentiment Classification with Chain-of-Thought Prompting in Large Language Models
We explore the use of Chain-of-Thought (CoT) prompting with large language models (LLMs) to improve the accuracy of granular sentiment categorization in app store reviews. Traditional numeric and polarity-based ratings often fail to capture the nuanced sentiment embedded in user feedback. We evaluated the effectiveness of CoT prompting versus simple prompting on 2000 Amazon app reviews by comparing each method's predictions to human judgements. CoT prompting improved classification accuracy from 84% to 93% highlighting the benefit of explicit reasoning in enhancing sentiment analysis performance.
comment: 5 pages
Bringing legal knowledge to the public by constructing a legal question bank using large-scale pre-trained language model
Access to legal information is fundamental to access to justice. Yet accessibility refers not only to making legal documents available to the public, but also rendering legal information comprehensible to them. A vexing problem in bringing legal information to the public is how to turn formal legal documents such as legislation and judgments, which are often highly technical, to easily navigable and comprehensible knowledge to those without legal education. In this study, we formulate a three-step approach for bringing legal knowledge to laypersons, tackling the issues of navigability and comprehensibility. First, we translate selected sections of the law into snippets (called CLIC-pages), each being a small piece of article that focuses on explaining certain technical legal concept in layperson's terms. Second, we construct a Legal Question Bank (LQB), which is a collection of legal questions whose answers can be found in the CLIC-pages. Third, we design an interactive CLIC Recommender (CRec). Given a user's verbal description of a legal situation that requires a legal solution, CRec interprets the user's input and shortlists questions from the question bank that are most likely relevant to the given legal situation and recommends their corresponding CLIC pages where relevant legal knowledge can be found. In this paper we focus on the technical aspects of creating an LQB. We show how large-scale pre-trained language models, such as GPT-3, can be used to generate legal questions. We compare machine-generated questions (MGQs) against human-composed questions (HCQs) and find that MGQs are more scalable, cost-effective, and more diversified, while HCQs are more precise. We also show a prototype of CRec and illustrate through an example how our 3-step approach effectively brings relevant legal knowledge to the public.
Natural Language Generation in Healthcare: A Review of Methods and Applications
Natural language generation (NLG) is the key technology to achieve generative artificial intelligence (AI). With the breakthroughs in large language models (LLMs), NLG has been widely used in various medical applications, demonstrating the potential to enhance clinical workflows, support clinical decision-making, and improve clinical documentation. Heterogeneous and diverse medical data modalities, such as medical text, images, and knowledge bases, are utilized in NLG. Researchers have proposed many generative models and applied them in a number of healthcare applications. There is a need for a comprehensive review of NLG methods and applications in the medical domain. In this study, we systematically reviewed 113 scientific publications from a total of 3,988 NLG-related articles identified using a literature search, focusing on data modality, model architecture, clinical applications, and evaluation methods. Following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines, we categorize key methods, identify clinical applications, and assess their capabilities, limitations, and emerging challenges. This timely review covers the key NLG technologies and medical applications and provides valuable insights for future studies to leverage NLG to transform medical discovery and healthcare.
Advancing and Benchmarking Personalized Tool Invocation for LLMs
Tool invocation is a crucial mechanism for extending the capabilities of Large Language Models (LLMs) and has recently garnered significant attention. It enables LLMs to solve complex problems through tool calls while accessing up-to-date world knowledge. However, existing work primarily focuses on the fundamental ability of LLMs to invoke tools for problem-solving, without considering personalized constraints in tool invocation. In this work, we introduce the concept of Personalized Tool Invocation and define two key tasks: Tool Preference and Profile-dependent Query. Tool Preference addresses user preferences when selecting among functionally similar tools, while Profile-dependent Query considers cases where a user query lacks certain tool parameters, requiring the model to infer them from the user profile. To tackle these challenges, we propose PTool, a data synthesis framework designed for personalized tool invocation. Additionally, we construct \textbf{PTBench}, the first benchmark for evaluating personalized tool invocation. We then fine-tune various open-source models, demonstrating the effectiveness of our framework and providing valuable insights. Our benchmark is public at https://github.com/hyfshadow/PTBench.
comment: 14 pages, 7 figures, 5 tables
LLAMAPIE: Proactive In-Ear Conversation Assistants
We introduce LlamaPIE, the first real-time proactive assistant designed to enhance human conversations through discreet, concise guidance delivered via hearable devices. Unlike traditional language models that require explicit user invocation, this assistant operates in the background, anticipating user needs without interrupting conversations. We address several challenges, including determining when to respond, crafting concise responses that enhance conversations, leveraging knowledge of the user for context-aware assistance, and real-time, on-device processing. To achieve this, we construct a semi-synthetic dialogue dataset and propose a two-model pipeline: a small model that decides when to respond and a larger model that generates the response. We evaluate our approach on real-world datasets, demonstrating its effectiveness in providing helpful, unobtrusive assistance. User studies with our assistant, implemented on Apple Silicon M2 hardware, show a strong preference for the proactive assistant over both a baseline with no assistance and a reactive model, highlighting the potential of LlamaPie to enhance live conversations.
CRAFT: Cultural Russian-Oriented Dataset Adaptation for Focused Text-to-Image Generation
Despite the fact that popular text-to-image generation models cope well with international and general cultural queries, they have a significant knowledge gap regarding individual cultures. This is due to the content of existing large training datasets collected on the Internet, which are predominantly based on Western European or American popular culture. Meanwhile, the lack of cultural adaptation of the model can lead to incorrect results, a decrease in the generation quality, and the spread of stereotypes and offensive content. In an effort to address this issue, we examine the concept of cultural code and recognize the critical importance of its understanding by modern image generation models, an issue that has not been sufficiently addressed in the research community to date. We propose the methodology for collecting and processing the data necessary to form a dataset based on the cultural code, in particular the Russian one. We explore how the collected data affects the quality of generations in the national domain and analyze the effectiveness of our approach using the Kandinsky 3.1 text-to-image model. Human evaluation results demonstrate an increase in the level of awareness of Russian culture in the model.
comment: This is arxiv version of the paper which was accepted for the Doklady Mathematics Journal in 2024
Benchmarking LLM Faithfulness in RAG with Evolving Leaderboards
Hallucinations remain a persistent challenge for LLMs. RAG aims to reduce hallucinations by grounding responses in contexts. However, even when provided context, LLMs still frequently introduce unsupported information or contradictions. This paper presents our efforts to measure LLM hallucinations with a focus on summarization tasks, assessing how often various LLMs introduce hallucinations when summarizing documents. We discuss Vectara's existing LLM hallucination leaderboard, based on the Hughes Hallucination Evaluation Model (HHEM). While HHEM and Vectara's Hallucination Leaderboard have garnered great research interest, we examine challenges faced by HHEM and current hallucination detection methods by analyzing the effectiveness of these methods on existing hallucination datasets. To address these limitations, we propose FaithJudge, an LLM-as-a-judge approach guided by few-shot human hallucination annotations, which substantially improves automated LLM hallucination evaluation over current methods. We introduce an enhanced hallucination leaderboard centered on FaithJudge, alongside our current hallucination leaderboard, enabling more reliable benchmarking of LLMs for hallucinations in RAG.
HiPerRAG: High-Performance Retrieval Augmented Generation for Scientific Insights SC 25
The volume of scientific literature is growing exponentially, leading to underutilized discoveries, duplicated efforts, and limited cross-disciplinary collaboration. Retrieval Augmented Generation (RAG) offers a way to assist scientists by improving the factuality of Large Language Models (LLMs) in processing this influx of information. However, scaling RAG to handle millions of articles introduces significant challenges, including the high computational costs associated with parsing documents and embedding scientific knowledge, as well as the algorithmic complexity of aligning these representations with the nuanced semantics of scientific content. To address these issues, we introduce HiPerRAG, a RAG workflow powered by high performance computing (HPC) to index and retrieve knowledge from more than 3.6 million scientific articles. At its core are Oreo, a high-throughput model for multimodal document parsing, and ColTrast, a query-aware encoder fine-tuning algorithm that enhances retrieval accuracy by using contrastive learning and late-interaction techniques. HiPerRAG delivers robust performance on existing scientific question answering benchmarks and two new benchmarks introduced in this work, achieving 90% accuracy on SciQ and 76% on PubMedQA-outperforming both domain-specific models like PubMedGPT and commercial LLMs such as GPT-4. Scaling to thousands of GPUs on the Polaris, Sunspot, and Frontier supercomputers, HiPerRAG delivers million document-scale RAG workflows for unifying scientific knowledge and fostering interdisciplinary innovation.
comment: This paper has been accepted at the Platform for Advanced Scientific Computing Conference (PASC 25), June 16-18, 2025, Brugg-Windisch, Switzerland
Osiris: A Lightweight Open-Source Hallucination Detection System
Retrieval-Augmented Generation (RAG) systems have gained widespread adoption by application builders because they leverage sources of truth to enable Large Language Models (LLMs) to generate more factually sound responses. However, hallucinations, instances of LLM responses that are unfaithful to the provided context, often prevent these systems from being deployed in production environments. Current hallucination detection methods typically involve human evaluation or the use of closed-source models to review RAG system outputs for hallucinations. Both human evaluators and closed-source models suffer from scaling issues due to their high costs and slow inference speeds. In this work, we introduce a perturbed multi-hop QA dataset with induced hallucinations. Via supervised fine-tuning on our dataset, we achieve better recall with a 7B model than GPT-4o on the RAGTruth hallucination detection benchmark and offer competitive performance on precision and accuracy, all while using a fraction of the parameters. Code is released at our repository.
comment: Stanford 191W
Red Teaming the Mind of the Machine: A Systematic Evaluation of Prompt Injection and Jailbreak Vulnerabilities in LLMs
Large Language Models (LLMs) are increasingly integrated into consumer and enterprise applications. Despite their capabilities, they remain susceptible to adversarial attacks such as prompt injection and jailbreaks that override alignment safeguards. This paper provides a systematic investigation of jailbreak strategies against various state-of-the-art LLMs. We categorize over 1,400 adversarial prompts, analyze their success against GPT-4, Claude 2, Mistral 7B, and Vicuna, and examine their generalizability and construction logic. We further propose layered mitigation strategies and recommend a hybrid red-teaming and sandboxing approach for robust LLM security.
comment: 7 Pages, 6 Figures
Flower Across Time and Media: Sentiment Analysis of Tang Song Poetry and Visual Correspondence
The Tang (618 to 907) and Song (960 to 1279) dynasties witnessed an extraordinary flourishing of Chinese cultural expression, where floral motifs served as a dynamic medium for both poetic sentiment and artistic design. While previous scholarship has examined these domains independently, the systematic correlation between evolving literary emotions and visual culture remains underexplored. This study addresses that gap by employing BERT-based sentiment analysis to quantify emotional patterns in floral imagery across Tang Song poetry, then validating these patterns against contemporaneous developments in decorative arts.Our approach builds upon recent advances in computational humanities while remaining grounded in traditional sinological methods. By applying a fine tuned BERT model to analyze peony and plum blossom imagery in classical poetry, we detect measurable shifts in emotional connotations between the Tang and Song periods. These textual patterns are then cross berenced with visual evidence from textiles, ceramics, and other material culture, revealing previously unrecognized synergies between literary expression and artistic representation.
comment: 5 pages, 9 figures
When Bad Data Leads to Good Models ICML 2025
In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.
comment: ICML 2025
SOAEsV2-7B/72B: Full-Pipeline Optimization for State-Owned Enterprise LLMs via Continual Pre-Training, Domain-Progressive SFT and Distillation-Enhanced Speculative Decoding
This study addresses key challenges in developing domain-specific large language models (LLMs) for Chinese state-owned assets and enterprises (SOAEs), where current approaches face three limitations: 1) constrained model capacity that limits knowledge integration and cross-task adaptability; 2) excessive reliance on domain-specific supervised fine-tuning (SFT) data, which neglects the broader applicability of general language patterns; and 3) inefficient inference acceleration for large models processing long contexts. In this work, we propose SOAEsV2-7B/72B, a specialized LLM series developed via a three-phase framework: 1) continual pre-training integrates domain knowledge while retaining base capabilities; 2) domain-progressive SFT employs curriculum-based learning strategy, transitioning from weakly relevant conversational data to expert-annotated SOAEs datasets to optimize domain-specific tasks; 3) distillation-enhanced speculative decoding accelerates inference via logit distillation between 72B target and 7B draft models, achieving 1.39-1.52$\times$ speedup without quality loss. Experimental results demonstrate that our domain-specific pre-training phase maintains 99.8% of original general language capabilities while significantly improving domain performance, resulting in a 1.08$\times$ improvement in Rouge-1 score and a 1.17$\times$ enhancement in BLEU-4 score. Ablation studies further show that domain-progressive SFT outperforms single-stage training, achieving 1.02$\times$ improvement in Rouge-1 and 1.06$\times$ in BLEU-4. Our work introduces a comprehensive, full-pipeline approach for optimizing SOAEs LLMs, bridging the gap between general language capabilities and domain-specific expertise.
Advanced Deep Learning Approaches for Automated Recognition of Cuneiform Symbols
This paper presents a thoroughly automated method for identifying and interpreting cuneiform characters via advanced deep-learning algorithms. Five distinct deep-learning models were trained on a comprehensive dataset of cuneiform characters and evaluated according to critical performance metrics, including accuracy and precision. Two models demonstrated outstanding performance and were subsequently assessed using cuneiform symbols from the Hammurabi law acquisition, notably Hammurabi Law 1. Each model effectively recognized the relevant Akkadian meanings of the symbols and delivered precise English translations. Future work will investigate ensemble and stacking approaches to optimize performance, utilizing hybrid architectures to improve detection accuracy and reliability. This research explores the linguistic relationships between Akkadian, an ancient Mesopotamian language, and Arabic, emphasizing their historical and cultural linkages. This study demonstrates the capability of deep learning to decipher ancient scripts by merging computational linguistics with archaeology, therefore providing significant insights for the comprehension and conservation of human history.
REVEAL: Multi-turn Evaluation of Image-Input Harms for Vision LLM IJCAI 2025
Vision Large Language Models (VLLMs) represent a significant advancement in artificial intelligence by integrating image-processing capabilities with textual understanding, thereby enhancing user interactions and expanding application domains. However, their increased complexity introduces novel safety and ethical challenges, particularly in multi-modal and multi-turn conversations. Traditional safety evaluation frameworks, designed for text-based, single-turn interactions, are inadequate for addressing these complexities. To bridge this gap, we introduce the REVEAL (Responsible Evaluation of Vision-Enabled AI LLMs) Framework, a scalable and automated pipeline for evaluating image-input harms in VLLMs. REVEAL includes automated image mining, synthetic adversarial data generation, multi-turn conversational expansion using crescendo attack strategies, and comprehensive harm assessment through evaluators like GPT-4o. We extensively evaluated five state-of-the-art VLLMs, GPT-4o, Llama-3.2, Qwen2-VL, Phi3.5V, and Pixtral, across three important harm categories: sexual harm, violence, and misinformation. Our findings reveal that multi-turn interactions result in significantly higher defect rates compared to single-turn evaluations, highlighting deeper vulnerabilities in VLLMs. Notably, GPT-4o demonstrated the most balanced performance as measured by our Safety-Usability Index (SUI) followed closely by Pixtral. Additionally, misinformation emerged as a critical area requiring enhanced contextual defenses. Llama-3.2 exhibited the highest MT defect rate ($16.55 \%$) while Qwen2-VL showed the highest MT refusal rate ($19.1 \%$).
comment: 13 pages (8 main), to be published in IJCAI 2025
Reward-SQL: Boosting Text-to-SQL via Stepwise Reasoning and Process-Supervised Rewards
Recent advances in large language models (LLMs) have significantly improved performance on the Text-to-SQL task by leveraging their powerful reasoning capabilities. To enhance accuracy during the reasoning process, external Process Reward Models (PRMs) can be introduced during training and inference to provide fine-grained supervision. However, if misused, PRMs may distort the reasoning trajectory and lead to suboptimal or incorrect SQL generation.To address this challenge, we propose Reward-SQL, a framework that systematically explores how to incorporate PRMs into the Text-to-SQL reasoning process effectively. Our approach follows a "cold start, then PRM supervision" paradigm. Specifically, we first train the model to decompose SQL queries into structured stepwise reasoning chains using common table expressions (Chain-of-CTEs), establishing a strong and interpretable reasoning baseline. Then, we investigate four strategies for integrating PRMs, and find that combining PRM as an online training signal (GRPO) with PRM-guided inference (e.g., best-of-N sampling) yields the best results. Empirically, on the BIRD benchmark, Reward-SQL enables models supervised by a 7B PRM to achieve a 13.1% performance gain across various guidance strategies. Notably, our GRPO-aligned policy model based on Qwen2.5-Coder-7B-Instruct achieves 68.9% accuracy on the BIRD development set, outperforming all baseline methods under the same model size. These results demonstrate the effectiveness of Reward-SQL in leveraging reward-based supervision for Text-to-SQL reasoning. Our code is publicly available.
Fine-Tuning Large Language Models and Evaluating Retrieval Methods for Improved Question Answering on Building Codes
Building codes are regulations that establish standards for the design, construction, and safety of buildings to ensure structural integrity, fire protection, and accessibility. They are often extensive, complex, and subject to frequent updates, making manual querying challenging and time-consuming. Key difficulties include navigating large volumes of text, interpreting technical language, and identifying relevant clauses across different sections. A potential solution is to build a Question-Answering (QA) system that answers user queries based on building codes. Among the various methods for building a QA system, Retrieval-Augmented Generation (RAG) stands out in performance. RAG consists of two components: a retriever and a language model. This study focuses on identifying a suitable retriever method for building codes and optimizing the generational capability of the language model using fine-tuning techniques. We conducted a detailed evaluation of various retrieval methods by performing the retrieval on the National Building Code of Canada (NBCC) and explored the impact of domain-specific fine-tuning on several language models using the dataset derived from NBCC. Our analysis included a comparative assessment of different retrievers and the performance of both pre-trained and fine-tuned models to determine the efficacy and domain-specific adaptation of language models using fine-tuning on the NBCC dataset. Experimental results showed that Elasticsearch proved to be the most robust retriever among all. The findings also indicate that fine-tuning language models on an NBCC-specific dataset can enhance their ability to generate contextually relevant responses. When combined with context retrieved by a powerful retriever like Elasticsearch, this improvement in LLM performance can optimize the RAG system, enabling it to better navigate the complexities of the NBCC.
Personalized Risks and Regulatory Strategies of Large Language Models in Digital Advertising
Although large language models have demonstrated the potential for personalized advertising recommendations in experimental environments, in actual operations, how advertising recommendation systems can be combined with measures such as user privacy protection and data security is still an area worthy of in-depth discussion. To this end, this paper studies the personalized risks and regulatory strategies of large language models in digital advertising. This study first outlines the principles of Large Language Model (LLM), especially the self-attention mechanism based on the Transformer architecture, and how to enable the model to understand and generate natural language text. Then, the BERT (Bidirectional Encoder Representations from Transformers) model and the attention mechanism are combined to construct an algorithmic model for personalized advertising recommendations and user factor risk protection. The specific steps include: data collection and preprocessing, feature selection and construction, using large language models such as BERT for advertising semantic embedding, and ad recommendations based on user portraits. Then, local model training and data encryption are used to ensure the security of user privacy and avoid the leakage of personal data. This paper designs an experiment for personalized advertising recommendation based on a large language model of BERT and verifies it with real user data. The experimental results show that BERT-based advertising push can effectively improve the click-through rate and conversion rate of advertisements. At the same time, through local model training and privacy protection mechanisms, the risk of user privacy leakage can be reduced to a certain extent.
AI-Generated Fall Data: Assessing LLMs and Diffusion Model for Wearable Fall Detection
Training fall detection systems is challenging due to the scarcity of real-world fall data, particularly from elderly individuals. To address this, we explore the potential of Large Language Models (LLMs) for generating synthetic fall data. This study evaluates text-to-motion (T2M, SATO, ParCo) and text-to-text models (GPT4o, GPT4, Gemini) in simulating realistic fall scenarios. We generate synthetic datasets and integrate them with four real-world baseline datasets to assess their impact on fall detection performance using a Long Short-Term Memory (LSTM) model. Additionally, we compare LLM-generated synthetic data with a diffusion-based method to evaluate their alignment with real accelerometer distributions. Results indicate that dataset characteristics significantly influence the effectiveness of synthetic data, with LLM-generated data performing best in low-frequency settings (e.g., 20Hz) while showing instability in high-frequency datasets (e.g., 200Hz). While text-to-motion models produce more realistic biomechanical data than text-to-text models, their impact on fall detection varies. Diffusion-based synthetic data demonstrates the closest alignment to real data but does not consistently enhance model performance. An ablation study further confirms that the effectiveness of synthetic data depends on sensor placement and fall representation. These findings provide insights into optimizing synthetic data generation for fall detection models.
Absolute Zero: Reinforced Self-play Reasoning with Zero Data
Reinforcement learning with verifiable rewards (RLVR) has shown promise in enhancing the reasoning capabilities of large language models by learning directly from outcome-based rewards. Recent RLVR works that operate under the zero setting avoid supervision in labeling the reasoning process, but still depend on manually curated collections of questions and answers for training. The scarcity of high-quality, human-produced examples raises concerns about the long-term scalability of relying on human supervision, a challenge already evident in the domain of language model pretraining. Furthermore, in a hypothetical future where AI surpasses human intelligence, tasks provided by humans may offer limited learning potential for a superintelligent system. To address these concerns, we propose a new RLVR paradigm called Absolute Zero, in which a single model learns to propose tasks that maximize its own learning progress and improves reasoning by solving them, without relying on any external data. Under this paradigm, we introduce the Absolute Zero Reasoner (AZR), a system that self-evolves its training curriculum and reasoning ability by using a code executor to both validate proposed code reasoning tasks and verify answers, serving as an unified source of verifiable reward to guide open-ended yet grounded learning. Despite being trained entirely without external data, AZR achieves overall SOTA performance on coding and mathematical reasoning tasks, outperforming existing zero-setting models that rely on tens of thousands of in-domain human-curated examples. Furthermore, we demonstrate that AZR can be effectively applied across different model scales and is compatible with various model classes.
JTCSE: Joint Tensor-Modulus Constraints and Cross-Attention for Unsupervised Contrastive Learning of Sentence Embeddings
Unsupervised contrastive learning has become a hot research topic in natural language processing. Existing works usually aim at constraining the orientation distribution of the representations of positive and negative samples in the high-dimensional semantic space in contrastive learning, but the semantic representation tensor possesses both modulus and orientation features, and the existing works ignore the modulus feature of the representations and cause insufficient contrastive learning. % Therefore, we firstly propose a training objective that aims at modulus constraints on the semantic representation tensor, to strengthen the alignment between the positive samples in contrastive learning. Therefore, we first propose a training objective that is designed to impose modulus constraints on the semantic representation tensor, to strengthen the alignment between positive samples in contrastive learning. Then, the BERT-like model suffers from the phenomenon of sinking attention, leading to a lack of attention to CLS tokens that aggregate semantic information. In response, we propose a cross-attention structure among the twin-tower ensemble models to enhance the model's attention to CLS token and optimize the quality of CLS Pooling. Combining the above two motivations, we propose a new \textbf{J}oint \textbf{T}ensor representation modulus constraint and \textbf{C}ross-attention unsupervised contrastive learning \textbf{S}entence \textbf{E}mbedding representation framework JTCSE, which we evaluate in seven semantic text similarity computation tasks, and the experimental results show that JTCSE's twin-tower ensemble model and single-tower distillation model outperform the other baselines and become the current SOTA. In addition, we have conducted an extensive zero-shot downstream task evaluation, which shows that JTCSE outperforms other baselines overall on more than 130 tasks.
Vision-Language Models Create Cross-Modal Task Representations ICML 2025
Autoregressive vision-language models (VLMs) can handle many tasks within a single model, yet the representations that enable this capability remain opaque. We find that VLMs align conceptually equivalent inputs into a shared task vector, which is invariant to modality (text, image) and format (examples, instruction), and may simplify VLM processing. We measure this alignment via cross-modal transfer -- the ability of a task vector derived in one modality to trigger the correct generation in another -- on a range of tasks and model architectures. Although the task vector is highly compressed, we find that this single vector outperforms prompting the model with the full task information, unique to this cross-modal case. Furthermore, we show that task vectors can be transferred from a base language model to its fine-tuned vision-language counterpart, and that they can be derived solely from instructions without the need for examples. Taken together, our findings shed light on how VLMs internally process task information, and how they map different modalities into common semantic representations. Project page: https://vlm-cross-modal-reps.github.io.
comment: ICML 2025
A Character-based Diffusion Embedding Algorithm for Enhancing the Generation Quality of Generative Linguistic Steganographic Texts
Generating high-quality steganographic text is a fundamental challenge in the field of generative linguistic steganography. This challenge arises primarily from two aspects: firstly, the capabilities of existing models in text generation are limited; secondly, embedding algorithms fail to effectively mitigate the negative impacts of sensitive information's properties, such as semantic content or randomness. Specifically, to ensure that the recipient can accurately extract hidden information, embedding algorithms often have to consider selecting candidate words with relatively low probabilities. This phenomenon leads to a decrease in the number of high-probability candidate words and an increase in low-probability candidate words, thereby compromising the semantic coherence and logical fluency of the steganographic text and diminishing the overall quality of the generated steganographic material. To address this issue, this paper proposes a novel embedding algorithm, character-based diffusion embedding algorithm (CDEA). Unlike existing embedding algorithms that strive to eliminate the impact of sensitive information's properties on the generation process, CDEA leverages sensitive information's properties. It enhances the selection frequency of high-probability candidate words in the candidate pool based on general statistical properties at the character level and grouping methods based on power-law distributions, while reducing the selection frequency of low-probability candidate words in the candidate pool. Furthermore, to ensure the effective transformation of sensitive information in long sequences, we also introduce the XLNet model. Experimental results demonstrate that the combination of CDEA and XLNet significantly improves the quality of generated steganographic text, particularly in terms of perceptual-imperceptibility.
comment: we need to clarify authorship and make further revisions in collaboration with co-authors
LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation
CLIP is a foundational multimodal model that aligns image and text features into a shared representation space via contrastive learning on large-scale image-text pairs. Its effectiveness primarily stems from the use of natural language as rich supervision. Motivated by the remarkable advancements in large language models (LLMs), this work explores how LLMs' superior text understanding and extensive open-world knowledge can enhance CLIP's capability, especially for processing longer and more complex image captions. We propose an efficient post-training strategy that integrates LLMs into pretrained CLIP. To address the challenge posed by the autoregressive nature of LLMs, we introduce a caption-to-caption contrastive fine-tuning framework, significantly enhancing the discriminative quality of LLM outputs. Extensive experiments demonstrate that our approach outperforms LoRA-based methods, achieving nearly fourfold faster training with superior performance. Furthermore, we validate substantial improvements over state-of-the-art models such as CLIP, EVA02, and SigLip2 across various zero-shot multimodal retrieval tasks, cross-lingual retrieval tasks, and multimodal language model pretraining.
Boosting Masked ECG-Text Auto-Encoders as Discriminative Learners ICML 2025
The accurate interpretation of Electrocardiogram (ECG) signals is pivotal for diagnosing cardiovascular diseases. Integrating ECG signals with accompanying textual reports further holds immense potential to enhance clinical diagnostics by combining physiological data and qualitative insights. However, this integration faces significant challenges due to inherent modality disparities and the scarcity of labeled data for robust cross-modal learning. To address these obstacles, we propose D-BETA, a novel framework that pre-trains ECG and text data using a contrastive masked auto-encoder architecture. D-BETA uniquely combines the strengths of generative with boosted discriminative capabilities to achieve robust cross-modal representations. This is accomplished through masked modality modeling, specialized loss functions, and an improved negative sampling strategy tailored for cross-modal alignment. Extensive experiments on five public datasets across diverse downstream tasks demonstrate that D-BETA significantly outperforms existing methods, achieving an average AUC improvement of 15% in linear probing with only one percent of training data and 2% in zero-shot performance without requiring training data over state-of-the-art models. These results highlight the effectiveness of D-BETA, underscoring its potential to advance automated clinical diagnostics through multi-modal representations. Our sample code and checkpoint are made available at https://github.com/manhph2211/D-BETA.
comment: Accepted at ICML 2025
High-Dimensional Interlingual Representations of Large Language Models
Large language models (LLMs) trained on massive multilingual datasets hint at the formation of interlingual constructs--a shared subspace in the representation space. However, evidence regarding this phenomenon is mixed, leaving it unclear whether these models truly develop unified interlingual representations, or present a partially aligned constructs. We explore 31 diverse languages varying on their resource-levels, typologies, and geographical regions; and find that multilingual LLMs exhibit inconsistent cross-lingual alignments. To address this, we propose an interlingual representation framework identifying both the shared interlingual semantic subspace and fragmented components, existed due to representational limitations. We introduce Interlingual Local Overlap (ILO) score to quantify interlingual alignment by comparing the local neighborhood structures of high-dimensional representations. We utilize ILO to investigate the impact of single-language fine-tuning on the interlingual representations in multilingual LLMs. Our results indicate that training exclusively on a single language disrupts the alignment in early layers, while freezing these layers preserves the alignment of interlingual representations, leading to improved cross-lingual generalization. These results validate our framework and metric for evaluating interlingual representation, and further underscore that interlingual alignment is crucial for scalable multilingual learning.
Enhancing Target-unspecific Tasks through a Features Matrix ICML 2025
Recent developments in prompt learning of large vision-language models have significantly improved performance in target-specific tasks. However, these prompt optimizing methods often struggle to tackle the target-unspecific or generalizable tasks effectively. It may be attributed to the fact that overfitting training causes the model to forget its general knowledge having strong promotion on target-unspecific tasks. To alleviate this issue, we propose a novel Features Matrix (FM) regularization approach designed to enhance these models on target-unspecific tasks. Our method extracts and leverages general knowledge, shaping a Features Matrix (FM). Specifically, the FM captures the semantics of diverse inputs from a deep and fine perspective, preserving essential general knowledge, which mitigates the risk of overfitting. Representative evaluations demonstrate that: 1) the FM is compatible with existing frameworks as a generic and flexible module, and 2) the FM significantly showcases its effectiveness in enhancing target-unspecific tasks, achieving state-of-the-art performance.
comment: ICML 2025
Automated Coding of Communications in Collaborative Problem-solving Tasks Using ChatGPT
Collaborative problem solving (CPS) is widely recognized as a critical 21st-century skill. Assessing CPS depends heavily on coding the communication data using a construct-relevant framework, and this process has long been a major bottleneck to scaling up such assessments. Based on five datasets and two coding frameworks, we demonstrate that ChatGPT can code communication data to a satisfactory level, though performance varies across ChatGPT models, and depends on the coding framework and task characteristics. Interestingly, newer reasoning-focused models such as GPT-o1-mini and GPT-o3-mini do not necessarily yield better coding results. Additionally, we show that refining prompts based on feedback from miscoded cases can improve coding accuracy in some instances, though the effectiveness of this approach is not consistent across all tasks. These findings offer practical guidance for researchers and practitioners in developing scalable, efficient methods to analyze communication data in support of 21st-century skill assessment.
comment: 21 pages, 3 figures, 5 tables. Initially report in the edArXiv:xw6kz
OAEI-LLM-T: A TBox Benchmark Dataset for Understanding Large Language Model Hallucinations in Ontology Matching
Hallucinations are often inevitable in downstream tasks using large language models (LLMs). To tackle the substantial challenge of addressing hallucinations for LLM-based ontology matching (OM) systems, we introduce a new benchmark dataset called OAEI-LLM-T. The dataset evolves from the TBox (i.e. schema-matching) datasets in the Ontology Alignment Evaluation Initiative (OAEI), capturing hallucinations of different LLMs performing OM tasks. These OM-specific hallucinations are carefully classified into two primary categories and six sub-categories. We showcase the usefulness of the dataset in constructing the LLM leaderboard and fine-tuning foundational LLMs for LLM-based OM systems.
comment: 15 pages, 4 figures, 5 tables, 2 prompt templates
Estimating LLM Uncertainty with Logits
Over the past few years, Large Language Models (LLMs) have developed rapidly and are widely applied in various domains. However, LLMs face the issue of hallucinations, generating responses that may be unreliable when the models lack relevant knowledge. To be aware of potential hallucinations, uncertainty estimation methods have been introduced, and most of them have confirmed that reliability lies in critical tokens. However, probability-based methods perform poorly in identifying token reliability, limiting their practical utility. In this paper, we reveal that the probability-based method fails to estimate token reliability due to the loss of evidence strength information which is accumulated in the training stage. Therefore, we present Logits-induced token uncertainty (LogTokU), a framework for estimating decoupled token uncertainty in LLMs, enabling real-time uncertainty estimation without requiring multiple sampling processes. We employ evidence modeling to implement LogTokU and use the estimated uncertainty to guide downstream tasks. The experimental results demonstrate that LogTokU has significant effectiveness and promise.
comment: Fixed some data errors in Table 1
Playing repeated games with Large Language Models
LLMs are increasingly used in applications where they interact with humans and other agents. We propose to use behavioural game theory to study LLM's cooperation and coordination behaviour. We let different LLMs play finitely repeated $2\times2$ games with each other, with human-like strategies, and actual human players. Our results show that LLMs perform particularly well at self-interested games like the iterated Prisoner's Dilemma family. However, they behave sub-optimally in games that require coordination, like the Battle of the Sexes. We verify that these behavioural signatures are stable across robustness checks. We additionally show how GPT-4's behaviour can be modulated by providing additional information about its opponent and by using a "social chain-of-thought" (SCoT) strategy. This also leads to better scores and more successful coordination when interacting with human players. These results enrich our understanding of LLM's social behaviour and pave the way for a behavioural game theory for machines.
A Simple Ensemble Strategy for LLM Inference: Towards More Stable Text Classification
With the advance of large language models (LLMs), LLMs have been utilized for the various tasks. However, the issues of variability and reproducibility of results from each trial of LLMs have been largely overlooked in existing literature while actual human annotation uses majority voting to resolve disagreements among annotators. Therefore, this study introduces the straightforward ensemble strategy to a sentiment analysis using LLMs. As the results, we demonstrate that the ensemble of multiple inference using medium-sized LLMs produces more robust and accurate results than using a large model with a single attempt with reducing RMSE by 18.6%.
comment: This manuscript has been accepted for the 30th International Conference on Natural Language \& Information Systems (NLDB 2025) and will appear in Springer Lecture Notes in Computer Science (LNCS)
Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning
Spatial reasoning in Large Language Models (LLMs) is the foundation for embodied intelligence. However, even in simple maze environments, LLMs still encounter challenges in long-term path-planning, primarily influenced by their spatial hallucination and context inconsistency hallucination by long-term reasoning. To address this challenge, this study proposes an innovative model, Spatial-to-Relational Transformation and Curriculum Q-Learning (S2RCQL). To address the spatial hallucination of LLMs, we propose the Spatial-to-Relational approach, which transforms spatial prompts into entity relations and paths representing entity relation chains. This approach fully taps the potential of LLMs in terms of sequential thinking. As a result, we design a path-planning algorithm based on Q-learning to mitigate the context inconsistency hallucination, which enhances the reasoning ability of LLMs. Using the Q-value of state-action as auxiliary information for prompts, we correct the hallucinations of LLMs, thereby guiding LLMs to learn the optimal path. Finally, we propose a reverse curriculum learning technique based on LLMs to further mitigate the context inconsistency hallucination. LLMs can rapidly accumulate successful experiences by reducing task difficulty and leveraging them to tackle more complex tasks. We performed comprehensive experiments based on Baidu's self-developed LLM: ERNIE-Bot 4.0. The results showed that our S2RCQL achieved a 23%--40% improvement in both success and optimality rates compared with advanced prompt engineering.
comment: Accepted by ICIC 2025
SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers ICML
Transformers have achieved great success in numerous NLP tasks but continue to exhibit notable gaps in multi-step factual reasoning, especially when real-world knowledge is sparse. Recent advances in grokking have demonstrated that neural networks can transition from memorizing to perfectly generalizing once they detect underlying logical patterns - yet these studies have primarily used small, synthetic tasks. In this paper, for the first time, we extend grokking to real-world factual data and address the challenge of dataset sparsity by augmenting existing knowledge graphs with carefully designed synthetic data to raise the ratio $\phi_r$ of inferred facts to atomic facts above the threshold required for grokking. Surprisingly, we find that even factually incorrect synthetic data can strengthen emergent reasoning circuits rather than degrade accuracy, as it forces the model to rely on relational structure rather than memorization. When evaluated on multi-hop reasoning benchmarks, our approach achieves up to 95-100% accuracy on 2WikiMultiHopQA - substantially improving over strong baselines and matching or exceeding current state-of-the-art results. We further provide an in-depth analysis of how increasing $\phi_r$ drives the formation of generalizing circuits inside Transformers. Our findings suggest that grokking-based data augmentation can unlock implicit multi-hop reasoning capabilities, opening the door to more robust and interpretable factual reasoning in large-scale language models.
comment: Accepted to the International Conference on Machine Learning (ICML) 2025
Liger: Linearizing Large Language Models to Gated Recurrent Structures ICML 2025
Transformers with linear recurrent modeling offer linear-time training and constant-memory inference. Despite their demonstrated efficiency and performance, pretraining such non-standard architectures from scratch remains costly and risky. The linearization of large language models (LLMs) transforms pretrained standard models into linear recurrent structures, enabling more efficient deployment. However, current linearization methods typically introduce additional feature map modules that require extensive fine-tuning and overlook the gating mechanisms used in state-of-the-art linear recurrent models. To address these issues, this paper presents Liger, short for Linearizing LLMs to gated recurrent structures. Liger is a novel approach for converting pretrained LLMs into gated linear recurrent models without adding extra parameters. It repurposes the pretrained key matrix weights to construct diverse gating mechanisms, facilitating the formation of various gated recurrent structures while avoiding the need to train additional components from scratch. Using lightweight fine-tuning with Low-Rank Adaptation (LoRA), Liger restores the performance of the linearized gated recurrent models to match that of the original LLMs. Additionally, we introduce Liger Attention, an intra-layer hybrid attention mechanism, which significantly recovers 93\% of the Transformer-based LLM at 0.02\% pre-training tokens during the linearization process, achieving competitive results across multiple benchmarks, as validated on models ranging from 1B to 8B parameters. Code is available at https://github.com/OpenSparseLLMs/Linearization.
comment: Accepted by ICML 2025, 15 pages
RaDialog: A Large Vision-Language Model for Radiology Report Generation and Conversational Assistance
Conversational AI tools that can generate and discuss clinically correct radiology reports for a given medical image have the potential to transform radiology. Such a human-in-the-loop radiology assistant could facilitate a collaborative diagnostic process, thus saving time and improving the quality of reports. Towards this goal, we introduce RaDialog, the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog. RaDialog effectively integrates visual image features and structured pathology findings with a large language model (LLM) while simultaneously adapting it to a specialized domain using parameter-efficient fine-tuning. To keep the conversational abilities of the underlying LLM, we propose a comprehensive, semi-automatically labeled, image-grounded instruct dataset for chest X-ray radiology tasks. By training with this dataset, our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions, serving as a foundational step toward clinical dialog systems. Our code is available on github: https://github.com/ChantalMP/RaDialog.
comment: Accepted for publication at MIDL 2025
Re-ReST: Reflection-Reinforced Self-Training for Language Agents
Finetuning language agents with reasoning-action trajectories is effective, but obtaining these trajectories from human annotations or stronger models is costly and sometimes impractical. In this paper, we investigate the use of self-training in language agents, which can generate supervision from the agent itself, offering a promising alternative without relying on human or stronger model demonstrations. Self-training, however, requires high-quality model-generated samples, which are hard to obtain for challenging language agent tasks. To address this, we present Reflection-Reinforced Self-Training (Re-ReST), which uses a \textit{reflector} to refine low-quality generated samples during self-training. The reflector takes the agent's output and feedback from an external environment (e.g., unit test results in code generation) to produce improved samples. This technique enhances the quality of inferior samples and efficiently enriches the self-training dataset with higher-quality samples. We conduct extensive experiments on open-source language agents across tasks, including multi-hop question answering, sequential decision-making, code generation, visual question answering, and text-to-image generation. The results demonstrate the effectiveness of self-training and Re-ReST in language agent tasks, with self-training improving baselines by 7.6\% on HotpotQA and 28.4\% on AlfWorld, and Re-ReST further boosting performance by 2.0\% and 14.1\%, respectively. Our studies also confirm the efficiency of using a reflector to generate high-quality samples for self-training. Moreover, we demonstrate a method to employ reflection during inference without ground-truth feedback, addressing the limitation of previous reflection work. Our code is released at https://github.com/PlusLabNLP/Re-ReST.
Advancements and limitations of LLMs in replicating human color-word associations
Color-word associations play a fundamental role in human cognition and design applications. Large Language Models (LLMs) have become widely available and have demonstrated intelligent behaviors in various benchmarks with natural conversation skills. However, their ability to replicate human color-word associations remains understudied. We compared multiple generations of LLMs (from GPT-3 to GPT-4o) against human color-word associations using data collected from over 10,000 Japanese participants, involving 17 colors and 80 words (10 word from eight categories) in Japanese. Our findings reveal a clear progression in LLM performance across generations, with GPT-4o achieving the highest accuracy in predicting the best voted word for each color and category. However, the highest median performance was approximately 50% even for GPT-4o with visual inputs (chance level of 10%). Moreover, we found performance variations across word categories and colors: while LLMs tended to excel in categories such as Rhythm and Landscape, they struggled with categories such as Emotions. Interestingly, color discrimination ability estimated from our color-word association data showed high correlation with human color discrimination patterns, consistent with previous studies. Thus, despite reasonable alignment in basic color discrimination, humans and LLMs still diverge systematically in the words they assign to those colors. Our study highlights both the advancements in LLM capabilities and their persistent limitations, raising the possibility of systematic differences in semantic memory structures between humans and LLMs in representing color-word associations.
comment: 20 pages, 7 figures, 3 tables
SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution
Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source framework designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other model to generate patches for the identified files. To mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches and train the two models of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving competitive performance among open-source models with scores of 22.0% and 30.2%. Furthermore, SWE-Fixer reaches state-of-the-art performance (24.7% on Lite and 32.8% on Verified) with PASS_TO_PASS (P2P) filtering. Additionally, our approach requires only two model calls per instance, making it significantly more efficient than existing methods. These results highlight the effectiveness of SWE-Fixer in real-world code-fixing scenarios. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.
comment: Our code, data, and model will be released at https://github.com/InternLM/SWE-Fixer
Recursively Summarizing Enables Long-Term Dialogue Memory in Large Language Models
Recently, large language models (LLMs), such as GPT-4, stand out remarkable conversational abilities, enabling them to engage in dynamic and contextually relevant dialogues across a wide range of topics. However, given a long conversation, these chatbots fail to recall past information and tend to generate inconsistent responses. To address this, we propose to recursively generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability. Specifically, our method first stimulates LLMs to memorize small dialogue contexts and then recursively produce new memory using previous memory and following contexts. Finally, the chatbot can easily generate a highly consistent response with the help of the latest memory. We evaluate our method on both open and closed LLMs, and the experiments on the widely-used public dataset show that our method can generate more consistent responses in a long-context conversation. Also, we show that our strategy could nicely complement both long-context (e.g., 8K and 16K) and retrieval-enhanced LLMs, bringing further long-term dialogue performance. Notably, our method is a potential solution to enable the LLM to model the extremely long context. The code and scripts will be released later.
Large Language Models Are Struggle to Cope with Unreasonability in Math Problems
Recent research have demonstrated LLMs' impressive performance in math and reasoning. However, the capacity of LLMs to address math problems under unconventional conditions, such as internal inconsistencies and flawed assumptions, remains largely unexplored. In this paper, we propose a novel benchmark Unreasonable Math Problem (UMP) designed to assess LLMs' ability to recognize and respond to unreasonability in math problem. The benchmark consists of a carefully curated collection of unreasonable math questions across diverse types. Based on extensive experiments covering 19 LLMs, we observe that even state-of-the-art models such as GPT-4o achieve only limited performance of 0.6 in UMP, while reasoning models such as DeepSeek-R1 are prone to overthinking and unstable. We further explore strategies for improving the recognition of unreasonable inputs, shedding light on both the possibility and limitations of LLMs in this challenging setting.
comment: 32 pages, 8 figures
SmallPlan: Leverage Small Language Models for Sequential Path Planning with Simulation-Powered, LLM-Guided Distillation
Efficient path planning in robotics, particularly within large-scale, dynamic environments, remains a significant hurdle. While Large Language Models (LLMs) offer strong reasoning capabilities, their high computational cost and limited adaptability in dynamic scenarios hinder real-time deployment on edge devices. We present SmallPlan -- a novel framework leveraging LLMs as teacher models to train lightweight Small Language Models (SLMs) for high-level path planning tasks. In SmallPlan, the SLMs provide optimal action sequences to navigate across scene graphs that compactly represent full-scaled 3D scenes. The SLMs are trained in a simulation-powered, interleaved manner with LLM-guided supervised fine-tuning (SFT) and reinforcement learning (RL). This strategy not only enables SLMs to successfully complete navigation tasks but also makes them aware of important factors like travel distance and number of trials. Through experiments, we demonstrate that the fine-tuned SLMs perform competitively with larger models like GPT-4o on sequential path planning, without suffering from hallucination and overfitting. SmallPlan is resource-efficient, making it well-suited for edge-device deployment and advancing practical autonomous robotics.
comment: Paper is under review
Cyclic Vision-Language Manipulator: Towards Reliable and Fine-Grained Image Interpretation for Automated Report Generation
Despite significant advancements in automated report generation, the opaqueness of text interpretability continues to cast doubt on the reliability of the content produced. This paper introduces a novel approach to identify specific image features in X-ray images that influence the outputs of report generation models. Specifically, we propose Cyclic Vision-Language Manipulator CVLM, a module to generate a manipulated X-ray from an original X-ray and its report from a designated report generator. The essence of CVLM is that cycling manipulated X-rays to the report generator produces altered reports aligned with the alterations pre-injected into the reports for X-ray generation, achieving the term "cyclic manipulation". This process allows direct comparison between original and manipulated X-rays, clarifying the critical image features driving changes in reports and enabling model users to assess the reliability of the generated texts. Empirical evaluations demonstrate that CVLM can identify more precise and reliable features compared to existing explanation methods, significantly enhancing the transparency and applicability of AI-generated reports.
Designing Speech Technologies for Australian Aboriginal English: Opportunities, Risks and Participation
In Australia, post-contact language varieties, including creoles and local varieties of international languages, emerged as a result of forced contact between Indigenous communities and English speakers. These contact varieties are widely used, yet are poorly supported by language technologies. This gap presents barriers to participation in civil and economic society for Indigenous communities using these varieties, and reproduces minoritisation of contemporary Indigenous sociolinguistic identities. This paper concerns three questions regarding this context. First, can speech technologies support speakers of Australian Aboriginal English, a local indigenised variety of English? Second, what risks are inherent in such a project? Third, what technology development practices are appropriate for this context, and how can researchers integrate meaningful community participation in order to mitigate risks? We argue that opportunities do exist -- as well as risks -- and demonstrate this through a case study exploring design practices in a real-world project aiming to improve speech technologies for Australian Aboriginal English. We discuss how we integrated culturally appropriate and participatory processes throughout the project. We call for increased support for languages used by Indigenous communities, including contact varieties, which provide practical economic and socio-cultural benefits, provided that participatory and culturally safe practices are enacted.
Humans can learn to detect AI-generated texts, or at least learn when they can't
This study investigates whether individuals can learn to accurately discriminate between human-written and AI-produced texts when provided with immediate feedback, and if they can use this feedback to recalibrate their self-perceived competence. We also explore the specific criteria individuals rely upon when making these decisions, focusing on textual style and perceived readability. We used GPT-4o to generate several hundred texts across various genres and text types comparable to Koditex, a multi-register corpus of human-written texts. We then presented randomized text pairs to 254 Czech native speakers who identified which text was human-written and which was AI-generated. Participants were randomly assigned to two conditions: one receiving immediate feedback after each trial, the other receiving no feedback until experiment completion. We recorded accuracy in identification, confidence levels, response times, and judgments about text readability along with demographic data and participants' engagement with AI technologies prior to the experiment. Participants receiving immediate feedback showed significant improvement in accuracy and confidence calibration. Participants initially held incorrect assumptions about AI-generated text features, including expectations about stylistic rigidity and readability. Notably, without feedback, participants made the most errors precisely when feeling most confident -- an issue largely resolved among the feedback group. The ability to differentiate between human and AI-generated texts can be effectively learned through targeted training with explicit feedback, which helps correct misconceptions about AI stylistic features and readability, as well as potential other variables that were not explored, while facilitating more accurate self-assessment. This finding might be particularly important in educational contexts.
RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
Communicating Activations Between Language Model Agents ICML 2025
Communication between multiple language model (LM) agents has been shown to scale up the reasoning ability of LMs. While natural language has been the dominant medium for inter-LM communication, it is not obvious this should be the standard: not only does natural language communication incur high inference costs that scale quickly with the number of both agents and messages, but also the decoding process abstracts away too much rich information that could be otherwise accessed from the internal activations. In this work, we propose a simple technique whereby LMs communicate via activations; concretely, we pause an LM $\textit{B}$'s computation at an intermediate layer, combine its current activation with another LM $\textit{A}$'s intermediate activation via some function $\textit{f}$, then pass $\textit{f}$'s output into the next layer of $\textit{B}$ and continue the forward pass till decoding is complete. This approach scales up LMs on new tasks with zero additional parameters and data, and saves a substantial amount of compute over natural language communication. We test our method with various functional forms $\textit{f}$ on two experimental setups--multi-player coordination games and reasoning benchmarks--and find that it achieves up to $27.0\%$ improvement over natural language communication across datasets with $<$$1/4$ the compute, illustrating the superiority and robustness of activations as an alternative "language" for communication between LMs.
comment: ICML 2025
Atyaephyra at SemEval-2025 Task 4: Low-Rank Negative Preference Optimization SemEval
We present a submission to the SemEval 2025 shared task on unlearning sensitive content from LLMs. Our approach employs negative preference optimization using low-rank adaptation. We show that we can utilize this combination to efficiently compute additional regularization terms, which help with unlearning stabilization. The results of our approach significantly exceed the shared task baselines.
comment: 8 pages, 3 figures, accepted to SemEval workshop proceedings at ACL 2025
Recite, Reconstruct, Recollect: Memorization in LMs as a Multifaceted Phenomenon
Memorization in language models is typically treated as a homogenous phenomenon, neglecting the specifics of the memorized data. We instead model memorization as the effect of a set of complex factors that describe each sample and relate it to the model and corpus. To build intuition around these factors, we break memorization down into a taxonomy: recitation of highly duplicated sequences, reconstruction of inherently predictable sequences, and recollection of sequences that are neither. We demonstrate the usefulness of our taxonomy by using it to construct a predictive model for memorization. By analyzing dependencies and inspecting the weights of the predictive model, we find that different factors influence the likelihood of memorization differently depending on the taxonomic category.
LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models
Recent advancements in large language models (LLMs) based embedding models have established new state-of-the-art benchmarks for text embedding tasks, particularly in dense vector-based retrieval. However, these models predominantly focus on English, leaving multilingual embedding capabilities largely unexplored. To address this limitation, we present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision. LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks. These components are seamlessly integrated through a minimal set of trainable parameters that act as a connector, effectively transferring the multilingual encoder's language understanding capabilities to the specialized embedding model. Additionally, to comprehensively evaluate multilingual embedding performance, we introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages. Extensive experimental results demonstrate that LUSIFER significantly enhances the multilingual performance across various embedding tasks, particularly for medium and low-resource languages, without requiring explicit multilingual training data.
To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning ICLR 2025
Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs). But for what kinds of tasks is this extra ``thinking'' really helpful? To analyze this, we conducted a quantitative meta-analysis covering over 100 papers using CoT and ran our own evaluations of 20 datasets across 14 models. Our results show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks. On MMLU, directly generating the answer without CoT leads to almost identical accuracy as CoT unless the question or model's response contains an equals sign, indicating symbolic operations and reasoning. Following this finding, we analyze the behavior of CoT on these problems by separating planning and execution and comparing against tool-augmented LLMs. Much of CoT's gain comes from improving symbolic execution, but it underperforms relative to using a symbolic solver. Our results indicate that CoT can be applied selectively, maintaining performance while saving inference costs. Furthermore, they suggest a need to move beyond prompt-based CoT to new paradigms that better leverage intermediate computation across the whole range of LLM applications.
comment: Published at ICLR 2025
Human-Computer Interaction
SlideItRight: Using AI to Find Relevant Slides and Provide Feedback for Open-Ended Questions
Feedback is important in supporting student learning. While various automated feedback systems have been implemented to make the feedback scalable, many existing solutions only focus on generating text-based feedback. As is indicated in the multimedia learning principle, learning with more modalities could help utilize more separate channels, reduce the cognitive load and facilitate students' learning. Hence, it is important to explore the potential of Artificial Intelligence (AI) in feedback generation from and to different modalities. Our study leverages Large Language Models (LLMs) for textual feedback with the supplementary guidance from other modality - relevant lecture slide retrieved from the slides hub. Through an online crowdsourcing study (N=91), this study investigates learning gains and student perceptions using a 2x2 design (i.e., human feedback vs. AI feedback and with vs. without relevant slide), evaluating the clarity, engagement, perceived effectiveness, and reliability) of AI-facilitated multimodal feedback. We observed significant pre-to-post learning gains across all conditions. However, the differences in these gains were not statistically significant between conditions. The post-survey revealed that students found the slide feedback helpful in their learning process, though they reported difficulty in understanding it. Regarding the AI-generated open-ended feedback, students considered it personalized and relevant to their responses, but they expressed lower trust in the AI feedback compared to human-generated feedback.
comment: 14 pages, to be published at the 26th International Conference on Artificial Intelligence in Education (AIED '25)
Runtime Advocates: A Persona-Driven Framework for Requirements@Runtime Decision Support
Complex systems, such as small Uncrewed Aerial Systems (sUAS) swarms dispatched for emergency response, often require dynamic reconfiguration at runtime under the supervision of human operators. This introduces human-on-the-loop requirements, where evolving needs shape ongoing system functionality and behaviors. While traditional personas support upfront, static requirements elicitation, we propose a persona-based advocate framework for runtime requirements engineering to provide ethically informed, safety-driven, and regulatory-aware decision support. Our approach extends standard personas into event-driven personas. When triggered by events such as adverse environmental conditions, evolving mission state, or operational constraints, the framework updates the sUAS operator's view of the personas, ensuring relevance to current conditions. We create three key advocate personas, namely Safety Controller, Ethical Governor, and Regulatory Auditor, to manage trade-offs among risk, ethical considerations, and regulatory compliance. We perform a proof-of-concept validation in an emergency response scenario using sUAS, showing how our advocate personas provide context-aware guidance grounded in safety, regulatory, and ethical constraints. By evolving static, design-time personas into adaptive, event-driven advocates, the framework surfaces mission-critical runtime requirements in response to changing conditions. These requirements shape operator decisions in real time, aligning actions with the operational demands of the moment.
comment: 7 pages, 5 figures. Submitted to 33rd IEEE International Requirements Engineering 2025 conference
Accelerating Audio Research with Robotic Dummy Heads SP
This work introduces a robotic dummy head that fuses the acoustic realism of conventional audiological mannequins with the mobility of robots. The proposed device is capable of moving, talking, and listening as people do, and can be used to automate spatially-stationary audio experiments, thus accelerating the pace of audio research. Critically, the device may also be used as a moving sound source in dynamic experiments, due to its quiet motor. This feature differentiates our work from previous robotic acoustic research platforms. Validation that the robot enables high quality audio data collection is provided through various experiments and acoustic measurements. These experiments also demonstrate how the robot might be used to study adaptive binaural beamforming. Design files are provided as open-source to stimulate novel audio research.
comment: WASPAA 2025
"I Can See Forever!": Evaluating Real-time VideoLLMs for Assisting Individuals with Visual Impairments
The visually impaired population, especially the severely visually impaired, is currently large in scale, and daily activities pose significant challenges for them. Although many studies use large language and vision-language models to assist the blind, most focus on static content and fail to meet real-time perception needs in dynamic and complex environments, such as daily activities. To provide them with more effective intelligent assistance, it is imperative to incorporate advanced visual understanding technologies. Although real-time vision and speech interaction VideoLLMs demonstrate strong real-time visual understanding, no prior work has systematically evaluated their effectiveness in assisting visually impaired individuals. In this work, we conduct the first such evaluation. First, we construct a benchmark dataset (VisAssistDaily), covering three categories of assistive tasks for visually impaired individuals: Basic Skills, Home Life Tasks, and Social Life Tasks. The results show that GPT-4o achieves the highest task success rate. Next, we conduct a user study to evaluate the models in both closed-world and open-world scenarios, further exploring the practical challenges of applying VideoLLMs in assistive contexts. One key issue we identify is the difficulty current models face in perceiving potential hazards in dynamic environments. To address this, we build an environment-awareness dataset named SafeVid and introduce a polling mechanism that enables the model to proactively detect environmental risks. We hope this work provides valuable insights and inspiration for future research in this field.
comment: 12 pages, 6 figures
A Design Space for the Critical Validation of LLM-Generated Tabular Data
LLM-generated tabular data is creating new opportunities for data-driven applications in academia, business, and society. To leverage benefits like missing value imputation, labeling, and enrichment with context-aware attributes, LLM-generated data needs a critical validation process. The number of pioneering approaches is increasing fast, opening a promising validation space that, so far, remains unstructured. We present a design space for the critical validation of LLM-generated tabular data with two dimensions: First, the Analysis Granularity dimension: from within-attribute (single-item and multi-item) to across-attribute perspectives (1 x 1, 1 x m, and n x n). Second, the Data Source dimension: differentiating between LLM-generated values, ground truth values, explanations, and their combinations. We discuss analysis tasks for each dimension cross-cut, map 19 existing validation approaches, and discuss the characteristics of two approaches in detail, demonstrating descriptive power.
comment: To appear at the 16th International EuroVis Workshop on Visual Analytics (EuroVA'25)
Practice Support for Violin Bowing by Measuring Bow Pressure and Position
The violin is one of the most popular musical instruments. Various parameters of bowing motion, such as pressure, position, and speed, are crucial for producing a beautiful tone. However, mastering them is challenging and requires extensive practice. In this study, we aimed to support practice of bowing, focusing on bow pressure. First, we compared the bowing movements, specifically bow pressure, bow position, and bow speed, of eight experienced players with those of eight beginners. Next, we developed and evaluated a visual feedback system that displays bow pressure to support practice. We taught the identified differences to 14 beginners, dividing them into two groups: one practiced with an explanation, and the other with both an explanation and a feedback system. These two experiments found that clarifying the characteristics unique to experienced players can support practice.
comment: 27 pages, 13 figures. arXiv admin note: text overlap with arXiv:2411.05126
Improving Inclusivity for Emotion Recognition Based on Face Tracking
The limited expressiveness of virtual user representations in Mixed Reality and Virtual Reality can inhibit an integral part of communication: emotional expression. Emotion recognition based on face tracking is often used to compensate for this. However, emotional facial expressions are highly individual, which is why many approaches have difficulties recognizing unique variations of emotional expressions. We propose several strategies to improve face tracking systems for emotion recognition with and without user intervention for the Affective Interaction Workshop at CHI '25.
comment: Selected for ACM CHI 2025 Workshop "Affective interaction and affective computing - past, present and future" - https://doi.org/10.1145/3706599.3706743
With Friends Like These, Who Needs Explanations? Evaluating User Understanding of Group Recommendations
Group Recommender Systems (GRS) employing social choice-based aggregation strategies have previously been explored in terms of perceived consensus, fairness, and satisfaction. At the same time, the impact of textual explanations has been examined, but the results suggest a low effectiveness of these explanations. However, user understanding remains fairly unexplored, even if it can contribute positively to transparent GRS. This is particularly interesting to study in more complex or potentially unfair scenarios when user preferences diverge, such as in a minority scenario (where group members have similar preferences, except for a single member in a minority position). In this paper, we analyzed the impact of different types of explanations on user understanding of group recommendations. We present a randomized controlled trial (n = 271) using two between-subject factors: (i) the aggregation strategy (additive, least misery, and approval voting), and (ii) the modality of explanation (no explanation, textual explanation, or multimodal explanation). We measured both subjective (self-perceived by the user) and objective understanding (performance on model simulation, counterfactuals and error detection). In line with recent findings on explanations for machine learning models, our results indicate that more detailed explanations, whether textual or multimodal, did not increase subjective or objective understanding. However, we did find a significant effect of aggregation strategies on both subjective and objective understanding. These results imply that when constructing GRS, practitioners need to consider that the choice of aggregation strategy can influence the understanding of users. Post-hoc analysis also suggests that there is value in analyzing performance on different tasks, rather than through a single aggregated metric of understanding.
comment: This article will be part of the UMAP 2025 conference. (33rd ACM Conference on User Modeling, Adaptation and Personalization (UMAP25), June 16-19, 2025, New York City, NY, USA)
Steerable Chatbots: Personalizing LLMs with Preference-Based Activation Steering
As large language models (LLMs) improve in their capacity to serve as personal AI assistants, their ability to output uniquely tailored, personalized responses that align with the soft preferences of their users is essential for enhancing user satisfaction and retention. However, untrained lay users have poor prompt specification abilities and often struggle with conveying their latent preferences to AI assistants. To address this, we leverage activation steering to guide LLMs to align with interpretable preference dimensions during inference. In contrast to memory-based personalization methods that require longer user history, steering is extremely lightweight and can be easily controlled by the user via an linear strength factor. We embed steering into three different interactive chatbot interfaces and conduct a within-subjects user study (n=14) to investigate how end users prefer to personalize their conversations. The results demonstrate the effectiveness of preference-based steering for aligning real-world conversations with hidden user preferences, and highlight further insights on how diverse values around control, usability, and transparency lead users to prefer different interfaces.
Sick of being driven? -- Prevalence and modulating factors of carsickness in the European population in context of automated driving
As in automated driving the driver becomes a passenger, carsickness might reduce comfort for susceptible individuals. Insights in the prevalence of carsickness and its modulating factors are considered useful for the development of automated vehicles to mitigate or prevent its occurrence. An online survey was conducted with N = 3999 participants in Spain, Sweden, Poland, and Germany. 30% of participants reported to have already experienced carsickness as adult. The frequency of carsickness was modulated not only by demographic factors (country, gender, age), but also by frequency of being a passenger, type of non-driving related task, road type, and the seating position in car. Furthermore, the efficiency of applied countermeasures, temporal aspects of carsickness development, as well as the relation of carsickness with the acceptability of automated driving and the effect on subjective fitness to drive was investigated. The results are discussed with focus on automated driving.
State-of-the-Art HCI for Dementia Care: A Scoping Review of Recent Technological Advances
Dementia significantly impacts cognitive, behavioral, and functional abilities, creating challenges for both individuals and caregivers. Recent advancements in HCI have introduced innovative technological solutions to support people with dementia (PwD) and their caregivers. This scoping review systematically examines 32 recent publications from leading digital libraries, categorizing technological interventions into four key domains: Assistive and Smart Technology for Daily Life, Social Interaction and Communication, Well-being and Psychological Support, and Caregiver Support and Training. Our analysis highlights how emerging technologies are transforming dementia care. These technologies enhance quality of life by promoting independence, fostering social engagement, and providing emotional and cognitive support. However, the review also identifies critical gaps, particularly in addressing the needs of individuals with early-stage dementia and the lack of individualized support mechanisms. By emphasizing user-centered design, accessibility, and ethical considerations, this paper offers a structured roadmap for future research and practice in dementia care. It bridges the gap between technological innovation and the real-world needs of PwD and their caregivers, providing valuable insights for researchers, practitioners, and policymakers. This review not only synthesizes current advancements but also sets the stage for future HCI-driven innovations in dementia care, aiming to improve outcomes for an aging global population.
comment: 19 pages, 4 figures, conference
A Dataset and Toolkit for Multiparameter Cardiovascular Physiology Sensing on Rings
Smart rings offer a convenient way to continuously and unobtrusively monitor cardiovascular physiological signals. However, a gap remains between the ring hardware and reliable methods for estimating cardiovascular parameters, partly due to the lack of publicly available datasets and standardized analysis tools. In this work, we present $\tau$-Ring, the first open-source ring-based dataset designed for cardiovascular physiological sensing. The dataset comprises photoplethysmography signals (infrared and red channels) and 3-axis accelerometer data collected from two rings (reflective and transmissive optical paths), with 28.21 hours of raw data from 34 subjects across seven activities. $\tau$-Ring encompasses both stationary and motion scenarios, as well as stimulus-evoked abnormal physiological states, annotated with four ground-truth labels: heart rate, respiratory rate, oxygen saturation, and blood pressure. Using our proposed RingTool toolkit, we evaluated three widely-used physics-based methods and four cutting-edge deep learning approaches. Our results show superior performance compared to commercial rings, achieving best MAE values of 5.18 BPM for heart rate, 2.98 BPM for respiratory rate, 3.22\% for oxygen saturation, and 13.33/7.56 mmHg for systolic/diastolic blood pressure estimation. The open-sourced dataset and toolkit aim to foster further research and community-driven advances in ring-based cardiovascular health sensing.
Can Language Models Understand Social Behavior in Clinical Conversations?
Effective communication between providers and their patients influences health and care outcomes. The effectiveness of such conversations has been linked not only to the exchange of clinical information, but also to a range of interpersonal behaviors; commonly referred to as social signals, which are often conveyed through non-verbal cues and shape the quality of the patient-provider relationship. Recent advances in large language models (LLMs) have demonstrated an increasing ability to infer emotional and social behaviors even when analyzing only textual information. As automation increases also in clinical settings, such as for transcription of patient-provider conversations, there is growing potential for LLMs to automatically analyze and extract social behaviors from these interactions. To explore the foundational capabilities of LLMs in tracking social signals in clinical dialogue, we designed task-specific prompts and evaluated model performance across multiple architectures and prompting styles using a highly imbalanced, annotated dataset spanning 20 distinct social signals such as provider dominance, patient warmth, etc. We present the first system capable of tracking all these 20 coded signals, and uncover patterns in LLM behavior. Further analysis of model configurations and clinical context provides insights for enhancing LLM performance on social signal processing tasks in healthcare settings.
Fitts' List Revisited: An Empirical Study on Function Allocation in a Two-Agent Physical Human-Robot Collaborative Position/Force Task
In this letter, we investigate whether the classical function allocation holds for physical Human-Robot Collaboration, which is important for providing insights for Industry 5.0 to guide how to best augment rather than replace workers. This study empirically tests the applicability of Fitts' List within physical Human-Robot Collaboration, by conducting a user study (N=26, within-subject design) to evaluate four distinct allocations of position/force control between human and robot in an abstract blending task. We hypothesize that the function in which humans control the position achieves better performance and receives higher user ratings. When allocating position control to the human and force control to the robot, compared to the opposite case, we observed a significant improvement in preventing overblending. This was also perceived better in terms of physical demand and overall system acceptance, while participants experienced greater autonomy, more engagement and less frustration. An interesting insight was that the supervisory role (when the robot controls both position and force control) was rated second best in terms of subjective acceptance. Another surprising insight was that if position control was delegated to the robot, the participants perceived much lower autonomy than when the force control was delegated to the robot. These findings empirically support applying Fitts' principles to static function allocation for physical collaboration, while also revealing important nuanced user experience trade-offs, particularly regarding perceived autonomy when delegating position control.
comment: 10 pages, 6 figures, under review for publication in IEEE Robotics and Automation Letters (RA-L)
Investigating the Impact and Student Perceptions of Guided Parsons Problems for Learning Logic with Subgoals
Parsons problems (PPs) have shown promise in structured problem solving by providing scaffolding that decomposes the problem and requires learners to reconstruct the solution. However, some students face difficulties when first learning with PPs or solving more complex Parsons problems. This study introduces Guided Parsons problems (GPPs) designed to provide step-specific hints and improve learning outcomes in an intelligent logic tutor. In a controlled experiment with 76 participants, GPP students achieved significantly higher accuracy of rule application in both level-end tests and post-tests, with the strongest gains among students with lower prior knowledge. GPP students initially spent more time in training (1.52 vs. 0.81 hours) but required less time for post-tests, indicating improved problem solving efficiency. Our thematic analysis of GPP student self-explanations revealed task decomposition, better rule understanding, and reduced difficulty as key themes, while some students felt the structured nature of GPPs restricted their own way of reasoning. These findings reinforce that GPPs can effectively combine the benefits of worked examples and problem solving practice, but could be further improved by individual adaptation.
VR-Doh: Hands-on 3D Modeling in Virtual Reality
We introduce VR-Doh, an open-source, hands-on 3D modeling system that enables intuitive creation and manipulation of elastoplastic objects in Virtual Reality (VR). By customizing the Material Point Method (MPM) for real-time simulation of hand-induced large deformations and enhancing 3D Gaussian Splatting for seamless rendering, VR-Doh provides an interactive and immersive 3D modeling experience. Users can naturally sculpt, deform, and edit objects through both contact- and gesture-based hand-object interactions. To achieve real-time performance, our system incorporates localized simulation techniques, particle-level collision handling, and the decoupling of physical and appearance representations, ensuring smooth and responsive interactions. VR-Doh supports both object creation and editing, enabling diverse modeling tasks such as designing food items, characters, and interlocking structures, all resulting in simulation-ready assets. User studies with both novice and experienced participants highlight the system's intuitive design, immersive feedback, and creative potential. Compared to existing geometric modeling tools, VR-Doh offers enhanced accessibility and natural interaction, making it a powerful tool for creative exploration in VR.
comment: 12 pages
manvr3d: A Platform for Human-in-the-loop Cell Tracking in Virtual Reality IEEE VIS 2025
We propose manvr3d, a novel VR-ready platform for interactive human-in-the-loop cell tracking. We utilize VR controllers and eye-tracking hardware to facilitate rapid ground truth generation and proofreading for deep learning-based cell tracking models. Life scientists reconstruct the developmental history of organisms on the cellular level by analyzing 3D time-lapse microscopy images acquired at high spatio-temporal resolution. The reconstruction of such cell lineage trees traditionally involves tracking individual cells through all recorded time points, manually annotating their positions, and then linking them over time to create complete trajectories. Deep learning-based algorithms accelerate this process, yet depend heavily on manually-annotated high-quality ground truth data and curation. Visual representation of the image data in this process still relies primarily on 2D renderings, which greatly limits spatial understanding and navigation. In this work, we bridge the gap between deep learning-based cell tracking software and 3D/VR visualization to create a human-in-the-loop cell tracking system. We lift the incremental annotation, training and proofreading loop of the deep learning model into the 3rd dimension and apply natural user interfaces like hand gestures and eye tracking to accelerate the cell tracking workflow for life scientists.
comment: 7 pages, 6 figures, submitted to IEEE VIS 2025
Behavioral Sensing and Intervention Paradigm: A Review of Closed-Loop Approaches for Ingestion Health
Ingestive behavior plays a critical role in health, yet many existing interventions remain limited to static guidance or manual self-tracking. With the increasing integration of sensors and perceptual computing, recent systems have begun to support closed-loop interventions that dynamically sense user behavior and provide feedback during or around ingestion episodes. In this survey, we review 136 studies that leverage sensor-enabled or interaction-mediated approaches to influence eating behavior. We propose a behavioral closed-loop paradigm comprising three core components: target behaviors, sensing modalities, and feedback strategies. A taxonomy of sensing and intervention modalities is presented, organized along human- and environment-based dimensions. Our analysis also examines evaluation methods and design trends across different modality-behavior pairings. This review reveals prevailing patterns and critical gaps, offering design insights for future adaptive and context-aware ingestion health interventions.
A Comprehensive Survey of Electrical Stimulation Haptic Feedback in Human-Computer Interaction
Haptic perception and feedback play a pivotal role in interactive experiences, forming an essential component of human-computer interaction (HCI). In recent years, the field of haptic interaction has witnessed significant advancements, particularly in the area of electrical haptic feedback, driving innovation across various domains. To gain a comprehensive understanding of the current state of research and the latest developments in electrical haptic interaction, this study systematically reviews the literature in this area. Our investigation covers key aspects including haptic devices, haptic perception mechanisms, the comparison and integration of electrical haptic feedback with other feedback modalities, and their diverse applications. Specifically, we conduct a systematic analysis of 110 research papers to explore the forefront of electrical haptic feedback, providing insights into its latest trends, challenges, and future directions.
comment: 23 pages, 7 figures
Somesite I Used To Crawl: Awareness, Agency and Efficacy in Protecting Content Creators From AI Crawlers
The success of generative AI relies heavily on training on data scraped through extensive crawling of the Internet, a practice that has raised significant copyright, privacy, and ethical concerns. While few measures are designed to resist a resource-rich adversary determined to scrape a site, crawlers can be impacted by a range of existing tools such as robots.txt, NoAI meta tags, and active crawler blocking by reverse proxies. In this work, we seek to understand the ability and efficacy of today's networking tools to protect content creators against AI-related crawling. For targeted populations like human artists, do they have the technical knowledge and agency to utilize crawler-blocking tools such as robots.txt, and can such tools be effective? Using large scale measurements and a targeted user study of 203 professional artists, we find strong demand for tools like robots.txt, but significantly constrained by critical hurdles in technical awareness, agency in deploying them, and limited efficacy against unresponsive crawlers. We further test and evaluate network-level crawler blockers provided by reverse proxies. Despite relatively limited deployment today, they offer stronger protections against AI crawlers, but still come with their own set of limitations.
comment: Accepted to IMC 25. Please cite the conference version
Automated Coding of Communications in Collaborative Problem-solving Tasks Using ChatGPT
Collaborative problem solving (CPS) is widely recognized as a critical 21st-century skill. Assessing CPS depends heavily on coding the communication data using a construct-relevant framework, and this process has long been a major bottleneck to scaling up such assessments. Based on five datasets and two coding frameworks, we demonstrate that ChatGPT can code communication data to a satisfactory level, though performance varies across ChatGPT models, and depends on the coding framework and task characteristics. Interestingly, newer reasoning-focused models such as GPT-o1-mini and GPT-o3-mini do not necessarily yield better coding results. Additionally, we show that refining prompts based on feedback from miscoded cases can improve coding accuracy in some instances, though the effectiveness of this approach is not consistent across all tasks. These findings offer practical guidance for researchers and practitioners in developing scalable, efficient methods to analyze communication data in support of 21st-century skill assessment.
comment: 21 pages, 3 figures, 5 tables. Initially report in the edArXiv:xw6kz
AffectGPT: A New Dataset, Model, and Benchmark for Emotion Understanding with Multimodal Large Language Models
The emergence of multimodal large language models (MLLMs) advances multimodal emotion recognition (MER) to the next level, from naive discriminative tasks to complex emotion understanding with advanced video understanding abilities and natural language description. However, the current community suffers from a lack of large-scale datasets with intensive, descriptive emotion annotations, as well as a multimodal-centric framework to maximize the potential of MLLMs for emotion understanding. To address this, we establish a new benchmark for MLLM-based emotion understanding with a novel dataset (MER-Caption) and a new model (AffectGPT). Utilizing our model-based crowd-sourcing data collection strategy, we construct the largest descriptive emotion dataset to date (by far), featuring over 2K fine-grained emotion categories across 115K samples. We also introduce the AffectGPT model, designed with pre-fusion operations to enhance multimodal integration. Finally, we present MER-UniBench, a unified benchmark with evaluation metrics tailored for typical MER tasks and the free-form, natural language output style of MLLMs. Extensive experimental results show AffectGPT's robust performance across various MER tasks. We have released both the code and the dataset to advance research and development in emotion understanding: https://github.com/zeroQiaoba/AffectGPT.
OV-MER: Towards Open-Vocabulary Multimodal Emotion Recognition
Multimodal Emotion Recognition (MER) is a critical research area that seeks to decode human emotions from diverse data modalities. However, existing machine learning methods predominantly rely on predefined emotion taxonomies, which fail to capture the inherent complexity, subtlety, and multi-appraisal nature of human emotional experiences, as demonstrated by studies in psychology and cognitive science. To overcome this limitation, we advocate for introducing the concept of open vocabulary into MER. This paradigm shift aims to enable models to predict emotions beyond a fixed label space, accommodating a flexible set of categories to better reflect the nuanced spectrum of human emotions. To achieve this, we propose a novel paradigm: Open-Vocabulary MER (OV-MER), which enables emotion prediction without being confined to predefined spaces. However, constructing a dataset that encompasses the full range of emotions for OV-MER is practically infeasible; hence, we present a comprehensive solution including a newly curated database, novel evaluation metrics, and a preliminary benchmark. By advancing MER from basic emotions to more nuanced and diverse emotional states, we hope this work can inspire the next generation of MER, enhancing its generalizability and applicability in real-world scenarios. Code and dataset are available at: https://github.com/zeroQiaoba/AffectGPT.
Towards User-Centred Design of AI-Assisted Decision-Making in Law Enforcement
Artificial Intelligence (AI) has become an important part of our everyday lives, yet user requirements for designing AI-assisted systems in law enforcement remain unclear. To address this gap, we conducted qualitative research on decision-making within a law enforcement agency. Our study aimed to identify limitations of existing practices, explore user requirements and understand the responsibilities that humans expect to undertake in these systems. Participants in our study highlighted the need for a system capable of processing and analysing large volumes of data efficiently to help in crime detection and prevention. Additionally, the system should satisfy requirements for scalability, accuracy, justification, trustworthiness and adaptability to be adopted in this domain. Participants also emphasised the importance of having end users review the input data that might be challenging for AI to interpret, and validate the generated output to ensure the system's accuracy. To keep up with the evolving nature of the law enforcement domain, end users need to help the system adapt to the changes in criminal behaviour and government guidance, and technical experts need to regularly oversee and monitor the system. Furthermore, user-friendly human interaction with the system is essential for its adoption and some of the participants confirmed they would be happy to be in the loop and provide necessary feedback that the system can learn from. Finally, we argue that it is very unlikely that the system will ever achieve full automation due to the dynamic and complex nature of the law enforcement domain.
comment: 10 pages
Adaptive Gen-AI Guidance in Virtual Reality: A Multimodal Exploration of Engagement in Neapolitan Pizza-Making
Virtual reality (VR) offers promising opportunities for procedural learning, particularly in preserving intangible cultural heritage. Advances in generative artificial intelligence (Gen-AI) further enrich these experiences by enabling adaptive learning pathways. However, evaluating such adaptive systems using traditional temporal metrics remains challenging due to the inherent variability in Gen-AI response times. To address this, our study employs multimodal behavioural metrics, including visual attention, physical exploratory behaviour, and verbal interaction, to assess user engagement in an adaptive VR environment. In a controlled experiment with 54 participants, we compared three levels of adaptivity (high, moderate, and non-adaptive baseline) within a Neapolitan pizza-making VR experience. Results show that moderate adaptivity optimally enhances user engagement, significantly reducing unnecessary exploratory behaviour and increasing focused visual attention on the AI avatar. Our findings suggest that a balanced level of adaptive AI provides the most effective user support, offering practical design recommendations for future adaptive educational technologies.
Advancements and limitations of LLMs in replicating human color-word associations
Color-word associations play a fundamental role in human cognition and design applications. Large Language Models (LLMs) have become widely available and have demonstrated intelligent behaviors in various benchmarks with natural conversation skills. However, their ability to replicate human color-word associations remains understudied. We compared multiple generations of LLMs (from GPT-3 to GPT-4o) against human color-word associations using data collected from over 10,000 Japanese participants, involving 17 colors and 80 words (10 word from eight categories) in Japanese. Our findings reveal a clear progression in LLM performance across generations, with GPT-4o achieving the highest accuracy in predicting the best voted word for each color and category. However, the highest median performance was approximately 50% even for GPT-4o with visual inputs (chance level of 10%). Moreover, we found performance variations across word categories and colors: while LLMs tended to excel in categories such as Rhythm and Landscape, they struggled with categories such as Emotions. Interestingly, color discrimination ability estimated from our color-word association data showed high correlation with human color discrimination patterns, consistent with previous studies. Thus, despite reasonable alignment in basic color discrimination, humans and LLMs still diverge systematically in the words they assign to those colors. Our study highlights both the advancements in LLM capabilities and their persistent limitations, raising the possibility of systematic differences in semantic memory structures between humans and LLMs in representing color-word associations.
comment: 20 pages, 7 figures, 3 tables
Data Therapist: Eliciting Domain Knowledge from Subject Matter Experts Using Large Language Models IEEE VIS2025
Effective data visualization requires not only technical proficiency but also a deep understanding of the domain-specific context in which data exists. This context often includes tacit knowledge about data provenance, quality, and intended use, which is rarely explicit in the dataset itself. We present the Data Therapist, a web-based tool that helps domain experts externalize this implicit knowledge through a mixed-initiative process combining iterative Q&A with interactive annotation. Powered by a large language model, the system analyzes user-supplied datasets, prompts users with targeted questions, and allows annotation at varying levels of granularity. The resulting structured knowledge base can inform both human and automated visualization design. We evaluated the tool in a qualitative study involving expert pairs from Molecular Biology, Accounting, Political Science, and Usable Security. The study revealed recurring patterns in how experts reason about their data and highlights areas where AI support can improve visualization design.
comment: Submitted to IEEE VIS2025
Imagining and building wise machines: The centrality of AI metacognition
Although AI has become increasingly smart, its wisdom has not kept pace. In this article, we examine what is known about human wisdom and sketch a vision of its AI counterpart. We analyze human wisdom as a set of strategies for solving intractable problems-those outside the scope of analytic techniques-including both object-level strategies like heuristics [for managing problems] and metacognitive strategies like intellectual humility, perspective-taking, or context-adaptability [for managing object-level strategies]. We argue that AI systems particularly struggle with metacognition; improved metacognition would lead to AI more robust to novel environments, explainable to users, cooperative with others, and safer in risking fewer misaligned goals with human users. We discuss how wise AI might be benchmarked, trained, and implemented.
comment: 23 pages, 1 figure, 3 tables
Large-scale, Longitudinal, Hybrid Participatory Design Program to Create Navigation Technology for the Blind
Empowering people who are blind or visually impaired (BVI) to enhance their orientation and mobility skills is critical to equalizing their access to social and economic opportunities. To manage this crucial challenge, we employed a novel design process based on a large-scale, longitudinal, community-based structure. Across three annual programs we engaged with the BVI community in online and in-person modes. In total, our team included 67 total BVI participatory design participants online, 11 BVI co-designers in-person, and 4 BVI program coordinators. Through this design process we built a mobile application that enables users to generate, share, and navigate maps of indoor and outdoor environments without the need to instrument each environment with beacons or fiducial markers. We evaluated this app at a healthcare facility, and participants in the evaluation rated the app highly with respect to its design, features, and potential for positive impact on quality of life.
Perils of Label Indeterminacy: A Case Study on Prediction of Neurological Recovery After Cardiac Arrest
The design of AI systems to assist human decision-making typically requires the availability of labels to train and evaluate supervised models. Frequently, however, these labels are unknown, and different ways of estimating them involve unverifiable assumptions or arbitrary choices. In this work, we introduce the concept of label indeterminacy and derive important implications in high-stakes AI-assisted decision-making. We present an empirical study in a healthcare context, focusing specifically on predicting the recovery of comatose patients after resuscitation from cardiac arrest. Our study shows that label indeterminacy can result in models that perform similarly when evaluated on patients with known labels, but vary drastically in their predictions for patients where labels are unknown. After demonstrating crucial ethical implications of label indeterminacy in this high-stakes context, we discuss takeaways for evaluation, reporting, and design.
comment: The 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25)
Computer Vision and Pattern Recognition
Multi-Agent System for Comprehensive Soccer Understanding
Recent advancements in AI-driven soccer understanding have demonstrated rapid progress, yet existing research predominantly focuses on isolated or narrow tasks. To bridge this gap, we propose a comprehensive framework for holistic soccer understanding. Specifically, we make the following contributions in this paper: (i) we construct SoccerWiki, the first large-scale multimodal soccer knowledge base, integrating rich domain knowledge about players, teams, referees, and venues to enable knowledge-driven reasoning; (ii) we present SoccerBench, the largest and most comprehensive soccer-specific benchmark, featuring around 10K standardized multimodal (text, image, video) multi-choice QA pairs across 13 distinct understanding tasks, curated through automated pipelines and manual verification; (iii) we introduce SoccerAgent, a novel multi-agent system that decomposes complex soccer questions via collaborative reasoning, leveraging domain expertise from SoccerWiki and achieving robust performance; (iv) extensive evaluations and ablations that benchmark state-of-the-art MLLMs on SoccerBench, highlighting the superiority of our proposed agentic system. All data and code are publicly available at: https://jyrao.github.io/SoccerAgent/.
comment: Technical Report; Project Page: https://jyrao.github.io/SoccerAgent/
FlexiAct: Towards Flexible Action Control in Heterogeneous Scenarios
Action customization involves generating videos where the subject performs actions dictated by input control signals. Current methods use pose-guided or global motion customization but are limited by strict constraints on spatial structure, such as layout, skeleton, and viewpoint consistency, reducing adaptability across diverse subjects and scenarios. To overcome these limitations, we propose FlexiAct, which transfers actions from a reference video to an arbitrary target image. Unlike existing methods, FlexiAct allows for variations in layout, viewpoint, and skeletal structure between the subject of the reference video and the target image, while maintaining identity consistency. Achieving this requires precise action control, spatial structure adaptation, and consistency preservation. To this end, we introduce RefAdapter, a lightweight image-conditioned adapter that excels in spatial adaptation and consistency preservation, surpassing existing methods in balancing appearance consistency and structural flexibility. Additionally, based on our observations, the denoising process exhibits varying levels of attention to motion (low frequency) and appearance details (high frequency) at different timesteps. So we propose FAE (Frequency-aware Action Extraction), which, unlike existing methods that rely on separate spatial-temporal architectures, directly achieves action extraction during the denoising process. Experiments demonstrate that our method effectively transfers actions to subjects with diverse layouts, skeletons, and viewpoints. We release our code and model weights to support further research at https://shiyi-zh0408.github.io/projectpages/FlexiAct/
comment: Accepted by Siggraph2025, Project Page: https://shiyi-zh0408.github.io/projectpages/FlexiAct/
Visual Imitation Enables Contextual Humanoid Control
How can we teach humanoids to climb staircases and sit on chairs using the surrounding environment context? Arguably, the simplest way is to just show them-casually capture a human motion video and feed it to humanoids. We introduce VIDEOMIMIC, a real-to-sim-to-real pipeline that mines everyday videos, jointly reconstructs the humans and the environment, and produces whole-body control policies for humanoid robots that perform the corresponding skills. We demonstrate the results of our pipeline on real humanoid robots, showing robust, repeatable contextual control such as staircase ascents and descents, sitting and standing from chairs and benches, as well as other dynamic whole-body skills-all from a single policy, conditioned on the environment and global root commands. VIDEOMIMIC offers a scalable path towards teaching humanoids to operate in diverse real-world environments.
comment: Project website: https://www.videomimic.net/
DISARM++: Beyond scanner-free harmonization
Harmonization of T1-weighted MR images across different scanners is crucial for ensuring consistency in neuroimaging studies. This study introduces a novel approach to direct image harmonization, moving beyond feature standardization to ensure that extracted features remain inherently reliable for downstream analysis. Our method enables image transfer in two ways: (1) mapping images to a scanner-free space for uniform appearance across all scanners, and (2) transforming images into the domain of a specific scanner used in model training, embedding its unique characteristics. Our approach presents strong generalization capability, even for unseen scanners not included in the training phase. We validated our method using MR images from diverse cohorts, including healthy controls, traveling subjects, and individuals with Alzheimer's disease (AD). The model's effectiveness is tested in multiple applications, such as brain age prediction (R2 = 0.60 \pm 0.05), biomarker extraction, AD classification (Test Accuracy = 0.86 \pm 0.03), and diagnosis prediction (AUC = 0.95). In all cases, our harmonization technique outperforms state-of-the-art methods, showing improvements in both reliability and predictive accuracy. Moreover, our approach eliminates the need for extensive preprocessing steps, such as skull-stripping, which can introduce errors by misclassifying brain and non-brain structures. This makes our method particularly suitable for applications that require full-head analysis, including research on head trauma and cranial deformities. Additionally, our harmonization model does not require retraining for new datasets, allowing smooth integration into various neuroimaging workflows. By ensuring scanner-invariant image quality, our approach provides a robust and efficient solution for improving neuroimaging studies across diverse settings. The code is available at this link.
Fill the Gap: Quantifying and Reducing the Modality Gap in Image-Text Representation Learning
Vision-language models (VLMs) allow to embed texts and images in a shared representation space. However, it has been shown that these models are subject to a modality gap phenomenon meaning there exists a clear separation between the embeddings from one modality and another in the embedding space. While this misalignment is detrimental for downstream tasks such as multimodal retrieval, multimodal clustering or zero-shot classification, etc. no generic and practical methods have so far been proposed to assess it precisely and even reduce it. We therefore propose novel measures and effective techniques (spectral- and optimal transport-based methods) to achieve this goal. Extensive experiments conducted on several image-text datasets and models demonstrate their effectiveness and beneficial effects on downstream tasks. Our code is available at the URL provided in the paper's abstract.
Self-Supervised Learning for Robotic Leaf Manipulation: A Hybrid Geometric-Neural Approach
Automating leaf manipulation in agricultural settings faces significant challenges, including the variability of plant morphologies and deformable leaves. We propose a novel hybrid geometric-neural approach for autonomous leaf grasping that combines traditional computer vision with neural networks through self-supervised learning. Our method integrates YOLOv8 for instance segmentation and RAFT-Stereo for 3D depth estimation to build rich leaf representations, which feed into both a geometric feature scoring pipeline and a neural refinement module (GraspPointCNN). The key innovation is our confidence-weighted fusion mechanism that dynamically balances the contribution of each approach based on prediction certainty. Our self-supervised framework uses the geometric pipeline as an expert teacher to automatically generate training data. Experiments demonstrate that our approach achieves an 88.0% success rate in controlled environments and 84.7% in real greenhouse conditions, significantly outperforming both purely geometric (75.3%) and neural (60.2%) methods. This work establishes a new paradigm for agricultural robotics where domain expertise is seamlessly integrated with machine learning capabilities, providing a foundation for fully automated crop monitoring systems.
comment: 13 pages, 9 figures
Matching Distance and Geometric Distribution Aided Learning Multiview Point Cloud Registration
Multiview point cloud registration plays a crucial role in robotics, automation, and computer vision fields. This paper concentrates on pose graph construction and motion synchronization within multiview registration. Previous methods for pose graph construction often pruned fully connected graphs or constructed sparse graph using global feature aggregated from local descriptors, which may not consistently yield reliable results. To identify dependable pairs for pose graph construction, we design a network model that extracts information from the matching distance between point cloud pairs. For motion synchronization, we propose another neural network model to calculate the absolute pose in a data-driven manner, rather than optimizing inaccurate handcrafted loss functions. Our model takes into account geometric distribution information and employs a modified attention mechanism to facilitate flexible and reliable feature interaction. Experimental results on diverse indoor and outdoor datasets confirm the effectiveness and generalizability of our approach. The source code is available at https://github.com/Shi-Qi-Li/MDGD.
CaRaFFusion: Improving 2D Semantic Segmentation with Camera-Radar Point Cloud Fusion and Zero-Shot Image Inpainting
Segmenting objects in an environment is a crucial task for autonomous driving and robotics, as it enables a better understanding of the surroundings of each agent. Although camera sensors provide rich visual details, they are vulnerable to adverse weather conditions. In contrast, radar sensors remain robust under such conditions, but often produce sparse and noisy data. Therefore, a promising approach is to fuse information from both sensors. In this work, we propose a novel framework to enhance camera-only baselines by integrating a diffusion model into a camera-radar fusion architecture. We leverage radar point features to create pseudo-masks using the Segment-Anything model, treating the projected radar points as point prompts. Additionally, we propose a noise reduction unit to denoise these pseudo-masks, which are further used to generate inpainted images that complete the missing information in the original images. Our method improves the camera-only segmentation baseline by 2.63% in mIoU and enhances our camera-radar fusion architecture by 1.48% in mIoU on the Waterscenes dataset. This demonstrates the effectiveness of our approach for semantic segmentation using camera-radar fusion under adverse weather conditions.
comment: Accepted at RA-L 2025
Distribution-Conditional Generation: From Class Distribution to Creative Generation
Text-to-image (T2I) diffusion models are effective at producing semantically aligned images, but their reliance on training data distributions limits their ability to synthesize truly novel, out-of-distribution concepts. Existing methods typically enhance creativity by combining pairs of known concepts, yielding compositions that, while out-of-distribution, remain linguistically describable and bounded within the existing semantic space. Inspired by the soft probabilistic outputs of classifiers on ambiguous inputs, we propose Distribution-Conditional Generation, a novel formulation that models creativity as image synthesis conditioned on class distributions, enabling semantically unconstrained creative generation. Building on this, we propose DisTok, an encoder-decoder framework that maps class distributions into a latent space and decodes them into tokens of creative concept. DisTok maintains a dynamic concept pool and iteratively sampling and fusing concept pairs, enabling the generation of tokens aligned with increasingly complex class distributions. To enforce distributional consistency, latent vectors sampled from a Gaussian prior are decoded into tokens and rendered into images, whose class distributions-predicted by a vision-language model-supervise the alignment between input distributions and the visual semantics of generated tokens. The resulting tokens are added to the concept pool for subsequent composition. Extensive experiments demonstrate that DisTok, by unifying distribution-conditioned fusion and sampling-based synthesis, enables efficient and flexible token-level generation, achieving state-of-the-art performance with superior text-image alignment and human preference scores.
Revolutionizing Brain Tumor Imaging: Generating Synthetic 3D FA Maps from T1-Weighted MRI using CycleGAN Models
Fractional anisotropy (FA) and directionally encoded colour (DEC) maps are essential for evaluating white matter integrity and structural connectivity in neuroimaging. However, the spatial misalignment between FA maps and tractography atlases hinders their effective integration into predictive models. To address this issue, we propose a CycleGAN based approach for generating FA maps directly from T1-weighted MRI scans, representing the first application of this technique to both healthy and tumour-affected tissues. Our model, trained on unpaired data, produces high fidelity maps, which have been rigorously evaluated using Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), demonstrating particularly robust performance in tumour regions. Radiological assessments further underscore the model's potential to enhance clinical workflows by providing an AI-driven alternative that reduces the necessity for additional scans.
comment: 9 pages
ReGraP-LLaVA: Reasoning enabled Graph-based Personalized Large Language and Vision Assistant
Recent advances in personalized MLLMs enable effective capture of user-specific concepts, supporting both recognition of personalized concepts and contextual captioning. However, humans typically explore and reason over relations among objects and individuals, transcending surface-level information to achieve more personalized and contextual understanding. To this end, existing methods may face three main limitations: Their training data lacks multi-object sets in which relations among objects are learnable. Building on the limited training data, their models overlook the relations between different personalized concepts and fail to reason over them. Their experiments mainly focus on a single personalized concept, where evaluations are limited to recognition and captioning tasks. To address the limitations, we present a new dataset named ReGraP, consisting of 120 sets of personalized knowledge. Each set includes images, KGs, and CoT QA pairs derived from the KGs, enabling more structured and sophisticated reasoning pathways. We propose ReGraP-LLaVA, an MLLM trained with the corresponding KGs and CoT QA pairs, where soft and hard graph prompting methods are designed to align KGs within the model's semantic space. We establish the ReGraP Benchmark, which contains diverse task types: multiple-choice, fill-in-the-blank, True/False, and descriptive questions in both open- and closed-ended settings. The proposed benchmark is designed to evaluate the relational reasoning and knowledge-connection capability of personalized MLLMs. We conduct experiments on the proposed ReGraP-LLaVA and other competitive MLLMs. Results show that the proposed model not only learns personalized knowledge but also performs relational reasoning in responses, achieving the SoTA performance compared with the competitive methods. All the codes and datasets are released at: https://github.com/xyfyyds/ReGraP.
comment: Work in progress
ALMA: Aggregated Lipschitz Maximization Attack on Auto-encoders
Despite the extensive use of deep autoencoders (AEs) in critical applications, their adversarial robustness remains relatively underexplored compared to classification models. AE robustness is characterized by the Lipschitz bounds of its components. Existing robustness evaluation frameworks based on white-box attacks do not fully exploit the vulnerabilities of intermediate ill-conditioned layers in AEs. In the context of optimizing imperceptible norm-bounded additive perturbations to maximize output damage, existing methods struggle to effectively propagate adversarial loss gradients throughout the network, often converging to less effective perturbations. To address this, we propose a novel layer-conditioning-based adversarial optimization objective that effectively guides the adversarial map toward regions of local Lipschitz bounds by enhancing loss gradient information propagation during attack optimization. We demonstrate through extensive experiments on state-of-the-art AEs that our adversarial objective results in stronger attacks, outperforming existing methods in both universal and sample-specific scenarios. As a defense method against this attack, we introduce an inference-time adversarially trained defense plugin that mitigates the effects of adversarial examples.
Towards Smart Point-and-Shoot Photography CVPR2025
Hundreds of millions of people routinely take photos using their smartphones as point and shoot (PAS) cameras, yet very few would have the photography skills to compose a good shot of a scene. While traditional PAS cameras have built-in functions to ensure a photo is well focused and has the right brightness, they cannot tell the users how to compose the best shot of a scene. In this paper, we present a first of its kind smart point and shoot (SPAS) system to help users to take good photos. Our SPAS proposes to help users to compose a good shot of a scene by automatically guiding the users to adjust the camera pose live on the scene. We first constructed a large dataset containing 320K images with camera pose information from 4000 scenes. We then developed an innovative CLIP-based Composition Quality Assessment (CCQA) model to assign pseudo labels to these images. The CCQA introduces a unique learnable text embedding technique to learn continuous word embeddings capable of discerning subtle visual quality differences in the range covered by five levels of quality description words {bad, poor, fair, good, perfect}. And finally we have developed a camera pose adjustment model (CPAM) which first determines if the current view can be further improved and if so it outputs the adjust suggestion in the form of two camera pose adjustment angles. The two tasks of CPAM make decisions in a sequential manner and each involves different sets of training samples, we have developed a mixture-of-experts model with a gated loss function to train the CPAM in an end-to-end manner. We will present extensive results to demonstrate the performances of our SPAS system using publicly available image composition datasets.
comment: CVPR2025 Accepted
Breaking Annotation Barriers: Generalized Video Quality Assessment via Ranking-based Self-Supervision
Video quality assessment (VQA) is essential for quantifying perceptual quality in various video processing workflows, spanning from camera capture systems to over-the-top streaming platforms. While recent supervised VQA models have made substantial progress, the reliance on manually annotated datasets -- a process that is labor-intensive, costly, and difficult to scale up -- has hindered further optimization of their generalization to unseen video content and distortions. To bridge this gap, we introduce a self-supervised learning framework for VQA to learn quality assessment capabilities from large-scale, unlabeled web videos. Our approach leverages a \textbf{learning-to-rank} paradigm to train a large multimodal model (LMM) on video pairs automatically labeled via two manners, including quality pseudo-labeling by existing VQA models and relative quality ranking based on synthetic distortion simulations. Furthermore, we introduce a novel \textbf{iterative self-improvement training strategy}, where the trained model acts an improved annotator to iteratively refine the annotation quality of training data. By training on a dataset $10\times$ larger than the existing VQA benchmarks, our model: (1) achieves zero-shot performance on in-domain VQA benchmarks that matches or surpasses supervised models; (2) demonstrates superior out-of-distribution (OOD) generalization across diverse video content and distortions; and (3) sets a new state-of-the-art when fine-tuned on human-labeled datasets. Extensive experimental results validate the effectiveness of our self-supervised approach in training generalized VQA models. The datasets and code will be publicly released to facilitate future research.
Bounding Box-Guided Diffusion for Synthesizing Industrial Images and Segmentation Map CVPR 2025
Synthetic dataset generation in Computer Vision, particularly for industrial applications, is still underexplored. Industrial defect segmentation, for instance, requires highly accurate labels, yet acquiring such data is costly and time-consuming. To address this challenge, we propose a novel diffusion-based pipeline for generating high-fidelity industrial datasets with minimal supervision. Our approach conditions the diffusion model on enriched bounding box representations to produce precise segmentation masks, ensuring realistic and accurately localized defect synthesis. Compared to existing layout-conditioned generative methods, our approach improves defect consistency and spatial accuracy. We introduce two quantitative metrics to evaluate the effectiveness of our method and assess its impact on a downstream segmentation task trained on real and synthetic data. Our results demonstrate that diffusion-based synthesis can bridge the gap between artificial and real-world industrial data, fostering more reliable and cost-efficient segmentation models. The code is publicly available at https://github.com/covisionlab/diffusion_labeling.
comment: Accepted at Synthetic Data for Computer Vision Workshop - CVPR 2025
PhysLLM: Harnessing Large Language Models for Cross-Modal Remote Physiological Sensing
Remote photoplethysmography (rPPG) enables non-contact physiological measurement but remains highly susceptible to illumination changes, motion artifacts, and limited temporal modeling. Large Language Models (LLMs) excel at capturing long-range dependencies, offering a potential solution but struggle with the continuous, noise-sensitive nature of rPPG signals due to their text-centric design. To bridge this gap, we introduce PhysLLM, a collaborative optimization framework that synergizes LLMs with domain-specific rPPG components. Specifically, the Text Prototype Guidance (TPG) strategy is proposed to establish cross-modal alignment by projecting hemodynamic features into LLM-interpretable semantic space, effectively bridging the representational gap between physiological signals and linguistic tokens. Besides, a novel Dual-Domain Stationary (DDS) Algorithm is proposed for resolving signal instability through adaptive time-frequency domain feature re-weighting. Finally, rPPG task-specific cues systematically inject physiological priors through physiological statistics, environmental contextual answering, and task description, leveraging cross-modal learning to integrate both visual and textual information, enabling dynamic adaptation to challenging scenarios like variable illumination and subject movements. Evaluation on four benchmark datasets, PhysLLM achieves state-of-the-art accuracy and robustness, demonstrating superior generalization across lighting variations and motion scenarios.
Learning Unknown Spoof Prompts for Generalized Face Anti-Spoofing Using Only Real Face Images
Face anti-spoofing is a critical technology for ensuring the security of face recognition systems. However, its ability to generalize across diverse scenarios remains a significant challenge. In this paper, we attribute the limited generalization ability to two key factors: covariate shift, which arises from external data collection variations, and semantic shift, which results from substantial differences in emerging attack types. To address both challenges, we propose a novel approach for learning unknown spoof prompts, relying solely on real face images from a single source domain. Our method generates textual prompts for real faces and potential unknown spoof attacks by leveraging the general knowledge embedded in vision-language models, thereby enhancing the model's ability to generalize to unseen target domains. Specifically, we introduce a diverse spoof prompt optimization framework to learn effective prompts. This framework constrains unknown spoof prompts within a relaxed prior knowledge space while maximizing their distance from real face images. Moreover, it enforces semantic independence among different spoof prompts to capture a broad range of spoof patterns. Experimental results on nine datasets demonstrate that the learned prompts effectively transfer the knowledge of vision-language models, enabling state-of-the-art generalization ability against diverse unknown attack types across unseen target domains without using any spoof face images.
Learning Knowledge-based Prompts for Robust 3D Mask Presentation Attack Detection
3D mask presentation attack detection is crucial for protecting face recognition systems against the rising threat of 3D mask attacks. While most existing methods utilize multimodal features or remote photoplethysmography (rPPG) signals to distinguish between real faces and 3D masks, they face significant challenges, such as the high costs associated with multimodal sensors and limited generalization ability. Detection-related text descriptions offer concise, universal information and are cost-effective to obtain. However, the potential of vision-language multimodal features for 3D mask presentation attack detection remains unexplored. In this paper, we propose a novel knowledge-based prompt learning framework to explore the strong generalization capability of vision-language models for 3D mask presentation attack detection. Specifically, our approach incorporates entities and triples from knowledge graphs into the prompt learning process, generating fine-grained, task-specific explicit prompts that effectively harness the knowledge embedded in pre-trained vision-language models. Furthermore, considering different input images may emphasize distinct knowledge graph elements, we introduce a visual-specific knowledge filter based on an attention mechanism to refine relevant elements according to the visual context. Additionally, we leverage causal graph theory insights into the prompt learning process to further enhance the generalization ability of our method. During training, a spurious correlation elimination paradigm is employed, which removes category-irrelevant local image patches using guidance from knowledge-based text features, fostering the learning of generalized causal prompts that align with category-relevant local patches. Experimental results demonstrate that the proposed method achieves state-of-the-art intra- and cross-scenario detection performance on benchmark datasets.
PAHA: Parts-Aware Audio-Driven Human Animation with Diffusion Model
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose PAHA, an end-to-end audio-driven upper-body human animation framework with diffusion model. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
From Pixels to Polygons: A Survey of Deep Learning Approaches for Medical Image-to-Mesh Reconstruction
Deep learning-based medical image-to-mesh reconstruction has rapidly evolved, enabling the transformation of medical imaging data into three-dimensional mesh models that are critical in computational medicine and in silico trials for advancing our understanding of disease mechanisms, and diagnostic and therapeutic techniques in modern medicine. This survey systematically categorizes existing approaches into four main categories: template models, statistical models, generative models, and implicit models. Each category is analysed in detail, examining their methodological foundations, strengths, limitations, and applicability to different anatomical structures and imaging modalities. We provide an extensive evaluation of these methods across various anatomical applications, from cardiac imaging to neurological studies, supported by quantitative comparisons using standard metrics. Additionally, we compile and analyze major public datasets available for medical mesh reconstruction tasks and discuss commonly used evaluation metrics and loss functions. The survey identifies current challenges in the field, including requirements for topological correctness, geometric accuracy, and multi-modality integration. Finally, we present promising future research directions in this domain. This systematic review aims to serve as a comprehensive reference for researchers and practitioners in medical image analysis and computational medicine.
Fixed-Length Dense Fingerprint Representation
Fixed-length fingerprint representations, which map each fingerprint to a compact and fixed-size feature vector, are computationally efficient and well-suited for large-scale matching. However, designing a robust representation that effectively handles diverse fingerprint modalities, pose variations, and noise interference remains a significant challenge. In this work, we propose a fixed-length dense descriptor of fingerprints, and introduce FLARE-a fingerprint matching framework that integrates the Fixed-Length dense descriptor with pose-based Alignment and Robust Enhancement. This fixed-length representation employs a three-dimensional dense descriptor to effectively capture spatial relationships among fingerprint ridge structures, enabling robust and locally discriminative representations. To ensure consistency within this dense feature space, FLARE incorporates pose-based alignment using complementary estimation methods, along with dual enhancement strategies that refine ridge clarity while preserving the original fingerprint modality. The proposed dense descriptor supports fixed-length representation while maintaining spatial correspondence, enabling fast and accurate similarity computation. Extensive experiments demonstrate that FLARE achieves superior performance across rolled, plain, latent, and contactless fingerprints, significantly outperforming existing methods in cross-modality and low-quality scenarios. Further analysis validates the effectiveness of the dense descriptor design, as well as the impact of alignment and enhancement modules on the accuracy of dense descriptor matching. Experimental results highlight the effectiveness and generalizability of FLARE as a unified and scalable solution for robust fingerprint representation and matching. The implementation and code will be publicly available at https://github.com/Yu-Yy/FLARE.
comment: Under review at IEEE Transactions on Information Forensics and Security (TIFS)
DyGEnc: Encoding a Sequence of Textual Scene Graphs to Reason and Answer Questions in Dynamic Scenes
The analysis of events in dynamic environments poses a fundamental challenge in the development of intelligent agents and robots capable of interacting with humans. Current approaches predominantly utilize visual models. However, these methods often capture information implicitly from images, lacking interpretable spatial-temporal object representations. To address this issue we introduce DyGEnc - a novel method for Encoding a Dynamic Graph. This method integrates compressed spatial-temporal structural observation representation with the cognitive capabilities of large language models. The purpose of this integration is to enable advanced question answering based on a sequence of textual scene graphs. Extended evaluations on the STAR and AGQA datasets indicate that DyGEnc outperforms existing visual methods by a large margin of 15-25% in addressing queries regarding the history of human-to-object interactions. Furthermore, the proposed method can be seamlessly extended to process raw input images utilizing foundational models for extracting explicit textual scene graphs, as substantiated by the results of a robotic experiment conducted with a wheeled manipulator platform. We hope that these findings will contribute to the implementation of robust and compressed graph-based robotic memory for long-horizon reasoning. Code is available at github.com/linukc/DyGEnc.
comment: 8 pages, 5 figures, 6 tables
Supervised and Unsupervised Textile Classification via Near-Infrared Hyperspectral Imaging and Deep Learning
Recycling textile fibers is critical to reducing the environmental impact of the textile industry. Hyperspectral near-infrared (NIR) imaging combined with advanced deep learning algorithms offers a promising solution for efficient fiber classification and sorting. In this study, we investigate supervised and unsupervised deep learning models and test their generalization capabilities on different textile structures. We show that optimized convolutional neural networks (CNNs) and autoencoder networks achieve robust generalization under varying conditions. These results highlight the potential of hyperspectral imaging and deep learning to advance sustainable textile recycling through accurate and robust classification.
comment: Accepted at: Proceedings of OCM 2025 - 7th International Conference on Optical Characterization of Materials, March 26-27, 2025, Karlsruhe, Germany, pp. 319-328
Corner Cases: How Size and Position of Objects Challenge ImageNet-Trained Models
Backgrounds in images play a major role in contributing to spurious correlations among different data points. Owing to aesthetic preferences of humans capturing the images, datasets can exhibit positional (location of the object within a given frame) and size (region-of-interest to image ratio) biases for different classes. In this paper, we show that these biases can impact how much a model relies on spurious features in the background to make its predictions. To better illustrate our findings, we propose a synthetic dataset derived from ImageNet1k, Hard-Spurious-ImageNet, which contains images with various backgrounds, object positions, and object sizes. By evaluating the dataset on different pretrained models, we find that most models rely heavily on spurious features in the background when the region-of-interest (ROI) to image ratio is small and the object is far from the center of the image. Moreover, we also show that current methods that aim to mitigate harmful spurious features, do not take into account these factors, hence fail to achieve considerable performance gains for worst-group accuracies when the size and location of core features in an image change.
Uncertainty-Aware Prototype Semantic Decoupling for Text-Based Person Search in Full Images
Text-based pedestrian search (TBPS) in full images aims to locate a target pedestrian in untrimmed images using natural language descriptions. However, in complex scenes with multiple pedestrians, existing methods are limited by uncertainties in detection and matching, leading to degraded performance. To address this, we propose UPD-TBPS, a novel framework comprising three modules: Multi-granularity Uncertainty Estimation (MUE), Prototype-based Uncertainty Decoupling (PUD), and Cross-modal Re-identification (ReID). MUE conducts multi-granularity queries to identify potential targets and assigns confidence scores to reduce early-stage uncertainty. PUD leverages visual context decoupling and prototype mining to extract features of the target pedestrian described in the query. It separates and learns pedestrian prototype representations at both the coarse-grained cluster level and the fine-grained individual level, thereby reducing matching uncertainty. ReID evaluates candidates with varying confidence levels, improving detection and retrieval accuracy. Experiments on CUHK-SYSU-TBPS and PRW-TBPS datasets validate the effectiveness of our framework.
comment: 9pages,5figures
Real-Time Person Image Synthesis Using a Flow Matching Model
Pose-Guided Person Image Synthesis (PGPIS) generates realistic person images conditioned on a target pose and a source image. This task plays a key role in various real-world applications, such as sign language video generation, AR/VR, gaming, and live streaming. In these scenarios, real-time PGPIS is critical for providing immediate visual feedback and maintaining user immersion.However, achieving real-time performance remains a significant challenge due to the complexity of synthesizing high-fidelity images from diverse and dynamic human poses. Recent diffusion-based methods have shown impressive image quality in PGPIS, but their slow sampling speeds hinder deployment in time-sensitive applications. This latency is particularly problematic in tasks like generating sign language videos during live broadcasts, where rapid image updates are required. Therefore, developing a fast and reliable PGPIS model is a crucial step toward enabling real-time interactive systems. To address this challenge, we propose a generative model based on flow matching (FM). Our approach enables faster, more stable, and more efficient training and sampling. Furthermore, the proposed model supports conditional generation and can operate in latent space, making it especially suitable for real-time PGPIS applications where both speed and quality are critical. We evaluate our proposed method, Real-Time Person Image Synthesis Using a Flow Matching Model (RPFM), on the widely used DeepFashion dataset for PGPIS tasks. Our results show that RPFM achieves near-real-time sampling speeds while maintaining performance comparable to the state-of-the-art models. Our methodology trades off a slight, acceptable decrease in generated-image accuracy for over a twofold increase in generation speed, thereby ensuring real-time performance.
Generating Synthetic Data via Augmentations for Improved Facial Resemblance in DreamBooth and InstantID CVPR 2025
The personalization of Stable Diffusion for generating professional portraits from amateur photographs is a burgeoning area, with applications in various downstream contexts. This paper investigates the impact of augmentations on improving facial resemblance when using two prominent personalization techniques: DreamBooth and InstantID. Through a series of experiments with diverse subject datasets, we assessed the effectiveness of various augmentation strategies on the generated headshots' fidelity to the original subject. We introduce FaceDistance, a wrapper around FaceNet, to rank the generations based on facial similarity, which aided in our assessment. Ultimately, this research provides insights into the role of augmentations in enhancing facial resemblance in SDXL-generated portraits, informing strategies for their effective deployment in downstream applications.
comment: Accepted to CVPR 2025 Workshop "Synthetic Data for Computer Vision Workshop", https://syndata4cv.github.io/
Read My Ears! Horse Ear Movement Detection for Equine Affective State Assessment
The Equine Facial Action Coding System (EquiFACS) enables the systematic annotation of facial movements through distinct Action Units (AUs). It serves as a crucial tool for assessing affective states in horses by identifying subtle facial expressions associated with discomfort. However, the field of horse affective state assessment is constrained by the scarcity of annotated data, as manually labelling facial AUs is both time-consuming and costly. To address this challenge, automated annotation systems are essential for leveraging existing datasets and improving affective states detection tools. In this work, we study different methods for specific ear AU detection and localization from horse videos. We leverage past works on deep learning-based video feature extraction combined with recurrent neural networks for the video classification task, as well as a classic optical flow based approach. We achieve 87.5% classification accuracy of ear movement presence on a public horse video dataset, demonstrating the potential of our approach. We discuss future directions to develop these systems, with the aim of bridging the gap between automated AU detection and practical applications in equine welfare and veterinary diagnostics. Our code will be made publicly available at https://github.com/jmalves5/read-my-ears.
Panoramic Out-of-Distribution Segmentation
Panoramic imaging enables capturing 360{\deg} images with an ultra-wide Field-of-View (FoV) for dense omnidirectional perception. However, current panoramic semantic segmentation methods fail to identify outliers, and pinhole Out-of-distribution Segmentation (OoS) models perform unsatisfactorily in the panoramic domain due to background clutter and pixel distortions. To address these issues, we introduce a new task, Panoramic Out-of-distribution Segmentation (PanOoS), achieving OoS for panoramas. Furthermore, we propose the first solution, POS, which adapts to the characteristics of panoramic images through text-guided prompt distribution learning. Specifically, POS integrates a disentanglement strategy designed to materialize the cross-domain generalization capability of CLIP. The proposed Prompt-based Restoration Attention (PRA) optimizes semantic decoding by prompt guidance and self-adaptive correction, while Bilevel Prompt Distribution Learning (BPDL) refines the manifold of per-pixel mask embeddings via semantic prototype supervision. Besides, to compensate for the scarcity of PanOoS datasets, we establish two benchmarks: DenseOoS, which features diverse outliers in complex environments, and QuadOoS, captured by a quadruped robot with a panoramic annular lens system. Extensive experiments demonstrate superior performance of POS, with AuPRC improving by 34.25% and FPR95 decreasing by 21.42% on DenseOoS, outperforming state-of-the-art pinhole-OoS methods. Moreover, POS achieves leading closed-set segmentation capabilities. Code and datasets will be available at https://github.com/MengfeiD/PanOoS.
comment: Code and datasets will be available at https://github.com/MengfeiD/PanOoS
RAIL: Region-Aware Instructive Learning for Semi-Supervised Tooth Segmentation in CBCT
Semi-supervised learning has become a compelling approach for 3D tooth segmentation from CBCT scans, where labeled data is minimal. However, existing methods still face two persistent challenges: limited corrective supervision in structurally ambiguous or mislabeled regions during supervised training and performance degradation caused by unreliable pseudo-labels on unlabeled data. To address these problems, we propose Region-Aware Instructive Learning (RAIL), a dual-group dual-student, semi-supervised framework. Each group contains two student models guided by a shared teacher network. By alternating training between the two groups, RAIL promotes intergroup knowledge transfer and collaborative region-aware instruction while reducing overfitting to the characteristics of any single model. Specifically, RAIL introduces two instructive mechanisms. Disagreement-Focused Supervision (DFS) Controller improves supervised learning by instructing predictions only within areas where student outputs diverge from both ground truth and the best student, thereby concentrating supervision on structurally ambiguous or mislabeled areas. In the unsupervised phase, Confidence-Aware Learning (CAL) Modulator reinforces agreement in regions with high model certainty while reducing the effect of low-confidence predictions during training. This helps prevent our model from learning unstable patterns and improves the overall reliability of pseudo-labels. Extensive experiments on four CBCT tooth segmentation datasets show that RAIL surpasses state-of-the-art methods under limited annotation. Our code will be available at https://github.com/Tournesol-Saturday/RAIL.
Coop-WD: Cooperative Perception with Weighting and Denoising for Robust V2V Communication
Cooperative perception, leveraging shared information from multiple vehicles via vehicle-to-vehicle (V2V) communication, plays a vital role in autonomous driving to alleviate the limitation of single-vehicle perception. Existing works have explored the effects of V2V communication impairments on perception precision, but they lack generalization to different levels of impairments. In this work, we propose a joint weighting and denoising framework, Coop-WD, to enhance cooperative perception subject to V2V channel impairments. In this framework, the self-supervised contrastive model and the conditional diffusion probabilistic model are adopted hierarchically for vehicle-level and pixel-level feature enhancement. An efficient variant model, Coop-WD-eco, is proposed to selectively deactivate denoising to reduce processing overhead. Rician fading, non-stationarity, and time-varying distortion are considered. Simulation results demonstrate that the proposed Coop-WD outperforms conventional benchmarks in all types of channels. Qualitative analysis with visual examples further proves the superiority of our proposed method. The proposed Coop-WD-eco achieves up to 50% reduction in computational cost under severe distortion while maintaining comparable accuracy as channel conditions improve.
Optimization of Module Transferability in Single Image Super-Resolution: Universality Assessment and Cycle Residual Blocks
Deep learning has substantially advanced the Single Image Super-Resolution (SISR). However, existing researches have predominantly focused on raw performance gains, with little attention paid to quantifying the transferability of architectural components. In this paper, we introduce the concept of "Universality" and its associated definitions which extend the traditional notion of "Generalization" to encompass the modules' ease of transferability, thus revealing the relationships between module universality and model generalizability. Then we propose the Universality Assessment Equation (UAE), a metric for quantifying how readily a given module could be transplanted across models. Guided by the UAE results of standard residual blocks and other plug-and-play modules, we further design two optimized modules, Cycle Residual Block (CRB) and Depth-Wise Cycle Residual Block (DCRB). Through comprehensive experiments on natural-scene benchmarks, remote-sensing datasets, extreme-industrial imagery and on-device deployments, we demonstrate that networks embedded with the proposed plug-and-play modules outperform several state-of-the-arts, reaching a PSNR enhancement of up to 0.83dB or enabling a 71.3% reduction in parameters with negligible loss in reconstruction fidelity.
From Neurons to Computation: Biological Reservoir Computing for Pattern Recognition
In this paper, we introduce a novel paradigm for reservoir computing (RC) that leverages a pool of cultured biological neurons as the reservoir substrate, creating a biological reservoir computing (BRC). This system operates similarly to an echo state network (ESN), with the key distinction that the neural activity is generated by a network of cultured neurons, rather than being modeled by traditional artificial computational units. The neuronal activity is recorded using a multi-electrode array (MEA), which enables high-throughput recording of neural signals. In our approach, inputs are introduced into the network through a subset of the MEA electrodes, while the remaining electrodes capture the resulting neural activity. This generates a nonlinear mapping of the input data to a high-dimensional biological feature space, where distinguishing between data becomes more efficient and straightforward, allowing a simple linear classifier to perform pattern recognition tasks effectively. To evaluate the performance of our proposed system, we present an experimental study that includes various input patterns, such as positional codes, bars with different orientations, and a digit recognition task. The results demonstrate the feasibility of using biological neural networks to perform tasks traditionally handled by artificial neural networks, paving the way for further exploration of biologically-inspired computing systems, with potential applications in neuromorphic engineering and bio-hybrid computing.
Modality-Guided Dynamic Graph Fusion and Temporal Diffusion for Self-Supervised RGB-T Tracking IJCAI 2025
To reduce the reliance on large-scale annotations, self-supervised RGB-T tracking approaches have garnered significant attention. However, the omission of the object region by erroneous pseudo-label or the introduction of background noise affects the efficiency of modality fusion, while pseudo-label noise triggered by similar object noise can further affect the tracking performance. In this paper, we propose GDSTrack, a novel approach that introduces dynamic graph fusion and temporal diffusion to address the above challenges in self-supervised RGB-T tracking. GDSTrack dynamically fuses the modalities of neighboring frames, treats them as distractor noise, and leverages the denoising capability of a generative model. Specifically, by constructing an adjacency matrix via an Adjacency Matrix Generator (AMG), the proposed Modality-guided Dynamic Graph Fusion (MDGF) module uses a dynamic adjacency matrix to guide graph attention, focusing on and fusing the object's coherent regions. Temporal Graph-Informed Diffusion (TGID) models MDGF features from neighboring frames as interference, and thus improving robustness against similar-object noise. Extensive experiments conducted on four public RGB-T tracking datasets demonstrate that GDSTrack outperforms the existing state-of-the-art methods. The source code is available at https://github.com/LiShenglana/GDSTrack.
comment: Accepted by the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
MRI motion correction via efficient residual-guided denoising diffusion probabilistic models
Purpose: Motion artifacts in magnetic resonance imaging (MRI) significantly degrade image quality and impair quantitative analysis. Conventional mitigation strategies, such as repeated acquisitions or motion tracking, are costly and workflow-intensive. This study introduces Res-MoCoDiff, an efficient denoising diffusion probabilistic model tailored for MRI motion artifact correction. Methods: Res-MoCoDiff incorporates a novel residual error shifting mechanism in the forward diffusion process, aligning the noise distribution with motion-corrupted data and enabling an efficient four-step reverse diffusion. A U-net backbone enhanced with Swin-Transformer blocks conventional attention layers, improving adaptability across resolutions. Training employs a combined l1+l2 loss, which promotes image sharpness and reduces pixel-level errors. Res-MoCoDiff was evaluated on synthetic dataset generated using a realistic motion simulation framework and on an in-vivo dataset. Comparative analyses were conducted against established methods, including CycleGAN, Pix2pix, and MT-DDPM using quantitative metrics such as peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and normalized mean squared error (NMSE). Results: The proposed method demonstrated superior performance in removing motion artifacts across all motion severity levels. Res-MoCoDiff consistently achieved the highest SSIM and the lowest NMSE values, with a PSNR of up to 41.91+-2.94 dB for minor distortions. Notably, the average sampling time was reduced to 0.37 seconds per batch of two image slices, compared with 101.74 seconds for conventional approaches.
UPMAD-Net: A Brain Tumor Segmentation Network with Uncertainty Guidance and Adaptive Multimodal Feature Fusion
Background: Brain tumor segmentation has a significant impact on the diagnosis and treatment of brain tumors. Accurate brain tumor segmentation remains challenging due to their irregular shapes, vague boundaries, and high variability. Objective: We propose a brain tumor segmentation method that combines deep learning with prior knowledge derived from a region-growing algorithm. Methods: The proposed method utilizes a multi-scale feature fusion (MSFF) module and adaptive attention mechanisms (AAM) to extract multi-scale features and capture global contextual information. To enhance the model's robustness in low-confidence regions, the Monte Carlo Dropout (MC Dropout) strategy is employed for uncertainty estimation. Results: Extensive experiments demonstrate that the proposed method achieves superior performance on Brain Tumor Segmentation (BraTS) datasets, significantly outperforming various state-of-the-art methods. On the BraTS2021 dataset, the test Dice scores are 89.18% for Enhancing Tumor (ET) segmentation, 93.67% for Whole Tumor (WT) segmentation, and 91.23% for Tumor Core (TC) segmentation. On the BraTS2019 validation set, the validation Dice scores are 87.43%, 90.92%, and 90.40% for ET, WT, and TC segmentation, respectively. Ablation studies further confirmed the contribution of each module to segmentation accuracy, indicating that each component played a vital role in overall performance improvement. Conclusion: This study proposed a novel 3D brain tumor segmentation network based on the U-Net architecture. By incorporating the prior knowledge and employing the uncertainty estimation method, the robustness and performance were improved. The code for the proposed method is available at https://github.com/chenzhao2023/UPMAD_Net_BrainSeg.
comment: 21 pages, 7 figures
Blending 3D Geometry and Machine Learning for Multi-View Stereopsis
Traditional multi-view stereo (MVS) methods primarily depend on photometric and geometric consistency constraints. In contrast, modern learning-based algorithms often rely on the plane sweep algorithm to infer 3D geometry, applying explicit geometric consistency (GC) checks only as a post-processing step, with no impact on the learning process itself. In this work, we introduce GC MVSNet plus plus, a novel approach that actively enforces geometric consistency of reference view depth maps across multiple source views (multi view) and at various scales (multi scale) during the learning phase (see Fig. 1). This integrated GC check significantly accelerates the learning process by directly penalizing geometrically inconsistent pixels, effectively halving the number of training iterations compared to other MVS methods. Furthermore, we introduce a densely connected cost regularization network with two distinct block designs simple and feature dense optimized to harness dense feature connections for enhanced regularization. Extensive experiments demonstrate that our approach achieves a new state of the art on the DTU and BlendedMVS datasets and secures second place on the Tanks and Temples benchmark. To our knowledge, GC MVSNet plus plus is the first method to enforce multi-view, multi-scale supervised geometric consistency during learning. Our code is available.
comment: A pre-print -- paper under-review. arXiv admin note: substantial text overlap with arXiv:2310.19583
Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)
Dynamic computed tomography (CT) reconstruction faces significant challenges in addressing motion artifacts, particularly for nonperiodic rapid movements such as cardiac imaging with fast heart rates. Traditional methods struggle with the extreme limited-angle problems inherent in nonperiodic cases. Deep learning methods have improved performance but face generalization challenges. Recent implicit neural representation (INR) techniques show promise through self-supervised deep learning, but have critical limitations: computational inefficiency due to forward-warping modeling, difficulty balancing DVF complexity with anatomical plausibility, and challenges in preserving fine details without additional patient-specific pre-scans. This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction. It addresses these challenges through four key contributions: (1) backward-warping deformation that enables direct computation of each dynamic voxel with significantly reduced computational cost, (2) diffeomorphism-based DVF regularization that ensures anatomically plausible deformations while maintaining representational capacity, (3) motion-compensated analytical reconstruction that enhances fine details without requiring additional pre-scans, and (4) dimensional-reduction design for efficient 4D coordinate encoding. Through various simulations and practical studies, including digital and physical phantoms and retrospective patient data, we demonstrate the effectiveness of our approach for nonperiodic dynamic CT reconstruction with enhanced details and reduced motion artifacts. The proposed framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.
Polar Coordinate-Based 2D Pose Prior with Neural Distance Field CVPR
Human pose capture is essential for sports analysis, enabling precise evaluation of athletes' movements. While deep learning-based human pose estimation (HPE) models from RGB videos have achieved impressive performance on public datasets, their effectiveness in real-world sports scenarios is often hindered by motion blur, occlusions, and domain shifts across different pose representations. Fine-tuning these models can partially alleviate such challenges but typically requires large-scale annotated data and still struggles to generalize across diverse sports environments. To address these limitations, we propose a 2D pose prior-guided refinement approach based on Neural Distance Fields (NDF). Unlike existing approaches that rely solely on angular representations of human poses, we introduce a polar coordinate-based representation that explicitly incorporates joint connection lengths, enabling a more accurate correction of erroneous pose estimations. Additionally, we define a novel non-geodesic distance metric that separates angular and radial discrepancies, which we demonstrate is better suited for polar representations than traditional geodesic distances. To mitigate data scarcity, we develop a gradient-based batch-projection augmentation strategy, which synthesizes realistic pose samples through iterative refinement. Our method is evaluated on a long jump dataset, demonstrating its ability to improve 2D pose estimation across multiple pose representations, making it robust across different domains. Experimental results show that our approach enhances pose plausibility while requiring only limited training data. Code is available at: https://github.com/QGAN2019/polar-NDF.
comment: This paper is accepted by CVPRW 2025
Robustness in AI-Generated Detection: Enhancing Resistance to Adversarial Attacks
The rapid advancement of generative image technology has introduced significant security concerns, particularly in the domain of face generation detection. This paper investigates the vulnerabilities of current AI-generated face detection systems. Our study reveals that while existing detection methods often achieve high accuracy under standard conditions, they exhibit limited robustness against adversarial attacks. To address these challenges, we propose an approach that integrates adversarial training to mitigate the impact of adversarial examples. Furthermore, we utilize diffusion inversion and reconstruction to further enhance detection robustness. Experimental results demonstrate that minor adversarial perturbations can easily bypass existing detection systems, but our method significantly improves the robustness of these systems. Additionally, we provide an in-depth analysis of adversarial and benign examples, offering insights into the intrinsic characteristics of AI-generated content. All associated code will be made publicly available in a dedicated repository to facilitate further research and verification.
A Fusion-Guided Inception Network for Hyperspectral Image Super-Resolution
The fusion of low-spatial-resolution hyperspectral images (HSIs) with high-spatial-resolution conventional images (e.g., panchromatic or RGB) has played a significant role in recent advancements in HSI super-resolution. However, this fusion process relies on the availability of precise alignment between image pairs, which is often challenging in real-world scenarios. To mitigate this limitation, we propose a single-image super-resolution model called the Fusion-Guided Inception Network (FGIN). Specifically, we first employ a spectral-spatial fusion module to effectively integrate spectral and spatial information at an early stage. Next, an Inception-like hierarchical feature extraction strategy is used to capture multiscale spatial dependencies, followed by a dedicated multi-scale fusion block. To further enhance reconstruction quality, we incorporate an optimized upsampling module that combines bilinear interpolation with depthwise separable convolutions. Experimental evaluations on two publicly available hyperspectral datasets demonstrate the competitive performance of our method.
Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications
Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.
LiftFeat: 3D Geometry-Aware Local Feature Matching ICRA 2025
Robust and efficient local feature matching plays a crucial role in applications such as SLAM and visual localization for robotics. Despite great progress, it is still very challenging to extract robust and discriminative visual features in scenarios with drastic lighting changes, low texture areas, or repetitive patterns. In this paper, we propose a new lightweight network called \textit{LiftFeat}, which lifts the robustness of raw descriptor by aggregating 3D geometric feature. Specifically, we first adopt a pre-trained monocular depth estimation model to generate pseudo surface normal label, supervising the extraction of 3D geometric feature in terms of predicted surface normal. We then design a 3D geometry-aware feature lifting module to fuse surface normal feature with raw 2D descriptor feature. Integrating such 3D geometric feature enhances the discriminative ability of 2D feature description in extreme conditions. Extensive experimental results on relative pose estimation, homography estimation, and visual localization tasks, demonstrate that our LiftFeat outperforms some lightweight state-of-the-art methods. Code will be released at : https://github.com/lyp-deeplearning/LiftFeat.
comment: Accepted at ICRA 2025
Mitigating Image Captioning Hallucinations in Vision-Language Models
Hallucinations in vision-language models (VLMs) hinder reliability and real-world applicability, usually stemming from distribution shifts between pretraining data and test samples. Existing solutions, such as retraining or fine-tuning on additional data, demand significant computational resources and labor-intensive data collection, while ensemble-based methods incur additional costs by introducing auxiliary VLMs. To address these challenges, we propose a novel test-time adaptation framework using reinforcement learning to mitigate hallucinations during inference without retraining or any auxiliary VLMs. By updating only the learnable parameters in the layer normalization of the language model (approximately 0.003% of the model parameters), our method reduces distribution shifts between test samples and pretraining samples. A CLIP-based hallucination evaluation model is proposed to provide dual rewards to VLMs. Experimental results demonstrate a 15.4% and 17.3% reduction in hallucination rates on LLaVA and InstructBLIP, respectively. Our approach outperforms state-of-the-art baselines with a 68.3% improvement in hallucination mitigation, demonstrating its effectiveness.
Enhancing Target-unspecific Tasks through a Features Matrix ICML 2025
Recent developments in prompt learning of large vision-language models have significantly improved performance in target-specific tasks. However, these prompt optimizing methods often struggle to tackle the target-unspecific or generalizable tasks effectively. It may be attributed to the fact that overfitting training causes the model to forget its general knowledge having strong promotion on target-unspecific tasks. To alleviate this issue, we propose a novel Features Matrix (FM) regularization approach designed to enhance these models on target-unspecific tasks. Our method extracts and leverages general knowledge, shaping a Features Matrix (FM). Specifically, the FM captures the semantics of diverse inputs from a deep and fine perspective, preserving essential general knowledge, which mitigates the risk of overfitting. Representative evaluations demonstrate that: 1) the FM is compatible with existing frameworks as a generic and flexible module, and 2) the FM significantly showcases its effectiveness in enhancing target-unspecific tasks, achieving state-of-the-art performance.
comment: ICML 2025
CXR-AD: Component X-ray Image Dataset for Industrial Anomaly Detection
Internal defect detection constitutes a critical process in ensuring component quality, for which anomaly detection serves as an effective solution. However, existing anomaly detection datasets predominantly focus on surface defects in visible-light images, lacking publicly available X-ray datasets targeting internal defects in components. To address this gap, we construct the first publicly accessible component X-ray anomaly detection (CXR-AD) dataset, comprising real-world X-ray images. The dataset covers five industrial component categories, including 653 normal samples and 561 defect samples with precise pixel-level mask annotations. We systematically analyze the dataset characteristics and identify three major technical challenges: (1) strong coupling between complex internal structures and defect regions, (2) inherent low contrast and high noise interference in X-ray imaging, and (3) significant variations in defect scales and morphologies. To evaluate dataset complexity, we benchmark three state-of-the-art anomaly detection frameworks (feature-based, reconstruction-based, and zero-shot learning methods). Experimental results demonstrate a 29.78% average performance degradation on CXR-AD compared to MVTec AD, highlighting the limitations of current algorithms in handling internal defect detection tasks. To the best of our knowledge, CXR-AD represents the first publicly available X-ray dataset for component anomaly detection, providing a real-world industrial benchmark to advance algorithm development and enhance precision in internal defect inspection technologies.
DDaTR: Dynamic Difference-aware Temporal Residual Network for Longitudinal Radiology Report Generation
Radiology Report Generation (RRG) automates the creation of radiology reports from medical imaging, enhancing the efficiency of the reporting process. Longitudinal Radiology Report Generation (LRRG) extends RRG by incorporating the ability to compare current and prior exams, facilitating the tracking of temporal changes in clinical findings. Existing LRRG approaches only extract features from prior and current images using a visual pre-trained encoder, which are then concatenated to generate the final report. However, these methods struggle to effectively capture both spatial and temporal correlations during the feature extraction process. Consequently, the extracted features inadequately capture the information of difference across exams and thus underrepresent the expected progressions, leading to sub-optimal performance in LRRG. To address this, we develop a novel dynamic difference-aware temporal residual network (DDaTR). In DDaTR, we introduce two modules at each stage of the visual encoder to capture multi-level spatial correlations. The Dynamic Feature Alignment Module (DFAM) is designed to align prior features across modalities for the integrity of prior clinical information. Prompted by the enriched prior features, the dynamic difference-aware module (DDAM) captures favorable difference information by identifying relationships across exams. Furthermore, our DDaTR employs the dynamic residual network to unidirectionally transmit longitudinal information, effectively modelling temporal correlations. Extensive experiments demonstrated superior performance over existing methods on three benchmarks, proving its efficacy in both RRG and LRRG tasks.
EOPose : Exemplar-based object reposing using Generalized Pose Correspondences CVPR 2025
Reposing objects in images has a myriad of applications, especially for e-commerce where several variants of product images need to be produced quickly. In this work, we leverage the recent advances in unsupervised keypoint correspondence detection between different object images of the same class to propose an end-to-end framework for generic object reposing. Our method, EOPose, takes a target pose-guidance image as input and uses its keypoint correspondence with the source object image to warp and re-render the latter into the target pose using a novel three-step approach. Unlike generative approaches, our method also preserves the fine-grained details of the object such as its exact colors, textures, and brand marks. We also prepare a new dataset of paired objects based on the Objaverse dataset to train and test our network. EOPose produces high-quality reposing output as evidenced by different image quality metrics (PSNR, SSIM and FID). Besides a description of the method and the dataset, the paper also includes detailed ablation and user studies to indicate the efficacy of the proposed method
comment: Accepted in CVPR 2025 AI4CC workshop
Attention-aggregated Attack for Boosting the Transferability of Facial Adversarial Examples
Adversarial examples have revealed the vulnerability of deep learning models and raised serious concerns about information security. The transfer-based attack is a hot topic in black-box attacks that are practical to real-world scenarios where the training datasets, parameters, and structure of the target model are unknown to the attacker. However, few methods consider the particularity of class-specific deep models for fine-grained vision tasks, such as face recognition (FR), giving rise to unsatisfactory attacking performance. In this work, we first investigate what in a face exactly contributes to the embedding learning of FR models and find that both decisive and auxiliary facial features are specific to each FR model, which is quite different from the biological mechanism of human visual system. Accordingly we then propose a novel attack method named Attention-aggregated Attack (AAA) to enhance the transferability of adversarial examples against FR, which is inspired by the attention divergence and aims to destroy the facial features that are critical for the decision-making of other FR models by imitating their attentions on the clean face images. Extensive experiments conducted on various FR models validate the superiority and robust effectiveness of the proposed method over existing methods.
Reinforced Correlation Between Vision and Language for Precise Medical AI Assistant
Medical AI assistants support doctors in disease diagnosis, medical image analysis, and report generation. However, they still face significant challenges in clinical use, including limited accuracy with multimodal content and insufficient validation in real-world settings. We propose RCMed, a full-stack AI assistant that improves multimodal alignment in both input and output, enabling precise anatomical delineation, accurate localization, and reliable diagnosis through hierarchical vision-language grounding. A self-reinforcing correlation mechanism allows visual features to inform language context, while language semantics guide pixel-wise attention, forming a closed loop that refines both modalities. This correlation is enhanced by a color region description strategy, translating anatomical structures into semantically rich text to learn shape-location-text relationships across scales. Trained on 20 million image-mask-description triplets, RCMed achieves state-of-the-art precision in contextualizing irregular lesions and subtle anatomical boundaries, excelling in 165 clinical tasks across 9 modalities. It achieved a 23.5% relative improvement in cell segmentation from microscopy images over prior methods. RCMed's strong vision-language alignment enables exceptional generalization, with state-of-the-art performance in external validation across 20 clinically significant cancer types, including novel tasks. This work demonstrates how integrated multimodal models capture fine-grained patterns, enabling human-level interpretation in complex scenarios and advancing human-centric AI healthcare.
Reducing Annotation Burden in Physical Activity Research Using Vision-Language Models
Introduction: Data from wearable devices collected in free-living settings, and labelled with physical activity behaviours compatible with health research, are essential for both validating existing wearable-based measurement approaches and developing novel machine learning approaches. One common way of obtaining these labels relies on laborious annotation of sequences of images captured by cameras worn by participants through the course of a day. Methods: We compare the performance of three vision language models and two discriminative models on two free-living validation studies with 161 and 111 participants, collected in Oxfordshire, United Kingdom and Sichuan, China, respectively, using the Autographer (OMG Life, defunct) wearable camera. Results: We found that the best open-source vision-language model (VLM) and fine-tuned discriminative model (DM) achieved comparable performance when predicting sedentary behaviour from single images on unseen participants in the Oxfordshire study; median F1-scores: VLM = 0.89 (0.84, 0.92), DM = 0.91 (0.86, 0.95). Performance declined for light (VLM = 0.60 (0.56,0.67), DM = 0.70 (0.63, 0.79)), and moderate-to-vigorous intensity physical activity (VLM = 0.66 (0.53, 0.85); DM = 0.72 (0.58, 0.84)). When applied to the external Sichuan study, performance fell across all intensity categories, with median Cohen's kappa-scores falling from 0.54 (0.49, 0.64) to 0.26 (0.15, 0.37) for the VLM, and from 0.67 (0.60, 0.74) to 0.19 (0.10, 0.30) for the DM. Conclusion: Freely available computer vision models could help annotate sedentary behaviour, typically the most prevalent activity of daily living, from wearable camera images within similar populations to seen data, reducing the annotation burden.
3D Surface Reconstruction with Enhanced High-Frequency Details
Neural implicit 3D reconstruction can reproduce shapes without 3D supervision, and it learns the 3D scene through volume rendering methods and neural implicit representations. Current neural surface reconstruction methods tend to randomly sample the entire image, making it difficult to learn high-frequency details on the surface, and thus the reconstruction results tend to be too smooth. We designed a method (FreNeuS) based on high-frequency information to solve the problem of insufficient surface detail. Specifically, FreNeuS uses pixel gradient changes to easily acquire high-frequency regions in an image and uses the obtained high-frequency information to guide surface detail reconstruction. High-frequency information is first used to guide the dynamic sampling of rays, applying different sampling strategies according to variations in high-frequency regions. To further enhance the focus on surface details, we have designed a high-frequency weighting method that constrains the representation of high-frequency details during the reconstruction process. Qualitative and quantitative results show that our method can reconstruct fine surface details and obtain better surface reconstruction quality compared to existing methods. In addition, our method is more applicable and can be generalized to any NeuS-based work.
comment: Accepted by Journal of Visual Communication and Image Representation
Interpretable Zero-shot Learning with Infinite Class Concepts
Zero-shot learning (ZSL) aims to recognize unseen classes by aligning images with intermediate class semantics, like human-annotated concepts or class definitions. An emerging alternative leverages Large-scale Language Models (LLMs) to automatically generate class documents. However, these methods often face challenges with transparency in the classification process and may suffer from the notorious hallucination problem in LLMs, resulting in non-visual class semantics. This paper redefines class semantics in ZSL with a focus on transferability and discriminability, introducing a novel framework called Zero-shot Learning with Infinite Class Concepts (InfZSL). Our approach leverages the powerful capabilities of LLMs to dynamically generate an unlimited array of phrase-level class concepts. To address the hallucination challenge, we introduce an entropy-based scoring process that incorporates a ``goodness" concept selection mechanism, ensuring that only the most transferable and discriminative concepts are selected. Our InfZSL framework not only demonstrates significant improvements on three popular benchmark datasets but also generates highly interpretable, image-grounded concepts. Code will be released upon acceptance.
GUAVA: Generalizable Upper Body 3D Gaussian Avatar
Reconstructing a high-quality, animatable 3D human avatar with expressive facial and hand motions from a single image has gained significant attention due to its broad application potential. 3D human avatar reconstruction typically requires multi-view or monocular videos and training on individual IDs, which is both complex and time-consuming. Furthermore, limited by SMPLX's expressiveness, these methods often focus on body motion but struggle with facial expressions. To address these challenges, we first introduce an expressive human model (EHM) to enhance facial expression capabilities and develop an accurate tracking method. Based on this template model, we propose GUAVA, the first framework for fast animatable upper-body 3D Gaussian avatar reconstruction. We leverage inverse texture mapping and projection sampling techniques to infer Ubody (upper-body) Gaussians from a single image. The rendered images are refined through a neural refiner. Experimental results demonstrate that GUAVA significantly outperforms previous methods in rendering quality and offers significant speed improvements, with reconstruction times in the sub-second range (0.1s), and supports real-time animation and rendering.
comment: Project page: https://eastbeanzhang.github.io/GUAVA/
A Vision-Language Model for Focal Liver Lesion Classification
Accurate classification of focal liver lesions is crucial for diagnosis and treatment in hepatology. However, traditional supervised deep learning models depend on large-scale annotated datasets, which are often limited in medical imaging. Recently, Vision-Language models (VLMs) such as Contrastive Language-Image Pre-training model (CLIP) has been applied to image classifications. Compared to the conventional convolutional neural network (CNN), which classifiers image based on visual information only, VLM leverages multimodal learning with text and images, allowing it to learn effectively even with a limited amount of labeled data. Inspired by CLIP, we pro-pose a Liver-VLM, a model specifically designed for focal liver lesions (FLLs) classification. First, Liver-VLM incorporates class information into the text encoder without introducing additional inference overhead. Second, by calculating the pairwise cosine similarities between image and text embeddings and optimizing the model with a cross-entropy loss, Liver-VLM ef-fectively aligns image features with class-level text features. Experimental results on MPCT-FLLs dataset demonstrate that the Liver-VLM model out-performs both the standard CLIP and MedCLIP models in terms of accuracy and Area Under the Curve (AUC). Further analysis shows that using a lightweight ResNet18 backbone enhances classification performance, particularly under data-constrained conditions.
comment: 9 pages,4 figures, 4 tables,Innovation in Medicine and Healthcare Proceedings of 13th KES-InMed 2025
From Word to Sentence: A Large-Scale Multi-Instance Dataset for Open-Set Aerial Detection
In recent years, language-guided open-world aerial object detection has gained significant attention due to its better alignment with real-world application needs. However, due to limited datasets, most existing language-guided methods primarily focus on vocabulary, which fails to meet the demands of more fine-grained open-world detection. To address this limitation, we propose constructing a large-scale language-guided open-set aerial detection dataset, encompassing three levels of language guidance: from words to phrases, and ultimately to sentences. Centered around an open-source large vision-language model and integrating image-operation-based preprocessing with BERT-based postprocessing, we present the OS-W2S Label Engine, an automatic annotation pipeline capable of handling diverse scene annotations for aerial images. Using this label engine, we expand existing aerial detection datasets with rich textual annotations and construct a novel benchmark dataset, called Multi-instance Open-set Aerial Dataset (MI-OAD), addressing the limitations of current remote sensing grounding data and enabling effective open-set aerial detection. Specifically, MI-OAD contains 163,023 images and 2 million image-caption pairs, approximately 40 times larger than comparable datasets. We also employ state-of-the-art open-set methods from the natural image domain, trained on our proposed dataset, to validate the model's open-set detection capabilities. For instance, when trained on our dataset, Grounding DINO achieves improvements of 29.5 AP_{50} and 33.7 Recall@10 for sentence inputs under zero-shot transfer conditions. Both the dataset and the label engine will be released publicly.
FLUX-Text: A Simple and Advanced Diffusion Transformer Baseline for Scene Text Editing
The task of scene text editing is to modify or add texts on images while maintaining the fidelity of newly generated text and visual coherence with the background. Recent works based on latent diffusion models (LDM) show improved text editing results, yet still face challenges and often generate inaccurate or unrecognizable characters, especially for non-Latin ones (\eg, Chinese), which have complex glyph structures. To address these issues, we present FLUX-Text, a simple and advanced multilingual scene text editing framework based on FLUX-Fill. Specifically, we carefully investigate glyph conditioning, considering both visual and textual modalities. To retain the original generative capabilities of FLUX-Fill while enhancing its understanding and generation of glyphs, we propose lightweight glyph and text embedding modules. Owning to the lightweight design, FLUX-Text is trained only with $100K$ training examples compared to current popular methods trained with 2.9M ones. With no bells and whistles, our method achieves state-of-the-art performance on text editing tasks. Qualitative and quantitative experiments on the public datasets demonstrate that our method surpasses previous works in text fidelity.
comment: 9 pages, 4 figures
Very High-Resolution Forest Mapping with TanDEM-X InSAR Data and Self-Supervised Learning
Deep learning models have shown encouraging capabilities for mapping accurately forests at medium resolution with TanDEM-X interferometric SAR data. Such models, as most of current state-of-the-art deep learning techniques in remote sensing, are trained in a fully-supervised way, which requires a large amount of labeled data for training and validation. In this work, our aim is to exploit the high-resolution capabilities of the TanDEM-X mission to map forests at 6 m. The goal is to overcome the intrinsic limitations posed by midresolution products, which affect, e.g., the detection of narrow roads within vegetated areas and the precise delineation of forested regions contours. To cope with the lack of extended reliable reference datasets at such a high resolution, we investigate self-supervised learning techniques for extracting highly informative representations from the input features, followed by a supervised training step with a significantly smaller number of reliable labels. A 1 m resolution forest/non-forest reference map over Pennsylvania, USA, allows for comparing different training approaches for the development of an effective forest mapping framework with limited labeled samples. We select the best-performing approach over this test region and apply it in a real-case forest mapping scenario over the Amazon rainforest, where only very few labeled data at high resolution are available. In this challenging scenario, the proposed self-supervised framework significantly enhances the classification accuracy with respect to fully-supervised methods, trained using the same amount of labeled data, representing an extremely promising starting point for large-scale, very high-resolution forest mapping with TanDEM-X data.
comment: Preprint submitted to Remote Sensing of Environment
SD-VSum: A Method and Dataset for Script-Driven Video Summarization
In this work, we introduce the task of script-driven video summarization, which aims to produce a summary of the full-length video by selecting the parts that are most relevant to a user-provided script outlining the visual content of the desired summary. Following, we extend a recently-introduced large-scale dataset for generic video summarization (VideoXum) by producing natural language descriptions of the different human-annotated summaries that are available per video. In this way we make it compatible with the introduced task, since the available triplets of ``video, summary and summary description'' can be used for training a method that is able to produce different summaries for a given video, driven by the provided script about the content of each summary. Finally, we develop a new network architecture for script-driven video summarization (SD-VSum), that relies on the use of a cross-modal attention mechanism for aligning and fusing information from the visual and text modalities. Our experimental evaluations demonstrate the advanced performance of SD-VSum against state-of-the-art approaches for query-driven and generic (unimodal and multimodal) summarization from the literature, and document its capacity to produce video summaries that are adapted to each user's needs about their content.
comment: Under review
Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning
Recent advances in multimodal Reward Models (RMs) have shown significant promise in delivering reward signals to align vision models with human preferences. However, current RMs are generally restricted to providing direct responses or engaging in shallow reasoning processes with limited depth, often leading to inaccurate reward signals. We posit that incorporating explicit long chains of thought (CoT) into the reward reasoning process can significantly strengthen their reliability and robustness. Furthermore, we believe that once RMs internalize CoT reasoning, their direct response accuracy can also be improved through implicit reasoning capabilities. To this end, this paper proposes UnifiedReward-Think, the first unified multimodal CoT-based reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks. Specifically, we adopt an exploration-driven reinforcement fine-tuning approach to elicit and incentivize the model's latent complex reasoning ability: (1) We first use a small amount of image generation preference data to distill the reasoning process of GPT-4o, which is then used for the model's cold start to learn the format and structure of CoT reasoning. (2) Subsequently, by leveraging the model's prior knowledge and generalization capabilities, we prepare large-scale unified multimodal preference data to elicit the model's reasoning process across various vision tasks. During this phase, correct reasoning outputs are retained for rejection sampling to refine the model (3) while incorrect predicted samples are finally used for Group Relative Policy Optimization (GRPO) based reinforcement fine-tuning, enabling the model to explore diverse reasoning paths and optimize for correct and robust solutions. Extensive experiments across various vision reward tasks demonstrate the superiority of our model.
comment: project page: https://codegoat24.github.io/UnifiedReward/think
3D Gaussian Splatting Data Compression with Mixture of Priors
3D Gaussian Splatting (3DGS) data compression is crucial for enabling efficient storage and transmission in 3D scene modeling. However, its development remains limited due to inadequate entropy models and suboptimal quantization strategies for both lossless and lossy compression scenarios, where existing methods have yet to 1) fully leverage hyperprior information to construct robust conditional entropy models, and 2) apply fine-grained, element-wise quantization strategies for improved compression granularity. In this work, we propose a novel Mixture of Priors (MoP) strategy to simultaneously address these two challenges. Specifically, inspired by the Mixture-of-Experts (MoE) paradigm, our MoP approach processes hyperprior information through multiple lightweight MLPs to generate diverse prior features, which are subsequently integrated into the MoP feature via a gating mechanism. To enhance lossless compression, the resulting MoP feature is utilized as a hyperprior to improve conditional entropy modeling. Meanwhile, for lossy compression, we employ the MoP feature as guidance information in an element-wise quantization procedure, leveraging a prior-guided Coarse-to-Fine Quantization (C2FQ) strategy with a predefined quantization step value. Specifically, we expand the quantization step value into a matrix and adaptively refine it from coarse to fine granularity, guided by the MoP feature, thereby obtaining a quantization step matrix that facilitates element-wise quantization. Extensive experiments demonstrate that our proposed 3DGS data compression framework achieves state-of-the-art performance across multiple benchmarks, including Mip-NeRF360, BungeeNeRF, DeepBlending, and Tank&Temples.
Comparative Analysis of Lightweight Deep Learning Models for Memory-Constrained Devices
This paper presents a comprehensive evaluation of lightweight deep learning models for image classification, emphasizing their suitability for deployment in resource-constrained environments such as low-memory devices. Five state-of-the-art architectures - MobileNetV3 Small, ResNet18, SqueezeNet, EfficientNetV2-S, and ShuffleNetV2 - are benchmarked across three diverse datasets: CIFAR-10, CIFAR-100, and Tiny ImageNet. The models are assessed using four key performance metrics: classification accuracy, inference time, floating-point operations (FLOPs), and model size. Additionally, we investigate the impact of hyperparameter tuning, data augmentation, and training paradigms by comparing pretrained models with scratch-trained counterparts, focusing on MobileNetV3 Small. Our findings reveal that transfer learning significantly enhances model accuracy and computational efficiency, particularly for complex datasets like Tiny ImageNet. EfficientNetV2 consistently achieves the highest accuracy, while MobileNetV3 offers the best balance between accuracy and efficiency, and SqueezeNet excels in inference speed and compactness. This study highlights critical trade-offs between accuracy and efficiency, offering actionable insights for deploying lightweight models in real-world applications where computational resources are limited. By addressing these challenges, this research contributes to optimizing deep learning systems for edge computing and mobile platforms.
comment: 22 pages, 10 figures, 4 tables, submitted to Springer - Pattern Recognition and Image Analysis
3D Can Be Explored In 2D: Pseudo-Label Generation for LiDAR Point Clouds Using Sensor-Intensity-Based 2D Semantic Segmentation
Semantic segmentation of 3D LiDAR point clouds, essential for autonomous driving and infrastructure management, is best achieved by supervised learning, which demands extensive annotated datasets and faces the problem of domain shifts. We introduce a new 3D semantic segmentation pipeline that leverages aligned scenes and state-of-the-art 2D segmentation methods, avoiding the need for direct 3D annotation or reliance on additional modalities such as camera images at inference time. Our approach generates 2D views from LiDAR scans colored by sensor intensity and applies 2D semantic segmentation to these views using a camera-domain pretrained model. The segmented 2D outputs are then back-projected onto the 3D points, with a simple voting-based estimator that merges the labels associated to each 3D point. Our main contribution is a global pipeline for 3D semantic segmentation requiring no prior 3D annotation and not other modality for inference, which can be used for pseudo-label generation. We conduct a thorough ablation study and demonstrate the potential of the generated pseudo-labels for the Unsupervised Domain Adaptation task.
comment: Accepted to IV2024
Towards Efficient Benchmarking of Foundation Models in Remote Sensing: A Capabilities Encoding Approach CVPR 2025
Foundation models constitute a significant advancement in computer vision: after a single, albeit costly, training phase, they can address a wide array of tasks. In the field of Earth observation, over 75 remote sensing vision foundation models have been developed in the past four years. However, none has consistently outperformed the others across all available downstream tasks. To facilitate their comparison, we propose a cost-effective method for predicting a model's performance on multiple downstream tasks without the need for fine-tuning on each one. This method is based on what we call "capabilities encoding." The utility of this novel approach is twofold: we demonstrate its potential to simplify the selection of a foundation model for a given new task, and we employ it to offer a fresh perspective on the existing literature, suggesting avenues for future research. Codes are available at https://github.com/pierreadorni/capabilities-encoding.
comment: Accepted at the MORSE workshop of CVPR 2025
Base-Detail Feature Learning Framework for Visible-Infrared Person Re-Identification IJCAI 2025
Visible-infrared person re-identification (VIReID) provides a solution for ReID tasks in 24-hour scenarios; however, significant challenges persist in achieving satisfactory performance due to the substantial discrepancies between visible (VIS) and infrared (IR) modalities. Existing methods inadequately leverage information from different modalities, primarily focusing on digging distinguishing features from modality-shared information while neglecting modality-specific details. To fully utilize differentiated minutiae, we propose a Base-Detail Feature Learning Framework (BDLF) that enhances the learning of both base and detail knowledge, thereby capitalizing on both modality-shared and modality-specific information. Specifically, the proposed BDLF mines detail and base features through a lossless detail feature extraction module and a complementary base embedding generation mechanism, respectively, supported by a novel correlation restriction method that ensures the features gained by BDLF enrich both detail and base knowledge across VIS and IR features. Comprehensive experiments conducted on the SYSU-MM01, RegDB, and LLCM datasets validate the effectiveness of BDLF.
comment: 9 pages, 5 figures, 2025 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
OccCylindrical: Multi-Modal Fusion with Cylindrical Representation for 3D Semantic Occupancy Prediction
The safe operation of autonomous vehicles (AVs) is highly dependent on their understanding of the surroundings. For this, the task of 3D semantic occupancy prediction divides the space around the sensors into voxels, and labels each voxel with both occupancy and semantic information. Recent perception models have used multisensor fusion to perform this task. However, existing multisensor fusion-based approaches focus mainly on using sensor information in the Cartesian coordinate system. This ignores the distribution of the sensor readings, leading to a loss of fine-grained details and performance degradation. In this paper, we propose OccCylindrical that merges and refines the different modality features under cylindrical coordinates. Our method preserves more fine-grained geometry detail that leads to better performance. Extensive experiments conducted on the nuScenes dataset, including challenging rainy and nighttime scenarios, confirm our approach's effectiveness and state-of-the-art performance. The code will be available at: https://github.com/DanielMing123/OccCylindrical
DiffVQA: Video Quality Assessment Using Diffusion Feature Extractor
Video Quality Assessment (VQA) aims to evaluate video quality based on perceptual distortions and human preferences. Despite the promising performance of existing methods using Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), they often struggle to align closely with human perceptions, particularly in diverse real-world scenarios. This challenge is exacerbated by the limited scale and diversity of available datasets. To address this limitation, we introduce a novel VQA framework, DiffVQA, which harnesses the robust generalization capabilities of diffusion models pre-trained on extensive datasets. Our framework adapts these models to reconstruct identical input frames through a control module. The adapted diffusion model is then used to extract semantic and distortion features from a resizing branch and a cropping branch, respectively. To enhance the model's ability to handle long-term temporal dynamics, a parallel Mamba module is introduced, which extracts temporal coherence augmented features that are merged with the diffusion features to predict the final score. Experiments across multiple datasets demonstrate DiffVQA's superior performance on intra-dataset evaluations and its exceptional generalization across datasets. These results confirm that leveraging a diffusion model as a feature extractor can offer enhanced VQA performance compared to CNN and ViT backbones.
PROM: Prioritize Reduction of Multiplications Over Lower Bit-Widths for Efficient CNNs
Convolutional neural networks (CNNs) are crucial for computer vision tasks on resource-constrained devices. Quantization effectively compresses these models, reducing storage size and energy cost. However, in modern depthwise-separable architectures, the computational cost is distributed unevenly across its components, with pointwise operations being the most expensive. By applying a general quantization scheme to this imbalanced cost distribution, existing quantization approaches fail to fully exploit potential efficiency gains. To this end, we introduce PROM, a straightforward approach for quantizing modern depthwise-separable convolutional networks by selectively using two distinct bit-widths. Specifically, pointwise convolutions are quantized to ternary weights, while the remaining modules use 8-bit weights, which is achieved through a simple quantization-aware training procedure. Additionally, by quantizing activations to 8-bit, our method transforms pointwise convolutions with ternary weights into int8 additions, which enjoy broad support across hardware platforms and effectively eliminates the need for expensive multiplications. Applying PROM to MobileNetV2 reduces the model's energy cost by more than an order of magnitude (23.9x) and its storage size by 2.7x compared to the float16 baseline while retaining similar classification performance on ImageNet. Our method advances the Pareto frontier for energy consumption vs. top-1 accuracy for quantized convolutional models on ImageNet. PROM addresses the challenges of quantizing depthwise-separable convolutional networks to both ternary and 8-bit weights, offering a simple way to reduce energy cost and storage size.
Seeing the Abstract: Translating the Abstract Language for Vision Language Models CVPR25
Natural language goes beyond dryly describing visual content. It contains rich abstract concepts to express feeling, creativity and properties that cannot be directly perceived. Yet, current research in Vision Language Models (VLMs) has not shed light on abstract-oriented language. Our research breaks new ground by uncovering its wide presence and under-estimated value, with extensive analysis. Particularly, we focus our investigation on the fashion domain, a highly-representative field with abstract expressions. By analyzing recent large-scale multimodal fashion datasets, we find that abstract terms have a dominant presence, rivaling the concrete ones, providing novel information, and being useful in the retrieval task. However, a critical challenge emerges: current general-purpose or fashion-specific VLMs are pre-trained with databases that lack sufficient abstract words in their text corpora, thus hindering their ability to effectively represent abstract-oriented language. We propose a training-free and model-agnostic method, Abstract-to-Concrete Translator (ACT), to shift abstract representations towards well-represented concrete ones in the VLM latent space, using pre-trained models and existing multimodal databases. On the text-to-image retrieval task, despite being training-free, ACT outperforms the fine-tuned VLMs in both same- and cross-dataset settings, exhibiting its effectiveness with a strong generalization capability. Moreover, the improvement introduced by ACT is consistent with various VLMs, making it a plug-and-play solution.
comment: Accepted to CVPR25. Project page: https://davidetalon.github.io/fashionact-page/
Dual-Domain Masked Image Modeling: A Self-Supervised Pretraining Strategy Using Spatial and Frequency Domain Masking for Hyperspectral Data
Hyperspectral images (HSIs) capture rich spectral signatures that reveal vital material properties, offering broad applicability across various domains. However, the scarcity of labeled HSI data limits the full potential of deep learning, especially for transformer-based architectures that require large-scale training. To address this constraint, we propose Spatial-Frequency Masked Image Modeling (SFMIM), a self-supervised pretraining strategy for hyperspectral data that utilizes the large portion of unlabeled data. Our method introduces a novel dual-domain masking mechanism that operates in both spatial and frequency domains. The input HSI cube is initially divided into non-overlapping patches along the spatial dimension, with each patch comprising the entire spectrum of its corresponding spatial location. In spatial masking, we randomly mask selected patches and train the model to reconstruct the masked inputs using the visible patches. Concurrently, in frequency masking, we remove portions of the frequency components of the input spectra and predict the missing frequencies. By learning to reconstruct these masked components, the transformer-based encoder captures higher-order spectral-spatial correlations. We evaluate our approach on three publicly available HSI classification benchmarks and demonstrate that it achieves state-of-the-art performance. Notably, our model shows rapid convergence during fine-tuning, highlighting the efficiency of our pretraining strategy.
comment: Preprint to appear in IEEE IGARSS 2025
DCS-ST for Classification of Breast Cancer Histopathology Images with Limited Annotations
Deep learning methods have shown promise in classifying breast cancer histopathology images, but their performance often declines with limited annotated data, a critical challenge in medical imaging due to the high cost and expertise required for annotations.
PiCo: Enhancing Text-Image Alignment with Improved Noise Selection and Precise Mask Control in Diffusion Models
Advanced diffusion models have made notable progress in text-to-image compositional generation. However, it is still a challenge for existing models to achieve text-image alignment when confronted with complex text prompts. In this work, we highlight two factors that affect this alignment: the quality of the randomly initialized noise and the reliability of the generated controlling mask. We then propose PiCo (Pick-and-Control), a novel training-free approach with two key components to tackle these two factors. First, we develop a noise selection module to assess the quality of the random noise and determine whether the noise is suitable for the target text. A fast sampling strategy is utilized to ensure efficiency in the noise selection stage. Second, we introduce a referring mask module to generate pixel-level masks and to precisely modulate the cross-attention maps. The referring mask is applied to the standard diffusion process to guide the reasonable interaction between text and image features. Extensive experiments have been conducted to verify the effectiveness of PiCo in liberating users from the tedious process of random generation and in enhancing the text-image alignment for diverse text descriptions.
CoGenAV: Versatile Audio-Visual Representation Learning via Contrastive-Generative Synchronization
The inherent synchronization between a speaker's lip movements, voice, and the underlying linguistic content offers a rich source of information for improving speech processing tasks, especially in challenging conditions where traditional audio-only systems falter. We introduce CoGenAV, a powerful and data-efficient model designed to learn versatile audio-visual representations applicable across a wide range of speech and audio-visual tasks. CoGenAV is trained by optimizing a dual objective derived from natural audio-visual synchrony, contrastive feature alignment and generative text prediction, using only 223 hours of labeled data from the LRS2 dataset. This contrastive-generative synchronization strategy effectively captures fundamental cross-modal correlations. We showcase the effectiveness and versatility of the learned CoGenAV representations on multiple benchmarks. When utilized for Audio-Visual Speech Recognition (AVSR) on LRS2, these representations contribute to achieving a state-of-the-art Word Error Rate (WER) of 1.27. They also enable strong performance in Visual Speech Recognition (VSR) with a WER of 22.0 on LRS2, and significantly improve performance in noisy environments by over 70%. Furthermore, CoGenAV representations benefit speech reconstruction tasks, boosting performance in Speech Enhancement and Separation, and achieve competitive results in audio-visual synchronization tasks like Active Speaker Detection (ASD). Our model will be open-sourced to facilitate further development and collaboration within both academia and industry.
Interactive Instance Annotation with Siamese Networks
Annotating instance masks is time-consuming and labor-intensive. A promising solution is to predict contours using a deep learning model and then allow users to refine them. However, most existing methods focus on in-domain scenarios, limiting their effectiveness for cross-domain annotation tasks. In this paper, we propose SiamAnno, a framework inspired by the use of Siamese networks in object tracking. SiamAnno leverages one-shot learning to annotate previously unseen objects by taking a bounding box as input and predicting object boundaries, which can then be adjusted by annotators. Trained on one dataset and tested on another without fine-tuning, SiamAnno achieves state-of-the-art (SOTA) performance across multiple datasets, demonstrating its ability to handle domain and environment shifts in cross-domain tasks. We also provide more comprehensive results compared to previous work, establishing a strong baseline for future research. To our knowledge, SiamAnno is the first model to explore Siamese architecture for instance annotation.
seq-JEPA: Autoregressive Predictive Learning of Invariant-Equivariant World Models
Current self-supervised algorithms mostly rely on transformations such as data augmentation and masking to learn visual representations. This is achieved by inducing invariance or equivariance with respect to these transformations after encoding two views of an image. This dominant two-view paradigm can limit the flexibility of learned representations for downstream adaptation by creating performance trade-offs between invariance-related tasks such as image classification and more fine-grained equivariance-related tasks. In this work, we introduce \emph{seq-JEPA}, a world modeling paradigm based on joint-embedding predictive architecture that leverages architectural inductive biases to resolve this trade-off. Without requiring an additional equivariance predictor or loss term, seq-JEPA simultaneously learns two architecturally segregated representations: one equivariant to the specified transformations and another invariant to them and suited for tasks such as classification. To do so, our model processes a short sequence of different views (observations) of an input image. Each encoded view is concatenated with embeddings corresponding to the relative transformation (action) producing the next observation in the sequence. A transformer encoder outputs an aggregate representation of this sequence, which is subsequently conditioned on the action leading to the next observation to predict its representation. Empirically, seq-JEPA achieves strong performance on equivariant benchmarks and image classification without sacrificing one for the other. Additionally, our framework excels at tasks that inherently require aggregating a sequence of observations, such as path integration across actions and predictive learning across eye movements.
Automated Data Curation Using GPS & NLP to Generate Instruction-Action Pairs for Autonomous Vehicle Vision-Language Navigation Datasets
Instruction-Action (IA) data pairs are valuable for training robotic systems, especially autonomous vehicles (AVs), but having humans manually annotate this data is costly and time-inefficient. This paper explores the potential of using mobile application Global Positioning System (GPS) references and Natural Language Processing (NLP) to automatically generate large volumes of IA commands and responses without having a human generate or retroactively tag the data. In our pilot data collection, by driving to various destinations and collecting voice instructions from GPS applications, we demonstrate a means to collect and categorize the diverse sets of instructions, further accompanied by video data to form complete vision-language-action triads. We provide details on our completely automated data collection prototype system, ADVLAT-Engine. We characterize collected GPS voice instructions into eight different classifications, highlighting the breadth of commands and referentialities available for curation from freely available mobile applications. Through research and exploration into the automation of IA data pairs using GPS references, the potential to increase the speed and volume at which high-quality IA datasets are created, while minimizing cost, can pave the way for robust vision-language-action (VLA) models to serve tasks in vision-language navigation (VLN) and human-interactive autonomous systems.
RAVU: Retrieval Augmented Video Understanding with Compositional Reasoning over Graph
Comprehending long videos remains a significant challenge for Large Multi-modal Models (LMMs). Current LMMs struggle to process even minutes to hours videos due to their lack of explicit memory and retrieval mechanisms. To address this limitation, we propose RAVU (Retrieval Augmented Video Understanding), a novel framework for video understanding enhanced by retrieval with compositional reasoning over a spatio-temporal graph. We construct a graph representation of the video, capturing both spatial and temporal relationships between entities. This graph serves as a long-term memory, allowing us to track objects and their actions across time. To answer complex queries, we decompose the queries into a sequence of reasoning steps and execute these steps on the graph, retrieving relevant key information. Our approach enables more accurate understanding of long videos, particularly for queries that require multi-hop reasoning and tracking objects across frames. Our approach demonstrate superior performances with limited retrieved frames (5-10) compared with other SOTA methods and baselines on two major video QA datasets, NExT-QA and EgoSchema.
StableMotion: Training Motion Cleanup Models with Unpaired Corrupted Data
Motion capture (mocap) data often exhibits visually jarring artifacts due to inaccurate sensors and post-processing. Cleaning this corrupted data can require substantial manual effort from human experts, which can be a costly and time-consuming process. Previous data-driven motion cleanup methods offer the promise of automating this cleanup process, but often require in-domain paired corrupted-to-clean training data. Constructing such paired datasets requires access to high-quality, relatively artifact-free motion clips, which often necessitates laborious manual cleanup. In this work, we present StableMotion, a simple yet effective method for training motion cleanup models directly from unpaired corrupted datasets that need cleanup. The core component of our method is the introduction of motion quality indicators, which can be easily annotated through manual labeling or heuristic algorithms and enable training of quality-aware motion generation models on raw motion data with mixed quality. At test time, the model can be prompted to generate high-quality motions using the quality indicators. Our method can be implemented through a simple diffusion-based framework, leading to a unified motion generate-discriminate model, which can be used to both identify and fix corrupted frames. We demonstrate that our proposed method is effective for training motion cleanup models on raw mocap data in production scenarios by applying StableMotion to SoccerMocap, a 245-hour soccer mocap dataset containing real-world motion artifacts. The trained model effectively corrects a wide range of motion artifacts, reducing motion pops and frozen frames by 68% and 81%, respectively. See https://youtu.be/3Y7MMAH02B4 for more results.
comment: 17 pages, 13 figures
Robust Fairness Vision-Language Learning for Medical Image Analysis
The advent of Vision-Language Models (VLMs) in medical image analysis has the potential to help process multimodal inputs and increase performance over traditional inference methods. However, when considering the domain in which these models will be implemented, fairness and robustness are important to ensure the model stays true for any patient. In this paper, we introduce a framework for ensuring robustness and fairness of VLM models. This framework modifies the loss function at training by identifying and adjusting faulty image-text pairs through a Dynamic Bad Pair Mining algorithm and also utilizing Sinkhorn distance to ensure the loss distributions of protected groups do not deviate from the total loss. Experimental testing of our framework shows up to a 8.6\% improvement when looking at equity-scaled AUC.
Motion-compensated cardiac MRI using low-rank diffeomorphic flow (DMoCo)
We introduce an unsupervised motion-compensated image reconstruction algorithm for free-breathing and ungated 3D cardiac magnetic resonance imaging (MRI). We express the image volume corresponding to each specific motion phase as the deformation of a single static image template. The main contribution of the work is the low-rank model for the compact joint representation of the family of diffeomorphisms, parameterized by the motion phases. The diffeomorphism at a specific motion phase is obtained by integrating a parametric velocity field along a path connecting the reference template phase to the motion phase. The velocity field at different phases is represented using a low-rank model. The static template and the low-rank motion model parameters are learned directly from the k-space data in an unsupervised fashion. The more constrained motion model is observed to offer improved recovery compared to current motion-resolved and motion-compensated algorithms for free-breathing 3D cine MRI.
Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
Visual defect detection in industrial glass manufacturing remains a critical challenge due to the low frequency of defective products, leading to imbalanced datasets that limit the performance of deep learning models and computer vision systems. This paper presents a novel approach using Denoising Diffusion Probabilistic Models (DDPMs) to generate synthetic defective glass product images for data augmentation, effectively addressing class imbalance issues in manufacturing quality control and automated visual inspection. The methodology significantly enhances image classification performance of standard CNN architectures (ResNet50V2, EfficientNetB0, and MobileNetV2) in detecting anomalies by increasing the minority class representation. Experimental results demonstrate substantial improvements in key machine learning metrics, particularly in recall for defective samples across all tested deep neural network architectures while maintaining perfect precision. The most dramatic improvement was observed in ResNet50V2's overall classification accuracy, which increased from 78 percent to 93 percent when trained with the augmented data. This work provides a scalable, cost-effective approach to enhancing automated defect detection in glass manufacturing that can potentially be extended to other industrial quality assurance systems and industries with similar class imbalance challenges.
comment: 12 pages, 7 figures, submitted to Computer and Decision Making An International Journal (COMDEM)
VISLIX: An XAI Framework for Validating Vision Models with Slice Discovery and Analysis
Real-world machine learning models require rigorous evaluation before deployment, especially in safety-critical domains like autonomous driving and surveillance. The evaluation of machine learning models often focuses on data slices, which are subsets of the data that share a set of characteristics. Data slice finding automatically identifies conditions or data subgroups where models underperform, aiding developers in mitigating performance issues. Despite its popularity and effectiveness, data slicing for vision model validation faces several challenges. First, data slicing often needs additional image metadata or visual concepts, and falls short in certain computer vision tasks, such as object detection. Second, understanding data slices is a labor-intensive and mentally demanding process that heavily relies on the expert's domain knowledge. Third, data slicing lacks a human-in-the-loop solution that allows experts to form hypothesis and test them interactively. To overcome these limitations and better support the machine learning operations lifecycle, we introduce VISLIX, a novel visual analytics framework that employs state-of-the-art foundation models to help domain experts analyze slices in computer vision models. Our approach does not require image metadata or visual concepts, automatically generates natural language insights, and allows users to test data slice hypothesis interactively. We evaluate VISLIX with an expert study and three use cases, that demonstrate the effectiveness of our tool in providing comprehensive insights for validating object detection models.
STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.
comment: 9 pages, 4 figures, 5 tables
TimeTracker: Event-based Continuous Point Tracking for Video Frame Interpolation with Non-linear Motion CVPR 2025
Video frame interpolation (VFI) that leverages the bio-inspired event cameras as guidance has recently shown better performance and memory efficiency than the frame-based methods, thanks to the event cameras' advantages, such as high temporal resolution. A hurdle for event-based VFI is how to effectively deal with non-linear motion, caused by the dynamic changes in motion direction and speed within the scene. Existing methods either use events to estimate sparse optical flow or fuse events with image features to estimate dense optical flow. Unfortunately, motion errors often degrade the VFI quality as the continuous motion cues from events do not align with the dense spatial information of images in the temporal dimension. In this paper, we find that object motion is continuous in space, tracking local regions over continuous time enables more accurate identification of spatiotemporal feature correlations. In light of this, we propose a novel continuous point tracking-based VFI framework, named TimeTracker. Specifically, we first design a Scene-Aware Region Segmentation (SARS) module to divide the scene into similar patches. Then, a Continuous Trajectory guided Motion Estimation (CTME) module is proposed to track the continuous motion trajectory of each patch through events. Finally, intermediate frames at any given time are generated through global motion optimization and frame refinement. Moreover, we collect a real-world dataset that features fast non-linear motion. Extensive experiments show that our method outperforms prior arts in both motion estimation and frame interpolation quality.
comment: Accepted by CVPR 2025
Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.
Image Recognition with Online Lightweight Vision Transformer: A Survey
The Transformer architecture has achieved significant success in natural language processing, motivating its adaptation to computer vision tasks. Unlike convolutional neural networks, vision transformers inherently capture long-range dependencies and enable parallel processing, yet lack inductive biases and efficiency benefits, facing significant computational and memory challenges that limit its real-world applicability. This paper surveys various online strategies for generating lightweight vision transformers for image recognition, focusing on three key areas: Efficient Component Design, Dynamic Network, and Knowledge Distillation. We evaluate the relevant exploration for each topic on the ImageNet-1K benchmark, analyzing trade-offs among precision, parameters, throughput, and more to highlight their respective advantages, disadvantages, and flexibility. Finally, we propose future research directions and potential challenges in the lightweighting of vision transformers with the aim of inspiring further exploration and providing practical guidance for the community. Project Page: https://github.com/ajxklo/Lightweight-VIT
Not All Parameters Matter: Masking Diffusion Models for Enhancing Generation Ability CVPR 2025
The diffusion models, in early stages focus on constructing basic image structures, while the refined details, including local features and textures, are generated in later stages. Thus the same network layers are forced to learn both structural and textural information simultaneously, significantly differing from the traditional deep learning architectures (e.g., ResNet or GANs) which captures or generates the image semantic information at different layers. This difference inspires us to explore the time-wise diffusion models. We initially investigate the key contributions of the U-Net parameters to the denoising process and identify that properly zeroing out certain parameters (including large parameters) contributes to denoising, substantially improving the generation quality on the fly. Capitalizing on this discovery, we propose a simple yet effective method-termed ``MaskUNet''- that enhances generation quality with negligible parameter numbers. Our method fully leverages timestep- and sample-dependent effective U-Net parameters. To optimize MaskUNet, we offer two fine-tuning strategies: a training-based approach and a training-free approach, including tailored networks and optimization functions. In zero-shot inference on the COCO dataset, MaskUNet achieves the best FID score and further demonstrates its effectiveness in downstream task evaluations. Project page: https://gudaochangsheng.github.io/MaskUnet-Page/
comment: Accepted to CVPR 2025
Estimating the Diameter at Breast Height of Trees in a Forest With a Single 360 Camera
Forest inventories rely on accurate measurements of the diameter at breast height (DBH) for ecological monitoring, resource management, and carbon accounting. While LiDAR-based techniques can achieve centimeter-level precision, they are cost-prohibitive and operationally complex. We present a low-cost alternative that only needs a consumer-grade 360 video camera. Our semi-automated pipeline comprises of (i) a dense point cloud reconstruction using Structure from Motion (SfM) photogrammetry software called Agisoft Metashape, (ii) semantic trunk segmentation by projecting Grounded Segment Anything (SAM) masks onto the 3D cloud, and (iii) a robust RANSAC-based technique to estimate cross section shape and DBH. We introduce an interactive visualization tool for inspecting segmented trees and their estimated DBH. On 61 acquisitions of 43 trees under a variety of conditions, our method attains median absolute relative errors of 5-9% with respect to "ground-truth" manual measurements. This is only 2-4% higher than LiDAR-based estimates, while employing a single 360 camera that costs orders of magnitude less, requires minimal setup, and is widely available.
The Eye as a Window to Systemic Health: A Survey of Retinal Imaging from Classical Techniques to Oculomics
The unique vascularized anatomy of the human eye, encased in the retina, provides an opportunity to act as a window for human health. The retinal structure assists in assessing the early detection, monitoring of disease progression and intervention for both ocular and non-ocular diseases. The advancement in imaging technology leveraging Artificial Intelligence has seized this opportunity to bridge the gap between the eye and human health. This track paves the way for unveiling systemic health insight from the ocular system and surrogating non-invasive markers for timely intervention and identification. The new frontiers of oculomics in ophthalmology cover both ocular and systemic diseases, and getting more attention to explore them. In this survey paper, we explore the evolution of retinal imaging techniques, the dire need for the integration of AI-driven analysis, and the shift of retinal imaging from classical techniques to oculomics. We also discuss some hurdles that may be faced in the progression of oculomics, highlighting the research gaps and future directions.
Prototype-Based Information Compensation Network for Multi-Source Remote Sensing Data Classification
Multi-source remote sensing data joint classification aims to provide accuracy and reliability of land cover classification by leveraging the complementary information from multiple data sources. Existing methods confront two challenges: inter-frequency multi-source feature coupling and inconsistency of complementary information exploration. To solve these issues, we present a Prototype-based Information Compensation Network (PICNet) for land cover classification based on HSI and SAR/LiDAR data. Specifically, we first design a frequency interaction module to enhance the inter-frequency coupling in multi-source feature extraction. The multi-source features are first decoupled into high- and low-frequency components. Then, these features are recoupled to achieve efficient inter-frequency communication. Afterward, we design a prototype-based information compensation module to model the global multi-source complementary information. Two sets of learnable modality prototypes are introduced to represent the global modality information of multi-source data. Subsequently, cross-modal feature integration and alignment are achieved through cross-attention computation between the modality-specific prototype vectors and the raw feature representations. Extensive experiments on three public datasets demonstrate the significant superiority of our PICNet over state-of-the-art methods. The codes are available at https://github.com/oucailab/PICNet.
comment: Accepted by IEEE TGRS 2025
Action Spotting and Precise Event Detection in Sports: Datasets, Methods, and Challenges
Video event detection has become an essential component of sports analytics, enabling automated identification of key moments and enhancing performance analysis, viewer engagement, and broadcast efficiency. Recent advancements in deep learning, particularly Convolutional Neural Networks (CNNs) and Transformers, have significantly improved accuracy and efficiency in Temporal Action Localization (TAL), Action Spotting (AS), and Precise Event Spotting (PES). This survey provides a comprehensive overview of these three key tasks, emphasizing their differences, applications, and the evolution of methodological approaches. We thoroughly review and categorize existing datasets and evaluation metrics specifically tailored for sports contexts, highlighting the strengths and limitations of each. Furthermore, we analyze state-of-the-art techniques, including multi-modal approaches that integrate audio and visual information, methods utilizing self-supervised learning and knowledge distillation, and approaches aimed at generalizing across multiple sports. Finally, we discuss critical open challenges and outline promising research directions toward developing more generalized, efficient, and robust event detection frameworks applicable to diverse sports. This survey serves as a foundation for future research on efficient, generalizable, and multi-modal sports event detection.
comment: 13 pages, 4 figures, 2 tables
Deep Learning Framework for Infrastructure Maintenance: Crack Detection and High-Resolution Imaging of Infrastructure Surfaces
Recently, there has been an impetus for the application of cutting-edge data collection platforms such as drones mounted with camera sensors for infrastructure asset management. However, the sensor characteristics, proximity to the structure, hard-to-reach access, and environmental conditions often limit the resolution of the datasets. A few studies used super-resolution techniques to address the problem of low-resolution images. Nevertheless, these techniques were observed to increase computational cost and false alarms of distress detection due to the consideration of all the infrastructure images i.e., positive and negative distress classes. In order to address the pre-processing of false alarm and achieve efficient super-resolution, this study developed a framework consisting of convolutional neural network (CNN) and efficient sub-pixel convolutional neural network (ESPCNN). CNN accurately classified both the classes. ESPCNN, which is the lightweight super-resolution technique, generated high-resolution infrastructure image of positive distress obtained from CNN. The ESPCNN outperformed bicubic interpolation in all the evaluation metrics for super-resolution. Based on the performance metrics, the combination of CNN and ESPCNN was observed to be effective in preprocessing the infrastructure images with negative distress, reducing the computational cost and false alarms in the next step of super-resolution. The visual inspection showed that EPSCNN is able to capture crack propagation, complex geometry of even minor cracks. The proposed framework is expected to help the highway agencies in accurately performing distress detection and assist in efficient asset management practices.
comment: Presented :Transportation Research Board 104th Annual Meeting, Washington, D.C
OpenHelix: A Short Survey, Empirical Analysis, and Open-Source Dual-System VLA Model for Robotic Manipulation
Dual-system VLA (Vision-Language-Action) architectures have become a hot topic in embodied intelligence research, but there is a lack of sufficient open-source work for further performance analysis and optimization. To address this problem, this paper will summarize and compare the structural designs of existing dual-system architectures, and conduct systematic empirical evaluations on the core design elements of existing dual-system architectures. Ultimately, it will provide a low-cost open-source model for further exploration. Of course, this project will continue to update with more experimental conclusions and open-source models with improved performance for everyone to choose from. Project page: https://openhelix-robot.github.io/.
Novel Extraction of Discriminative Fine-Grained Feature to Improve Retinal Vessel Segmentation
Retinal vessel segmentation is a vital early detection method for several severe ocular diseases. Despite significant progress in retinal vessel segmentation with the advancement of Neural Networks, there are still challenges to overcome. Specifically, retinal vessel segmentation aims to predict the class label for every pixel within a fundus image, with a primary focus on intra-image discrimination, making it vital for models to extract more discriminative features. Nevertheless, existing methods primarily focus on minimizing the difference between the output from the decoder and the label, but ignore fully using feature-level fine-grained representations from the encoder. To address these issues, we propose a novel Attention U-shaped Kolmogorov-Arnold Network named AttUKAN along with a novel Label-guided Pixel-wise Contrastive Loss for retinal vessel segmentation. Specifically, we implement Attention Gates into Kolmogorov-Arnold Networks to enhance model sensitivity by suppressing irrelevant feature activations and model interpretability by non-linear modeling of KAN blocks. Additionally, we also design a novel Label-guided Pixel-wise Contrastive Loss to supervise our proposed AttUKAN to extract more discriminative features by distinguishing between foreground vessel-pixel pairs and background pairs. Experiments are conducted across four public datasets including DRIVE, STARE, CHASE_DB1, HRF and our private dataset. AttUKAN achieves F1 scores of 82.50%, 81.14%, 81.34%, 80.21% and 80.09%, along with MIoU scores of 70.24%, 68.64%, 68.59%, 67.21% and 66.94% in the above datasets, which are the highest compared to 11 networks for retinal vessel segmentation. Quantitative and qualitative results show that our AttUKAN achieves state-of-the-art performance and outperforms existing retinal vessel segmentation methods. Our code will be available at https://github.com/stevezs315/AttUKAN.
Towards Application-Specific Evaluation of Vision Models: Case Studies in Ecology and Biology CVPR
Computer vision methods have demonstrated considerable potential to streamline ecological and biological workflows, with a growing number of datasets and models becoming available to the research community. However, these resources focus predominantly on evaluation using machine learning metrics, with relatively little emphasis on how their application impacts downstream analysis. We argue that models should be evaluated using application-specific metrics that directly represent model performance in the context of its final use case. To support this argument, we present two disparate case studies: (1) estimating chimpanzee abundance and density with camera trap distance sampling when using a video-based behaviour classifier and (2) estimating head rotation in pigeons using a 3D posture estimator. We show that even models with strong machine learning performance (e.g., 87% mAP) can yield data that leads to discrepancies in abundance estimates compared to expert-derived data. Similarly, the highest-performing models for posture estimation do not produce the most accurate inferences of gaze direction in pigeons. Motivated by these findings, we call for researchers to integrate application-specific metrics in ecological/biological datasets, allowing for models to be benchmarked in the context of their downstream application and to facilitate better integration of models into application workflows.
comment: Accepted at CVPR Workshop, CV4Animals 2025
VGLD: Visually-Guided Linguistic Disambiguation for Monocular Depth Scale Recovery
We propose a robust method for monocular depth scale recovery. Monocular depth estimation can be divided into two main directions: (1) relative depth estimation, which provides normalized or inverse depth without scale information, and (2) metric depth estimation, which involves recovering depth with absolute scale. To obtain absolute scale information for practical downstream tasks, utilizing textual information to recover the scale of a relative depth map is a highly promising approach. However, since a single image can have multiple descriptions from different perspectives or with varying styles, it has been shown that different textual descriptions can significantly affect the scale recovery process. To address this issue, our method, VGLD, stabilizes the influence of textual information by incorporating high-level semantic information from the corresponding image alongside the textual description. This approach resolves textual ambiguities and robustly outputs a set of linear transformation parameters (scalars) that can be globally applied to the relative depth map, ultimately generating depth predictions with metric-scale accuracy. We validate our method across several popular relative depth models(MiDas, DepthAnything), using both indoor scenes (NYUv2) and outdoor scenes (KITTI). Our results demonstrate that VGLD functions as a universal alignment module when trained on multiple datasets, achieving strong performance even in zero-shot scenarios. Code is available at: https://github.com/pakinwu/VGLD.
comment: 21 pages, conference
Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identification
Unsupervised visible-infrared person re-identification (UVI-ReID) aims to retrieve pedestrian images across different modalities without costly annotations, but faces challenges due to the modality gap and lack of supervision. Existing methods often adopt self-training with clustering-generated pseudo-labels but implicitly assume these labels are always correct. In practice, however, this assumption fails due to inevitable pseudo-label noise, which hinders model learning. To address this, we introduce a new learning paradigm that explicitly considers Pseudo-Label Noise (PLN), characterized by three key challenges: noise overfitting, error accumulation, and noisy cluster correspondence. To this end, we propose a novel Robust Duality Learning framework (RoDE) for UVI-ReID to mitigate the effects of noisy pseudo-labels. First, to combat noise overfitting, a Robust Adaptive Learning mechanism (RAL) is proposed to dynamically emphasize clean samples while down-weighting noisy ones. Second, to alleviate error accumulation-where the model reinforces its own mistakes-RoDE employs dual distinct models that are alternately trained using pseudo-labels from each other, encouraging diversity and preventing collapse. However, this dual-model strategy introduces misalignment between clusters across models and modalities, creating noisy cluster correspondence. To resolve this, we introduce Cluster Consistency Matching (CCM), which aligns clusters across models and modalities by measuring cross-cluster similarity. Extensive experiments on three benchmarks demonstrate the effectiveness of RoDE.
A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
A fundamental challenge in artificial intelligence involves understanding the cognitive mechanisms underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images or requiring fine-grained compositional understanding? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using diverse visual reasoning tasks-Bongard Problems (BPs) and Winoground-to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via task-agnostic textual descriptions). These paradigms systematically vary cognitive load and probe processing stages. Notably, CA enables multi-image reasoning evaluation even for single-image architectures and isolates reasoning from perception by operating on textual descriptions. Applying this framework, we demonstrate that CA, leveraging powerful language models for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance on challenging benchmarks including Bongard-OpenWorld, Bongard-HOI, and Winoground. Ablation studies confirm reasoning improves significantly when perceptual challenges are mitigated, revealing a critical perception bottleneck. Our framework provides a valuable diagnostic tool and suggests that decoupling perception (via rich, task-agnostic description) from reasoning is a promising direction for robust and general visual intelligence.
Sharpness-Aware Minimization with Z-Score Gradient Filtering for Neural Networks
Generalizing well in deep neural networks remains a core challenge, particularly due to their tendency to converge to sharp minima that degrade robustness. Sharpness-Aware Minimization (SAM) mitigates this by seeking flatter minima but perturbs parameters using the full gradient, which can include statistically insignificant directions. We propose ZSharp, a simple yet effective extension to SAM that applies layer-wise Z-score normalization followed by percentile-based filtering to retain only statistically significant gradient components. This selective perturbation aligns updates with curvature-sensitive directions, enhancing generalization without requiring architectural changes. ZSharp introduces only one additional hyperparameter, the percentile threshold, and remains fully compatible with existing SAM variants. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet using ResNet, VGG, and Vision Transformers show that ZSharp consistently outperforms SAM and its variants in test accuracy, particularly on deeper and transformer-based models. These results demonstrate that ZSharp is a principled and lightweight improvement for sharpness-aware optimization.
RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video
Multimodal Large Language Models (MLLMs) increasingly excel at perception, understanding, and reasoning. However, current benchmarks inadequately evaluate their ability to perform these tasks continuously in dynamic, real-world environments. To bridge this gap, we introduce RTV-Bench, a fine-grained benchmark for MLLM real-time video analysis. RTV-Bench uses three key principles: (1) Multi-Timestamp Question Answering (MTQA), where answers evolve with scene changes; (2) Hierarchical Question Structure, combining basic and advanced queries; and (3) Multi-dimensional Evaluation, assessing the ability of continuous perception, understanding, and reasoning. RTV-Bench contains 552 diverse videos (167.2 hours) and 4,631 high-quality QA pairs. We evaluated leading MLLMs, including proprietary (GPT-4o, Gemini 2.0), open-source offline (Qwen2.5-VL, VideoLLaMA3), and open-source real-time (VITA-1.5, InternLM-XComposer2.5-OmniLive) models. Experiment results show open-source real-time models largely outperform offline ones but still trail top proprietary models. Our analysis also reveals that larger model size or higher frame sampling rates do not significantly boost RTV-Bench performance, sometimes causing slight decreases. This underscores the need for better model architectures optimized for video stream processing and long sequences to advance real-time video analysis with MLLMs. Our benchmark toolkit is available at: https://github.com/LJungang/RTV-Bench.
comment: 13 pages, 4 figures, 5 tables
Regression is all you need for medical image translation
The acquisition of information-rich images within a limited time budget is crucial in medical imaging. Medical image translation (MIT) can help enhance and supplement existing datasets by generating synthetic images from acquired data. While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved remarkable success in natural image generation, their benefits - creativity and image realism - do not necessarily transfer to medical applications where highly accurate anatomical information is required. In fact, the imitation of acquisition noise or content hallucination hinder clinical utility. Here, we introduce YODA (You Only Denoise once - or Average), a novel 2.5D diffusion-based framework for volumetric MIT. YODA unites diffusion and regression paradigms to produce realistic or noise-free outputs. Furthermore, we propose Expectation-Approximation (ExpA) DM sampling, which draws inspiration from MRI signal averaging. ExpA-sampling suppresses generated noise and, thus, eliminates noise from biasing the evaluation of image quality. Through extensive experiments on four diverse multi-modal datasets - comprising multi-contrast brain MRI and pelvic MRI-CT - we show that diffusion and regression sampling yield similar results in practice. As such, the computational overhead of diffusion sampling does not provide systematic benefits in medical information translation. Building on these insights, we demonstrate that YODA outperforms several state-of-the-art GAN and DM methods. Notably, YODA-generated images are shown to be interchangeable with, or even superior to, physical acquisitions for several downstream tasks. Our findings challenge the presumed advantages of DMs in MIT and pave the way for the practical application of MIT in medical imaging.
UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction ICML 2025
Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.
comment: This paper has been accepted to the 41st International Conference on Machine Learning (ICML 2025)
Adversarial Robustness of Deep Learning Models for Inland Water Body Segmentation from SAR Images
Inland water body segmentation from Synthetic Aperture Radar (SAR) images is an important task needed for several applications, such as flood mapping. While SAR sensors capture data in all-weather conditions as high-resolution images, differentiating water and water-like surfaces from SAR images is not straightforward. Inland water bodies, such as large river basins, have complex geometry, which adds to the challenge of segmentation. U-Net is a widely used deep learning model for land-water segmentation of SAR images. In practice, manual annotation is often used to generate the corresponding water masks as ground truth. Manual annotation of the images is prone to label noise owing to data poisoning attacks, especially due to complex geometry. In this work, we simulate manual errors in the form of adversarial attacks on the U-Net model and study the robustness of the model to human errors in annotation. Our results indicate that U-Net can tolerate a certain level of corruption before its performance drops significantly. This finding highlights the crucial role that the quality of manual annotations plays in determining the effectiveness of the segmentation model. The code and the new dataset, along with adversarial examples for robust training, are publicly available. (GitHub link - https://github.com/GVCL/IWSeg-SAR-Poison.git)
comment: 21 pages, 15 figures, 2 tables
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets ICLR 2025
While one commonly trains large diffusion models by collecting datasets on target downstream tasks, it is often desired to align and finetune pretrained diffusion models with some reward functions that are either designed by experts or learned from small-scale datasets. Existing post-training methods for reward finetuning of diffusion models typically suffer from lack of diversity in generated samples, lack of prior preservation, and/or slow convergence in finetuning. In response to this challenge, we take inspiration from recent successes in generative flow networks (GFlowNets) and propose a reinforcement learning method for diffusion model finetuning, dubbed Nabla-GFlowNet (abbreviated as $\nabla$-GFlowNet), that leverages the rich signal in reward gradients for probabilistic diffusion finetuning. We show that our proposed method achieves fast yet diversity- and prior-preserving finetuning of Stable Diffusion, a large-scale text-conditioned image diffusion model, on different realistic reward functions.
comment: Technical Report (37 pages, 31 figures), Accepted at ICLR 2025
SMORE: Simultaneous Map and Object REconstruction 3DV 2025
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR. Depth-based reconstructions tend to focus on small-scale objects or large-scale SLAM reconstructions that treat moving objects as outliers. We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background. To achieve this, we take inspiration from recent novel view synthesis methods and frame the reconstruction problem as a global optimization over neural surfaces, ego poses, and object poses, which minimizes the error between composed spacetime surfaces and input LiDAR scans. In contrast to view synthesis methods, which typically minimize 2D errors with gradient descent, we minimize a 3D point-to-surface error by coordinate descent, which we decompose into registration and surface reconstruction steps. Each step can be handled well by off-the-shelf methods without any re-training. We analyze the surface reconstruction step for rolling-shutter LiDARs, and show that deskewing operations common in continuous time SLAM can be applied to dynamic objects as well, improving results over prior art by an order of magnitude. Beyond pursuing dynamic reconstruction as a goal in and of itself, we propose that such a system can be used to auto-label partially annotated sequences and produce ground truth annotation for hard-to-label problems such as depth completion and scene flow. Please see https://anishmadan23.github.io/smore/ for more visual results.
comment: 3DV 2025,CVPR 2025 4D Vision Workshop
VecFontSDF: Learning to Reconstruct and Synthesize High-quality Vector Fonts via Signed Distance Functions CVPR 2023
Font design is of vital importance in the digital content design and modern printing industry. Developing algorithms capable of automatically synthesizing vector fonts can significantly facilitate the font design process. However, existing methods mainly concentrate on raster image generation, and only a few approaches can directly synthesize vector fonts. This paper proposes an end-to-end trainable method, VecFontSDF, to reconstruct and synthesize high-quality vector fonts using signed distance functions (SDFs). Specifically, based on the proposed SDF-based implicit shape representation, VecFontSDF learns to model each glyph as shape primitives enclosed by several parabolic curves, which can be precisely converted to quadratic B\'ezier curves that are widely used in vector font products. In this manner, most image generation methods can be easily extended to synthesize vector fonts. Qualitative and quantitative experiments conducted on a publicly-available dataset demonstrate that our method obtains high-quality results on several tasks, including vector font reconstruction, interpolation, and few-shot vector font synthesis, markedly outperforming the state of the art. Our code and trained models are available at https://xiazeqing.github.io/VecFontSDF.
comment: Accepted to CVPR 2023. Project Page: https://xiazeqing.github.io/VecFontSDF
Paragraph-to-Image Generation with Information-Enriched Diffusion Model
Text-to-image (T2I) models have recently experienced rapid development, achieving astonishing performance in terms of fidelity and textual alignment capabilities. However, given a long paragraph (up to 512 words), these generation models still struggle to achieve strong alignment and are unable to generate images depicting complex scenes. In this paper, we introduce an information-enriched diffusion model for paragraph-to-image generation task, termed ParaDiffusion, which delves into the transference of the extensive semantic comprehension capabilities of large language models to the task of image generation. At its core is using a large language model (e.g., Llama V2) to encode long-form text, followed by fine-tuning with LORA to alignthe text-image feature spaces in the generation task. To facilitate the training of long-text semantic alignment, we also curated a high-quality paragraph-image pair dataset, namely ParaImage. This dataset contains a small amount of high-quality, meticulously annotated data, and a large-scale synthetic dataset with long text descriptions being generated using a vision-language model. Experiments demonstrate that ParaDiffusion outperforms state-of-the-art models (SD XL, DeepFloyd IF) on ViLG-300 and ParaPrompts, achieving up to 15% and 45% human voting rate improvements for visual appeal and text faithfulness, respectively. The code and dataset will be released to foster community research on long-text alignment.
comment: The project website is at: https://weijiawu.github.io/ParaDiffusionPage/. Code: https://github.com/weijiawu/ParaDiffusion
Editable-DeepSC: Reliable Cross-Modal Semantic Communications for Facial Editing
Real-time computer vision (CV) plays a crucial role in various real-world applications, whose performance is highly dependent on communication networks. Nonetheless, the data-oriented characteristics of conventional communications often do not align with the special needs of real-time CV tasks. To alleviate this issue, the recently emerged semantic communications only transmit task-related semantic information and exhibit a promising landscape to address this problem. However, the communication challenges associated with Semantic Facial Editing, one of the most important real-time CV applications on social media, still remain largely unexplored. In this paper, we fill this gap by proposing Editable-DeepSC, a novel cross-modal semantic communication approach for facial editing. Firstly, we theoretically discuss different transmission schemes that separately handle communications and editings, and emphasize the necessity of Joint Editing-Channel Coding (JECC) via iterative attributes matching, which integrates editings into the communication chain to preserve more semantic mutual information. To compactly represent the high-dimensional data, we leverage inversion methods via pre-trained StyleGAN priors for semantic coding. To tackle the dynamic channel noise conditions, we propose SNR-aware channel coding via model fine-tuning. Extensive experiments indicate that Editable-DeepSC can achieve superior editings while significantly saving the transmission bandwidth, even under high-resolution and out-of-distribution (OOD) settings.
Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
comment: code: https://github.com/stepfun-ai/Step1X-Edit
FGAIF: Aligning Large Vision-Language Models with Fine-grained AI Feedback
Large Vision-Language Models (LVLMs) have demonstrated proficiency in tackling a variety of visual-language tasks. However, current LVLMs suffer from misalignment between text and image modalities which causes three kinds of hallucination problems, i.e., object existence, object attribute, and object relationship. To tackle this issue, existing methods mainly utilize Reinforcement Learning (RL) to align modalities in LVLMs. However, they still suffer from three main limitations: (1) General feedback can not indicate the hallucination type contained in the response; (2) Sparse rewards only give the sequence-level reward for the whole response; and (3)Annotation cost is time-consuming and labor-intensive. To handle these limitations, we propose an innovative method to align modalities in LVLMs through Fine-Grained Artificial Intelligence Feedback (FGAIF), which mainly consists of three steps: AI-based Feedback Collection, Fine-grained Reward Model Training, and Reinforcement Learning with Fine-grained Reward. Specifically, We first utilize AI tools to predict the types of hallucination for each segment in the response and obtain a collection of fine-grained feedback. Then, based on the collected reward data, three specialized reward models are trained to produce dense rewards. Finally, a novel fine-grained feedback module is integrated into the Proximal Policy Optimization (PPO) algorithm. Extensive experiments are conducted on hallucination and general benchmarks, demonstrating the superior performance of our proposed method. Notably, compared with previous models trained with the RL-based aligning method, our proposed method is effective even with fewer parameters.
Rethinking Meta-Learning from a Learning Lens
Meta-learning seeks to learn a well-generalized model initialization from training tasks to solve unseen tasks. From the "learning to learn" perspective, the quality of the initialization is modeled with one-step gradient decent in the inner loop. However, contrary to theoretical expectations, our empirical analysis reveals that this may expose meta-learning to underfitting. To bridge the gap between theoretical understanding and practical implementation, we reconsider meta-learning from the "Learning" lens. We propose that the meta-learning model comprises two interrelated components: parameters for model initialization and a meta-layer for task-specific fine-tuning. These components will lead to the risks of overfitting and underfitting depending on tasks, and their solutions, fewer parameters vs. more meta-layer, are often in conflict. To address this, we aim to regulate the task information the model receives without modifying the data or model structure. Our theoretical analysis indicates that models adapted to different tasks can mutually reinforce each other, highlighting the effective information. Based on this insight, we propose TRLearner, a plug-and-play method that leverages task relation to calibrate meta-learning. It first extracts task relation matrices and then applies relation-aware consistency regularization to guide optimization. Extensive theoretical and empirical evaluations demonstrate its effectiveness.
Cobra: Efficient Line Art COlorization with BRoAder References
The comic production industry requires reference-based line art colorization with high accuracy, efficiency, contextual consistency, and flexible control. A comic page often involves diverse characters, objects, and backgrounds, which complicates the coloring process. Despite advancements in diffusion models for image generation, their application in line art colorization remains limited, facing challenges related to handling extensive reference images, time-consuming inference, and flexible control. We investigate the necessity of extensive contextual image guidance on the quality of line art colorization. To address these challenges, we introduce Cobra, an efficient and versatile method that supports color hints and utilizes over 200 reference images while maintaining low latency. Central to Cobra is a Causal Sparse DiT architecture, which leverages specially designed positional encodings, causal sparse attention, and Key-Value Cache to effectively manage long-context references and ensure color identity consistency. Results demonstrate that Cobra achieves accurate line art colorization through extensive contextual reference, significantly enhancing inference speed and interactivity, thereby meeting critical industrial demands. We release our codes and models on our project page: https://zhuang2002.github.io/Cobra/.
comment: Project page with code: https://zhuang2002.github.io/Cobra/
MCCD: Multi-Agent Collaboration-based Compositional Diffusion for Complex Text-to-Image Generation
Diffusion models have shown excellent performance in text-to-image generation. Nevertheless, existing methods often suffer from performance bottlenecks when handling complex prompts that involve multiple objects, characteristics, and relations. Therefore, we propose a Multi-agent Collaboration-based Compositional Diffusion (MCCD) for text-to-image generation for complex scenes. Specifically, we design a multi-agent collaboration-based scene parsing module that generates an agent system comprising multiple agents with distinct tasks, utilizing MLLMs to extract various scene elements effectively. In addition, Hierarchical Compositional diffusion utilizes a Gaussian mask and filtering to refine bounding box regions and enhance objects through region enhancement, resulting in the accurate and high-fidelity generation of complex scenes. Comprehensive experiments demonstrate that our MCCD significantly improves the performance of the baseline models in a training-free manner, providing a substantial advantage in complex scene generation.
Heart Failure Prediction using Modal Decomposition and Masked Autoencoders for Scarce Echocardiography Databases
Heart diseases constitute the main cause of international human defunction. According to the World Health Organization (WHO), approximately 18 million deaths happen each year due to precisely heart diseases. In particular, heart failures (HF) press the healthcare industry to develop systems for their early, rapid, and effective prediction. This work presents an automatic system based on a novel deep learning framework which analyses in real-time echocardiography video sequences for the challenging and more specific task of heart failure time prediction. This system works in two stages. The first one transforms the data from a database of echocardiography video sequences into a machine learning-compatible collection of annotated images which can be used in the training phase of any machine learning-based framework, including a deep learning-based one. This stage includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm for both data augmentation and feature extraction. The second stage builds and trains a Vision Transformer (ViT). Self-supervised learning (SSL) methods, so far barely explored in the literature about heart failure prediction, are adopted to effectively train the ViT from scratch, even with scarce databases. The designed neural network analyses images from echocardiography sequences to estimate the time in which a heart failure will happen. The results obtained show the efficacy of the HODMD algorithm and the superiority of the proposed system with respect to several established ViT and Convolutional Neural Network (CNN) architectures. The source code will be incorporated into the next version release of the ModelFLOWs-app software (https://github.com/modelflows/ModelFLOWs-app).
comment: 39 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2404.19579
Towards A Robust Group-level Emotion Recognition via Uncertainty-Aware Learning
Group-level emotion recognition (GER) is an inseparable part of human behavior analysis, aiming to recognize an overall emotion in a multi-person scene. However, the existing methods are devoted to combing diverse emotion cues while ignoring the inherent uncertainties under unconstrained environments, such as congestion and occlusion occurring within a group. Additionally, since only group-level labels are available, inconsistent emotion predictions among individuals in one group can confuse the network. In this paper, we propose an uncertainty-aware learning (UAL) method to extract more robust representations for GER. By explicitly modeling the uncertainty of each individual, we utilize stochastic embedding drawn from a Gaussian distribution instead of deterministic point embedding. This representation captures the probabilities of different emotions and generates diverse predictions through this stochasticity during the inference stage. Furthermore, uncertainty-sensitive scores are adaptively assigned as the fusion weights of individuals' face within each group. Moreover, we develop an image enhancement module to enhance the model's robustness against severe noise. The overall three-branch model, encompassing face, object, and scene component, is guided by a proportional-weighted fusion strategy and integrates the proposed uncertainty-aware method to produce the final group-level output. Experimental results demonstrate the effectiveness and generalization ability of our method across three widely used databases.
comment: 11 pages,3 figures
Beyond Bare Queries: Open-Vocabulary Object Grounding with 3D Scene Graph
Locating objects described in natural language presents a significant challenge for autonomous agents. Existing CLIP-based open-vocabulary methods successfully perform 3D object grounding with simple (bare) queries, but cannot cope with ambiguous descriptions that demand an understanding of object relations. To tackle this problem, we propose a modular approach called BBQ (Beyond Bare Queries), which constructs 3D scene graph representation with metric and semantic spatial edges and utilizes a large language model as a human-to-agent interface through our deductive scene reasoning algorithm. BBQ employs robust DINO-powered associations to construct 3D object-centric map and an advanced raycasting algorithm with a 2D vision-language model to describe them as graph nodes. On the Replica and ScanNet datasets, we have demonstrated that BBQ takes a leading place in open-vocabulary 3D semantic segmentation compared to other zero-shot methods. Also, we show that leveraging spatial relations is especially effective for scenes containing multiple entities of the same semantic class. On challenging Sr3D+, Nr3D and ScanRefer benchmarks, our deductive approach demonstrates a significant improvement, enabling objects grounding by complex queries compared to other state-of-the-art methods. The combination of our design choices and software implementation has resulted in significant data processing speed in experiments on the robot on-board computer. This promising performance enables the application of our approach in intelligent robotics projects. We made the code publicly available at https://linukc.github.io/BeyondBareQueries/.
comment: 6 pages, 6 figures, 5 tables
OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction
Exposure correction is a fundamental problem in computer vision and image processing. Recently, frequency domain-based methods have achieved impressive improvement, yet they still struggle with complex real-world scenarios under extreme exposure conditions. This is due to the local convolutional receptive fields failing to model long-range dependencies in the spectrum, and the non-generative learning paradigm being inadequate for retrieving lost details from severely degraded regions. In this paper, we propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network that incorporates the advantages of state space models and generative diffusion models to address these limitations. Specifically, OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain to capture comprehensive long-range dependencies in both the amplitude and phase spectra of deep image features, hence enhancing illumination correction and structure recovery. Furthermore, we develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior containing correct information about severely under- and over-exposed regions for better detail restoration. Extensive experiments on multiple-exposure and mixed-exposure datasets demonstrate that the proposed OSMamba achieves state-of-the-art performance both quantitatively and qualitatively.
AC3D: Analyzing and Improving 3D Camera Control in Video Diffusion Transformers CVPR 2025
Numerous works have recently integrated 3D camera control into foundational text-to-video models, but the resulting camera control is often imprecise, and video generation quality suffers. In this work, we analyze camera motion from a first principles perspective, uncovering insights that enable precise 3D camera manipulation without compromising synthesis quality. First, we determine that motion induced by camera movements in videos is low-frequency in nature. This motivates us to adjust train and test pose conditioning schedules, accelerating training convergence while improving visual and motion quality. Then, by probing the representations of an unconditional video diffusion transformer, we observe that they implicitly perform camera pose estimation under the hood, and only a sub-portion of their layers contain the camera information. This suggested us to limit the injection of camera conditioning to a subset of the architecture to prevent interference with other video features, leading to a 4x reduction of training parameters, improved training speed, and 10% higher visual quality. Finally, we complement the typical dataset for camera control learning with a curated dataset of 20K diverse, dynamic videos with stationary cameras. This helps the model distinguish between camera and scene motion and improves the dynamics of generated pose-conditioned videos. We compound these findings to design the Advanced 3D Camera Control (AC3D) architecture, the new state-of-the-art model for generative video modeling with camera control.
comment: CVPR 2025; Project Page: https://snap-research.github.io/ac3d/
Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment. However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the required cross-capacitance matrices accurately and efficiently in large quantum dot registers is an open challenge. Here, we establish a modular automated virtualization system (MAViS) -- a general and modular framework for autonomously constructing a complete stack of multilayer virtual gates in real time. Our method employs machine learning techniques to rapidly extract features from two-dimensional charge stability diagrams. We then utilize computer vision and regression models to self-consistently determine all relative capacitive couplings necessary for virtualizing plunger and barrier gates in both low- and high-tunnel-coupling regimes. Using MAViS, we successfully demonstrate accurate virtualization of a dense two-dimensional array comprising ten quantum dots defined in a high-quality Ge/SiGe heterostructure. Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor quantum dot systems.
comment: 14 pages, 5 figures, 9 pages of supplemental material
Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole-slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole-slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to bridge patch-level predictions to whole-slide image-level classifications seamlessly. We verified the CMSwinKAN on the publicly available BreakHis dataset and the PpNTs dataset, which was established by our hospital. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 10pages, 8 figures
CardioSyntax: end-to-end SYNTAX score prediction -- dataset, benchmark and method
The SYNTAX score has become a widely used measure of coronary disease severity, crucial in selecting the optimal mode of the revascularization procedure. This paper introduces a new medical regression and classification problem - automatically estimating SYNTAX score from coronary angiography. Our study presents a comprehensive CardioSYNTAX dataset of 3,018 patients for the SYNTAX score estimation and coronary dominance classification. The dataset features a balanced distribution of individuals with zero and non-zero scores. This dataset includes a first-of-its-kind, complete coronary angiography samples captured through a multi-view X-ray video, allowing one to observe coronary arteries from multiple perspectives. Furthermore, we present a novel, fully automatic end-to-end method for estimating the SYNTAX. For such a difficult task, we have achieved a solid coefficient of determination R2 of 0.51 in score value prediction and 77.3% accuracy for zero score classification.
HumanEdit: A High-Quality Human-Rewarded Dataset for Instruction-based Image Editing CVPR 2025
We present HumanEdit, a high-quality, human-rewarded dataset specifically designed for instruction-guided image editing, enabling precise and diverse image manipulations through open-form language instructions. Previous large-scale editing datasets often incorporate minimal human feedback, leading to challenges in aligning datasets with human preferences. HumanEdit bridges this gap by employing human annotators to construct data pairs and administrators to provide feedback. With meticulously curation, HumanEdit comprises 5,751 images and requires more than 2,500 hours of human effort across four stages, ensuring both accuracy and reliability for a wide range of image editing tasks. The dataset includes six distinct types of editing instructions: Action, Add, Counting, Relation, Remove, and Replace, encompassing a broad spectrum of real-world scenarios. All images in the dataset are accompanied by masks, and for a subset of the data, we ensure that the instructions are sufficiently detailed to support mask-free editing. Furthermore, HumanEdit offers comprehensive diversity and high-resolution $1024 \times 1024$ content sourced from various domains, setting a new versatile benchmark for instructional image editing datasets. With the aim of advancing future research and establishing evaluation benchmarks in the field of image editing, we release HumanEdit at https://huggingface.co/datasets/BryanW/HumanEdit.
comment: Accepted to CVPR 2025 AI for Content Creation (AI4CC) Workshop. Codes and Supplementary Material: https://github.com/viiika/HumanEdit
Robotic Visual Instruction
Recently, natural language has been the primary medium for human-robot interaction. However, its inherent lack of spatial precision introduces challenges for robotic task definition such as ambiguity and verbosity. Moreover, in some public settings where quiet is required, such as libraries or hospitals, verbal communication with robots is inappropriate. To address these limitations, we introduce the Robotic Visual Instruction (RoVI), a novel paradigm to guide robotic tasks through an object-centric, hand-drawn symbolic representation. RoVI effectively encodes spatial-temporal information into human-interpretable visual instructions through 2D sketches, utilizing arrows, circles, colors, and numbers to direct 3D robotic manipulation. To enable robots to understand RoVI better and generate precise actions based on RoVI, we present Visual Instruction Embodied Workflow (VIEW), a pipeline formulated for RoVI-conditioned policies. This approach leverages Vision-Language Models (VLMs) to interpret RoVI inputs, decode spatial and temporal constraints from 2D pixel space via keypoint extraction, and then transform them into executable 3D action sequences. We additionally curate a specialized dataset of 15K instances to fine-tune small VLMs for edge deployment,enabling them to effectively learn RoVI capabilities. Our approach is rigorously validated across 11 novel tasks in both real and simulated environments, demonstrating significant generalization capability. Notably, VIEW achieves an 87.5% success rate in real-world scenarios involving unseen tasks that feature multi-step actions, with disturbances, and trajectory-following requirements. Project website: https://robotic-visual-instruction.github.io/
comment: Project website: https://robotic-visual-instruction.github.io/
Iterative Tool Usage Exploration for Multimodal Agents via Step-wise Preference Tuning
Multimodal agents, which integrate a controller (e.g., a large language model) with external tools, have demonstrated remarkable capabilities in tackling complex tasks. However, existing agents need to collect a large number of expert data for fine-tuning to adapt to new environments. In this paper, we propose an online self-exploration method for multimodal agents, namely SPORT, via step-wise preference optimization to refine the trajectories of agents, which automatically generates tasks and learns from solving the generated tasks, without any expert annotation. SPORT operates through four iterative components: task synthesis, step sampling, step verification, and preference tuning. First, we synthesize multi-modal tasks using language models. Then, we introduce a novel search scheme, where step sampling and step verification are executed alternately to solve each generated task. We employ a verifier to provide AI feedback to construct step-wise preference data. The data is subsequently used to update the controller's policy through preference tuning, producing a SPORT Agent. By interacting with real environments, the SPORT Agent evolves into a more refined and capable system. Evaluation in the GTA and GAIA benchmarks show that the SPORT Agent achieves 6.41\% and 3.64\% improvements, underscoring the generalization and effectiveness introduced by our method. The project page is https://SPORT-Agents.github.io.
comment: 16 pages, 8 figures
Uncertainty-Guided Self-Questioning and Answering for Video-Language Alignment
The development of multi-modal models has been rapidly advancing, with some demonstrating remarkable capabilities. However, annotating video-text pairs remains expensive and insufficient. Take video question answering (VideoQA) tasks as an example, human annotated questions and answers often cover only part of the video, since the corresponding text is often short and monotonous, leading to underutilization of video. To address this, we propose a Bootstrapping Video-Language Alignment framework (BoViLA), a self-training method that augments question samples during training process through LLM-based self-questioning and answering, which help model exploit video information and the internal knowledge of LLMs more thoroughly to improve modality alignment. However, low-quality self-generated questions may instead contaminate the performance, especially in the early stages of training, as we have observed in our experiments. To filter bad self-generated questions, we introduce Evidential Deep Learning (EDL) to estimate uncertainty and assess the quality of self-generated questions by evaluating the modality alignment within the context. To the best of our knowledge, this work is the first to explore LLM-based self-training frameworks for modality alignment. We evaluate BoViLA on five strong VideoQA benchmarks, where it outperforms several state-of-the-art methods and demonstrate its effectiveness and generality. Additionally, we provide extensive analyses of the self-training framework and the EDL-based uncertainty filtering mechanism. The code will be made available.
Aligning Data Selection with Performance: Performance-driven Reinforcement Learning for Active Learning in Object Detection
Active learning strategies aim to train high-performance models with minimal labeled data by selecting the most informative instances for labeling. However, existing methods for assessing data informativeness often fail to align directly with task model performance metrics, such as mean average precision (mAP) in object detection. This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL), a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks, directly optimizing the sampling strategy using mAP. MGRAL employs a reinforcement learning agent based on LSTM architecture to efficiently navigate the combinatorial challenge of batch sample selection and the non-differentiable nature between performance and selected batches. The agent optimizes selection using policy gradient with mAP improvement as the reward signal. To address the computational intensity of mAP estimation with unlabeled samples, we implement fast look-up tables, ensuring real-world feasibility. We evaluate MGRAL on PASCAL VOC and MS COCO benchmarks across various backbone architectures. Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
Infrared Image Deturbulence Restoration Using Degradation Parameter-Assisted Wide & Deep Learning
Infrared images captured under turbulent conditions are degraded by complex geometric distortions and blur. We address infrared deturbulence as an image restoration task, proposing DparNet, a parameter-assisted multi-frame network with a wide & deep architecture. DparNet learns a degradation prior (key parameter matrix) directly from degraded images without external knowledge. Its wide & deep architecture uses these learned parameters to directly modulate restoration, achieving spatially and intensity adaptive results. Evaluated on dedicated infrared deturbulence (49,744 images) and visible image denoising (109,536 images) datasets, DparNet significantly outperforms State-of-the-Art (SOTA) methods in restoration performance and efficiency. Notably, leveraging these parameters improves PSNR by 0.6-1.1 dB with less than 2% increase in model parameters and computational complexity. Our work demonstrates that degraded images hide key degradation information that can be learned and utilized to boost adaptive image restoration.
Tailored Design of Audio-Visual Speech Recognition Models using Branchformers
Recent advances in Audio-Visual Speech Recognition (AVSR) have led to unprecedented achievements in the field, improving the robustness of this type of system in adverse, noisy environments. In most cases, this task has been addressed through the design of models composed of two independent encoders, each dedicated to a specific modality. However, while recent works have explored unified audio-visual encoders, determining the optimal cross-modal architecture remains an ongoing challenge. Furthermore, such approaches often rely on models comprising vast amounts of parameters and high computational cost training processes. In this paper, we aim to bridge this research gap by introducing a novel audio-visual framework. Our proposed method constitutes, to the best of our knowledge, the first attempt to harness the flexibility and interpretability offered by encoder architectures, such as the Branchformer, in the design of parameter-efficient AVSR systems. To be more precise, the proposed framework consists of two steps: first, estimating audio- and video-only systems, and then designing a tailored audio-visual unified encoder based on the layer-level branch scores provided by the modality-specific models. Extensive experiments on English and Spanish AVSR benchmarks covering multiple data conditions and scenarios demonstrated the effectiveness of our proposed method. Even when trained on a moderate scale of data, our models achieve competitive word error rates (WER) of approximately 2.5\% for English and surpass existing approaches for Spanish, establishing a new benchmark with an average WER of around 9.1\%. These results reflect how our tailored AVSR system is able to reach state-of-the-art recognition rates while significantly reducing the model complexity w.r.t. the prevalent approach in the field. Code and pre-trained models are available at https://github.com/david-gimeno/tailored-avsr.
comment: Accepted in Computer Speech & Language journal of Elsevier
About Time: Advances, Challenges, and Outlooks of Action Understanding
We have witnessed impressive advances in video action understanding. Increased dataset sizes, variability, and computation availability have enabled leaps in performance and task diversification. Current systems can provide coarse- and fine-grained descriptions of video scenes, extract segments corresponding to queries, synthesize unobserved parts of videos, and predict context across multiple modalities. This survey comprehensively reviews advances in uni- and multi-modal action understanding across a range of tasks. We focus on prevalent challenges, overview widely adopted datasets, and survey seminal works with an emphasis on recent advances. We broadly distinguish between three temporal scopes: (1) recognition tasks of actions observed in full, (2) prediction tasks for ongoing partially observed actions, and (3) forecasting tasks for subsequent unobserved action(s). This division allows us to identify specific action modeling and video representation challenges. Finally, we outline future directions to address current shortcomings.
comment: Accepted at the International Journal of Computer Vision (IJCV)
Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution CVPR 2025
Recovering high-quality depth maps from compressed sources has gained significant attention due to the limitations of consumer-grade depth cameras and the bandwidth restrictions during data transmission. However, current methods still suffer from two challenges. First, bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information. Second, densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene. To address these challenges, we propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution that decouples the high-quality depth map reconstruction process by handling global and detailed geometric features separately. To be specific, we propose the fine geometry detail encoder (FGDE), which is designed to aggregate fine geometry details in high-resolution low-level image features while simultaneously enriching them with complementary information from low-resolution context-level image features. In addition, we develop the global geometry encoder (GGE) that aims at suppressing noise and extracting global geometric information effectively via constructing compact feature representation in a low-rank space. We conduct experiments on multiple benchmark datasets, demonstrating that our GDNet significantly outperforms current methods in terms of geometric consistency and detail recovery. In the ECCV 2024 AIM Compressed Depth Upsampling Challenge, our solution won the 1st place award. Our codes are available at: https://github.com/Ian0926/GDNet.
comment: Accepted by CVPR 2025 & The 1st place award for the ECCV 2024 AIM Compressed Depth Upsampling Challenge
FedSynthCT-Brain: A Federated Learning Framework for Multi-Institutional Brain MRI-to-CT Synthesis
The generation of Synthetic Computed Tomography (sCT) images has become a pivotal methodology in modern clinical practice, particularly in the context of Radiotherapy (RT) treatment planning. The use of sCT enables the calculation of doses, pushing towards Magnetic Resonance Imaging (MRI) guided radiotherapy treatments. Deep learning methods for MRI-to-sCT have shown promising results, but their reliance on single-centre training dataset limits generalisation capabilities to diverse clinical settings. Moreover, creating centralised multi-centre datasets may pose privacy concerns. To address the aforementioned issues, we introduced FedSynthCT-Brain, an approach based on the Federated Learning (FL) paradigm for MRI-to-sCT in brain imaging. This is among the first applications of FL for MRI-to-sCT, employing a cross-silo horizontal FL approach that allows multiple centres to collaboratively train a U-Net-based deep learning model. We validated our method using real multicentre data from four European and American centres, simulating heterogeneous scanner types and acquisition modalities, and tested its performance on an independent dataset from a centre outside the federation. In the case of the unseen centre, the federated model achieved a median Mean Absolute Error (MAE) of $102.0$ HU across 23 patients, with an interquartile range of $96.7-110.5$ HU. The median (interquartile range) for the Structural Similarity Index (SSIM) and the Peak Signal to Noise Ratio (PNSR) were $0.89 (0.86-0.89)$ and $26.58 (25.52-27.42)$, respectively. The analysis of the results showed acceptable performances of the federated approach, thus highlighting the potential of FL to enhance MRI-to-sCT to improve generalisability and advancing safe and equitable clinical applications while fostering collaboration and preserving data privacy.
Deformable Beta Splatting SIGGRAPH 2025
3D Gaussian Splatting (3DGS) has advanced radiance field reconstruction by enabling real-time rendering. However, its reliance on Gaussian kernels for geometry and low-order Spherical Harmonics (SH) for color encoding limits its ability to capture complex geometries and diverse colors. We introduce Deformable Beta Splatting (DBS), a deformable and compact approach that enhances both geometry and color representation. DBS replaces Gaussian kernels with deformable Beta Kernels, which offer bounded support and adaptive frequency control to capture fine geometric details with higher fidelity while achieving better memory efficiency. In addition, we extended the Beta Kernel to color encoding, which facilitates improved representation of diffuse and specular components, yielding superior results compared to SH-based methods. Furthermore, Unlike prior densification techniques that depend on Gaussian properties, we mathematically prove that adjusting regularized opacity alone ensures distribution-preserved Markov chain Monte Carlo (MCMC), independent of the splatting kernel type. Experimental results demonstrate that DBS achieves state-of-the-art visual quality while utilizing only 45% of the parameters and rendering 1.5x faster than 3DGS-MCMC, highlighting the superior performance of DBS for real-time radiance field rendering. Interactive demonstrations and source code are available on our project website: https://rongliu-leo.github.io/beta-splatting/.
comment: SIGGRAPH 2025
Semi-supervised Underwater Image Enhancement Using A Physics-Aware Triple-Stream Network
Underwater images normally suffer from degradation due to the transmission medium of water bodies. Both traditional prior-based approaches and deep learning-based methods have been used to address this problem. However, the inflexible assumption of the former often impairs their effectiveness in handling diverse underwater scenes, while the generalization of the latter to unseen images is usually weakened by insufficient data. In this study, we leverage both the physics-based Image Formation Model (IFM) and deep learning techniques for Underwater Image Enhancement (UIE). To this end, we propose a novel Physics-Aware Triple-Stream Underwater Image Enhancement Network, i.e., PATS-UIENet, which comprises a Direct Signal Transmission Estimation Steam (D-Stream), a Backscatter Signal Transmission Estimation Steam (B-Stream) and an Ambient Light Estimation Stream (A-Stream). This network fulfills the UIE task by explicitly estimating the degradation parameters of a revised IFM. We also adopt an IFM-inspired semi-supervised learning framework, which exploits both the labeled and unlabeled images, to address the issue of insufficient data. To our knowledge, such a physics-aware deep network and the IFM-inspired semi-supervised learning framework have not been used for the UIE task before. Our method performs better than, or at least comparably to, sixteen baselines across six testing sets in the degradation estimation and UIE tasks. These promising results should be due to the fact that the proposed method can not only model the degradation but also learn the characteristics of diverse underwater scenes.
comment: 13 pages, 10 figures
Instance Segmentation of Scene Sketches Using Natural Image Priors
Sketch segmentation involves grouping pixels within a sketch that belong to the same object or instance. It serves as a valuable tool for sketch editing tasks, such as moving, scaling, or removing specific components. While image segmentation models have demonstrated remarkable capabilities in recent years, sketches present unique challenges for these models due to their sparse nature and wide variation in styles. We introduce InkLayer, a method for instance segmentation of raster scene sketches. Our approach adapts state-of-the-art image segmentation and object detection models to the sketch domain by employing class-agnostic fine-tuning and refining segmentation masks using depth cues. Furthermore, our method organizes sketches into sorted layers, where occluded instances are inpainted, enabling advanced sketch editing applications. As existing datasets in this domain lack variation in sketch styles, we construct a synthetic scene sketch segmentation dataset, InkScenes, featuring sketches with diverse brush strokes and varying levels of detail. We use this dataset to demonstrate the robustness of our approach.
comment: Project website: https://inklayer.github.io
A Multi-Granularity Retrieval Framework for Visually-Rich Documents
Retrieval-augmented generation (RAG) systems have predominantly focused on text-based retrieval, limiting their effectiveness in handling visually-rich documents that encompass text, images, tables, and charts. To bridge this gap, we propose a unified multi-granularity multimodal retrieval framework tailored for two benchmark tasks: MMDocIR and M2KR. Our approach integrates hierarchical encoding strategies, modality-aware retrieval mechanisms, and vision-language model (VLM)-based candidate filtering to effectively capture and utilize the complex interdependencies between textual and visual modalities. By leveraging off-the-shelf vision-language models and implementing a training-free hybrid retrieval strategy, our framework demonstrates robust performance without the need for task-specific fine-tuning. Experimental evaluations reveal that incorporating layout-aware search and VLM-based candidate verification significantly enhances retrieval accuracy, achieving a top performance score of 65.56. This work underscores the potential of scalable and reproducible solutions in advancing multimodal document retrieval systems.
Full-DoF Egomotion Estimation for Event Cameras Using Geometric Solvers CVPR
For event cameras, current sparse geometric solvers for egomotion estimation assume that the rotational displacements are known, such as those provided by an IMU. Thus, they can only recover the translational motion parameters. Recovering full-DoF motion parameters using a sparse geometric solver is a more challenging task, and has not yet been investigated. In this paper, we propose several solvers to estimate both rotational and translational velocities within a unified framework. Our method leverages event manifolds induced by line segments. The problem formulations are based on either an incidence relation for lines or a novel coplanarity relation for normal vectors. We demonstrate the possibility of recovering full-DoF egomotion parameters for both angular and linear velocities without requiring extra sensor measurements or motion priors. To achieve efficient optimization, we exploit the Adam framework with a first-order approximation of rotations for quick initialization. Experiments on both synthetic and real-world data demonstrate the effectiveness of our method. The code is available at https://github.com/jizhaox/relpose-event.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025
Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
Recognize Any Surgical Object: Unleashing the Power of Weakly-Supervised Data
We present RASO, a foundation model designed to Recognize Any Surgical Object, offering robust open-set recognition capabilities across a broad range of surgical procedures and object classes, in both surgical images and videos. RASO leverages a novel weakly-supervised learning framework that generates tag-image-text pairs automatically from large-scale unannotated surgical lecture videos, significantly reducing the need for manual annotations. Our scalable data generation pipeline gathers 2,200 surgical procedures and produces 3.6 million tag annotations across 2,066 unique surgical tags. Our experiments show that RASO achieves improvements of 2.9 mAP, 4.5 mAP, 10.6 mAP, and 7.2 mAP on four standard surgical benchmarks, respectively, in zero-shot settings, and surpasses state-of-the-art models in supervised surgical action recognition tasks. Code, model, and demo are available at https://ntlm1686.github.io/raso.
DreamO: A Unified Framework for Image Customization
Recently, extensive research on image customization (e.g., identity, subject, style, background, etc.) demonstrates strong customization capabilities in large-scale generative models. However, most approaches are designed for specific tasks, restricting their generalizability to combine different types of condition. Developing a unified framework for image customization remains an open challenge. In this paper, we present DreamO, an image customization framework designed to support a wide range of tasks while facilitating seamless integration of multiple conditions. Specifically, DreamO utilizes a diffusion transformer (DiT) framework to uniformly process input of different types. During training, we construct a large-scale training dataset that includes various customization tasks, and we introduce a feature routing constraint to facilitate the precise querying of relevant information from reference images. Additionally, we design a placeholder strategy that associates specific placeholders with conditions at particular positions, enabling control over the placement of conditions in the generated results. Moreover, we employ a progressive training strategy consisting of three stages: an initial stage focused on simple tasks with limited data to establish baseline consistency, a full-scale training stage to comprehensively enhance the customization capabilities, and a final quality alignment stage to correct quality biases introduced by low-quality data. Extensive experiments demonstrate that the proposed DreamO can effectively perform various image customization tasks with high quality and flexibly integrate different types of control conditions.
PLUM: Improving Inference Efficiency By Leveraging Repetition-Sparsity Trade-Off
Efficient inference of Deep Neural Networks (DNNs) on resource-constrained edge devices is essential. Quantization and sparsity are key techniques that translate to repetition and sparsity within tensors at the hardware-software interface. This paper introduces the concept of repetition-sparsity trade-off that helps explain computational efficiency during inference. We propose PLUM, a unified co-design framework that integrates DNN inference systems and quantization (forward and backward pass) to leverage the repetition-sparsity trade-off to improve inference efficiency. Our results demonstrate that PLUM's quantization method is more accurate than binary quantization with the same number of non-zero weights. Detailed analysis indicates that signed binarization generates a smaller distribution of effectual (non-zero) parameters nested within a larger distribution of total parameters of latent full-precision weights for a DNN block. Finally, the proposed PLUM framework achieves a 26% speedup on real hardware, doubles energy efficiency, and reduces density by 2.8x compared to binary methods while retaining top-1 accuracy when compared to prior-art methods for ResNets on ImageNet (by achieving 66.2% top-1 accuracy), presenting an alternative solution for deploying efficient models in resource-limited environments.
comment: OpenReview: https://openreview.net/forum?id=IEKtMMSblm
Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID
Unsupervised visible-infrared person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning. Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning. However, these methods overlook the cross-modality variations in feature representation and pseudo-label distributions brought by fine-grained patterns. This insight results in insufficient modality-shared learning when only global features are optimized. To address this issue, we propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up optimization objective for specific fine-grained patterns emphasized by each modality, thereby achieving complementary alignment between the label distributions of different modalities. Specifically, we first introduce a Dual Association with Global Learning (DAGI) module to unify the pseudo-labels of cross-modality instances in a bi-directional manner. Afterward, a Fine-Grained Semantic-Aligned Learning (FGSAL) module is carried out to explore part-level semantic-aligned patterns emphasized by each modality from cross-modality instances. Optimization objective is then formulated based on the semantic-aligned features and their corresponding label space. To alleviate the side-effects arising from noisy pseudo-labels, we propose a Global-Part Collaborative Refinement (GPCR) module to mine reliable positive sample sets for the global and part features dynamically and optimize the inter-instance relationships. Extensive experiments demonstrate the effectiveness of the proposed method, which achieves superior performances to state-of-the-art methods. Our code is available at \href{https://github.com/FranklinLingfeng/code-for-SALCR}.
comment: Accepted by IJCV 2025
Entropy Heat-Mapping: Localizing GPT-Based OCR Errors with Sliding-Window Shannon Analysis
Vision-language models such as OpenAI GPT-4o can transcribe mathematical documents directly from images, yet their token-level confidence signals are seldom used to pinpoint local recognition mistakes. We present an entropy-heat-mapping proof-of-concept that turns per-token Shannon entropy into a visual ''uncertainty landscape''. By scanning the entropy sequence with a fixed-length sliding window, we obtain hotspots that are likely to contain OCR errors such as missing symbols, mismatched braces, or garbled prose. Using a small, curated set of scanned research pages rendered at several resolutions, we compare the highlighted hotspots with the actual transcription errors produced by GPT-4o. Our analysis shows that the vast majority of true errors are indeed concentrated inside the high-entropy regions. This study demonstrates--in a minimally engineered setting--that sliding-window entropy can serve as a practical, lightweight aid for post-editing GPT-based OCR. All code and annotation guidelines are released to encourage replication and further research.
comment: 22 pages
The Devil is in the Prompts: Retrieval-Augmented Prompt Optimization for Text-to-Video Generation CVPR2025
The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce RAPO, a novel Retrieval-Augmented Prompt Optimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts.
comment: accepted by CVPR2025, Project website: https://whynothaha.github.io/Prompt_optimizer/RAPO.html
Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
Chest X-ray (CXR) is an important diagnostic tool widely used in hospitals to assess patient conditions and monitor changes over time. Recently, generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic CXRs. However, these models mainly focus on conditional generation using single-time-point data, i.e., generating CXRs conditioned on their corresponding reports from a specific time. This limits their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. Results show that our framework generates high-quality, realistic future images that effectively capture potential temporal changes. This suggests that our framework could be further developed to support clinical decision-making and provide valuable insights for patient monitoring and treatment planning in the medical field. The code is available at https://github.com/dek924/EHRXDiff.
comment: Accepted at Proc. of Conference on Health, Inference, and Learning (CHIL) 2025 (10 pages for main text, 3 pages for references, 8 pages for supplementary materials)
CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement
Accurate multi-sensor calibration is essential for deploying robust perception systems in applications such as autonomous driving and intelligent transportation. Existing LiDAR-camera calibration methods often rely on manually placed targets, preliminary parameter estimates, or intensive data preprocessing, limiting their scalability and adaptability in real-world settings. In this work, we propose a fully automatic, targetless, and online calibration framework, CalibRefine, which directly processes raw LiDAR point clouds and camera images. Our approach is divided into four stages: (1) a Common Feature Discriminator that leverages relative spatial positions, visual appearance embeddings, and semantic class cues to identify and generate reliable LiDAR-camera correspondences, (2) a coarse homography-based calibration that uses the matched feature correspondences to estimate an initial transformation between the LiDAR and camera frames, serving as the foundation for further refinement, (3) an iterative refinement to incrementally improve alignment as additional data frames become available, and (4) an attention-based refinement that addresses non-planar distortions by leveraging a Vision Transformer and cross-attention mechanisms. Extensive experiments on two urban traffic datasets demonstrate that CalibRefine achieves high-precision calibration with minimal human input, outperforming state-of-the-art targetless methods and matching or surpassing manually tuned baselines. Our results show that robust object-level feature matching, combined with iterative refinement and self-supervised attention-based refinement, enables reliable sensor alignment in complex real-world conditions without ground-truth matrices or elaborate preprocessing. Code is available at https://github.com/radar-lab/Lidar_Camera_Automatic_Calibration
MemeBLIP2: A novel lightweight multimodal system to detect harmful memes
Memes often merge visuals with brief text to share humor or opinions, yet some memes contain harmful messages such as hate speech. In this paper, we introduces MemeBLIP2, a light weight multimodal system that detects harmful memes by combining image and text features effectively. We build on previous studies by adding modules that align image and text representations into a shared space and fuse them for better classification. Using BLIP-2 as the core vision-language model, our system is evaluated on the PrideMM datasets. The results show that MemeBLIP2 can capture subtle cues in both modalities, even in cases with ironic or culturally specific content, thereby improving the detection of harmful material.
comment: 11pages, 3 figures, manucripts in preparation
Image and Video Processing
Stabilizing 3D EPI time series by servo navigation and phase equalization exploiting repeated shots (PEERS)
Purpose: To enable run-time head motion control and robust frequency corrections for 3D EPI fMRI. Methods: A short 3D orbital navigator (3 ms) is inserted into a 3D EPI sequence. A linear perturbation model is calibrated to estimate rigid motion and frequency parameters per shot. Rigid motion is corrected by scan geometry updates in run-time, while several techniques are investigated to stabilize navigator-based frequency corrections in the reconstruction. An additional method termed PEERS is proposed that exploits the repetitive structure of fMRI scans to fine-tune shot-wise phase and frequency estimates using the motion-corrected EPI data itself. Results: Servo navigation effectively reduces motion in the raw data of in-vivo fMRI scans in six subjects. PEERS provides high-precision frequency parameters for robust phase-corrected reconstructions in the phantom and in-vivo accounting for scanner drifts and slice encoding-related effects on EPI. In combination, servo navigation and PEERS achieve successful intra-volume corrections and consistent tSNR improvements of 8% on average throughout the brain. The two methods prove to be highly synergetic. Conclusion: Servo navigation achieves high-precision motion correction for 3D-EPI fMRI in run-time and, in synergy with PEERS, provides stable frequency corrections with short navigators even for long echo times. With its automatic self-calibration and no hardware requirements, servo navigation and PEERS enable effective plug-and-play motion correction for 3D fMRI.
comment: to be published in Magnetic Resonance in Medicine (MRM)
Panoramic Out-of-Distribution Segmentation
Panoramic imaging enables capturing 360{\deg} images with an ultra-wide Field-of-View (FoV) for dense omnidirectional perception. However, current panoramic semantic segmentation methods fail to identify outliers, and pinhole Out-of-distribution Segmentation (OoS) models perform unsatisfactorily in the panoramic domain due to background clutter and pixel distortions. To address these issues, we introduce a new task, Panoramic Out-of-distribution Segmentation (PanOoS), achieving OoS for panoramas. Furthermore, we propose the first solution, POS, which adapts to the characteristics of panoramic images through text-guided prompt distribution learning. Specifically, POS integrates a disentanglement strategy designed to materialize the cross-domain generalization capability of CLIP. The proposed Prompt-based Restoration Attention (PRA) optimizes semantic decoding by prompt guidance and self-adaptive correction, while Bilevel Prompt Distribution Learning (BPDL) refines the manifold of per-pixel mask embeddings via semantic prototype supervision. Besides, to compensate for the scarcity of PanOoS datasets, we establish two benchmarks: DenseOoS, which features diverse outliers in complex environments, and QuadOoS, captured by a quadruped robot with a panoramic annular lens system. Extensive experiments demonstrate superior performance of POS, with AuPRC improving by 34.25% and FPR95 decreasing by 21.42% on DenseOoS, outperforming state-of-the-art pinhole-OoS methods. Moreover, POS achieves leading closed-set segmentation capabilities. Code and datasets will be available at https://github.com/MengfeiD/PanOoS.
comment: Code and datasets will be available at https://github.com/MengfeiD/PanOoS
Reinforced Correlation Between Vision and Language for Precise Medical AI Assistant
Medical AI assistants support doctors in disease diagnosis, medical image analysis, and report generation. However, they still face significant challenges in clinical use, including limited accuracy with multimodal content and insufficient validation in real-world settings. We propose RCMed, a full-stack AI assistant that improves multimodal alignment in both input and output, enabling precise anatomical delineation, accurate localization, and reliable diagnosis through hierarchical vision-language grounding. A self-reinforcing correlation mechanism allows visual features to inform language context, while language semantics guide pixel-wise attention, forming a closed loop that refines both modalities. This correlation is enhanced by a color region description strategy, translating anatomical structures into semantically rich text to learn shape-location-text relationships across scales. Trained on 20 million image-mask-description triplets, RCMed achieves state-of-the-art precision in contextualizing irregular lesions and subtle anatomical boundaries, excelling in 165 clinical tasks across 9 modalities. It achieved a 23.5% relative improvement in cell segmentation from microscopy images over prior methods. RCMed's strong vision-language alignment enables exceptional generalization, with state-of-the-art performance in external validation across 20 clinically significant cancer types, including novel tasks. This work demonstrates how integrated multimodal models capture fine-grained patterns, enabling human-level interpretation in complex scenarios and advancing human-centric AI healthcare.
Very High-Resolution Forest Mapping with TanDEM-X InSAR Data and Self-Supervised Learning
Deep learning models have shown encouraging capabilities for mapping accurately forests at medium resolution with TanDEM-X interferometric SAR data. Such models, as most of current state-of-the-art deep learning techniques in remote sensing, are trained in a fully-supervised way, which requires a large amount of labeled data for training and validation. In this work, our aim is to exploit the high-resolution capabilities of the TanDEM-X mission to map forests at 6 m. The goal is to overcome the intrinsic limitations posed by midresolution products, which affect, e.g., the detection of narrow roads within vegetated areas and the precise delineation of forested regions contours. To cope with the lack of extended reliable reference datasets at such a high resolution, we investigate self-supervised learning techniques for extracting highly informative representations from the input features, followed by a supervised training step with a significantly smaller number of reliable labels. A 1 m resolution forest/non-forest reference map over Pennsylvania, USA, allows for comparing different training approaches for the development of an effective forest mapping framework with limited labeled samples. We select the best-performing approach over this test region and apply it in a real-case forest mapping scenario over the Amazon rainforest, where only very few labeled data at high resolution are available. In this challenging scenario, the proposed self-supervised framework significantly enhances the classification accuracy with respect to fully-supervised methods, trained using the same amount of labeled data, representing an extremely promising starting point for large-scale, very high-resolution forest mapping with TanDEM-X data.
comment: Preprint submitted to Remote Sensing of Environment
DiffVQA: Video Quality Assessment Using Diffusion Feature Extractor
Video Quality Assessment (VQA) aims to evaluate video quality based on perceptual distortions and human preferences. Despite the promising performance of existing methods using Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), they often struggle to align closely with human perceptions, particularly in diverse real-world scenarios. This challenge is exacerbated by the limited scale and diversity of available datasets. To address this limitation, we introduce a novel VQA framework, DiffVQA, which harnesses the robust generalization capabilities of diffusion models pre-trained on extensive datasets. Our framework adapts these models to reconstruct identical input frames through a control module. The adapted diffusion model is then used to extract semantic and distortion features from a resizing branch and a cropping branch, respectively. To enhance the model's ability to handle long-term temporal dynamics, a parallel Mamba module is introduced, which extracts temporal coherence augmented features that are merged with the diffusion features to predict the final score. Experiments across multiple datasets demonstrate DiffVQA's superior performance on intra-dataset evaluations and its exceptional generalization across datasets. These results confirm that leveraging a diffusion model as a feature extractor can offer enhanced VQA performance compared to CNN and ViT backbones.
STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.
comment: 9 pages, 4 figures, 5 tables
Prototype-Based Information Compensation Network for Multi-Source Remote Sensing Data Classification
Multi-source remote sensing data joint classification aims to provide accuracy and reliability of land cover classification by leveraging the complementary information from multiple data sources. Existing methods confront two challenges: inter-frequency multi-source feature coupling and inconsistency of complementary information exploration. To solve these issues, we present a Prototype-based Information Compensation Network (PICNet) for land cover classification based on HSI and SAR/LiDAR data. Specifically, we first design a frequency interaction module to enhance the inter-frequency coupling in multi-source feature extraction. The multi-source features are first decoupled into high- and low-frequency components. Then, these features are recoupled to achieve efficient inter-frequency communication. Afterward, we design a prototype-based information compensation module to model the global multi-source complementary information. Two sets of learnable modality prototypes are introduced to represent the global modality information of multi-source data. Subsequently, cross-modal feature integration and alignment are achieved through cross-attention computation between the modality-specific prototype vectors and the raw feature representations. Extensive experiments on three public datasets demonstrate the significant superiority of our PICNet over state-of-the-art methods. The codes are available at https://github.com/oucailab/PICNet.
comment: Accepted by IEEE TGRS 2025
Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.
comment: Accepted by Medical Image Analysis
The Eye as a Window to Systemic Health: A Survey of Retinal Imaging from Classical Techniques to Oculomics
The unique vascularized anatomy of the human eye, encased in the retina, provides an opportunity to act as a window for human health. The retinal structure assists in assessing the early detection, monitoring of disease progression and intervention for both ocular and non-ocular diseases. The advancement in imaging technology leveraging Artificial Intelligence has seized this opportunity to bridge the gap between the eye and human health. This track paves the way for unveiling systemic health insight from the ocular system and surrogating non-invasive markers for timely intervention and identification. The new frontiers of oculomics in ophthalmology cover both ocular and systemic diseases, and getting more attention to explore them. In this survey paper, we explore the evolution of retinal imaging techniques, the dire need for the integration of AI-driven analysis, and the shift of retinal imaging from classical techniques to oculomics. We also discuss some hurdles that may be faced in the progression of oculomics, highlighting the research gaps and future directions.
Deep Learning Framework for Infrastructure Maintenance: Crack Detection and High-Resolution Imaging of Infrastructure Surfaces
Recently, there has been an impetus for the application of cutting-edge data collection platforms such as drones mounted with camera sensors for infrastructure asset management. However, the sensor characteristics, proximity to the structure, hard-to-reach access, and environmental conditions often limit the resolution of the datasets. A few studies used super-resolution techniques to address the problem of low-resolution images. Nevertheless, these techniques were observed to increase computational cost and false alarms of distress detection due to the consideration of all the infrastructure images i.e., positive and negative distress classes. In order to address the pre-processing of false alarm and achieve efficient super-resolution, this study developed a framework consisting of convolutional neural network (CNN) and efficient sub-pixel convolutional neural network (ESPCNN). CNN accurately classified both the classes. ESPCNN, which is the lightweight super-resolution technique, generated high-resolution infrastructure image of positive distress obtained from CNN. The ESPCNN outperformed bicubic interpolation in all the evaluation metrics for super-resolution. Based on the performance metrics, the combination of CNN and ESPCNN was observed to be effective in preprocessing the infrastructure images with negative distress, reducing the computational cost and false alarms in the next step of super-resolution. The visual inspection showed that EPSCNN is able to capture crack propagation, complex geometry of even minor cracks. The proposed framework is expected to help the highway agencies in accurately performing distress detection and assist in efficient asset management practices.
comment: Presented :Transportation Research Board 104th Annual Meeting, Washington, D.C
Can Knowledge Improve Security? A Coding-Enhanced Jamming Approach for Semantic Communication
As semantic communication (SemCom) attracts growing attention as a novel communication paradigm, ensuring the security of transmitted semantic information over open wireless channels has become a critical issue. However, traditional encryption methods often introduce significant additional communication overhead to maintain stability, and conventional learning-based secure SemCom methods typically rely on a channel capacity advantage for the legitimate receiver, which is challenging to guarantee in real-world scenarios. In this paper, we propose a coding-enhanced jamming method that eliminates the need to transmit a secret key by utilizing shared knowledge-potentially part of the training set of the SemCom system-between the legitimate receiver and the transmitter. Specifically, we leverage the shared private knowledge base to generate a set of private digital codebooks in advance using neural network (NN)-based encoders. For each transmission, we encode the transmitted data into digital sequence Y1 and associate Y1 with a sequence randomly picked from the private codebook, denoted as Y2, through superposition coding. Here, Y1 serves as the outer code and Y2 as the inner code. By optimizing the power allocation between the inner and outer codes, the legitimate receiver can reconstruct the transmitted data using successive decoding with the index of Y2 shared, while the eavesdropper' s decoding performance is severely degraded, potentially to the point of random guessing. Experimental results demonstrate that our method achieves comparable security to state-of-the-art approaches while significantly improving the reconstruction performance of the legitimate receiver by more than 1 dB across varying channel signal-to-noise ratios (SNRs) and compression ratios.
Adversarial Robustness of Deep Learning Models for Inland Water Body Segmentation from SAR Images
Inland water body segmentation from Synthetic Aperture Radar (SAR) images is an important task needed for several applications, such as flood mapping. While SAR sensors capture data in all-weather conditions as high-resolution images, differentiating water and water-like surfaces from SAR images is not straightforward. Inland water bodies, such as large river basins, have complex geometry, which adds to the challenge of segmentation. U-Net is a widely used deep learning model for land-water segmentation of SAR images. In practice, manual annotation is often used to generate the corresponding water masks as ground truth. Manual annotation of the images is prone to label noise owing to data poisoning attacks, especially due to complex geometry. In this work, we simulate manual errors in the form of adversarial attacks on the U-Net model and study the robustness of the model to human errors in annotation. Our results indicate that U-Net can tolerate a certain level of corruption before its performance drops significantly. This finding highlights the crucial role that the quality of manual annotations plays in determining the effectiveness of the segmentation model. The code and the new dataset, along with adversarial examples for robust training, are publicly available. (GitHub link - https://github.com/GVCL/IWSeg-SAR-Poison.git)
comment: 21 pages, 15 figures, 2 tables
Heart Failure Prediction using Modal Decomposition and Masked Autoencoders for Scarce Echocardiography Databases
Heart diseases constitute the main cause of international human defunction. According to the World Health Organization (WHO), approximately 18 million deaths happen each year due to precisely heart diseases. In particular, heart failures (HF) press the healthcare industry to develop systems for their early, rapid, and effective prediction. This work presents an automatic system based on a novel deep learning framework which analyses in real-time echocardiography video sequences for the challenging and more specific task of heart failure time prediction. This system works in two stages. The first one transforms the data from a database of echocardiography video sequences into a machine learning-compatible collection of annotated images which can be used in the training phase of any machine learning-based framework, including a deep learning-based one. This stage includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm for both data augmentation and feature extraction. The second stage builds and trains a Vision Transformer (ViT). Self-supervised learning (SSL) methods, so far barely explored in the literature about heart failure prediction, are adopted to effectively train the ViT from scratch, even with scarce databases. The designed neural network analyses images from echocardiography sequences to estimate the time in which a heart failure will happen. The results obtained show the efficacy of the HODMD algorithm and the superiority of the proposed system with respect to several established ViT and Convolutional Neural Network (CNN) architectures. The source code will be incorporated into the next version release of the ModelFLOWs-app software (https://github.com/modelflows/ModelFLOWs-app).
comment: 39 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2404.19579
OSMamba: Omnidirectional Spectral Mamba with Dual-Domain Prior Generator for Exposure Correction
Exposure correction is a fundamental problem in computer vision and image processing. Recently, frequency domain-based methods have achieved impressive improvement, yet they still struggle with complex real-world scenarios under extreme exposure conditions. This is due to the local convolutional receptive fields failing to model long-range dependencies in the spectrum, and the non-generative learning paradigm being inadequate for retrieving lost details from severely degraded regions. In this paper, we propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network that incorporates the advantages of state space models and generative diffusion models to address these limitations. Specifically, OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain to capture comprehensive long-range dependencies in both the amplitude and phase spectra of deep image features, hence enhancing illumination correction and structure recovery. Furthermore, we develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior containing correct information about severely under- and over-exposed regions for better detail restoration. Extensive experiments on multiple-exposure and mixed-exposure datasets demonstrate that the proposed OSMamba achieves state-of-the-art performance both quantitatively and qualitatively.
Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy
Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information. However, transmitting semantic-rich data over insecure channels introduces privacy risks. This paper proposes a novel SemCom framework that integrates differential privacy (DP) mechanisms to protect sensitive semantic features. This method employs the generative adversarial network (GAN) inversion technique to extract disentangled semantic features and uses neural networks (NNs) to approximate the DP application and removal processes, effectively mitigating the non-invertibility issue of DP. Additionally, an NN-based encryption scheme is introduced to strengthen the security of channel inputs. Simulation results demonstrate that the proposed approach effectively prevents eavesdroppers from reconstructing sensitive information by generating chaotic or fake images, while ensuring high-quality image reconstruction for legitimate users. The system exhibits robust performance across various privacy budgets and channel conditions, achieving an optimal balance between privacy protection and reconstruction fidelity.
comment: The order of authorship and the list of authors for this paper still require further discussion. In addition, my supervisor believes that the overall structure of this paper needs to be rewritten
Content ARCs: Decentralized Content Rights in the Age of Generative AI
The rise of Generative AI (GenAI) has sparked significant debate over balancing the interests of creative rightsholders and AI developers. As GenAI models are trained on vast datasets that often include copyrighted material, questions around fair compensation and proper attribution have become increasingly urgent. To address these challenges, this paper proposes a framework called Content ARCs (Authenticity, Rights, Compensation). By combining open standards for provenance and dynamic licensing with data attribution, and decentralized technologies, Content ARCs create a mechanism for managing rights and compensating creators for using their work in AI training. We characterize several nascent works in the AI data licensing space within Content ARCs and identify where challenges remain to fully implement the end-to-end framework.
CardioSyntax: end-to-end SYNTAX score prediction -- dataset, benchmark and method
The SYNTAX score has become a widely used measure of coronary disease severity, crucial in selecting the optimal mode of the revascularization procedure. This paper introduces a new medical regression and classification problem - automatically estimating SYNTAX score from coronary angiography. Our study presents a comprehensive CardioSYNTAX dataset of 3,018 patients for the SYNTAX score estimation and coronary dominance classification. The dataset features a balanced distribution of individuals with zero and non-zero scores. This dataset includes a first-of-its-kind, complete coronary angiography samples captured through a multi-view X-ray video, allowing one to observe coronary arteries from multiple perspectives. Furthermore, we present a novel, fully automatic end-to-end method for estimating the SYNTAX. For such a difficult task, we have achieved a solid coefficient of determination R2 of 0.51 in score value prediction and 77.3% accuracy for zero score classification.
Infrared Image Deturbulence Restoration Using Degradation Parameter-Assisted Wide & Deep Learning
Infrared images captured under turbulent conditions are degraded by complex geometric distortions and blur. We address infrared deturbulence as an image restoration task, proposing DparNet, a parameter-assisted multi-frame network with a wide & deep architecture. DparNet learns a degradation prior (key parameter matrix) directly from degraded images without external knowledge. Its wide & deep architecture uses these learned parameters to directly modulate restoration, achieving spatially and intensity adaptive results. Evaluated on dedicated infrared deturbulence (49,744 images) and visible image denoising (109,536 images) datasets, DparNet significantly outperforms State-of-the-Art (SOTA) methods in restoration performance and efficiency. Notably, leveraging these parameters improves PSNR by 0.6-1.1 dB with less than 2% increase in model parameters and computational complexity. Our work demonstrates that degraded images hide key degradation information that can be learned and utilized to boost adaptive image restoration.
FedSynthCT-Brain: A Federated Learning Framework for Multi-Institutional Brain MRI-to-CT Synthesis
The generation of Synthetic Computed Tomography (sCT) images has become a pivotal methodology in modern clinical practice, particularly in the context of Radiotherapy (RT) treatment planning. The use of sCT enables the calculation of doses, pushing towards Magnetic Resonance Imaging (MRI) guided radiotherapy treatments. Deep learning methods for MRI-to-sCT have shown promising results, but their reliance on single-centre training dataset limits generalisation capabilities to diverse clinical settings. Moreover, creating centralised multi-centre datasets may pose privacy concerns. To address the aforementioned issues, we introduced FedSynthCT-Brain, an approach based on the Federated Learning (FL) paradigm for MRI-to-sCT in brain imaging. This is among the first applications of FL for MRI-to-sCT, employing a cross-silo horizontal FL approach that allows multiple centres to collaboratively train a U-Net-based deep learning model. We validated our method using real multicentre data from four European and American centres, simulating heterogeneous scanner types and acquisition modalities, and tested its performance on an independent dataset from a centre outside the federation. In the case of the unseen centre, the federated model achieved a median Mean Absolute Error (MAE) of $102.0$ HU across 23 patients, with an interquartile range of $96.7-110.5$ HU. The median (interquartile range) for the Structural Similarity Index (SSIM) and the Peak Signal to Noise Ratio (PNSR) were $0.89 (0.86-0.89)$ and $26.58 (25.52-27.42)$, respectively. The analysis of the results showed acceptable performances of the federated approach, thus highlighting the potential of FL to enhance MRI-to-sCT to improve generalisability and advancing safe and equitable clinical applications while fostering collaboration and preserving data privacy.
Regression is all you need for medical image translation
The acquisition of information-rich images within a limited time budget is crucial in medical imaging. Medical image translation (MIT) can help enhance and supplement existing datasets by generating synthetic images from acquired data. While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved remarkable success in natural image generation, their benefits - creativity and image realism - do not necessarily transfer to medical applications where highly accurate anatomical information is required. In fact, the imitation of acquisition noise or content hallucination hinder clinical utility. Here, we introduce YODA (You Only Denoise once - or Average), a novel 2.5D diffusion-based framework for volumetric MIT. YODA unites diffusion and regression paradigms to produce realistic or noise-free outputs. Furthermore, we propose Expectation-Approximation (ExpA) DM sampling, which draws inspiration from MRI signal averaging. ExpA-sampling suppresses generated noise and, thus, eliminates noise from biasing the evaluation of image quality. Through extensive experiments on four diverse multi-modal datasets - comprising multi-contrast brain MRI and pelvic MRI-CT - we show that diffusion and regression sampling yield similar results in practice. As such, the computational overhead of diffusion sampling does not provide systematic benefits in medical information translation. Building on these insights, we demonstrate that YODA outperforms several state-of-the-art GAN and DM methods. Notably, YODA-generated images are shown to be interchangeable with, or even superior to, physical acquisitions for several downstream tasks. Our findings challenge the presumed advantages of DMs in MIT and pave the way for the practical application of MIT in medical imaging.
Towards Predicting Temporal Changes in a Patient's Chest X-ray Images based on Electronic Health Records
Chest X-ray (CXR) is an important diagnostic tool widely used in hospitals to assess patient conditions and monitor changes over time. Recently, generative models, specifically diffusion-based models, have shown promise in generating realistic synthetic CXRs. However, these models mainly focus on conditional generation using single-time-point data, i.e., generating CXRs conditioned on their corresponding reports from a specific time. This limits their clinical utility, particularly for capturing temporal changes. To address this limitation, we propose a novel framework, EHRXDiff, which predicts future CXR images by integrating previous CXRs with subsequent medical events, e.g., prescriptions, lab measures, etc. Our framework dynamically tracks and predicts disease progression based on a latent diffusion model, conditioned on the previous CXR image and a history of medical events. We comprehensively evaluate the performance of our framework across three key aspects, including clinical consistency, demographic consistency, and visual realism. Results show that our framework generates high-quality, realistic future images that effectively capture potential temporal changes. This suggests that our framework could be further developed to support clinical decision-making and provide valuable insights for patient monitoring and treatment planning in the medical field. The code is available at https://github.com/dek924/EHRXDiff.
comment: Accepted at Proc. of Conference on Health, Inference, and Learning (CHIL) 2025 (10 pages for main text, 3 pages for references, 8 pages for supplementary materials)
Analysis of the MICCAI Brain Tumor Segmentation -- Metastases (BraTS-METS) 2025 Lighthouse Challenge: Brain Metastasis Segmentation on Pre- and Post-treatment MRI
Despite continuous advancements in cancer treatment, brain metastatic disease remains a significant complication of primary cancer and is associated with an unfavorable prognosis. One approach for improving diagnosis, management, and outcomes is to implement algorithms based on artificial intelligence for the automated segmentation of both pre- and post-treatment MRI brain images. Such algorithms rely on volumetric criteria for lesion identification and treatment response assessment, which are still not available in clinical practice. Therefore, it is critical to establish tools for rapid volumetric segmentations methods that can be translated to clinical practice and that are trained on high quality annotated data. The BraTS-METS 2025 Lighthouse Challenge aims to address this critical need by establishing inter-rater and intra-rater variability in dataset annotation by generating high quality annotated datasets from four individual instances of segmentation by neuroradiologists while being recorded on video (two instances doing "from scratch" and two instances after AI pre-segmentation). This high-quality annotated dataset will be used for testing phase in 2025 Lighthouse challenge and will be publicly released at the completion of the challenge. The 2025 Lighthouse challenge will also release the 2023 and 2024 segmented datasets that were annotated using an established pipeline of pre-segmentation, student annotation, two neuroradiologists checking, and one neuroradiologist finalizing the process. It builds upon its previous edition by including post-treatment cases in the dataset. Using these high-quality annotated datasets, the 2025 Lighthouse challenge plans to test benchmark algorithms for automated segmentation of pre-and post-treatment brain metastases (BM), trained on diverse and multi-institutional datasets of MRI images obtained from patients with brain metastases.
comment: 28 pages, 4 figures, 2 tables
Multimedia
FlexiAct: Towards Flexible Action Control in Heterogeneous Scenarios
Action customization involves generating videos where the subject performs actions dictated by input control signals. Current methods use pose-guided or global motion customization but are limited by strict constraints on spatial structure, such as layout, skeleton, and viewpoint consistency, reducing adaptability across diverse subjects and scenarios. To overcome these limitations, we propose FlexiAct, which transfers actions from a reference video to an arbitrary target image. Unlike existing methods, FlexiAct allows for variations in layout, viewpoint, and skeletal structure between the subject of the reference video and the target image, while maintaining identity consistency. Achieving this requires precise action control, spatial structure adaptation, and consistency preservation. To this end, we introduce RefAdapter, a lightweight image-conditioned adapter that excels in spatial adaptation and consistency preservation, surpassing existing methods in balancing appearance consistency and structural flexibility. Additionally, based on our observations, the denoising process exhibits varying levels of attention to motion (low frequency) and appearance details (high frequency) at different timesteps. So we propose FAE (Frequency-aware Action Extraction), which, unlike existing methods that rely on separate spatial-temporal architectures, directly achieves action extraction during the denoising process. Experiments demonstrate that our method effectively transfers actions to subjects with diverse layouts, skeletons, and viewpoints. We release our code and model weights to support further research at https://shiyi-zh0408.github.io/projectpages/FlexiAct/
comment: Accepted by Siggraph2025, Project Page: https://shiyi-zh0408.github.io/projectpages/FlexiAct/
PAHA: Parts-Aware Audio-Driven Human Animation with Diffusion Model
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose PAHA, an end-to-end audio-driven upper-body human animation framework with diffusion model. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
Modeling Musical Genre Trajectories through Pathlet Learning
The increasing availability of user data on music streaming platforms opens up new possibilities for analyzing music consumption. However, understanding the evolution of user preferences remains a complex challenge, particularly as their musical tastes change over time. This paper uses the dictionary learning paradigm to model user trajectories across different musical genres. We define a new framework that captures recurring patterns in genre trajectories, called pathlets, enabling the creation of comprehensible trajectory embeddings. We show that pathlet learning reveals relevant listening patterns that can be analyzed both qualitatively and quantitatively. This work improves our understanding of users' interactions with music and opens up avenues of research into user behavior and fostering diversity in recommender systems. A dataset of 2000 user histories tagged by genre over 17 months, supplied by Deezer (a leading music streaming company), is also released with the code.
comment: Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct '25)
Mitigating Image Captioning Hallucinations in Vision-Language Models
Hallucinations in vision-language models (VLMs) hinder reliability and real-world applicability, usually stemming from distribution shifts between pretraining data and test samples. Existing solutions, such as retraining or fine-tuning on additional data, demand significant computational resources and labor-intensive data collection, while ensemble-based methods incur additional costs by introducing auxiliary VLMs. To address these challenges, we propose a novel test-time adaptation framework using reinforcement learning to mitigate hallucinations during inference without retraining or any auxiliary VLMs. By updating only the learnable parameters in the layer normalization of the language model (approximately 0.003% of the model parameters), our method reduces distribution shifts between test samples and pretraining samples. A CLIP-based hallucination evaluation model is proposed to provide dual rewards to VLMs. Experimental results demonstrate a 15.4% and 17.3% reduction in hallucination rates on LLaVA and InstructBLIP, respectively. Our approach outperforms state-of-the-art baselines with a 68.3% improvement in hallucination mitigation, demonstrating its effectiveness.
SD-VSum: A Method and Dataset for Script-Driven Video Summarization
In this work, we introduce the task of script-driven video summarization, which aims to produce a summary of the full-length video by selecting the parts that are most relevant to a user-provided script outlining the visual content of the desired summary. Following, we extend a recently-introduced large-scale dataset for generic video summarization (VideoXum) by producing natural language descriptions of the different human-annotated summaries that are available per video. In this way we make it compatible with the introduced task, since the available triplets of ``video, summary and summary description'' can be used for training a method that is able to produce different summaries for a given video, driven by the provided script about the content of each summary. Finally, we develop a new network architecture for script-driven video summarization (SD-VSum), that relies on the use of a cross-modal attention mechanism for aligning and fusing information from the visual and text modalities. Our experimental evaluations demonstrate the advanced performance of SD-VSum against state-of-the-art approaches for query-driven and generic (unimodal and multimodal) summarization from the literature, and document its capacity to produce video summaries that are adapted to each user's needs about their content.
comment: Under review
STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.
comment: 9 pages, 4 figures, 5 tables
Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identification
Unsupervised visible-infrared person re-identification (UVI-ReID) aims to retrieve pedestrian images across different modalities without costly annotations, but faces challenges due to the modality gap and lack of supervision. Existing methods often adopt self-training with clustering-generated pseudo-labels but implicitly assume these labels are always correct. In practice, however, this assumption fails due to inevitable pseudo-label noise, which hinders model learning. To address this, we introduce a new learning paradigm that explicitly considers Pseudo-Label Noise (PLN), characterized by three key challenges: noise overfitting, error accumulation, and noisy cluster correspondence. To this end, we propose a novel Robust Duality Learning framework (RoDE) for UVI-ReID to mitigate the effects of noisy pseudo-labels. First, to combat noise overfitting, a Robust Adaptive Learning mechanism (RAL) is proposed to dynamically emphasize clean samples while down-weighting noisy ones. Second, to alleviate error accumulation-where the model reinforces its own mistakes-RoDE employs dual distinct models that are alternately trained using pseudo-labels from each other, encouraging diversity and preventing collapse. However, this dual-model strategy introduces misalignment between clusters across models and modalities, creating noisy cluster correspondence. To resolve this, we introduce Cluster Consistency Matching (CCM), which aligns clusters across models and modalities by measuring cross-cluster similarity. Extensive experiments on three benchmarks demonstrate the effectiveness of RoDE.
Machine Learning-Based Prediction of Quality Shifts on Video Streaming Over 5G
The Quality of Experience (QoE) is the users satisfaction while streaming a video session over an over-the-top (OTT) platform like YouTube. QoE of YouTube reflects the smooth streaming session without any buffering and quality shift events. One of the most important factors nowadays affecting QoE of YouTube is frequent shifts from higher to lower resolutions and vice versa. These shifts ensure a smooth streaming session; however, it might get a lower mean opinion score. For instance, dropping from 1080p to 480p during a video can preserve continuity but might reduce the viewers enjoyment. Over time, OTT platforms are looking for alternative ways to boost user experience instead of relying on traditional Quality of Service (QoS) metrics such as bandwidth, latency, and throughput. As a result, we look into the relationship between quality shifting in YouTube streaming sessions and the channel metrics RSRP, RSRQ, and SNR. Our findings state that these channel metrics positively correlate with shifts. Thus, in real-time, OTT can only rely on them to predict video streaming sessions into lower- and higher-resolution categories, thus providing more resources to improve user experience. Using traditional Machine Learning (ML) classifiers, we achieved an accuracy of 77-percent, while using only RSRP, RSRQ, and SNR. In the era of 5G and beyond, where ultra-reliable, low-latency networks promise enhanced streaming capabilities, the proposed methodology can be used to improve OTT services.
Music for All: Representational Bias and Cross-Cultural Adaptability of Music Generation Models NAACL'25
The advent of Music-Language Models has greatly enhanced the automatic music generation capability of AI systems, but they are also limited in their coverage of the musical genres and cultures of the world. We present a study of the datasets and research papers for music generation and quantify the bias and under-representation of genres. We find that only 5.7% of the total hours of existing music datasets come from non-Western genres, which naturally leads to disparate performance of the models across genres. We then investigate the efficacy of Parameter-Efficient Fine-Tuning (PEFT) techniques in mitigating this bias. Our experiments with two popular models -- MusicGen and Mustango, for two underrepresented non-Western music traditions -- Hindustani Classical and Turkish Makam music, highlight the promises as well as the non-triviality of cross-genre adaptation of music through small datasets, implying the need for more equitable baseline music-language models that are designed for cross-cultural transfer learning.
comment: 17 pages, 5 figures, accepted to NAACL'25
Diverse Audio Embeddings -- Bringing Features Back Outperforms CLAP!
With the advent of modern AI architectures, a shift has happened towards end-to-end architectures. This pivot has led to neural architectures being trained without domain-specific biases/knowledge, optimized according to the task. We in this paper, learn audio embeddings via diverse feature representations, in this case, domain-specific. For the case of audio classification over hundreds of categories of sound, we learn robust separate embeddings for diverse audio properties such as pitch, timbre, and neural representation, along with also learning it via an end-to-end architecture. We observe handcrafted embeddings, e.g., pitch and timbre-based, although on their own, are not able to beat a fully end-to-end representation, yet adding these together with end-to-end embedding helps us, significantly improve performance. This work would pave the way to bring some domain expertise with end-to-end models to learn robust, diverse representations, surpassing the performance of just training end-to-end models.
comment: 6 pages, 1 figure, 2 table
Computation and Language
VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model
With the growing requirement for natural human-computer interaction, speech-based systems receive increasing attention as speech is one of the most common forms of daily communication. However, the existing speech models still experience high latency when generating the first audio token during streaming, which poses a significant bottleneck for deployment. To address this issue, we propose VITA-Audio, an end-to-end large speech model with fast audio-text token generation. Specifically, we introduce a lightweight Multiple Cross-modal Token Prediction (MCTP) module that efficiently generates multiple audio tokens within a single model forward pass, which not only accelerates the inference but also significantly reduces the latency for generating the first audio in streaming scenarios. In addition, a four-stage progressive training strategy is explored to achieve model acceleration with minimal loss of speech quality. To our knowledge, VITA-Audio is the first multi-modal large language model capable of generating audio output during the first forward pass, enabling real-time conversational capabilities with minimal latency. VITA-Audio is fully reproducible and is trained on open-source data only. Experimental results demonstrate that our model achieves an inference speedup of 3~5x at the 7B parameter scale, but also significantly outperforms open-source models of similar model size on multiple benchmarks for automatic speech recognition (ASR), text-to-speech (TTS), and spoken question answering (SQA) tasks.
comment: Training and Inference Codes: https://github.com/VITA-MLLM/VITA-Audio
WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch
LLM-based agents have demonstrated great potential in generating and managing code within complex codebases. In this paper, we introduce WebGen-Bench, a novel benchmark designed to measure an LLM-based agent's ability to create multi-file website codebases from scratch. It contains diverse instructions for website generation, created through the combined efforts of human annotators and GPT-4o. These instructions span three major categories and thirteen minor categories, encompassing nearly all important types of web applications. To assess the quality of the generated websites, we use GPT-4o to generate test cases targeting each functionality described in the instructions, and then manually filter, adjust, and organize them to ensure accuracy, resulting in 647 test cases. Each test case specifies an operation to be performed on the website and the expected result after the operation. To automate testing and improve reproducibility, we employ a powerful web-navigation agent to execute tests on the generated websites and determine whether the observed responses align with the expected results. We evaluate three high-performance code-agent frameworks, Bolt.diy, OpenHands, and Aider, using multiple proprietary and open-source LLMs as engines. The best-performing combination, Bolt.diy powered by DeepSeek-R1, achieves only 27.8\% accuracy on the test cases, highlighting the challenging nature of our benchmark. Additionally, we construct WebGen-Instruct, a training set consisting of 6,667 website-generation instructions. Training Qwen2.5-Coder-32B-Instruct on Bolt.diy trajectories generated from a subset of this training set achieves an accuracy of 38.2\%, surpassing the performance of the best proprietary model.
NBF at SemEval-2025 Task 5: Light-Burst Attention Enhanced System for Multilingual Subject Recommendation
We present our system submission for SemEval 2025 Task 5, which focuses on cross-lingual subject classification in the English and German academic domains. Our approach leverages bilingual data during training, employing negative sampling and a margin-based retrieval objective. We demonstrate that a dimension-as-token self-attention mechanism designed with significantly reduced internal dimensions can effectively encode sentence embeddings for subject retrieval. In quantitative evaluation, our system achieved an average recall rate of 32.24% in the general quantitative setting (all subjects), 43.16% and 31.53% of the general qualitative evaluation methods with minimal GPU usage, highlighting their competitive performance. Our results demonstrate that our approach is effective in capturing relevant subject information under resource constraints, although there is still room for improvement.
IndicSQuAD: A Comprehensive Multilingual Question Answering Dataset for Indic Languages
The rapid progress in question-answering (QA) systems has predominantly benefited high-resource languages, leaving Indic languages largely underrepresented despite their vast native speaker base. In this paper, we present IndicSQuAD, a comprehensive multi-lingual extractive QA dataset covering nine major Indic languages, systematically derived from the SQuAD dataset. Building on previous work with MahaSQuAD for Marathi, our approach adapts and extends translation techniques to maintain high linguistic fidelity and accurate answer-span alignment across diverse languages. IndicSQuAD comprises extensive training, validation, and test sets for each language, providing a robust foundation for model development. We evaluate baseline performances using language-specific monolingual BERT models and the multilingual MuRIL-BERT. The results indicate some challenges inherent in low-resource settings. Moreover, our experiments suggest potential directions for future work, including expanding to additional languages, developing domain-specific datasets, and incorporating multimodal data. The dataset and models are publicly shared at https://github.com/l3cube-pune/indic-nlp
Towards conversational assistants for health applications: using ChatGPT to generate conversations about heart failure
We explore the potential of ChatGPT (3.5-turbo and 4) to generate conversations focused on self-care strategies for African-American heart failure patients -- a domain with limited specialized datasets. To simulate patient-health educator dialogues, we employed four prompting strategies: domain, African American Vernacular English (AAVE), Social Determinants of Health (SDOH), and SDOH-informed reasoning. Conversations were generated across key self-care domains of food, exercise, and fluid intake, with varying turn lengths (5, 10, 15) and incorporated patient-specific SDOH attributes such as age, gender, neighborhood, and socioeconomic status. Our findings show that effective prompt design is essential. While incorporating SDOH and reasoning improves dialogue quality, ChatGPT still lacks the empathy and engagement needed for meaningful healthcare communication.
Rational Retrieval Acts: Leveraging Pragmatic Reasoning to Improve Sparse Retrieval SIGIR 2025
Current sparse neural information retrieval (IR) methods, and to a lesser extent more traditional models such as BM25, do not take into account the document collection and the complex interplay between different term weights when representing a single document. In this paper, we show how the Rational Speech Acts (RSA), a linguistics framework used to minimize the number of features to be communicated when identifying an object in a set, can be adapted to the IR case -- and in particular to the high number of potential features (here, tokens). RSA dynamically modulates token-document interactions by considering the influence of other documents in the dataset, better contrasting document representations. Experiments show that incorporating RSA consistently improves multiple sparse retrieval models and achieves state-of-the-art performance on out-of-domain datasets from the BEIR benchmark. https://github.com/arthur-75/Rational-Retrieval-Acts
comment: 6 pages - 2 figures - conference: accepted at SIGIR 2025
Say It Another Way: A Framework for User-Grounded Paraphrasing
Small changes in how a prompt is worded can lead to meaningful differences in the behavior of large language models (LLMs), raising concerns about the stability and reliability of their evaluations. While prior work has explored simple formatting changes, these rarely capture the kinds of natural variation seen in real-world language use. We propose a controlled paraphrasing framework based on a taxonomy of minimal linguistic transformations to systematically generate natural prompt variations. Using the BBQ dataset, we validate our method with both human annotations and automated checks, then use it to study how LLMs respond to paraphrased prompts in stereotype evaluation tasks. Our analysis shows that even subtle prompt modifications can lead to substantial changes in model behavior. These results highlight the need for robust, paraphrase-aware evaluation protocols.
Faster MoE LLM Inference for Extremely Large Models
Sparse Mixture of Experts (MoE) large language models (LLMs) are gradually becoming the mainstream approach for ultra-large-scale models. Existing optimization efforts for MoE models have focused primarily on coarse-grained MoE architectures. With the emergence of DeepSeek Models, fine-grained MoE models are gaining popularity, yet research on them remains limited. Therefore, we want to discuss the efficiency dynamic under different service loads. Additionally, fine-grained models allow deployers to reduce the number of routed experts, both activated counts and total counts, raising the question of how this reduction affects the trade-off between MoE efficiency and performance. Our findings indicate that while deploying MoE models presents greater challenges, it also offers significant optimization opportunities. Reducing the number of activated experts can lead to substantial efficiency improvements in certain scenarios, with only minor performance degradation. Reducing the total number of experts provides limited efficiency gains but results in severe performance degradation. Our method can increase throughput by at least 10\% without any performance degradation. Overall, we conclude that MoE inference optimization remains an area with substantial potential for exploration and improvement.
BadLingual: A Novel Lingual-Backdoor Attack against Large Language Models
In this paper, we present a new form of backdoor attack against Large Language Models (LLMs): lingual-backdoor attacks. The key novelty of lingual-backdoor attacks is that the language itself serves as the trigger to hijack the infected LLMs to generate inflammatory speech. They enable the precise targeting of a specific language-speaking group, exacerbating racial discrimination by malicious entities. We first implement a baseline lingual-backdoor attack, which is carried out by poisoning a set of training data for specific downstream tasks through translation into the trigger language. However, this baseline attack suffers from poor task generalization and is impractical in real-world settings. To address this challenge, we design BadLingual, a novel task-agnostic lingual-backdoor, capable of triggering any downstream tasks within the chat LLMs, regardless of the specific questions of these tasks. We design a new approach using PPL-constrained Greedy Coordinate Gradient-based Search (PGCG) based adversarial training to expand the decision boundary of lingual-backdoor, thereby enhancing the generalization ability of lingual-backdoor across various tasks. We perform extensive experiments to validate the effectiveness of our proposed attacks. Specifically, the baseline attack achieves an ASR of over 90% on the specified tasks. However, its ASR reaches only 37.61% across six tasks in the task-agnostic scenario. In contrast, BadLingual brings up to 37.35% improvement over the baseline. Our study sheds light on a new perspective of vulnerabilities in LLMs with multilingual capabilities and is expected to promote future research on the potential defenses to enhance the LLMs' robustness
Sentence Embeddings as an intermediate target in end-to-end summarisation
Current neural network-based methods to the problem of document summarisation struggle when applied to datasets containing large inputs. In this paper we propose a new approach to the challenge of content-selection when dealing with end-to-end summarisation of user reviews of accommodations. We show that by combining an extractive approach with externally pre-trained sentence level embeddings in an addition to an abstractive summarisation model we can outperform existing methods when this is applied to the task of summarising a large input dataset. We also prove that predicting sentence level embedding of a summary increases the quality of an end-to-end system for loosely aligned source to target corpora, than compared to commonly predicting probability distributions of sentence selection.
comment: 10 pages, 1 figure, Year: 2019
Evaluation of LLMs on Long-tail Entity Linking in Historical Documents
Entity Linking (EL) plays a crucial role in Natural Language Processing (NLP) applications, enabling the disambiguation of entity mentions by linking them to their corresponding entries in a reference knowledge base (KB). Thanks to their deep contextual understanding capabilities, LLMs offer a new perspective to tackle EL, promising better results than traditional methods. Despite the impressive generalization capabilities of LLMs, linking less popular, long-tail entities remains challenging as these entities are often underrepresented in training data and knowledge bases. Furthermore, the long-tail EL task is an understudied problem, and limited studies address it with LLMs. In the present work, we assess the performance of two popular LLMs, GPT and LLama3, in a long-tail entity linking scenario. Using MHERCL v0.1, a manually annotated benchmark of sentences from domain-specific historical texts, we quantitatively compare the performance of LLMs in identifying and linking entities to their corresponding Wikidata entries against that of ReLiK, a state-of-the-art Entity Linking and Relation Extraction framework. Our preliminary experiments reveal that LLMs perform encouragingly well in long-tail EL, indicating that this technology can be a valuable adjunct in filling the gap between head and long-tail EL.
Long-Short Chain-of-Thought Mixture Supervised Fine-Tuning Eliciting Efficient Reasoning in Large Language Models
Recent advances in large language models have demonstrated that Supervised Fine-Tuning (SFT) with Chain-of-Thought (CoT) reasoning data distilled from large reasoning models (e.g., DeepSeek R1) can effectively transfer reasoning capabilities to non-reasoning models. However, models fine-tuned with this approach inherit the "overthinking" problem from teacher models, producing verbose and redundant reasoning chains during inference. To address this challenge, we propose \textbf{L}ong-\textbf{S}hort Chain-of-Thought \textbf{Mixture} \textbf{S}upervised \textbf{F}ine-\textbf{T}uning (\textbf{LS-Mixture SFT}), which combines long CoT reasoning dataset with their short counterparts obtained through structure-preserved rewriting. Our experiments demonstrate that models trained using the LS-Mixture SFT method, compared to those trained with direct SFT, achieved an average accuracy improvement of 2.3\% across various benchmarks while substantially reducing model response length by approximately 47.61\%. This work offers an approach to endow non-reasoning models with reasoning capabilities through supervised fine-tuning while avoiding the inherent overthinking problems inherited from teacher models, thereby enabling efficient reasoning in the fine-tuned models.
comment: 11 pages, 2 figures
Uncertainty-Aware Large Language Models for Explainable Disease Diagnosis
Explainable disease diagnosis, which leverages patient information (e.g., signs and symptoms) and computational models to generate probable diagnoses and reasonings, offers clear clinical values. However, when clinical notes encompass insufficient evidence for a definite diagnosis, such as the absence of definitive symptoms, diagnostic uncertainty usually arises, increasing the risk of misdiagnosis and adverse outcomes. Although explicitly identifying and explaining diagnostic uncertainties is essential for trustworthy diagnostic systems, it remains under-explored. To fill this gap, we introduce ConfiDx, an uncertainty-aware large language model (LLM) created by fine-tuning open-source LLMs with diagnostic criteria. We formalized the task and assembled richly annotated datasets that capture varying degrees of diagnostic ambiguity. Evaluating ConfiDx on real-world datasets demonstrated that it excelled in identifying diagnostic uncertainties, achieving superior diagnostic performance, and generating trustworthy explanations for diagnoses and uncertainties. To our knowledge, this is the first study to jointly address diagnostic uncertainty recognition and explanation, substantially enhancing the reliability of automatic diagnostic systems.
comment: 22 pages, 8 figures
An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation
Finding the optimal Retrieval-Augmented Generation (RAG) configuration for a given use case can be complex and expensive. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To address this gap, we present a comprehensive study involving 5 HPO algorithms over 5 datasets from diverse domains, including a new one collected for this work on real-world product documentation. Our study explores the largest HPO search space considered to date, with two optimized evaluation metrics. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with iterative random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing models first is preferable to the prevalent practice of optimizing sequentially according to the RAG pipeline order.
Elevating Semantic Exploration: A Novel Approach Utilizing Distributed Repositories
Centralized and distributed systems are two main approaches to organizing ICT infrastructure, each with its pros and cons. Centralized systems concentrate resources in one location, making management easier but creating single points of failure. Distributed systems, on the other hand, spread resources across multiple nodes, offering better scalability and fault tolerance, but requiring more complex management. The choice between them depends on factors like application needs, scalability, and data sensitivity. Centralized systems suit applications with limited scalability and centralized control, while distributed systems excel in large-scale environments requiring high availability and performance. This paper explores a distributed document repository system developed for the Italian Ministry of Justice, using edge repositories to analyze textual data and metadata, enhancing semantic exploration capabilities.
comment: This paper has been accepted at the 6th International Conference on Recent Trends and Applications in Computer Science. It will appear in the proceedings
MedArabiQ: Benchmarking Large Language Models on Arabic Medical Tasks
Large Language Models (LLMs) have demonstrated significant promise for various applications in healthcare. However, their efficacy in the Arabic medical domain remains unexplored due to the lack of high-quality domain-specific datasets and benchmarks. This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks, covering multiple specialties and including multiple choice questions, fill-in-the-blank, and patient-doctor question answering. We first constructed the dataset using past medical exams and publicly available datasets. We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation. We conducted an extensive evaluation with five state-of-the-art open-source and proprietary LLMs, including GPT-4o, Claude 3.5-Sonnet, and Gemini 1.5. Our findings highlight the need for the creation of new high-quality benchmarks that span different languages to ensure fair deployment and scalability of LLMs in healthcare. By establishing this benchmark and releasing the dataset, we provide a foundation for future research aimed at evaluating and enhancing the multilingual capabilities of LLMs for the equitable use of generative AI in healthcare.
comment: 21 pages
Enhancing Target-unspecific Tasks through a Features Matrix ICML 2025
Recent developments in prompt learning of large vision-language models have significantly improved performance in target-specific tasks. However, these prompt optimizing methods often struggle to tackle the target-unspecific or generalizable tasks effectively. It may be attributed to the fact that overfitting training causes the model to forget its general knowledge having strong promotion on target-unspecific tasks. To alleviate this issue, we propose a novel Features Matrix (FM) regularization approach designed to enhance these models on target-unspecific tasks. Our method extracts and leverages general knowledge, shaping a Features Matrix (FM). Specifically, the FM captures the semantics of diverse inputs from a deep and fine perspective, preserving essential general knowledge, which mitigates the risk of overfitting. Representative evaluations demonstrate that: 1) the FM is compatible with existing frameworks as a generic and flexible module, and 2) the FM significantly showcases its effectiveness in enhancing target-unspecific tasks, achieving state-of-the-art performance.
comment: ICML 2025
Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation
This research paper investigates the application of Large Language Models (LLMs) in healthcare, specifically focusing on enhancing medical decision support through Retrieval-Augmented Generation (RAG) integrated with hospital-specific data and fine-tuning using Quantized Low-Rank Adaptation (QLoRA). The system utilizes Llama 3.2-3B-Instruct as its foundation model. By embedding and retrieving context-relevant healthcare information, the system significantly improves response accuracy. QLoRA facilitates notable parameter efficiency and memory optimization, preserving the integrity of medical information through specialized quantization techniques. Our research also shows that our model performs relatively well on various medical benchmarks, indicating that it can be used to make basic medical suggestions. This paper details the system's technical components, including its architecture, quantization methods, and key healthcare applications such as enhanced disease prediction from patient symptoms and medical history, treatment suggestions, and efficient summarization of complex medical reports. We touch on the ethical considerations-patient privacy, data security, and the need for rigorous clinical validation-as well as the practical challenges of integrating such systems into real-world healthcare workflows. Furthermore, the lightweight quantized weights ensure scalability and ease of deployment even in low-resource hospital environments. Finally, the paper concludes with an analysis of the broader impact of LLMs on healthcare and outlines future directions for LLMs in medical settings.
comment: 12 pages
Absolute Zero: Reinforced Self-play Reasoning with Zero Data
Reinforcement learning with verifiable rewards (RLVR) has shown promise in enhancing the reasoning capabilities of large language models by learning directly from outcome-based rewards. Recent RLVR works that operate under the zero setting avoid supervision in labeling the reasoning process, but still depend on manually curated collections of questions and answers for training. The scarcity of high-quality, human-produced examples raises concerns about the long-term scalability of relying on human supervision, a challenge already evident in the domain of language model pretraining. Furthermore, in a hypothetical future where AI surpasses human intelligence, tasks provided by humans may offer limited learning potential for a superintelligent system. To address these concerns, we propose a new RLVR paradigm called Absolute Zero, in which a single model learns to propose tasks that maximize its own learning progress and improves reasoning by solving them, without relying on any external data. Under this paradigm, we introduce the Absolute Zero Reasoner (AZR), a system that self-evolves its training curriculum and reasoning ability by using a code executor to both validate proposed code reasoning tasks and verify answers, serving as an unified source of verifiable reward to guide open-ended yet grounded learning. Despite being trained entirely without external data, AZR achieves overall SOTA performance on coding and mathematical reasoning tasks, outperforming existing zero-setting models that rely on tens of thousands of in-domain human-curated examples. Furthermore, we demonstrate that AZR can be effectively applied across different model scales and is compatible with various model classes.
Recall with Reasoning: Chain-of-Thought Distillation for Mamba's Long-Context Memory and Extrapolation
Mamba's theoretical infinite-context potential is limited in practice when sequences far exceed training lengths. This work explores unlocking Mamba's long-context memory ability by a simple-yet-effective method, Recall with Reasoning (RwR), by distilling chain-of-thought (CoT) summarization from a teacher model. Specifically, RwR prepends these summarization as CoT prompts during fine-tuning, teaching Mamba to actively recall and reason over long contexts. Experiments on LONGMEMEVAL and HELMET show RwR boosts Mamba's long-context performance against comparable Transformer/hybrid baselines under similar pretraining conditions, while preserving short-context capabilities, all without architectural changes.
Ψ-Arena: Interactive Assessment and Optimization of LLM-based Psychological Counselors with Tripartite Feedback
Large language models (LLMs) have shown promise in providing scalable mental health support, while evaluating their counseling capability remains crucial to ensure both efficacy and safety. Existing evaluations are limited by the static assessment that focuses on knowledge tests, the single perspective that centers on user experience, and the open-loop framework that lacks actionable feedback. To address these issues, we propose {\Psi}-Arena, an interactive framework for comprehensive assessment and optimization of LLM-based counselors, featuring three key characteristics: (1) Realistic arena interactions that simulate real-world counseling through multi-stage dialogues with psychologically profiled NPC clients, (2) Tripartite evaluation that integrates assessments from the client, counselor, and supervisor perspectives, and (3) Closed-loop optimization that iteratively improves LLM counselors using diagnostic feedback. Experiments across eight state-of-the-art LLMs show significant performance variations in different real-world scenarios and evaluation perspectives. Moreover, reflection-based optimization results in up to a 141% improvement in counseling performance. We hope PsychoArena provides a foundational resource for advancing reliable and human-aligned LLM applications in mental healthcare.
comment: in progress
SepALM: Audio Language Models Are Error Correctors for Robust Speech Separation IJCAI 2025
While contemporary speech separation technologies adeptly process lengthy mixed audio waveforms, they are frequently challenged by the intricacies of real-world environments, including noisy and reverberant settings, which can result in artifacts or distortions in the separated speech. To overcome these limitations, we introduce SepALM, a pioneering approach that employs audio language models (ALMs) to rectify and re-synthesize speech within the text domain following preliminary separation. SepALM comprises four core components: a separator, a corrector, a synthesizer, and an aligner. By integrating an ALM-based end-to-end error correction mechanism, we mitigate the risk of error accumulation and circumvent the optimization hurdles typically encountered in conventional methods that amalgamate automatic speech recognition (ASR) with large language models (LLMs). Additionally, we have developed Chain-of-Thought (CoT) prompting and knowledge distillation techniques to facilitate the reasoning and training processes of the ALM. Our experiments substantiate that SepALM not only elevates the precision of speech separation but also markedly bolsters adaptability in novel acoustic environments.
comment: Appears in IJCAI 2025
Survey of Abstract Meaning Representation: Then, Now, Future
This paper presents a survey of Abstract Meaning Representation (AMR), a semantic representation framework that captures the meaning of sentences through a graph-based structure. AMR represents sentences as rooted, directed acyclic graphs, where nodes correspond to concepts and edges denote relationships, effectively encoding the meaning of complex sentences. This survey investigates AMR and its extensions, focusing on AMR capabilities. It then explores the parsing (text-to-AMR) and generation (AMR-to-text) tasks by showing traditional, current, and possible futures approaches. It also reviews various applications of AMR including text generation, text classification, and information extraction and information seeking. By analyzing recent developments and challenges in the field, this survey provides insights into future directions for research and the potential impact of AMR on enhancing machine understanding of human language.
SLOT: Structuring the Output of Large Language Models
Structured outputs are essential for large language models (LLMs) in critical applications like agents and information extraction. Despite their capabilities, LLMs often generate outputs that deviate from predefined schemas, significantly hampering reliable application development. We present SLOT (Structured LLM Output Transformer), a model-agnostic approach that transforms unstructured LLM outputs into precise structured formats. While existing solutions predominantly rely on constrained decoding techniques or are tightly coupled with specific models, SLOT employs a fine-tuned lightweight language model as a post-processing layer, achieving flexibility across various LLMs and schema specifications. We introduce a systematic pipeline for data curation and synthesis alongside a formal evaluation methodology that quantifies both schema accuracy and content fidelity. Our results demonstrate that fine-tuned Mistral-7B model with constrained decoding achieves near perfect schema accuracy (99.5%) and content similarity (94.0%), outperforming Claude-3.5-Sonnet by substantial margins (+25 and +20 percentage points, respectively). Notably, even compact models like Llama-3.2-1B can match or exceed the structured output capabilities of much larger proprietary models when equipped with SLOT, enabling reliable structured generation in resource-constrained environments.
Quiet Feature Learning in Algorithmic Tasks
We train Transformer-based language models on ten foundational algorithmic tasks and observe pronounced phase transitions in their loss curves that deviate from established power-law scaling trends. Over large ranges of compute, the validation loss barely improves, then abruptly decreases. Probing the models' internal representations reveals the learning of quiet features during the stagnant phase, followed by sudden acquisition of loud features that coincide with the sharp drop in loss. Our ablation experiments show that disrupting a single learned feature can dramatically degrade performance, providing evidence of their causal role in task performance. These findings challenge the prevailing assumption that next-token predictive loss reliably tracks incremental progress; instead, key internal features may be developing below the surface until they coalesce, triggering a rapid performance gain.
X-Reasoner: Towards Generalizable Reasoning Across Modalities and Domains
Recent proprietary models (e.g., o3) have begun to demonstrate strong multimodal reasoning capabilities. Yet, most existing open-source research concentrates on training text-only reasoning models, with evaluations limited to mainly mathematical and general-domain tasks. Therefore, it remains unclear how to effectively extend reasoning capabilities beyond text input and general domains. This paper explores a fundamental research question: Is reasoning generalizable across modalities and domains? Our findings support an affirmative answer: General-domain text-based post-training can enable such strong generalizable reasoning. Leveraging this finding, we introduce X-Reasoner, a vision-language model post-trained solely on general-domain text for generalizable reasoning, using a two-stage approach: an initial supervised fine-tuning phase with distilled long chain-of-thoughts, followed by reinforcement learning with verifiable rewards. Experiments show that X-Reasoner successfully transfers reasoning capabilities to both multimodal and out-of-domain settings, outperforming existing state-of-the-art models trained with in-domain and multimodal data across various general and medical benchmarks (Figure 1). Additionally, we find that X-Reasoner's performance in specialized domains can be further enhanced through continued training on domain-specific text-only data. Building upon this, we introduce X-Reasoner-Med, a medical-specialized variant that achieves new state of the art on numerous text-only and multimodal medical benchmarks.
Divide, Optimize, Merge: Fine-Grained LLM Agent Optimization at Scale
LLM-based optimization has shown remarkable potential in enhancing agentic systems. However, the conventional approach of prompting LLM optimizer with the whole training trajectories on training dataset in a single pass becomes untenable as datasets grow, leading to context window overflow and degraded pattern recognition. To address these challenges, we propose Fine-Grained Optimization (FGO), a scalable framework that divides large optimization tasks into manageable subsets, performs targeted optimizations, and systematically combines optimized components through progressive merging. Evaluation across ALFWorld, LogisticsQA, and GAIA benchmarks demonstrate that FGO outperforms existing approaches by 1.6-8.6% while reducing average prompt token consumption by 56.3%. Our framework provides a practical solution for scaling up LLM-based optimization of increasingly sophisticated agent systems. Further analysis demonstrates that FGO achieves the most consistent performance gain in all training dataset sizes, showcasing its scalability and efficiency.
A Reasoning-Focused Legal Retrieval Benchmark
As the legal community increasingly examines the use of large language models (LLMs) for various legal applications, legal AI developers have turned to retrieval-augmented LLMs ("RAG" systems) to improve system performance and robustness. An obstacle to the development of specialized RAG systems is the lack of realistic legal RAG benchmarks which capture the complexity of both legal retrieval and downstream legal question-answering. To address this, we introduce two novel legal RAG benchmarks: Bar Exam QA and Housing Statute QA. Our tasks correspond to real-world legal research tasks, and were produced through annotation processes which resemble legal research. We describe the construction of these benchmarks and the performance of existing retriever pipelines. Our results suggest that legal RAG remains a challenging application, thus motivating future research.
comment: CS&Law 2025. For data, see https://reglab.github.io/legal-rag-benchmarks/
The Power of Stories: Narrative Priming Shapes How LLM Agents Collaborate and Compete
According to Yuval Noah Harari, large-scale human cooperation is driven by shared narratives that encode common beliefs and values. This study explores whether such narratives can similarly nudge LLM agents toward collaboration. We use a finitely repeated public goods game in which LLM agents choose either cooperative or egoistic spending strategies. We prime agents with stories highlighting teamwork to different degrees and test how this influences negotiation outcomes. Our experiments explore four questions:(1) How do narratives influence negotiation behavior? (2) What differs when agents share the same story versus different ones? (3) What happens when the agent numbers grow? (4) Are agents resilient against self-serving negotiators? We find that story-based priming significantly affects negotiation strategies and success rates. Common stories improve collaboration, benefiting each agent. By contrast, priming agents with different stories reverses this effect, and those agents primed toward self-interest prevail. We hypothesize that these results carry implications for multi-agent system design and AI alignment.
comment: 16 pages, 8 figures. Code available at https://github.com/storyagents25/story-agents
Hesitation is defeat? Connecting Linguistic and Predictive Uncertainty
Automating chest radiograph interpretation using Deep Learning (DL) models has the potential to significantly improve clinical workflows, decision-making, and large-scale health screening. However, in medical settings, merely optimising predictive performance is insufficient, as the quantification of uncertainty is equally crucial. This paper investigates the relationship between predictive uncertainty, derived from Bayesian Deep Learning approximations, and human/linguistic uncertainty, as estimated from free-text radiology reports labelled by rule-based labellers. Utilising BERT as the model of choice, this study evaluates different binarisation methods for uncertainty labels and explores the efficacy of Monte Carlo Dropout and Deep Ensembles in estimating predictive uncertainty. The results demonstrate good model performance, but also a modest correlation between predictive and linguistic uncertainty, highlighting the challenges in aligning machine uncertainty with human interpretation nuances. Our findings suggest that while Bayesian approximations provide valuable uncertainty estimates, further refinement is necessary to fully capture and utilise the subtleties of human uncertainty in clinical applications.
Integration of Large Language Models and Traditional Deep Learning for Social Determinants of Health Prediction
Social Determinants of Health (SDoH) are economic, social and personal circumstances that affect or influence an individual's health status. SDoHs have shown to be correlated to wellness outcomes, and therefore, are useful to physicians in diagnosing diseases and in decision-making. In this work, we automatically extract SDoHs from clinical text using traditional deep learning and Large Language Models (LLMs) to find the advantages and disadvantages of each on an existing publicly available dataset. Our models outperform a previous reference point on a multilabel SDoH classification by 10 points, and we present a method and model to drastically speed up classification (12X execution time) by eliminating expensive LLM processing. The method we present combines a more nimble and efficient solution that leverages the power of the LLM for precision and traditional deep learning methods for efficiency. We also show highly performant results on a dataset supplemented with synthetic data and several traditional deep learning models that outperform LLMs. Our models and methods offer the next iteration of automatic prediction of SDoHs that impact at-risk patients.
A Comparative Analysis of Ethical and Safety Gaps in LLMs using Relative Danger Coefficient
Artificial Intelligence (AI) and Large Language Models (LLMs) have rapidly evolved in recent years, showcasing remarkable capabilities in natural language understanding and generation. However, these advancements also raise critical ethical questions regarding safety, potential misuse, discrimination and overall societal impact. This article provides a comparative analysis of the ethical performance of various AI models, including the brand new DeepSeek-V3(R1 with reasoning and without), various GPT variants (4o, 3.5 Turbo, 4 Turbo, o1/o3 mini) and Gemini (1.5 flash, 2.0 flash and 2.0 flash exp) and highlights the need for robust human oversight, especially in situations with high stakes. Furthermore, we present a new metric for calculating harm in LLMs called Relative Danger Coefficient (RDC).
Advancing Conversational Diagnostic AI with Multimodal Reasoning
Large Language Models (LLMs) have demonstrated great potential for conducting diagnostic conversations but evaluation has been largely limited to language-only interactions, deviating from the real-world requirements of remote care delivery. Instant messaging platforms permit clinicians and patients to upload and discuss multimodal medical artifacts seamlessly in medical consultation, but the ability of LLMs to reason over such data while preserving other attributes of competent diagnostic conversation remains unknown. Here we advance the conversational diagnosis and management performance of the Articulate Medical Intelligence Explorer (AMIE) through a new capability to gather and interpret multimodal data, and reason about this precisely during consultations. Leveraging Gemini 2.0 Flash, our system implements a state-aware dialogue framework, where conversation flow is dynamically controlled by intermediate model outputs reflecting patient states and evolving diagnoses. Follow-up questions are strategically directed by uncertainty in such patient states, leading to a more structured multimodal history-taking process that emulates experienced clinicians. We compared AMIE to primary care physicians (PCPs) in a randomized, blinded, OSCE-style study of chat-based consultations with patient actors. We constructed 105 evaluation scenarios using artifacts like smartphone skin photos, ECGs, and PDFs of clinical documents across diverse conditions and demographics. Our rubric assessed multimodal capabilities and other clinically meaningful axes like history-taking, diagnostic accuracy, management reasoning, communication, and empathy. Specialist evaluation showed AMIE to be superior to PCPs on 7/9 multimodal and 29/32 non-multimodal axes (including diagnostic accuracy). The results show clear progress in multimodal conversational diagnostic AI, but real-world translation needs further research.
EMORL: Ensemble Multi-Objective Reinforcement Learning for Efficient and Flexible LLM Fine-Tuning SIGDIAL 2025
Recent advances in reinforcement learning (RL) for large language model (LLM) fine-tuning show promise in addressing multi-objective tasks but still face significant challenges, including complex objective balancing, low training efficiency, poor scalability, and limited explainability. Leveraging ensemble learning principles, we introduce an Ensemble Multi-Objective RL (EMORL) framework that fine-tunes multiple models with individual objectives while optimizing their aggregation after the training to improve efficiency and flexibility. Our method is the first to aggregate the last hidden states of individual models, incorporating contextual information from multiple objectives. This approach is supported by a hierarchical grid search algorithm that identifies optimal weighted combinations. We evaluate EMORL on counselor reflection generation tasks, using text-scoring LLMs to evaluate the generations and provide rewards during RL fine-tuning. Through comprehensive experiments on the PAIR and Psych8k datasets, we demonstrate the advantages of EMORL against existing baselines: significantly lower and more stable training consumption ($17,529\pm 1,650$ data points and $6,573\pm 147.43$ seconds), improved scalability and explainability, and comparable performance across multiple objectives.
comment: 13 pages, 9 figures, submitted to SIGDIAL 2025 conference
Think on your Feet: Adaptive Thinking via Reinforcement Learning for Social Agents
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current approaches. While existing methods either lack this kind of reasoning capability or enforce uniform long chain-of-thought reasoning across all scenarios, resulting in excessive token usage and inappropriate social simulation. In this paper, we propose $\textbf{A}$daptive $\textbf{M}$ode $\textbf{L}$earning ($\textbf{AML}$) that strategically selects from four thinking modes (intuitive reaction $\rightarrow$ deep contemplation) based on real-time context. Our framework's core innovation, the $\textbf{A}$daptive $\textbf{M}$ode $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{AMPO}$) algorithm, introduces three key advancements over existing methods: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence tasks confirm that AML achieves 15.6% higher task performance than state-of-the-art methods. Notably, our method outperforms GRPO by 7.0% with 32.8% shorter reasoning chains. These results demonstrate that context-sensitive thinking mode selection, as implemented in AMPO, enables more human-like adaptive reasoning than GRPO's fixed-depth approach.
comment: Work in Progress. The code and data are available, see https://github.com/MozerWang/AMPO
Tailored Design of Audio-Visual Speech Recognition Models using Branchformers
Recent advances in Audio-Visual Speech Recognition (AVSR) have led to unprecedented achievements in the field, improving the robustness of this type of system in adverse, noisy environments. In most cases, this task has been addressed through the design of models composed of two independent encoders, each dedicated to a specific modality. However, while recent works have explored unified audio-visual encoders, determining the optimal cross-modal architecture remains an ongoing challenge. Furthermore, such approaches often rely on models comprising vast amounts of parameters and high computational cost training processes. In this paper, we aim to bridge this research gap by introducing a novel audio-visual framework. Our proposed method constitutes, to the best of our knowledge, the first attempt to harness the flexibility and interpretability offered by encoder architectures, such as the Branchformer, in the design of parameter-efficient AVSR systems. To be more precise, the proposed framework consists of two steps: first, estimating audio- and video-only systems, and then designing a tailored audio-visual unified encoder based on the layer-level branch scores provided by the modality-specific models. Extensive experiments on English and Spanish AVSR benchmarks covering multiple data conditions and scenarios demonstrated the effectiveness of our proposed method. Even when trained on a moderate scale of data, our models achieve competitive word error rates (WER) of approximately 2.5\% for English and surpass existing approaches for Spanish, establishing a new benchmark with an average WER of around 9.1\%. These results reflect how our tailored AVSR system is able to reach state-of-the-art recognition rates while significantly reducing the model complexity w.r.t. the prevalent approach in the field. Code and pre-trained models are available at https://github.com/david-gimeno/tailored-avsr.
comment: Accepted in Computer Speech & Language journal of Elsevier
Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources and incorporating them into the context. While it improves reliability by providing factual texts, it significantly increases inference costs as context length grows and introduces challenging issue of RAG hallucination, primarily caused by the lack of corresponding parametric knowledge in LLMs. An efficient solution is to enhance the knowledge of LLMs at test-time. Parametric RAG (PRAG) addresses this by embedding document into LLMs parameters to perform test-time knowledge enhancement, effectively reducing inference costs through offline training. However, its high training and storage costs, along with limited generalization ability, significantly restrict its practical adoption. To address these challenges, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages a lightweight parameter translator model to efficiently convert documents into parametric knowledge. DyPRAG not only reduces inference, training, and storage costs but also dynamically generates parametric knowledge, seamlessly enhancing the knowledge of LLMs and resolving knowledge conflicts in a plug-and-play manner at test-time. Extensive experiments on multiple datasets demonstrate the effectiveness and generalization capabilities of DyPRAG, offering a powerful and practical RAG paradigm which enables superior knowledge fusion and mitigates RAG hallucination in real-world applications. Our code is available at https://github.com/Trae1ounG/DyPRAG.
comment: preprint. Code is available at https://github.com/Trae1ounG/DyPRAG
Humans can learn to detect AI-generated texts, or at least learn when they can't
This study investigates whether individuals can learn to accurately discriminate between human-written and AI-produced texts when provided with immediate feedback, and if they can use this feedback to recalibrate their self-perceived competence. We also explore the specific criteria individuals rely upon when making these decisions, focusing on textual style and perceived readability. We used GPT-4o to generate several hundred texts across various genres and text types comparable to Koditex, a multi-register corpus of human-written texts. We then presented randomized text pairs to 255 Czech native speakers who identified which text was human-written and which was AI-generated. Participants were randomly assigned to two conditions: one receiving immediate feedback after each trial, the other receiving no feedback until experiment completion. We recorded accuracy in identification, confidence levels, response times, and judgments about text readability along with demographic data and participants' engagement with AI technologies prior to the experiment. Participants receiving immediate feedback showed significant improvement in accuracy and confidence calibration. Participants initially held incorrect assumptions about AI-generated text features, including expectations about stylistic rigidity and readability. Notably, without feedback, participants made the most errors precisely when feeling most confident -- an issue largely resolved among the feedback group. The ability to differentiate between human and AI-generated texts can be effectively learned through targeted training with explicit feedback, which helps correct misconceptions about AI stylistic features and readability, as well as potential other variables that were not explored, while facilitating more accurate self-assessment. This finding might be particularly important in educational contexts.
UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction ICML 2025
Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.
comment: This paper has been accepted to the 41st International Conference on Machine Learning (ICML 2025)
Clean & Clear: Feasibility of Safe LLM Clinical Guidance
Background: Clinical guidelines are central to safe evidence-based medicine in modern healthcare, providing diagnostic criteria, treatment options and monitoring advice for a wide range of illnesses. LLM-empowered chatbots have shown great promise in Healthcare Q&A tasks, offering the potential to provide quick and accurate responses to medical inquiries. Our main objective was the development and preliminary assessment of an LLM-empowered chatbot software capable of reliably answering clinical guideline questions using University College London Hospital (UCLH) clinical guidelines. Methods: We used the open-weight Llama-3.1-8B LLM to extract relevant information from the UCLH guidelines to answer questions. Our approach highlights the safety and reliability of referencing information over its interpretation and response generation. Seven doctors from the ward assessed the chatbot's performance by comparing its answers to the gold standard. Results: Our chatbot demonstrates promising performance in terms of relevance, with ~73% of its responses rated as very relevant, showcasing a strong understanding of the clinical context. Importantly, our chatbot achieves a recall of 1.00 for extracted guideline lines, substantially minimising the risk of missing critical information. Approximately 78% of responses were rated satisfactory in terms of completeness. A small portion (~14.5%) contained minor unnecessary information, indicating occasional lapses in precision. The chatbot' showed high efficiency, with an average completion time of 10 seconds, compared to 30 seconds for human respondents. Evaluation of clinical reasoning showed that 72% of the chatbot's responses were without flaws. Our chatbot demonstrates significant potential to speed up and improve the process of accessing locally relevant clinical information for healthcare professionals.
CALLM: Understanding Cancer Survivors' Emotions and Intervention Opportunities via Mobile Diaries and Context-Aware Language Models
Cancer survivors face unique emotional challenges that impact their quality of life. Mobile diary entries provide a promising method for tracking emotional states, improving self-awareness, and promoting well-being outcome. This paper aims to, through mobile diaries, understand cancer survivors' emotional states and key variables related to just-in-time intervention opportunities, including the desire to regulate emotions and the availability to engage in interventions. Although emotion analysis tools show potential for recognizing emotions from text, current methods lack the contextual understanding necessary to interpret brief mobile diary narratives. Our analysis of diary entries from cancer survivors (N=407) reveals systematic relationships between described contexts and emotional states, with administrative and health-related contexts associated with negative affect and regulation needs, while leisure activities promote positive emotions. We propose CALLM, a Context-Aware framework leveraging Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) to analyze these brief entries by integrating retrieved peer experiences and personal diary history. CALLM demonstrates strong performance with balanced accuracies reaching 72.96% for positive affect, 73.29% for negative affect, 73.72% for emotion regulation desire, and 60.09% for intervention availability, outperforming language model baselines. Post-hoc analysis reveals that model confidence strongly predicts accuracy, with longer diary entries generally enhancing performance, and brief personalization periods yielding meaningful improvements. Our findings demonstrate how contextual information in mobile diaries can be effectively leveraged to understand emotional experiences, predict key states, and identify optimal intervention moments for personalized just-in-time support.
BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimization and Diffusion Modelling ICML 2025
Time-series Generation (TSG) is a prominent research area with broad applications in simulations, data augmentation, and counterfactual analysis. While existing methods have shown promise in unconditional single-domain TSG, real-world applications demand for cross-domain approaches capable of controlled generation tailored to domain-specific constraints and instance-level requirements. In this paper, we argue that text can provide semantic insights, domain information and instance-specific temporal patterns, to guide and improve TSG. We introduce ``Text-Controlled TSG'', a task focused on generating realistic time series by incorporating textual descriptions. To address data scarcity in this setting, we propose a novel LLM-based Multi-Agent framework that synthesizes diverse, realistic text-to-TS datasets. Furthermore, we introduce BRIDGE, a hybrid text-controlled TSG framework that integrates semantic prototypes with text description for supporting domain-level guidance. This approach achieves state-of-the-art generation fidelity on 11 of 12 datasets, and improves controllability by 12.52% on MSE and 6.34% MAE compared to no text input generation, highlighting its potential for generating tailored time-series data.
comment: ICML 2025
FGAIF: Aligning Large Vision-Language Models with Fine-grained AI Feedback
Large Vision-Language Models (LVLMs) have demonstrated proficiency in tackling a variety of visual-language tasks. However, current LVLMs suffer from misalignment between text and image modalities which causes three kinds of hallucination problems, i.e., object existence, object attribute, and object relationship. To tackle this issue, existing methods mainly utilize Reinforcement Learning (RL) to align modalities in LVLMs. However, they still suffer from three main limitations: (1) General feedback can not indicate the hallucination type contained in the response; (2) Sparse rewards only give the sequence-level reward for the whole response; and (3)Annotation cost is time-consuming and labor-intensive. To handle these limitations, we propose an innovative method to align modalities in LVLMs through Fine-Grained Artificial Intelligence Feedback (FGAIF), which mainly consists of three steps: AI-based Feedback Collection, Fine-grained Reward Model Training, and Reinforcement Learning with Fine-grained Reward. Specifically, We first utilize AI tools to predict the types of hallucination for each segment in the response and obtain a collection of fine-grained feedback. Then, based on the collected reward data, three specialized reward models are trained to produce dense rewards. Finally, a novel fine-grained feedback module is integrated into the Proximal Policy Optimization (PPO) algorithm. Extensive experiments are conducted on hallucination and general benchmarks, demonstrating the superior performance of our proposed method. Notably, compared with previous models trained with the RL-based aligning method, our proposed method is effective even with fewer parameters.
BIG-Bench Extra Hard
Large language models (LLMs) are increasingly deployed in everyday applications, demanding robust general reasoning capabilities and diverse reasoning skillset. However, current LLM reasoning benchmarks predominantly focus on mathematical and coding abilities, leaving a gap in evaluating broader reasoning proficiencies. One particular exception is the BIG-Bench dataset, which has served as a crucial benchmark for evaluating the general reasoning capabilities of LLMs, thanks to its diverse set of challenging tasks that allowed for a comprehensive assessment of general reasoning across various skills within a unified framework. However, recent advances in LLMs have led to saturation on BIG-Bench, and its harder version BIG-Bench Hard (BBH). State-of-the-art models achieve near-perfect scores on many tasks in BBH, thus diminishing its utility. To address this limitation, we introduce BIG-Bench Extra Hard (BBEH), a new benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. We evaluate various models on BBEH and observe a (harmonic) average accuracy of 9.8\% for the best general-purpose model and 44.8\% for the best reasoning-specialized model, indicating substantial room for improvement and highlighting the ongoing challenge of achieving robust general reasoning in LLMs. We release BBEH publicly at: https://github.com/google-deepmind/bbeh.
SAPIENT: Mastering Multi-turn Conversational Recommendation with Strategic Planning and Monte Carlo Tree Search NAACL 2025
Conversational Recommender Systems (CRS) proactively engage users in interactive dialogues to elicit user preferences and provide personalized recommendations. Existing methods train Reinforcement Learning (RL)-based agent with greedy action selection or sampling strategy, and may suffer from suboptimal conversational planning. To address this, we present a novel Monte Carlo Tree Search (MCTS)-based CRS framework SAPIENT. SAPIENT consists of a conversational agent (S-agent) and a conversational planner (S-planner). S-planner builds a conversational search tree with MCTS based on the initial actions proposed by S-agent to find conversation plans. The best conversation plans from S-planner are used to guide the training of S-agent, creating a self-training loop where S-agent can iteratively improve its capability for conversational planning. Furthermore, we propose an efficient variant SAPIENT-e for trade-off between training efficiency and performance. Extensive experiments on four benchmark datasets validate the effectiveness of our approach, showing that SAPIENT outperforms the state-of-the-art baselines.
comment: Accepted to NAACL 2025 Main Conference
CASE -- Condition-Aware Sentence Embeddings for Conditional Semantic Textual Similarity Measurement
The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM), where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised nonlinear projection is learned to reduce the dimensionality of the LLM-based text embeddings. We show that CASE significantly outperforms previously proposed Conditional Semantic Textual Similarity (C-STS) methods on an existing standard benchmark dataset. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings. Moreover, we propose a supervised dimensionality reduction method that not only reduces the dimensionality of LLM-based embeddings but also significantly improves their performance.
HAIR: Hardness-Aware Inverse Reinforcement Learning with Introspective Reasoning for LLM Alignment
The alignment of large language models (LLMs) with human values remains critical yet hindered by four key challenges: (1) scarcity of balanced safety datasets, (2) alignment tax, (3) vulnerability to jailbreak attacks due to shallow alignment, and (4) inability to dynamically adapt rewards according to task difficulty. To address these limitations, we introduce HAIR (Hardness-Aware Inverse Reinforcement Learning with Introspective Reasoning), a novel alignment approach inspired by shadow models in membership inference attacks. Our approach consists of two main components: (1) construction of a balanced safety Chain-of-Draft (CoD) dataset for seven harmful categories using structured prompts that leverage the introspective reasoning capabilities of LLMs; and (2) training of category-specific reward models with Group Relative Policy Optimization (GRPO), dynamically tuning optimization to task difficulty at both the data and model levels. Comprehensive experiments across four harmlessness and four usefulness benchmarks demonstrate that HAIR achieves state-of-the-art performance, outperforming all baseline methods in safety while maintaining high levels of usefulness.
comment: The three authors contributed equally to this work
MoM: Linear Sequence Modeling with Mixture-of-Memories
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive downstream tasks. Drawing inspiration from neuroscience, particularly the brain's ability to maintain robust long-term memory while mitigating "memory interference", we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM significantly outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.
comment: Technical report, 16 pages
Pushing the boundary on Natural Language Inference
Natural Language Inference (NLI) is a central task in natural language understanding with applications in fact-checking, question answering, and information retrieval. Despite its importance, current NLI systems heavily rely on supervised learning with datasets that often contain annotation artifacts and biases, limiting generalization and real-world applicability. In this work, we apply a reinforcement learning-based approach using Group Relative Policy Optimization (GRPO) for Chain-of-Thought (CoT) learning in NLI, eliminating the need for labeled rationales and enabling this type of training on more challenging datasets such as ANLI. We fine-tune 7B, 14B, and 32B language models using parameter-efficient techniques (LoRA and QLoRA), demonstrating strong performance across standard and adversarial NLI benchmarks. Our 32B AWQ-quantized model surpasses state-of-the-art results on 7 out of 11 adversarial sets$\unicode{x2013}$or on all of them considering our replication$\unicode{x2013}$within a 22GB memory footprint, showing that robust reasoning can be retained under aggressive quantization. This work provides a scalable and practical framework for building robust NLI systems without sacrificing inference quality.
LSAQ: Layer-Specific Adaptive Quantization for Large Language Model Deployment IJCNN 2025
As Large Language Models (LLMs) demonstrate exceptional performance across various domains, deploying LLMs on edge devices has emerged as a new trend. Quantization techniques, which reduce the size and memory requirements of LLMs, are effective for deploying LLMs on resource-limited edge devices. However, existing one-size-fits-all quantization methods often fail to dynamically adjust the memory requirements of LLMs, limiting their applications to practical edge devices with various computation resources. To tackle this issue, we propose Layer-Specific Adaptive Quantization (LSAQ), a system for adaptive quantization and dynamic deployment of LLMs based on layer importance. Specifically, LSAQ evaluates the importance of LLMs' neural layers by constructing top-k token sets from the inputs and outputs of each layer and calculating their Jaccard similarity. Based on layer importance, our system adaptively adjusts quantization strategies in real time according to the computation resource of edge devices, which applies higher quantization precision to layers with higher importance, and vice versa. {Experimental results show that LSAQ consistently outperforms the selected quantization baselines in terms of perplexity and zero-shot tasks. Additionally, it can devise appropriate quantization schemes for different usage scenarios to facilitate the deployment of LLMs.
comment: 8 pages, 4 figures, accepted to IJCNN 2025
Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models
Recent studies show that Large Language Models (LLMs) achieve strong reasoning capabilities through supervised fine-tuning or reinforcement learning. However, a key approach, the Process Reward Model (PRM), suffers from reward hacking, making it unreliable in identifying the best intermediate step. In addition, the cost of annotating reasoning processes for reward modeling is high, making large-scale collection of high-quality data challenging. To address this, we propose a novel reward model approach called the Hierarchical Reward Model (HRM), which evaluates both individual and consecutive reasoning steps at both fine-grained and coarse-grained levels. HRM excels at assessing multi-step reasoning coherence, especially when flawed steps are later corrected through self-reflection. To further reduce the cost of generating training data, we introduce a lightweight and effective data augmentation strategy called Hierarchical Node Compression (HNC), which merges two consecutive reasoning steps into one within the tree structure. By applying HNC to MCTS-generated reasoning trajectories, we enhance the diversity and robustness of HRM training data while introducing controlled noise with minimal computational overhead. Empirical results on the PRM800K dataset show that HRM, together with HNC, provides more stable and reliable evaluations than PRM. Furthermore, cross-domain evaluations on the MATH500 and GSM8K datasets demonstrate HRM's strong generalization and robustness across a variety of reasoning tasks.
Music for All: Representational Bias and Cross-Cultural Adaptability of Music Generation Models NAACL'25
The advent of Music-Language Models has greatly enhanced the automatic music generation capability of AI systems, but they are also limited in their coverage of the musical genres and cultures of the world. We present a study of the datasets and research papers for music generation and quantify the bias and under-representation of genres. We find that only 5.7% of the total hours of existing music datasets come from non-Western genres, which naturally leads to disparate performance of the models across genres. We then investigate the efficacy of Parameter-Efficient Fine-Tuning (PEFT) techniques in mitigating this bias. Our experiments with two popular models -- MusicGen and Mustango, for two underrepresented non-Western music traditions -- Hindustani Classical and Turkish Makam music, highlight the promises as well as the non-triviality of cross-genre adaptation of music through small datasets, implying the need for more equitable baseline music-language models that are designed for cross-cultural transfer learning.
comment: 17 pages, 5 figures, accepted to NAACL'25
SEAL: Steerable Reasoning Calibration of Large Language Models for Free
Large Language Models (LLMs), such as OpenAI's o1-series have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism. However, recent studies reveal substantial redundancy in the CoT reasoning traces, which not only increases inference latency but also negatively impacts model performance by diverting attention to unnecessary reasoning paths. To address this issue, we investigate the internal reasoning structures of LLMs and categorize them into three primary thought types: execution, reflection, and transition thoughts. Moreover, our analysis reveals that excessive reflection and transition thoughts are strongly correlated with failure cases and these thought categories exhibit clear separation in the latent space. Based on these, we introduce SEAL (Steerable reasoning calibration), a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains. SEAL consists of an offline stage for extracting the reasoning steering vector in the latent space, followed by an on-the-fly calibration of the reasoning trace through representation intervention using the steering vector. Notably, the steering vector exhibits strong transferability across various tasks. Extensive experiments across multiple models (DeepSeek-R1-Distill and QwQ-32B-Preview) and benchmarks (Math500, GSM8K, LiveCodeBench) validate the effectiveness of SEAL, up to a 11% improvement in accuracy while reducing reasoning tokens by 11.8% to 50.4%. Our code is publicly available at https://github.com/VITA-Group/SEAL.
Fourier Position Embedding: Enhancing Attention's Periodic Extension for Length Generalization ICML 2025
Extending the context length of Language Models (LMs) by improving Rotary Position Embedding (RoPE) has become a trend. While existing works mainly address RoPE's limitations within attention mechanism, this paper provides an analysis across nearly all parts of LMs, uncovering their adverse effects on length generalization for RoPE-based attention. Using Discrete Signal Processing theory, we show that RoPE enables periodic attention by implicitly achieving Non-Uniform Discrete Fourier Transform. However, this periodicity is undermined by the spectral damage caused by: 1) linear layers and activation functions outside of attention; 2) insufficiently trained frequency components brought by time-domain truncation. Building on our observations, we propose Fourier Position Embedding (FoPE), which enhances attention's frequency-domain properties to improve both its periodic extension and length generalization. FoPE constructs Fourier Series and zero-outs the destructive frequency components, increasing model robustness against the spectrum damage. Experiments across various model scales and benchmarks show that, within varying context windows, FoPE maintains a more stable performance compared to RoPE and ALiBi. Several analyses and ablations bring further support to our method and theoretical modeling.
comment: Accepted to ICML 2025
LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications
We introduce LiteWebAgent, an open-source suite for VLM-based web agent applications. Our framework addresses a critical gap in the web agent ecosystem with a production-ready solution that combines minimal serverless backend configuration, intuitive user and browser interfaces, and extensible research capabilities in agent planning, memory, and tree search. For the core LiteWebAgent agent framework, we implemented a simple yet effective baseline using recursive function calling, providing with decoupled action generation and action grounding. In addition, we integrate advanced research components such as agent planning, agent workflow memory, and tree search in a modular and extensible manner. We then integrate the LiteWebAgent agent framework with frontend and backend as deployed systems in two formats: (1) a production Vercel-based web application, which provides users with an agent-controlled remote browser, (2) a Chrome extension leveraging LiteWebAgent's API to control an existing Chrome browser via CDP (Chrome DevTools Protocol). The LiteWebAgent framework is available at https://github.com/PathOnAI/LiteWebAgent, with deployed frontend at https://lite-web-agent.vercel.app/.
Applications of Artificial Intelligence for Cross-language Intelligibility Assessment of Dysarthric Speech
Purpose: Speech intelligibility is a critical outcome in the assessment and management of dysarthria, yet most research and clinical practices have focused on English, limiting their applicability across languages. This commentary introduces a conceptual framework--and a demonstration of how it can be implemented--leveraging artificial intelligence (AI) to advance cross-language intelligibility assessment of dysarthric speech. Method: We propose a two-tiered conceptual framework consisting of a universal speech model that encodes dysarthric speech into acoustic-phonetic representations, followed by a language-specific intelligibility assessment model that interprets these representations within the phonological or prosodic structures of the target language. We further identify barriers to cross-language intelligibility assessment of dysarthric speech, including data scarcity, annotation complexity, and limited linguistic insights into dysarthric speech, and outline potential AI-driven solutions to overcome these challenges. Conclusion: Advancing cross-language intelligibility assessment of dysarthric speech necessitates models that are both efficient and scalable, yet constrained by linguistic rules to ensure accurate and language-sensitive assessment. Recent advances in AI provide the foundational tools to support this integration, shaping future directions toward generalizable and linguistically informed assessment frameworks.
comment: 15 pages, 2 figure, 2 tables
Personalization of Large Language Models: A Survey
Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications. Despite the importance and recent progress, most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems. In this work, we bridge the gap between these two separate main directions for the first time by introducing a taxonomy for personalized LLM usage and summarizing the key differences and challenges. We provide a formalization of the foundations of personalized LLMs that consolidates and expands notions of personalization of LLMs, defining and discussing novel facets of personalization, usage, and desiderata of personalized LLMs. We then unify the literature across these diverse fields and usage scenarios by proposing systematic taxonomies for the granularity of personalization, personalization techniques, datasets, evaluation methods, and applications of personalized LLMs. Finally, we highlight challenges and important open problems that remain to be addressed. By unifying and surveying recent research using the proposed taxonomies, we aim to provide a clear guide to the existing literature and different facets of personalization in LLMs, empowering both researchers and practitioners.
The Devil is in the Prompts: Retrieval-Augmented Prompt Optimization for Text-to-Video Generation CVPR2025
The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce RAPO, a novel Retrieval-Augmented Prompt Optimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts.
comment: accepted by CVPR2025, Project website: https://whynothaha.github.io/Prompt_optimizer/RAPO.html
Incoherent Probability Judgments in Large Language Models
Autoregressive Large Language Models (LLMs) trained for next-word prediction have demonstrated remarkable proficiency at producing coherent text. But are they equally adept at forming coherent probability judgments? We use probabilistic identities and repeated judgments to assess the coherence of probability judgments made by LLMs. Our results show that the judgments produced by these models are often incoherent, displaying human-like systematic deviations from the rules of probability theory. Moreover, when prompted to judge the same event, the mean-variance relationship of probability judgments produced by LLMs shows an inverted-U-shaped like that seen in humans. We propose that these deviations from rationality can be explained by linking autoregressive LLMs to implicit Bayesian inference and drawing parallels with the Bayesian Sampler model of human probability judgments.
Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice
The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.
Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate NAACL 2025
Machine unlearning has been used to remove unwanted knowledge acquired by large language models (LLMs). In this paper, we examine machine unlearning from an optimization perspective, framing it as a regularized multi-task optimization problem, where one task optimizes a forgetting objective and another optimizes the model performance. In particular, we introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives, while integrating a new, automatic learning rate scheduler. We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets while exhibiting stable training.
comment: Accepted to NAACL 2025 main conference
AudioBench: A Universal Benchmark for Audio Large Language Models
We introduce AudioBench, a universal benchmark designed to evaluate Audio Large Language Models (AudioLLMs). It encompasses 8 distinct tasks and 26 datasets, among which, 7 are newly proposed datasets. The evaluation targets three main aspects: speech understanding, audio scene understanding, and voice understanding (paralinguistic). Despite recent advancements, there lacks a comprehensive benchmark for AudioLLMs on instruction following capabilities conditioned on audio signals. AudioBench addresses this gap by setting up datasets as well as desired evaluation metrics. Besides, we also evaluated the capabilities of five popular models and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-sourced evaluation toolkit, data, and leaderboard will offer a robust testbed for future model developments.
comment: v5 - Update acknowledgment; Code: https://github.com/AudioLLMs/AudioBench
Towards Universal and Black-Box Query-Response Only Attack on LLMs with QROA
The rapid adoption of Large Language Models (LLMs) has exposed critical security and ethical vulnerabilities, particularly their susceptibility to adversarial manipulations. This paper introduces QROA, a novel black-box jailbreak method designed to identify adversarial suffixes that can bypass LLM alignment safeguards when appended to a malicious instruction. Unlike existing suffix-based jailbreak approaches, QROA does not require access to the model's logit or any other internal information. It also eliminates reliance on human-crafted templates, operating solely through the standard query-response interface of LLMs. By framing the attack as an optimization bandit problem, QROA employs a surrogate model and token level optimization to efficiently explore suffix variations. Furthermore, we propose QROA-UNV, an extension that identifies universal adversarial suffixes for individual models, enabling one-query jailbreaks across a wide range of instructions. Testing on multiple models demonstrates Attack Success Rate (ASR) greater than 80\%. These findings highlight critical vulnerabilities, emphasize the need for advanced defenses, and contribute to the development of more robust safety evaluations for secure AI deployment. The code is made public on the following link: https://github.com/qroa/QROA
On the generalization of language models from in-context learning and finetuning: a controlled study
Large language models exhibit exciting capabilities, yet can show surprisingly narrow generalization from finetuning. E.g. they can fail to generalize to simple reversals of relations they are trained on, or fail to make simple logical deductions based on trained information. These failures to generalize from fine-tuning can hinder practical application of these models. On the other hand, language models' in-context learning shows different inductive biases, and can generalize better in some cases. Here, we explore these differences in generalization between in-context- and fine-tuning-based learning. To do so, we constructed several novel datasets to evaluate and improve models' abilities to generalize from finetuning data. The datasets are designed to create clean tests of generalization, by isolating the knowledge in the dataset from that in pretraining. We expose pretrained large models to controlled subsets of the information in these datasets -- either in context, or through fine-tuning -- and evaluate their performance on test sets that require various types of generalization. We find overall that in data-matched settings, in-context learning can generalize more flexibly than fine-tuning (though we also find some qualifications of prior findings, such as cases when fine-tuning can generalize to reversals embedded in a larger structure of knowledge). We build on these findings to propose a method to enable improved generalization from fine-tuning: adding in-context inferences to finetuning data. We show that this method improves generalization across various splits of our datasets and other benchmarks. Our results have implications for understanding the inductive biases of different modes of learning in language models, and practically improving their performance.
Is In-Context Learning a Type of Error-Driven Learning? Evidence from the Inverse Frequency Effect in Structural Priming NAACL 2025
Large language models (LLMs) have shown the emergent capability of in-context learning (ICL). One line of research has claimed that ICL is functionally equivalent to gradient descent, a type of error-driven learning mechanism. In this paper, we introduce a new way of diagnosing whether ICL is functionally performing error-driven learning. Our approach is based on the inverse frequency effect (IFE) -- a phenomenon in which an agent's behavior is influenced to a greater degree when presented with improbable examples as compared to more likely ones. The IFE has previously been identified in psycholinguistics where humans exhibit the IFE in the context of structural priming (the tendency for people to produce sentence structures they have encountered recently). In that context, the IFE has been used as evidence that human structural priming must involve error-driven learning mechanisms. In our experiments, we simulated structural priming with ICL and found that LLMs indeed display the IFE, with the effect being stronger in larger models. We conclude that at least in the case we studied, ICL is indeed a type of error-driven learning, supporting the hypothesis that an error signal is implicitly computed in the forward pass during ICL. Our results suggest that both humans and LLMs make use of error-driven processing mechanisms in on-line processing.
comment: This version is accepted to NAACL 2025 (https://aclanthology.org/2025.naacl-long.586/)
Human-Computer Interaction
Evaluating Foveated Frame Rate Reduction in Virtual Reality for Head-Mounted Displays
Foveated rendering methods usually reduce spatial resolution in the periphery of the users' view. However, using foveated rendering to reduce temporal resolution, i.e., rendering frame rate, seems less explored. In this work, we present the results of a user study investigating the perceptual effects of foveated temporal resolution reduction, where only the temporal resolution (frame rate) is reduced in the periphery without affecting spatial quality (pixel density). In particular, we investigated the perception of temporal resolution artifacts caused by reducing the frame rate dependent on the eccentricity of the user's gaze. Our user study with 15 participants was conducted in a virtual reality setting using a head-mounted display. Our results indicate that it was possible to reduce average rendering costs, i.e., the number of rendered pixels, to a large degree before participants consistently reported perceiving temporal artifacts.
comment: Temporal resolution reduction, frame rate reduction, foveated rendering, virtual reality
Scalable Class-Centric Visual Interactive Labeling
Large unlabeled datasets demand efficient and scalable data labeling solutions, in particular when the number of instances and classes is large. This leads to significant visual scalability challenges and imposes a high cognitive load on the users. Traditional instance-centric labeling methods, where (single) instances are labeled in each iteration struggle to scale effectively in these scenarios. To address these challenges, we introduce cVIL, a Class-Centric Visual Interactive Labeling methodology designed for interactive visual data labeling. By shifting the paradigm from assigning-classes-to-instances to assigning-instances-to-classes, cVIL reduces labeling effort and enhances efficiency for annotators working with large, complex and class-rich datasets. We propose a novel visual analytics labeling interface built on top of the conceptual cVIL workflow, enabling improved scalability over traditional visual labeling. In a user study, we demonstrate that cVIL can improve labeling efficiency and user satisfaction over instance-centric interfaces. The effectiveness of cVIL is further demonstrated through a usage scenario, showcasing its potential to alleviate cognitive load and support experts in managing extensive labeling tasks efficiently.
BCause: Human-AI collaboration to improve hybrid mapping and ideation in argumentation-grounded deliberation
Public deliberation, as in open discussion of issues of public concern, often suffers from scattered and shallow discourse, poor sensemaking, and a disconnect from actionable policy outcomes. This paper introduces BCause, a discussion system leveraging generative AI and human-machine collaboration to transform unstructured dialogue around public issues (such as urban living, policy changes, and current socio-economic transformations) into structured, actionable democratic processes. We present three innovations: (i) importing and transforming unstructured transcripts into argumentative discussions, (ii) geo-deliberated problem-sensing via a Telegram bot for local issue reporting, and (iii) smart reporting with customizable widgets (e.g., summaries, topic modelling, policy recommendations, clustered arguments). The system's human-AI partnership preserves critical human participation to ensure ethical oversight, contextual relevance, and creative synthesis.
comment: 5 pages, 3 figures
Familiarizing with Music: Discovery Patterns for Different Music Discovery Needs
Humans have the tendency to discover and explore. This natural tendency is reflected in data from streaming platforms as the amount of previously unknown content accessed by users. Additionally, in domains such as that of music streaming there is evidence that recommending novel content improves users' experience with the platform. Therefore, understanding users' discovery patterns, such as the amount to which and the way users access previously unknown content, is a topic of relevance for both the scientific community and the streaming industry, particularly the music one. Previous works studied how music consumption differs for users of different traits and looked at diversity, novelty, and consistency over time of users' music preferences. However, very little is known about how users discover and explore previously unknown music, and how this behavior differs for users of varying discovery needs. In this paper we bridge this gap by analyzing data from a survey answered by users of the major music streaming platform Deezer in combination with their streaming data. We first address questions regarding whether users who declare a higher interest in unfamiliar music listen to more diverse music, have more stable music preferences over time, and explore more music within a same time window, compared to those who declare a lower interest. We then investigate which type of music tracks users choose to listen to when they explore unfamiliar music, identifying clear patterns of popularity and genre representativeness that vary for users of different discovery needs. Our findings open up possibilities to infer users' interest in unfamiliar music from streaming data as well as possibilities to develop recommender systems that guide users in exploring music in a more natural way.
Augmenting Human Cognition through Everyday AR
As spatial computing and multimodal LLMs mature, AR is tending to become an intuitive "thinking tool," embedding semantic and context-aware intelligence directly into everyday environments. This paper explores how always-on AR can seamlessly bridge digital cognition and physical affordances, enabling proactive, context-sensitive interactions that enhance human task performance and understanding.
comment: 3 pages, 4 figures. Position paper accepted to CHI'25 Workshop 'Everyday AR through AI-in-the-Loop'
manvr3d: A Platform for Human-in-the-loop Cell Tracking in Virtual Reality IEEE VIS 2025
We propose manvr3d, a novel VR-ready platform for interactive human-in-the-loop cell tracking. We utilize VR controllers and eye-tracking hardware to facilitate rapid ground truth generation and proofreading for deep learning-based cell tracking models. Life scientists reconstruct the developmental history of organisms on the cellular level by analyzing 3D time-lapse microscopy images acquired at high spatio-temporal resolution. The reconstruction of such cell lineage trees traditionally involves tracking individual cells through all recorded time points, manually annotating their positions, and then linking them over time to create complete trajectories. Deep learning-based algorithms accelerate this process, yet depend heavily on manually-annotated high-quality ground truth data and curation. Visual representation of the image data in this process still relies primarily on 2D renderings, which greatly limits spatial understanding and navigation. In this work, we bridge the gap between deep learning-based cell tracking software and 3D/VR visualization to create a human-in-the-loop cell tracking system. We lift the incremental annotation, training and proofreading loop of the deep learning model into the 3rd dimension and apply natural user interfaces like hand gestures and eye tracking to accelerate the cell tracking workflow for life scientists.
comment: 7 pages, 6 figures, submitted to IEEE VIS 2025
MedArabiQ: Benchmarking Large Language Models on Arabic Medical Tasks
Large Language Models (LLMs) have demonstrated significant promise for various applications in healthcare. However, their efficacy in the Arabic medical domain remains unexplored due to the lack of high-quality domain-specific datasets and benchmarks. This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks, covering multiple specialties and including multiple choice questions, fill-in-the-blank, and patient-doctor question answering. We first constructed the dataset using past medical exams and publicly available datasets. We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation. We conducted an extensive evaluation with five state-of-the-art open-source and proprietary LLMs, including GPT-4o, Claude 3.5-Sonnet, and Gemini 1.5. Our findings highlight the need for the creation of new high-quality benchmarks that span different languages to ensure fair deployment and scalability of LLMs in healthcare. By establishing this benchmark and releasing the dataset, we provide a foundation for future research aimed at evaluating and enhancing the multilingual capabilities of LLMs for the equitable use of generative AI in healthcare.
comment: 21 pages
AI-Based Feedback in Counselling Competence Training of Prospective Teachers
This study explores the use of AI-based feedback to enhance the counselling competence of prospective teachers. An iterative block seminar was designed, incorporating theoretical foundations, practical applications, and AI tools for analysing verbal, paraverbal, and nonverbal communication. The seminar included recorded simulated teacher-parent conversations, followed by AI-based feedback and qualitative interviews with students. The study investigated correlations between communication characteristics and conversation quality, student perceptions of AI-based feedback, and the training of AI models to identify conversation phases and techniques. Results indicated significant correlations between nonverbal and paraverbal features and conversation quality, and students positively perceived the AI feedback. The findings suggest that AI-based feedback can provide objective, actionable insights to improve teacher training programs. Future work will focus on refining verbal skill annotations, expanding the dataset, and exploring additional features to enhance the feedback system.
Tell Me the Good Stuff: User Preferences in Movie Recommendation Explanations
Recommender systems play a vital role in helping users discover content in streaming services, but their effectiveness depends on users understanding why items are recommended. In this study, explanations were based solely on item features rather than personalized data, simulating recommendation scenarios. We compared user perceptions of one-sided (purely positive) and two-sided (positive and negative) feature-based explanations for popular movie recommendations. Through an online study with 129 participants, we examined how explanation style affected perceived trust, transparency, effectiveness, and satisfaction. One-sided explanations consistently received higher ratings across all dimensions. Our findings suggest that in low-stakes entertainment domains such as popular movie recommendations, simpler positive explanations may be more effective. However, the results should be interpreted with caution due to potential confounding factors such as item familiarity and the placement of negative information in explanations. This work provides practical insights for explanation design in recommender interfaces and highlights the importance of context in shaping user preferences.
comment: Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization
DroidRetriever: An Autonomous Navigation and Information Integration System Facilitating Mobile Sensemaking
Users regularly rely on mobile applications for their daily information needs, and mobile sensemaking is prevalent in various domains such as education, healthcare, business intelligence, and emergency response, where timely and context-aware information-processing and decision-making is critical. However, valuable information is often scattered across the closed ecosystems within various applications, posing challenges for traditional search engines to retrieve data openly and in real-time. Additionally, due to limitations such as mobile device screen sizes, language differences, and unfamiliarity with specific applications and domain knowledge, users have to frequently switch between multiple applications and spend substantial time locating and integrating the information. To address these challenges, we present DroidRetriever, a system for cross-application information retrieval to facilitate mobile sensemaking. DroidRetriever can automatically navigate to relevant interfaces based on users' natural language commands, capture screenshots, extract and integrate information, and finally present the results. Our experimental results demonstrate that DroidRetriever can extract and integrate information with near-human accuracy while significantly reducing processing time. Furthermore, with minimal user intervention, DroidRetriever effectively corrects and completes various information retrieval tasks, substantially reducing the user's workload. Our summary of the motivations for intervention and the discussion of their necessity provide valuable implications for future research. We will open-source our code upon acceptance of the paper.
Chess variation entropy and engine relevance for humans
Modern chess engines significantly outperform human players and are essential for evaluating positions and move quality. These engines assign a numerical evaluation $E$ to positions, indicating an advantage for either white or black, but similar evaluations can mask varying levels of move complexity. While some move sequences are straightforward, others demand near-perfect play, limiting the practical value of these evaluations for most players. To quantify this problem, we use entropy to measure the complexity of the principal variation (the sequence of best moves). Variations with forced moves have low entropy, while those with multiple viable alternatives have high entropy. Our results show that, except for experts, most human players struggle with high-entropy variations, especially when $|E|<100$ centipawns, which accounts for about $2/3$ of positions. This underscores the need for AI-generated evaluations to convey the complexity of underlying move sequences, as they often exceed typical human cognitive capabilities, reducing their practical utility.
comment: 6 pages, 4 figures
Patterns and Mechanisms of Contrastive Activation Engineering ICLR 2025
Controlling the behavior of Large Language Models (LLMs) remains a significant challenge due to their inherent complexity and opacity. While techniques like fine-tuning can modify model behavior, they typically require extensive computational resources. Recent work has introduced a class of contrastive activation engineering (CAE) techniques as promising approaches for steering LLM outputs through targeted modifications to their internal representations. Applied at inference-time with zero cost, CAE has the potential to introduce a new paradigm of flexible, task-specific LLM behavior tuning. We analyze the performance of CAE in in-distribution, out-of-distribution settings, evaluate drawbacks, and begin to develop comprehensive guidelines for its effective deployment. We find that 1. CAE is only reliably effective when applied to in-distribution contexts. 2. Increasing the number of samples used to generate steering vectors has diminishing returns at around 80 samples. 3. Steering vectors are susceptible to adversarial inputs that reverses the behavior that is steered for. 4. Steering vectors harm the overall model perplexity. 5. Larger models are more resistant to steering-induced degradation.
comment: Published at the ICLR 2025 Bi-Align, HAIC, and Building Trust workshops
Behavioral Sensing and Intervention Paradigm: A Review of Closed-Loop Approaches for Ingestion Health
Ingestive behavior plays a critical role in health, yet many existing interventions remain limited to static guidance or manual self-tracking. With the increasing integration of sensors and perceptual computing, recent systems have begun to support closed-loop interventions that dynamically sense user behavior and provide feedback during or around ingestion episodes. In this survey, we review 136 studies that leverage sensor-enabled or interaction-mediated approaches to influence eating behavior. We propose a behavioral closed-loop paradigm comprising three core components: target behaviors, sensing modalities, and feedback strategies. A taxonomy of sensing and intervention modalities is presented, organized along human- and environment-based dimensions. Our analysis also examines evaluation methods and design trends across different modality-behavior pairings. This review reveals prevailing patterns and critical gaps, offering design insights for future adaptive and context-aware ingestion health interventions.
InfoVids: Reimagining the Viewer Experience with Alternative Visualization-Presenter Relationships
Traditional data presentations typically separate the presenter and visualization into two separate spaces--the 3D world and a 2D screen--enforcing visualization-centric stories. To create a more human-centric viewing experience, we establish a more equitable relationship between the visualization and the presenter through our InfoVids. These infographics-inspired informational videos are crafted to redefine relationships between the presenter and visualizations. As we design InfoVids, we explore how the use of layout, form, and interactions affects the viewer experience. We compare InfoVids against their baseline 2D `slides' equivalents across 9 metrics with 30 participants and provide practical, long-term insights from an autobiographical perspective. Our mixed methods analyses reveal that this paradigm reduced viewer attention splitting, shifted the focus from the visualization to the presenter, and led to more interactive, natural, and engaging full-body data performances for viewers. Ultimately, InfoVids helped viewers re-imagine traditional dynamics between the presenter and visualizations.
The Impact of Large Language Models on K-12 Education in Rural India: A Thematic Analysis of Student Volunteer's Perspectives
AI-driven education, particularly Large Language Models (LLMs), has the potential to address learning disparities in rural K-12 schools. However, research on AI adoption in rural India remains limited, with existing studies focusing primarily on urban settings. This study examines the perceptions of volunteer teachers on AI integration in rural education, identifying key challenges and opportunities. Through semi-structured interviews with 23 volunteer educators in Rajasthan and Delhi, we conducted a thematic analysis to explore infrastructure constraints, teacher preparedness, and digital literacy gaps. Findings indicate that while LLMs could enhance personalized learning and reduce teacher workload, barriers such as poor connectivity, lack of AI training, and parental skepticism hinder adoption. Despite concerns over over-reliance and ethical risks, volunteers emphasize that AI should be seen as a complementary tool rather than a replacement for traditional teaching. Given the potential benefits, LLM-based tutors merit further exploration in rural classrooms, with structured implementation and localized adaptations to ensure accessibility and equity.
comment: Under review, 23 pages, 1 figure, 1 table
VISLIX: An XAI Framework for Validating Vision Models with Slice Discovery and Analysis
Real-world machine learning models require rigorous evaluation before deployment, especially in safety-critical domains like autonomous driving and surveillance. The evaluation of machine learning models often focuses on data slices, which are subsets of the data that share a set of characteristics. Data slice finding automatically identifies conditions or data subgroups where models underperform, aiding developers in mitigating performance issues. Despite its popularity and effectiveness, data slicing for vision model validation faces several challenges. First, data slicing often needs additional image metadata or visual concepts, and falls short in certain computer vision tasks, such as object detection. Second, understanding data slices is a labor-intensive and mentally demanding process that heavily relies on the expert's domain knowledge. Third, data slicing lacks a human-in-the-loop solution that allows experts to form hypothesis and test them interactively. To overcome these limitations and better support the machine learning operations lifecycle, we introduce VISLIX, a novel visual analytics framework that employs state-of-the-art foundation models to help domain experts analyze slices in computer vision models. Our approach does not require image metadata or visual concepts, automatically generates natural language insights, and allows users to test data slice hypothesis interactively. We evaluate VISLIX with an expert study and three use cases, that demonstrate the effectiveness of our tool in providing comprehensive insights for validating object detection models.
Do ATCOs Need Explanations, and Why? Towards ATCO-Centered Explainable AI for Conflict Resolution Advisories
Interest in explainable artificial intelligence (XAI) is surging. Prior research has primarily focused on systems' ability to generate explanations, often guided by researchers' intuitions rather than end-users' needs. Unfortunately, such approaches have not yielded favorable outcomes when compared to a black-box baseline (i.e., no explanation). To address this gap, this paper advocates a human-centered approach that shifts focus to air traffic controllers (ATCOs) by asking a fundamental yet overlooked question: Do ATCOs need explanations, and if so, why? Insights from air traffic management (ATM), human-computer interaction, and the social sciences were synthesized to provide a holistic understanding of XAI challenges and opportunities in ATM. Evaluating 11 ATM operational goals revealed a clear need for explanations when ATCOs aim to document decisions and rationales for future reference or report generation. Conversely, ATCOs are less likely to seek them when their conflict resolution approach align with the artificial intelligence (AI) advisory. While this is a preliminary study, the findings are expected to inspire broader and deeper inquiries into the design of ATCO-centric XAI systems, paving the way for more effective human-AI interaction in ATM.
comment: 2025 ATRD US-Europe Air Transportation Research & Development Symposium
Cognitio Emergens: Agency, Dimensions, and Dynamics in Human-AI Knowledge Co-Creation
Scientific knowledge creation is fundamentally transforming as humans and AI systems evolve beyond tool-user relationships into co-evolutionary epistemic partnerships. When AlphaFold revolutionized protein structure prediction, researchers described engaging with an epistemic partner that reshaped how they conceptualized fundamental relationships. This article introduces Cognitio Emergens (CE), a framework addressing critical limitations in existing models that focus on static roles or narrow metrics while failing to capture how scientific understanding emerges through recursive human-AI interaction over time. CE integrates three components addressing these limitations: Agency Configurations describing how authority distributes between humans and AI (Directed, Contributory, Partnership), with partnerships dynamically oscillating between configurations rather than following linear progression; Epistemic Dimensions capturing six specific capabilities emerging through collaboration across Discovery, Integration, and Projection axes, creating distinctive "capability signatures" that guide development; and Partnership Dynamics identifying forces shaping how these relationships evolve, particularly the risk of epistemic alienation where researchers lose interpretive control over knowledge they formally endorse. Drawing from autopoiesis theory, social systems theory, and organizational modularity, CE reveals how knowledge co-creation emerges through continuous negotiation of roles, values, and organizational structures. By reconceptualizing human-AI scientific collaboration as fundamentally co-evolutionary, CE offers a balanced perspective that neither uncritically celebrates nor unnecessarily fears AI's evolving role, instead providing conceptual tools for cultivating partnerships that maintain meaningful human participation while enabling transformative scientific breakthroughs.
comment: 62 pages (31 appendix pages for guidance), 2 figures
Scratch Copilot: Supporting Youth Creative Coding with AI
Creative coding platforms like Scratch have democratized programming for children, yet translating imaginative ideas into functional code remains a significant hurdle for many young learners. While AI copilots assist adult programmers, few tools target children in block-based environments. Building on prior research \cite{druga_how_2021,druga2023ai, druga2023scratch}, we present Cognimates Scratch Copilot: an AI-powered assistant integrated into a Scratch-like environment, providing real-time support for ideation, code generation, debugging, and asset creation. This paper details the system architecture and findings from an exploratory qualitative evaluation with 18 international children (ages 7--12). Our analysis reveals how the AI Copilot supported key creative coding processes, particularly aiding ideation and debugging. Crucially, it also highlights how children actively negotiated the use of AI, demonstrating strong agency by adapting or rejecting suggestions to maintain creative control. Interactions surfaced design tensions between providing helpful scaffolding and fostering independent problem-solving, as well as learning opportunities arising from navigating AI limitations and errors. Findings indicate Cognimates Scratch Copilot's potential to enhance creative self-efficacy and engagement. Based on these insights, we propose initial design guidelines for AI coding assistants that prioritize youth agency and critical interaction alongside supportive scaffolding.
comment: 5 figures, 14 pages
Catch Me if You Search: When Contextual Web Search Results Affect the Detection of Hallucinations
While we increasingly rely on large language models (LLMs) for various tasks, these models are known to produce inaccurate content or `hallucinations' with potentially disastrous consequences. The recent integration of web search results into LLMs prompts the question of whether people utilize them to verify the generated content, thereby accurately detecting hallucinations. An online experiment (N = 560) investigated how the provision of search results, either static (i.e., fixed search results provided by LLM) or dynamic (i.e., participant-led searches), affects participants' perceived accuracy of LLM-generated content (i.e., genuine, minor hallucination, major hallucination), self-confidence in accuracy ratings, as well as their overall evaluation of the LLM, as compared to the control condition (i.e., no search results). Results showed that participants in both static and dynamic conditions (vs. control) rated hallucinated content to be less accurate and perceived the LLM more negatively. However, those in the dynamic condition rated genuine content as more accurate and demonstrated greater overall self-confidence in their assessments than those in the static search or control conditions. We highlighted practical implications of incorporating web search functionality into LLMs in real-world contexts.
Advancing Human-Machine Teaming: Concepts, Challenges, and Applications
Human-Machine Teaming (HMT) is revolutionizing collaboration across domains such as defense, healthcare, and autonomous systems by integrating AI-driven decision-making, trust calibration, and adaptive teaming. This survey presents a comprehensive taxonomy of HMT, analyzing theoretical models, including reinforcement learning, instance-based learning, and interdependence theory, alongside interdisciplinary methodologies. Unlike prior reviews, we examine team cognition, ethical AI, multi-modal interactions, and real-world evaluation frameworks. Key challenges include explainability, role allocation, and scalable benchmarking. We propose future research in cross-domain adaptation, trust-aware AI, and standardized testbeds. By bridging computational and social sciences, this work lays a foundation for resilient, ethical, and scalable HMT systems.
CALLM: Understanding Cancer Survivors' Emotions and Intervention Opportunities via Mobile Diaries and Context-Aware Language Models
Cancer survivors face unique emotional challenges that impact their quality of life. Mobile diary entries provide a promising method for tracking emotional states, improving self-awareness, and promoting well-being outcome. This paper aims to, through mobile diaries, understand cancer survivors' emotional states and key variables related to just-in-time intervention opportunities, including the desire to regulate emotions and the availability to engage in interventions. Although emotion analysis tools show potential for recognizing emotions from text, current methods lack the contextual understanding necessary to interpret brief mobile diary narratives. Our analysis of diary entries from cancer survivors (N=407) reveals systematic relationships between described contexts and emotional states, with administrative and health-related contexts associated with negative affect and regulation needs, while leisure activities promote positive emotions. We propose CALLM, a Context-Aware framework leveraging Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) to analyze these brief entries by integrating retrieved peer experiences and personal diary history. CALLM demonstrates strong performance with balanced accuracies reaching 72.96% for positive affect, 73.29% for negative affect, 73.72% for emotion regulation desire, and 60.09% for intervention availability, outperforming language model baselines. Post-hoc analysis reveals that model confidence strongly predicts accuracy, with longer diary entries generally enhancing performance, and brief personalization periods yielding meaningful improvements. Our findings demonstrate how contextual information in mobile diaries can be effectively leveraged to understand emotional experiences, predict key states, and identify optimal intervention moments for personalized just-in-time support.
VR-Doh: Hands-on 3D Modeling in Virtual Reality
We introduce VR-Doh, an open-source, hands-on 3D modeling system that enables intuitive creation and manipulation of elastoplastic objects in Virtual Reality (VR). By customizing the Material Point Method (MPM) for real-time simulation of hand-induced large deformations and enhancing 3D Gaussian Splatting for seamless rendering, VR-Doh provides an interactive and immersive 3D modeling experience. Users can naturally sculpt, deform, and edit objects through both contact- and gesture-based hand-object interactions. To achieve real-time performance, our system incorporates localized simulation techniques, particle-level collision handling, and the decoupling of physical and appearance representations, ensuring smooth and responsive interactions. VR-Doh supports both object creation and editing, enabling diverse modeling tasks such as designing food items, characters, and interlocking structures, all resulting in simulation-ready assets. User studies with both novice and experienced participants highlight the system's intuitive design, immersive feedback, and creative potential. Compared to existing geometric modeling tools, VR-Doh offers enhanced accessibility and natural interaction, making it a powerful tool for creative exploration in VR.
comment: 12 pages
CounterQuill: Investigating the Potential of Human-AI Collaboration in Online Counterspeech Writing
Online hate speech has become increasingly prevalent on social media platforms, causing harm to individuals and society. While efforts have been made to combat this issue through content moderation, the potential of user-driven counterspeech as an alternative solution remains underexplored. Existing counterspeech methods often face challenges such as fear of retaliation and skill-related barriers. To address these challenges, we introduce CounterQuill, an AI-mediated system that assists users in composing effective and empathetic counterspeech. CounterQuill provides a three-step process: (1) a learning session to help users understand hate speech and counterspeech; (2) a brainstorming session that guides users in identifying key elements of hate speech and exploring counterspeech strategies; and (3) a co-writing session that enables users to draft and refine their counterspeech with CounterQuill. We conducted a within-subjects user study with 20 participants to evaluate CounterQuill in comparison to ChatGPT. Results show that CounterQuill's guidance and collaborative writing process provided users a stronger sense of ownership over their co-authored counterspeech. Users perceived CounterQuill as a writing partner and thus were more willing to post the co-written counterspeech online compared to the one written with ChatGPT.
Motion Design Principles for Accessible Video-based Learning: Addressing Cognitive Challenges for Deaf and Hard of Hearing Learners
Deaf and Hard-of-Hearing (DHH) learners face unique challenges in video-based learning due to the complex interplay between visual and auditory information in videos. Traditional approaches to making video content accessible primarily focus on captioning, but these solutions often neglect the cognitive demands of processing both visual and textual information simultaneously. This paper introduces a set of \textit{Motion} design guidelines, aimed at mitigating these cognitive challenges and improving video learning experiences for DHH learners. Through a two-phase research, we identified five key challenges, including misaligned content and visual overload. We proposed five design principles accordingly. User study with 16 DHH participants showed that improving visual-audio relevance and guiding visual attention significantly enhances the learning experience by reducing physical demand, alleviating temporal pressure, and improving learning satisfaction. Our findings highlight the potential of Motion design to transform educational content for DHH learners, and we discuss implications for inclusive video learning tools.
ASHABot: An LLM-Powered Chatbot to Support the Informational Needs of Community Health Workers
Community health workers (CHWs) provide last-mile healthcare services but face challenges due to limited medical knowledge and training. This paper describes the design, deployment, and evaluation of ASHABot, an LLM-powered, experts-in-the-loop, WhatsApp-based chatbot to address the information needs of CHWs in India. Through interviews with CHWs and their supervisors and log analysis, we examine factors affecting their engagement with ASHABot, and ASHABot's role in addressing CHWs' informational needs. We found that ASHABot provided a private channel for CHWs to ask rudimentary and sensitive questions they hesitated to ask supervisors. CHWs trusted the information they received on ASHABot and treated it as an authoritative resource. CHWs' supervisors expanded their knowledge by contributing answers to questions ASHABot failed to answer, but were concerned about demands on their workload and increased accountability. We emphasize positioning LLMs as supplemental fallible resources within the community healthcare ecosystem, instead of as replacements for supervisor support.
Exploring Families' Use and Mediation of Generative AI: A Multi-User Perspective
Applications of Generative AI (GenAI), such as ChatGPT, have gained popularity among the public due to their ease of access, use, and support of educational and creative activities. Despite these benefits, GenAI poses unique risks for families, such as lacking sufficient safeguards tailored to protect children under 16 years of age and not offering parental control features. This study explores families' use and co-use of GenAI, the perceived risks and opportunities of ChatGPT, and how parents mediate their children's use of GenAI. Through semi-structured interviews with 12 families, we identified ways families used and mediated GenAI and factors that influenced parents' GenAI mediation strategies. We contextualize our findings with a modified model of family mediation strategies, drawing from previous family media and mediation frameworks. We provide insights for future research on family-GenAI interactions and highlight the need for more robust protective measures on GenAI platforms for families.
Interactive authoring of outcome-oriented lesson plans for immersive Virtual Reality training
Immersive Virtual Reality (iVR) applications have shown immense potential for skill training and learning in manufacturing. However, authoring of such applications requires technical expertise, which makes it difficult for educators to author instructions targeted at desired learning outcomes. We present FlowTrainer, an LLM-assisted interactive system to allow educators to author lesson plans for their iVR instruction based on desired goals. The authoring workflow is supported by Backward design to align the planned lesson based on the desired outcomes. We implemented a welding use case and conducted a user study with welding experts to test the effectiveness of the system in authoring outcome-oriented lesson plans. The study results showed that the system allowed users to plan lesson plans based on desired outcomes while reducing the time and technical expertise required for the authoring process. We believe that such efforts can allow widespread adoption of iVR solutions in manufacturing training to meet the workforce demands in the industry.
Human-Robot Interaction and Perceived Irrationality: A Study of Trust Dynamics and Error Acknowledgment
As robots become increasingly integrated into various industries, understanding how humans respond to robotic failures is critical. This study systematically examines trust dynamics and system design by analyzing human reactions to robot failures. We conducted a four-stage survey to explore how trust evolves throughout human-robot interactions. The first stage collected demographic data and initial trust levels. The second stage focused on preliminary expectations and perceptions of robotic capabilities. The third stage examined interaction details, including robot precision and error acknowledgment. Finally, the fourth stage assessed post-interaction perceptions, evaluating trust dynamics, forgiveness, and willingness to recommend robotic technologies. Results indicate that trust in robotic systems significantly increased when robots acknowledged their errors or limitations. Additionally, participants showed greater willingness to suggest robots for future tasks, highlighting the importance of direct engagement in shaping trust dynamics. These findings provide valuable insights for designing more transparent, responsive, and trustworthy robotic systems. By enhancing our understanding of human-robot interaction (HRI), this study contributes to the development of robotic technologies that foster greater public acceptance and adoption.
comment: 8 pages, 8 figures, 1 table, Ongoing Research
Computer Vision and Pattern Recognition
Scenethesis: A Language and Vision Agentic Framework for 3D Scene Generation
Synthesizing interactive 3D scenes from text is essential for gaming, virtual reality, and embodied AI. However, existing methods face several challenges. Learning-based approaches depend on small-scale indoor datasets, limiting the scene diversity and layout complexity. While large language models (LLMs) can leverage diverse text-domain knowledge, they struggle with spatial realism, often producing unnatural object placements that fail to respect common sense. Our key insight is that vision perception can bridge this gap by providing realistic spatial guidance that LLMs lack. To this end, we introduce Scenethesis, a training-free agentic framework that integrates LLM-based scene planning with vision-guided layout refinement. Given a text prompt, Scenethesis first employs an LLM to draft a coarse layout. A vision module then refines it by generating an image guidance and extracting scene structure to capture inter-object relations. Next, an optimization module iteratively enforces accurate pose alignment and physical plausibility, preventing artifacts like object penetration and instability. Finally, a judge module verifies spatial coherence. Comprehensive experiments show that Scenethesis generates diverse, realistic, and physically plausible 3D interactive scenes, making it valuable for virtual content creation, simulation environments, and embodied AI research.
R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning
Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a $8.4\%$ improvement on the VL Reward-Bench and a $14.3\%$ improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.
comment: Home page: https://github.com/yfzhang114/r1_reward
TWIST: Teleoperated Whole-Body Imitation System
Teleoperating humanoid robots in a whole-body manner marks a fundamental step toward developing general-purpose robotic intelligence, with human motion providing an ideal interface for controlling all degrees of freedom. Yet, most current humanoid teleoperation systems fall short of enabling coordinated whole-body behavior, typically limiting themselves to isolated locomotion or manipulation tasks. We present the Teleoperated Whole-Body Imitation System (TWIST), a system for humanoid teleoperation through whole-body motion imitation. We first generate reference motion clips by retargeting human motion capture data to the humanoid robot. We then develop a robust, adaptive, and responsive whole-body controller using a combination of reinforcement learning and behavior cloning (RL+BC). Through systematic analysis, we demonstrate how incorporating privileged future motion frames and real-world motion capture (MoCap) data improves tracking accuracy. TWIST enables real-world humanoid robots to achieve unprecedented, versatile, and coordinated whole-body motor skills--spanning whole-body manipulation, legged manipulation, locomotion, and expressive movement--using a single unified neural network controller. Our project website: https://humanoid-teleop.github.io
comment: Project website: https://humanoid-teleop.github.io
No Other Representation Component Is Needed: Diffusion Transformers Can Provide Representation Guidance by Themselves
Recent studies have demonstrated that learning a meaningful internal representation can both accelerate generative training and enhance generation quality of the diffusion transformers. However, existing approaches necessitate to either introduce an additional and complex representation training framework or rely on a large-scale, pre-trained representation foundation model to provide representation guidance during the original generative training process. In this study, we posit that the unique discriminative process inherent to diffusion transformers enables them to offer such guidance without requiring external representation components. We therefore propose Self-Representation A}lignment (SRA), a simple yet straightforward method that obtain representation guidance through a self-distillation manner. Specifically, SRA aligns the output latent representation of the diffusion transformer in earlier layer with higher noise to that in later layer with lower noise to progressively enhance the overall representation learning during only generative training process. Experimental results indicate that applying SRA to DiTs and SiTs yields consistent performance improvements. Moreover, SRA not only significantly outperforms approaches relying on auxiliary, complex representation training frameworks but also achieves performance comparable to methods that heavily dependent on powerful external representation priors.
comment: Self-Representation Alignment for Diffusion Transformers. arXiv admin note: text overlap with arXiv:2410.06940 by other authors
AOR: Anatomical Ontology-Guided Reasoning for Medical Large Multimodal Model in Chest X-Ray Interpretation
Chest X-rays (CXRs) are the most frequently performed imaging examinations in clinical settings. Recent advancements in Large Multimodal Models (LMMs) have enabled automated CXR interpretation, enhancing diagnostic accuracy and efficiency. However, despite their strong visual understanding, current Medical LMMs (MLMMs) still face two major challenges: (1) Insufficient region-level understanding and interaction, and (2) Limited accuracy and interpretability due to single-step reasoning. In this paper, we empower MLMMs with anatomy-centric reasoning capabilities to enhance their interactivity and explainability. Specifically, we first propose an Anatomical Ontology-Guided Reasoning (AOR) framework, which centers on cross-modal region-level information to facilitate multi-step reasoning. Next, under the guidance of expert physicians, we develop AOR-Instruction, a large instruction dataset for MLMMs training. Our experiments demonstrate AOR's superior performance in both VQA and report generation tasks.
Towards Application-Specific Evaluation of Vision Models: Case Studies in Ecology and Biology CVPR
Computer vision methods have demonstrated considerable potential to streamline ecological and biological workflows, with a growing number of datasets and models becoming available to the research community. However, these resources focus predominantly on evaluation using machine learning metrics, with relatively little emphasis on how their application impacts downstream analysis. We argue that models should be evaluated using application-specific metrics that directly represent model performance in the context of its final use case. To support this argument, we present two disparate case studies: (1) estimating chimpanzee abundance and density with camera trap distance sampling when using a video-based behaviour classifier and (2) estimating head rotation in pigeons using a 3D posture estimator. We show that even models with strong machine learning performance (e.g., 87% mAP) can yield data that leads to discrepancies in abundance estimates compared to expert-derived data. Similarly, the highest-performing models for posture estimation do not produce the most accurate inferences of gaze direction in pigeons. Motivated by these findings, we call for researchers to integrate application-specific metrics in ecological/biological datasets, allowing for models to be benchmarked in the context of their downstream application and to facilitate better integration of models into application workflows.
comment: Accepted at CVPR Workshop, CV4Animals 2025
Towards Dataset Copyright Evasion Attack against Personalized Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models have rapidly advanced, enabling high-quality image generation conditioned on textual prompts. However, the growing trend of fine-tuning pre-trained models for personalization raises serious concerns about unauthorized dataset usage. To combat this, dataset ownership verification (DOV) has emerged as a solution, embedding watermarks into the fine-tuning datasets using backdoor techniques. These watermarks remain inactive under benign samples but produce owner-specified outputs when triggered. Despite the promise of DOV for T2I diffusion models, its robustness against copyright evasion attacks (CEA) remains unexplored. In this paper, we explore how attackers can bypass these mechanisms through CEA, allowing models to circumvent watermarks even when trained on watermarked datasets. We propose the first copyright evasion attack (i.e., CEAT2I) specifically designed to undermine DOV in T2I diffusion models. Concretely, our CEAT2I comprises three stages: watermarked sample detection, trigger identification, and efficient watermark mitigation. A key insight driving our approach is that T2I models exhibit faster convergence on watermarked samples during the fine-tuning, evident through intermediate feature deviation. Leveraging this, CEAT2I can reliably detect the watermarked samples. Then, we iteratively ablate tokens from the prompts of detected watermarked samples and monitor shifts in intermediate features to pinpoint the exact trigger tokens. Finally, we adopt a closed-form concept erasure method to remove the injected watermark. Extensive experiments show that our CEAT2I effectively evades DOV mechanisms while preserving model performance.
MUSAR: Exploring Multi-Subject Customization from Single-Subject Dataset via Attention Routing
Current multi-subject customization approaches encounter two critical challenges: the difficulty in acquiring diverse multi-subject training data, and attribute entanglement across different subjects. To bridge these gaps, we propose MUSAR - a simple yet effective framework to achieve robust multi-subject customization while requiring only single-subject training data. Firstly, to break the data limitation, we introduce debiased diptych learning. It constructs diptych training pairs from single-subject images to facilitate multi-subject learning, while actively correcting the distribution bias introduced by diptych construction via static attention routing and dual-branch LoRA. Secondly, to eliminate cross-subject entanglement, we introduce dynamic attention routing mechanism, which adaptively establishes bijective mappings between generated images and conditional subjects. This design not only achieves decoupling of multi-subject representations but also maintains scalable generalization performance with increasing reference subjects. Comprehensive experiments demonstrate that our MUSAR outperforms existing methods - even those trained on multi-subject dataset - in image quality, subject consistency, and interaction naturalness, despite requiring only single-subject dataset.
comment: Project page at https://github.com/guozinan126/MUSAR
Database-Agnostic Gait Enrollment using SetTransformers
Gait recognition has emerged as a powerful tool for unobtrusive and long-range identity analysis, with growing relevance in surveillance and monitoring applications. Although recent advances in deep learning and large-scale datasets have enabled highly accurate recognition under closed-set conditions, real-world deployment demands open-set gait enrollment, which means determining whether a new gait sample corresponds to a known identity or represents a previously unseen individual. In this work, we introduce a transformer-based framework for open-set gait enrollment that is both dataset-agnostic and recognition-architecture-agnostic. Our method leverages a SetTransformer to make enrollment decisions based on the embedding of a probe sample and a context set drawn from the gallery, without requiring task-specific thresholds or retraining for new environments. By decoupling enrollment from the main recognition pipeline, our model is generalized across different datasets, gallery sizes, and identity distributions. We propose an evaluation protocol that uses existing datasets in different ratios of identities and walks per identity. We instantiate our method using skeleton-based gait representations and evaluate it on two benchmark datasets (CASIA-B and PsyMo), using embeddings from three state-of-the-art recognition models (GaitGraph, GaitFormer, and GaitPT). We show that our method is flexible, is able to accurately perform enrollment in different scenarios, and scales better with data compared to traditional approaches. We will make the code and dataset scenarios publicly available.
comment: 5 Tables, 6 Figures
DPNet: Dynamic Pooling Network for Tiny Object Detection
In unmanned aerial systems, especially in complex environments, accurately detecting tiny objects is crucial. Resizing images is a common strategy to improve detection accuracy, particularly for small objects. However, simply enlarging images significantly increases computational costs and the number of negative samples, severely degrading detection performance and limiting its applicability. This paper proposes a Dynamic Pooling Network (DPNet) for tiny object detection to mitigate these issues. DPNet employs a flexible down-sampling strategy by introducing a factor (df) to relax the fixed downsampling process of the feature map to an adjustable one. Furthermore, we design a lightweight predictor to predict df for each input image, which is used to decrease the resolution of feature maps in the backbone. Thus, we achieve input-aware downsampling. We also design an Adaptive Normalization Module (ANM) to make a unified detector compatible with different dfs. A guidance loss supervises the predictor's training. DPNet dynamically allocates computing resources to trade off between detection accuracy and efficiency. Experiments on the TinyCOCO and TinyPerson datasets show that DPNet can save over 35% and 25% GFLOPs, respectively, while maintaining comparable detection performance. The code will be made publicly available.
comment: 15 pages, 12 figures Haotian Chen and Luqi Gong contributed equally to this work
Unsupervised training of keypoint-agnostic descriptors for flexible retinal image registration
Current color fundus image registration approaches are limited, among other things, by the lack of labeled data, which is even more significant in the medical domain, motivating the use of unsupervised learning. Therefore, in this work, we develop a novel unsupervised descriptor learning method that does not rely on keypoint detection. This enables the resulting descriptor network to be agnostic to the keypoint detector used during the registration inference. To validate this approach, we perform an extensive and comprehensive comparison on the reference public retinal image registration dataset. Additionally, we test our method with multiple keypoint detectors of varied nature, even proposing some novel ones. Our results demonstrate that the proposed approach offers accurate registration, not incurring in any performance loss versus supervised methods. Additionally, it demonstrates accurate performance regardless of the keypoint detector used. Thus, this work represents a notable step towards leveraging unsupervised learning in the medical domain.
Advances in Automated Fetal Brain MRI Segmentation and Biometry: Insights from the FeTA 2024 Challenge
Accurate fetal brain tissue segmentation and biometric analysis are essential for studying brain development in utero. The FeTA Challenge 2024 advanced automated fetal brain MRI analysis by introducing biometry prediction as a new task alongside tissue segmentation. For the first time, our diverse multi-centric test set included data from a new low-field (0.55T) MRI dataset. Evaluation metrics were also expanded to include the topology-specific Euler characteristic difference (ED). Sixteen teams submitted segmentation methods, most of which performed consistently across both high- and low-field scans. However, longitudinal trends indicate that segmentation accuracy may be reaching a plateau, with results now approaching inter-rater variability. The ED metric uncovered topological differences that were missed by conventional metrics, while the low-field dataset achieved the highest segmentation scores, highlighting the potential of affordable imaging systems when paired with high-quality reconstruction. Seven teams participated in the biometry task, but most methods failed to outperform a simple baseline that predicted measurements based solely on gestational age, underscoring the challenge of extracting reliable biometric estimates from image data alone. Domain shift analysis identified image quality as the most significant factor affecting model generalization, with super-resolution pipelines also playing a substantial role. Other factors, such as gestational age, pathology, and acquisition site, had smaller, though still measurable, effects. Overall, FeTA 2024 offers a comprehensive benchmark for multi-class segmentation and biometry estimation in fetal brain MRI, underscoring the need for data-centric approaches, improved topological evaluation, and greater dataset diversity to enable clinically robust and generalizable AI tools.
Unsupervised Deep Learning-based Keypoint Localization Estimating Descriptor Matching Performance
Retinal image registration, particularly for color fundus images, is a challenging yet essential task with diverse clinical applications. Existing registration methods for color fundus images typically rely on keypoints and descriptors for alignment; however, a significant limitation is their reliance on labeled data, which is particularly scarce in the medical domain. In this work, we present a novel unsupervised registration pipeline that entirely eliminates the need for labeled data. Our approach is based on the principle that locations with distinctive descriptors constitute reliable keypoints. This fully inverts the conventional state-of-the-art approach, conditioning the detector on the descriptor rather than the opposite. First, we propose an innovative descriptor learning method that operates without keypoint detection or any labels, generating descriptors for arbitrary locations in retinal images. Next, we introduce a novel, label-free keypoint detector network which works by estimating descriptor performance directly from the input image. We validate our method through a comprehensive evaluation on four hold-out datasets, demonstrating that our unsupervised descriptor outperforms state-of-the-art supervised descriptors and that our unsupervised detector significantly outperforms existing unsupervised detection methods. Finally, our full registration pipeline achieves performance comparable to the leading supervised methods, while not employing any labeled data. Additionally, the label-free nature and design of our method enable direct adaptation to other domains and modalities.
Advancing Generalizable Tumor Segmentation with Anomaly-Aware Open-Vocabulary Attention Maps and Frozen Foundation Diffusion Models CVPR 2025
We explore Generalizable Tumor Segmentation, aiming to train a single model for zero-shot tumor segmentation across diverse anatomical regions. Existing methods face limitations related to segmentation quality, scalability, and the range of applicable imaging modalities. In this paper, we uncover the potential of the internal representations within frozen medical foundation diffusion models as highly efficient zero-shot learners for tumor segmentation by introducing a novel framework named DiffuGTS. DiffuGTS creates anomaly-aware open-vocabulary attention maps based on text prompts to enable generalizable anomaly segmentation without being restricted by a predefined training category list. To further improve and refine anomaly segmentation masks, DiffuGTS leverages the diffusion model, transforming pathological regions into high-quality pseudo-healthy counterparts through latent space inpainting, and applies a novel pixel-level and feature-level residual learning approach, resulting in segmentation masks with significantly enhanced quality and generalization. Comprehensive experiments on four datasets and seven tumor categories demonstrate the superior performance of our method, surpassing current state-of-the-art models across multiple zero-shot settings. Codes are available at https://github.com/Yankai96/DiffuGTS.
comment: This paper is accepted to CVPR 2025
Platelet enumeration in dense aggregates IJCNN 2025
Identifying and counting blood components such as red blood cells, various types of white blood cells, and platelets is a critical task for healthcare practitioners. Deep learning approaches, particularly convolutional neural networks (CNNs) using supervised learning strategies, have shown considerable success for such tasks. However, CNN based architectures such as U-Net, often struggles to accurately identify platelets due to their sizes and high variability of features. To address these challenges, researchers have commonly employed strategies such as class weighted loss functions, which have demonstrated some success. However, this does not address the more significant challenge of platelet variability in size and tendency to form aggregates and associations with other blood components. In this study, we explored an alternative approach by investigating the role of convolutional kernels in mitigating these issues. We also assigned separate classes to singular platelets and platelet aggregates and performed semantic segmentation using various U-Net architectures for identifying platelets. We then evaluated and compared two common methods (pixel area method and connected component analysis) for counting platelets and proposed an alternative approach specialized for single platelets and platelet aggregates. Our experiments provided results that showed significant improvements in the identification of platelets, highlighting the importance of optimizing convolutional operations and class designations. We show that the common practice of pixel area-based counting often over estimate platelet counts, whereas the proposed method presented in this work offers significant improvements. We discuss in detail about these methods from segmentation masks.
comment: International Joint Conference on Neural Networks (IJCNN 2025)
Using Knowledge Graphs to harvest datasets for efficient CLIP model training
Training high-quality CLIP models typically requires enormous datasets, which limits the development of domain-specific models -- especially in areas that even the largest CLIP models do not cover well -- and drives up training costs. This poses challenges for scientific research that needs fine-grained control over the training procedure of CLIP models. In this work, we show that by employing smart web search strategies enhanced with knowledge graphs, a robust CLIP model can be trained from scratch with considerably less data. Specifically, we demonstrate that an expert foundation model for living organisms can be built using just 10M images. Moreover, we introduce EntityNet, a dataset comprising 33M images paired with 46M text descriptions, which enables the training of a generic CLIP model in significantly reduced time.
A Rate-Quality Model for Learned Video Coding
Learned video coding (LVC) has recently achieved superior coding performance. In this paper, we model the rate-quality (R-Q) relationship for learned video coding by a parametric function. We learn a neural network, termed RQNet, to characterize the relationship between the bitrate and quality level according to video content and coding context. The predicted (R,Q) results are further integrated with those from previously coded frames using the least-squares method to determine the parameters of our R-Q model on-the-fly. Compared to the conventional approaches, our method accurately estimates the R-Q relationship, enabling the online adaptation of model parameters to enhance both flexibility and precision. Experimental results show that our R-Q model achieves significantly smaller bitrate deviations than the baseline method on commonly used datasets with minimal additional complexity.
Multi-View Learning with Context-Guided Receptance for Image Denoising IJCAI 2025
Image denoising is essential in low-level vision applications such as photography and automated driving. Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources due to reliance on Transformer-based models. In this work, the Context-guided Receptance Weighted Key-Value (\M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling. Our approach introduces the Context-guided Token Shift (CTS) paradigm, which effectively captures local spatial dependencies and enhance the model's ability to model real-world noise distributions. Additionally, the Frequency Mix (FMix) module extracting frequency-domain features is designed to isolate noise in high-frequency spectra, and is integrated with spatial representations through a multi-view learning process. To improve computational efficiency, the Bidirectional WKV (BiWKV) mechanism is adopted, enabling full pixel-sequence interaction with linear complexity while overcoming the causal selection constraints. The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40\%. Qualitative results further demonstrate the ability of our model to restore fine details in various scenes.
comment: Accepted by IJCAI 2025, code will be available at https://github.com/Seeker98/CRWKV
Visually-Guided Linguistic Disambiguation for Monocular Depth Scale Recovery
We propose a robust method for monocular depth scale recovery. Monocular depth estimation can be divided into two main directions: (1) relative depth estimation, which provides normalized or inverse depth without scale information, and (2) metric depth estimation, which involves recovering depth with absolute scale. To obtain absolute scale information for practical downstream tasks, utilizing textual information to recover the scale of a relative depth map is a highly promising approach. However, since a single image can have multiple descriptions from different perspectives or with varying styles, it has been shown that different textual descriptions can significantly affect the scale recovery process. To address this issue, our method, VGLD, stabilizes the influence of textual information by incorporating high-level semantic information from the corresponding image alongside the textual description. This approach resolves textual ambiguities and robustly outputs a set of linear transformation parameters (scalars) that can be globally applied to the relative depth map, ultimately generating depth predictions with metric-scale accuracy. We validate our method across several popular relative depth models(MiDas, DepthAnything), using both indoor scenes (NYUv2) and outdoor scenes (KITTI). Our results demonstrate that VGLD functions as a universal alignment module when trained on multiple datasets, achieving strong performance even in zero-shot scenarios. Code is available at: https://github.com/pakinwu/VGLD.
comment: 21 pages, conference
Structure Causal Models and LLMs Integration in Medical Visual Question Answering
Medical Visual Question Answering (MedVQA) aims to answer medical questions according to medical images. However, the complexity of medical data leads to confounders that are difficult to observe, so bias between images and questions is inevitable. Such cross-modal bias makes it challenging to infer medically meaningful answers. In this work, we propose a causal inference framework for the MedVQA task, which effectively eliminates the relative confounding effect between the image and the question to ensure the precision of the question-answering (QA) session. We are the first to introduce a novel causal graph structure that represents the interaction between visual and textual elements, explicitly capturing how different questions influence visual features. During optimization, we apply the mutual information to discover spurious correlations and propose a multi-variable resampling front-door adjustment method to eliminate the relative confounding effect, which aims to align features based on their true causal relevance to the question-answering task. In addition, we also introduce a prompt strategy that combines multiple prompt forms to improve the model's ability to understand complex medical data and answer accurately. Extensive experiments on three MedVQA datasets demonstrate that 1) our method significantly improves the accuracy of MedVQA, and 2) our method achieves true causal correlations in the face of complex medical data.
comment: Accepted by IEEE TMI 2025
Dance of Fireworks: An Interactive Broadcast Gymnastics Training System Based on Pose Estimation
This study introduces Dance of Fireworks, an interactive system designed to combat sedentary health risks by enhancing engagement in radio calisthenics. Leveraging mobile device cameras and lightweight pose estimation (PoseNet/TensorFlow Lite), the system extracts body keypoints, computes joint angles, and compares them with standardized motions to deliver real-time corrective feedback. To incentivize participation, it dynamically maps users' movements (such as joint angles and velocity) to customizable fireworks animations, rewarding improved accuracy with richer visual effects. Experiments involving 136 participants demonstrated a significant reduction in average joint angle errors from 21.3 degrees to 9.8 degrees (p < 0.01) over four sessions, with 93.4 percent of users affirming its exercise-promoting efficacy and 85.4 percent praising its entertainment value. The system operates without predefined motion templates or specialised hardware, enabling seamless integration into office environments. Future enhancements will focus on improving pose recognition accuracy, reducing latency, and adding features such as multiplayer interaction and music synchronisation. This work presents a cost-effective, engaging solution to promote physical activity in sedentary populations.
comment: 21 pages, 13 figures
Multimodal Deep Learning for Stroke Prediction and Detection using Retinal Imaging and Clinical Data
Stroke is a major public health problem, affecting millions worldwide. Deep learning has recently demonstrated promise for enhancing the diagnosis and risk prediction of stroke. However, existing methods rely on costly medical imaging modalities, such as computed tomography. Recent studies suggest that retinal imaging could offer a cost-effective alternative for cerebrovascular health assessment due to the shared clinical pathways between the retina and the brain. Hence, this study explores the impact of leveraging retinal images and clinical data for stroke detection and risk prediction. We propose a multimodal deep neural network that processes Optical Coherence Tomography (OCT) and infrared reflectance retinal scans, combined with clinical data, such as demographics, vital signs, and diagnosis codes. We pretrained our model using a self-supervised learning framework using a real-world dataset consisting of $37$ k scans, and then fine-tuned and evaluated the model using a smaller labeled subset. Our empirical findings establish the predictive ability of the considered modalities in detecting lasting effects in the retina associated with acute stroke and forecasting future risk within a specific time horizon. The experimental results demonstrate the effectiveness of our proposed framework by achieving $5$\% AUROC improvement as compared to the unimodal image-only baseline, and $8$\% improvement compared to an existing state-of-the-art foundation model. In conclusion, our study highlights the potential of retinal imaging in identifying high-risk patients and improving long-term outcomes.
Grasp the Graph (GtG) 2.0: Ensemble of GNNs for High-Precision Grasp Pose Detection in Clutter
Grasp pose detection in cluttered, real-world environments remains a significant challenge due to noisy and incomplete sensory data combined with complex object geometries. This paper introduces Grasp the Graph 2.0 (GtG 2.0) method, a lightweight yet highly effective hypothesis-and-test robotics grasping framework which leverages an ensemble of Graph Neural Networks for efficient geometric reasoning from point cloud data. Building on the success of GtG 1.0, which demonstrated the potential of Graph Neural Networks for grasp detection but was limited by assumptions of complete, noise-free point clouds and 4-Dof grasping, GtG 2.0 employs a conventional Grasp Pose Generator to efficiently produce 7-Dof grasp candidates. Candidates are assessed with an ensemble Graph Neural Network model which includes points within the gripper jaws (inside points) and surrounding contextual points (outside points). This improved representation boosts grasp detection performance over previous methods using the same generator. GtG 2.0 shows up to a 35% improvement in Average Precision on the GraspNet-1Billion benchmark compared to hypothesis-and-test and Graph Neural Network-based methods, ranking it among the top three frameworks. Experiments with a 3-Dof Delta Parallel robot and Kinect-v1 camera show a success rate of 91% and a clutter completion rate of 100%, demonstrating its flexibility and reliability.
comment: 9 Pages, 6 figures
Sim2Real in endoscopy segmentation with a novel structure aware image translation
Automatic segmentation of anatomical landmarks in endoscopic images can provide assistance to doctors and surgeons for diagnosis, treatments or medical training. However, obtaining the annotations required to train commonly used supervised learning methods is a tedious and difficult task, in particular for real images. While ground truth annotations are easier to obtain for synthetic data, models trained on such data often do not generalize well to real data. Generative approaches can add realistic texture to it, but face difficulties to maintain the structure of the original scene. The main contribution in this work is a novel image translation model that adds realistic texture to simulated endoscopic images while keeping the key scene layout information. Our approach produces realistic images in different endoscopy scenarios. We demonstrate these images can effectively be used to successfully train a model for a challenging end task without any real labeled data. In particular, we demonstrate our approach for the task of fold segmentation in colonoscopy images. Folds are key anatomical landmarks that can occlude parts of the colon mucosa and possible polyps. Our approach generates realistic images maintaining the shape and location of the original folds, after the image-style-translation, better than existing methods. We run experiments both on a novel simulated dataset for fold segmentation, and real data from the EndoMapper (EM) dataset. All our new generated data and new EM metadata is being released to facilitate further research, as no public benchmark is currently available for the task of fold segmentation.
MCCD: Multi-Agent Collaboration-based Compositional Diffusion for Complex Text-to-Image Generation
Diffusion models have shown excellent performance in text-to-image generation. Nevertheless, existing methods often suffer from performance bottlenecks when handling complex prompts that involve multiple objects, characteristics, and relations. Therefore, we propose a Multi-agent Collaboration-based Compositional Diffusion (MCCD) for text-to-image generation for complex scenes. Specifically, we design a multi-agent collaboration-based scene parsing module that generates an agent system comprising multiple agents with distinct tasks, utilizing MLLMs to extract various scene elements effectively. In addition, Hierarchical Compositional diffusion utilizes a Gaussian mask and filtering to refine bounding box regions and enhance objects through region enhancement, resulting in the accurate and high-fidelity generation of complex scenes. Comprehensive experiments demonstrate that our MCCD significantly improves the performance of the baseline models in a training-free manner, providing a substantial advantage in complex scene generation.
DeepSparse: A Foundation Model for Sparse-View CBCT Reconstruction
Cone-beam computed tomography (CBCT) is a critical 3D imaging technology in the medical field, while the high radiation exposure required for high-quality imaging raises significant concerns, particularly for vulnerable populations. Sparse-view reconstruction reduces radiation by using fewer X-ray projections while maintaining image quality, yet existing methods face challenges such as high computational demands and poor generalizability to different datasets. To overcome these limitations, we propose DeepSparse, the first foundation model for sparse-view CBCT reconstruction, featuring DiCE (Dual-Dimensional Cross-Scale Embedding), a novel network that integrates multi-view 2D features and multi-scale 3D features. Additionally, we introduce the HyViP (Hybrid View Sampling Pretraining) framework, which pretrains the model on large datasets with both sparse-view and dense-view projections, and a two-step finetuning strategy to adapt and refine the model for new datasets. Extensive experiments and ablation studies demonstrate that our proposed DeepSparse achieves superior reconstruction quality compared to state-of-the-art methods, paving the way for safer and more efficient CBCT imaging.
Detect, Classify, Act: Categorizing Industrial Anomalies with Multi-Modal Large Language Models CVPR 2025
Recent advances in visual industrial anomaly detection have demonstrated exceptional performance in identifying and segmenting anomalous regions while maintaining fast inference speeds. However, anomaly classification-distinguishing different types of anomalies-remains largely unexplored despite its critical importance in real-world inspection tasks. To address this gap, we propose VELM, a novel LLM-based pipeline for anomaly classification. Given the critical importance of inference speed, we first apply an unsupervised anomaly detection method as a vision expert to assess the normality of an observation. If an anomaly is detected, the LLM then classifies its type. A key challenge in developing and evaluating anomaly classification models is the lack of precise annotations of anomaly classes in existing datasets. To address this limitation, we introduce MVTec-AC and VisA-AC, refined versions of the widely used MVTec-AD and VisA datasets, which include accurate anomaly class labels for rigorous evaluation. Our approach achieves a state-of-the-art anomaly classification accuracy of 80.4% on MVTec-AD, exceeding the prior baselines by 5%, and 84% on MVTec-AC, demonstrating the effectiveness of VELM in understanding and categorizing anomalies. We hope our methodology and benchmark inspire further research in anomaly classification, helping bridge the gap between detection and comprehensive anomaly characterization.
comment: Accepted as a spotlight presentation paper at the VAND Workshop, CVPR 2025. 10 pages, 6 figures
DELTA: Dense Depth from Events and LiDAR using Transformer's Attention CVPR 2025
Event cameras and LiDARs provide complementary yet distinct data: respectively, asynchronous detections of changes in lighting versus sparse but accurate depth information at a fixed rate. To this day, few works have explored the combination of these two modalities. In this article, we propose a novel neural-network-based method for fusing event and LiDAR data in order to estimate dense depth maps. Our architecture, DELTA, exploits the concepts of self- and cross-attention to model the spatial and temporal relations within and between the event and LiDAR data. Following a thorough evaluation, we demonstrate that DELTA sets a new state of the art in the event-based depth estimation problem, and that it is able to reduce the errors up to four times for close ranges compared to the previous SOTA.
comment: Accepted for the CVPR 2025 Workshop on Event-based Vision. For the project page, see https://vbrebion.github.io/DELTA/
RGBX-DiffusionDet: A Framework for Multi-Modal RGB-X Object Detection Using DiffusionDet
This work introduces RGBX-DiffusionDet, an object detection framework extending the DiffusionDet model to fuse the heterogeneous 2D data (X) with RGB imagery via an adaptive multimodal encoder. To enable cross-modal interaction, we design the dynamic channel reduction within a convolutional block attention module (DCR-CBAM), which facilitates cross-talk between subnetworks by dynamically highlighting salient channel features. Furthermore, the dynamic multi-level aggregation block (DMLAB) is proposed to refine spatial feature representations through adaptive multiscale fusion. Finally, novel regularization losses that enforce channel saliency and spatial selectivity are introduced, leading to compact and discriminative feature embeddings. Extensive experiments using RGB-Depth (KITTI), a novel annotated RGB-Polarimetric dataset, and RGB-Infrared (M$^3$FD) benchmark dataset were conducted. We demonstrate consistent superiority of the proposed approach over the baseline RGB-only DiffusionDet. The modular architecture maintains the original decoding complexity, ensuring efficiency. These results establish the proposed RGBX-DiffusionDet as a flexible multimodal object detection approach, providing new insights into integrating diverse 2D sensing modalities into diffusion-based detection pipelines.
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey will be available on GitHub soon.
comment: This work is still in progress
Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identfication
Unsupervised visible-infrared person re-identification (UVI-ReID) aims to retrieve pedestrian images across different modalities without costly annotations, but faces challenges due to the modality gap and lack of supervision. Existing methods often adopt self-training with clustering-generated pseudo-labels but implicitly assume these labels are always correct. In practice, however, this assumption fails due to inevitable pseudo-label noise, which hinders model learning. To address this, we introduce a new learning paradigm that explicitly considers Pseudo-Label Noise (PLN), characterized by three key challenges: noise overfitting, error accumulation, and noisy cluster correspondence. To this end, we propose a novel Robust Duality Learning framework (RoDE) for UVI-ReID to mitigate the effects of noisy pseudo-labels. First, to combat noise overfitting, a Robust Adaptive Learning mechanism (RAL) is proposed to dynamically emphasize clean samples while down-weighting noisy ones. Second, to alleviate error accumulation-where the model reinforces its own mistakes-RoDE employs dual distinct models that are alternately trained using pseudo-labels from each other, encouraging diversity and preventing collapse. However, this dual-model strategy introduces misalignment between clusters across models and modalities, creating noisy cluster correspondence. To resolve this, we introduce Cluster Consistency Matching (CCM), which aligns clusters across models and modalities by measuring cross-cluster similarity. Extensive experiments on three benchmarks demonstrate the effectiveness of RoDE.
Marker-Based Extrinsic Calibration Method for Accurate Multi-Camera 3D Reconstruction
Accurate 3D reconstruction using multi-camera RGB-D systems critically depends on precise extrinsic calibration to achieve proper alignment between captured views. In this paper, we introduce an iterative extrinsic calibration method that leverages the geometric constraints provided by a three-dimensional marker to significantly improve calibration accuracy. Our proposed approach systematically segments and refines marker planes through clustering, regression analysis, and iterative reassignment techniques, ensuring robust geometric correspondence across camera views. We validate our method comprehensively in both controlled environments and practical real-world settings within the Tech4Diet project, aimed at modeling the physical progression of patients undergoing nutritional treatments. Experimental results demonstrate substantial reductions in alignment errors, facilitating accurate and reliable 3D reconstructions.
RobSurv: Vector Quantization-Based Multi-Modal Learning for Robust Cancer Survival Prediction
Cancer survival prediction using multi-modal medical imaging presents a critical challenge in oncology, mainly due to the vulnerability of deep learning models to noise and protocol variations across imaging centers. Current approaches struggle to extract consistent features from heterogeneous CT and PET images, limiting their clinical applicability. We address these challenges by introducing RobSurv, a robust deep-learning framework that leverages vector quantization for resilient multi-modal feature learning. The key innovation of our approach lies in its dual-path architecture: one path maps continuous imaging features to learned discrete codebooks for noise-resistant representation, while the parallel path preserves fine-grained details through continuous feature processing. This dual representation is integrated through a novel patch-wise fusion mechanism that maintains local spatial relationships while capturing global context via Transformer-based processing. In extensive evaluations across three diverse datasets (HECKTOR, H\&N1, and NSCLC Radiogenomics), RobSurv demonstrates superior performance, achieving concordance index of 0.771, 0.742, and 0.734 respectively - significantly outperforming existing methods. Most notably, our model maintains robust performance even under severe noise conditions, with performance degradation of only 3.8-4.5\% compared to 8-12\% in baseline methods. These results, combined with strong generalization across different cancer types and imaging protocols, establish RobSurv as a promising solution for reliable clinical prognosis that can enhance treatment planning and patient care.
Text to Image Generation and Editing: A Survey
Text-to-image generation (T2I) refers to the text-guided generation of high-quality images. In the past few years, T2I has attracted widespread attention and numerous works have emerged. In this survey, we comprehensively review 141 works conducted from 2021 to 2024. First, we introduce four foundation model architectures of T2I (autoregression, non-autoregression, GAN and diffusion) and the commonly used key technologies (autoencoder, attention and classifier-free guidance). Secondly, we systematically compare the methods of these studies in two directions, T2I generation and T2I editing, including the encoders and the key technologies they use. In addition, we also compare the performance of these researches side by side in terms of datasets, evaluation metrics, training resources, and inference speed. In addition to the four foundation models, we survey other works on T2I, such as energy-based models and recent Mamba and multimodality. We also investigate the potential social impact of T2I and provide some solutions. Finally, we propose unique insights of improving the performance of T2I models and possible future development directions. In summary, this survey is the first systematic and comprehensive overview of T2I, aiming to provide a valuable guide for future researchers and stimulate continued progress in this field.
comment: 49 pages,3 figures,3 tables
Corr2Distrib: Making Ambiguous Correspondences an Ally to Predict Reliable 6D Pose Distributions
We introduce Corr2Distrib, the first correspondence-based method which estimates a 6D camera pose distribution from an RGB image, explaining the observations. Indeed, symmetries and occlusions introduce visual ambiguities, leading to multiple valid poses. While a few recent methods tackle this problem, they do not rely on local correspondences which, according to the BOP Challenge, are currently the most effective way to estimate a single 6DoF pose solution. Using correspondences to estimate a pose distribution is not straightforward, since ambiguous correspondences induced by visual ambiguities drastically decrease the performance of PnP. With Corr2Distrib, we turn these ambiguities into an advantage to recover all valid poses. Corr2Distrib first learns a symmetry-aware representation for each 3D point on the object's surface, characterized by a descriptor and a local frame. This representation enables the generation of 3DoF rotation hypotheses from single 2D-3D correspondences. Next, we refine these hypotheses into a 6DoF pose distribution using PnP and pose scoring. Our experimental evaluations on complex non-synthetic scenes show that Corr2Distrib outperforms state-of-the-art solutions for both pose distribution estimation and single pose estimation from an RGB image, demonstrating the potential of correspondences-based approaches.
comment: 8 pages, 5 figures
Finger Pose Estimation for Under-screen Fingerprint Sensor
Two-dimensional pose estimation plays a crucial role in fingerprint recognition by facilitating global alignment and reduce pose-induced variations. However, existing methods are still unsatisfactory when handling with large angle or small area inputs. These limitations are particularly pronounced on fingerprints captured by under-screen fingerprint sensors in smartphones. In this paper, we present a novel dual-modal input based network for under-screen fingerprint pose estimation. Our approach effectively integrates two distinct yet complementary modalities: texture details extracted from ridge patches through the under-screen fingerprint sensor, and rough contours derived from capacitive images obtained via the touch screen. This collaborative integration endows our network with more comprehensive and discriminative information, substantially improving the accuracy and stability of pose estimation. A decoupled probability distribution prediction task is designed, instead of the traditional supervised forms of numerical regression or heatmap voting, to facilitate the training process. Additionally, we incorporate a Mixture of Experts (MoE) based feature fusion mechanism and a relationship driven cross-domain knowledge transfer strategy to further strengthen feature extraction and fusion capabilities. Extensive experiments are conducted on several public datasets and two private datasets. The results indicate that our method is significantly superior to previous state-of-the-art (SOTA) methods and remarkably boosts the recognition ability of fingerprint recognition algorithms. Our code is available at https://github.com/XiongjunGuan/DRACO.
Point Cloud Recombination: Systematic Real Data Augmentation Using Robotic Targets for LiDAR Perception Validation
The validation of LiDAR-based perception of intelligent mobile systems operating in open-world applications remains a challenge due to the variability of real environmental conditions. Virtual simulations allow the generation of arbitrary scenes under controlled conditions but lack physical sensor characteristics, such as intensity responses or material-dependent effects. In contrast, real-world data offers true sensor realism but provides less control over influencing factors, hindering sufficient validation. Existing approaches address this problem with augmentation of real-world point cloud data by transferring objects between scenes. However, these methods do not consider validation and remain limited in controllability because they rely on empirical data. We solve these limitations by proposing Point Cloud Recombination, which systematically augments captured point cloud scenes by integrating point clouds acquired from physical target objects measured in controlled laboratory environments. Thus enabling the creation of vast amounts and varieties of repeatable, physically accurate test scenes with respect to phenomena-aware occlusions with registered 3D meshes. Using the Ouster OS1-128 Rev7 sensor, we demonstrate the augmentation of real-world urban and rural scenes with humanoid targets featuring varied clothing and poses, for repeatable positioning. We show that the recombined scenes closely match real sensor outputs, enabling targeted testing, scalable failure analysis, and improved system safety. By providing controlled yet sensor-realistic data, our method enables trustworthy conclusions about the limitations of specific sensors in compound with their algorithms, e.g., object detection.
comment: Pre-print for IEEE IAVVC 2025
Ming-Lite-Uni: Advancements in Unified Architecture for Natural Multimodal Interaction
We introduce Ming-Lite-Uni, an open-source multimodal framework featuring a newly designed unified visual generator and a native multimodal autoregressive model tailored for unifying vision and language. Specifically, this project provides an open-source implementation of the integrated MetaQueries and M2-omni framework, while introducing the novel multi-scale learnable tokens and multi-scale representation alignment strategy. By leveraging a fixed MLLM and a learnable diffusion model, Ming-Lite-Uni enables native multimodal AR models to perform both text-to-image generation and instruction based image editing tasks, expanding their capabilities beyond pure visual understanding. Our experimental results demonstrate the strong performance of Ming-Lite-Uni and illustrate the impressive fluid nature of its interactive process. All code and model weights are open-sourced to foster further exploration within the community. Notably, this work aligns with concurrent multimodal AI milestones - such as ChatGPT-4o with native image generation updated in March 25, 2025 - underscoring the broader significance of unified models like Ming-Lite-Uni on the path toward AGI. Ming-Lite-Uni is in alpha stage and will soon be further refined.
comment: https://github.com/inclusionAI/Ming/tree/main/Ming-unify
Timing Is Everything: Finding the Optimal Fusion Points in Multimodal Medical Imaging
Multimodal deep learning harnesses diverse imaging modalities, such as MRI sequences, to enhance diagnostic accuracy in medical imaging. A key challenge is determining the optimal timing for integrating these modalities-specifically, identifying the network layers where fusion modules should be inserted. Current approaches often rely on manual tuning or exhaustive search, which are computationally expensive without any guarantee of converging to optimal results. We propose a sequential forward search algorithm that incrementally activates and evaluates candidate fusion modules at different layers of a multimodal network. At each step, the algorithm retrains from previously learned weights and compares validation loss to identify the best-performing configuration. This process systematically reduces the search space, enabling efficient identification of the optimal fusion timing without exhaustively testing all possible module placements. The approach is validated on two multimodal MRI datasets, each addressing different classification tasks. Our algorithm consistently identified configurations that outperformed unimodal baselines, late fusion, and a brute-force ensemble of all potential fusion placements. These architectures demonstrated superior accuracy, F-score, and specificity while maintaining competitive or improved AUC values. Furthermore, the sequential nature of the search significantly reduced computational overhead, making the optimization process more practical. By systematically determining the optimal timing to fuse imaging modalities, our method advances multimodal deep learning for medical imaging. It provides an efficient and robust framework for fusion optimization, paving the way for improved clinical decision-making and more adaptable, scalable architectures in medical AI applications.
Recent Advances in Out-of-Distribution Detection with CLIP-Like Models: A Survey
Out-of-distribution detection (OOD) is a pivotal task for real-world applications that trains models to identify samples that are distributionally different from the in-distribution (ID) data during testing. Recent advances in AI, particularly Vision-Language Models (VLMs) like CLIP, have revolutionized OOD detection by shifting from traditional unimodal image detectors to multimodal image-text detectors. This shift has inspired extensive research; however, existing categorization schemes (e.g., few- or zero-shot types) still rely solely on the availability of ID images, adhering to a unimodal paradigm. To better align with CLIP's cross-modal nature, we propose a new categorization framework rooted in both image and text modalities. Specifically, we categorize existing methods based on how visual and textual information of OOD data is utilized within image + text modalities, and further divide them into four groups: OOD Images (i.e., outliers) Seen or Unseen, and OOD Texts (i.e., learnable vectors or class names) Known or Unknown, across two training strategies (i.e., train-free or training-required). More importantly, we discuss open problems in CLIP-like OOD detection and highlight promising directions for future research, including cross-domain integration, practical applications, and theoretical understanding.
Token Coordinated Prompt Attention is Needed for Visual Prompting
Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.
Estimating Commonsense Scene Composition on Belief Scene Graphs ICRA25
This work establishes the concept of commonsense scene composition, with a focus on extending Belief Scene Graphs by estimating the spatial distribution of unseen objects. Specifically, the commonsense scene composition capability refers to the understanding of the spatial relationships among related objects in the scene, which in this article is modeled as a joint probability distribution for all possible locations of the semantic object class. The proposed framework includes two variants of a Correlation Information (CECI) model for learning probability distributions: (i) a baseline approach based on a Graph Convolutional Network, and (ii) a neuro-symbolic extension that integrates a spatial ontology based on Large Language Models (LLMs). Furthermore, this article provides a detailed description of the dataset generation process for such tasks. Finally, the framework has been validated through multiple runs on simulated data, as well as in a real-world indoor environment, demonstrating its ability to spatially interpret scenes across different room types.
comment: Accepted at ICRA25
Diagnostic Uncertainty in Pneumonia Detection using CNN MobileNetV2 and CNN from Scratch
Pneumonia Diagnosis, though it is crucial for an effective treatment, it can be hampered by uncertainty. This uncertainty starts to arise due to some factors like atypical presentations, limitations of diagnostic tools such as chest X-rays, and the presence of co-existing respiratory conditions. This research proposes one of the supervised learning methods, CNN. Using MobileNetV2 as the pre-trained one with ResNet101V2 architecture and using Keras API as the built from scratch model, for identifying lung diseases especially pneumonia. The datasets used in this research were obtained from the website through Kaggle. The result shows that by implementing CNN MobileNetV2 and CNN from scratch the result is promising. While validating data, MobileNetV2 performs with stability and minimal overfitting, while the training accuracy increased to 84.87% later it slightly decreased to 78.95%, with increasing validation loss from 0.499 to 0.6345. Nonetheless, MobileNetV2 is more stable. Although it takes more time to train each epoch. Meanwhile, after the 10th epoch, the Scratch model displayed more instability and overfitting despite having higher validation accuracy, training accuracy decreased significantly to 78.12% and the validation loss increased from 0.5698 to 1.1809. With these results, ResNet101V2 offers stability, and the Scratch model offers high accuracy.
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.
MetaScenes: Towards Automated Replica Creation for Real-world 3D Scans CVPR 2025
Embodied AI (EAI) research requires high-quality, diverse 3D scenes to effectively support skill acquisition, sim-to-real transfer, and generalization. Achieving these quality standards, however, necessitates the precise replication of real-world object diversity. Existing datasets demonstrate that this process heavily relies on artist-driven designs, which demand substantial human effort and present significant scalability challenges. To scalably produce realistic and interactive 3D scenes, we first present MetaScenes, a large-scale, simulatable 3D scene dataset constructed from real-world scans, which includes 15366 objects spanning 831 fine-grained categories. Then, we introduce Scan2Sim, a robust multi-modal alignment model, which enables the automated, high-quality replacement of assets, thereby eliminating the reliance on artist-driven designs for scaling 3D scenes. We further propose two benchmarks to evaluate MetaScenes: a detailed scene synthesis task focused on small item layouts for robotic manipulation and a domain transfer task in vision-and-language navigation (VLN) to validate cross-domain transfer. Results confirm MetaScene's potential to enhance EAI by supporting more generalizable agent learning and sim-to-real applications, introducing new possibilities for EAI research. Project website: https://meta-scenes.github.io/.
comment: CVPR 2025
An Arbitrary-Modal Fusion Network for Volumetric Cranial Nerves Tract Segmentation
The segmentation of cranial nerves (CNs) tract provides a valuable quantitative tool for the analysis of the morphology and trajectory of individual CNs. Multimodal CNs tract segmentation networks, e.g., CNTSeg, which combine structural Magnetic Resonance Imaging (MRI) and diffusion MRI, have achieved promising segmentation performance. However, it is laborious or even infeasible to collect complete multimodal data in clinical practice due to limitations in equipment, user privacy, and working conditions. In this work, we propose a novel arbitrary-modal fusion network for volumetric CNs tract segmentation, called CNTSeg-v2, which trains one model to handle different combinations of available modalities. Instead of directly combining all the modalities, we select T1-weighted (T1w) images as the primary modality due to its simplicity in data acquisition and contribution most to the results, which supervises the information selection of other auxiliary modalities. Our model encompasses an Arbitrary-Modal Collaboration Module (ACM) designed to effectively extract informative features from other auxiliary modalities, guided by the supervision of T1w images. Meanwhile, we construct a Deep Distance-guided Multi-stage (DDM) decoder to correct small errors and discontinuities through signed distance maps to improve segmentation accuracy. We evaluate our CNTSeg-v2 on the Human Connectome Project (HCP) dataset and the clinical Multi-shell Diffusion MRI (MDM) dataset. Extensive experimental results show that our CNTSeg-v2 achieves state-of-the-art segmentation performance, outperforming all competing methods.
SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.
comment: Code, Data and Models are available at: https://github.com/bytedance/SuperEdit
Sharpness-Aware Minimization with Z-Score Gradient Filtering for Neural Networks
Generalizing well in deep neural networks remains a core challenge, particularly due to their tendency to converge to sharp minima that degrade robustness. Sharpness-Aware Minimization (SAM) mitigates this by seeking flatter minima but perturbs parameters using the full gradient, which can include statistically insignificant directions. We propose ZSharp, a simple yet effective extension to SAM that applies layer-wise Z-score normalization followed by percentile-based filtering to retain only statistically significant gradient components. This selective perturbation aligns updates with curvature-sensitive directions, enhancing generalization without requiring architectural changes. ZSharp introduces only one additional hyperparameter, the percentile threshold, and remains fully compatible with existing SAM variants. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet using ResNet, VGG, and Vision Transformers show that ZSharp consistently outperforms SAM and its variants in test accuracy, particularly on deeper and transformer-based models. These results demonstrate that ZSharp is a principled and lightweight improvement for sharpness-aware optimization.
Quaternion Multi-focus Color Image Fusion
Multi-focus color image fusion refers to integrating multiple partially focused color images to create a single all-in-focus color image. However, existing methods struggle with complex real-world scenarios due to limitations in handling color information and intricate textures. To address these challenges, this paper proposes a quaternion multi-focus color image fusion framework to perform high-quality color image fusion completely in the quaternion domain. This framework introduces 1) a quaternion sparse decomposition model to jointly learn fine-scale image details and structure information of color images in an iterative fashion for high-precision focus detection, 2) a quaternion base-detail fusion strategy to individually fuse base-scale and detail-scale results across multiple color images for preserving structure and detail information, and 3) a quaternion structural similarity refinement strategy to adaptively select optimal patches from initial fusion results and obtain the final fused result for preserving fine details and ensuring spatially consistent outputs. Extensive experiments demonstrate that the proposed framework outperforms state-of-the-art methods.
Quaternion Infrared Visible Image Fusion
Visible images provide rich details and color information only under well-lighted conditions while infrared images effectively highlight thermal targets under challenging conditions such as low visibility and adverse weather. Infrared-visible image fusion aims to integrate complementary information from infrared and visible images to generate a high-quality fused image. Existing methods exhibit critical limitations such as neglecting color structure information in visible images and performance degradation when processing low-quality color-visible inputs. To address these issues, we propose a quaternion infrared-visible image fusion (QIVIF) framework to generate high-quality fused images completely in the quaternion domain. QIVIF proposes a quaternion low-visibility feature learning model to adaptively extract salient thermal targets and fine-grained texture details from input infrared and visible images respectively under diverse degraded conditions. QIVIF then develops a quaternion adaptive unsharp masking method to adaptively improve high-frequency feature enhancement with balanced illumination. QIVIF further proposes a quaternion hierarchical Bayesian fusion model to integrate infrared saliency and enhanced visible details to obtain high-quality fused images. Extensive experiments across diverse datasets demonstrate that our QIVIF surpasses state-of-the-art methods under challenging low-visibility conditions.
Sparse Ellipsoidal Radial Basis Function Network for Point Cloud Surface Representation
Point cloud surface representation is a fundamental problem in computer graphics and vision. This paper presents a machine learning approach for approximating the signed distance function (SDF) of a point cloud using sparse ellipsoidal radial basis function networks, enabling a compact and accurate surface representation. Given the SDF values defined on the grid points constructed from the point cloud, our method approximates the SDF accurately with as few ellipsoidal radial basis functions (ERBFs) as possible, i.e., represent the SDF of a point cloud by sparse ERBFs. To balance sparsity and approximation precision, a dynamic multi-objective optimization strategy is introduced, which adaptively adds the regularization terms and jointly optimizes the weights, centers, shapes, and orientations of ERBFs. To improve computational efficiency, a nearest-neighbor-based data structure is employed, restricting function calculations to points near each Gaussian kernel center. The computations for each kernel are further parallelized on CUDA, which significantly improves the optimization speed. Additionally, a hierarchical octree-based refinement strategy is designed for training. Specifically, the initialization and optimization of network parameters are conducted using coarse grid points in the octree lattice structure. Subsequently, fine lattice points are progressively incorporated to accelerate model convergence and enhance training efficiency. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms previous sparse representation approaches in terms of accuracy, robustness, and computational efficiency. The corresponding code is publicly available at https://github.com/lianbobo/SE-RBFNet.git.
6D Pose Estimation on Spoons and Hands
Accurate dietary monitoring is essential for promoting healthier eating habits. A key area of research is how people interact and consume food using utensils and hands. By tracking their position and orientation, it is possible to estimate the volume of food being consumed, or monitor eating behaviours, highly useful insights into nutritional intake that can be more reliable than popular methods such as self-reporting. Hence, this paper implements a system that analyzes stationary video feed of people eating, using 6D pose estimation to track hand and spoon movements to capture spatial position and orientation. In doing so, we examine the performance of two state-of-the-art (SOTA) video object segmentation (VOS) models, both quantitatively and qualitatively, and identify main sources of error within the system.
VAEmo: Efficient Representation Learning for Visual-Audio Emotion with Knowledge Injection
Audiovisual emotion recognition (AVER) aims to infer human emotions from nonverbal visual-audio (VA) cues, offering modality-complementary and language-agnostic advantages. However, AVER remains challenging due to the inherent ambiguity of emotional expressions, cross-modal expressive disparities, and the scarcity of reliably annotated data. Recent self-supervised AVER approaches have introduced strong multimodal representations, yet they predominantly rely on modality-specific encoders and coarse content-level alignment, limiting fine-grained emotional semantic modeling. To address these issues, we propose VAEmo, an efficient two-stage framework for emotion-centric joint VA representation learning with external knowledge injection. In Stage 1, a unified and lightweight representation network is pre-trained on large-scale speaker-centric VA corpora via masked reconstruction and contrastive objectives, mitigating the modality gap and learning expressive, complementary representations without emotion labels. In Stage 2, multimodal large language models automatically generate detailed affective descriptions according to our well-designed chain-of-thought prompting for only a small subset of VA samples; these rich textual semantics are then injected by aligning their corresponding embeddings with VA representations through dual-path contrastive learning, further bridging the emotion gap. Extensive experiments on multiple downstream AVER benchmarks show that VAEmo achieves state-of-the-art performance with a compact design, highlighting the benefit of unified cross-modal encoding and emotion-aware semantic guidance for efficient, generalizable VA emotion representations.
comment: Source code and pre-trained models will be available at https://github.com/MSA-LMC/VAEmo
TeDA: Boosting Vision-Lanuage Models for Zero-Shot 3D Object Retrieval via Testing-time Distribution Alignment ICMR 2025
Learning discriminative 3D representations that generalize well to unknown testing categories is an emerging requirement for many real-world 3D applications. Existing well-established methods often struggle to attain this goal due to insufficient 3D training data from broader concepts. Meanwhile, pre-trained large vision-language models (e.g., CLIP) have shown remarkable zero-shot generalization capabilities. Yet, they are limited in extracting suitable 3D representations due to substantial gaps between their 2D training and 3D testing distributions. To address these challenges, we propose Testing-time Distribution Alignment (TeDA), a novel framework that adapts a pretrained 2D vision-language model CLIP for unknown 3D object retrieval at test time. To our knowledge, it is the first work that studies the test-time adaptation of a vision-language model for 3D feature learning. TeDA projects 3D objects into multi-view images, extracts features using CLIP, and refines 3D query embeddings with an iterative optimization strategy by confident query-target sample pairs in a self-boosting manner. Additionally, TeDA integrates textual descriptions generated by a multimodal language model (InternVL) to enhance 3D object understanding, leveraging CLIP's aligned feature space to fuse visual and textual cues. Extensive experiments on four open-set 3D object retrieval benchmarks demonstrate that TeDA greatly outperforms state-of-the-art methods, even those requiring extensive training. We also experimented with depth maps on Objaverse-LVIS, further validating its effectiveness. Code is available at https://github.com/wangzhichuan123/TeDA.
comment: Accepted by ICMR 2025
Generative Sign-description Prompts with Multi-positive Contrastive Learning for Sign Language Recognition
Sign language recognition (SLR) faces fundamental challenges in creating accurate annotations due to the inherent complexity of simultaneous manual and non-manual signals. To the best of our knowledge, this is the first work to integrate generative large language models (LLMs) into SLR tasks. We propose a novel Generative Sign-description Prompts Multi-positive Contrastive learning (GSP-MC) method that leverages retrieval-augmented generation (RAG) with domain-specific LLMs, incorporating multi-step prompt engineering and expert-validated sign language corpora to produce precise multipart descriptions. The GSP-MC method also employs a dual-encoder architecture to bidirectionally align hierarchical skeleton features with multiple text descriptions (global, synonym, and part level) through probabilistic matching. Our approach combines global and part-level losses, optimizing KL divergence to ensure robust alignment across all relevant text-skeleton pairs while capturing both sign-level semantics and detailed part dynamics. Experiments demonstrate state-of-the-art performance against existing methods on the Chinese SLR500 (reaching 97.1%) and Turkish AUTSL datasets (97.07% accuracy). The method's cross-lingual effectiveness highlight its potential for developing inclusive communication technologies.
comment: 9 pages, 6 figures
Sim2Real Transfer for Vision-Based Grasp Verification
The verification of successful grasps is a crucial aspect of robot manipulation, particularly when handling deformable objects. Traditional methods relying on force and tactile sensors often struggle with deformable and non-rigid objects. In this work, we present a vision-based approach for grasp verification to determine whether the robotic gripper has successfully grasped an object. Our method employs a two-stage architecture; first YOLO-based object detection model to detect and locate the robot's gripper and then a ResNet-based classifier determines the presence of an object. To address the limitations of real-world data capture, we introduce HSR-GraspSynth, a synthetic dataset designed to simulate diverse grasping scenarios. Furthermore, we explore the use of Visual Question Answering capabilities as a zero-shot baseline to which we compare our model. Experimental results demonstrate that our approach achieves high accuracy in real-world environments, with potential for integration into grasping pipelines. Code and datasets are publicly available at https://github.com/pauamargant/HSR-GraspSynth .
comment: Accepted at Austrian Robotics Workshop 2025
An Explainable Anomaly Detection Framework for Monitoring Depression and Anxiety Using Consumer Wearable Devices
Continuous monitoring of behavior and physiology via wearable devices offers a novel, objective method for the early detection of worsening depression and anxiety. In this study, we present an explainable anomaly detection framework that identifies clinically meaningful increases in symptom severity using consumer-grade wearable data. Leveraging data from 2,023 participants with defined healthy baselines, our LSTM autoencoder model learned normal health patterns of sleep duration, step count, and resting heart rate. Anomalies were flagged when self-reported depression or anxiety scores increased by >=5 points (a threshold considered clinically significant). The model achieved an adjusted F1-score of 0.80 (precision = 0.73, recall = 0.88) in detecting 393 symptom-worsening episodes across 341 participants, with higher performance observed for episodes involving concurrent depression and anxiety escalation (F1 = 0.84) and for more pronounced symptom changes (>=10-point increases, F1 = 0.85). Model interpretability was supported by SHAP-based analysis, which identified resting heart rate as the most influential feature in 71.4 percentage of detected anomalies, followed by physical activity and sleep. Together, our findings highlight the potential of explainable anomaly detection to enable personalized, scalable, and proactive mental health monitoring in real-world settings.
Dual Prompting for Diverse Count-level PET Denoising
The to-be-denoised positron emission tomography (PET) volumes are inherent with diverse count levels, which imposes challenges for a unified model to tackle varied cases. In this work, we resort to the recently flourished prompt learning to achieve generalizable PET denoising with different count levels. Specifically, we propose dual prompts to guide the PET denoising in a divide-and-conquer manner, i.e., an explicitly count-level prompt to provide the specific prior information and an implicitly general denoising prompt to encode the essential PET denoising knowledge. Then, a novel prompt fusion module is developed to unify the heterogeneous prompts, followed by a prompt-feature interaction module to inject prompts into the features. The prompts are able to dynamically guide the noise-conditioned denoising process. Therefore, we are able to efficiently train a unified denoising model for various count levels, and deploy it to different cases with personalized prompts. We evaluated on 1940 low-count PET 3D volumes with uniformly randomly selected 13-22\% fractions of events from 97 $^{18}$F-MK6240 tau PET studies. It shows our dual prompting can largely improve the performance with informed count-level and outperform the count-conditional model.
comment: Published in IEEE International Symposium on Biomedical Imaging (ISBI) 2025
Lesion-Aware Generative Artificial Intelligence for Virtual Contrast-Enhanced Mammography in Breast Cancer
Contrast-Enhanced Spectral Mammography (CESM) is a dual-energy mammographic technique that improves lesion visibility through the administration of an iodinated contrast agent. It acquires both a low-energy image, comparable to standard mammography, and a high-energy image, which are then combined to produce a dual-energy subtracted image highlighting lesion contrast enhancement. While CESM offers superior diagnostic accuracy compared to standard mammography, its use entails higher radiation exposure and potential side effects associated with the contrast medium. To address these limitations, we propose Seg-CycleGAN, a generative deep learning framework for Virtual Contrast Enhancement in CESM. The model synthesizes high-fidelity dual-energy subtracted images from low-energy images, leveraging lesion segmentation maps to guide the generative process and improve lesion reconstruction. Building upon the standard CycleGAN architecture, Seg-CycleGAN introduces localized loss terms focused on lesion areas, enhancing the synthesis of diagnostically relevant regions. Experiments on the CESM@UCBM dataset demonstrate that Seg-CycleGAN outperforms the baseline in terms of PSNR and SSIM, while maintaining competitive MSE and VIF. Qualitative evaluations further confirm improved lesion fidelity in the generated images. These results suggest that segmentation-aware generative models offer a viable pathway toward contrast-free CESM alternatives.
GIF: Generative Inspiration for Face Recognition at Scale
Aiming to reduce the computational cost of Softmax in massive label space of Face Recognition (FR) benchmarks, recent studies estimate the output using a subset of identities. Although promising, the association between the computation cost and the number of identities in the dataset remains linear only with a reduced ratio. A shared characteristic among available FR methods is the employment of atomic scalar labels during training. Consequently, the input to label matching is through a dot product between the feature vector of the input and the Softmax centroids. Inspired by generative modeling, we present a simple yet effective method that substitutes scalar labels with structured identity code, i.e., a sequence of integers. Specifically, we propose a tokenization scheme that transforms atomic scalar labels into structured identity codes. Then, we train an FR backbone to predict the code for each input instead of its scalar label. As a result, the associated computational cost becomes logarithmic w.r.t. number of identities. We demonstrate the benefits of the proposed method by conducting experiments. In particular, our method outperforms its competitors by 1.52%, and 0.6% at TAR@FAR$=1e-4$ on IJB-B and IJB-C, respectively, while transforming the association between computational cost and the number of identities from linear to logarithmic. See code at https://github.com/msed-Ebrahimi/GIF
NTIRE 2025 Challenge on UGC Video Enhancement: Methods and Results
This paper presents an overview of the NTIRE 2025 Challenge on UGC Video Enhancement. The challenge constructed a set of 150 user-generated content videos without reference ground truth, which suffer from real-world degradations such as noise, blur, faded colors, compression artifacts, etc. The goal of the participants was to develop an algorithm capable of improving the visual quality of such videos. Given the widespread use of UGC on short-form video platforms, this task holds substantial practical importance. The evaluation was based on subjective quality assessment in crowdsourcing, obtaining votes from over 8000 assessors. The challenge attracted more than 25 teams submitting solutions, 7 of which passed the final phase with source code verification. The outcomes may provide insights into the state-of-the-art in UGC video enhancement and highlight emerging trends and effective strategies in this evolving research area. All data, including the processed videos and subjective comparison votes and scores, is made publicly available at https://github.com/msu-video-group/NTIRE25_UGC_Video_Enhancement.
Completing Spatial Transcriptomics Data for Gene Expression Prediction Benchmarking
Spatial Transcriptomics is a groundbreaking technology that integrates histology images with spatially resolved gene expression profiles. Among the various Spatial Transcriptomics techniques available, Visium has emerged as the most widely adopted. However, its accessibility is limited by high costs, the need for specialized expertise, and slow clinical integration. Additionally, gene capture inefficiencies lead to significant dropout, corrupting acquired data. To address these challenges, the deep learning community has explored the gene expression prediction task directly from histology images. Yet, inconsistencies in datasets, preprocessing, and training protocols hinder fair comparisons between models. To bridge this gap, we introduce SpaRED, a systematically curated database comprising 26 public datasets, providing a standardized resource for model evaluation. We further propose SpaCKLE, a state-of-the-art transformer-based gene expression completion model that reduces mean squared error by over 82.5% compared to existing approaches. Finally, we establish the SpaRED benchmark, evaluating eight state-of-the-art prediction models on both raw and SpaCKLE-completed data, demonstrating SpaCKLE substantially improves the results across all the gene expression prediction models. Altogether, our contributions constitute the most comprehensive benchmark of gene expression prediction from histology images to date and a stepping stone for future research on Spatial Transcriptomics.
comment: arXiv admin note: substantial text overlap with arXiv:2407.13027
Interpretable Dynamic Graph Neural Networks for Small Occluded Object Detection and Tracking
The detection and tracking of small, occluded objects such as pedestrians, cyclists, and motorbikes pose significant challenges for traffic surveillance systems because of their erratic movement, frequent occlusion, and poor visibility in dynamic urban environments. Traditional methods like YOLO11, while proficient in spatial feature extraction for precise detection, often struggle with these small and dynamically moving objects, particularly in handling real-time data updates and resource efficiency. This paper introduces DGNN-YOLO, a novel framework that integrates dynamic graph neural networks (DGNNs) with YOLO11 to address these limitations. Unlike standard GNNs, DGNNs are chosen for their superior ability to dynamically update graph structures in real-time, which enables adaptive and robust tracking of objects in highly variable urban traffic scenarios. This framework constructs and regularly updates its graph representations, capturing objects as nodes and their interactions as edges, thus effectively responding to rapidly changing conditions. Additionally, DGNN-YOLO incorporates Grad-CAM, Grad-CAM++, and Eigen-CAM visualization techniques to enhance interpretability and foster trust, offering insights into the model's decision-making process. Extensive experiments validate the framework's performance, achieving a precision of 0.8382, recall of 0.6875, and mAP@0.5:0.95 of 0.6476, significantly outperforming existing methods. This study offers a scalable and interpretable solution for real-time traffic surveillance and significantly advances intelligent transportation systems' capabilities by addressing the critical challenge of detecting and tracking small, occluded objects.
3D Vision-Language Gaussian Splatting ICLR 2025
Recent advancements in 3D reconstruction methods and vision-language models have propelled the development of multi-modal 3D scene understanding, which has vital applications in robotics, autonomous driving, and virtual/augmented reality. However, current multi-modal scene understanding approaches have naively embedded semantic representations into 3D reconstruction methods without striking a balance between visual and language modalities, which leads to unsatisfying semantic rasterization of translucent or reflective objects, as well as over-fitting on color modality. To alleviate these limitations, we propose a solution that adequately handles the distinct visual and semantic modalities, i.e., a 3D vision-language Gaussian splatting model for scene understanding, to put emphasis on the representation learning of language modality. We propose a novel cross-modal rasterizer, using modality fusion along with a smoothed semantic indicator for enhancing semantic rasterization. We also employ a camera-view blending technique to improve semantic consistency between existing and synthesized views, thereby effectively mitigating over-fitting. Extensive experiments demonstrate that our method achieves state-of-the-art performance in open-vocabulary semantic segmentation, surpassing existing methods by a significant margin.
comment: Accepted at ICLR 2025. Main paper + supplementary material
FolAI: Synchronized Foley Sound Generation with Semantic and Temporal Alignment
Traditional sound design workflows rely on manual alignment of audio events to visual cues, as in Foley sound design, where everyday actions like footsteps or object interactions are recreated to match the on-screen motion. This process is time-consuming, difficult to scale, and lacks automation tools that preserve creative intent. Despite recent advances in vision-to-audio generation, producing temporally coherent and semantically controllable sound effects from video remains a major challenge. To address these limitations, we introduce FolAI, a two-stage generative framework that decouples the when and the what of sound synthesis, i.e., the temporal structure extraction and the semantically guided generation, respectively. In the first stage, we estimate a smooth control signal from the video that captures the motion intensity and rhythmic structure over time, serving as a temporal scaffold for the audio. In the second stage, a diffusion-based generative model produces sound effects conditioned both on this temporal envelope and on high-level semantic embeddings, provided by the user, that define the desired auditory content (e.g., material or action type). This modular design enables precise control over both timing and timbre, streamlining repetitive tasks while preserving creative flexibility in professional Foley workflows. Results on diverse visual contexts, such as footstep generation and action-specific sonorization, demonstrate that our model reliably produces audio that is temporally aligned with visual motion, semantically consistent with user intent, and perceptually realistic. These findings highlight the potential of FolAI as a controllable and modular solution for scalable, high-quality Foley sound synthesis in professional and interactive settings. Supplementary materials are accessible on our dedicated demo page at https://ispamm.github.io/FolAI.
BrushEdit: All-In-One Image Inpainting and Editing
Image editing has advanced significantly with the development of diffusion models using both inversion-based and instruction-based methods. However, current inversion-based approaches struggle with big modifications (e.g., adding or removing objects) due to the structured nature of inversion noise, which hinders substantial changes. Meanwhile, instruction-based methods often constrain users to black-box operations, limiting direct interaction for specifying editing regions and intensity. To address these limitations, we propose BrushEdit, a novel inpainting-based instruction-guided image editing paradigm, which leverages multimodal large language models (MLLMs) and image inpainting models to enable autonomous, user-friendly, and interactive free-form instruction editing. Specifically, we devise a system enabling free-form instruction editing by integrating MLLMs and a dual-branch image inpainting model in an agent-cooperative framework to perform editing category classification, main object identification, mask acquisition, and editing area inpainting. Extensive experiments show that our framework effectively combines MLLMs and inpainting models, achieving superior performance across seven metrics including mask region preservation and editing effect coherence.
comment: WebPage available at https://liyaowei-stu.github.io/project/BrushEdit/
LMME3DHF: Benchmarking and Evaluating Multimodal 3D Human Face Generation with LMMs
The rapid advancement in generative artificial intelligence have enabled the creation of 3D human faces (HFs) for applications including media production, virtual reality, security, healthcare, and game development, etc. However, assessing the quality and realism of these AI-generated 3D human faces remains a significant challenge due to the subjective nature of human perception and innate perceptual sensitivity to facial features. To this end, we conduct a comprehensive study on the quality assessment of AI-generated 3D human faces. We first introduce Gen3DHF, a large-scale benchmark comprising 2,000 videos of AI-Generated 3D Human Faces along with 4,000 Mean Opinion Scores (MOS) collected across two dimensions, i.e., quality and authenticity, 2,000 distortion-aware saliency maps and distortion descriptions. Based on Gen3DHF, we propose LMME3DHF, a Large Multimodal Model (LMM)-based metric for Evaluating 3DHF capable of quality and authenticity score prediction, distortion-aware visual question answering, and distortion-aware saliency prediction. Experimental results show that LMME3DHF achieves state-of-the-art performance, surpassing existing methods in both accurately predicting quality scores for AI-generated 3D human faces and effectively identifying distortion-aware salient regions and distortion types, while maintaining strong alignment with human perceptual judgments. Both the Gen3DHF database and the LMME3DHF will be released upon the publication.
Context-Aware Input Orchestration for Video Inpainting
Traditional neural network-driven inpainting methods struggle to deliver high-quality results within the constraints of mobile device processing power and memory. Our research introduces an innovative approach to optimize memory usage by altering the composition of input data. Typically, video inpainting relies on a predetermined set of input frames, such as neighboring and reference frames, often limited to five-frame sets. Our focus is to examine how varying the proportion of these input frames impacts the quality of the inpainted video. By dynamically adjusting the input frame composition based on optical flow and changes of the mask, we have observed an improvement in various contents including rapid visual context changes.
landmarker: a Toolkit for Anatomical Landmark Localization in 2D/3D Images
Anatomical landmark localization in 2D/3D images is a critical task in medical imaging. Although many general-purpose tools exist for landmark localization in classical computer vision tasks, such as pose estimation, they lack the specialized features and modularity necessary for anatomical landmark localization applications in the medical domain. Therefore, we introduce landmarker, a Python package built on PyTorch. The package provides a comprehensive, flexible toolkit for developing and evaluating landmark localization algorithms, supporting a range of methodologies, including static and adaptive heatmap regression. landmarker enhances the accuracy of landmark identification, streamlines research and development processes, and supports various image formats and preprocessing pipelines. Its modular design allows users to customize and extend the toolkit for specific datasets and applications, accelerating innovation in medical imaging. landmarker addresses a critical need for precision and customization in landmark localization tasks not adequately met by existing general-purpose pose estimation tools.
comment: 11 pages, 4 figures
CHOSEN: Contrastive Hypothesis Selection for Multi-View Depth Refinement
We propose CHOSEN, a simple yet flexible, robust and effective multi-view depth refinement framework. It can be employed in any existing multi-view stereo pipeline, with straightforward generalization capability for different multi-view capture systems such as camera relative positioning and lenses. Given an initial depth estimation, CHOSEN iteratively re-samples and selects the best hypotheses, and automatically adapts to different metric or intrinsic scales determined by the capture system. The key to our approach is the application of contrastive learning in an appropriate solution space and a carefully designed hypothesis feature, based on which positive and negative hypotheses can be effectively distinguished. Integrated in a simple baseline multi-view stereo pipeline, CHOSEN delivers impressive quality in terms of depth and normal accuracy compared to many current deep learning based multi-view stereo pipelines.
SAM2MOT: A Novel Paradigm of Multi-Object Tracking by Segmentation
Segment Anything 2 (SAM2) enables robust single-object tracking using segmentation. To extend this to multi-object tracking (MOT), we propose SAM2MOT, introducing a novel Tracking by Segmentation paradigm. Unlike Tracking by Detection or Tracking by Query, SAM2MOT directly generates tracking boxes from segmentation masks, reducing reliance on detection accuracy. SAM2MOT has two key advantages: zero-shot generalization, allowing it to work across datasets without fine-tuning, and strong object association, inherited from SAM2. To further improve performance, we integrate a trajectory manager system for precise object addition and removal, and a cross-object interaction module to handle occlusions. Experiments on DanceTrack, UAVDT, and BDD100K show state-of-the-art results. Notably, SAM2MOT outperforms existing methods on DanceTrack by +2.1 HOTA and +4.5 IDF1, highlighting its effectiveness in MOT. Code is available at https://github.com/TripleJoy/SAM2MOT.
Active Data Curation Effectively Distills Large-Scale Multimodal Models CVPR
Knowledge distillation (KD) is the de facto standard for compressing large-scale models into smaller ones. Prior works have explored ever more complex KD strategies involving different objective functions, teacher-ensembles, and weight inheritance. In this work we explore an alternative, yet simple approach -- active data curation as effective distillation for contrastive multimodal pretraining. Our simple online batch selection method, ACID, outperforms strong KD baselines across various model-, data- and compute-configurations. Further, we find such an active data curation strategy to in fact be complementary to standard KD, and can be effectively combined to train highly performant inference-efficient models. Our simple and scalable pretraining framework, ACED, achieves state-of-the-art results across 27 zero-shot classification and retrieval tasks with upto 11% less inference FLOPs. We further demonstrate that our ACED models yield strong vision-encoders for training generative multimodal models in the LiT-Decoder setting, outperforming larger vision encoders for image-captioning and visual question-answering tasks.
comment: Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
Enhancing person re-identification via Uncertainty Feature Fusion Method and Auto-weighted Measure Combination
Person re-identification (Re-ID) is a challenging task that involves identifying the same person across different camera views in surveillance systems. Current methods usually rely on features from single-camera views, which can be limiting when dealing with multiple cameras and challenges such as changing viewpoints and occlusions. In this paper, a new approach is introduced that enhances the capability of ReID models through the Uncertain Feature Fusion Method (UFFM) and Auto-weighted Measure Combination (AMC). UFFM generates multi-view features using features extracted independently from multiple images to mitigate view bias. However, relying only on similarity based on multi-view features is limited because these features ignore the details represented in single-view features. Therefore, we propose the AMC method to generate a more robust similarity measure by combining various measures. Our method significantly improves Rank@1 accuracy and Mean Average Precision (mAP) when evaluated on person re-identification datasets. Combined with the BoT Baseline on challenging datasets, we achieve impressive results, with a 7.9% improvement in Rank@1 and a 12.1% improvement in mAP on the MSMT17 dataset. On the Occluded-DukeMTMC dataset, our method increases Rank@1 by 22.0% and mAP by 18.4%. Code is available: https://github.com/chequanghuy/Enhancing-Person-Re-Identification-via-UFFM-and-AMC
FissionVAE: Federated Non-IID Image Generation with Latent Space and Decoder Decomposition
Federated learning is a machine learning paradigm that enables decentralized clients to collaboratively learn a shared model while keeping all the training data local. While considerable research has focused on federated image generation, particularly Generative Adversarial Networks, Variational Autoencoders have received less attention. In this paper, we address the challenges of non-IID (independently and identically distributed) data environments featuring multiple groups of images of different types. Non-IID data distributions can lead to difficulties in maintaining a consistent latent space and can also result in local generators with disparate texture features being blended during aggregation. We thereby introduce FissionVAE that decouples the latent space and constructs decoder branches tailored to individual client groups. This method allows for customized learning that aligns with the unique data distributions of each group. Additionally, we incorporate hierarchical VAEs and demonstrate the use of heterogeneous decoder architectures within FissionVAE. We also explore strategies for setting the latent prior distributions to enhance the decoupling process. To evaluate our approach, we assemble two composite datasets: the first combines MNIST and FashionMNIST; the second comprises RGB datasets of cartoon and human faces, wild animals, marine vessels, and remote sensing images. Our experiments demonstrate that FissionVAE greatly improves generation quality on these datasets compared to baseline federated VAE models.
SiMHand: Mining Similar Hands for Large-Scale 3D Hand Pose Pre-training ICLR 2025
We present a framework for pre-training of 3D hand pose estimation from in-the-wild hand images sharing with similar hand characteristics, dubbed SimHand. Pre-training with large-scale images achieves promising results in various tasks, but prior methods for 3D hand pose pre-training have not fully utilized the potential of diverse hand images accessible from in-the-wild videos. To facilitate scalable pre-training, we first prepare an extensive pool of hand images from in-the-wild videos and design our pre-training method with contrastive learning. Specifically, we collect over 2.0M hand images from recent human-centric videos, such as 100DOH and Ego4D. To extract discriminative information from these images, we focus on the similarity of hands: pairs of non-identical samples with similar hand poses. We then propose a novel contrastive learning method that embeds similar hand pairs closer in the feature space. Our method not only learns from similar samples but also adaptively weights the contrastive learning loss based on inter-sample distance, leading to additional performance gains. Our experiments demonstrate that our method outperforms conventional contrastive learning approaches that produce positive pairs sorely from a single image with data augmentation. We achieve significant improvements over the state-of-the-art method (PeCLR) in various datasets, with gains of 15% on FreiHand, 10% on DexYCB, and 4% on AssemblyHands. Our code is available at https://github.com/ut-vision/SiMHand.
comment: ICLR 2025. arXiv admin note: text overlap with arXiv:2409.09714
GRAPHITE: Graph-Based Interpretable Tissue Examination for Enhanced Explainability in Breast Cancer Histopathology
Explainable AI (XAI) in medical histopathology is essential for enhancing the interpretability and clinical trustworthiness of deep learning models in cancer diagnosis. However, the black-box nature of these models often limits their clinical adoption. We introduce GRAPHITE (Graph-based Interpretable Tissue Examination), a post-hoc explainable framework designed for breast cancer tissue microarray (TMA) analysis. GRAPHITE employs a multiscale approach, extracting patches at various magnification levels, constructing an hierarchical graph, and utilising graph attention networks (GAT) with scalewise attention (SAN) to capture scale-dependent features. We trained the model on 140 tumour TMA cores and four benign whole slide images from which 140 benign samples were created, and tested it on 53 pathologist-annotated TMA samples. GRAPHITE outperformed traditional XAI methods, achieving a mean average precision (mAP) of 0.56, an area under the receiver operating characteristic curve (AUROC) of 0.94, and a threshold robustness (ThR) of 0.70, indicating that the model maintains high performance across a wide range of thresholds. In clinical utility, GRAPHITE achieved the highest area under the decision curve (AUDC) of 4.17e+5, indicating reliable decision support across thresholds. These results highlight GRAPHITE's potential as a clinically valuable tool in computational pathology, providing interpretable visualisations that align with the pathologists' diagnostic reasoning and support precision medicine.
comment: 25 Pages, 10 Figures, 1 Tables
Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning CVPR
Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR
comment: Accepted by CVPR Oral 2025
CaRe-Ego: Contact-aware Relationship Modeling for Egocentric Interactive Hand-object Segmentation
Egocentric Interactive hand-object segmentation (EgoIHOS) requires the segmentation of hands and interacting objects in egocentric images, which is crucial for understanding human behavior in assistive systems. Previous methods typically recognize hands and interacting objects as distinct semantic categories based solely on visual features, or simply use hand predictions as auxiliary cues for object segmentation. Despite the promising progress achieved by these methods, they fail to adequately model the interactive relationships between hands and objects while ignoring the coupled physical relationships among object categories, ultimately constraining their segmentation performance. To make up for the shortcomings of existing methods, we propose a novel method called CaRe-Ego that achieves state-of-the-art performance by emphasizing the contact between hands and objects from two aspects. First, we introduce a Hand-guided Object Feature Enhancer (HOFE) to establish the hand-object interactive relationships to extract more contact-relevant and discriminative object features. Second, we design the Contact-centric Object Decoupling Strategy (CODS) to explicitly model and disentangle coupling relationships among object categories, thereby emphasizing contact-aware feature learning. Experiments on various in-domain and out-of-domain test sets show that Care-Ego significantly outperforms existing methods with robust generalization capability. Codes are publicly available at https://github.com/yuggiehk/CaRe-Ego/.
Quaternion Wavelet-Conditioned Diffusion Models for Image Super-Resolution IJCNN 2025
Image Super-Resolution is a fundamental problem in computer vision with broad applications spacing from medical imaging to satellite analysis. The ability to reconstruct high-resolution images from low-resolution inputs is crucial for enhancing downstream tasks such as object detection and segmentation. While deep learning has significantly advanced SR, achieving high-quality reconstructions with fine-grained details and realistic textures remains challenging, particularly at high upscaling factors. Recent approaches leveraging diffusion models have demonstrated promising results, yet they often struggle to balance perceptual quality with structural fidelity. In this work, we introduce ResQu a novel SR framework that integrates a quaternion wavelet preprocessing framework with latent diffusion models, incorporating a new quaternion wavelet- and time-aware encoder. Unlike prior methods that simply apply wavelet transforms within diffusion models, our approach enhances the conditioning process by exploiting quaternion wavelet embeddings, which are dynamically integrated at different stages of denoising. Furthermore, we also leverage the generative priors of foundation models such as Stable Diffusion. Extensive experiments on domain-specific datasets demonstrate that our method achieves outstanding SR results, outperforming in many cases existing approaches in perceptual quality and standard evaluation metrics. The code will be available after the revision process.
comment: Accepted for presentation at IJCNN 2025
When Pre-trained Visual Representations Fall Short: Limitations in Visuo-Motor Robot Learning
The integration of pre-trained visual representations (PVRs) into visuo-motor robot learning has emerged as a promising alternative to training visual encoders from scratch. However, PVRs face critical challenges in the context of policy learning, including temporal entanglement and an inability to generalise even in the presence of minor scene perturbations. These limitations hinder performance in tasks requiring temporal awareness and robustness to scene changes. This work identifies these shortcomings and proposes solutions to address them. First, we augment PVR features with temporal perception and a sense of task completion, effectively disentangling them in time. Second, we introduce a module that learns to selectively attend to task-relevant local features, enhancing robustness when evaluated on out-of-distribution scenes. Our experiments demonstrate significant performance improvements, particularly in PVRs trained with masking objectives, and validate the effectiveness of our enhancements in addressing PVR-specific limitations.
comment: Project Page: https://tsagkas.github.io/pvrobo/
RGS-DR: Reflective Gaussian Surfels with Deferred Rendering for Shiny Objects
We introduce RGS-DR, a novel inverse rendering method for reconstructing and rendering glossy and reflective objects with support for flexible relighting and scene editing. Unlike existing methods (e.g., NeRF and 3D Gaussian Splatting), which struggle with view-dependent effects, RGS-DR utilizes a 2D Gaussian surfel representation to accurately estimate geometry and surface normals, an essential property for high-quality inverse rendering. Our approach explicitly models geometric and material properties through learnable primitives rasterized into a deferred shading pipeline, effectively reducing rendering artifacts and preserving sharp reflections. By employing a multi-level cube mipmap, RGS-DR accurately approximates environment lighting integrals, facilitating high-quality reconstruction and relighting. A residual pass with spherical-mipmap-based directional encoding further refines the appearance modeling. Experiments demonstrate that RGS-DR achieves high-quality reconstruction and rendering quality for shiny objects, often outperforming reconstruction-exclusive state-of-the-art methods incapable of relighting.
DAGNet: A Dual-View Attention-Guided Network for Efficient X-ray Security Inspection
With the rapid development of modern transportation systems and the exponential growth of logistics volumes, intelligent X-ray-based security inspection systems play a crucial role in public safety. Although single-view X-ray baggage scanner is widely deployed, they struggles to accurately identify contraband in complex stacking scenarios due to strong viewpoint dependency and inadequate feature representation. To address this, we propose a Dual-View Attention-Guided Network for Efficient X-ray Security Inspection (DAGNet). This study builds on a shared-weight backbone network as the foundation and constructs three key modules that work together: (1) Frequency Domain Interaction Module (FDIM) dynamically enhances features by adjusting frequency components based on inter-view relationships; (2) Dual-View Hierarchical Enhancement Module (DVHEM) employs cross-attention to align features between views and capture hierarchical associations; (3) Convolutional Guided Fusion Module (CGFM) fuses features to suppress redundancy while retaining critical discriminative information. Collectively, these modules substantially improve the performance of dual-view X-ray security inspection. Experimental results demonstrate that DAGNet outperforms existing state-of-the-art approaches across multiple backbone architectures. The code is available at:https://github.com/ShilongHong/DAGNet.
A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
A fundamental challenge in artificial intelligence involves understanding the cognitive mechanisms underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images or requiring fine-grained compositional understanding? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using diverse visual reasoning tasks-Bongard Problems (BPs) and Winoground-to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via task-agnostic textual descriptions). These paradigms systematically vary cognitive load and probe processing stages. Notably, CA enables multi-image reasoning evaluation even for single-image architectures and isolates reasoning from perception by operating on textual descriptions. Applying this framework, we demonstrate that CA, leveraging powerful language models for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance on challenging benchmarks including Bongard-OpenWorld, Bongard-HOI, and Winoground. Ablation studies confirm reasoning improves significantly when perceptual challenges are mitigated, revealing a critical perception bottleneck. Our framework provides a valuable diagnostic tool and suggests that decoupling perception (via rich, task-agnostic description) from reasoning is a promising direction for robust and general visual intelligence.
Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation CVPR 2025
Text-to-video generation has been dominated by diffusion-based or autoregressive models. These novel models provide plausible versatility, but are criticized for improper physical motion, shading and illumination, camera motion, and temporal consistency. The film industry relies on manually-edited Computer-Generated Imagery (CGI) using 3D modeling software. Human-directed 3D synthetic videos address these shortcomings, but require tight collaboration between movie makers and 3D rendering experts. We introduce an automatic synthetic video generation pipeline based on Vision Large Language Model (VLM) agent collaborations. Given a language description of a video, multiple VLM agents direct various processes of the generation pipeline. They cooperate to create Blender scripts which render a video following the given description. Augmented with Blender-based movie making knowledge, the Director agent decomposes the text-based video description into sub-processes. For each sub-process, the Programmer agent produces Python-based Blender scripts based on function composing and API calling. The Reviewer agent, with knowledge of video reviewing, character motion coordinates, and intermediate screenshots, provides feedback to the Programmer agent. The Programmer agent iteratively improves scripts to yield the best video outcome. Our generated videos show better quality than commercial video generation models in five metrics on video quality and instruction-following performance. Our framework outperforms other approaches in a user study on quality, consistency, and rationality.
comment: Accepted by CVPR 2025 AI4CC Workshop
ForesightNav: Learning Scene Imagination for Efficient Exploration
Understanding how humans leverage prior knowledge to navigate unseen environments while making exploratory decisions is essential for developing autonomous robots with similar abilities. In this work, we propose ForesightNav, a novel exploration strategy inspired by human imagination and reasoning. Our approach equips robotic agents with the capability to predict contextual information, such as occupancy and semantic details, for unexplored regions. These predictions enable the robot to efficiently select meaningful long-term navigation goals, significantly enhancing exploration in unseen environments. We validate our imagination-based approach using the Structured3D dataset, demonstrating accurate occupancy prediction and superior performance in anticipating unseen scene geometry. Our experiments show that the imagination module improves exploration efficiency in unseen environments, achieving a 100% completion rate for PointNav and an SPL of 67% for ObjectNav on the Structured3D Validation split. These contributions demonstrate the power of imagination-driven reasoning for autonomous systems to enhance generalizable and efficient exploration.
Dynamic Importance in Diffusion U-Net for Enhanced Image Synthesis ICME 2025
Traditional diffusion models typically employ a U-Net architecture. Previous studies have unveiled the roles of attention blocks in the U-Net. However, they overlook the dynamic evolution of their importance during the inference process, which hinders their further exploitation to improve image applications. In this study, we first theoretically proved that, re-weighting the outputs of the Transformer blocks within the U-Net is a "free lunch" for improving the signal-to-noise ratio during the sampling process. Next, we proposed Importance Probe to uncover and quantify the dynamic shifts in importance of the Transformer blocks throughout the denoising process. Finally, we design an adaptive importance-based re-weighting schedule tailored to specific image generation and editing tasks. Experimental results demonstrate that, our approach significantly improves the efficiency of the inference process, and enhances the aesthetic quality of the samples with identity consistency. Our method can be seamlessly integrated into any U-Net-based architecture. Code: https://github.com/Hytidel/UNetReweighting
comment: Accepted to ICME 2025. Appendix & Code: https://github.com/Hytidel/UNetReweighting
MSA-UNet3+: Multi-Scale Attention UNet3+ with New Supervised Prototypical Contrastive Loss for Coronary DSA Image Segmentation
The accurate segmentation of coronary Digital Subtraction Angiography (DSA) images is essential for diagnosing and treating coronary artery diseases. Despite advances in deep learning-based segmentation, challenges such as low contrast, noise, overlapping structures, high intra-class variance, and class imbalance limit precise vessel delineation. To overcome these limitations, we propose the MSA-UNet3+: a Multi-Scale Attention enhanced UNet3+ architecture for coronary DSA image segmentation. The framework combined Multi-Scale Dilated Bottleneck (MSD-Bottleneck) with Contextual Attention Fusion Module (CAFM), which not only enhances multi-scale feature extraction but also preserve fine-grained details, and improve contextual understanding. Furthermore, we propose a new Supervised Prototypical Contrastive Loss (SPCL), which combines supervised and prototypical contrastive learning to minimize class imbalance and high intra-class variance by focusing on hard-to-classified background samples. Experiments carried out on a private coronary DSA dataset demonstrate that MSA-UNet3+ outperforms state-of-the-art methods, achieving a Dice coefficient of 87.73%, an F1-score of 87.78%, and significantly reduced Average Surface Distance (ASD) and Average Contour Distance (ACD). The developed framework provides clinicians with precise vessel segmentation, enabling accurate identification of coronary stenosis and supporting informed diagnostic and therapeutic decisions. The code will be released at the following GitHub profile link https://github.com/rayanmerghani/MSA-UNet3plus.
comment: Work in progress
How Does Audio Influence Visual Attention in Omnidirectional Videos? Database and Model
Understanding and predicting viewer attention in omnidirectional videos (ODVs) is crucial for enhancing user engagement in virtual and augmented reality applications. Although both audio and visual modalities are essential for saliency prediction in ODVs, the joint exploitation of these two modalities has been limited, primarily due to the absence of large-scale audio-visual saliency databases and comprehensive analyses. This paper comprehensively investigates audio-visual attention in ODVs from both subjective and objective perspectives. Specifically, we first introduce a new audio-visual saliency database for omnidirectional videos, termed AVS-ODV database, containing 162 ODVs and corresponding eye movement data collected from 60 subjects under three audio modes including mute, mono, and ambisonics. Based on the constructed AVS-ODV database, we perform an in-depth analysis of how audio influences visual attention in ODVs. To advance the research on audio-visual saliency prediction for ODVs, we further establish a new benchmark based on the AVS-ODV database by testing numerous state-of-the-art saliency models, including visual-only models and audio-visual models. In addition, given the limitations of current models, we propose an innovative omnidirectional audio-visual saliency prediction network (OmniAVS), which is built based on the U-Net architecture, and hierarchically fuses audio and visual features from the multimodal aligned embedding space. Extensive experimental results demonstrate that the proposed OmniAVS model outperforms other state-of-the-art models on both ODV AVS prediction and traditional AVS predcition tasks. The AVS-ODV database and OmniAVS model will be released to facilitate future research.
TSTMotion: Training-free Scene-aware Text-to-motion Generation ICME2025
Text-to-motion generation has recently garnered significant research interest, primarily focusing on generating human motion sequences in blank backgrounds. However, human motions commonly occur within diverse 3D scenes, which has prompted exploration into scene-aware text-to-motion generation methods. Yet, existing scene-aware methods often rely on large-scale ground-truth motion sequences in diverse 3D scenes, which poses practical challenges due to the expensive cost. To mitigate this challenge, we are the first to propose a \textbf{T}raining-free \textbf{S}cene-aware \textbf{T}ext-to-\textbf{Motion} framework, dubbed as \textbf{TSTMotion}, that efficiently empowers pre-trained blank-background motion generators with the scene-aware capability. Specifically, conditioned on the given 3D scene and text description, we adopt foundation models together to reason, predict and validate a scene-aware motion guidance. Then, the motion guidance is incorporated into the blank-background motion generators with two modifications, resulting in scene-aware text-driven motion sequences. Extensive experiments demonstrate the efficacy and generalizability of our proposed framework. We release our code in \href{https://tstmotion.github.io/}{Project Page}.
comment: Accepted by ICME2025
LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.
comment: Code ad leaderboard are available at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench
CAD-NeRF: Learning NeRFs from Uncalibrated Few-view Images by CAD Model Retrieval
Reconstructing from multi-view images is a longstanding problem in 3D vision, where neural radiance fields (NeRFs) have shown great potential and get realistic rendered images of novel views. Currently, most NeRF methods either require accurate camera poses or a large number of input images, or even both. Reconstructing NeRF from few-view images without poses is challenging and highly ill-posed. To address this problem, we propose CAD-NeRF, a method reconstructed from less than 10 images without any known poses. Specifically, we build a mini library of several CAD models from ShapeNet and render them from many random views. Given sparse-view input images, we run a model and pose retrieval from the library, to get a model with similar shapes, serving as the density supervision and pose initializations. Here we propose a multi-view pose retrieval method to avoid pose conflicts among views, which is a new and unseen problem in uncalibrated NeRF methods. Then, the geometry of the object is trained by the CAD guidance. The deformation of the density field and camera poses are optimized jointly. Then texture and density are trained and fine-tuned as well. All training phases are in self-supervised manners. Comprehensive evaluations of synthetic and real images show that CAD-NeRF successfully learns accurate densities with a large deformation from retrieved CAD models, showing the generalization abilities.
comment: The article has been accepted by Frontiers of Computer Science (FCS)
Seaweed-7B: Cost-Effective Training of Video Generation Foundation Model
This technical report presents a cost-efficient strategy for training a video generation foundation model. We present a mid-sized research model with approximately 7 billion parameters (7B) called Seaweed-7B trained from scratch using 665,000 H100 GPU hours. Despite being trained with moderate computational resources, Seaweed-7B demonstrates highly competitive performance compared to contemporary video generation models of much larger size. Design choices are especially crucial in a resource-constrained setting. This technical report highlights the key design decisions that enhance the performance of the medium-sized diffusion model. Empirically, we make two observations: (1) Seaweed-7B achieves performance comparable to, or even surpasses, larger models trained on substantially greater GPU resources, and (2) our model, which exhibits strong generalization ability, can be effectively adapted across a wide range of downstream applications either by lightweight fine-tuning or continue training. See the project page at https://seaweed.video/
comment: Technical report (some typos fixed)
Impact of Noisy Supervision in Foundation Model Learning
Foundation models are usually pre-trained on large-scale datasets and then adapted to downstream tasks through tuning. However, the large-scale pre-training datasets, often inaccessible or too expensive to handle, can contain label noise that may adversely affect the generalization of the model and pose unexpected risks. This paper stands out as the first work to comprehensively understand and analyze the nature of noise in pre-training datasets and then effectively mitigate its impacts on downstream tasks. Specifically, through extensive experiments of fully-supervised and image-text contrastive pre-training on synthetic noisy ImageNet-1K, YFCC15M, and CC12M datasets, we demonstrate that, while slight noise in pre-training can benefit in-domain (ID) performance, where the training and testing data share a similar distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing distributions are significantly different. These observations are agnostic to scales of pre-training datasets, pre-training noise types, model architectures, pre-training objectives, downstream tuning methods, and downstream applications. We empirically ascertain that the reason behind this is that the pre-training noise shapes the feature space differently. We then propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization, which is applicable in both parameter-efficient and black-box tuning manners. We additionally conduct extensive experiments on popular vision and language models, including APIs, which are supervised and self-supervised pre-trained on realistic noisy data for evaluation. Our analysis and results demonstrate the importance of this novel and fundamental research direction, which we term as Noisy Model Learning.
comment: 18 pages, 10 figures, 6 tables, preprint. arXiv admin note: substantial text overlap with arXiv:2309.17002
Vision-based 3D Semantic Scene Completion via Capture Dynamic Representations
The vision-based semantic scene completion task aims to predict dense geometric and semantic 3D scene representations from 2D images. However, the presence of dynamic objects in the scene seriously affects the accuracy of the model inferring 3D structures from 2D images. Existing methods simply stack multiple frames of image input to increase dense scene semantic information, but ignore the fact that dynamic objects and non-texture areas violate multi-view consistency and matching reliability. To address these issues, we propose a novel method, CDScene: Vision-based Robust Semantic Scene Completion via Capturing Dynamic Representations. First, we leverage a multimodal large-scale model to extract 2D explicit semantics and align them into 3D space. Second, we exploit the characteristics of monocular and stereo depth to decouple scene information into dynamic and static features. The dynamic features contain structural relationships around dynamic objects, and the static features contain dense contextual spatial information. Finally, we design a dynamic-static adaptive fusion module to effectively extract and aggregate complementary features, achieving robust and accurate semantic scene completion in autonomous driving scenarios. Extensive experimental results on the SemanticKITTI, SSCBench-KITTI360, and SemanticKITTI-C datasets demonstrate the superiority and robustness of CDScene over existing state-of-the-art methods.
Localizing Before Answering: A Hallucination Evaluation Benchmark for Grounded Medical Multimodal LLMs IJCAI
Medical Large Multi-modal Models (LMMs) have demonstrated remarkable capabilities in medical data interpretation. However, these models frequently generate hallucinations contradicting source evidence, particularly due to inadequate localization reasoning. This work reveals a critical limitation in current medical LMMs: instead of analyzing relevant pathological regions, they often rely on linguistic patterns or attend to irrelevant image areas when responding to disease-related queries. To address this, we introduce HEAL-MedVQA (Hallucination Evaluation via Localization MedVQA), a comprehensive benchmark designed to evaluate LMMs' localization abilities and hallucination robustness. HEAL-MedVQA features (i) two innovative evaluation protocols to assess visual and textual shortcut learning, and (ii) a dataset of 67K VQA pairs, with doctor-annotated anatomical segmentation masks for pathological regions. To improve visual reasoning, we propose the Localize-before-Answer (LobA) framework, which trains LMMs to localize target regions of interest and self-prompt to emphasize segmented pathological areas, generating grounded and reliable answers. Experimental results demonstrate that our approach significantly outperforms state-of-the-art biomedical LMMs on the challenging HEAL-MedVQA benchmark, advancing robustness in medical VQA.
comment: Accepted at Joint Conference on Artificial Intelligence (IJCAI) 2025
Large Language Model with Region-guided Referring and Grounding for CT Report Generation
Computed tomography (CT) report generation is crucial to assist radiologists in interpreting CT volumes, which can be time-consuming and labor-intensive. Existing methods primarily only consider the global features of the entire volume, making it struggle to focus on specific regions and potentially missing abnormalities. To address this issue, we propose Reg2RG, the first region-guided referring and grounding framework for CT report generation, which enhances diagnostic performance by focusing on anatomical regions within the volume. Specifically, we utilize masks from a universal segmentation module to capture local features for each referring region. A local feature decoupling (LFD) strategy is proposed to preserve the local high-resolution details with little computational overhead. Then the local features are integrated with global features to capture inter-regional relationships within a cohesive context. Moreover, we propose a novel region-report alignment (RRA) training strategy. It leverages the recognition of referring regions to guide the generation of region-specific reports, enhancing the model's referring and grounding capabilities while also improving the report's interpretability. A large language model (LLM) is further employed as the language decoder to generate reports from integrated visual features, facilitating region-level comprehension. Extensive experiments on two large-scale chest CT-report datasets demonstrate the superiority of our method, which outperforms several state-of-the-art methods in terms of both natural language generation and clinical efficacy metrics while preserving promising interpretability. The code is available at https://github.com/zhi-xuan-chen/Reg2RG.
comment: 10 pages
MIGC++: Advanced Multi-Instance Generation Controller for Image Synthesis
We introduce the Multi-Instance Generation (MIG) task, which focuses on generating multiple instances within a single image, each accurately placed at predefined positions with attributes such as category, color, and shape, strictly following user specifications. MIG faces three main challenges: avoiding attribute leakage between instances, supporting diverse instance descriptions, and maintaining consistency in iterative generation. To address attribute leakage, we propose the Multi-Instance Generation Controller (MIGC). MIGC generates multiple instances through a divide-and-conquer strategy, breaking down multi-instance shading into single-instance tasks with singular attributes, later integrated. To provide more types of instance descriptions, we developed MIGC++. MIGC++ allows attribute control through text \& images and position control through boxes \& masks. Lastly, we introduced the Consistent-MIG algorithm to enhance the iterative MIG ability of MIGC and MIGC++. This algorithm ensures consistency in unmodified regions during the addition, deletion, or modification of instances, and preserves the identity of instances when their attributes are changed. We introduce the COCO-MIG and Multimodal-MIG benchmarks to evaluate these methods. Extensive experiments on these benchmarks, along with the COCO-Position benchmark and DrawBench, demonstrate that our methods substantially outperform existing techniques, maintaining precise control over aspects including position, attribute, and quantity. Project page: https://github.com/limuloo/MIGC.
NeurCross: A Neural Approach to Computing Cross Fields for Quad Mesh Generation SIGGRAPH 2025
Quadrilateral mesh generation plays a crucial role in numerical simulations within Computer-Aided Design and Engineering (CAD/E). Producing high-quality quadrangulation typically requires satisfying four key criteria. First, the quadrilateral mesh should closely align with principal curvature directions. Second, singular points should be strategically placed and effectively minimized. Third, the mesh should accurately conform to sharp feature edges. Lastly, quadrangulation results should exhibit robustness against noise and minor geometric variations. Existing methods generally involve first computing a regular cross field to represent quad element orientations across the surface, followed by extracting a quadrilateral mesh aligned closely with this cross field. A primary challenge with this approach is balancing the smoothness of the cross field with its alignment to pre-computed principal curvature directions, which are sensitive to small surface perturbations and often ill-defined in spherical or planar regions. To tackle this challenge, we propose NeurCross, a novel framework that simultaneously optimizes a cross field and a neural signed distance function (SDF), whose zero-level set serves as a proxy of the input shape. Our joint optimization is guided by three factors: faithful approximation of the optimized SDF surface to the input surface, alignment between the cross field and the principal curvature field derived from the SDF surface, and smoothness of the cross field. Acting as an intermediary, the neural SDF contributes in two essential ways. First, it provides an alternative, optimizable base surface exhibiting more regular principal curvature directions for guiding the cross field. Second, we leverage the Hessian matrix of the neural SDF to implicitly enforce cross field alignment with principal curvature directions...
comment: SIGGRAPH 2025
SSTFormer: Bridging Spiking Neural Network and Memory Support Transformer for Frame-Event based Recognition
Event camera-based pattern recognition is a newly arising research topic in recent years. Current researchers usually transform the event streams into images, graphs, or voxels, and adopt deep neural networks for event-based classification. Although good performance can be achieved on simple event recognition datasets, however, their results may be still limited due to the following two issues. Firstly, they adopt spatial sparse event streams for recognition only, which may fail to capture the color and detailed texture information well. Secondly, they adopt either Spiking Neural Networks (SNN) for energy-efficient recognition with suboptimal results, or Artificial Neural Networks (ANN) for energy-intensive, high-performance recognition. However, seldom of them consider achieving a balance between these two aspects. In this paper, we formally propose to recognize patterns by fusing RGB frames and event streams simultaneously and propose a new RGB frame-event recognition framework to address the aforementioned issues. The proposed method contains four main modules, i.e., memory support Transformer network for RGB frame encoding, spiking neural network for raw event stream encoding, multi-modal bottleneck fusion module for RGB-Event feature aggregation, and prediction head. Due to the scarce of RGB-Event based classification dataset, we also propose a large-scale PokerEvent dataset which contains 114 classes, and 27102 frame-event pairs recorded using a DVS346 event camera. Extensive experiments on two RGB-Event based classification datasets fully validated the effectiveness of our proposed framework. We hope this work will boost the development of pattern recognition by fusing RGB frames and event streams. Both our dataset and source code of this work will be released at https://github.com/Event-AHU/SSTFormer
comment: Accepted by IEEE Transactions on Cognitive and Developmental Systems (TCDS) 2025
HeAL3D: Heuristical-enhanced Active Learning for 3D Object Detection CVPR
Active Learning has proved to be a relevant approach to perform sample selection for training models for Autonomous Driving. Particularly, previous works on active learning for 3D object detection have shown that selection of samples in uncontrolled scenarios is challenging. Furthermore, current approaches focus exclusively on the theoretical aspects of the sample selection problem but neglect the practical insights that can be obtained from the extensive literature and application of 3D detection models. In this paper, we introduce HeAL (Heuristical-enhanced Active Learning for 3D Object Detection) which integrates those heuristical features together with Localization and Classification to deliver the most contributing samples to the model's training. In contrast to previous works, our approach integrates heuristical features such as object distance and point-quantity to estimate the uncertainty, which enhance the usefulness of selected samples to train detection models. Our quantitative evaluation on KITTI shows that HeAL presents competitive mAP with respect to the State-of-the-Art, and achieves the same mAP as the full-supervised baseline with only 24% of the samples.
comment: Accepted in CVPRw2025
Light Weight CNN for classification of Brain Tumors from MRI Images
This study presents a convolutional neural network (CNN)-based approach for the multi-class classification of brain tumors using magnetic resonance imaging (MRI) scans. We utilize a publicly available dataset containing MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor. Our primary objective is to build a light weight deep learning model that can automatically classify brain tumor types with high accuracy. To achieve this goal, we incorporate image preprocessing steps, including normalization, data augmentation, and a cropping technique designed to reduce background noise and emphasize relevant regions. The CNN architecture is optimized through hyperparameter tuning using Keras Tuner, enabling systematic exploration of network parameters. To ensure reliable evaluation, we apply 5-fold cross-validation, where each hyperparameter configuration is evaluated across multiple data splits to mitigate overfitting. Experimental results demonstrate that the proposed model achieves a classification accuracy of 98.78%, indicating its potential as a diagnostic aid in clinical settings. The proposed method offers a low-complexity yet effective solution for assisting in early brain tumor diagnosis.
comment: 6 pages
CleAR: Robust Context-Guided Generative Lighting Estimation for Mobile Augmented Reality
High-quality environment lighting is essential for creating immersive mobile augmented reality (AR) experiences. However, achieving visually coherent estimation for mobile AR is challenging due to several key limitations in AR device sensing capabilities, including low camera FoV and limited pixel dynamic ranges. Recent advancements in generative AI, which can generate high-quality images from different types of prompts, including texts and images, present a potential solution for high-quality lighting estimation. Still, to effectively use generative image diffusion models, we must address two key limitations of content quality and slow inference. In this work, we design and implement a generative lighting estimation system called CleAR that can produce high-quality, diverse environment maps in the format of 360{\deg} HDR images. Specifically, we design a two-step generation pipeline guided by AR environment context data to ensure the output aligns with the physical environment's visual context and color appearance. To improve the estimation robustness under different lighting conditions, we design a real-time refinement component to adjust lighting estimation results on AR devices. Through a combination of quantitative and qualitative evaluations, we show that CleAR outperforms state-of-the-art lighting estimation methods on both estimation accuracy, latency, and robustness, and is rated by 31 participants as producing better renderings for most virtual objects. For example, CleAR achieves 51% to 56% accuracy improvement on virtual object renderings across objects of three distinctive types of materials and reflective properties. CleAR produces lighting estimates of comparable or better quality in just 3.2 seconds -- over 110X faster than state-of-the-art methods.
Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles. This work leverages quaternions and the two-dimensional orthogonal planes split framework (splitting of a quaternion - representing a pixel - into pairs of orthogonal 2D planes) for natural/biomedical image analysis through the following computational workflows and outcomes: natural/biomedical image re-colorization, natural image de-colorization, natural/biomedical image contrast enhancement, computational re-staining and stain separation in histological images, and performance gains in machine/deep learning pipelines for histological images. The workflows are analyzed separately for natural and biomedical images to showcase the effectiveness of the proposed approaches. The proposed workflows can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines (e.g. isolating stain components, boosting learning models), and assist in digital pathology applications (e.g. enhancing biomarker visibility, enabling colorblind-friendly renditions). Employing only basic arithmetic and matrix operations, this work offers a computationally accessible methodology - in the hypercomplex domain - that showcases versatility and consistency across image processing tasks and a range of computer vision and biomedical applications. The proposed non-data-driven methods achieve comparable or better results (particularly in cases involving well-known methods) to those reported in the literature, showcasing the potential of robust theoretical frameworks with practical effectiveness. Results, methods, and limitations are detailed alongside discussion of promising extensions, emphasizing the potential of feature-rich mathematical/computational frameworks for natural and biomedical images.
comment: 24 pages, 18 figures, 14 tables
Image and Video Processing
Multi-View Learning with Context-Guided Receptance for Image Denoising IJCAI 2025
Image denoising is essential in low-level vision applications such as photography and automated driving. Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources due to reliance on Transformer-based models. In this work, the Context-guided Receptance Weighted Key-Value (\M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling. Our approach introduces the Context-guided Token Shift (CTS) paradigm, which effectively captures local spatial dependencies and enhance the model's ability to model real-world noise distributions. Additionally, the Frequency Mix (FMix) module extracting frequency-domain features is designed to isolate noise in high-frequency spectra, and is integrated with spatial representations through a multi-view learning process. To improve computational efficiency, the Bidirectional WKV (BiWKV) mechanism is adopted, enabling full pixel-sequence interaction with linear complexity while overcoming the causal selection constraints. The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40\%. Qualitative results further demonstrate the ability of our model to restore fine details in various scenes.
comment: Accepted by IJCAI 2025, code will be available at https://github.com/Seeker98/CRWKV
DeepSparse: A Foundation Model for Sparse-View CBCT Reconstruction
Cone-beam computed tomography (CBCT) is a critical 3D imaging technology in the medical field, while the high radiation exposure required for high-quality imaging raises significant concerns, particularly for vulnerable populations. Sparse-view reconstruction reduces radiation by using fewer X-ray projections while maintaining image quality, yet existing methods face challenges such as high computational demands and poor generalizability to different datasets. To overcome these limitations, we propose DeepSparse, the first foundation model for sparse-view CBCT reconstruction, featuring DiCE (Dual-Dimensional Cross-Scale Embedding), a novel network that integrates multi-view 2D features and multi-scale 3D features. Additionally, we introduce the HyViP (Hybrid View Sampling Pretraining) framework, which pretrains the model on large datasets with both sparse-view and dense-view projections, and a two-step finetuning strategy to adapt and refine the model for new datasets. Extensive experiments and ablation studies demonstrate that our proposed DeepSparse achieves superior reconstruction quality compared to state-of-the-art methods, paving the way for safer and more efficient CBCT imaging.
Lane-Wise Highway Anomaly Detection
This paper proposes a scalable and interpretable framework for lane-wise highway traffic anomaly detection, leveraging multi-modal time series data extracted from surveillance cameras. Unlike traditional sensor-dependent methods, our approach uses AI-powered vision models to extract lane-specific features, including vehicle count, occupancy, and truck percentage, without relying on costly hardware or complex road modeling. We introduce a novel dataset containing 73,139 lane-wise samples, annotated with four classes of expert-validated anomalies: three traffic-related anomalies (lane blockage and recovery, foreign object intrusion, and sustained congestion) and one sensor-related anomaly (camera angle shift). Our multi-branch detection system integrates deep learning, rule-based logic, and machine learning to improve robustness and precision. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods in precision, recall, and F1-score, providing a cost-effective and scalable solution for real-world intelligent transportation systems.
Point Cloud Recombination: Systematic Real Data Augmentation Using Robotic Targets for LiDAR Perception Validation
The validation of LiDAR-based perception of intelligent mobile systems operating in open-world applications remains a challenge due to the variability of real environmental conditions. Virtual simulations allow the generation of arbitrary scenes under controlled conditions but lack physical sensor characteristics, such as intensity responses or material-dependent effects. In contrast, real-world data offers true sensor realism but provides less control over influencing factors, hindering sufficient validation. Existing approaches address this problem with augmentation of real-world point cloud data by transferring objects between scenes. However, these methods do not consider validation and remain limited in controllability because they rely on empirical data. We solve these limitations by proposing Point Cloud Recombination, which systematically augments captured point cloud scenes by integrating point clouds acquired from physical target objects measured in controlled laboratory environments. Thus enabling the creation of vast amounts and varieties of repeatable, physically accurate test scenes with respect to phenomena-aware occlusions with registered 3D meshes. Using the Ouster OS1-128 Rev7 sensor, we demonstrate the augmentation of real-world urban and rural scenes with humanoid targets featuring varied clothing and poses, for repeatable positioning. We show that the recombined scenes closely match real sensor outputs, enabling targeted testing, scalable failure analysis, and improved system safety. By providing controlled yet sensor-realistic data, our method enables trustworthy conclusions about the limitations of specific sensors in compound with their algorithms, e.g., object detection.
comment: Pre-print for IEEE IAVVC 2025
Deep learning of personalized priors from past MRI scans enables fast, quality-enhanced point-of-care MRI with low-cost systems
Magnetic resonance imaging (MRI) offers superb-quality images, but its accessibility is limited by high costs, posing challenges for patients requiring longitudinal care. Low-field MRI provides affordable imaging with low-cost devices but is hindered by long scans and degraded image quality, including low signal-to-noise ratio (SNR) and tissue contrast. We propose a novel healthcare paradigm: using deep learning to extract personalized features from past standard high-field MRI scans and harnessing them to enable accelerated, enhanced-quality follow-up scans with low-cost systems. To overcome the SNR and contrast differences, we introduce ViT-Fuser, a feature-fusion vision transformer that learns features from past scans, e.g. those stored in standard DICOM CDs. We show that \textit{a single prior scan is sufficient}, and this scan can come from various MRI vendors, field strengths, and pulse sequences. Experiments with four datasets, including glioblastoma data, low-field ($50mT$), and ultra-low-field ($6.5mT$) data, demonstrate that ViT-Fuser outperforms state-of-the-art methods, providing enhanced-quality images from accelerated low-field scans, with robustness to out-of-distribution data. Our freely available framework thus enables rapid, diagnostic-quality, low-cost imaging for wide healthcare applications.
Diagnostic Uncertainty in Pneumonia Detection using CNN MobileNetV2 and CNN from Scratch
Pneumonia Diagnosis, though it is crucial for an effective treatment, it can be hampered by uncertainty. This uncertainty starts to arise due to some factors like atypical presentations, limitations of diagnostic tools such as chest X-rays, and the presence of co-existing respiratory conditions. This research proposes one of the supervised learning methods, CNN. Using MobileNetV2 as the pre-trained one with ResNet101V2 architecture and using Keras API as the built from scratch model, for identifying lung diseases especially pneumonia. The datasets used in this research were obtained from the website through Kaggle. The result shows that by implementing CNN MobileNetV2 and CNN from scratch the result is promising. While validating data, MobileNetV2 performs with stability and minimal overfitting, while the training accuracy increased to 84.87% later it slightly decreased to 78.95%, with increasing validation loss from 0.499 to 0.6345. Nonetheless, MobileNetV2 is more stable. Although it takes more time to train each epoch. Meanwhile, after the 10th epoch, the Scratch model displayed more instability and overfitting despite having higher validation accuracy, training accuracy decreased significantly to 78.12% and the validation loss increased from 0.5698 to 1.1809. With these results, ResNet101V2 offers stability, and the Scratch model offers high accuracy.
An Arbitrary-Modal Fusion Network for Volumetric Cranial Nerves Tract Segmentation
The segmentation of cranial nerves (CNs) tract provides a valuable quantitative tool for the analysis of the morphology and trajectory of individual CNs. Multimodal CNs tract segmentation networks, e.g., CNTSeg, which combine structural Magnetic Resonance Imaging (MRI) and diffusion MRI, have achieved promising segmentation performance. However, it is laborious or even infeasible to collect complete multimodal data in clinical practice due to limitations in equipment, user privacy, and working conditions. In this work, we propose a novel arbitrary-modal fusion network for volumetric CNs tract segmentation, called CNTSeg-v2, which trains one model to handle different combinations of available modalities. Instead of directly combining all the modalities, we select T1-weighted (T1w) images as the primary modality due to its simplicity in data acquisition and contribution most to the results, which supervises the information selection of other auxiliary modalities. Our model encompasses an Arbitrary-Modal Collaboration Module (ACM) designed to effectively extract informative features from other auxiliary modalities, guided by the supervision of T1w images. Meanwhile, we construct a Deep Distance-guided Multi-stage (DDM) decoder to correct small errors and discontinuities through signed distance maps to improve segmentation accuracy. We evaluate our CNTSeg-v2 on the Human Connectome Project (HCP) dataset and the clinical Multi-shell Diffusion MRI (MDM) dataset. Extensive experimental results show that our CNTSeg-v2 achieves state-of-the-art segmentation performance, outperforming all competing methods.
Dual Prompting for Diverse Count-level PET Denoising
The to-be-denoised positron emission tomography (PET) volumes are inherent with diverse count levels, which imposes challenges for a unified model to tackle varied cases. In this work, we resort to the recently flourished prompt learning to achieve generalizable PET denoising with different count levels. Specifically, we propose dual prompts to guide the PET denoising in a divide-and-conquer manner, i.e., an explicitly count-level prompt to provide the specific prior information and an implicitly general denoising prompt to encode the essential PET denoising knowledge. Then, a novel prompt fusion module is developed to unify the heterogeneous prompts, followed by a prompt-feature interaction module to inject prompts into the features. The prompts are able to dynamically guide the noise-conditioned denoising process. Therefore, we are able to efficiently train a unified denoising model for various count levels, and deploy it to different cases with personalized prompts. We evaluated on 1940 low-count PET 3D volumes with uniformly randomly selected 13-22\% fractions of events from 97 $^{18}$F-MK6240 tau PET studies. It shows our dual prompting can largely improve the performance with informed count-level and outperform the count-conditional model.
comment: Published in IEEE International Symposium on Biomedical Imaging (ISBI) 2025
Platelet enumeration in dense aggregates IJCNN 2025
Identifying and counting blood components such as red blood cells, various types of white blood cells, and platelets is a critical task for healthcare practitioners. Deep learning approaches, particularly convolutional neural networks (CNNs) using supervised learning strategies, have shown considerable success for such tasks. However, CNN based architectures such as U-Net, often struggles to accurately identify platelets due to their sizes and high variability of features. To address these challenges, researchers have commonly employed strategies such as class weighted loss functions, which have demonstrated some success. However, this does not address the more significant challenge of platelet variability in size and tendency to form aggregates and associations with other blood components. In this study, we explored an alternative approach by investigating the role of convolutional kernels in mitigating these issues. We also assigned separate classes to singular platelets and platelet aggregates and performed semantic segmentation using various U-Net architectures for identifying platelets. We then evaluated and compared two common methods (pixel area method and connected component analysis) for counting platelets and proposed an alternative approach specialized for single platelets and platelet aggregates. Our experiments provided results that showed significant improvements in the identification of platelets, highlighting the importance of optimizing convolutional operations and class designations. We show that the common practice of pixel area-based counting often over estimate platelet counts, whereas the proposed method presented in this work offers significant improvements. We discuss in detail about these methods from segmentation masks.
comment: International Joint Conference on Neural Networks (IJCNN 2025)
Multimodal Deep Learning for Stroke Prediction and Detection using Retinal Imaging and Clinical Data
Stroke is a major public health problem, affecting millions worldwide. Deep learning has recently demonstrated promise for enhancing the diagnosis and risk prediction of stroke. However, existing methods rely on costly medical imaging modalities, such as computed tomography. Recent studies suggest that retinal imaging could offer a cost-effective alternative for cerebrovascular health assessment due to the shared clinical pathways between the retina and the brain. Hence, this study explores the impact of leveraging retinal images and clinical data for stroke detection and risk prediction. We propose a multimodal deep neural network that processes Optical Coherence Tomography (OCT) and infrared reflectance retinal scans, combined with clinical data, such as demographics, vital signs, and diagnosis codes. We pretrained our model using a self-supervised learning framework using a real-world dataset consisting of $37$ k scans, and then fine-tuned and evaluated the model using a smaller labeled subset. Our empirical findings establish the predictive ability of the considered modalities in detecting lasting effects in the retina associated with acute stroke and forecasting future risk within a specific time horizon. The experimental results demonstrate the effectiveness of our proposed framework by achieving $5$\% AUROC improvement as compared to the unimodal image-only baseline, and $8$\% improvement compared to an existing state-of-the-art foundation model. In conclusion, our study highlights the potential of retinal imaging in identifying high-risk patients and improving long-term outcomes.
RobSurv: Vector Quantization-Based Multi-Modal Learning for Robust Cancer Survival Prediction
Cancer survival prediction using multi-modal medical imaging presents a critical challenge in oncology, mainly due to the vulnerability of deep learning models to noise and protocol variations across imaging centers. Current approaches struggle to extract consistent features from heterogeneous CT and PET images, limiting their clinical applicability. We address these challenges by introducing RobSurv, a robust deep-learning framework that leverages vector quantization for resilient multi-modal feature learning. The key innovation of our approach lies in its dual-path architecture: one path maps continuous imaging features to learned discrete codebooks for noise-resistant representation, while the parallel path preserves fine-grained details through continuous feature processing. This dual representation is integrated through a novel patch-wise fusion mechanism that maintains local spatial relationships while capturing global context via Transformer-based processing. In extensive evaluations across three diverse datasets (HECKTOR, H\&N1, and NSCLC Radiogenomics), RobSurv demonstrates superior performance, achieving concordance index of 0.771, 0.742, and 0.734 respectively - significantly outperforming existing methods. Most notably, our model maintains robust performance even under severe noise conditions, with performance degradation of only 3.8-4.5\% compared to 8-12\% in baseline methods. These results, combined with strong generalization across different cancer types and imaging protocols, establish RobSurv as a promising solution for reliable clinical prognosis that can enhance treatment planning and patient care.
A Deep Learning approach for Depressive Symptoms assessment in Parkinson's disease patients using facial videos
Parkinson's disease (PD) is a neurodegenerative disorder, manifesting with motor and non-motor symptoms. Depressive symptoms are prevalent in PD, affecting up to 45% of patients. They are often underdiagnosed due to overlapping motor features, such as hypomimia. This study explores deep learning (DL) models-ViViT, Video Swin Tiny, and 3D CNN-LSTM with attention layers-to assess the presence and severity of depressive symptoms, as detected by the Geriatric Depression Scale (GDS), in PD patients through facial video analysis. The same parameters were assessed in a secondary analysis taking into account whether patients were one hour after (ON-medication state) or 12 hours without (OFF-medication state) dopaminergic medication. Using a dataset of 1,875 videos from 178 patients, the Video Swin Tiny model achieved the highest performance, with up to 94% accuracy and 93.7% F1-score in binary classification (presence of absence of depressive symptoms), and 87.1% accuracy with an 85.4% F1-score in multiclass tasks (absence or mild or severe depressive symptoms).
From Spaceborn to Airborn: SAR Image Synthesis Using Foundation Models for Multi-Scale Adaptation
The availability of Synthetic Aperture Radar (SAR) satellite imagery has increased considerably in recent years, with datasets commercially available. However, the acquisition of high-resolution SAR images in airborne configurations, remains costly and limited. Thus, the lack of open source, well-labeled, or easily exploitable SAR text-image datasets is a barrier to the use of existing foundation models in remote sensing applications. In this context, synthetic image generation is a promising solution to augment this scarce data, enabling a broader range of applications. Leveraging over 15 years of ONERA's extensive archival airborn data from acquisition campaigns, we created a comprehensive training dataset of 110 thousands SAR images to exploit a 3.5 billion parameters pre-trained latent diffusion model. In this work, we present a novel approach utilizing spatial conditioning techniques within a foundation model to transform satellite SAR imagery into airborne SAR representations. Additionally, we demonstrate that our pipeline is effective for bridging the realism of simulated images generated by ONERA's physics-based simulator EMPRISE. Our method explores a key application of AI in advancing SAR imaging technology. To the best of our knowledge, we are the first to introduce this approach in the literature.
IntelliCardiac: An Intelligent Platform for Cardiac Image Segmentation and Classification
Precise and effective processing of cardiac imaging data is critical for the identification and management of the cardiovascular diseases. We introduce IntelliCardiac, a comprehensive, web-based medical image processing platform for the automatic segmentation of 4D cardiac images and disease classification, utilizing an AI model trained on the publicly accessible ACDC dataset. The system, intended for patients, cardiologists, and healthcare professionals, offers an intuitive interface and uses deep learning models to identify essential heart structures and categorize cardiac diseases. The system supports analysis of both the right and left ventricles as well as myocardium, and then classifies patient's cardiac images into five diagnostic categories: dilated cardiomyopathy, myocardial infarction, hypertrophic cardiomyopathy, right ventricular abnormality, and no disease. IntelliCardiac combines a deep learning-based segmentation model with a two-step classification pipeline. The segmentation module gains an overall accuracy of 92.6\%. The classification module, trained on characteristics taken from segmented heart structures, achieves 98\% accuracy in five categories. These results exceed the performance of the existing state-of-the-art methods that integrate both segmentation and classification models. IntelliCardiac, which supports real-time visualization, workflow integration, and AI-assisted diagnostics, has great potential as a scalable, accurate tool for clinical decision assistance in cardiac imaging and diagnosis.
AI-Driven Segmentation and Analysis of Microbial Cells
Studying the growth and metabolism of microbes provides critical insights into their evolutionary adaptations to harsh environments, which are essential for microbial research and biotechnology applications. In this study, we developed an AI-driven image analysis system to efficiently segment individual cells and quantitatively analyze key cellular features. This system is comprised of four main modules. First, a denoising algorithm enhances contrast and suppresses noise while preserving fine cellular details. Second, the Segment Anything Model (SAM) enables accurate, zero-shot segmentation of cells without additional training. Third, post-processing is applied to refine segmentation results by removing over-segmented masks. Finally, quantitative analysis algorithms extract essential cellular features, including average intensity, length, width, and volume. The results show that denoising and post-processing significantly improved the segmentation accuracy of SAM in this new domain. Without human annotations, the AI-driven pipeline automatically and efficiently outlines cellular boundaries, indexes them, and calculates key cellular parameters with high accuracy. This framework will enable efficient and automated quantitative analysis of high-resolution fluorescence microscopy images to advance research into microbial adaptations to grow and metabolism that allow extremophiles to thrive in their harsh habitats.
GRAPHITE: Graph-Based Interpretable Tissue Examination for Enhanced Explainability in Breast Cancer Histopathology
Explainable AI (XAI) in medical histopathology is essential for enhancing the interpretability and clinical trustworthiness of deep learning models in cancer diagnosis. However, the black-box nature of these models often limits their clinical adoption. We introduce GRAPHITE (Graph-based Interpretable Tissue Examination), a post-hoc explainable framework designed for breast cancer tissue microarray (TMA) analysis. GRAPHITE employs a multiscale approach, extracting patches at various magnification levels, constructing an hierarchical graph, and utilising graph attention networks (GAT) with scalewise attention (SAN) to capture scale-dependent features. We trained the model on 140 tumour TMA cores and four benign whole slide images from which 140 benign samples were created, and tested it on 53 pathologist-annotated TMA samples. GRAPHITE outperformed traditional XAI methods, achieving a mean average precision (mAP) of 0.56, an area under the receiver operating characteristic curve (AUROC) of 0.94, and a threshold robustness (ThR) of 0.70, indicating that the model maintains high performance across a wide range of thresholds. In clinical utility, GRAPHITE achieved the highest area under the decision curve (AUDC) of 4.17e+5, indicating reliable decision support across thresholds. These results highlight GRAPHITE's potential as a clinically valuable tool in computational pathology, providing interpretable visualisations that align with the pathologists' diagnostic reasoning and support precision medicine.
comment: 25 Pages, 10 Figures, 1 Tables
Light Weight CNN for classification of Brain Tumors from MRI Images
This study presents a convolutional neural network (CNN)-based approach for the multi-class classification of brain tumors using magnetic resonance imaging (MRI) scans. We utilize a publicly available dataset containing MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor. Our primary objective is to build a light weight deep learning model that can automatically classify brain tumor types with high accuracy. To achieve this goal, we incorporate image preprocessing steps, including normalization, data augmentation, and a cropping technique designed to reduce background noise and emphasize relevant regions. The CNN architecture is optimized through hyperparameter tuning using Keras Tuner, enabling systematic exploration of network parameters. To ensure reliable evaluation, we apply 5-fold cross-validation, where each hyperparameter configuration is evaluated across multiple data splits to mitigate overfitting. Experimental results demonstrate that the proposed model achieves a classification accuracy of 98.78%, indicating its potential as a diagnostic aid in clinical settings. The proposed method offers a low-complexity yet effective solution for assisting in early brain tumor diagnosis.
comment: 6 pages
Liver Cirrhosis Stage Estimation from MRI with Deep Learning
We present an end-to-end deep learning framework for automated liver cirrhosis stage estimation from multi-sequence MRI. Cirrhosis is the severe scarring (fibrosis) of the liver and a common endpoint of various chronic liver diseases. Early diagnosis is vital to prevent complications such as decompensation and cancer, which significantly decreases life expectancy. However, diagnosing cirrhosis in its early stages is challenging, and patients often present with life-threatening complications. Our approach integrates multi-scale feature learning with sequence-specific attention mechanisms to capture subtle tissue variations across cirrhosis progression stages. Using CirrMRI600+, a large-scale publicly available dataset of 628 high-resolution MRI scans from 339 patients, we demonstrate state-of-the-art performance in three-stage cirrhosis classification. Our best model achieves 72.8% accuracy on T1W and 63.8% on T2W sequences, significantly outperforming traditional radiomics-based approaches. Through extensive ablation studies, we show that our architecture effectively learns stage-specific imaging biomarkers. We establish new benchmarks for automated cirrhosis staging and provide insights for developing clinically applicable deep learning systems. The source code will be available at https://github.com/JunZengz/CirrhosisStage.
comment: 7 pages, 1 figure
Multimedia
Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identfication
Unsupervised visible-infrared person re-identification (UVI-ReID) aims to retrieve pedestrian images across different modalities without costly annotations, but faces challenges due to the modality gap and lack of supervision. Existing methods often adopt self-training with clustering-generated pseudo-labels but implicitly assume these labels are always correct. In practice, however, this assumption fails due to inevitable pseudo-label noise, which hinders model learning. To address this, we introduce a new learning paradigm that explicitly considers Pseudo-Label Noise (PLN), characterized by three key challenges: noise overfitting, error accumulation, and noisy cluster correspondence. To this end, we propose a novel Robust Duality Learning framework (RoDE) for UVI-ReID to mitigate the effects of noisy pseudo-labels. First, to combat noise overfitting, a Robust Adaptive Learning mechanism (RAL) is proposed to dynamically emphasize clean samples while down-weighting noisy ones. Second, to alleviate error accumulation-where the model reinforces its own mistakes-RoDE employs dual distinct models that are alternately trained using pseudo-labels from each other, encouraging diversity and preventing collapse. However, this dual-model strategy introduces misalignment between clusters across models and modalities, creating noisy cluster correspondence. To resolve this, we introduce Cluster Consistency Matching (CCM), which aligns clusters across models and modalities by measuring cross-cluster similarity. Extensive experiments on three benchmarks demonstrate the effectiveness of RoDE.
Marker-Based Extrinsic Calibration Method for Accurate Multi-Camera 3D Reconstruction
Accurate 3D reconstruction using multi-camera RGB-D systems critically depends on precise extrinsic calibration to achieve proper alignment between captured views. In this paper, we introduce an iterative extrinsic calibration method that leverages the geometric constraints provided by a three-dimensional marker to significantly improve calibration accuracy. Our proposed approach systematically segments and refines marker planes through clustering, regression analysis, and iterative reassignment techniques, ensuring robust geometric correspondence across camera views. We validate our method comprehensively in both controlled environments and practical real-world settings within the Tech4Diet project, aimed at modeling the physical progression of patients undergoing nutritional treatments. Experimental results demonstrate substantial reductions in alignment errors, facilitating accurate and reliable 3D reconstructions.
FolAI: Synchronized Foley Sound Generation with Semantic and Temporal Alignment
Traditional sound design workflows rely on manual alignment of audio events to visual cues, as in Foley sound design, where everyday actions like footsteps or object interactions are recreated to match the on-screen motion. This process is time-consuming, difficult to scale, and lacks automation tools that preserve creative intent. Despite recent advances in vision-to-audio generation, producing temporally coherent and semantically controllable sound effects from video remains a major challenge. To address these limitations, we introduce FolAI, a two-stage generative framework that decouples the when and the what of sound synthesis, i.e., the temporal structure extraction and the semantically guided generation, respectively. In the first stage, we estimate a smooth control signal from the video that captures the motion intensity and rhythmic structure over time, serving as a temporal scaffold for the audio. In the second stage, a diffusion-based generative model produces sound effects conditioned both on this temporal envelope and on high-level semantic embeddings, provided by the user, that define the desired auditory content (e.g., material or action type). This modular design enables precise control over both timing and timbre, streamlining repetitive tasks while preserving creative flexibility in professional Foley workflows. Results on diverse visual contexts, such as footstep generation and action-specific sonorization, demonstrate that our model reliably produces audio that is temporally aligned with visual motion, semantically consistent with user intent, and perceptually realistic. These findings highlight the potential of FolAI as a controllable and modular solution for scalable, high-quality Foley sound synthesis in professional and interactive settings. Supplementary materials are accessible on our dedicated demo page at https://ispamm.github.io/FolAI.
Kubrick: Multimodal Agent Collaborations for Synthetic Video Generation CVPR 2025
Text-to-video generation has been dominated by diffusion-based or autoregressive models. These novel models provide plausible versatility, but are criticized for improper physical motion, shading and illumination, camera motion, and temporal consistency. The film industry relies on manually-edited Computer-Generated Imagery (CGI) using 3D modeling software. Human-directed 3D synthetic videos address these shortcomings, but require tight collaboration between movie makers and 3D rendering experts. We introduce an automatic synthetic video generation pipeline based on Vision Large Language Model (VLM) agent collaborations. Given a language description of a video, multiple VLM agents direct various processes of the generation pipeline. They cooperate to create Blender scripts which render a video following the given description. Augmented with Blender-based movie making knowledge, the Director agent decomposes the text-based video description into sub-processes. For each sub-process, the Programmer agent produces Python-based Blender scripts based on function composing and API calling. The Reviewer agent, with knowledge of video reviewing, character motion coordinates, and intermediate screenshots, provides feedback to the Programmer agent. The Programmer agent iteratively improves scripts to yield the best video outcome. Our generated videos show better quality than commercial video generation models in five metrics on video quality and instruction-following performance. Our framework outperforms other approaches in a user study on quality, consistency, and rationality.
comment: Accepted by CVPR 2025 AI4CC Workshop
SSTFormer: Bridging Spiking Neural Network and Memory Support Transformer for Frame-Event based Recognition
Event camera-based pattern recognition is a newly arising research topic in recent years. Current researchers usually transform the event streams into images, graphs, or voxels, and adopt deep neural networks for event-based classification. Although good performance can be achieved on simple event recognition datasets, however, their results may be still limited due to the following two issues. Firstly, they adopt spatial sparse event streams for recognition only, which may fail to capture the color and detailed texture information well. Secondly, they adopt either Spiking Neural Networks (SNN) for energy-efficient recognition with suboptimal results, or Artificial Neural Networks (ANN) for energy-intensive, high-performance recognition. However, seldom of them consider achieving a balance between these two aspects. In this paper, we formally propose to recognize patterns by fusing RGB frames and event streams simultaneously and propose a new RGB frame-event recognition framework to address the aforementioned issues. The proposed method contains four main modules, i.e., memory support Transformer network for RGB frame encoding, spiking neural network for raw event stream encoding, multi-modal bottleneck fusion module for RGB-Event feature aggregation, and prediction head. Due to the scarce of RGB-Event based classification dataset, we also propose a large-scale PokerEvent dataset which contains 114 classes, and 27102 frame-event pairs recorded using a DVS346 event camera. Extensive experiments on two RGB-Event based classification datasets fully validated the effectiveness of our proposed framework. We hope this work will boost the development of pattern recognition by fusing RGB frames and event streams. Both our dataset and source code of this work will be released at https://github.com/Event-AHU/SSTFormer
comment: Accepted by IEEE Transactions on Cognitive and Developmental Systems (TCDS) 2025
Computation and Language
R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning
Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a $8.4\%$ improvement on the VL Reward-Bench and a $14.3\%$ improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.
comment: Home page: https://github.com/yfzhang114/r1_reward
AOR: Anatomical Ontology-Guided Reasoning for Medical Large Multimodal Model in Chest X-Ray Interpretation
Chest X-rays (CXRs) are the most frequently performed imaging examinations in clinical settings. Recent advancements in Large Multimodal Models (LMMs) have enabled automated CXR interpretation, enhancing diagnostic accuracy and efficiency. However, despite their strong visual understanding, current Medical LMMs (MLMMs) still face two major challenges: (1) Insufficient region-level understanding and interaction, and (2) Limited accuracy and interpretability due to single-step reasoning. In this paper, we empower MLMMs with anatomy-centric reasoning capabilities to enhance their interactivity and explainability. Specifically, we first propose an Anatomical Ontology-Guided Reasoning (AOR) framework, which centers on cross-modal region-level information to facilitate multi-step reasoning. Next, under the guidance of expert physicians, we develop AOR-Instruction, a large instruction dataset for MLMMs training. Our experiments demonstrate AOR's superior performance in both VQA and report generation tasks.
AutoLibra: Agent Metric Induction from Open-Ended Feedback
Agents are predominantly evaluated and optimized via task success metrics, which are coarse, rely on manual design from experts, and fail to reward intermediate emergent behaviors. We propose AutoLibra, a framework for agent evaluation, that transforms open-ended human feedback, e.g., "If you find that the button is disabled, don't click it again", or "This agent has too much autonomy to decide what to do on its own", into metrics for evaluating fine-grained behaviors in agent trajectories. AutoLibra accomplishes this by grounding feedback to an agent's behavior, clustering similar positive and negative behaviors, and creating concrete metrics with clear definitions and concrete examples, which can be used for prompting LLM-as-a-Judge as evaluators. We further propose two meta-metrics to evaluate the alignment of a set of (induced) metrics with open feedback: "coverage" and "redundancy". Through optimizing these meta-metrics, we experimentally demonstrate AutoLibra's ability to induce more concrete agent evaluation metrics than the ones proposed in previous agent evaluation benchmarks and discover new metrics to analyze agents. We also present two applications of AutoLibra in agent improvement: First, we show that AutoLibra-induced metrics serve as better prompt-engineering targets than the task success rate on a wide range of text game tasks, improving agent performance over baseline by a mean of 20%. Second, we show that AutoLibra can iteratively select high-quality fine-tuning data for web navigation agents. Our results suggest that AutoLibra is a powerful task-agnostic tool for evaluating and improving language agents.
comment: https://opensocial.world/
ReplaceMe: Network Simplification via Layer Pruning and Linear Transformations
We introduce ReplaceMe, a generalized training-free depth pruning method that effectively replaces transformer blocks with a linear operation, while maintaining high performance for low compression ratios. In contrast to conventional pruning approaches that require additional training or fine-tuning, our approach requires only a small calibration dataset that is used to estimate a linear transformation to approximate the pruned blocks. This estimated linear mapping can be seamlessly merged with the remaining transformer blocks, eliminating the need for any additional network parameters. Our experiments show that ReplaceMe consistently outperforms other training-free approaches and remains highly competitive with state-of-the-art pruning methods that involve extensive retraining/fine-tuning and architectural modifications. Applied to several large language models (LLMs), ReplaceMe achieves up to 25% pruning while retaining approximately 90% of the original model's performance on open benchmarks - without any training or healing steps, resulting in minimal computational overhead (see Fig.1). We provide an open-source library implementing ReplaceMe alongside several state-of-the-art depth pruning techniques, available at this repository.
Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing SIGIR 2025
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations, driving its widespread use. However, complex tasks requiring multi-round retrieval remain challenging, and early attempts tend to be overly optimistic without a good sense of self-skepticism. Current multi-round RAG systems may continue searching even when enough information has already been retrieved, or they may provide incorrect answers without having sufficient information or knowledge. Existing solutions either require large amounts of expensive human-labeled process supervision data or lead to subpar performance. This paper aims to address these limitations by introducing a new framework, \textbf{SIM-RAG}, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities. To train SIM-RAG, we first let a RAG system self-practice multi-round retrieval, augmenting existing question-answer pairs with intermediate inner monologue reasoning steps to generate synthetic training data. For each pair, the system may explore multiple retrieval paths, which are labeled as successful if they reach the correct answer and unsuccessful otherwise. Using this data, we train a lightweight information sufficiency Critic. At inference time, the Critic evaluates whether the RAG system has retrieved sufficient information at each round, guiding retrieval decisions and improving system-level self-awareness through in-context reinforcement learning. Experiments across multiple prominent RAG benchmarks show that SIM-RAG is an effective multi-round RAG solution. Furthermore, this framework is system-efficient, adding a lightweight component to RAG without requiring modifications to existing LLMs or search engines, and data-efficient, eliminating the need for costly human-annotated mid-step retrieval process supervision data.
comment: Proceedings of the 48th International ACM SIGIR 2025
Bye-bye, Bluebook? Automating Legal Procedure with Large Language Models
Legal practice requires careful adherence to procedural rules. In the United States, few are more complex than those found in The Bluebook: A Uniform System of Citation. Compliance with this system's 500+ pages of byzantine formatting instructions is the raison d'etre of thousands of student law review editors and the bete noire of lawyers everywhere. To evaluate whether large language models (LLMs) are able to adhere to the procedures of such a complicated system, we construct an original dataset of 866 Bluebook tasks and test flagship LLMs from OpenAI, Anthropic, Google, Meta, and DeepSeek. We show (1) that these models produce fully compliant Bluebook citations only 69%-74% of the time and (2) that in-context learning on the Bluebook's underlying system of rules raises accuracy only to 77%. These results caution against using off-the-shelf LLMs to automate aspects of the law where fidelity to procedure is paramount.
Using Knowledge Graphs to harvest datasets for efficient CLIP model training
Training high-quality CLIP models typically requires enormous datasets, which limits the development of domain-specific models -- especially in areas that even the largest CLIP models do not cover well -- and drives up training costs. This poses challenges for scientific research that needs fine-grained control over the training procedure of CLIP models. In this work, we show that by employing smart web search strategies enhanced with knowledge graphs, a robust CLIP model can be trained from scratch with considerably less data. Specifically, we demonstrate that an expert foundation model for living organisms can be built using just 10M images. Moreover, we introduce EntityNet, a dataset comprising 33M images paired with 46M text descriptions, which enables the training of a generic CLIP model in significantly reduced time.
Voila: Voice-Language Foundation Models for Real-Time Autonomous Interaction and Voice Role-Play
A voice AI agent that blends seamlessly into daily life would interact with humans in an autonomous, real-time, and emotionally expressive manner. Rather than merely reacting to commands, it would continuously listen, reason, and respond proactively, fostering fluid, dynamic, and emotionally resonant interactions. We introduce Voila, a family of large voice-language foundation models that make a step towards this vision. Voila moves beyond traditional pipeline systems by adopting a new end-to-end architecture that enables full-duplex, low-latency conversations while preserving rich vocal nuances such as tone, rhythm, and emotion. It achieves a response latency of just 195 milliseconds, surpassing the average human response time. Its hierarchical multi-scale Transformer integrates the reasoning capabilities of large language models (LLMs) with powerful acoustic modeling, enabling natural, persona-aware voice generation -- where users can simply write text instructions to define the speaker's identity, tone, and other characteristics. Moreover, Voila supports over one million pre-built voices and efficient customization of new ones from brief audio samples as short as 10 seconds. Beyond spoken dialogue, Voila is designed as a unified model for a wide range of voice-based applications, including automatic speech recognition (ASR), Text-to-Speech (TTS), and, with minimal adaptation, multilingual speech translation. Voila is fully open-sourced to support open research and accelerate progress toward next-generation human-machine interactions.
comment: 18 pages, 7 figures, Website: https://voila.maitrix.org
Predicting Movie Hits Before They Happen with LLMs
Addressing the cold-start issue in content recommendation remains a critical ongoing challenge. In this work, we focus on tackling the cold-start problem for movies on a large entertainment platform. Our primary goal is to forecast the popularity of cold-start movies using Large Language Models (LLMs) leveraging movie metadata. This method could be integrated into retrieval systems within the personalization pipeline or could be adopted as a tool for editorial teams to ensure fair promotion of potentially overlooked movies that may be missed by traditional or algorithmic solutions. Our study validates the effectiveness of this approach compared to established baselines and those we developed.
comment: Accepted at ACM UMAP 2025 Industry Track
fastabx: A library for efficient computation of ABX discriminability
We introduce fastabx, a high-performance Python library for building ABX discrimination tasks. ABX is a measure of the separation between generic categories of interest. It has been used extensively to evaluate phonetic discriminability in self-supervised speech representations. However, its broader adoption has been limited by the absence of adequate tools. fastabx addresses this gap by providing a framework capable of constructing any type of ABX task while delivering the efficiency necessary for rapid development cycles, both in task creation and in calculating distances between representations. We believe that fastabx will serve as a valuable resource for the broader representation learning community, enabling researchers to systematically investigate what information can be directly extracted from learned representations across several domains beyond speech processing. The source code is available at https://github.com/bootphon/fastabx.
comment: 8 pages, 6 figures
Sailing AI by the Stars: A Survey of Learning from Rewards in Post-Training and Test-Time Scaling of Large Language Models
Recent developments in Large Language Models (LLMs) have shifted from pre-training scaling to post-training and test-time scaling. Across these developments, a key unified paradigm has arisen: Learning from Rewards, where reward signals act as the guiding stars to steer LLM behavior. It has underpinned a wide range of prevalent techniques, such as reinforcement learning (in RLHF, DPO, and GRPO), reward-guided decoding, and post-hoc correction. Crucially, this paradigm enables the transition from passive learning from static data to active learning from dynamic feedback. This endows LLMs with aligned preferences and deep reasoning capabilities. In this survey, we present a comprehensive overview of the paradigm of learning from rewards. We categorize and analyze the strategies under this paradigm across training, inference, and post-inference stages. We further discuss the benchmarks for reward models and the primary applications. Finally we highlight the challenges and future directions. We maintain a paper collection at https://github.com/bobxwu/learning-from-rewards-llm-papers.
comment: 35 Pages
A Survey on Progress in LLM Alignment from the Perspective of Reward Design
The alignment of large language models (LLMs) with human values and intentions represents a core challenge in current AI research, where reward mechanism design has become a critical factor in shaping model behavior. This study conducts a comprehensive investigation of reward mechanisms in LLM alignment through a systematic theoretical framework, categorizing their development into three key phases: (1) feedback (diagnosis), (2) reward design (prescription), and (3) optimization (treatment). Through a four-dimensional analysis encompassing construction basis, format, expression, and granularity, this research establishes a systematic classification framework that reveals evolutionary trends in reward modeling. The field of LLM alignment faces several persistent challenges, while recent advances in reward design are driving significant paradigm shifts. Notable developments include the transition from reinforcement learning-based frameworks to novel optimization paradigms, as well as enhanced capabilities to address complex alignment scenarios involving multimodal integration and concurrent task coordination. Finally, this survey outlines promising future research directions for LLM alignment through innovative reward design strategies.
comment: Preprint
Proper Name Diacritization for Arabic Wikipedia: A Benchmark Dataset
Proper names in Arabic Wikipedia are frequently undiacritized, creating ambiguity in pronunciation and interpretation, especially for transliterated named entities of foreign origin. While transliteration and diacritization have been well-studied separately in Arabic NLP,their intersection remains underexplored. In this paper, we introduce a new manually diacritized dataset of Arabic proper names of various origins with their English Wikipedia equivalent glosses, and present the challenges and guidelines we followed to create it. We benchmark GPT-4o on the task of recovering full diacritization given the undiacritized Arabic and English forms, and analyze its performance. Achieving 73% accuracy, our results underscore both the difficulty of the task and the need for improved models and resources. We release our dataset to facilitate further research on Arabic Wikipedia proper name diacritization.
Enhancing Chemical Reaction and Retrosynthesis Prediction with Large Language Model and Dual-task Learning IJCAI 2025
Chemical reaction and retrosynthesis prediction are fundamental tasks in drug discovery. Recently, large language models (LLMs) have shown potential in many domains. However, directly applying LLMs to these tasks faces two major challenges: (i) lacking a large-scale chemical synthesis-related instruction dataset; (ii) ignoring the close correlation between reaction and retrosynthesis prediction for the existing fine-tuning strategies. To address these challenges, we propose ChemDual, a novel LLM framework for accurate chemical synthesis. Specifically, considering the high cost of data acquisition for reaction and retrosynthesis, ChemDual regards the reaction-and-retrosynthesis of molecules as a related recombination-and-fragmentation process and constructs a large-scale of 4.4 million instruction dataset. Furthermore, ChemDual introduces an enhanced LLaMA, equipped with a multi-scale tokenizer and dual-task learning strategy, to jointly optimize the process of recombination and fragmentation as well as the tasks between reaction and retrosynthesis prediction. Extensive experiments on Mol-Instruction and USPTO-50K datasets demonstrate that ChemDual achieves state-of-the-art performance in both predictions of reaction and retrosynthesis, outperforming the existing conventional single-task approaches and the general open-source LLMs. Through molecular docking analysis, ChemDual generates compounds with diverse and strong protein binding affinity, further highlighting its strong potential in drug design.
comment: Accepted for publication at IJCAI 2025
LLaMA-Omni2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis
Real-time, intelligent, and natural speech interaction is an essential part of the next-generation human-computer interaction. Recent advancements have showcased the potential of building intelligent spoken chatbots based on large language models (LLMs). In this paper, we introduce LLaMA-Omni 2, a series of speech language models (SpeechLMs) ranging from 0.5B to 14B parameters, capable of achieving high-quality real-time speech interaction. LLaMA-Omni 2 is built upon the Qwen2.5 series models, integrating a speech encoder and an autoregressive streaming speech decoder. Despite being trained on only 200K multi-turn speech dialogue samples, LLaMA-Omni 2 demonstrates strong performance on several spoken question answering and speech instruction following benchmarks, surpassing previous state-of-the-art SpeechLMs like GLM-4-Voice, which was trained on millions of hours of speech data.
comment: Preprint. Project: https://github.com/ictnlp/LLaMA-Omni2
Automatic Proficiency Assessment in L2 English Learners
Second language proficiency (L2) in English is usually perceptually evaluated by English teachers or expert evaluators, with the inherent intra- and inter-rater variability. This paper explores deep learning techniques for comprehensive L2 proficiency assessment, addressing both the speech signal and its correspondent transcription. We analyze spoken proficiency classification prediction using diverse architectures, including 2D CNN, frequency-based CNN, ResNet, and a pretrained wav2vec 2.0 model. Additionally, we examine text-based proficiency assessment by fine-tuning a BERT language model within resource constraints. Finally, we tackle the complex task of spontaneous dialogue assessment, managing long-form audio and speaker interactions through separate applications of wav2vec 2.0 and BERT models. Results from experiments on EFCamDat and ANGLISH datasets and a private dataset highlight the potential of deep learning, especially the pretrained wav2vec 2.0 model, for robust automated L2 proficiency evaluation.
comment: 6 pages
Ensemble Kalman filter for uncertainty in human language comprehension
Artificial neural networks (ANNs) are widely used in modeling sentence processing but often exhibit deterministic behavior, contrasting with human sentence comprehension, which manages uncertainty during ambiguous or unexpected inputs. This is exemplified by reversal anomalies-sentences with unexpected role reversals that challenge syntax and semantics-highlighting the limitations of traditional ANN models, such as the Sentence Gestalt (SG) Model. To address these limitations, we propose a Bayesian framework for sentence comprehension, applying an extension of the ensemble Kalman filter (EnKF) for Bayesian inference to quantify uncertainty. By framing language comprehension as a Bayesian inverse problem, this approach enhances the SG model's ability to reflect human sentence processing with respect to the representation of uncertainty. Numerical experiments and comparisons with maximum likelihood estimation (MLE) demonstrate that Bayesian methods improve uncertainty representation, enabling the model to better approximate human cognitive processing when dealing with linguistic ambiguities.
EMORL: Ensemble Multi-Objective Reinforcement Learning for Efficient and Flexible LLM Fine-Tuning SIGDIAL 2025
Recent advances in reinforcement learning (RL) for large language model (LLM) fine-tuning show promise in addressing multi-objective tasks but still face significant challenges, including complex objective balancing, low training efficiency, poor scalability, and limited explainability. Leveraging ensemble learning principles, we introduce an Ensemble Multi-Objective RL (EMORL) framework that fine-tunes multiple models with individual objectives while optimizing their aggregation after the training to improve efficiency and flexibility. Our method is the first to aggregate the last hidden states of individual models, incorporating contextual information from multiple objectives. This approach is supported by a hierarchical grid search algorithm that identifies optimal weighted combinations. We evaluate EMORL on counselor reflection generation tasks, using text-scoring LLMs to evaluate the generations and provide rewards during RL fine-tuning. Through comprehensive experiments on the PAIR and Psych8k datasets, we demonstrate the advantages of EMORL against existing baselines: significantly lower and more stable training consumption ($17,529\pm 1,650$ data points and $6,573\pm 147.43$ seconds), improved scalability and explainability, and comparable performance across multiple objectives.
comment: 13 pages, 9 figures, submitted to SIGDIAL 2025 conference
Bielik v3 Small: Technical Report
We introduce Bielik v3, a series of parameter-efficient generative text models (1.5B and 4.5B) optimized for Polish language processing. These models demonstrate that smaller, well-optimized architectures can achieve performance comparable to much larger counterparts while requiring substantially fewer computational resources. Our approach incorporates several key innovations: a custom Polish tokenizer (APT4) that significantly improves token efficiency, Weighted Instruction Cross-Entropy Loss to balance learning across instruction types, and Adaptive Learning Rate that dynamically adjusts based on training progress. Trained on a meticulously curated corpus of 292 billion tokens spanning 303 million documents, these models excel across multiple benchmarks, including the Open PL LLM Leaderboard, Complex Polish Text Understanding Benchmark, Polish EQ-Bench, and Polish Medical Leaderboard. The 4.5B parameter model achieves results competitive with models 2-3 times its size, while the 1.5B model delivers strong performance despite its extremely compact profile. These advances establish new benchmarks for parameter-efficient language modeling in less-represented languages, making high-quality Polish language AI more accessible for resource-constrained applications.
Bemba Speech Translation: Exploring a Low-Resource African Language
This paper describes our system submission to the International Conference on Spoken Language Translation (IWSLT 2025), low-resource languages track, namely for Bemba-to-English speech translation. We built cascaded speech translation systems based on Whisper and NLLB-200, and employed data augmentation techniques, such as back-translation. We investigate the effect of using synthetic data and discuss our experimental setup.
comment: IWSLT 2025
Data Augmentation With Back translation for Low Resource languages: A case of English and Luganda
In this paper,we explore the application of Back translation (BT) as a semi-supervised technique to enhance Neural Machine Translation(NMT) models for the English-Luganda language pair, specifically addressing the challenges faced by low-resource languages. The purpose of our study is to demonstrate how BT can mitigate the scarcity of bilingual data by generating synthetic data from monolingual corpora. Our methodology involves developing custom NMT models using both publicly available and web-crawled data, and applying Iterative and Incremental Back translation techniques. We strategically select datasets for incremental back translation across multiple small datasets, which is a novel element of our approach. The results of our study show significant improvements, with translation performance for the English-Luganda pair exceeding previous benchmarks by more than 10 BLEU score units across all translation directions. Additionally, our evaluation incorporates comprehensive assessment metrics such as SacreBLEU, ChrF2, and TER, providing a nuanced understanding of translation quality. The conclusion drawn from our research confirms the efficacy of BT when strategically curated datasets are utilized, establishing new performance benchmarks and demonstrating the potential of BT in enhancing NMT models for low-resource languages.
comment: NLPIR '24: Proceedings of the 2024 8th International Conference on Natural Language Processing and Information Retrieval
Incentivizing Inclusive Contributions in Model Sharing Markets
While data plays a crucial role in training contemporary AI models, it is acknowledged that valuable public data will be exhausted in a few years, directing the world's attention towards the massive decentralized private data. However, the privacy-sensitive nature of raw data and lack of incentive mechanism prevent these valuable data from being fully exploited. Addressing these challenges, this paper proposes inclusive and incentivized personalized federated learning (iPFL), which incentivizes data holders with diverse purposes to collaboratively train personalized models without revealing raw data. iPFL constructs a model-sharing market by solving a graph-based training optimization and incorporates an incentive mechanism based on game theory principles. Theoretical analysis shows that iPFL adheres to two key incentive properties: individual rationality and truthfulness. Empirical studies on eleven AI tasks (e.g., large language models' instruction-following tasks) demonstrate that iPFL consistently achieves the highest economic utility, and better or comparable model performance compared to baseline methods. We anticipate that our iPFL can serve as a valuable technique for boosting future AI models on decentralized private data while making everyone satisfied.
Colombian Waitresses y Jueces canadienses: Gender and Country Biases in Occupation Recommendations from LLMs
One of the goals of fairness research in NLP is to measure and mitigate stereotypical biases that are propagated by NLP systems. However, such work tends to focus on single axes of bias (most often gender) and the English language. Addressing these limitations, we contribute the first study of multilingual intersecting country and gender biases, with a focus on occupation recommendations generated by large language models. We construct a benchmark of prompts in English, Spanish and German, where we systematically vary country and gender, using 25 countries and four pronoun sets. Then, we evaluate a suite of 5 Llama-based models on this benchmark, finding that LLMs encode significant gender and country biases. Notably, we find that even when models show parity for gender or country individually, intersectional occupational biases based on both country and gender persist. We also show that the prompting language significantly affects bias, and instruction-tuned models consistently demonstrate the lowest and most stable levels of bias. Our findings highlight the need for fairness researchers to use intersectional and multilingual lenses in their work.
Bielik 11B v2 Technical Report
We present Bielik 11B v2, a state-of-the-art language model optimized for Polish text processing. Built on the Mistral 7B v0.2 architecture and scaled to 11B parameters using depth up-scaling, this model demonstrates exceptional performance across Polish language benchmarks while maintaining strong cross-lingual capabilities. We introduce two key technical innovations: Weighted Instruction Cross-Entropy Loss, which optimizes learning across diverse instruction types by assigning quality-based weights to training examples, and Adaptive Learning Rate, which dynamically adjusts based on context length. Comprehensive evaluation across multiple benchmarks demonstrates that Bielik 11B v2 outperforms many larger models, including those with 2-6 times more parameters, and significantly surpasses other specialized Polish language models on tasks ranging from linguistic understanding to complex reasoning. The model's parameter efficiency and extensive quantization options enable deployment across various hardware configurations, advancing Polish language AI capabilities and establishing new benchmarks for resource-efficient language modeling in less-represented languages.
Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL
Chain-of-thought (CoT) reasoning in large language models (LLMs) can be formalized as a latent variable problem, where the model needs to generate intermediate reasoning steps. While prior approaches such as iterative reward-ranked fine-tuning (RAFT) have relied on such formulations, they typically apply uniform inference budgets across prompts, which fails to account for variability in difficulty and convergence behavior. This work identifies the main bottleneck in CoT training as inefficient stochastic gradient estimation due to static sampling strategies. We propose GVM-RAFT, a prompt-specific Dynamic Sample Allocation Strategy designed to minimize stochastic gradient variance under a computational budget constraint. The method dynamically allocates computational resources by monitoring prompt acceptance rates and stochastic gradient norms, ensuring that the resulting gradient variance is minimized. Our theoretical analysis shows that the proposed dynamic sampling strategy leads to accelerated convergence guarantees under suitable conditions. Experiments on mathematical reasoning show that GVM-RAFT achieves a 2-4x speedup and considerable accuracy improvements over vanilla RAFT. The proposed dynamic sampling strategy is general and can be incorporated into other reinforcement learning algorithms, such as GRPO, leading to similar improvements in convergence and test accuracy. Our code is available at https://github.com/RLHFlow/GVM.
RM-R1: Reward Modeling as Reasoning
Reward modeling is essential for aligning large language models (LLMs) with human preferences, especially through reinforcement learning from human feedback (RLHF). To provide accurate reward signals, a reward model (RM) should stimulate deep thinking and conduct interpretable reasoning before assigning a score or a judgment. However, existing RMs either produce opaque scalar scores or directly generate the prediction of a preferred answer, making them struggle to integrate natural language critiques, thus lacking interpretability. Inspired by recent advances of long chain-of-thought (CoT) on reasoning-intensive tasks, we hypothesize and validate that integrating reasoning capabilities into reward modeling significantly enhances RM's interpretability and performance. In this work, we introduce a new class of generative reward models -- Reasoning Reward Models (ReasRMs) -- which formulate reward modeling as a reasoning task. We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1. The training consists of two key stages: (1) distillation of high-quality reasoning chains and (2) reinforcement learning with verifiable rewards. RM-R1 improves LLM rollouts by self-generating reasoning traces or chat-specific rubrics and evaluating candidate responses against them. Empirically, our models achieve state-of-the-art or near state-of-the-art performance of generative RMs across multiple comprehensive reward model benchmarks, outperforming much larger open-weight models (e.g., Llama3.1-405B) and proprietary ones (e.g., GPT-4o) by up to 13.8%. Beyond final performance, we perform thorough empirical analysis to understand the key ingredients of successful ReasRM training. To facilitate future research, we release six ReasRM models along with code and data at https://github.com/RM-R1-UIUC/RM-R1.
comment: 23 pages, 7 figures
JTCSE: Joint Tensor-Modulus Constraints and Cross-Attention for Unsupervised Contrastive Learning of Sentence Embeddings
Unsupervised contrastive learning has become a hot research topic in natural language processing. Existing works usually aim at constraining the orientation distribution of the representations of positive and negative samples in the high-dimensional semantic space in contrastive learning, but the semantic representation tensor possesses both modulus and orientation features, and the existing works ignore the modulus feature of the representations and cause insufficient contrastive learning. % Therefore, we firstly propose a training objective that aims at modulus constraints on the semantic representation tensor, to strengthen the alignment between the positive samples in contrastive learning. Therefore, we first propose a training objective that is designed to impose modulus constraints on the semantic representation tensor, to strengthen the alignment between positive samples in contrastive learning. Then, the BERT-like model suffers from the phenomenon of sinking attention, leading to a lack of attention to CLS tokens that aggregate semantic information. In response, we propose a cross-attention structure among the twin-tower ensemble models to enhance the model's attention to CLS token and optimize the quality of CLS Pooling. Combining the above two motivations, we propose a new \textbf{J}oint \textbf{T}ensor representation modulus constraint and \textbf{C}ross-attention unsupervised contrastive learning \textbf{S}entence \textbf{E}mbedding representation framework JTCSE, which we evaluate in seven semantic text similarity computation tasks, and the experimental results show that JTCSE's twin-tower ensemble model and single-tower distillation model outperform the other baselines and become the current SOTA. In addition, we have conducted an extensive zero-shot downstream task evaluation, which shows that JTCSE outperforms other baselines overall on more than 130 tasks.
SIMPLEMIX: Frustratingly Simple Mixing of Off- and On-policy Data in Language Model Preference Learning ICML 2025
Aligning language models with human preferences relies on pairwise preference datasets. While some studies suggest that on-policy data consistently outperforms off -policy data for preference learning, others indicate that the advantages of on-policy data may be task-dependent, highlighting the need for a systematic exploration of their interplay. In this work, we show that on-policy and off-policy data offer complementary strengths in preference optimization: on-policy data is particularly effective for reasoning tasks like math and coding, while off-policy data performs better on open-ended tasks such as creative writing and making personal recommendations. Guided by these findings, we introduce SIMPLEMIX, an approach to combine the complementary strengths of on-policy and off-policy preference learning by simply mixing these two data sources. Our empirical results across diverse tasks and benchmarks demonstrate that SIMPLEMIX substantially improves language model alignment. Specifically, SIMPLEMIX improves upon on-policy DPO and off-policy DPO by an average of 6.03% on Alpaca Eval 2.0. Moreover, it outperforms prior approaches that are much more complex in combining on- and off-policy data, such as HyPO and DPO-Mix-P, by an average of 3.05%.
comment: To appear in ICML 2025
Invoke Interfaces Only When Needed: Adaptive Invocation for Large Language Models in Question Answering
The collaborative paradigm of large and small language models (LMs) effectively balances performance and cost, yet its pivotal challenge lies in precisely pinpointing the moment of invocation when hallucinations arise in small LMs. Previous optimization efforts primarily focused on post-processing techniques, which were separate from the reasoning process of LMs, resulting in high computational costs and limited effectiveness. In this paper, we propose a practical invocation evaluation metric called AttenHScore, which calculates the accumulation and propagation of hallucinations during the generation process of small LMs, continuously amplifying potential reasoning errors. By dynamically adjusting the detection threshold, we achieve more accurate real-time invocation of large LMs. Additionally, considering the limited reasoning capacity of small LMs, we leverage uncertainty-aware knowledge reorganization to assist them better capture critical information from different text chunks. Extensive experiments reveal that our AttenHScore outperforms most baseline in enhancing real-time hallucination detection capabilities across multiple QA datasets, especially when addressing complex queries. Moreover, our strategies eliminate the need for additional model training and display flexibility in adapting to various transformer-based LMs.
Optimizing LLMs for Resource-Constrained Environments: A Survey of Model Compression Techniques
Large Language Models (LLMs) have revolutionized many areas of artificial intelligence (AI), but their substantial resource requirements limit their deployment on mobile and edge devices. This survey paper provides a comprehensive overview of techniques for compressing LLMs to enable efficient inference in resource-constrained environments. We examine three primary approaches: Knowledge Distillation, Model Quantization, and Model Pruning. For each technique, we discuss the underlying principles, present different variants, and provide examples of successful applications. We also briefly discuss complementary techniques such as mixture-of-experts and early-exit strategies. Finally, we highlight promising future directions, aiming to provide a valuable resource for both researchers and practitioners seeking to optimize LLMs for edge deployment.
comment: Accepted to IEEE COMPSAC 2025
Generative Sign-description Prompts with Multi-positive Contrastive Learning for Sign Language Recognition
Sign language recognition (SLR) faces fundamental challenges in creating accurate annotations due to the inherent complexity of simultaneous manual and non-manual signals. To the best of our knowledge, this is the first work to integrate generative large language models (LLMs) into SLR tasks. We propose a novel Generative Sign-description Prompts Multi-positive Contrastive learning (GSP-MC) method that leverages retrieval-augmented generation (RAG) with domain-specific LLMs, incorporating multi-step prompt engineering and expert-validated sign language corpora to produce precise multipart descriptions. The GSP-MC method also employs a dual-encoder architecture to bidirectionally align hierarchical skeleton features with multiple text descriptions (global, synonym, and part level) through probabilistic matching. Our approach combines global and part-level losses, optimizing KL divergence to ensure robust alignment across all relevant text-skeleton pairs while capturing both sign-level semantics and detailed part dynamics. Experiments demonstrate state-of-the-art performance against existing methods on the Chinese SLR500 (reaching 97.1%) and Turkish AUTSL datasets (97.07% accuracy). The method's cross-lingual effectiveness highlight its potential for developing inclusive communication technologies.
comment: 9 pages, 6 figures
Improving Model Alignment Through Collective Intelligence of Open-Source LLMS ICML 2025
Building helpful and harmless large language models (LLMs) requires effective model alignment approach based on human instructions and feedback, which necessitates high-quality human-labeled data. Constructing such datasets is often expensive and hard to scale, and may face potential limitations on diversity and generalization. To address these challenges, we introduce Mixture of Agents Alignment (MoAA), that leverages the collective strengths of various language models to provide high-quality data for model alignment. By employing MoAA, we enhance both supervised fine-tuning and preference optimization, leading to improved performance compared to using a single model alone to generate alignment data (e.g. using GPT-4o alone). Evaluation results show that our approach can improve win rate of LLaMA-3.1-8B-Instruct from 19.5 to 48.3 on Arena-Hard and from 22.33 to 57.23 on AlpacaEval2, highlighting a promising direction for model alignment through this new scalable and diverse synthetic data recipe. Furthermore, we demonstrate that MoAA enables a self-improvement pipeline, where models finetuned on MoA-generated data surpass their own initial capabilities, providing evidence that our approach can push the frontier of open-source LLMs without reliance on stronger external supervision. Data and code will be released.
comment: ICML 2025
BLAB: Brutally Long Audio Bench
Developing large audio language models (LMs) capable of understanding diverse spoken interactions is essential for accommodating the multimodal nature of human communication and can increase the accessibility of language technologies across different user populations. Recent work on audio LMs has primarily evaluated their performance on short audio segments, typically under 30 seconds, with limited exploration of long-form conversational speech segments that more closely reflect natural user interactions with these models. We introduce Brutally Long Audio Bench (BLAB), a challenging long-form audio benchmark that evaluates audio LMs on localization, duration estimation, emotion, and counting tasks using audio segments averaging 51 minutes in length. BLAB consists of 833+ hours of diverse, full-length audio clips, each paired with human-annotated, text-based natural language questions and answers. Our audio data were collected from permissively licensed sources and underwent a human-assisted filtering process to ensure task compliance. We evaluate six open-source and proprietary audio LMs on BLAB and find that all of them, including advanced models such as Gemini 2.0 Pro and GPT-4o, struggle with the tasks in BLAB. Our comprehensive analysis reveals key insights into the trade-offs between task difficulty and audio duration. In general, we find that audio LMs struggle with long-form speech, with performance declining as duration increases. They perform poorly on localization, temporal reasoning, counting, and struggle to understand non-phonemic information, relying more on prompts than audio content. BLAB serves as a challenging evaluation framework to develop audio LMs with robust long-form audio understanding capabilities.
Developing A Framework to Support Human Evaluation of Bias in Generated Free Response Text
LLM evaluation is challenging even the case of base models. In real world deployments, evaluation is further complicated by the interplay of task specific prompts and experiential context. At scale, bias evaluation is often based on short context, fixed choice benchmarks that can be rapidly evaluated, however, these can lose validity when the LLMs' deployed context differs. Large scale human evaluation is often seen as too intractable and costly. Here we present our journey towards developing a semi-automated bias evaluation framework for free text responses that has human insights at its core. We discuss how we developed an operational definition of bias that helped us automate our pipeline and a methodology for classifying bias beyond multiple choice. We additionally comment on how human evaluation helped us uncover problematic templates in a bias benchmark.
comment: 6 pages, no figures, presented at CHI 2025 workshop for Human Evaluation and Auditing of Language Models
Teaching Models to Understand (but not Generate) High-risk Data
Language model developers typically filter out high-risk content -- such as toxic or copyrighted text -- from their pre-training data to prevent models from generating similar outputs. However, removing such data altogether limits models' ability to recognize and appropriately respond to harmful or sensitive content. In this paper, we introduce Selective Loss to Understand but Not Generate (SLUNG), a pre-training paradigm through which models learn to understand high-risk data without learning to generate it. Instead of uniformly applying the next-token prediction loss, SLUNG selectively avoids incentivizing the generation of high-risk tokens while ensuring they remain within the model's context window. As the model learns to predict low-risk tokens that follow high-risk ones, it is forced to understand the high-risk content. Through our experiments, we show that SLUNG consistently improves models' understanding of high-risk data (e.g., ability to recognize toxic content) without increasing its generation (e.g., toxicity of model responses). Overall, our SLUNG paradigm enables models to benefit from high-risk text that would otherwise be filtered out.
Radio: Rate-Distortion Optimization for Large Language Model Compression ICML 2025
In recent years, the compression of large language models (LLMs) has emerged as a key problem in facilitating LLM deployment on resource-limited devices, reducing compute costs, and mitigating the environmental footprint due to large-scale AI infrastructure. Here, we establish the foundations of LLM quantization from a rate-distortion theory perspective and propose a quantization technique based on simple rate-distortion optimization. Our technique scales to models containing hundreds of billions of weight parameters and offers users the flexibility to compress models, post-training, to a model size or accuracy specified by the user.
comment: Accepted to ICML 2025
UCSC at SemEval-2025 Task 3: Context, Models and Prompt Optimization for Automated Hallucination Detection in LLM Output
Hallucinations pose a significant challenge for large language models when answering knowledge-intensive queries. As LLMs become more widely adopted, it is crucial not only to detect if hallucinations occur but also to pinpoint exactly where in the LLM output they occur. SemEval 2025 Task 3, Mu-SHROOM: Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes, is a recent effort in this direction. This paper describes the UCSC system submission to the shared Mu-SHROOM task. We introduce a framework that first retrieves relevant context, next identifies false content from the answer, and finally maps them back to spans in the LLM output. The process is further enhanced by automatically optimizing prompts. Our system achieves the highest overall performance, ranking #1 in average position across all languages. We release our code and experiment results.
comment: 6 pages, 1 figure
A Typology of Synthetic Datasets for Dialogue Processing in Clinical Contexts
Synthetic data sets are used across linguistic domains and NLP tasks, particularly in scenarios where authentic data is limited (or even non-existent). One such domain is that of clinical (healthcare) contexts, where there exist significant and long-standing challenges (e.g., privacy, anonymization, and data governance) which have led to the development of an increasing number of synthetic datasets. One increasingly important category of clinical dataset is that of clinical dialogues which are especially sensitive and difficult to collect, and as such are commonly synthesized. While such synthetic datasets have been shown to be sufficient in some situations, little theory exists to inform how they may be best used and generalized to new applications. In this paper, we provide an overview of how synthetic datasets are created, evaluated and being used for dialogue related tasks in the medical domain. Additionally, we propose a novel typology for use in classifying types and degrees of data synthesis, to facilitate comparison and evaluation.
Memorization or Interpolation ? Detecting LLM Memorization through Input Perturbation Analysis
While Large Language Models (LLMs) achieve remarkable performance through training on massive datasets, they can exhibit concerning behaviors such as verbatim reproduction of training data rather than true generalization. This memorization phenomenon raises significant concerns about data privacy, intellectual property rights, and the reliability of model evaluations. This paper introduces PEARL, a novel approach for detecting memorization in LLMs. PEARL assesses how sensitive an LLM's performance is to input perturbations, enabling memorization detection without requiring access to the model's internals. We investigate how input perturbations affect the consistency of outputs, enabling us to distinguish between true generalization and memorization. Our findings, following extensive experiments on the Pythia open model, provide a robust framework for identifying when the model simply regurgitates learned information. Applied on the GPT 4o models, the PEARL framework not only identified cases of memorization of classic texts from the Bible or common code from HumanEval but also demonstrated that it can provide supporting evidence that some data, such as from the New York Times news articles, were likely part of the training data of a given model.
RADLADS: Rapid Attention Distillation to Linear Attention Decoders at Scale
We present Rapid Attention Distillation to Linear Attention Decoders at Scale (RADLADS), a protocol for rapidly converting softmax attention transformers into linear attention decoder models, along with two new RWKV-variant architectures, and models converted from popular Qwen2.5 open source models in 7B, 32B, and 72B sizes. Our conversion process requires only 350-700M tokens, less than 0.005% of the token count used to train the original teacher models. Converting to our 72B linear attention model costs less than \$2,000 USD at today's prices, yet quality at inference remains close to the original transformer. These models achieve state-of-the-art downstream performance across a set of standard benchmarks for linear attention models of their size. We release all our models on HuggingFace under the Apache 2.0 license, with the exception of our 72B models which are also governed by the Qwen License Agreement. Models at https://huggingface.co/collections/recursal/radlads-6818ee69e99e729ba8a87102 Training Code at https://github.com/recursal/RADLADS-paper
Logits-Constrained Framework with RoBERTa for Ancient Chinese NER
This paper presents a Logits-Constrained (LC) framework for Ancient Chinese Named Entity Recognition (NER), evaluated on the EvaHan 2025 benchmark. Our two-stage model integrates GujiRoBERTa for contextual encoding and a differentiable decoding mechanism to enforce valid BMES label transitions. Experiments demonstrate that LC improves performance over traditional CRF and BiLSTM-based approaches, especially in high-label or large-data settings. We also propose a model selection criterion balancing label complexity and dataset size, providing practical guidance for real-world Ancient Chinese NLP tasks.
comment: 5 pages, 2 figures, 6 tables. Accepted to EvaHan 2025 shared task on Ancient Chinese NLP
Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
The Art of Repair: Optimizing Iterative Program Repair with Instruction-Tuned Models
Automatic program repair (APR) aims to reduce the manual efforts required to identify and fix errors in source code. Before the rise of LLM-based agents, a common strategy was to increase the number of generated patches, sometimes to the thousands, to achieve better repair results on benchmarks. More recently, self-iterative capabilities enabled LLMs to refine patches over multiple rounds guided by feedback. However, literature often focuses on many iterations and disregards different numbers of outputs. We investigate an APR pipeline that balances these two approaches, the generation of multiple outputs and multiple rounds of iteration, while imposing a limit of 10 total patches per bug. We apply three SOTA instruction-tuned LLMs - DeepSeekCoder-Instruct, Codellama-Instruct, Llama3.1-Instruct - to the APR task. We further fine-tune each model on an APR dataset with three sizes (1K, 30K, 65K) and two techniques (Full Fine-Tuning and LoRA), allowing us to assess their repair capabilities on two APR benchmarks: HumanEval-Java and Defects4J. Our results show that by using only a fraction (<1%) of the fine-tuning dataset, we can achieve improvements of up to 78% in the number of plausible patches generated, challenging prior studies that reported limited gains using Full Fine-Tuning. However, we find that exceeding certain thresholds leads to diminishing outcomes, likely due to overfitting. Moreover, we show that base models greatly benefit from creating patches in an iterative fashion rather than generating them all at once. In addition, the benefit of iterative strategies becomes more pronounced in complex benchmarks. Even fine-tuned models, while benefiting less from iterations, still gain advantages, particularly on complex benchmarks. The research underscores the need for balanced APR strategies that combine multi-output generation and iterative refinement.
comment: Accepted for publication in the research track of the 29th International Conference on Evaluation and Assessment in Software Engineering (EASE), 17-20 June 2025, Istanbul, T\"urkiye
When Your Own Output Becomes Your Training Data: Noise-to-Meaning Loops and a Formal RSI Trigger
We present Noise-to-Meaning Recursive Self-Improvement (N2M-RSI), a minimal formal model showing that once an AI agent feeds its own outputs back as inputs and crosses an explicit information-integration threshold, its internal complexity will grow without bound under our assumptions. The framework unifies earlier ideas on self-prompting large language models, G\"odelian self-reference, and AutoML, yet remains implementation-agnostic. The model furthermore scales naturally to interacting swarms of agents, hinting at super-linear effects once communication among instances is permitted. For safety reasons, we omit system-specific implementation details and release only a brief, model-agnostic toy prototype in Appendix C.
comment: 20 pages, 4 figures, 3 tables. Code: github.com/rintaro-ando-tech/n2m-rsi-demo (v1.0)
Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction ICML 2025
Automating GUI tasks remains challenging due to reliance on textual representations, platform-specific action spaces, and limited reasoning capabilities. We introduce Aguvis, a unified vision-based framework for autonomous GUI agents that directly operates on screen images, standardizes cross-platform interactions and incorporates structured reasoning via inner monologue. To enable this, we construct Aguvis Data Collection, a large-scale dataset with multimodal grounding and reasoning annotations, and develop a two-stage training pipeline that separates GUI grounding from planning and reasoning. Experiments show that Aguvis achieves state-of-the-art performance across offline and real-world online benchmarks, marking the first fully autonomous vision-based GUI agent that operates without closed-source models. We open-source all datasets, models, and training recipes at https://aguvis-project.github.io to advance future research.
comment: ICML 2025
Semantic Volume: Quantifying and Detecting both External and Internal Uncertainty in LLMs
Large language models (LLMs) have demonstrated remarkable performance across diverse tasks by encoding vast amounts of factual knowledge. However, they are still prone to hallucinations, generating incorrect or misleading information, often accompanied by high uncertainty. Existing methods for hallucination detection primarily focus on quantifying internal uncertainty, which arises from missing or conflicting knowledge within the model. However, hallucinations can also stem from external uncertainty, where ambiguous user queries lead to multiple possible interpretations. In this work, we introduce Semantic Volume, a novel mathematical measure for quantifying both external and internal uncertainty in LLMs. Our approach perturbs queries and responses, embeds them in a semantic space, and computes the determinant of the Gram matrix of the embedding vectors, capturing their dispersion as a measure of uncertainty. Our framework provides a generalizable and unsupervised uncertainty detection method without requiring internal access to LLMs. We conduct extensive experiments on both external and internal uncertainty detection, demonstrating that our Semantic Volume method consistently outperforms existing baselines in both tasks. Additionally, we provide theoretical insights linking our measure to differential entropy, unifying and extending previous sampling-based uncertainty measures such as the semantic entropy. Semantic Volume is shown to be a robust and interpretable approach to improving the reliability of LLMs by systematically detecting uncertainty in both user queries and model responses.
LLMs for Extremely Low-Resource Finno-Ugric Languages
The advancement of large language models (LLMs) has predominantly focused on high-resource languages, leaving low-resource languages, such as those in the Finno-Ugric family, significantly underrepresented. This paper addresses this gap by focusing on V\~oro, Livonian, and Komi. We cover almost the entire cycle of LLM creation, from data collection to instruction tuning and evaluation. Our contributions include developing multilingual base and instruction-tuned models; creating evaluation benchmarks, including the smugri-MT-bench multi-turn conversational benchmark; and conducting human evaluation. We intend for this work to promote linguistic diversity, ensuring that lesser-resourced languages can benefit from advancements in NLP.
From Human Judgements to Predictive Models: Unravelling Acceptability in Code-Mixed Sentences
Current computational approaches for analysing or generating code-mixed sentences do not explicitly model ``naturalness'' or ``acceptability'' of code-mixed sentences, but rely on training corpora to reflect distribution of acceptable code-mixed sentences. Modelling human judgement for the acceptability of code-mixed text can help in distinguishing natural code-mixed text and enable quality-controlled generation of code-mixed text. To this end, we construct Cline - a dataset containing human acceptability judgements for English-Hindi~(en-hi) code-mixed text. Cline is the largest of its kind with 16,642 sentences, consisting of samples sourced from two sources: synthetically generated code-mixed text and samples collected from online social media. Our analysis establishes that popular code-mixing metrics such as CMI, Number of Switch Points, Burstines, which are used to filter/curate/compare code-mixed corpora have low correlation with human acceptability judgements, underlining the necessity of our dataset. Experiments using Cline demonstrate that simple Multilayer Perceptron (MLP) models when trained solely using code-mixing metrics as features are outperformed by fine-tuned pre-trained Multilingual Large Language Models (MLLMs). Specifically, among Encoder models XLM-Roberta and Bernice outperform IndicBERT across different configurations. Among Encoder-Decoder models, mBART performs better than mT5, however Encoder-Decoder models are not able to outperform Encoder-only models. Decoder-only models perform the best when compared to all other MLLMS, with Llama 3.2 - 3B models outperforming similarly sized Qwen, Phi models. Comparison with zero and fewshot capabilitites of ChatGPT show that MLLMs fine-tuned on larger data outperform ChatGPT, providing scope for improvement in code-mixed tasks. Zero-shot transfer from En-Hi to En-Te acceptability judgments are better than random baselines.
Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System
The recent growth in the use of Large Language Models has made them vulnerable to sophisticated adversarial assaults, manipulative prompts, and encoded malicious inputs. Existing countermeasures frequently necessitate retraining models, which is computationally costly and impracticable for deployment. Without the need for retraining or fine-tuning, this study presents a unique defense paradigm that allows LLMs to recognize, filter, and defend against adversarial or malicious inputs on their own. There are two main parts to the suggested framework: (1) A prompt filtering module that uses sophisticated Natural Language Processing (NLP) techniques, including zero-shot classification, keyword analysis, and encoded content detection (e.g. base64, hexadecimal, URL encoding), to detect, decode, and classify harmful inputs; and (2) A summarization module that processes and summarizes adversarial research literature to give the LLM context-aware defense knowledge. This approach strengthens LLMs' resistance to adversarial exploitation by fusing text extraction, summarization, and harmful prompt analysis. According to experimental results, this integrated technique has a 98.71% success rate in identifying harmful patterns, manipulative language structures, and encoded prompts. By employing a modest amount of adversarial research literature as context, the methodology also allows the model to react correctly to harmful inputs with a larger percentage of jailbreak resistance and refusal rate. While maintaining the quality of LLM responses, the framework dramatically increases LLM's resistance to hostile misuse, demonstrating its efficacy as a quick and easy substitute for time-consuming, retraining-based defenses.
How do Humans and Language Models Reason About Creativity? A Comparative Analysis
Creativity assessment in science and engineering is increasingly based on both human and AI judgment, but the cognitive processes and biases behind these evaluations remain poorly understood. We conducted two experiments examining how including example solutions with ratings impact creativity evaluation, using a finegrained annotation protocol where raters were tasked with explaining their originality scores and rating for the facets of remoteness (whether the response is "far" from everyday ideas), uncommonness (whether the response is rare), and cleverness. In Study 1, we analyzed creativity ratings from 72 experts with formal science or engineering training, comparing those who received example solutions with ratings (example) to those who did not (no example). Computational text analysis revealed that, compared to experts with examples, no-example experts used more comparative language (e.g., "better/worse") and emphasized solution uncommonness, suggesting they may have relied more on memory retrieval for comparisons. In Study 2, parallel analyses with state-of-the-art LLMs revealed that models prioritized uncommonness and remoteness of ideas when rating originality, suggesting an evaluative process rooted around the semantic similarity of ideas. In the example condition, while LLM accuracy in predicting the true originality scores improved, the correlations of remoteness, uncommonness, and cleverness with originality also increased substantially -- to upwards of $0.99$ -- suggesting a homogenization in the LLMs evaluation of the individual facets. These findings highlight important implications for how humans and AI reason about creativity and suggest diverging preferences for what different populations prioritize when rating.
comment: CogSci 2025
MONOVAB : An Annotated Corpus for Bangla Multi-label Emotion Detection
In recent years, Sentiment Analysis (SA) and Emotion Recognition (ER) have been increasingly popular in the Bangla language, which is the seventh most spoken language throughout the entire world. However, the language is structurally complicated, which makes this field arduous to extract emotions in an accurate manner. Several distinct approaches such as the extraction of positive and negative sentiments as well as multiclass emotions, have been implemented in this field of study. Nevertheless, the extraction of multiple sentiments is an almost untouched area in this language. Which involves identifying several feelings based on a single piece of text. Therefore, this study demonstrates a thorough method for constructing an annotated corpus based on scrapped data from Facebook to bridge the gaps in this subject area to overcome the challenges. To make this annotation more fruitful, the context-based approach has been used. Bidirectional Encoder Representations from Transformers (BERT), a well-known methodology of transformers, have been shown the best results of all methods implemented. Finally, a web application has been developed to demonstrate the performance of the pre-trained top-performer model (BERT) for multi-label ER in Bangla.
Large Language Models Understanding: an Inherent Ambiguity Barrier
A lively ongoing debate is taking place, since the extraordinary emergence of Large Language Models (LLMs) with regards to their capability to understand the world and capture the meaning of the dialogues in which they are involved. Arguments and counter-arguments have been proposed based upon thought experiments, anecdotal conversations between LLMs and humans, statistical linguistic analysis, philosophical considerations, and more. In this brief paper we present a counter-argument based upon a thought experiment and semi-formal considerations leading to an inherent ambiguity barrier which prevents LLMs from having any understanding of what their amazingly fluent dialogues mean.
comment: submitted to NEURAL COMPUTATION
Applying LLMs to Active Learning: Towards Cost-Efficient Cross-Task Text Classification without Manually Labeled Data
Machine learning-based classifiers have been used for text classification, such as sentiment analysis, news classification, and toxic comment classification. However, supervised machine learning models often require large amounts of labeled data for training, and manual annotation is both labor-intensive and requires domain-specific knowledge, leading to relatively high annotation costs. To address this issue, we propose an approach that integrates large language models (LLMs) into an active learning framework, achieving high cross-task text classification performance without the need for any manually labeled data. Furthermore, compared to directly applying GPT for classification tasks, our approach retains over 93% of its classification performance while requiring only approximately 6% of the computational time and monetary cost, effectively balancing performance and resource efficiency. These findings provide new insights into the efficient utilization of LLMs and active learning algorithms in text classification tasks, paving the way for their broader application.
comment: 11 pages
The Effectiveness of Large Language Models in Transforming Unstructured Text to Standardized Formats
The exponential growth of unstructured text data presents a fundamental challenge in modern data management and information retrieval. While Large Language Models (LLMs) have shown remarkable capabilities in natural language processing, their potential to transform unstructured text into standardized, structured formats remains largely unexplored - a capability that could revolutionize data processing workflows across industries. This study breaks new ground by systematically evaluating LLMs' ability to convert unstructured recipe text into the structured Cooklang format. Through comprehensive testing of four models (GPT-4o, GPT-4o-mini, Llama3.1:70b, and Llama3.1:8b), an innovative evaluation approach is introduced that combines traditional metrics (WER, ROUGE-L, TER) with specialized metrics for semantic element identification. Our experiments reveal that GPT-4o with few-shot prompting achieves breakthrough performance (ROUGE-L: 0.9722, WER: 0.0730), demonstrating for the first time that LLMs can reliably transform domain-specific unstructured text into structured formats without extensive training. Although model performance generally scales with size, we uncover surprising potential in smaller models like Llama3.1:8b for optimization through targeted fine-tuning. These findings open new possibilities for automated structured data generation across various domains, from medical records to technical documentation, potentially transforming the way organizations process and utilize unstructured information.
FairTranslate: An English-French Dataset for Gender Bias Evaluation in Machine Translation by Overcoming Gender Binarity
Large Language Models (LLMs) are increasingly leveraged for translation tasks but often fall short when translating inclusive language -- such as texts containing the singular 'they' pronoun or otherwise reflecting fair linguistic protocols. Because these challenges span both computational and societal domains, it is imperative to critically evaluate how well LLMs handle inclusive translation with a well-founded framework. This paper presents FairTranslate, a novel, fully human-annotated dataset designed to evaluate non-binary gender biases in machine translation systems from English to French. FairTranslate includes 2418 English-French sentence pairs related to occupations, annotated with rich metadata such as the stereotypical alignment of the occupation, grammatical gender indicator ambiguity, and the ground-truth gender label (male, female, or inclusive). We evaluate four leading LLMs (Gemma2-2B, Mistral-7B, Llama3.1-8B, Llama3.3-70B) on this dataset under different prompting procedures. Our results reveal substantial biases in gender representation across LLMs, highlighting persistent challenges in achieving equitable outcomes in machine translation. These findings underscore the need for focused strategies and interventions aimed at ensuring fair and inclusive language usage in LLM-based translation systems. We make the FairTranslate dataset publicly available on Hugging Face, and disclose the code for all experiments on GitHub.
comment: FAccT 2025
APIGen-MT: Agentic Pipeline for Multi-Turn Data Generation via Simulated Agent-Human Interplay
Training effective AI agents for multi-turn interactions requires high-quality data that captures realistic human-agent dynamics, yet such data is scarce and expensive to collect manually. We introduce APIGen-MT, a two-phase framework that generates verifiable and diverse multi-turn agent data. In the first phase, our agentic pipeline produces detailed task blueprints with ground-truth actions, leveraging a committee of LLM reviewers and iterative feedback loops. These blueprints are then transformed into complete interaction trajectories through simulated human-agent interplay. We train a family of models -- the xLAM-2-fc-r series with sizes ranging from 1B to 70B parameters. Our models outperform frontier models such as GPT-4o and Claude 3.5 on $\tau$-bench and BFCL benchmarks, with the smaller models surpassing their larger counterparts, particularly in multi-turn settings, while maintaining superior consistency across multiple trials. Comprehensive experiments demonstrate that our verified blueprint-to-details approach yields high-quality training data, enabling the development of more reliable, efficient, and capable agents. We open-source 5K synthetic data trajectories and the trained xLAM-2-fc-r models to advance research in AI agents. Models at https://huggingface.co/collections/Salesforce/xlam-2-67ef5be12949d8dcdae354c4; Dataset at https://huggingface.co/datasets/Salesforce/APIGen-MT-5k and Website at https://apigen-mt.github.io
comment: 12 pages plus references and appendices
Large Language Models as Carriers of Hidden Messages
Simple fine-tuning can embed hidden text into large language models (LLMs), which is revealed only when triggered by a specific query. Applications include LLM fingerprinting, where a unique identifier is embedded to verify licensing compliance, and steganography, where the LLM carries hidden messages disclosed through a trigger query. Our work demonstrates that embedding hidden text via fine-tuning, although seemingly secure due to the vast number of potential triggers, is vulnerable to extraction through analysis of the LLM's output decoding process. We introduce an extraction attack called Unconditional Token Forcing (UTF), which iteratively feeds tokens from the LLM's vocabulary to reveal sequences with high token probabilities, indicating hidden text candidates. We also present Unconditional Token Forcing Confusion (UTFC), a defense paradigm that makes hidden text resistant to all known extraction attacks without degrading the general performance of LLMs compared to standard fine-tuning. UTFC has both benign (improving LLM fingerprinting) and malign applications (using LLMs to create covert communication channels).
comment: Accepted on SECRYPT 2025 Conference. Code is available at https://github.com/j-hoscilowic/zurek-stegano
ParaICL: Towards Parallel In-Context Learning NAACL 2025
Large language models (LLMs) have become the norm in natural language processing (NLP), excelling in few-shot in-context learning (ICL) with their remarkable abilities. Nonetheless, the success of ICL largely hinges on the choice of few-shot demonstration examples, making the selection process increasingly crucial. Existing methods have delved into optimizing the quantity and semantic similarity of these examples to improve ICL performances. However, our preliminary experiments indicate that the effectiveness of ICL is limited by the length of the input context. Moreover, varying combinations of few-shot demonstration examples can significantly boost accuracy across different test samples. To address this, we propose a novel method named parallel in-context learning (ParaICL) that effectively utilizes all demonstration examples without exceeding the manageable input context length. ParaICL employs parallel batching to distribute demonstration examples into different batches according to the semantic similarities of the questions in the demonstrations to the test question. It then computes normalized batch semantic scores for each batch. A weighted average semantic objective, constrained by adaptive plausibility, is applied to select the most appropriate tokens. Through extensive experiments, we validate the effectiveness of ParaICL and conduct ablation studies to underscore its design rationale. We further demonstrate that ParaICL can seamlessly integrate with existing methods.
comment: Accepted by NAACL 2025
Unveiling the Mechanisms of Explicit CoT Training: How CoT Enhances Reasoning Generalization
The integration of explicit Chain-of-Thought (CoT) reasoning into training large language models (LLMs) has advanced their reasoning capabilities, yet the mechanisms by which CoT enhances generalization remain poorly understood. This work investigates (1) \textit{how} CoT training reshapes internal model representations and (2) \textit{why} it improves both in-distribution (ID) and out-of-distribution (OOD) reasoning generalization. Through controlled experiments and theoretical analysis, we derive the following key insights. \textbf{1)} Structural Advantage: CoT training internalizes reasoning into a two-stage generalizing circuit, where the number of stages corresponds to the explicit reasoning steps during training. Notably, CoT-trained models resolve intermediate results at shallower layers compared to non-CoT counterparts, freeing up deeper layers to specialize in subsequent reasoning steps. \textbf{2)} Theoretical Analysis: the information-theoretic generalization bounds via distributional divergence can be decomposed into ID and OOD components. While ID error diminishes with sufficient training regardless of CoT, OOD error critically depends on CoT: Non-CoT training fails to generalize to OOD samples due to unseen reasoning patterns, whereas CoT training achieves near-perfect OOD generalization by mastering subtasks and reasoning compositions during training. The identified mechanisms explain our experimental results: CoT training accelerates convergence and enhances generalization from ID to both ID and OOD scenarios while maintaining robust performance even with tolerable noise. These findings are further validated on complex real-world datasets. This paper offers valuable insights for designing CoT strategies to enhance LLM reasoning robustness.
LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models
Recent advancements in large language models (LLMs) based embedding models have established new state-of-the-art benchmarks for text embedding tasks, particularly in dense vector-based retrieval. However, these models predominantly focus on English, leaving multilingual embedding capabilities largely unexplored. To address this limitation, we present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision. LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks. These components are seamlessly integrated through a minimal set of trainable parameters that act as a connector, effectively transferring the multilingual encoder's language understanding capabilities to the specialized embedding model. Additionally, to comprehensively evaluate multilingual embedding performance, we introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages. Extensive experimental results demonstrate that LUSIFER significantly enhances the multilingual performance across various embedding tasks, particularly for medium and low-resource languages, without requiring explicit multilingual training data.
LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.
comment: Code ad leaderboard are available at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench
Position: Enough of Scaling LLMs! Lets Focus on Downscaling
We challenge the dominant focus on neural scaling laws and advocate for a paradigm shift toward downscaling in the development of large language models (LLMs). While scaling laws have provided critical insights into performance improvements through increasing model and dataset size, we emphasize the significant limitations of this approach, particularly in terms of computational inefficiency, environmental impact, and deployment constraints. To address these challenges, we propose a holistic framework for downscaling LLMs that seeks to maintain performance while drastically reducing resource demands. This paper outlines practical strategies for transitioning away from traditional scaling paradigms, advocating for a more sustainable, efficient, and accessible approach to LLM development.
Almost AI, Almost Human: The Challenge of Detecting AI-Polished Writing
The growing use of large language models (LLMs) for text generation has led to widespread concerns about AI-generated content detection. However, an overlooked challenge is AI-polished text, where human-written content undergoes subtle refinements using AI tools. This raises a critical question: should minimally polished text be classified as AI-generated? Such classification can lead to false plagiarism accusations and misleading claims about AI prevalence in online content. In this study, we systematically evaluate twelve state-of-the-art AI-text detectors using our AI-Polished-Text Evaluation (APT-Eval) dataset, which contains 14.7K samples refined at varying AI-involvement levels. Our findings reveal that detectors frequently flag even minimally polished text as AI-generated, struggle to differentiate between degrees of AI involvement, and exhibit biases against older and smaller models. These limitations highlight the urgent need for more nuanced detection methodologies.
comment: 18 pages, 18 figures, 6 tables
The Illusion of Role Separation: Hidden Shortcuts in LLM Role Learning (and How to Fix Them)
Large language models (LLMs) that integrate multiple input roles (e.g., system instructions, user queries, external tool outputs) are increasingly prevalent in practice. Ensuring that the model accurately distinguishes messages from each role -- a concept we call \emph{role separation} -- is crucial for consistent multi-role behavior. Although recent work often targets state-of-the-art prompt injection defenses, it remains unclear whether such methods truly teach LLMs to differentiate roles or merely memorize known triggers. In this paper, we examine \emph{role-separation learning}: the process of teaching LLMs to robustly distinguish system and user tokens. Through a \emph{simple, controlled experimental framework}, we find that fine-tuned models often rely on two proxies for role identification: (1) task type exploitation, and (2) proximity to begin-of-text. Although data augmentation can partially mitigate these shortcuts, it generally leads to iterative patching rather than a deeper fix. To address this, we propose reinforcing \emph{invariant signals} that mark role boundaries by adjusting token-wise cues in the model's input encoding. In particular, manipulating position IDs helps the model learn clearer distinctions and reduces reliance on superficial proxies. By focusing on this mechanism-centered perspective, our work illuminates how LLMs can more reliably maintain consistent multi-role behavior without merely memorizing known prompts or triggers.
Constructive Approach to Bidirectional Influence between Qualia Structure and Language Emergence
This perspective paper explores the bidirectional influence between language emergence and the relational structure of subjective experiences, termed qualia structure, and lays out a constructive approach to the intricate dependency between the two. We hypothesize that the emergence of languages with distributional semantics (e.g., syntactic-semantic structures) is linked to the coordination of internal representations shaped by experience, potentially facilitating more structured language through reciprocal influence. This hypothesized mutual dependency connects to recent advancements in AI and symbol emergence robotics, and is explored within this paper through theoretical frameworks such as the collective predictive coding. Computational studies show that neural network-based language models form systematically structured internal representations, and multimodal language models can share representations between language and perceptual information. This perspective suggests that language emergence serves not only as a mechanism creating a communication tool but also as a mechanism for allowing people to realize shared understanding of qualitative experiences. The paper discusses the implications of this bidirectional influence in the context of consciousness studies, linguistics, and cognitive science, and outlines future constructive research directions to further explore this dynamic relationship between language emergence and qualia structure.
Impact of Noisy Supervision in Foundation Model Learning
Foundation models are usually pre-trained on large-scale datasets and then adapted to downstream tasks through tuning. However, the large-scale pre-training datasets, often inaccessible or too expensive to handle, can contain label noise that may adversely affect the generalization of the model and pose unexpected risks. This paper stands out as the first work to comprehensively understand and analyze the nature of noise in pre-training datasets and then effectively mitigate its impacts on downstream tasks. Specifically, through extensive experiments of fully-supervised and image-text contrastive pre-training on synthetic noisy ImageNet-1K, YFCC15M, and CC12M datasets, we demonstrate that, while slight noise in pre-training can benefit in-domain (ID) performance, where the training and testing data share a similar distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing distributions are significantly different. These observations are agnostic to scales of pre-training datasets, pre-training noise types, model architectures, pre-training objectives, downstream tuning methods, and downstream applications. We empirically ascertain that the reason behind this is that the pre-training noise shapes the feature space differently. We then propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization, which is applicable in both parameter-efficient and black-box tuning manners. We additionally conduct extensive experiments on popular vision and language models, including APIs, which are supervised and self-supervised pre-trained on realistic noisy data for evaluation. Our analysis and results demonstrate the importance of this novel and fundamental research direction, which we term as Noisy Model Learning.
comment: 18 pages, 10 figures, 6 tables, preprint. arXiv admin note: substantial text overlap with arXiv:2309.17002
A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications ICLR 2025
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation: the inability to adapt to individual preferences while maintaining alignment with universal human values. Current alignment techniques adopt a one-size-fits-all approach that fails to accommodate users' diverse backgrounds and needs. This paper presents the first comprehensive survey of personalized alignment-a paradigm that enables LLMs to adapt their behavior within ethical boundaries based on individual preferences. We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment, systematically analyzing implementation approaches and evaluating their effectiveness across various scenarios. By examining current techniques, potential risks, and future challenges, this survey provides a structured foundation for developing more adaptable and ethically-aligned LLMs.
comment: Survey paper; 11 pages; Literature reviewed up to ICLR 2025
MATATA: Weakly Supervised End-to-End MAthematical Tool-Augmented Reasoning for Tabular Applications
Business documents often contain substantial tabular and textual information with numerical values, requiring mathematical reasoning for effective document understanding. While Small Language Models (SLMs) still struggle at this task, tool-augmented multi-step agents perform better, at the cost of relying on closed-source or larger models, external data, or extensive prompt-engineering. This work introduces MATATA, a novel weakly supervised end-to-end approach to train multi-step reasoning language agents for document tabular applications. MATATA presents an annotation-free paradigm for each agent to enhance 3.8B/8B SLMs. During its two-stage training, MATATA uses the final outcome of the multi-step reasoning chain as weak supervision. This approach avoids having to individually supervise each intermediate agent in the reasoning chain. By employing an adaptive planner and shared tools across different datasets, MATATA shows robust performance. Experiments demonstrate that MATATA achieves state-of-the-art on FinQA, and on TAT-QA among reasoning methods based on open-source SLMs. Although being SLM-based, MATATA closely matches GPT-4-based frameworks on TabMWP. This novel weakly supervised approach enables training an end-to-end multi-step reasoning agent without intermediate supervision, supporting future developments of cost-effective powerful agentic systems.
OAC: Output-adaptive Calibration for Accurate Post-training Quantization
Deployment of Large Language Models (LLMs) has major computational costs, due to their rapidly expanding size. Compression of LLMs reduces the memory footprint, latency, and energy required for their inference. Post-training Quantization (PTQ) techniques have been developed to compress LLMs while avoiding expensive re-training. Most PTQ approaches formulate the quantization error based on a layer-wise Euclidean loss, ignoring the model output. Then, each layer is calibrated using its layer-wise Hessian to update the weights towards minimizing the quantization error. The Hessian is also used for detecting the most salient weights to quantization. Such PTQ approaches are prone to accuracy drop in low-precision quantization. We propose Output-adaptive Calibration (OAC) to incorporate the model output in the calibration process. We formulate the quantization error based on the distortion of the output cross-entropy loss. OAC approximates the output-adaptive Hessian for each layer under reasonable assumptions to reduce the computational complexity. The output-adaptive Hessians are used to update the weight matrices and detect the salient weights towards maintaining the model output. Our proposed method outperforms the state-of-the-art baselines such as SpQR and BiLLM, especially, at extreme low-precision (2-bit and binary) quantization.
comment: 22 pages, 4 figures
How Transformers Learn Regular Language Recognition: A Theoretical Study on Training Dynamics and Implicit Bias ICML 2025
Language recognition tasks are fundamental in natural language processing (NLP) and have been widely used to benchmark the performance of large language models (LLMs). These tasks also play a crucial role in explaining the working mechanisms of transformers. In this work, we focus on two representative tasks in the category of regular language recognition, known as `even pairs' and `parity check', the aim of which is to determine whether the occurrences of certain subsequences in a given sequence are even. Our goal is to explore how a one-layer transformer, consisting of an attention layer followed by a linear layer, learns to solve these tasks by theoretically analyzing its training dynamics under gradient descent. While even pairs can be solved directly by a one-layer transformer, parity check need to be solved by integrating Chain-of-Thought (CoT), either into the inference stage of a transformer well-trained for the even pairs task, or into the training of a one-layer transformer. For both problems, our analysis shows that the joint training of attention and linear layers exhibits two distinct phases. In the first phase, the attention layer grows rapidly, mapping data sequences into separable vectors. In the second phase, the attention layer becomes stable, while the linear layer grows logarithmically and approaches in direction to a max-margin hyperplane that correctly separates the attention layer outputs into positive and negative samples, and the loss decreases at a rate of $O(1/t)$. Our experiments validate those theoretical results.
comment: accepted by ICML 2025
English Please: Evaluating Machine Translation with Large Language Models for Multilingual Bug Reports
Accurate translation of bug reports is critical for efficient collaboration in global software development. In this study, we conduct the first comprehensive evaluation of machine translation (MT) performance on bug reports, analyzing the capabilities of DeepL, AWS Translate, and large language models such as ChatGPT, Claude, Gemini, LLaMA, and Mistral using data from the Visual Studio Code GitHub repository, specifically focusing on reports labeled with the english-please tag. To assess both translation quality and source language identification accuracy, we employ a range of MT evaluation metrics-including BLEU, BERTScore, COMET, METEOR, and ROUGE-alongside classification metrics such as accuracy, precision, recall, and F1-score. Our findings reveal that while ChatGPT (gpt-4o) excels in semantic and lexical translation quality, it does not lead in source language identification. Claude and Mistral achieve the highest F1-scores (0.7182 and 0.7142, respectively), and Gemini records the best precision (0.7414). AWS Translate shows the highest accuracy (0.4717) in identifying source languages. These results highlight that no single system dominates across all tasks, reinforcing the importance of task-specific evaluations. This study underscores the need for domain adaptation when translating technical content and provides actionable insights for integrating MT into bug-triaging workflows. The code and dataset for this paper are available at GitHub-https://github.com/av9ash/English-Please
comment: 8 Pages, 4 Figures, 3 Tables
Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
LLaSA: A Multimodal LLM for Human Activity Analysis Through Wearable and Smartphone Sensors
Wearables generate rich motion data, yet current systems only classify what happened - failing to support natural questions about why it happened or what it means. We introduce LLaSA (Large Language and Sensor Assistant), a compact 13B model that enables ask-anything, open-ended question answering grounded in raw IMU data. LLaSA supports conversational, context-aware reasoning - explaining the causes of sensor-detected behaviors and answering free-form questions in real-world scenarios. It is tuned for scientific accuracy, coherence, and response reliability. To advance this new task of sensor-based QA, we release three large-scale datasets: SensorCaps, OpenSQA, and Tune-OpenSQA. Together, these resources define a new benchmark for sensor-language models. LLaSA consistently produces interpretable, causal answers and outperforms commercial LLMs across both public and real-world settings. Our code repository and datasets can be found at https://github.com/BASHLab/LLaSA.
LLM-3D Print: Large Language Models To Monitor and Control 3D Printing
Industry 4.0 has revolutionized manufacturing by driving digitalization and shifting the paradigm toward additive manufacturing (AM). Fused Deposition Modeling (FDM), a key AM technology, enables the creation of highly customized, cost-effective products with minimal material waste through layer-by-layer extrusion, posing a significant challenge to traditional subtractive methods. However, the susceptibility of material extrusion techniques to errors often requires expert intervention to detect and mitigate defects that can severely compromise product quality. While automated error detection and machine learning models exist, their generalizability across diverse 3D printer setups, firmware, and sensors is limited, and deep learning methods require extensive labeled datasets, hindering scalability and adaptability. To address these challenges, we present a process monitoring and control framework that leverages pre-trained Large Language Models (LLMs) alongside 3D printers to detect and address printing defects. The LLM evaluates print quality by analyzing images captured after each layer or print segment, identifying failure modes and querying the printer for relevant parameters. It then generates and executes a corrective action plan. We validated the effectiveness of the proposed framework in identifying defects by comparing it against a control group of engineers with diverse AM expertise. Our evaluation demonstrated that LLM-based agents not only accurately identify common 3D printing errors, such as inconsistent extrusion, stringing, warping, and layer adhesion, but also effectively determine the parameters causing these failures and autonomously correct them without any need for human intervention.
Caught in the Web of Words: Do LLMs Fall for Spin in Medical Literature?
Medical research faces well-documented challenges in translating novel treatments into clinical practice. Publishing incentives encourage researchers to present "positive" findings, even when empirical results are equivocal. Consequently, it is well-documented that authors often spin study results, especially in article abstracts. Such spin can influence clinician interpretation of evidence and may affect patient care decisions. In this study, we ask whether the interpretation of trial results offered by Large Language Models (LLMs) is similarly affected by spin. This is important since LLMs are increasingly being used to trawl through and synthesize published medical evidence. We evaluated 22 LLMs and found that they are across the board more susceptible to spin than humans. They might also propagate spin into their outputs: We find evidence, e.g., that LLMs implicitly incorporate spin into plain language summaries that they generate. We also find, however, that LLMs are generally capable of recognizing spin, and can be prompted in a way to mitigate spin's impact on LLM outputs.
comment: 22 pages, 12 figures, 4 tables, CHIL 2025
Optimism, Expectation, or Sarcasm? Multi-Class Hope Speech Detection in Spanish and English
Hope is a complex and underexplored emotional state that plays a significant role in education, mental health, and social interaction. Unlike basic emotions, hope manifests in nuanced forms ranging from grounded optimism to exaggerated wishfulness or sarcasm, making it difficult for Natural Language Processing systems to detect accurately. This study introduces PolyHope V2, a multilingual, fine-grained hope speech dataset comprising over 30,000 annotated tweets in English and Spanish. This resource distinguishes between four hope subtypes Generalized, Realistic, Unrealistic, and Sarcastic and enhances existing datasets by explicitly labeling sarcastic instances. We benchmark multiple pretrained transformer models and compare them with large language models (LLMs) such as GPT 4 and Llama 3 under zero-shot and few-shot regimes. Our findings show that fine-tuned transformers outperform prompt-based LLMs, especially in distinguishing nuanced hope categories and sarcasm. Through qualitative analysis and confusion matrices, we highlight systematic challenges in separating closely related hope subtypes. The dataset and results provide a robust foundation for future emotion recognition tasks that demand greater semantic and contextual sensitivity across languages.
Beyond Single Concept Vector: Modeling Concept Subspace in LLMs with Gaussian Distribution ICLR 2025
Probing learned concepts in large language models (LLMs) is crucial for understanding how semantic knowledge is encoded internally. Training linear classifiers on probing tasks is a principle approach to denote the vector of a certain concept in the representation space. However, the single vector identified for a concept varies with both data and training, making it less robust and weakening its effectiveness in real-world applications. To address this challenge, we propose an approach to approximate the subspace representing a specific concept. Built on linear probing classifiers, we extend the concept vectors into Gaussian Concept Subspace (GCS). We demonstrate GCS's effectiveness through measuring its faithfulness and plausibility across multiple LLMs with different sizes and architectures. Additionally, we use representation intervention tasks to showcase its efficacy in real-world applications such as emotion steering. Experimental results indicate that GCS concept vectors have the potential to balance steering performance and maintaining the fluency in natural language generation tasks.
comment: Accepted by ICLR 2025
Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Investigating NLP through a philosophical lens has recently caught researcher's eyes as it connects computational methods with classical schools of philosophy. This paper introduces a philosophical approach inspired by the \textit{Hegelian Dialectic} for LLMs' \textit{self-reflection}, utilizing a self-dialectical approach to emulate internal critiques and then synthesize new ideas by resolving the opposing points of view. Moreover, this paper investigates the effect of LLMs' temperature for generation by establishing a dynamic annealing approach, which promotes the creativity in the early stages and gradually refines it by focusing on the nuances, as well as a fixed-temperature strategy for generation. We assess the effectiveness of our proposed method in generating novel ideas and in improving the reasoning abilities of LLMs during problem-solving. Moreover, we implement a Multi-Agent Majority Voting (MAMV) strategy to assess the validity and novelty of the generated ideas, which proves useful in the absence of domain experts. Our experiments demonstrate promising results in generating ideas and enhancing problem-solving performance.
CFBench: A Comprehensive Constraints-Following Benchmark for LLMs
The adeptness of Large Language Models (LLMs) in comprehending and following natural language instructions is critical for their deployment in sophisticated real-world applications. Existing evaluations mainly focus on fragmented constraints or narrow scenarios, but they overlook the comprehensiveness and authenticity of constraints from the user's perspective. To bridge this gap, we propose CFBench, a large-scale Comprehensive Constraints Following Benchmark for LLMs, featuring 1,000 curated samples that cover more than 200 real-life scenarios and over 50 NLP tasks. CFBench meticulously compiles constraints from real-world instructions and constructs an innovative systematic framework for constraint types, which includes 10 primary categories and over 25 subcategories, and ensures each constraint is seamlessly integrated within the instructions. To make certain that the evaluation of LLM outputs aligns with user perceptions, we propose an advanced methodology that integrates multi-dimensional assessment criteria with requirement prioritization, covering various perspectives of constraints, instructions, and requirement fulfillment. Evaluating current leading LLMs on CFBench reveals substantial room for improvement in constraints following, and we further investigate influencing factors and enhancement strategies. The data and code are publicly available at https://github.com/PKU-Baichuan-MLSystemLab/CFBench
comment: 15 pages, 10 figures
Predicting potentially abusive clauses in Chilean terms of services with natural language processing
This study addresses the growing concern of information asymmetry in consumer contracts, exacerbated by the proliferation of online services with complex Terms of Service that are rarely even read. Even though research on automatic analysis methods is conducted, the problem is aggravated by the general focus on English-language Machine Learning approaches and on major jurisdictions, such as the European Union. We introduce a new methodology and a substantial dataset addressing this gap. We propose a novel annotation scheme with four categories and a total of 20 classes, and apply it on 50 online Terms of Service used in Chile. Our evaluation of transformer-based models highlights how factors like language- and/or domain-specific pre-training, few-shot sample size, and model architecture affect the detection and classification of potentially abusive clauses. Results show a large variability in performance for the different tasks and models, with the highest macro-F1 scores for the detection task ranging from 79% to 89% and micro-F1 scores up to 96%, while macro-F1 scores for the classification task range from 60% to 70% and micro-F1 scores from 64% to 80%. Notably, this is the first Spanish-language multi-label classification dataset for legal clauses, applying Chilean law and offering a comprehensive evaluation of Spanish-language models in the legal domain. Our work lays the ground for future research in method development for rarely considered legal analysis and potentially leads to practical applications to support consumers in Chile and Latin America as a whole.
comment: 39 pages, 2 figures, 8 tables, accepted for publication
Human-Computer Interaction
Generating HomeAssistant Automations Using an LLM-based Chatbot
To combat climate change, individuals are encouraged to adopt sustainable habits, in particular, with their household, optimizing their electrical consumption. Conversational agents, such as Smart Home Assistants, hold promise as effective tools for promoting sustainable practices within households. Our research investigated the application of Large Language Models (LLM) in enhancing smart home automation and promoting sustainable household practices, specifically using the HomeAssistant framework. In particular, it highlights the potential of GPT models in generating accurate automation routines. While the LLMs showed proficiency in understanding complex commands and creating valid JSON outputs, challenges such as syntax errors and message malformations were noted, indicating areas for further improvement. Still, despite minimal quantitative differences between "green" and "no green" prompts, qualitative feedback highlighted a positive shift towards sustainability in the routines generated with environmentally focused prompts. Then, an empirical evaluation (N=56) demonstrated that the system was well-received and found engaging by users compared to its traditional rule-based counterpart. Our findings highlight the role of LLMs in advancing smart home technologies and suggest further research to refine these models for broader, real-world applications to support sustainable living.
Beyond the Monitor: Mixed Reality Visualization and AI for Enhanced Digital Pathology Workflow
Pathologists rely on gigapixel whole-slide images (WSIs) to diagnose diseases like cancer, yet current digital pathology tools hinder diagnosis. The immense scale of WSIs, often exceeding 100,000 X 100,000 pixels, clashes with the limited views traditional monitors offer. This mismatch forces constant panning and zooming, increasing pathologist cognitive load, causing diagnostic fatigue, and slowing pathologists' adoption of digital methods. PathVis, our mixed-reality visualization platform for Apple Vision Pro, addresses these challenges. It transforms the pathologist's interaction with data, replacing cumbersome mouse-and-monitor navigation with intuitive exploration using natural hand gestures, eye gaze, and voice commands in an immersive workspace. PathVis integrates AI to enhance diagnosis. An AI-driven search function instantly retrieves and displays the top five similar patient cases side-by-side, improving diagnostic precision and efficiency through rapid comparison. Additionally, a multimodal conversational AI assistant offers real-time image interpretation support and aids collaboration among pathologists across multiple Apple devices. By merging the directness of traditional pathology with advanced mixed-reality visualization and AI, PathVis improves diagnostic workflows, reduces cognitive strain, and makes pathology practice more effective and engaging. The PathVis source code and a demo video are publicly available at: https://github.com/jaiprakash1824/Path_Vis
Exploring LLM-Powered Role and Action-Switching Pedagogical Agents for History Education in Virtual Reality
Multi-role pedagogical agents can create engaging and immersive learning experiences, helping learners better understand knowledge in history learning. However, existing pedagogical agents often struggle with multi-role interactions due to complex controls, limited feedback forms, and difficulty dynamically adapting to user inputs. In this study, we developed a VR prototype with LLM-powered adaptive role-switching and action-switching pedagogical agents to help users learn about the history of the Pavilion of Prince Teng. A 2 x 2 between-subjects study was conducted with 84 participants to assess how adaptive role-switching and action-switching affect participants' learning outcomes and experiences. The results suggest that adaptive role-switching enhances participants' perception of the pedagogical agent's trustworthiness and expertise but may lead to inconsistent learning experiences. Adaptive action-switching increases participants' perceived social presence, expertise, and humanness. The study did not uncover any effects of role-switching and action-switching on usability, learning motivation, and cognitive load. Based on the findings, we proposed five design implications for incorporating adaptive role-switching and action-switching into future VR history education tools.
comment: 14 pages excluding reference and appendix. Accepted at ACM CHI 2025. https://dl.acm.org/doi/10.1145/3706598.3713109
AI Standardized Patient Improves Human Conversations in Advanced Cancer Care
Serious illness communication (SIC) in end-of-life care faces challenges such as emotional stress, cultural barriers, and balancing hope with honesty. Despite its importance, one of the few available ways for clinicians to practice SIC is with standardized patients, which is expensive, time-consuming, and inflexible. In this paper, we present SOPHIE, an AI-powered standardized patient simulation and automated feedback system. SOPHIE combines large language models (LLMs), a lifelike virtual avatar, and automated, personalized feedback based on clinical literature to provide remote, on-demand SIC training. In a randomized control study with healthcare students and professionals, SOPHIE users demonstrated significant improvement across three critical SIC domains: Empathize, Be Explicit, and Empower. These results suggest that AI-driven tools can enhance complex interpersonal communication skills, offering scalable, accessible solutions to address a critical gap in clinician education.
comment: 20 pages, 6 figures, 4 tables, submitting to New England Journal of Medicine (NEJM)
Eye Movements as Indicators of Deception: A Machine Learning Approach
Gaze may enhance the robustness of lie detectors but remains under-studied. This study evaluated the efficacy of AI models (using fixations, saccades, blinks, and pupil size) for detecting deception in Concealed Information Tests across two datasets. The first, collected with Eyelink 1000, contains gaze data from a computerized experiment where 87 participants revealed, concealed, or faked the value of a previously selected card. The second, collected with Pupil Neon, involved 36 participants performing a similar task but facing an experimenter. XGBoost achieved accuracies up to 74% in a binary classification task (Revealing vs. Concealing) and 49% in a more challenging three-classification task (Revealing vs. Concealing vs. Faking). Feature analysis identified saccade number, duration, amplitude, and maximum pupil size as the most important for deception prediction. These results demonstrate the feasibility of using gaze and AI to enhance lie detectors and encourage future research that may improve on this.
FlyHaptics: Flying Multi-contact Haptic Interface
This work presents FlyHaptics, an aerial haptic interface tracked via a Vicon optical motion capture system and built around six five-bar linkage assemblies enclosed in a lightweight protective cage. We predefined five static tactile patterns - each characterized by distinct combinations of linkage contact points and vibration intensities - and evaluated them in a grounded pilot study, where participants achieved 86.5 recognition accuracy (F(4, 35) = 1.47, p = 0.23) with no significant differences between patterns. Complementary flight demonstrations confirmed stable hover performance and consistent force output under realistic operating conditions. These pilot results validate the feasibility of drone-mounted, multi-contact haptic feedback and lay the groundwork for future integration into fully immersive VR, teleoperation, and remote interaction scenarios.
HapticVLM: VLM-Driven Texture Recognition Aimed at Intelligent Haptic Interaction
This paper introduces HapticVLM, a novel multimodal system that integrates vision-language reasoning with deep convolutional networks to enable real-time haptic feedback. HapticVLM leverages a ConvNeXt-based material recognition module to generate robust visual embeddings for accurate identification of object materials, while a state-of-the-art Vision-Language Model (Qwen2-VL-2B-Instruct) infers ambient temperature from environmental cues. The system synthesizes tactile sensations by delivering vibrotactile feedback through speakers and thermal cues via a Peltier module, thereby bridging the gap between visual perception and tactile experience. Experimental evaluations demonstrate an average recognition accuracy of 84.67% across five distinct auditory-tactile patterns and a temperature estimation accuracy of 86.7% based on a tolerance-based evaluation method with an 8{\deg}C margin of error across 15 scenarios. Although promising, the current study is limited by the use of a small set of prominent patterns and a modest participant pool. Future work will focus on expanding the range of tactile patterns and increasing user studies to further refine and validate the system's performance. Overall, HapticVLM presents a significant step toward context-aware, multimodal haptic interaction with potential applications in virtual reality, and assistive technologies.
comment: Submitted to IEEE conf
The Turing Test Is More Relevant Than Ever
The Turing Test, first proposed by Alan Turing in 1950, has historically served as a benchmark for evaluating artificial intelligence (AI). However, since the release of ELIZA in 1966, and particularly with recent advancements in large language models (LLMs), AI has been claimed to pass the Turing Test. Furthermore, criticism argues that the Turing Test primarily assesses deceptive mimicry rather than genuine intelligence, prompting the continuous emergence of alternative benchmarks. This study argues against discarding the Turing Test, proposing instead using more refined versions of it, for example, by interacting simultaneously with both an AI and human candidate to determine who is who, allowing a longer interaction duration, access to the Internet and other AIs, using experienced people as evaluators, etc. Through systematic experimentation using a web-based platform, we demonstrate that richer, contextually structured testing environments significantly enhance participants' ability to differentiate between AI and human interactions. Namely, we show that, while an off-the-shelf LLM can pass some version of a Turing Test, it fails to do so when faced with a more robust version. Our findings highlight that the Turing Test remains an important and effective method for evaluating AI, provided it continues to adapt as AI technology advances. Additionally, the structured data gathered from these improved interactions provides valuable insights into what humans expect from truly intelligent AI systems.
comment: 10 pages, 5 figures, 1 listing, 6 tables
"Salt is the Soul of Hakka Baked Chicken": Reimagining Traditional Chinese Culinary ICH for Modern Contexts Without Losing Tradition
Intangible Cultural Heritage (ICH) like traditional culinary practices face increasing pressure to adapt to globalization while maintaining their cultural authenticity. Centuries-old traditions in Chinese cuisine are subject to rapid changes for adaptation to contemporary tastes and dietary preferences. The preservation of these cultural practices requires approaches that can enable ICH practitioners to reimagine and recreate ICH for modern contexts. To address this, we created workshops where experienced practitioners of traditional Chinese cuisine co-created recipes using GenAI tools and realized the dishes. We found that GenAI inspired ICH practitioners to innovate recipes based on traditional workflows for broader audiences and adapt to modern dining contexts. However, GenAI-inspired co-creation posed challenges in maintaining the accuracy of original ICH workflows and preserving traditional flavors in the culinary outcomes. This study offers implications for designing human-AI collaborative processes for safeguarding and enhancing culinary ICH.
Investigating the Impact of Personalized AI Tutors on Language Learning Performance
Driven by the global shift towards online learning prompted by the COVID 19 pandemic, Artificial Intelligence has emerged as a pivotal player in the field of education. Intelligent Tutoring Systems offer a new method of personalized teaching, replacing the limitations of traditional teaching methods. However, concerns arise about the ability of AI tutors to address skill development and engagement during the learning process. In this paper, I will conduct a quasi experiment with paired sample t test on 34 students pre and post use of AI tutors in language learning platforms like Santa and Duolingo to examine the relationship between students engagement, academic performance, and students satisfaction during a personalized language learning experience.
comment: 16 pages, 4 figures, 1 table, Uses three theoretical frameworks like Domain modeling, Gardner Theory of Multiple Intelligences, and Zone of Proximal Development
Can LLM-Simulated Practice and Feedback Upskill Human Counselors? A Randomized Study with 90+ Novice Counselors
Training more counselors, from clinical students to peer supporters, can help meet the demand for accessible mental health support; however, current training approaches remain resource-intensive and difficult to scale effectively. Large Language Models (LLMs) offer promising solutions for growing counseling skills training through simulated practice and automated feedback. Despite successes in aligning LLMs with expert-counselor annotations, we do not know whether LLM-based counseling training tools -- such as AI patients that simulate real-world challenges and generative AI feedback with suggested alternatives and rationales -- actually lead to improvements in novice counselor skill development. We develop CARE, an LLM-simulated practice and feedback system, and randomize 94 novice counselors to practice using an AI patient, either alone or with AI feedback, measuring changes in their behavioral performance, self-assessments, and qualitative learning takeaways. Our results show the practice-and-feedback group improved in their use of reflections and questions (d=0.32-0.39, p$<$0.05). In contrast, the group that practiced with an AI patient alone did not show improvements, and in the case of empathy, actually had worse uses across time (d=$-$0.52, p=0.001) and when compared against the practice-and-feedback group (d=0.72, p=0.001). Participants' qualitative self-reflections revealed key differences: the practice-and-feedback group adopted a client-centered approach involving listening to and validating feelings, while the practice-alone group remained solution-oriented but delayed offering suggestions until gathering more information. Overall, these results suggest that LLM-based training systems can promote effective skill development, but that combining both simulated practice and structured feedback is critical.
comment: main paper is 11 pages, with methods it is 18 pages, with appendix and references it is 33 pages
SymbioticRAG: Enhancing Document Intelligence Through Human-LLM Symbiotic Collaboration
We present \textbf{SymbioticRAG}, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.
Quadrupedal Spine Control Strategies: Exploring Correlations Between System Dynamic Responses and Human Perspectives
Unlike their biological cousins, the majority of existing quadrupedal robots are constructed with rigid chassis. This results in motion that is either beetle-like or distinctly robotic, lacking the natural fluidity characteristic of mammalian movements. Existing literature on quadrupedal robots with spinal configurations primarily focuses on energy efficiency and does not consider the effects in human-robot interaction scenarios. Our contributions include an initial investigation into various trajectory generation strategies for a quadrupedal robot with a four degree of freedom spine, and an analysis on the effect that such methods have on human perception of gait naturalness compared to a fixed spine baseline. The strategies were evaluated using videos of walking, trotting and turning simulations. Among the four different strategies developed, the optimised time varying and the foot-tracking strategies were perceived to be more natural than the baseline in a randomised trial with 50 participants. Although none of the strategies demonstrated any energy efficiency improvements over the no-spine baseline, some showed greater footfall consistency at higher speeds. Given the greater likeability drawn from the more natural locomotion patterns, this type of robot displays potential for applications in social robot scenarios such as elderly care, where energy efficiency is not a primary concern.
comment: 27 pages, 13 figures
Regulating Algorithmic Management: A Multi-Stakeholder Study of Challenges in Aligning Software and the Law for Workplace Scheduling
The impacts of algorithmic management (AM) on worker well-being have led to increasing calls to regulate AM practices to prevent further worker harms. Yet existing work in aligning software with the law reduces compliance to just one piece of the entire process of regulating AM -- which involves rule operationalization, software use, and enforcement. We interviewed key stakeholders involved in enforcing or complying with workplace scheduling law -- regulators, advocates, defense attorneys, scheduling managers, and workers ($N = 38$). Based on their beliefs and experiences, we describe how scheduling software affects beliefs about and compliance with workplace scheduling law. In so doing, we discuss the challenges and opportunities in designing software as a tool for regulating AM.
comment: To appear in FAccT'25
Coupling the Heart to Musical Machines
Biofeedback is being used more recently as a general control paradigm for human-computer interfaces (HCIs). While biofeedback especially from breath has seen increasing uptake as a controller for novel musical interfaces, new interfaces for musical expression (NIMEs), the community has not given as much attention to the heart. The heart is just as intimate a part of music as breath and it is argued that the heart determines our perception of time and so indirectly our perception of music. Inspired by this I demonstrate a photoplethysmogram (PPG)-based NIME controller using heart rate as a 1D control parameter to transform the qualities of sounds in real-time over a Bluetooth wireless HCI. I apply time scaling to "warp" audio buffers inbound to the sound card, and play these transformed audio buffers back to the listener wearing the PPG sensor, creating a hypothetical perceptual biofeedback loop: changes in sound change heart rate to change PPG measurements to change sound. I discuss how a sound-heart-PPG biofeedback loop possibly affords greater control and/or variety of movements with a 1D controller, how controlling the space and/or time scale of sound playback with biofeedback makes for possibilities in performance ambience, and I briefly discuss generative latent spaces as a possible way to extend a 1D PPG control space.
Evaluating the Impact of AI-Powered Audiovisual Personalization on Learner Emotion, Focus, and Learning Outcomes
Independent learners often struggle with sustaining focus and emotional regulation in unstructured or distracting settings. Although some rely on ambient aids such as music, ASMR, or visual backgrounds to support concentration, these tools are rarely integrated into cohesive, learner-centered systems. Moreover, existing educational technologies focus primarily on content adaptation and feedback, overlooking the emotional and sensory context in which learning takes place. Large language models have demonstrated powerful multimodal capabilities including the ability to generate and adapt text, audio, and visual content. Educational research has yet to fully explore their potential in creating personalized audiovisual learning environments. To address this gap, we introduce an AI-powered system that uses LLMs to generate personalized multisensory study environments. Users select or generate customized visual themes (e.g., abstract vs. realistic, static vs. animated) and auditory elements (e.g., white noise, ambient ASMR, familiar vs. novel sounds) to create immersive settings aimed at reducing distraction and enhancing emotional stability. Our primary research question investigates how combinations of personalized audiovisual elements affect learner cognitive load and engagement. Using a mixed-methods design that incorporates biometric measures and performance outcomes, this study evaluates the effectiveness of LLM-driven sensory personalization. The findings aim to advance emotionally responsive educational technologies and extend the application of multimodal LLMs into the sensory dimension of self-directed learning.
Revisiting Performance Models of Distal Pointing Tasks in Virtual Reality
Performance models of interaction, such as Fitts Law, are important tools for predicting and explaining human motor performance and for designing high-performance user interfaces. Extensive prior work has proposed such models for the 3D interaction task of distal pointing, in which the user points their hand or a device at a distant target in order to select it. However, there is no consensus on how to compute the index of difficulty for distal pointing tasks. We present a preliminary study suggesting that existing models may not be sufficient to model distal pointing performance with current virtual reality technologies. Based on these results, we hypothesized that both the form of the model and the standard method for collecting empirical data for pointing tasks might need to change in order to achieve a more accurate and valid distal pointing model. In our main study, we used a new methodology to collect distal pointing data and evaluated traditional models, purely ballistic models, and two-part models. Ultimately, we found that the best model used a simple Fitts-Law-style index of difficulty with angular measures of amplitude and width.
Navigating Privacy and Trust: AI Assistants as Social Support for Older Adults
AI assistants are increasingly integrated into older adults' daily lives, offering new opportunities for social support and accessibility while raising important questions about privacy, autonomy, and trust. As these systems become embedded in caregiving and social networks, older adults must navigate trade-offs between usability, data privacy, and personal agency across different interaction contexts. Although prior work has explored AI assistants' potential benefits, further research is needed to understand how perceived usefulness and risk shape adoption and engagement. This paper examines these dynamics and advocates for participatory design approaches that position older adults as active decision makers in shaping AI assistant functionality. By advancing a framework for privacy-aware, user-centered AI design, this work contributes to ongoing discussions on developing ethical and transparent AI systems that enhance well-being without compromising user control.
comment: 7 pages. Proceedings of the CHI 2025 Workshop on Technology Mediated Caregiving for Older Adults Aging in Place, April 27, 2025, Yokohama, Japan
"Trust me on this" Explaining Agent Behavior to a Human Terminator ICML 2024
Consider a setting where a pre-trained agent is operating in an environment and a human operator can decide to temporarily terminate its operation and take-over for some duration of time. These kind of scenarios are common in human-machine interactions, for example in autonomous driving, factory automation and healthcare. In these settings, we typically observe a trade-off between two extreme cases -- if no take-overs are allowed, then the agent might employ a sub-optimal, possibly dangerous policy. Alternatively, if there are too many take-overs, then the human has no confidence in the agent, greatly limiting its usefulness. In this paper, we formalize this setup and propose an explainability scheme to help optimize the number of human interventions.
comment: 6 pages, 3 figures, in proceedings of ICML 2024 Workshop on Models of Human Feedback for AI Alignment
Un-Straightening Generative AI: How Queer Artists Surface and Challenge the Normativity of Generative AI Models
Queer people are often discussed as targets of bias, harm, or discrimination in research on generative AI. However, the specific ways that queer people engage with generative AI, and thus possible uses that support queer people, have yet to be explored. We conducted a workshop study with 13 queer artists, during which we gave participants access to GPT-4 and DALL-E 3 and facilitated group sensemaking activities. We found our participants struggled to use these models due to various normative values embedded in their designs, such as hyper-positivity and anti-sexuality. We describe various strategies our participants developed to overcome these models' limitations and how, nevertheless, our participants found value in these highly-normative technologies. Drawing on queer feminist theory, we discuss implications for the conceptualization of "state-of-the-art" models and consider how FAccT researchers might support queer alternatives.
Letters from Future Self: Augmenting the Letter-Exchange Exercise with LLM-based Agents to Enhance Young Adults' Career Exploration
Young adults often encounter challenges in career exploration. Self-guided interventions, such as the letter-exchange exercise, where participants envision and adopt the perspective of their future selves by exchanging letters with their envisioned future selves, can support career development. However, the broader adoption of such interventions may be limited without structured guidance. To address this, we integrated Large Language Model (LLM)-based agents that simulate participants' future selves into the letter-exchange exercise and evaluated their effectiveness. A one-week experiment (N=36) compared three conditions: (1) participants manually writing replies to themselves from the perspective of their future selves (baseline), (2) future-self agents generating letters to participants, and (3) future-self agents engaging in chat conversations with participants. Results indicated that exchanging letters with future-self agents enhanced participants' engagement during the exercise, while overall benefits of the intervention on future orientation, career self-concept, and psychological support remained comparable across conditions. We discuss design implications for AI-augmented interventions for supporting young adults' career exploration.
comment: 21 pages, 9 figures, Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (Best Paper Award, Top 1%)
Mind2Matter: Creating 3D Models from EEG Signals
The reconstruction of 3D objects from brain signals has gained significant attention in brain-computer interface (BCI) research. Current research predominantly utilizes functional magnetic resonance imaging (fMRI) for 3D reconstruction tasks due to its excellent spatial resolution. Nevertheless, the clinical utility of fMRI is limited by its prohibitive costs and inability to support real-time operations. In comparison, electroencephalography (EEG) presents distinct advantages as an affordable, non-invasive, and mobile solution for real-time brain-computer interaction systems. While recent advances in deep learning have enabled remarkable progress in image generation from neural data, decoding EEG signals into structured 3D representations remains largely unexplored. In this paper, we propose a novel framework that translates EEG recordings into 3D object reconstructions by leveraging neural decoding techniques and generative models. Our approach involves training an EEG encoder to extract spatiotemporal visual features, fine-tuning a large language model to interpret these features into descriptive multimodal outputs, and leveraging generative 3D Gaussians with layout-guided control to synthesize the final 3D structures. Experiments demonstrate that our model captures salient geometric and semantic features, paving the way for applications in brain-computer interfaces (BCIs), virtual reality, and neuroprosthetics. Our code is available in https://github.com/sddwwww/Mind2Matter.
Neuroadaptive Haptics: Comparing Reinforcement Learning from Explicit Ratings and Neural Signals for Adaptive XR Systems
Neuroadaptive haptics offers a path to more immersive extended reality (XR) experiences by dynamically tuning multisensory feedback to user preferences. We present a neuroadaptive haptics system that adapts XR feedback through reinforcement learning (RL) from explicit user ratings and brain-decoded neural signals. In a user study, participants interacted with virtual objects in VR while Electroencephalography (EEG) data were recorded. An RL agent adjusted haptic feedback based either on explicit ratings or on outputs from a neural decoder. Results show that the RL agent's performance was comparable across feedback sources, suggesting that implicit neural feedback can effectively guide personalization without requiring active user input. The EEG-based neural decoder achieved a mean F1 score of 0.8, supporting reliable classification of user experience. These findings demonstrate the feasibility of combining brain-computer interfaces (BCI) and RL to autonomously adapt XR interactions, reducing cognitive load and enhancing immersion.
comment: 15 pages, 6 figures
Modeling AI-Human Collaboration as a Multi-Agent Adaptation
We develop an agent-based simulation to formalize AI-human collaboration as a function of task structure, advancing a generalizable framework for strategic decision-making in organizations. Distinguishing between heuristic-based human adaptation and rule-based AI search, we model interactions across modular (parallel) and sequenced (interdependent) tasks using an NK model. Our results reveal that in modular tasks, AI often substitutes for humans - delivering higher payoffs unless human expertise is very high, and the AI search space is either narrowly focused or extremely broad. In sequenced tasks, interesting complementarities emerge. When an expert human initiates the search and AI subsequently refines it, aggregate performance is maximized. Conversely, when AI leads, excessive heuristic refinement by the human can reduce payoffs. We also show that even "hallucinatory" AI - lacking memory or structure - can improve outcomes when augmenting low-capability humans by helping escape local optima. These results yield a robust implication: the effectiveness of AI-human collaboration depends less on context or industry, and more on the underlying task structure. By elevating task decomposition as the central unit of analysis, our model provides a transferable lens for strategic decision-making involving humans and an agentic AI across diverse organizational settings.
Almost AI, Almost Human: The Challenge of Detecting AI-Polished Writing
The growing use of large language models (LLMs) for text generation has led to widespread concerns about AI-generated content detection. However, an overlooked challenge is AI-polished text, where human-written content undergoes subtle refinements using AI tools. This raises a critical question: should minimally polished text be classified as AI-generated? Such classification can lead to false plagiarism accusations and misleading claims about AI prevalence in online content. In this study, we systematically evaluate twelve state-of-the-art AI-text detectors using our AI-Polished-Text Evaluation (APT-Eval) dataset, which contains 14.7K samples refined at varying AI-involvement levels. Our findings reveal that detectors frequently flag even minimally polished text as AI-generated, struggle to differentiate between degrees of AI involvement, and exhibit biases against older and smaller models. These limitations highlight the urgent need for more nuanced detection methodologies.
comment: 18 pages, 18 figures, 6 tables
Should AI Mimic People? Understanding AI-Supported Writing Technology Among Black Users SC
AI-supported writing technologies (AISWT) that provide grammatical suggestions, autocomplete sentences, or generate and rewrite text are now a regular feature integrated into many people's workflows. However, little is known about how people perceive the suggestions these tools provide. In this paper, we investigate how Black American users perceive AISWT, motivated by prior findings in natural language processing that highlight how the underlying large language models can contain racial biases. Using interviews and observational user studies with 13 Black American users of AISWT, we found a strong tradeoff between the perceived benefits of using AISWT to enhance their writing style and feeling like "it wasn't built for us". Specifically, participants reported AISWT's failure to recognize commonly used names and expressions in African American Vernacular English, experiencing its corrections as hurtful and alienating and fearing it might further minoritize their culture. We end with a reflection on the tension between AISWT that fail to include Black American culture and language, and AISWT that attempt to mimic it, with attention to accuracy, authenticity, and the production of social difference.
comment: accepted to CSCW 2025
CleAR: Robust Context-Guided Generative Lighting Estimation for Mobile Augmented Reality
High-quality environment lighting is essential for creating immersive mobile augmented reality (AR) experiences. However, achieving visually coherent estimation for mobile AR is challenging due to several key limitations in AR device sensing capabilities, including low camera FoV and limited pixel dynamic ranges. Recent advancements in generative AI, which can generate high-quality images from different types of prompts, including texts and images, present a potential solution for high-quality lighting estimation. Still, to effectively use generative image diffusion models, we must address two key limitations of content quality and slow inference. In this work, we design and implement a generative lighting estimation system called CleAR that can produce high-quality, diverse environment maps in the format of 360{\deg} HDR images. Specifically, we design a two-step generation pipeline guided by AR environment context data to ensure the output aligns with the physical environment's visual context and color appearance. To improve the estimation robustness under different lighting conditions, we design a real-time refinement component to adjust lighting estimation results on AR devices. Through a combination of quantitative and qualitative evaluations, we show that CleAR outperforms state-of-the-art lighting estimation methods on both estimation accuracy, latency, and robustness, and is rated by 31 participants as producing better renderings for most virtual objects. For example, CleAR achieves 51% to 56% accuracy improvement on virtual object renderings across objects of three distinctive types of materials and reflective properties. CleAR produces lighting estimates of comparable or better quality in just 3.2 seconds -- over 110X faster than state-of-the-art methods.
Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Investigating NLP through a philosophical lens has recently caught researcher's eyes as it connects computational methods with classical schools of philosophy. This paper introduces a philosophical approach inspired by the \textit{Hegelian Dialectic} for LLMs' \textit{self-reflection}, utilizing a self-dialectical approach to emulate internal critiques and then synthesize new ideas by resolving the opposing points of view. Moreover, this paper investigates the effect of LLMs' temperature for generation by establishing a dynamic annealing approach, which promotes the creativity in the early stages and gradually refines it by focusing on the nuances, as well as a fixed-temperature strategy for generation. We assess the effectiveness of our proposed method in generating novel ideas and in improving the reasoning abilities of LLMs during problem-solving. Moreover, we implement a Multi-Agent Majority Voting (MAMV) strategy to assess the validity and novelty of the generated ideas, which proves useful in the absence of domain experts. Our experiments demonstrate promising results in generating ideas and enhancing problem-solving performance.
Image and Video Processing
OASIS: Optimized Lightweight Autoencoder System for Distributed In-Sensor computing
In-sensor computing, which integrates computation directly within the sensor, has emerged as a promising paradigm for machine vision applications such as AR/VR and smart home systems. By processing data on-chip before transmission, it alleviates the bandwidth bottleneck caused by high-resolution, high-frame-rate image transmission, particularly in video applications. We envision a system architecture that integrates a CMOS image sensor (CIS) with a logic chip via advanced packaging, where the logic chip processes early-stage deep neural network (DNN) layers. However, its limited compute and memory make deploying advanced DNNs challenging. A simple solution is to split the model, executing the first part on the logic chip and the rest off-chip. However, modern DNNs require multiple layers before dimensionality reduction, limiting their ability to achieve the primary goal of in-sensor computing: minimizing data bandwidth. To address this, we propose a dual-branch autoencoder-based vision architecture that deploys a lightweight encoder on the logic chip while the task-specific network runs off-chip. The encoder is trained using a triple loss function: (1) task-specific loss to optimize accuracy, (2) entropy loss to enforce compact and compressible representations, and (3) reconstruction loss (mean-square error) to preserve essential visual information. This design enables a four-order-of-magnitude reduction in output activation dimensionality compared to input images, resulting in a $2{-}4.5\times$ decrease in energy consumption, as validated by our hardware-backed semi-analytical energy models. We evaluate our approach on CNN and ViT-based models across applications in smart home and augmented reality domains, achieving state-of-the-art accuracy with energy efficiency of up to 22.7 TOPS/W.
comment: Under review; 8 pages, 5 figures
CSASN: A Multitask Attention-Based Framework for Heterogeneous Thyroid Carcinoma Classification in Ultrasound Images
Heterogeneous morphological features and data imbalance pose significant challenges in rare thyroid carcinoma classification using ultrasound imaging. To address this issue, we propose a novel multitask learning framework, Channel-Spatial Attention Synergy Network (CSASN), which integrates a dual-branch feature extractor - combining EfficientNet for local spatial encoding and ViT for global semantic modeling, with a cascaded channel-spatial attention refinement module. A residual multiscale classifier and dynamically weighted loss function further enhance classification stability and accuracy. Trained on a multicenter dataset comprising more than 2000 patients from four clinical institutions, our framework leverages a residual multiscale classifier and dynamically weighted loss function to enhance classification stability and accuracy. Extensive ablation studies demonstrate that each module contributes significantly to model performance, particularly in recognizing rare subtypes such as FTC and MTC carcinomas. Experimental results show that CSASN outperforms existing single-stream CNN or Transformer-based models, achieving a superior balance between precision and recall under class-imbalanced conditions. This framework provides a promising strategy for AI-assisted thyroid cancer diagnosis.
comment: 18 pages, 10 figures, 4 tables
EMulator: Rapid Estimation of Complex-valued Electric Fields using a U-Net Architecture
A common factor across electromagnetic methodologies of brain stimulation is the optimization of essential dosimetry parameters, like amplitude, phase, and location of one or more transducers, which controls the stimulation strength and targeting precision. Since obtaining in-vivo measurements for the electric field distribution inside the biological tissue is challenging, physics-based simulators are used. However, these simulators are computationally expensive and time-consuming, making repeated calculations of electric fields for optimization purposes computationally prohibitive. To overcome this issue, we developed EMulator, a U-Net architecture-based regression model, for fast and robust complex electric field estimation. We trained EMulator using electric fields generated by 43 antennas placed around 14 segmented human brain models. Once trained, EMulator uses a segmented human brain model with an antenna location as an input and outputs the corresponding electric field. A representative result of our study is that, at 1.5 GHz, on the validation dataset consisting of 6 subjects, we can estimate the electric field with the magnitude of complex correlation coefficient of 0.978. Additionally, we could calculate the electric field with a mean time of 4.4 ms. On average, this is at least x1200 faster than the time required by state-of-the-art physics-based simulator COMSOL. The significance of this work is that it shows the possibility of real-time calculation of the electric field from the segmented human head model and antenna location, making it possible to optimize the amplitude, phase, and location of several different transducers with stochastic gradient descent since our model is almost everywhere differentiable.
Hybrid Image Resolution Quality Metric (HIRQM):A Comprehensive Perceptual Image Quality Assessment Framework
Traditional image quality assessment metrics like Mean Squared Error and Structural Similarity Index often fail to reflect perceptual quality under complex distortions. We propose the Hybrid Image Resolution Quality Metric (HIRQM), integrating statistical, multi-scale, and deep learning-based methods for a comprehensive quality evaluation. HIRQM combines three components: Probability Density Function for local pixel distribution analysis, Multi-scale Feature Similarity for structural integrity across resolutions, and Hierarchical Deep Image Features using a pre-trained VGG16 network for semantic alignment with human perception. A dynamic weighting mechanism adapts component contributions based on image characteristics like brightness and variance, enhancing flexibility across distortion types. Our contributions include a unified metric and dynamic weighting for better perceptual alignment. Evaluated on TID2013 and LIVE datasets, HIRQM achieves Pearson and Spearman correlations of 0.92 and 0.90, outperforming traditional metrics. It excels in handling noise, blur, and compression artifacts, making it valuable for image processing applications like compression and restoration.
comment: 19 pages,2 figures,2 tables and biblography with similar papers with some valid information
UNet-3D with Adaptive TverskyCE Loss for Pancreas Medical Image Segmentation
Pancreatic cancer, which has a low survival rate, is the most intractable one among all cancers. Most diagnoses of this cancer heavily depend on abdominal computed tomography (CT) scans. Therefore, pancreas segmentation is crucial but challenging. Because of the obscure position of the pancreas, surrounded by other large organs, and its small area, the pancreas has often been impeded and difficult to detect. With these challenges , the segmentation results based on Deep Learning (DL) models still need to be improved. In this research, we propose a novel adaptive TverskyCE loss for DL model training, which combines Tversky loss with cross-entropy loss using learnable weights. Our method enables the model to adjust the loss contribution automatically and find the best objective function during training. All experiments were conducted on the National Institutes of Health (NIH) Pancreas-CT dataset. We evaluated the adaptive TverskyCE loss on the UNet-3D and Dilated UNet-3D, and our method achieved a Dice Similarity Coefficient (DSC) of 85.59%, with peak performance up to 95.24%, and the score of 85.14%. DSC and the score were improved by 9.47% and 8.98% respectively compared with the baseline UNet-3D with Tversky loss for pancreas segmentation. Keywords: Pancreas segmentation, Tversky loss, Cross-entropy loss, UNet-3D, Dilated UNet-3D
comment: 6 pages and 3 figures
Make Both Ends Meet: A Synergistic Optimization Infrared Small Target Detection with Streamlined Computational Overhead
Infrared small target detection(IRSTD) is widely recognized as a challenging task due to the inherent limitations of infrared imaging, including low signal-to-noise ratios, lack of texture details, and complex background interference. While most existing methods model IRSTD as a semantic segmentation task, but they suffer from two critical drawbacks: (1)blurred target boundaries caused by long-distance imaging dispersion; and (2) excessive computational overhead due to indiscriminate feature stackin. To address these issues, we propose the Lightweight Efficiency Infrared Small Target Detection (LE-IRSTD), a lightweight and efficient framework based on YOLOv8n, with following key innovations. Firstly, we identify that the multiple bottleneck structures within the C2f component of the YOLOv8-n backbone contribute to an increased computational burden. Therefore, we implement the Mobile Inverted Bottleneck Convolution block (MBConvblock) and Bottleneck Structure block (BSblock) in the backbone, effectively balancing the trade-off between computational efficiency and the extraction of deep semantic information. Secondly, we introduce the Attention-based Variable Convolution Stem (AVCStem) structure, substituting the final convolution with Variable Kernel Convolution (VKConv), which allows for adaptive convolutional kernels that can transform into various shapes, facilitating the receptive field for the extraction of targets. Finally, we employ Global Shuffle Convolution (GSConv) to shuffle the channel dimension features obtained from different convolutional approaches, thereby enhancing the robustness and generalization capabilities of our method. Experimental results demonstrate that our LE-IRSTD method achieves compelling results in both accuracy and lightweight performance, outperforming several state-of-the-art deep learning methods.
Underwater Image Enhancement via Dehazing and Color Restoration
Underwater visual imaging is crucial for marine engineering, but it suffers from low contrast, blurriness, and color degradation, which hinders downstream analysis. Existing underwater image enhancement methods often treat the haze and color cast as a unified degradation process, neglecting their inherent independence while overlooking their synergistic relationship. To overcome this limitation, we propose a Vision Transformer (ViT)-based network (referred to as WaterFormer) to improve underwater image quality. WaterFormer contains three major components: a dehazing block (DehazeFormer Block) to capture the self-correlated haze features and extract deep-level features, a Color Restoration Block (CRB) to capture self-correlated color cast features, and a Channel Fusion Block (CFB) that dynamically integrates these decoupled features to achieve comprehensive enhancement. To ensure authenticity, a soft reconstruction layer based on the underwater imaging physics model is included. Further, a Chromatic Consistency Loss and Sobel Color Loss are designed to respectively preserve color fidelity and enhance structural details during network training. Comprehensive experimental results demonstrate that WaterFormer outperforms other state-of-the-art methods in enhancing underwater images.
Computer Vision and Pattern Recognition
Continuous Normalizing Flows for Uncertainty-Aware Human Pose Estimation SC
Human Pose Estimation (HPE) is increasingly important for applications like virtual reality and motion analysis, yet current methods struggle with balancing accuracy, computational efficiency, and reliable uncertainty quantification (UQ). Traditional regression-based methods assume fixed distributions, which might lead to poor UQ. Heatmap-based methods effectively model the output distribution using likelihood heatmaps, however, they demand significant resources. To address this, we propose Continuous Flow Residual Estimation (CFRE), an integration of Continuous Normalizing Flows (CNFs) into regression-based models, which allows for dynamic distribution adaptation. Through extensive experiments, we show that CFRE leads to better accuracy and uncertainty quantification with retained computational efficiency on both 2D and 3D human pose estimation tasks.
comment: Accepted by SCIA2025
Compositional Image-Text Matching and Retrieval by Grounding Entities CVPR
Vision-language pretraining on large datasets of images-text pairs is one of the main building blocks of current Vision-Language Models. While with additional training, these models excel in various downstream tasks, including visual question answering, image captioning, and visual commonsense reasoning. However, a notable weakness of pretrained models like CLIP, is their inability to perform entity grounding and compositional image and text matching~\cite{Jiang2024ComCLIP, yang2023amc, Rajabi2023GroundedVSR, learninglocalizeCVPR24}. In this work we propose a novel learning-free zero-shot augmentation of CLIP embeddings that has favorable compositional properties. We compute separate embeddings of sub-images of object entities and relations that are localized by the state of the art open vocabulary detectors and dynamically adjust the baseline global image embedding. % The final embedding is obtained by computing a weighted combination of the sub-image embeddings. The resulting embedding is then utilized for similarity computation with text embedding, resulting in a average 1.5\% improvement in image-text matching accuracy on the Visual Genome and SVO Probes datasets~\cite{krishna2017visualgenome, svo}. Notably, the enhanced embeddings demonstrate superior retrieval performance, thus achieving significant gains on the Flickr30K and MS-COCO retrieval benchmarks~\cite{flickr30ke, mscoco}, improving the state-of-the-art Recall@1 by 12\% and 0.4\%, respectively. Our code is available at https://github.com/madhukarreddyvongala/GroundingCLIP.
comment: Accepted at CVPR-W
Enhancing AI Face Realism: Cost-Efficient Quality Improvement in Distilled Diffusion Models with a Fully Synthetic Dataset
This study presents a novel approach to enhance the cost-to-quality ratio of image generation with diffusion models. We hypothesize that differences between distilled (e.g. FLUX.1-schnell) and baseline (e.g. FLUX.1-dev) models are consistent and, therefore, learnable within a specialized domain, like portrait generation. We generate a synthetic paired dataset and train a fast image-to-image translation head. Using two sets of low- and high-quality synthetic images, our model is trained to refine the output of a distilled generator (e.g., FLUX.1-schnell) to a level comparable to a baseline model like FLUX.1-dev, which is more computationally intensive. Our results show that the pipeline, which combines a distilled version of a large generative model with our enhancement layer, delivers similar photorealistic portraits to the baseline version with up to an 82% decrease in computational cost compared to FLUX.1-dev. This study demonstrates the potential for improving the efficiency of AI solutions involving large-scale image generation.
comment: 25th International Conference on Computational Science
Cricket: A Self-Powered Chirping Pixel
We present a sensor that can measure light and wirelessly communicate the measurement, without the need for an external power source or a battery. Our sensor, called cricket, harvests energy from incident light. It is asleep for most of the time and transmits a short and strong radio frequency chirp when its harvested energy reaches a specific level. The carrier frequency of each cricket is fixed and reveals its identity, and the duration between consecutive chirps is a measure of the incident light level. We have characterized the radiometric response function, signal-to-noise ratio and dynamic range of cricket. We have experimentally verified that cricket can be miniaturized at the expense of increasing the duration between chirps. We show that a cube with a cricket on each of its sides can be used to estimate the centroid of any complex illumination, which has value in applications such as solar tracking. We also demonstrate the use of crickets for creating untethered sensor arrays that can produce video and control lighting for energy conservation. Finally, we modified cricket's circuit to develop battery-free electronic sunglasses that can instantly adapt to environmental illumination.
comment: 13 pages, 18 figures. Project page: https://cave.cs.columbia.edu/projects/categories/project?cid=Computational%20Imaging&pid=Cricket%20A%20Self-Powered%20Chirping%20Pixel
Quantizing Diffusion Models from a Sampling-Aware Perspective
Diffusion models have recently emerged as the dominant approach in visual generation tasks. However, the lengthy denoising chains and the computationally intensive noise estimation networks hinder their applicability in low-latency and resource-limited environments. Previous research has endeavored to address these limitations in a decoupled manner, utilizing either advanced samplers or efficient model quantization techniques. In this study, we uncover that quantization-induced noise disrupts directional estimation at each sampling step, further distorting the precise directional estimations of higher-order samplers when solving the sampling equations through discretized numerical methods, thereby altering the optimal sampling trajectory. To attain dual acceleration with high fidelity, we propose a sampling-aware quantization strategy, wherein a Mixed-Order Trajectory Alignment technique is devised to impose a more stringent constraint on the error bounds at each sampling step, facilitating a more linear probability flow. Extensive experiments on sparse-step fast sampling across multiple datasets demonstrate that our approach preserves the rapid convergence characteristics of high-speed samplers while maintaining superior generation quality. Code will be made publicly available soon.
comment: 11 pages, 4 figures
Improving Physical Object State Representation in Text-to-Image Generative Systems CVPR 2025
Current text-to-image generative models struggle to accurately represent object states (e.g., "a table without a bottle," "an empty tumbler"). In this work, we first design a fully-automatic pipeline to generate high-quality synthetic data that accurately captures objects in varied states. Next, we fine-tune several open-source text-to-image models on this synthetic data. We evaluate the performance of the fine-tuned models by quantifying the alignment of the generated images to their prompts using GPT4o-mini, and achieve an average absolute improvement of 8+% across four models on the public GenAI-Bench dataset. We also curate a collection of 200 prompts with a specific focus on common objects in various physical states. We demonstrate a significant improvement of an average of 24+% over the baseline on this dataset. We release all evaluation prompts and code.
comment: Submitted to Synthetic Data for Computer Vision - CVPR 2025 Workshop
CSASN: A Multitask Attention-Based Framework for Heterogeneous Thyroid Carcinoma Classification in Ultrasound Images
Heterogeneous morphological features and data imbalance pose significant challenges in rare thyroid carcinoma classification using ultrasound imaging. To address this issue, we propose a novel multitask learning framework, Channel-Spatial Attention Synergy Network (CSASN), which integrates a dual-branch feature extractor - combining EfficientNet for local spatial encoding and ViT for global semantic modeling, with a cascaded channel-spatial attention refinement module. A residual multiscale classifier and dynamically weighted loss function further enhance classification stability and accuracy. Trained on a multicenter dataset comprising more than 2000 patients from four clinical institutions, our framework leverages a residual multiscale classifier and dynamically weighted loss function to enhance classification stability and accuracy. Extensive ablation studies demonstrate that each module contributes significantly to model performance, particularly in recognizing rare subtypes such as FTC and MTC carcinomas. Experimental results show that CSASN outperforms existing single-stream CNN or Transformer-based models, achieving a superior balance between precision and recall under class-imbalanced conditions. This framework provides a promising strategy for AI-assisted thyroid cancer diagnosis.
comment: 18 pages, 10 figures, 4 tables
DualReal: Adaptive Joint Training for Lossless Identity-Motion Fusion in Video Customization
Customized text-to-video generation with pre-trained large-scale models has recently garnered significant attention through focusing on identity and motion consistency. Existing works typically follow the isolated customized paradigm, where the subject identity or motion dynamics are customized exclusively. However, this paradigm completely ignores the intrinsic mutual constraints and synergistic interdependencies between identity and motion, resulting in identity-motion conflicts throughout the generation process that systematically degrades. To address this, we introduce DualReal, a novel framework that, employs adaptive joint training to collaboratively construct interdependencies between dimensions. Specifically, DualReal is composed of two units: (1) Dual-aware Adaptation dynamically selects a training phase (i.e., identity or motion), learns the current information guided by the frozen dimension prior, and employs a regularization strategy to avoid knowledge leakage; (2) StageBlender Controller leverages the denoising stages and Diffusion Transformer depths to guide different dimensions with adaptive granularity, avoiding conflicts at various stages and ultimately achieving lossless fusion of identity and motion patterns. We constructed a more comprehensive benchmark than existing methods. The experimental results show that DualReal improves CLIP-I and DINO-I metrics by 21.7% and 31.8% on average, and achieves top performance on nearly all motion quality metrics.
Robust AI-Generated Face Detection with Imbalanced Data
Deepfakes, created using advanced AI techniques such as Variational Autoencoder and Generative Adversarial Networks, have evolved from research and entertainment applications into tools for malicious activities, posing significant threats to digital trust. Current deepfake detection techniques have evolved from CNN-based methods focused on local artifacts to more advanced approaches using vision transformers and multimodal models like CLIP, which capture global anomalies and improve cross-domain generalization. Despite recent progress, state-of-the-art deepfake detectors still face major challenges in handling distribution shifts from emerging generative models and addressing severe class imbalance between authentic and fake samples in deepfake datasets, which limits their robustness and detection accuracy. To address these challenges, we propose a framework that combines dynamic loss reweighting and ranking-based optimization, which achieves superior generalization and performance under imbalanced dataset conditions. The code is available at https://github.com/Purdue-M2/SP_CUP.
ProDisc-VAD: An Efficient System for Weakly-Supervised Anomaly Detection in Video Surveillance Applications
Weakly-supervised video anomaly detection (WS-VAD) using Multiple Instance Learning (MIL) suffers from label ambiguity, hindering discriminative feature learning. We propose ProDisc-VAD, an efficient framework tackling this via two synergistic components. The Prototype Interaction Layer (PIL) provides controlled normality modeling using a small set of learnable prototypes, establishing a robust baseline without being overwhelmed by dominant normal data. The Pseudo-Instance Discriminative Enhancement (PIDE) loss boosts separability by applying targeted contrastive learning exclusively to the most reliable extreme-scoring instances (highest/lowest scores). ProDisc-VAD achieves strong AUCs (97.98% ShanghaiTech, 87.12% UCF-Crime) using only 0.4M parameters, over 800x fewer than recent ViT-based methods like VadCLIP, demonstrating exceptional efficiency alongside state-of-the-art performance. Code is available at https://github.com/modadundun/ProDisc-VAD.
Sparfels: Fast Reconstruction from Sparse Unposed Imagery
We present a method for Sparse view reconstruction with surface element splatting that runs within 3 minutes on a consumer grade GPU. While few methods address sparse radiance field learning from noisy or unposed sparse cameras, shape recovery remains relatively underexplored in this setting. Several radiance and shape learning test-time optimization methods address the sparse posed setting by learning data priors or using combinations of external monocular geometry priors. Differently, we propose an efficient and simple pipeline harnessing a single recent 3D foundation model. We leverage its various task heads, notably point maps and camera initializations to instantiate a bundle adjusting 2D Gaussian Splatting (2DGS) model, and image correspondences to guide camera optimization midst 2DGS training. Key to our contribution is a novel formulation of splatted color variance along rays, which can be computed efficiently. Reducing this moment in training leads to more accurate shape reconstructions. We demonstrate state-of-the-art performances in the sparse uncalibrated setting in reconstruction and novel view benchmarks based on established multi-view datasets.
comment: Project page : https://shubhendu-jena.github.io/Sparfels/
Saliency-Guided Training for Fingerprint Presentation Attack Detection
Saliency-guided training, which directs model learning to important regions of images, has demonstrated generalization improvements across various biometric presentation attack detection (PAD) tasks. This paper presents its first application to fingerprint PAD. We conducted a 50-participant study to create a dataset of 800 human-annotated fingerprint perceptually-important maps, explored alongside algorithmically-generated "pseudosaliency," including minutiae-based, image quality-based, and autoencoder-based saliency maps. Evaluating on the 2021 Fingerprint Liveness Detection Competition testing set, we explore various configurations within five distinct training scenarios to assess the impact of saliency-guided training on accuracy and generalization. Our findings demonstrate the effectiveness of saliency-guided training for fingerprint PAD in both limited and large data contexts, and we present a configuration capable of earning the first place on the LivDet-2021 benchmark. Our results highlight saliency-guided training's promise for increased model generalization capabilities, its effectiveness when data is limited, and its potential to scale to larger datasets in fingerprint PAD. All collected saliency data and trained models are released with the paper to support reproducible research.
comment: 19 pages (8 main, 2 references, 9 appendix), 2 figures, 19 tables (2 main, 17 appendix)
SparSplat: Fast Multi-View Reconstruction with Generalizable 2D Gaussian Splatting
Recovering 3D information from scenes via multi-view stereo reconstruction (MVS) and novel view synthesis (NVS) is inherently challenging, particularly in scenarios involving sparse-view setups. The advent of 3D Gaussian Splatting (3DGS) enabled real-time, photorealistic NVS. Following this, 2D Gaussian Splatting (2DGS) leveraged perspective accurate 2D Gaussian primitive rasterization to achieve accurate geometry representation during rendering, improving 3D scene reconstruction while maintaining real-time performance. Recent approaches have tackled the problem of sparse real-time NVS using 3DGS within a generalizable, MVS-based learning framework to regress 3D Gaussian parameters. Our work extends this line of research by addressing the challenge of generalizable sparse 3D reconstruction and NVS jointly, and manages to perform successfully at both tasks. We propose an MVS-based learning pipeline that regresses 2DGS surface element parameters in a feed-forward fashion to perform 3D shape reconstruction and NVS from sparse-view images. We further show that our generalizable pipeline can benefit from preexisting foundational multi-view deep visual features. The resulting model attains the state-of-the-art results on the DTU sparse 3D reconstruction benchmark in terms of Chamfer distance to ground-truth, as-well as state-of-the-art NVS. It also demonstrates strong generalization on the BlendedMVS and Tanks and Temples datasets. We note that our model outperforms the prior state-of-the-art in feed-forward sparse view reconstruction based on volume rendering of implicit representations, while offering an almost 2 orders of magnitude higher inference speed.
comment: Project page : https://shubhendu-jena.github.io/SparSplat/
Focus What Matters: Matchability-Based Reweighting for Local Feature Matching
Since the rise of Transformers, many semi-dense matching methods have adopted attention mechanisms to extract feature descriptors. However, the attention weights, which capture dependencies between pixels or keypoints, are often learned from scratch. This approach can introduce redundancy and noisy interactions from irrelevant regions, as it treats all pixels or keypoints equally. Drawing inspiration from keypoint selection processes, we propose to first classify all pixels into two categories: matchable and non-matchable. Matchable pixels are expected to receive higher attention weights, while non-matchable ones are down-weighted. In this work, we propose a novel attention reweighting mechanism that simultaneously incorporates a learnable bias term into the attention logits and applies a matchability-informed rescaling to the input value features. The bias term, injected prior to the softmax operation, selectively adjusts attention scores based on the confidence of query-key interactions. Concurrently, the feature rescaling acts post-attention by modulating the influence of each value vector in the final output. This dual design allows the attention mechanism to dynamically adjust both its internal weighting scheme and the magnitude of its output representations. Extensive experiments conducted on three benchmark datasets validate the effectiveness of our method, consistently outperforming existing state-of-the-art approaches.
Small Clips, Big Gains: Learning Long-Range Refocused Temporal Information for Video Super-Resolution
Video super-resolution (VSR) can achieve better performance compared to single image super-resolution by additionally leveraging temporal information. In particular, the recurrent-based VSR model exploits long-range temporal information during inference and achieves superior detail restoration. However, effectively learning these long-term dependencies within long videos remains a key challenge. To address this, we propose LRTI-VSR, a novel training framework for recurrent VSR that efficiently leverages Long-Range Refocused Temporal Information. Our framework includes a generic training strategy that utilizes temporal propagation features from long video clips while training on shorter video clips. Additionally, we introduce a refocused intra&inter-frame transformer block which allows the VSR model to selectively prioritize useful temporal information through its attention module while further improving inter-frame information utilization in the FFN module. We evaluate LRTI-VSR on both CNN and transformer-based VSR architectures, conducting extensive ablation studies to validate the contribution of each component. Experiments on long-video test sets demonstrate that LRTI-VSR achieves state-of-the-art performance while maintaining training and computational efficiency.
comment: 15 pages, 11 figures
Spotting the Unexpected (STU): A 3D LiDAR Dataset for Anomaly Segmentation in Autonomous Driving CVPR 2025
To operate safely, autonomous vehicles (AVs) need to detect and handle unexpected objects or anomalies on the road. While significant research exists for anomaly detection and segmentation in 2D, research progress in 3D is underexplored. Existing datasets lack high-quality multimodal data that are typically found in AVs. This paper presents a novel dataset for anomaly segmentation in driving scenarios. To the best of our knowledge, it is the first publicly available dataset focused on road anomaly segmentation with dense 3D semantic labeling, incorporating both LiDAR and camera data, as well as sequential information to enable anomaly detection across various ranges. This capability is critical for the safe navigation of autonomous vehicles. We adapted and evaluated several baseline models for 3D segmentation, highlighting the challenges of 3D anomaly detection in driving environments. Our dataset and evaluation code will be openly available, facilitating the testing and performance comparison of different approaches.
comment: Accepted for publication at CVPR 2025. Project page: https://www.vision.rwth-aachen.de/stu-dataset
Local Herb Identification Using Transfer Learning: A CNN-Powered Mobile Application for Nepalese Flora
Herb classification presents a critical challenge in botanical research, particularly in regions with rich biodiversity such as Nepal. This study introduces a novel deep learning approach for classifying 60 different herb species using Convolutional Neural Networks (CNNs) and transfer learning techniques. Using a manually curated dataset of 12,000 herb images, we developed a robust machine learning model that addresses existing limitations in herb recognition methodologies. Our research employed multiple model architectures, including DenseNet121, 50-layer Residual Network (ResNet50), 16-layer Visual Geometry Group Network (VGG16), InceptionV3, EfficientNetV2, and Vision Transformer (VIT), with DenseNet121 ultimately demonstrating superior performance. Data augmentation and regularization techniques were applied to mitigate overfitting and enhance the generalizability of the model. This work advances herb classification techniques, preserving traditional botanical knowledge and promoting sustainable herb utilization.
comment: 12 pages, 6 figures, 5 tables
HiLLIE: Human-in-the-Loop Training for Low-Light Image Enhancement
Developing effective approaches to generate enhanced results that align well with human visual preferences for high-quality well-lit images remains a challenge in low-light image enhancement (LLIE). In this paper, we propose a human-in-the-loop LLIE training framework that improves the visual quality of unsupervised LLIE model outputs through iterative training stages, named HiLLIE. At each stage, we introduce human guidance into the training process through efficient visual quality annotations of enhanced outputs. Subsequently, we employ a tailored image quality assessment (IQA) model to learn human visual preferences encoded in the acquired labels, which is then utilized to guide the training process of an enhancement model. With only a small amount of pairwise ranking annotations required at each stage, our approach continually improves the IQA model's capability to simulate human visual assessment of enhanced outputs, thus leading to visually appealing LLIE results. Extensive experiments demonstrate that our approach significantly improves unsupervised LLIE model performance in terms of both quantitative and qualitative performance. The code and collected ranking dataset will be available at https://github.com/LabShuHangGU/HiLLIE.
GarmentGS: Point-Cloud Guided Gaussian Splatting for High-Fidelity Non-Watertight 3D Garment Reconstruction
Traditional 3D garment creation requires extensive manual operations, resulting in time and labor costs. Recently, 3D Gaussian Splatting has achieved breakthrough progress in 3D scene reconstruction and rendering, attracting widespread attention and opening new pathways for 3D garment reconstruction. However, due to the unstructured and irregular nature of Gaussian primitives, it is difficult to reconstruct high-fidelity, non-watertight 3D garments. In this paper, we present GarmentGS, a dense point cloud-guided method that can reconstruct high-fidelity garment surfaces with high geometric accuracy and generate non-watertight, single-layer meshes. Our method introduces a fast dense point cloud reconstruction module that can complete garment point cloud reconstruction in 10 minutes, compared to traditional methods that require several hours. Furthermore, we use dense point clouds to guide the movement, flattening, and rotation of Gaussian primitives, enabling better distribution on the garment surface to achieve superior rendering effects and geometric accuracy. Through numerical and visual comparisons, our method achieves fast training and real-time rendering while maintaining competitive quality.
Unaligned RGB Guided Hyperspectral Image Super-Resolution with Spatial-Spectral Concordance
Hyperspectral images super-resolution aims to improve the spatial resolution, yet its performance is often limited at high-resolution ratios. The recent adoption of high-resolution reference images for super-resolution is driven by the poor spatial detail found in low-resolution HSIs, presenting it as a favorable method. However, these approaches cannot effectively utilize information from the reference image, due to the inaccuracy of alignment and its inadequate interaction between alignment and fusion modules. In this paper, we introduce a Spatial-Spectral Concordance Hyperspectral Super-Resolution (SSC-HSR) framework for unaligned reference RGB guided HSI SR to address the issues of inaccurate alignment and poor interactivity of the previous approaches. Specifically, to ensure spatial concordance, i.e., align images more accurately across resolutions and refine textures, we construct a Two-Stage Image Alignment with a synthetic generation pipeline in the image alignment module, where the fine-tuned optical flow model can produce a more accurate optical flow in the first stage and warp model can refine damaged textures in the second stage. To enhance the interaction between alignment and fusion modules and ensure spectral concordance during reconstruction, we propose a Feature Aggregation module and an Attention Fusion module. In the feature aggregation module, we introduce an Iterative Deformable Feature Aggregation block to achieve significant feature matching and texture aggregation with the fusion multi-scale results guidance, iteratively generating learnable offset. Besides, we introduce two basic spectral-wise attention blocks in the attention fusion module to model the inter-spectra interactions. Extensive experiments on three natural or remote-sensing datasets show that our method outperforms state-of-the-art approaches on both quantitative and qualitative evaluations.
SignSplat: Rendering Sign Language via Gaussian Splatting
State-of-the-art approaches for conditional human body rendering via Gaussian splatting typically focus on simple body motions captured from many views. This is often in the context of dancing or walking. However, for more complex use cases, such as sign language, we care less about large body motion and more about subtle and complex motions of the hands and face. The problems of building high fidelity models are compounded by the complexity of capturing multi-view data of sign. The solution is to make better use of sequence data, ensuring that we can overcome the limited information from only a few views by exploiting temporal variability. Nevertheless, learning from sequence-level data requires extremely accurate and consistent model fitting to ensure that appearance is consistent across complex motions. We focus on how to achieve this, constraining mesh parameters to build an accurate Gaussian splatting framework from few views capable of modelling subtle human motion. We leverage regularization techniques on the Gaussian parameters to mitigate overfitting and rendering artifacts. Additionally, we propose a new adaptive control method to densify Gaussians and prune splat points on the mesh surface. To demonstrate the accuracy of our approach, we render novel sequences of sign language video, building on neural machine translation approaches to sign stitching. On benchmark datasets, our approach achieves state-of-the-art performance; and on highly articulated and complex sign language motion, we significantly outperform competing approaches.
SkillMimic-V2: Learning Robust and Generalizable Interaction Skills from Sparse and Noisy Demonstrations
We address a fundamental challenge in Reinforcement Learning from Interaction Demonstration (RLID): demonstration noise and coverage limitations. While existing data collection approaches provide valuable interaction demonstrations, they often yield sparse, disconnected, and noisy trajectories that fail to capture the full spectrum of possible skill variations and transitions. Our key insight is that despite noisy and sparse demonstrations, there exist infinite physically feasible trajectories that naturally bridge between demonstrated skills or emerge from their neighboring states, forming a continuous space of possible skill variations and transitions. Building upon this insight, we present two data augmentation techniques: a Stitched Trajectory Graph (STG) that discovers potential transitions between demonstration skills, and a State Transition Field (STF) that establishes unique connections for arbitrary states within the demonstration neighborhood. To enable effective RLID with augmented data, we develop an Adaptive Trajectory Sampling (ATS) strategy for dynamic curriculum generation and a historical encoding mechanism for memory-dependent skill learning. Our approach enables robust skill acquisition that significantly generalizes beyond the reference demonstrations. Extensive experiments across diverse interaction tasks demonstrate substantial improvements over state-of-the-art methods in terms of convergence stability, generalization capability, and recovery robustness.
HandOcc: NeRF-based Hand Rendering with Occupancy Networks
We propose HandOcc, a novel framework for hand rendering based upon occupancy. Popular rendering methods such as NeRF are often combined with parametric meshes to provide deformable hand models. However, in doing so, such approaches present a trade-off between the fidelity of the mesh and the complexity and dimensionality of the parametric model. The simplicity of parametric mesh structures is appealing, but the underlying issue is that it binds methods to mesh initialization, making it unable to generalize to objects where a parametric model does not exist. It also means that estimation is tied to mesh resolution and the accuracy of mesh fitting. This paper presents a pipeline for meshless 3D rendering, which we apply to the hands. By providing only a 3D skeleton, the desired appearance is extracted via a convolutional model. We do this by exploiting a NeRF renderer conditioned upon an occupancy-based representation. The approach uses the hand occupancy to resolve hand-to-hand interactions further improving results, allowing fast rendering, and excellent hand appearance transfer. On the benchmark InterHand2.6M dataset, we achieved state-of-the-art results.
Benchmarking Feature Upsampling Methods for Vision Foundation Models using Interactive Segmentation
Vision Foundation Models (VFMs) are large-scale, pre-trained models that serve as general-purpose backbones for various computer vision tasks. As VFMs' popularity grows, there is an increasing interest in understanding their effectiveness for dense prediction tasks. However, VFMs typically produce low-resolution features, limiting their direct applicability in this context. One way to tackle this limitation is by employing a task-agnostic feature upsampling module that refines VFM features resolution. To assess the effectiveness of this approach, we investigate Interactive Segmentation (IS) as a novel benchmark for evaluating feature upsampling methods on VFMs. Due to its inherent multimodal input, consisting of an image and a set of user-defined clicks, as well as its dense mask output, IS creates a challenging environment that demands comprehensive visual scene understanding. Our benchmarking experiments show that selecting appropriate upsampling strategies significantly improves VFM features quality. The code is released at https://github.com/havrylovv/iSegProbe
Hierarchical Compact Clustering Attention (COCA) for Unsupervised Object-Centric Learning CVPR 2025
We propose the Compact Clustering Attention (COCA) layer, an effective building block that introduces a hierarchical strategy for object-centric representation learning, while solving the unsupervised object discovery task on single images. COCA is an attention-based clustering module capable of extracting object-centric representations from multi-object scenes, when cascaded into a bottom-up hierarchical network architecture, referred to as COCA-Net. At its core, COCA utilizes a novel clustering algorithm that leverages the physical concept of compactness, to highlight distinct object centroids in a scene, providing a spatial inductive bias. Thanks to this strategy, COCA-Net generates high-quality segmentation masks on both the decoder side and, notably, the encoder side of its pipeline. Additionally, COCA-Net is not bound by a predetermined number of object masks that it generates and handles the segmentation of background elements better than its competitors. We demonstrate COCA-Net's segmentation performance on six widely adopted datasets, achieving superior or competitive results against the state-of-the-art models across nine different evaluation metrics.
comment: Accepted to CVPR 2025
RTV-Bench: Benchmarking MLLM Continuous Perception, Understanding and Reasoning through Real-Time Video
Multimodal Large Language Models (MLLMs) increasingly excel at perception, understanding, and reasoning. However, current benchmarks inadequately evaluate their ability to perform these tasks continuously in dynamic, real-world environments. To bridge this gap, we introduce RTV-Bench, a fine-grained benchmark for MLLM real-time video analysis. RTV-Bench uses three key principles: (1) Multi-Timestamp Question Answering (MTQA), where answers evolve with scene changes; (2) Hierarchical Question Structure, combining basic and advanced queries; and (3) Multi-dimensional Evaluation, assessing the ability of continuous perception, understanding, and reasoning. RTV-Bench contains 552 diverse videos (167.2 hours) and 4,631 high-quality QA pairs. We evaluated leading MLLMs, including proprietary (GPT-4o, Gemini 2.0), open-source offline (Qwen2.5-VL, VideoLLaMA3), and open-source real-time (VITA-1.5, InternLM-XComposer2.5-OmniLive) models. Experiment results show open-source real-time models largely outperform offline ones but still trail top proprietary models. Our analysis also reveals that larger model size or higher frame sampling rates do not significantly boost RTV-Bench performance, sometimes causing slight decreases. This underscores the need for better model architectures optimized for video stream processing and long sequences to advance real-time video analysis with MLLMs. Our benchmark toolkit is available at: https://github.com/LJungang/RTV-Bench.
comment: 13 pages, 4 figures, 5 tables
Transforming faces into video stories -- VideoFace2.0
Face detection and face recognition have been in the focus of vision community since the very beginnings. Inspired by the success of the original Videoface digitizer, a pioneering device that allowed users to capture video signals from any source, we have designed an advanced video analytics tool to efficiently create structured video stories, i.e. identity-based information catalogs. VideoFace2.0 is the name of the developed system for spatial and temporal localization of each unique face in the input video, i.e. face re-identification (ReID), which also allows their cataloging, characterization and creation of structured video outputs for later downstream tasks. Developed near real-time solution is primarily designed to be utilized in application scenarios involving TV production, media analysis, and as an efficient tool for creating large video datasets necessary for training machine learning (ML) models in challenging vision tasks such as lip reading and multimodal speech recognition. Conducted experiments confirm applicability of the proposed face ReID algorithm that is combining the concepts of face detection, face recognition and passive tracking-by-detection in order to achieve robust and efficient face ReID. The system is envisioned as a compact and modular extensions of the existing video production equipment. We hope that the presented work and shared code will stimulate further interest in development of similar, application specific video analysis tools, and lower the entry barrier for production of high-quality multi-modal ML datasets in the future.
comment: 4 pages, 2 figures, 1 algorithm; associated VideoFace2.0 code implementation, test videos and results visualizations are available at https://github.com/brkljac/VideoFace2.0 ; Preprint submitted to the 14th Mediterranean Conference on Embedded Computing (MECO), 10-14 June 2025, Budva, Montenegro
Handling Imbalanced Pseudolabels for Vision-Language Models with Concept Alignment and Confusion-Aware Calibrated Margin ICML 2025
Adapting vision-language models (VLMs) to downstream tasks with pseudolabels has gained increasing attention. A major obstacle is that the pseudolabels generated by VLMs tend to be imbalanced, leading to inferior performance. While existing methods have explored various strategies to address this, the underlying causes of imbalance remain insufficiently investigated. To fill this gap, we delve into imbalanced pseudolabels and identify two primary contributing factors: concept mismatch and concept confusion. To mitigate these two issues, we propose a novel framework incorporating concept alignment and confusion-aware calibrated margin mechanisms. The core of our approach lies in enhancing underperforming classes and promoting balanced predictions across categories, thus mitigating imbalance. Extensive experiments on six benchmark datasets with three learning paradigms demonstrate that the proposed method effectively enhances the accuracy and balance of pseudolabels, achieving a relative improvement of 6.29% over the SoTA method. Our code is avaliable at https://anonymous.4open.science/r/CAP-C642/
comment: Accepted to ICML 2025
TxP: Reciprocal Generation of Ground Pressure Dynamics and Activity Descriptions for Improving Human Activity Recognition
Sensor-based human activity recognition (HAR) has predominantly focused on Inertial Measurement Units and vision data, often overlooking the capabilities unique to pressure sensors, which capture subtle body dynamics and shifts in the center of mass. Despite their potential for postural and balance-based activities, pressure sensors remain underutilized in the HAR domain due to limited datasets. To bridge this gap, we propose to exploit generative foundation models with pressure-specific HAR techniques. Specifically, we present a bidirectional Text$\times$Pressure model that uses generative foundation models to interpret pressure data as natural language. TxP accomplishes two tasks: (1) Text2Pressure, converting activity text descriptions into pressure sequences, and (2) Pressure2Text, generating activity descriptions and classifications from dynamic pressure maps. Leveraging pre-trained models like CLIP and LLaMA 2 13B Chat, TxP is trained on our synthetic PressLang dataset, containing over 81,100 text-pressure pairs. Validated on real-world data for activities such as yoga and daily tasks, TxP provides novel approaches to data augmentation and classification grounded in atomic actions. This consequently improved HAR performance by up to 12.4\% in macro F1 score compared to the state-of-the-art, advancing pressure-based HAR with broader applications and deeper insights into human movement.
Regression s all you need for medical image translation
The acquisition of information-rich images within a limited time budget is crucial in medical imaging. Medical image translation (MIT) can help enhance and supplement existing datasets by generating synthetic images from acquired data. While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved remarkable success in natural image generation, their benefits - creativity and image realism - do not necessarily transfer to medical applications where highly accurate anatomical information is required. In fact, the imitation of acquisition noise or content hallucination hinder clinical utility. Here, we introduce YODA (You Only Denoise once - or Average), a novel 2.5D diffusion-based framework for volumetric MIT. YODA unites diffusion and regression paradigms to produce realistic or noise-free outputs. Furthermore, we propose Expectation-Approximation (ExpA) DM sampling, which draws inspiration from MRI signal averaging. ExpA-sampling suppresses generated noise and, thus, eliminates noise from biasing the evaluation of image quality. Through extensive experiments on four diverse multi-modal datasets - comprising multi-contrast brain MRI and pelvic MRI-CT - we show that diffusion and regression sampling yield similar results in practice. As such, the computational overhead of diffusion sampling does not provide systematic benefits in medical information translation. Building on these insights, we demonstrate that YODA outperforms several state-of-the-art GAN and DM methods. Notably, YODA-generated images are shown to be interchangeable with, or even superior to, physical acquisitions for several downstream tasks. Our findings challenge the presumed advantages of DMs in MIT and pave the way for the practical application of MIT in medical imaging.
A UNet Model for Accelerated Preprocessing of CRISM Hyperspectral Data for Mineral Identification on Mars
Accurate mineral identification on the Martian surface is critical for understanding the planet's geological history. This paper presents a UNet-based autoencoder model for efficient spectral preprocessing of CRISM MTRDR hyperspectral data, addressing the limitations of traditional methods that are computationally intensive and time-consuming. The proposed model automates key preprocessing steps, such as smoothing and continuum removal, while preserving essential mineral absorption features. Trained on augmented spectra from the MICA spectral library, the model introduces realistic variability to simulate MTRDR data conditions. By integrating this framework, preprocessing time for an 800x800 MTRDR scene is reduced from 1.5 hours to just 5 minutes on an NVIDIA T1600 GPU. The preprocessed spectra are subsequently classified using MICAnet, a deep learning model for Martian mineral identification. Evaluation on labeled CRISM TRDR data demonstrates that the proposed approach achieves competitive accuracy while significantly enhancing preprocessing efficiency. This work highlights the potential of the UNet-based preprocessing framework to improve the speed and reliability of mineral mapping on Mars.
Point2Primitive: CAD Reconstruction from Point Cloud by Direct Primitive Prediction
Recovering CAD models from point clouds, especially the sketch-extrusion process, can be seen as the process of rebuilding the topology and extrusion primitives. Previous methods utilize implicit fields for sketch representation, leading to shape reconstruction of curved edges. In this paper, we proposed a CAD reconstruction network that produces editable CAD models from input point clouds (Point2Primitive) by directly predicting every element of the extrusion primitives. Point2Primitive can directly detect and predict sketch curves (type and parameter) from point clouds based on an improved transformer. The sketch curve parameters are formulated as position queries and optimized in an autoregressive way, leading to high parameter accuracy. The topology is rebuilt by extrusion segmentation, and each extrusion parameter (sketch and extrusion operation) is recovered by combining the predicted curves and the computed extrusion operation. Extensive experiments demonstrate that our method is superior in primitive prediction accuracy and CAD reconstruction. The reconstructed shapes are of high geometrical fidelity.
A Birotation Solution for Relative Pose Problems
Relative pose estimation, a fundamental computer vision problem, has been extensively studied for decades. Existing methods either estimate and decompose the essential matrix or directly estimate the rotation and translation to obtain the solution. In this article, we break the mold by tackling this traditional problem with a novel birotation solution. We first introduce three basis transformations, each associated with a geometric metric to quantify the distance between the relative pose to be estimated and its corresponding basis transformation. Three energy functions, designed based on these metrics, are then minimized on the Riemannian manifold $\mathrm{SO(3)}$ by iteratively updating the two rotation matrices. The two rotation matrices and the basis transformation corresponding to the minimum energy are ultimately utilized to recover the relative pose. Extensive quantitative and qualitative evaluations across diverse relative pose estimation tasks demonstrate the superior performance of our proposed birotation solution. Source code, demo video, and datasets will be available at \href{https://mias.group/birotation-solution}{mias.group/birotation-solution} upon publication.
R-Bench: Graduate-level Multi-disciplinary Benchmarks for LLM & MLLM Complex Reasoning Evaluation
Reasoning stands as a cornerstone of intelligence, enabling the synthesis of existing knowledge to solve complex problems. Despite remarkable progress, existing reasoning benchmarks often fail to rigorously evaluate the nuanced reasoning capabilities required for complex, real-world problemsolving, particularly in multi-disciplinary and multimodal contexts. In this paper, we introduce a graduate-level, multi-disciplinary, EnglishChinese benchmark, dubbed as Reasoning Bench (R-Bench), for assessing the reasoning capability of both language and multimodal models. RBench spans 1,094 questions across 108 subjects for language model evaluation and 665 questions across 83 subjects for multimodal model testing in both English and Chinese. These questions are meticulously curated to ensure rigorous difficulty calibration, subject balance, and crosslinguistic alignment, enabling the assessment to be an Olympiad-level multi-disciplinary benchmark. We evaluate widely used models, including OpenAI o1, GPT-4o, DeepSeek-R1, etc. Experimental results indicate that advanced models perform poorly on complex reasoning, especially multimodal reasoning. Even the top-performing model OpenAI o1 achieves only 53.2% accuracy on our multimodal evaluation. Data and code are made publicly available at here.
comment: 18pages
MLLM-Enhanced Face Forgery Detection: A Vision-Language Fusion Solution
Reliable face forgery detection algorithms are crucial for countering the growing threat of deepfake-driven disinformation. Previous research has demonstrated the potential of Multimodal Large Language Models (MLLMs) in identifying manipulated faces. However, existing methods typically depend on either the Large Language Model (LLM) alone or an external detector to generate classification results, which often leads to sub-optimal integration of visual and textual modalities. In this paper, we propose VLF-FFD, a novel Vision-Language Fusion solution for MLLM-enhanced Face Forgery Detection. Our key contributions are twofold. First, we present EFF++, a frame-level, explainability-driven extension of the widely used FaceForensics++ (FF++) dataset. In EFF++, each manipulated video frame is paired with a textual annotation that describes both the forgery artifacts and the specific manipulation technique applied, enabling more effective and informative MLLM training. Second, we design a Vision-Language Fusion Network (VLF-Net) that promotes bidirectional interaction between visual and textual features, supported by a three-stage training pipeline to fully leverage its potential. VLF-FFD achieves state-of-the-art (SOTA) performance in both cross-dataset and intra-dataset evaluations, underscoring its exceptional effectiveness in face forgery detection.
Efficient Noise Calculation in Deep Learning-based MRI Reconstructions ICML 2025
Accelerated MRI reconstruction involves solving an ill-posed inverse problem where noise in acquired data propagates to the reconstructed images. Noise analyses are central to MRI reconstruction for providing an explicit measure of solution fidelity and for guiding the design and deployment of novel reconstruction methods. However, deep learning (DL)-based reconstruction methods have often overlooked noise propagation due to inherent analytical and computational challenges, despite its critical importance. This work proposes a theoretically grounded, memory-efficient technique to calculate voxel-wise variance for quantifying uncertainty due to acquisition noise in accelerated MRI reconstructions. Our approach approximates noise covariance using the DL network's Jacobian, which is intractable to calculate. To circumvent this, we derive an unbiased estimator for the diagonal of this covariance matrix (voxel-wise variance) and introduce a Jacobian sketching technique to efficiently implement it. We evaluate our method on knee and brain MRI datasets for both data- and physics-driven networks trained in supervised and unsupervised manners. Compared to empirical references obtained via Monte Carlo simulations, our technique achieves near-equivalent performance while reducing computational and memory demands by an order of magnitude or more. Furthermore, our method is robust across varying input noise levels, acceleration factors, and diverse undersampling schemes, highlighting its broad applicability. Our work reintroduces accurate and efficient noise analysis as a central tenet of reconstruction algorithms, holding promise to reshape how we evaluate and deploy DL-based MRI. Our code will be made publicly available upon acceptance.
comment: Accepted ICML 2025. Supplementary material included
Learning Heterogeneous Mixture of Scene Experts for Large-scale Neural Radiance Fields
Recent NeRF methods on large-scale scenes have underlined the importance of scene decomposition for scalable NeRFs. Although achieving reasonable scalability, there are several critical problems remaining unexplored, i.e., learnable decomposition, modeling scene heterogeneity, and modeling efficiency. In this paper, we introduce Switch-NeRF++, a Heterogeneous Mixture of Hash Experts (HMoHE) network that addresses these challenges within a unified framework. It is a highly scalable NeRF that learns heterogeneous decomposition and heterogeneous NeRFs efficiently for large-scale scenes in an end-to-end manner. In our framework, a gating network learns to decomposes scenes and allocates 3D points to specialized NeRF experts. This gating network is co-optimized with the experts, by our proposed Sparsely Gated Mixture of Experts (MoE) NeRF framework. We incorporate a hash-based gating network and distinct heterogeneous hash experts. The hash-based gating efficiently learns the decomposition of the large-scale scene. The distinct heterogeneous hash experts consist of hash grids of different resolution ranges, enabling effective learning of the heterogeneous representation of different scene parts. These design choices make our framework an end-to-end and highly scalable NeRF solution for real-world large-scale scene modeling to achieve both quality and efficiency. We evaluate our accuracy and scalability on existing large-scale NeRF datasets and a new dataset with very large-scale scenes ($>6.5km^2$) from UrbanBIS. Extensive experiments demonstrate that our approach can be easily scaled to various large-scale scenes and achieve state-of-the-art scene rendering accuracy. Furthermore, our method exhibits significant efficiency, with an 8x acceleration in training and a 16x acceleration in rendering compared to Switch-NeRF. Codes will be released in https://github.com/MiZhenxing/Switch-NeRF.
comment: 15 pages, 9 figures
Hybrid Image Resolution Quality Metric (HIRQM):A Comprehensive Perceptual Image Quality Assessment Framework
Traditional image quality assessment metrics like Mean Squared Error and Structural Similarity Index often fail to reflect perceptual quality under complex distortions. We propose the Hybrid Image Resolution Quality Metric (HIRQM), integrating statistical, multi-scale, and deep learning-based methods for a comprehensive quality evaluation. HIRQM combines three components: Probability Density Function for local pixel distribution analysis, Multi-scale Feature Similarity for structural integrity across resolutions, and Hierarchical Deep Image Features using a pre-trained VGG16 network for semantic alignment with human perception. A dynamic weighting mechanism adapts component contributions based on image characteristics like brightness and variance, enhancing flexibility across distortion types. Our contributions include a unified metric and dynamic weighting for better perceptual alignment. Evaluated on TID2013 and LIVE datasets, HIRQM achieves Pearson and Spearman correlations of 0.92 and 0.90, outperforming traditional metrics. It excels in handling noise, blur, and compression artifacts, making it valuable for image processing applications like compression and restoration.
comment: 19 pages,2 figures,2 tables and biblography with similar papers with some valid information
Always Skip Attention
We highlight a curious empirical result within modern Vision Transformers (ViTs). Specifically, self-attention catastrophically fails to train unless it is used in conjunction with a skip connection. This is in contrast to other elements of a ViT that continue to exhibit good performance (albeit suboptimal) when skip connections are removed. Further, we show that this critical dependence on skip connections is a relatively new phenomenon, with previous deep architectures (\eg, CNNs) exhibiting good performance in their absence. In this paper, we theoretically characterize that the self-attention mechanism is fundamentally ill-conditioned and is, therefore, uniquely dependent on skip connections for regularization. Additionally, we propose Token Graying -- a simple yet effective complement (to skip connections) that further improves the condition of input tokens. We validate our approach in both supervised and self-supervised training methods.
Drug classification based on X-ray spectroscopy combined with machine learning
The proliferation of new types of drugs necessitates the urgent development of faster and more accurate detection methods. Traditional detection methods have high requirements for instruments and environments, making the operation complex. X-ray absorption spectroscopy, a non-destructive detection technique, offers advantages such as ease of operation, penetrative observation, and strong substance differentiation capabilities, making it well-suited for application in the field of drug detection and identification. In this study, we constructed a classification model using Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Particle Swarm Optimization (PSO) to classify and identify drugs based on their X-ray spectral profiles. In the experiments, we selected 14 chemical reagents with chemical formulas similar to drugs as samples. We utilized CNN to extract features from the spectral data of these 14 chemical reagents and used the extracted features to train an SVM model. We also utilized PSO to optimize two critical initial parameters of the SVM. The experimental results demonstrate that this model achieved higher classification accuracy compared to two other common methods, with a prediction accuracy of 99.14%. Additionally, the model exhibited fast execution speed, mitigating the drawback of a drastic increase in running time and efficiency reduction that may result from the direct fusion of PSO and SVM. Therefore, the combined approach of X-ray absorption spectroscopy with CNN, PSO, and SVM provides a rapid, highly accurate, and reliable classification and identification method for the field of drug detection, holding promising prospects for widespread application.
Lifelong Whole Slide Image Analysis: Online Vision-Language Adaptation and Past-to-Present Gradient Distillation
Whole Slide Images (WSIs) play a crucial role in accurate cancer diagnosis and prognosis, as they provide tissue details at the cellular level. However, the rapid growth of computational tasks involving WSIs poses significant challenges. Given that WSIs are gigapixels in size, they present difficulties in terms of storage, processing, and model training. Therefore, it is essential to develop lifelong learning approaches for WSI analysis. In scenarios where slides are distributed across multiple institutes, we aim to leverage them to develop a unified online model as a computational tool for cancer diagnosis in clinical and hospital settings. In this study, we introduce ADaFGrad, a method designed to enhance lifelong learning for whole-slide image (WSI) analysis. First, we leverage pathology vision-language foundation models to develop a framework that enables interaction between a slide's regional tissue features and a predefined text-based prototype buffer. Additionally, we propose a gradient-distillation mechanism that mimics the gradient of a logit with respect to the classification-head parameters across past and current iterations in a continual-learning setting. We construct a sequence of six TCGA datasets for training and evaluation. Experimental results show that ADaFGrad outperforms both state-of-the-art WSI-specific and conventional continual-learning methods after only a few training epochs, exceeding them by up to +5.068% in the class-incremental learning scenario while exhibiting the least forgetting (i.e., retaining the most knowledge from previous tasks). Moreover, ADaFGrad surpasses its baseline by as much as +40.084% in accuracy, further demonstrating the effectiveness of the proposed modules.
EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms. However, machines are often trained without explicit supervision on norm understanding and reasoning, particularly when norms are physically- or socially-grounded. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present \dataset{} $\|\epsilon\|$, consisting of 1,853 challenging, multi-stage MCQ questions based on ego-centric videos of human interactions, evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 54\% on \dataset{} (versus a human bench of 92\%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation (RAG) method, it is possible to use \dataset{} to enhance normative reasoning in VLMs.
comment: V2, with updated VLM stats
CBM-RAG: Demonstrating Enhanced Interpretability in Radiology Report Generation with Multi-Agent RAG and Concept Bottleneck Models
Advancements in generative Artificial Intelligence (AI) hold great promise for automating radiology workflows, yet challenges in interpretability and reliability hinder clinical adoption. This paper presents an automated radiology report generation framework that combines Concept Bottleneck Models (CBMs) with a Multi-Agent Retrieval-Augmented Generation (RAG) system to bridge AI performance with clinical explainability. CBMs map chest X-ray features to human-understandable clinical concepts, enabling transparent disease classification. Meanwhile, the RAG system integrates multi-agent collaboration and external knowledge to produce contextually rich, evidence-based reports. Our demonstration showcases the system's ability to deliver interpretable predictions, mitigate hallucinations, and generate high-quality, tailored reports with an interactive interface addressing accuracy, trust, and usability challenges. This framework provides a pathway to improving diagnostic consistency and empowering radiologists with actionable insights.
comment: Accepted in the 17th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2025)
ParallelEdits: Efficient Multi-object Image Editing
Text-driven image synthesis has made significant advancements with the development of diffusion models, transforming how visual content is generated from text prompts. Despite these advances, text-driven image editing, a key area in computer graphics, faces unique challenges. A major challenge is making simultaneous edits across multiple objects or attributes. Applying these methods sequentially for multi-attribute edits increases computational demands and efficiency losses. In this paper, we address these challenges with significant contributions. Our main contribution is the development of ParallelEdits, a method that seamlessly manages simultaneous edits across multiple attributes. In contrast to previous approaches, ParallelEdits not only preserves the quality of single attribute edits but also significantly improves the performance of multitasking edits. This is achieved through innovative attention distribution mechanism and multi-branch design that operates across several processing heads. Additionally, we introduce the PIE-Bench++ dataset, an expansion of the original PIE-Bench dataset, to better support evaluating image-editing tasks involving multiple objects and attributes simultaneously. This dataset is a benchmark for evaluating text-driven image editing methods in multifaceted scenarios.
LiDAR-EDIT: LiDAR Data Generation by Editing the Object Layouts in Real-World Scenes ICRA
We present LiDAR-EDIT, a novel paradigm for generating synthetic LiDAR data for autonomous driving. Our framework edits real-world LiDAR scans by introducing new object layouts while preserving the realism of the background environment. Compared to end-to-end frameworks that generate LiDAR point clouds from scratch, LiDAR-EDIT offers users full control over the object layout, including the number, type, and pose of objects, while keeping most of the original real-world background. Our method also provides object labels for the generated data. Compared to novel view synthesis techniques, our framework allows for the creation of counterfactual scenarios with object layouts significantly different from the original real-world scene. LiDAR-EDIT uses spherical voxelization to enforce correct LiDAR projective geometry in the generated point clouds by construction. During object removal and insertion, generative models are employed to fill the unseen background and object parts that were occluded in the original real LiDAR scans. Experimental results demonstrate that our framework produces realistic LiDAR scans with practical value for downstream tasks.
comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA). 6 pages, 7 figures
SonarSplat: Novel View Synthesis of Imaging Sonar via Gaussian Splatting
In this paper, we present SonarSplat, a novel Gaussian splatting framework for imaging sonar that demonstrates realistic novel view synthesis and models acoustic streaking phenomena. Our method represents the scene as a set of 3D Gaussians with acoustic reflectance and saturation properties. We develop a novel method to efficiently rasterize Gaussians to produce a range/azimuth image that is faithful to the acoustic image formation model of imaging sonar. In particular, we develop a novel approach to model azimuth streaking in a Gaussian splatting framework. We evaluate SonarSplat using real-world datasets of sonar images collected from an underwater robotic platform in a controlled test tank and in a real-world river environment. Compared to the state-of-the-art, SonarSplat offers improved image synthesis capabilities (+3.2 dB PSNR) and more accurate 3D reconstruction (52% lower Chamfer Distance). We also demonstrate that SonarSplat can be leveraged for azimuth streak removal.
Exploring Challenges in Deep Learning of Single-Station Ground Motion Records
Contemporary deep learning models have demonstrated promising results across various applications within seismology and earthquake engineering. These models rely primarily on utilizing ground motion records for tasks such as earthquake event classification, localization, earthquake early warning systems, and structural health monitoring. However, the extent to which these models truly extract meaningful patterns from these complex time-series signals remains underexplored. In this study, our objective is to evaluate the degree to which auxiliary information, such as seismic phase arrival times or seismic station distribution within a network, dominates the process of deep learning from ground motion records, potentially hindering its effectiveness. Our experimental results reveal a strong dependence on the highly correlated Primary (P) and Secondary (S) phase arrival times. These findings expose a critical gap in the current research landscape, highlighting the lack of robust methodologies for deep learning from single-station ground motion recordings that do not rely on auxiliary inputs.
comment: 9 Pages, 12 Figures, 5 Tables
ID-Booth: Identity-consistent Face Generation with Diffusion Models
Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025, 14 pages
The Double-Ellipsoid Geometry of CLIP ICML 2025
Contrastive Language-Image Pre-Training (CLIP) is highly instrumental in machine learning applications within a large variety of domains. We investigate the geometry of this embedding, which is still not well understood. We examine the raw unnormalized embedding and show that text and image reside on linearly separable ellipsoid shells, not centered at the origin. We explain the benefits of having this structure, allowing to better embed instances according to their uncertainty during contrastive training. Frequent concepts in the dataset yield more false negatives, inducing greater uncertainty. A new notion of conformity is introduced, which measures the average cosine similarity of an instance to any other instance within a representative data set. We show this measure can be accurately estimated by simply computing the cosine similarity to the modality mean vector. Furthermore, we find that CLIP's modality gap optimizes the matching of the conformity distributions of image and text.
comment: Accepted to ICML 2025. This version matches the camera-ready version
A novel approach to navigate the taxonomic hierarchy to address the Open-World Scenarios in Medicinal Plant Classification
In this article, we propose a novel approach for plant hierarchical taxonomy classification by posing the problem as an open class problem. It is observed that existing methods for medicinal plant classification often fail to perform hierarchical classification and accurately identifying unknown species, limiting their effectiveness in comprehensive plant taxonomy classification. Thus we address the problem of unknown species classification by assigning it best hierarchical labels. We propose a novel method, which integrates DenseNet121, Multi-Scale Self-Attention (MSSA) and cascaded classifiers for hierarchical classification. The approach systematically categorizes medicinal plants at multiple taxonomic levels, from phylum to species, ensuring detailed and precise classification. Using multi scale space attention, the model captures both local and global contextual information from the images, improving the distinction between similar species and the identification of new ones. It uses attention scores to focus on important features across multiple scales. The proposed method provides a solution for hierarchical classification, showcasing superior performance in identifying both known and unknown species. The model was tested on two state-of-art datasets with and without background artifacts and so that it can be deployed to tackle real word application. We used unknown species for testing our model. For unknown species the model achieved an average accuracy of 83.36%, 78.30%, 60.34% and 43.32% for predicting correct phylum, class, order and family respectively. Our proposed model size is almost four times less than the existing state of the art methods making it easily deploy able in real world application.
comment: Major revision required
Covariant spatio-temporal receptive fields for spiking neural networks
Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations. Here, we present a principled computational model for neuromorphic systems in terms of spatio-temporal receptive fields, based on affine Gaussian kernels over space and leaky-integrator and leaky integrate-and-fire models over time. Our theory is provably covariant to spatial affine and temporal scaling transformations, and with close similarities to the visual processing in mammalian brains. We use these spatio-temporal receptive fields as a prior in an event-based vision task, and show that this improves the training of spiking networks, which otherwise is known as problematic for event-based vision. This work combines efforts within scale-space theory and computational neuroscience to identify theoretically well-founded ways to process spatio-temporal signals in neuromorphic systems. Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.
comment: Code available at https://github.com/jegp/nrf
Face Clustering via Early Stopping and Edge Recall
Large-scale face clustering has achieved significant progress, with many efforts dedicated to learning to cluster large-scale faces with supervised-learning. However, complex model design and tedious clustering processes are typical in existing methods. Such limitations result in infeasible clustering in real-world applications. Reasonable and efficient model design and training need to be taken into account. Besides, developing unsupervised face clustering algorithms is crucial, which are more realistic in real-world applications. In this paper, we propose a novel unsupervised face clustering algorithm FC-ES and a novel supervised face clustering algorithm FC-ESER to address these issues. An efficient and effective neighbor-based edge probability and a novel early stopping strategy are proposed in FC-ES, guaranteeing the accuracy and recall of large-scale face clustering simultaneously. Furthermore, to take advantage of supervised learning, a novel edge recall strategy is proposed in FC-ESER to further recall the edge connections that are not connected in FC-ES. Extensive experiments on multiple benchmarks for face, person, and vehicle clustering show that our proposed FC-ES and FC-ESER significantly outperform previous state-of-the-art methods. Our code will be available at https://github.com/jumptoliujj/FC-ESER.
comment: Insufficient experiments, we hope to withdraw the paper, supplement and improve it again
Rethinking the Bias of Foundation Model under Long-tailed Distribution ICML 2025
Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. However, most existing methods primarily focus on leveraging knowledge from these models, overlooking the inherent biases introduced by the imbalanced training data they rely on. In this paper, we examine how such imbalances from pre-training affect long-tailed downstream tasks. Specifically, we find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance. During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies. Moreover, we find that parameter imbalance cannot be effectively addressed by current re-balancing techniques, such as adjusting the logits, during training, unlike data imbalance. To tackle both imbalances simultaneously, we build our method on causal learning and view the incomplete semantic factor as the confounder, which brings spurious correlations between input samples and labels. To resolve the negative effects of this, we propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels, rather than merely fitting the correlations in the data. Notably, we achieve an average performance increase of about $1.67\%$ on each dataset.
comment: Published as a conference paper in ICML 2025
Pixels2Points: Fusing 2D and 3D Features for Facial Skin Segmentation
Face registration deforms a template mesh to closely fit a 3D face scan, the quality of which commonly degrades in non-skin regions (e.g., hair, beard, accessories), because the optimized template-to-scan distance pulls the template mesh towards the noisy scan surface. Improving registration quality requires a clean separation of skin and non-skin regions on the scan mesh. Existing image-based (2D) or scan-based (3D) segmentation methods however perform poorly. Image-based segmentation outputs multi-view inconsistent masks, and they cannot account for scan inaccuracies or scan-image misalignment, while scan-based methods suffer from lower spatial resolution compared to images. In this work, we introduce a novel method that accurately separates skin from non-skin geometry on 3D human head scans. For this, our method extracts features from multi-view images using a frozen image foundation model and aggregates these features in 3D. These lifted 2D features are then fused with 3D geometric features extracted from the scan mesh, to then predict a segmentation mask directly on the scan mesh. We show that our segmentations improve the registration accuracy over pure 2D or 3D segmentation methods by 8.89% and 14.3%, respectively. Although trained only on synthetic data, our model generalizes well to real data.
comment: 4 pages, 4 figures, to be published in Eurographics 2025 as a short paper
Underwater Image Enhancement via Dehazing and Color Restoration
Underwater visual imaging is crucial for marine engineering, but it suffers from low contrast, blurriness, and color degradation, which hinders downstream analysis. Existing underwater image enhancement methods often treat the haze and color cast as a unified degradation process, neglecting their inherent independence while overlooking their synergistic relationship. To overcome this limitation, we propose a Vision Transformer (ViT)-based network (referred to as WaterFormer) to improve underwater image quality. WaterFormer contains three major components: a dehazing block (DehazeFormer Block) to capture the self-correlated haze features and extract deep-level features, a Color Restoration Block (CRB) to capture self-correlated color cast features, and a Channel Fusion Block (CFB) that dynamically integrates these decoupled features to achieve comprehensive enhancement. To ensure authenticity, a soft reconstruction layer based on the underwater imaging physics model is included. Further, a Chromatic Consistency Loss and Sobel Color Loss are designed to respectively preserve color fidelity and enhance structural details during network training. Comprehensive experimental results demonstrate that WaterFormer outperforms other state-of-the-art methods in enhancing underwater images.
ColorFlow: Retrieval-Augmented Image Sequence Colorization
Automatic black-and-white image sequence colorization while preserving character and object identity (ID) is a complex task with significant market demand, such as in cartoon or comic series colorization. Despite advancements in visual colorization using large-scale generative models like diffusion models, challenges with controllability and identity consistency persist, making current solutions unsuitable for industrial application.To address this, we propose ColorFlow, a three-stage diffusion-based framework tailored for image sequence colorization in industrial applications. Unlike existing methods that require per-ID finetuning or explicit ID embedding extraction, we propose a novel robust and generalizable Retrieval Augmented Colorization pipeline for colorizing images with relevant color references. Our pipeline also features a dual-branch design: one branch for color identity extraction and the other for colorization, leveraging the strengths of diffusion models. We utilize the self-attention mechanism in diffusion models for strong in-context learning and color identity matching. To evaluate our model, we introduce ColorFlow-Bench, a comprehensive benchmark for reference-based colorization. Results show that ColorFlow outperforms existing models across multiple metrics, setting a new standard in sequential image colorization and potentially benefiting the art industry. We release our codes and models on our project page: https://zhuang2002.github.io/ColorFlow/.
comment: Project Page: https://zhuang2002.github.io/ColorFlow/
Video Prediction Policy: A Generalist Robot Policy with Predictive Visual Representations ICML 2025
Visual representations play a crucial role in developing generalist robotic policies. Previous vision encoders, typically pre-trained with single-image reconstruction or two-image contrastive learning, tend to capture static information, often neglecting the dynamic aspects vital for embodied tasks. Recently, video diffusion models (VDMs) demonstrate the ability to predict future frames and showcase a strong understanding of physical world. We hypothesize that VDMs inherently produce visual representations that encompass both current static information and predicted future dynamics, thereby providing valuable guidance for robot action learning. Based on this hypothesis, we propose the Video Prediction Policy (VPP), which learns implicit inverse dynamics model conditioned on predicted future representations inside VDMs. To predict more precise future, we fine-tune pre-trained video foundation model on robot datasets along with internet human manipulation data. In experiments, VPP achieves a 18.6\% relative improvement on the Calvin ABC-D generalization benchmark compared to the previous state-of-the-art, and demonstrates a 31.6\% increase in success rates for complex real-world dexterous manipulation tasks. Project page at https://video-prediction-policy.github.io
comment: ICML 2025 Spotlight Paper. The first two authors contribute equally
Adaptive Additive Parameter Updates of Vision Transformers for Few-Shot Continual Learning
Integrating new class information without losing previously acquired knowledge remains a central challenge in artificial intelligence, often referred to as catastrophic forgetting. Few-shot class incremental learning (FSCIL) addresses this by first training a model on a robust dataset of base classes and then incrementally adapting it in successive sessions using only a few labeled examples per novel class. However, this approach is prone to overfitting on the limited new data, which can compromise overall performance and exacerbate forgetting. In this work, we propose a simple yet effective novel FSCIL framework that leverages a frozen Vision Transformer (ViT) backbone augmented with parameter-efficient additive updates. Our approach freezes the pre-trained ViT parameters and selectively injects trainable weights into the self-attention modules via an additive update mechanism. This design updates only a small subset of parameters to accommodate new classes without sacrificing the representations learned during the base session. By fine-tuning a limited number of parameters, our method preserves the generalizable features in the frozen ViT while reducing the risk of overfitting. Furthermore, as most parameters remain fixed, the model avoids overwriting previously learned knowledge when small novel data batches are introduced. Extensive experiments on benchmark datasets demonstrate that our approach yields state-of-the-art performance compared to baseline FSCIL methods.
Multimedia
TeMTG: Text-Enhanced Multi-Hop Temporal Graph Modeling for Audio-Visual Video Parsing ICMR 2025
Audio-Visual Video Parsing (AVVP) task aims to parse the event categories and occurrence times from audio and visual modalities in a given video. Existing methods usually focus on implicitly modeling audio and visual features through weak labels, without mining semantic relationships for different modalities and explicit modeling of event temporal dependencies. This makes it difficult for the model to accurately parse event information for each segment under weak supervision, especially when high similarity between segmental modal features leads to ambiguous event boundaries. Hence, we propose a multimodal optimization framework, TeMTG, that combines text enhancement and multi-hop temporal graph modeling. Specifically, we leverage pre-trained multimodal models to generate modality-specific text embeddings, and fuse them with audio-visual features to enhance the semantic representation of these features. In addition, we introduce a multi-hop temporal graph neural network, which explicitly models the local temporal relationships between segments, capturing the temporal continuity of both short-term and long-range events. Experimental results demonstrate that our proposed method achieves state-of-the-art (SOTA) performance in multiple key indicators in the LLP dataset.
comment: Accepted by ICMR 2025
Computation and Language
Demystifying optimized prompts in language models
Modern language models (LMs) are not robust to out-of-distribution inputs. Machine generated (``optimized'') prompts can be used to modulate LM outputs and induce specific behaviors while appearing completely uninterpretable. In this work, we investigate the composition of optimized prompts, as well as the mechanisms by which LMs parse and build predictions from optimized prompts. We find that optimized prompts primarily consist of punctuation and noun tokens which are more rare in the training data. Internally, optimized prompts are clearly distinguishable from natural language counterparts based on sparse subsets of the model's activations. Across various families of instruction-tuned models, optimized prompts follow a similar path in how their representations form through the network.
Parameter-Efficient Transformer Embeddings
Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings.
comment: 7 pages, 2 tables. Code available at https://github.com/HMUNACHI/pete
Personalisation or Prejudice? Addressing Geographic Bias in Hate Speech Detection using Debias Tuning in Large Language Models
Commercial Large Language Models (LLMs) have recently incorporated memory features to deliver personalised responses. This memory retains details such as user demographics and individual characteristics, allowing LLMs to adjust their behaviour based on personal information. However, the impact of integrating personalised information into the context has not been thoroughly assessed, leading to questions about its influence on LLM behaviour. Personalisation can be challenging, particularly with sensitive topics. In this paper, we examine various state-of-the-art LLMs to understand their behaviour in different personalisation scenarios, specifically focusing on hate speech. We prompt the models to assume country-specific personas and use different languages for hate speech detection. Our findings reveal that context personalisation significantly influences LLMs' responses in this sensitive area. To mitigate these unwanted biases, we fine-tune the LLMs by penalising inconsistent hate speech classifications made with and without country or language-specific context. The refined models demonstrate improved performance in both personalised contexts and when no context is provided.
SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation
Evaluating text summarization quality remains a critical challenge in Natural Language Processing. Current approaches face a trade-off between performance and interpretability. We present SEval-Ex, a framework that bridges this gap by decomposing summarization evaluation into atomic statements, enabling both high performance and explainability. SEval-Ex employs a two-stage pipeline: first extracting atomic statements from text source and summary using LLM, then a matching between generated statements. Unlike existing approaches that provide only summary-level scores, our method generates detailed evidence for its decisions through statement-level alignments. Experiments on the SummEval benchmark demonstrate that SEval-Ex achieves state-of-the-art performance with 0.580 correlation on consistency with human consistency judgments, surpassing GPT-4 based evaluators (0.521) while maintaining interpretability. Finally, our framework shows robustness against hallucination.
Interpretable Emergent Language Using Inter-Agent Transformers
This paper explores the emergence of language in multi-agent reinforcement learning (MARL) using transformers. Existing methods such as RIAL, DIAL, and CommNet enable agent communication but lack interpretability. We propose Differentiable Inter-Agent Transformers (DIAT), which leverage self-attention to learn symbolic, human-understandable communication protocols. Through experiments, DIAT demonstrates the ability to encode observations into interpretable vocabularies and meaningful embeddings, effectively solving cooperative tasks. These results highlight the potential of DIAT for interpretable communication in complex multi-agent environments.
DNAZEN: Enhanced Gene Sequence Representations via Mixed Granularities of Coding Units
Genome modeling conventionally treats gene sequence as a language, reflecting its structured motifs and long-range dependencies analogous to linguistic units and organization principles such as words and syntax. Recent studies utilize advanced neural networks, ranging from convolutional and recurrent models to Transformer-based models, to capture contextual information of gene sequence, with the primary goal of obtaining effective gene sequence representations and thus enhance the models' understanding of various running gene samples. However, these approaches often directly apply language modeling techniques to gene sequences and do not fully consider the intrinsic information organization in them, where they do not consider how units at different granularities contribute to representation. In this paper, we propose DNAZEN, an enhanced genomic representation framework designed to learn from various granularities in gene sequences, including small polymers and G-grams that are combinations of several contiguous polymers. Specifically, we extract the G-grams from large-scale genomic corpora through an unsupervised approach to construct the G-gram vocabulary, which is used to provide G-grams in the learning process of DNA sequences through dynamically matching from running gene samples. A Transformer-based G-gram encoder is also proposed and the matched G-grams are fed into it to compute their representations and integrated into the encoder for basic unit (E4BU), which is responsible for encoding small units and maintaining the learning and inference process. To further enhance the learning process, we propose whole G-gram masking to train DNAZEN, where the model largely favors the selection of each entire G-gram to mask rather than an ordinary masking mechanism performed on basic units. Experiments on benchmark datasets demonstrate the effectiveness of DNAZEN on various downstream tasks.
comment: 19 pages, 3 figures
Exploring new Approaches for Information Retrieval through Natural Language Processing
This review paper explores recent advancements and emerging approaches in Information Retrieval (IR) applied to Natural Language Processing (NLP). We examine traditional IR models such as Boolean, vector space, probabilistic, and inference network models, and highlight modern techniques including deep learning, reinforcement learning, and pretrained transformer models like BERT. We discuss key tools and libraries - Lucene, Anserini, and Pyserini - for efficient text indexing and search. A comparative analysis of sparse, dense, and hybrid retrieval methods is presented, along with applications in web search engines, cross-language IR, argument mining, private information retrieval, and hate speech detection. Finally, we identify open challenges and future research directions to enhance retrieval accuracy, scalability, and ethical considerations.
comment: 12 pages, 4 figures, comprehensive literature review covering six key IR-NLP papers, plus keywords and full reference list
Measuring Hong Kong Massive Multi-Task Language Understanding
Multilingual understanding is crucial for the cross-cultural applicability of Large Language Models (LLMs). However, evaluation benchmarks designed for Hong Kong's unique linguistic landscape, which combines Traditional Chinese script with Cantonese as the spoken form and its cultural context, remain underdeveloped. To address this gap, we introduce HKMMLU, a multi-task language understanding benchmark that evaluates Hong Kong's linguistic competence and socio-cultural knowledge. The HKMMLU includes 26,698 multi-choice questions across 66 subjects, organized into four categories: Science, Technology, Engineering, and Mathematics (STEM), Social Sciences, Humanities, and Other. To evaluate the multilingual understanding ability of LLMs, 90,550 Mandarin-Cantonese translation tasks were additionally included. We conduct comprehensive experiments on GPT-4o, Claude 3.7 Sonnet, and 18 open-source LLMs of varying sizes on HKMMLU. The results show that the best-performing model, DeepSeek-V3, struggles to achieve an accuracy of 75\%, significantly lower than that of MMLU and CMMLU. This performance gap highlights the need to improve LLMs' capabilities in Hong Kong-specific language and knowledge domains. Furthermore, we investigate how question language, model size, prompting strategies, and question and reasoning token lengths affect model performance. We anticipate that HKMMLU will significantly advance the development of LLMs in multilingual and cross-cultural contexts, thereby enabling broader and more impactful applications.
Identifying Legal Holdings with LLMs: A Systematic Study of Performance, Scale, and Memorization
As large language models (LLMs) continue to advance in capabilities, it is essential to assess how they perform on established benchmarks. In this study, we present a suite of experiments to assess the performance of modern LLMs (ranging from 3B to 90B+ parameters) on CaseHOLD, a legal benchmark dataset for identifying case holdings. Our experiments demonstrate ``scaling effects'' - performance on this task improves with model size, with more capable models like GPT4o and AmazonNovaPro achieving macro F1 scores of 0.744 and 0.720 respectively. These scores are competitive with the best published results on this dataset, and do not require any technically sophisticated model training, fine-tuning or few-shot prompting. To ensure that these strong results are not due to memorization of judicial opinions contained in the training data, we develop and utilize a novel citation anonymization test that preserves semantic meaning while ensuring case names and citations are fictitious. Models maintain strong performance under these conditions (macro F1 of 0.728), suggesting the performance is not due to rote memorization. These findings demonstrate both the promise and current limitations of LLMs for legal tasks with important implications for the development and measurement of automated legal analytics and legal benchmarks.
comment: Presented as a short paper at International Conference on Artificial Intelligence and Law 2025 (Chicago, IL)
A New HOPE: Domain-agnostic Automatic Evaluation of Text Chunking SIGIR25
Document chunking fundamentally impacts Retrieval-Augmented Generation (RAG) by determining how source materials are segmented before indexing. Despite evidence that Large Language Models (LLMs) are sensitive to the layout and structure of retrieved data, there is currently no framework to analyze the impact of different chunking methods. In this paper, we introduce a novel methodology that defines essential characteristics of the chunking process at three levels: intrinsic passage properties, extrinsic passage properties, and passages-document coherence. We propose HOPE (Holistic Passage Evaluation), a domain-agnostic, automatic evaluation metric that quantifies and aggregates these characteristics. Our empirical evaluations across seven domains demonstrate that the HOPE metric correlates significantly (p > 0.13) with various RAG performance indicators, revealing contrasts between the importance of extrinsic and intrinsic properties of passages. Semantic independence between passages proves essential for system performance with a performance gain of up to 56.2% in factual correctness and 21.1% in answer correctness. On the contrary, traditional assumptions about maintaining concept unity within passages show minimal impact. These findings provide actionable insights for optimizing chunking strategies, thus improving RAG system design to produce more factually correct responses.
comment: 10 pages, To be published in SIGIR25
Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
comment: Submitted to the 7th Workshop on Automated Semantic Analysis of Information in Legal Text. 8 pages, 5 Figures
Think on your Feet: Adaptive Thinking via Reinforcement Learning for Social Agents
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current approaches. While existing methods either lack this kind of reasoning capability or enforce uniform long chain-of-thought reasoning across all scenarios, resulting in excessive token usage and inappropriate social simulation. In this paper, we propose $\textbf{A}$daptive $\textbf{M}$ode $\textbf{L}$earning ($\textbf{AML}$) that strategically selects from four thinking modes (intuitive reaction $\rightarrow$ deep contemplation) based on real-time context. Our framework's core innovation, the $\textbf{A}$daptive $\textbf{M}$ode $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{AMPO}$) algorithm, introduces three key advancements over existing methods: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence tasks confirm that AML achieves 15.6% higher task performance than state-of-the-art methods. Notably, our method outperforms GRPO by 7.0% with 32.8% shorter reasoning chains. These results demonstrate that context-sensitive thinking mode selection, as implemented in AMPO, enables more human-like adaptive reasoning than GRPO's fixed-depth approach
comment: The code and data are available, see https://github.com/MozerWang/AMPO. arXiv admin note: text overlap with arXiv:2502.15538 by other authors
QiMeng-Xpiler: Transcompiling Tensor Programs for Deep Learning Systems with a Neural-Symbolic Approach OSDI 2025
Heterogeneous deep learning systems (DLS) such as GPUs and ASICs have been widely deployed in industrial data centers, which requires to develop multiple low-level tensor programs for different platforms. An attractive solution to relieve the programming burden is to transcompile the legacy code of one platform to others. However, current transcompilation techniques struggle with either tremendous manual efforts or functional incorrectness, rendering "Write Once, Run Anywhere" of tensor programs an open question. We propose a novel transcompiler, i.e., QiMeng-Xpiler, for automatically translating tensor programs across DLS via both large language models (LLMs) and symbolic program synthesis, i.e., neural-symbolic synthesis. The key insight is leveraging the powerful code generation ability of LLM to make costly search-based symbolic synthesis computationally tractable. Concretely, we propose multiple LLM-assisted compilation passes via pre-defined meta-prompts for program transformation. During each program transformation, efficient symbolic program synthesis is employed to repair incorrect code snippets with a limited scale. To attain high performance, we propose a hierarchical auto-tuning approach to systematically explore both the parameters and sequences of transformation passes. Experiments on 4 DLS with distinct programming interfaces, i.e., Intel DL Boost with VNNI, NVIDIA GPU with CUDA, AMD MI with HIP, and Cambricon MLU with BANG, demonstrate that QiMeng-Xpiler correctly translates different tensor programs at the accuracy of 95% on average, and the performance of translated programs achieves up to 2.0x over vendor-provided manually-optimized libraries. As a result, the programming productivity of DLS is improved by up to 96.0x via transcompiling legacy tensor programs.
comment: Accepted to OSDI 2025
Exploring the Potential of Offline RL for Reasoning in LLMs: A Preliminary Study
Despite significant advances in long-context reasoning by large language models (LLMs), primarily through Online Reinforcement Learning (RL) methods, these approaches incur substantial computational costs and complexity. In contrast, simpler and more economical Offline RL methods remain underexplored. To address this gap, we investigate the effectiveness of Offline RL methods, specifically Direct Preference Optimization (DPO) and its length-desensitized variant LD-DPO, in enhancing the reasoning capabilities of LLMs. Extensive experiments across multiple reasoning benchmarks demonstrate that these simpler Offline RL methods substantially improve model performance, achieving an average enhancement of 3.3\%, with a particularly notable increase of 10.1\% on the challenging Arena-Hard benchmark. Furthermore, we analyze DPO's sensitivity to output length, emphasizing that increasing reasoning length should align with semantic richness, as indiscriminate lengthening may adversely affect model performance. We provide comprehensive descriptions of our data processing and training methodologies, offering empirical evidence and practical insights for developing more cost-effective Offline RL approaches.
Attention Mechanisms Perspective: Exploring LLM Processing of Graph-Structured Data ICML2025
Attention mechanisms are critical to the success of large language models (LLMs), driving significant advancements in multiple fields. However, for graph-structured data, which requires emphasis on topological connections, they fall short compared to message-passing mechanisms on fixed links, such as those employed by Graph Neural Networks (GNNs). This raises a question: ``Does attention fail for graphs in natural language settings?'' Motivated by these observations, we embarked on an empirical study from the perspective of attention mechanisms to explore how LLMs process graph-structured data. The goal is to gain deeper insights into the attention behavior of LLMs over graph structures. We uncovered unique phenomena regarding how LLMs apply attention to graph-structured data and analyzed these findings to improve the modeling of such data by LLMs. The primary findings of our research are: 1) While LLMs can recognize graph data and capture text-node interactions, they struggle to model inter-node relationships within graph structures due to inherent architectural constraints. 2) The attention distribution of LLMs across graph nodes does not align with ideal structural patterns, indicating a failure to adapt to graph topology nuances. 3) Neither fully connected attention nor fixed connectivity is optimal; each has specific limitations in its application scenarios. Instead, intermediate-state attention windows improve LLM training performance and seamlessly transition to fully connected windows during inference. Source code: \href{https://github.com/millioniron/LLM_exploration}{LLM4Exploration}
comment: ICML2025 Accept
LLM-OptiRA: LLM-Driven Optimization of Resource Allocation for Non-Convex Problems in Wireless Communications
Solving non-convex resource allocation problems poses significant challenges in wireless communication systems, often beyond the capability of traditional optimization techniques. To address this issue, we propose LLM-OptiRA, the first framework that leverages large language models (LLMs) to automatically detect and transform non-convex components into solvable forms, enabling fully automated resolution of non-convex resource allocation problems in wireless communication systems. LLM-OptiRA not only simplifies problem-solving by reducing reliance on expert knowledge, but also integrates error correction and feasibility validation mechanisms to ensure robustness. Experimental results show that LLM-OptiRA achieves an execution rate of 96% and a success rate of 80% on GPT-4, significantly outperforming baseline approaches in complex optimization tasks across diverse scenarios.
comment: 6 pages,4 figures
LecEval: An Automated Metric for Multimodal Knowledge Acquisition in Multimedia Learning
Evaluating the quality of slide-based multimedia instruction is challenging. Existing methods like manual assessment, reference-based metrics, and large language model evaluators face limitations in scalability, context capture, or bias. In this paper, we introduce LecEval, an automated metric grounded in Mayer's Cognitive Theory of Multimedia Learning, to evaluate multimodal knowledge acquisition in slide-based learning. LecEval assesses effectiveness using four rubrics: Content Relevance (CR), Expressive Clarity (EC), Logical Structure (LS), and Audience Engagement (AE). We curate a large-scale dataset of over 2,000 slides from more than 50 online course videos, annotated with fine-grained human ratings across these rubrics. A model trained on this dataset demonstrates superior accuracy and adaptability compared to existing metrics, bridging the gap between automated and human assessments. We release our dataset and toolkits at https://github.com/JoylimJY/LecEval.
comment: 6 pages, 3 figures
What do Language Model Probabilities Represent? From Distribution Estimation to Response Prediction
The notion of language modeling has gradually shifted in recent years from a distribution over finite-length strings to general-purpose prediction models for textual inputs and outputs, following appropriate alignment phases. This paper analyzes the distinction between distribution estimation and response prediction in the context of LLMs, and their often conflicting goals. We examine the training phases of LLMs, which include pretraining, in-context learning, and preference tuning, and also the common use cases for their output probabilities, which include completion probabilities and explicit probabilities as output. We argue that the different settings lead to three distinct intended output distributions. We demonstrate that NLP works often assume that these distributions should be similar, which leads to misinterpretations of their experimental findings. Our work sets firmer formal foundations for the interpretation of LLMs, which will inform ongoing work on the interpretation and use of LLMs' induced distributions.
An overview of artificial intelligence in computer-assisted language learning
Computer-assisted language learning -- CALL -- is an established research field. We review how artificial intelligence can be applied to support language learning and teaching. The need for intelligent agents that assist language learners and teachers is increasing: the human teacher's time is a scarce and costly resource, which does not scale with growing demand. Further factors contribute to the need for CALL: pandemics and increasing demand for distance learning, migration of large populations, the need for sustainable and affordable support for learning, etc. CALL systems are made up of many components that perform various functions, and AI is applied to many different aspects in CALL, corresponding to their own expansive research areas. Most of what we find in the research literature and in practical use are prototypes or partial implementations -- systems that perform some aspects of the overall desired functionality. Complete solutions -- most of them commercial -- are few, because they require massive resources. Recent advances in AI should result in improvements in CALL, yet there is a lack of surveys that focus on AI in the context of this research field. This paper aims to present a perspective on the AI methods that can be employed for language learning from a position of a developer of a CALL system. We also aim to connect work from different disciplines, to build bridges for interdisciplinary work.
Towards Safer Pretraining: Analyzing and Filtering Harmful Content in Webscale datasets for Responsible LLMs
Large language models (LLMs) have become integral to various real-world applications, leveraging massive, web-sourced datasets like Common Crawl, C4, and FineWeb for pretraining. While these datasets provide linguistic data essential for high-quality natural language generation, they often contain harmful content, such as hate speech, misinformation, and biased narratives. Training LLMs on such unfiltered data risks perpetuating toxic behaviors, spreading misinformation, and amplifying societal biases which can undermine trust in LLM-driven applications and raise ethical concerns about their use. This paper presents a large-scale analysis of inappropriate content across these datasets, offering a comprehensive taxonomy that categorizes harmful webpages into Topical and Toxic based on their intent. We also introduce a prompt evaluation dataset, a high-accuracy Topical and Toxic Prompt (TTP), and a transformer-based model (HarmFormer) for content filtering. Additionally, we create a new multi-harm open-ended toxicity benchmark (HAVOC) and provide crucial insights into how models respond to adversarial toxic inputs. Upon publishing, we will also opensource our model signal on the entire C4 dataset. Our work offers insights into ensuring safer LLM pretraining and serves as a resource for Responsible AI (RAI) compliance.
LLM-based Text Simplification and its Effect on User Comprehension and Cognitive Load
Information on the web, such as scientific publications and Wikipedia, often surpasses users' reading level. To help address this, we used a self-refinement approach to develop a LLM capability for minimally lossy text simplification. To validate our approach, we conducted a randomized study involving 4563 participants and 31 texts spanning 6 broad subject areas: PubMed (biomedical scientific articles), biology, law, finance, literature/philosophy, and aerospace/computer science. Participants were randomized to viewing original or simplified texts in a subject area, and answered multiple-choice questions (MCQs) that tested their comprehension of the text. The participants were also asked to provide qualitative feedback such as task difficulty. Our results indicate that participants who read the simplified text answered more MCQs correctly than their counterparts who read the original text (3.9% absolute increase, p<0.05). This gain was most striking with PubMed (14.6%), while more moderate gains were observed for finance (5.5%), aerospace/computer science (3.8%) domains, and legal (3.5%). Notably, the results were robust to whether participants could refer back to the text while answering MCQs. The absolute accuracy decreased by up to ~9% for both original and simplified setups where participants could not refer back to the text, but the ~4% overall improvement persisted. Finally, participants' self-reported perceived ease based on a simplified NASA Task Load Index was greater for those who read the simplified text (absolute change on a 5-point scale 0.33, p<0.05). This randomized study, involving an order of magnitude more participants than prior works, demonstrates the potential of LLMs to make complex information easier to understand. Our work aims to enable a broader audience to better learn and make use of expert knowledge available on the web, improving information accessibility.
Analyzing Cognitive Differences Among Large Language Models through the Lens of Social Worldview
Large Language Models (LLMs) have become integral to daily life, widely adopted in communication, decision-making, and information retrieval, raising critical questions about how these systems implicitly form and express socio-cognitive attitudes or "worldviews". While existing research extensively addresses demographic and ethical biases, broader dimensions-such as attitudes toward authority, equality, autonomy, and fate-remain under-explored. In this paper, we introduce the Social Worldview Taxonomy (SWT), a structured framework grounded in Cultural Theory, operationalizing four canonical worldviews (Hierarchy, Egalitarianism, Individualism, Fatalism) into measurable sub-dimensions. Using SWT, we empirically identify distinct and interpretable cognitive profiles across 28 diverse LLMs. Further, inspired by Social Referencing Theory, we experimentally demonstrate that explicit social cues systematically shape these cognitive attitudes, revealing both general response patterns and nuanced model-specific variations. Our findings enhance the interpretability of LLMs by revealing implicit socio-cognitive biases and their responsiveness to social feedback, thus guiding the development of more transparent and socially responsible language technologies.
A Comprehensive Analysis for Visual Object Hallucination in Large Vision-Language Models
Large Vision-Language Models (LVLMs) demonstrate remarkable capabilities in multimodal tasks, but visual object hallucination remains a persistent issue. It refers to scenarios where models generate inaccurate visual object-related information based on the query input, potentially leading to misinformation and concerns about safety and reliability. Previous works focus on the evaluation and mitigation of visual hallucinations, but the underlying causes have not been comprehensively investigated. In this paper, we analyze each component of LLaVA-like LVLMs -- the large language model, the vision backbone, and the projector -- to identify potential sources of error and their impact. Based on our observations, we propose methods to mitigate hallucination for each problematic component. Additionally, we developed two hallucination benchmarks: QA-VisualGenome, which emphasizes attribute and relation hallucinations, and QA-FB15k, which focuses on cognition-based hallucinations.
EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms. However, machines are often trained without explicit supervision on norm understanding and reasoning, particularly when norms are physically- or socially-grounded. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present \dataset{} $\|\epsilon\|$, consisting of 1,853 challenging, multi-stage MCQ questions based on ego-centric videos of human interactions, evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 54\% on \dataset{} (versus a human bench of 92\%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation (RAG) method, it is possible to use \dataset{} to enhance normative reasoning in VLMs.
comment: V2, with updated VLM stats
Mapping Trustworthiness in Large Language Models: A Bibliometric Analysis Bridging Theory to Practice
The rapid proliferation of Large Language Models (LLMs) has raised significant trustworthiness and ethical concerns. Despite the widespread adoption of LLMs across domains, there is still no clear consensus on how to define and operationalise trustworthiness. This study aims to bridge the gap between theoretical discussion and practical implementation by analysing research trends, definitions of trustworthiness, and practical techniques. We conducted a bibliometric mapping analysis of 2,006 publications from Web of Science (2019-2025) using the Bibliometrix, and manually reviewed 68 papers. We found a shift from traditional AI ethics discussion to LLM trustworthiness frameworks. We identified 18 different definitions of trust/trustworthiness, with transparency, explainability and reliability emerging as the most common dimensions. We identified 20 strategies to enhance LLM trustworthiness, with fine-tuning and retrieval-augmented generation (RAG) being the most prominent. Most of the strategies are developer-driven and applied during the post-training phase. Several authors propose fragmented terminologies rather than unified frameworks, leading to the risks of "ethics washing," where ethical discourse is adopted without a genuine regulatory commitment. Our findings highlight: persistent gaps between theoretical taxonomies and practical implementation, the crucial role of the developer in operationalising trust, and call for standardised frameworks and stronger regulatory measures to enable trustworthy and ethical deployment of LLMs.
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs ICML
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding. It asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
comment: 40 pages, 38 figures An earlier revision of this paper was submitted to ICML. Since then, it has been updated to include new results on training dynamics (4.7) and base models (4.8)
Towards the Anonymization of the Language Modeling
Rapid advances in Natural Language Processing (NLP) have revolutionized many fields, including healthcare. However, these advances raise significant privacy concerns, especially when pre-trained models fine-tuned and specialized on sensitive data can memorize and then expose and regurgitate personal information. This paper presents a privacy-preserving language modeling approach to address the problem of language models anonymization, and thus promote their sharing. Specifically, we propose both a Masking Language Modeling (MLM) methodology to specialize a BERT-like language model, and a Causal Language Modeling (CLM) methodology to specialize a GPT-like model that avoids the model from memorizing direct and indirect identifying information present in the training data. We have comprehensively evaluated our approaches using a medical dataset and compared them against different baselines. Our results indicate that by avoiding memorizing both direct and indirect identifiers during model specialization, our masking and causal language modeling schemes offer a good tradeoff for maintaining high privacy while retaining high utility.
A Survey on Test-Time Scaling in Large Language Models: What, How, Where, and How Well?
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions. Our repository is available on https://github.com/testtimescaling/testtimescaling.github.io/
comment: v3: Expand Agentic and SFT Chapters. Build Website for better visualization
SpeechT: Findings of the First Mentorship in Speech Translation
This work presents the details and findings of the first mentorship in speech translation (SpeechT), which took place in December 2024 and January 2025. To fulfil the mentorship requirements, the participants engaged in key activities, including data preparation, modelling, and advanced research. The participants explored data augmentation techniques and compared end-to-end and cascaded speech translation systems. The projects covered various languages other than English, including Arabic, Bengali, Galician, Indonesian, Japanese, and Spanish.
comment: MT Summit 2025
UD-English-CHILDES: A Collected Resource of Gold and Silver Universal Dependencies Trees for Child Language Interactions
CHILDES is a widely used resource of transcribed child and child-directed speech. This paper introduces UD-English-CHILDES, the first officially released Universal Dependencies (UD) treebank derived from previously dependency-annotated CHILDES data with consistent and unified annotation guidelines. Our corpus harmonizes annotations from 11 children and their caregivers, totaling over 48k sentences. We validate existing gold-standard annotations under the UD v2 framework and provide an additional 1M silver-standard sentences, offering a consistent resource for computational and linguistic research.
Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
Multilingual Brain Surgeon: Large Language Models Can be Compressed Leaving No Language Behind LREC
Large Language Models (LLMs) have ushered in a new era in Natural Language Processing, but their massive size demands effective compression techniques for practicality. Although numerous model compression techniques have been investigated, they typically rely on a calibration set that overlooks the multilingual context and results in significant accuracy degradation for low-resource languages. This paper introduces Multilingual Brain Surgeon (MBS), a novel calibration data sampling method for multilingual LLMs compression. MBS overcomes the English-centric limitations of existing methods by sampling calibration data from various languages proportionally to the language distribution of the model training datasets. Our experiments, conducted on the BLOOM multilingual LLM, demonstrate that MBS improves the performance of existing English-centric compression methods, especially for low-resource languages. We also uncover the dynamics of language interaction during compression, revealing that the larger the proportion of a language in the training set and the more similar the language is to the calibration language, the better performance the language retains after compression. In conclusion, MBS presents an innovative approach to compressing multilingual LLMs, addressing the performance disparities and improving the language inclusivity of existing compression techniques.
comment: 22 pages, 8 figures, 13 tables. Accepted by LREC-COLING 2024
Dysarthria Normalization via Local Lie Group Transformations for Robust ASR
We present a geometry-driven method for normalizing dysarthric speech by modeling time, frequency, and amplitude distortions as smooth, local Lie group transformations of spectrograms. Scalar fields generate these deformations via exponential maps, and a neural network is trained - using only synthetically warped healthy speech - to infer the fields and apply an approximate inverse at test time. We introduce a spontaneous-symmetry-breaking (SSB) potential that encourages the model to discover non-trivial field configurations. On real pathological speech, the system delivers consistent gains: up to 17 percentage-point WER reduction on challenging TORGO utterances and a 16 percent drop in WER variance, with no degradation on clean CommonVoice data. Character and phoneme error rates improve in parallel, confirming linguistic relevance. Our results demonstrate that geometrically structured warping provides consistent, zero-shot robustness gains for dysarthric ASR.
comment: Preprint. 15 pages, 6 figures, 6 tables, 11 appendices. Code and data available upon request
DECIDER: A Dual-System Rule-Controllable Decoding Framework for Language Generation
Constrained decoding approaches aim to control the meaning or style of text generated by the pre-trained large language models (LLMs or also PLMs) for various tasks at inference time. However, these methods often guide plausible continuations by greedily and explicitly selecting targets. Though fulfilling the task requirements, these methods may overlook certain general and natural logics that humans would implicitly follow towards such targets. Inspired by cognitive dual-process theory, in this work, we propose a novel decoding framework DECIDER where the base LLMs are equipped with a First-Order Logic (FOL) reasoner to express and evaluate the rules, along with a decision function that merges the outputs of both systems to guide the generation. Unlike previous constrained decodings, DECIDER transforms the encouragement of target-specific words into all words that satisfy several high-level rules, enabling us to programmatically integrate our logic into LLMs. Experiments on CommonGen and PersonaChat demonstrate that DECIDER effectively follows given FOL rules to guide LLMs in a more human-like and logic-controlled manner.
comment: Accepted by IEEE TKDE 2025, 14 pages, 6 figures
ELOQ: Resources for Enhancing LLM Detection of Out-of-Scope Questions SIGIR'25
Retrieval-augmented generation (RAG) has become integral to large language models (LLMs), particularly for conversational AI systems where user questions may reference knowledge beyond the LLMs' training cutoff. However, many natural user questions lack well-defined answers, either due to limited domain knowledge or because the retrieval system returns documents that are relevant in appearance but uninformative in content. In such cases, LLMs often produce hallucinated answers without flagging them. While recent work has largely focused on questions with false premises, we study out-of-scope questions, where the retrieved document appears semantically similar to the question but lacks the necessary information to answer it. In this paper, we propose a guided hallucination-based approach ELOQ to automatically generate a diverse set of out-of-scope questions from post-cutoff documents, followed by human verification to ensure quality. We use this dataset to evaluate several LLMs on their ability to detect out-of-scope questions and generate appropriate responses. Finally, we introduce an improved detection method that enhances the reliability of LLM-based question-answering systems in handling out-of-scope questions.
comment: Accepted by SIGIR'25
Human-Computer Interaction
The GenAI Generation: Student Views of Awareness, Preparedness, and Concern
Generative AI (GenAI) is revolutionizing education and workforce development, profoundly shaping how students learn, engage, and prepare for their future. Outpacing the development of uniform policies and structures, GenAI has heralded a unique era and given rise to the GenAI Generation: a cohort of students whose education has been increasingly shaped by the opportunities and challenges GenAI presents during its widespread adoption within society. This study examines our students' perceptions of GenAI through a concise survey with optional open-ended questions, focusing on their awareness, preparedness, and concerns. Evaluation of more than 250 responses with more than 40% providing detailed qualitative feedback reveals a core dual sentiment: while most students express enthusiasm for GenAI, an even greater proportion voice a spectrum of concerns about ethics, job displacement, and the adequacy of educational structures given the highly transformative technology. These findings offer critical insights into how students view the potential and pitfalls of GenAI for future career impacts, with accompanying recommendations to guide educational institutions in navigating a future driven by GenAI.
Minimally Supervised Hierarchical Domain Intent Learning for CRS
Modeling domain intent within an evolving domain structure presents a significant challenge for domain-specific conversational recommendation systems (CRS). The conventional approach involves training an intent model using utterance-intent pairs. However, as new intents and patterns emerge, the model must be continuously updated while preserving existing relationships and maintaining efficient retrieval. This process leads to substantial growth in utterance-intent pairs, making manual labeling increasingly costly and impractical. In this paper, we propose an efficient solution for constructing a dynamic hierarchical structure that minimizes the number of user utterances required to achieve adequate domain knowledge coverage. To this end, we introduce a neural network-based attention-driven hierarchical clustering algorithm designed to optimize intent grouping using minimal data. The proposed method builds upon and integrates concepts from two existing flat clustering algorithms DEC and NAM, both of which utilize neural attention mechanisms. We apply our approach to a curated subset of 44,000 questions from the business food domain. Experimental results demonstrate that constructing the hierarchy using a stratified sampling strategy significantly reduces the number of questions needed to represent the evolving intent structure. Our findings indicate that this approach enables efficient coverage of dynamic domain knowledge without frequent retraining, thereby enhancing scalability and adaptability in domain-specific CSRs.
comment: This research is funded by the National Institution of Food and Agriculture U.S Department of Agriculture (USDA)
MaskClip: Detachable Clip-on Piezoelectric Sensing of Mask Surface Vibrations for Real-time Noise-Robust Speech Input
Masks are essential in medical settings and during infectious outbreaks but significantly impair speech communication, especially in environments with background noise. Existing solutions often require substantial computational resources or compromise hygiene and comfort. We propose a novel sensing approach that captures only the wearer's voice by detecting mask surface vibrations using a piezoelectric sensor. Our developed device, MaskClip, employs a stainless steel clip with an optimally positioned piezoelectric sensor to selectively capture speech vibrations while inherently filtering out ambient noise. Evaluation experiments demonstrated superior performance with a low Character Error Rate of 6.1\% in noisy environments compared to conventional microphones. Subjective evaluations by 102 participants also showed high satisfaction scores. This approach shows promise for applications in settings where clear voice communication must be maintained while wearing protective equipment, such as medical facilities, cleanrooms, and industrial environments.
comment: Augmented Humans 2025
Triple-identity Authentication: The Future of Secure Access
In a typical authentication process, the local system verifies the user's identity using a stored hash value generated by a cross-system hash algorithm. This article shifts the research focus from traditional password encryption to the establishment of gatekeeping mechanisms for effective interactions between a system and the outside world. Here, we propose a triple-identity authentication system to achieve this goal. Specifically, this local system opens the inner structure of its hash algorithm to all user credentials, including the login name, login password, and authentication password. When a login credential is entered, the local system hashes it and then creates a unique identifier using intermediate hash elements randomly selected from the open algorithm. Importantly, this locally generated unique identifier (rather than the stored hash produced by the open algorithm) is utilized to verify the user's combined identity, which is generated by combining the entered credential with the International Mobile Equipment Identity and the International Mobile Subscriber Identity. The verification process is implemented at each interaction point: the login name field, the login password field, and the server's authentication point. Thus, within the context of this triple-identity authentication system, we establish a robust gatekeeping mechanism for system interactions, ultimately providing a level of security that is equivalent to multi-factor authentication.
comment: 10 pages, 2 figures,
Closed-loop control of seizure activity via real-time seizure forecasting by reservoir neuromorphic computing
Closed-loop brain stimulation holds potential as personalized treatment for drug-resistant epilepsy (DRE) but still suffers from limitations that result in highly variable efficacy. First, stimulation is typically delivered upon detection of the seizure to abort rather than prevent it; second, the stimulation parameters are established by trial and error, requiring lengthy rounds of fine-tuning, which delay steady-state therapeutic efficacy. Here, we address these limitations by leveraging the potential of neuromorphic computing. We present a system capable of driving personalized free-run stimulations based on seizure forecasting, wherein each forecast triggers an electrical pulse rather than an arbitrarily predefined fixed-frequency stimulus train. We validate the system against hippocampal spheroids coupled to 3D microelectrode array as a simplified testbed, showing that it can achieve seizure reduction >97% while primarily using instantaneous stimulation frequencies within 20 Hz, well below what typically used in clinical settings. Our work demonstrates the potential of neuromorphic systems as a next-generation neuromodulation strategy for personalized DRE treatment.
Analyzing Cognitive Differences Among Large Language Models through the Lens of Social Worldview
Large Language Models (LLMs) have become integral to daily life, widely adopted in communication, decision-making, and information retrieval, raising critical questions about how these systems implicitly form and express socio-cognitive attitudes or "worldviews". While existing research extensively addresses demographic and ethical biases, broader dimensions-such as attitudes toward authority, equality, autonomy, and fate-remain under-explored. In this paper, we introduce the Social Worldview Taxonomy (SWT), a structured framework grounded in Cultural Theory, operationalizing four canonical worldviews (Hierarchy, Egalitarianism, Individualism, Fatalism) into measurable sub-dimensions. Using SWT, we empirically identify distinct and interpretable cognitive profiles across 28 diverse LLMs. Further, inspired by Social Referencing Theory, we experimentally demonstrate that explicit social cues systematically shape these cognitive attitudes, revealing both general response patterns and nuanced model-specific variations. Our findings enhance the interpretability of LLMs by revealing implicit socio-cognitive biases and their responsiveness to social feedback, thus guiding the development of more transparent and socially responsible language technologies.
HappyRouting: Learning Emotion-Aware Route Trajectories for Scalable In-The-Wild Navigation
Routes represent an integral part of triggering emotions in drivers. Navigation systems allow users to choose a navigation strategy, such as the fastest or shortest route. However, they do not consider the driver's emotional well-being. We present HappyRouting, a novel navigation-based empathic car interface guiding drivers through real-world traffic while evoking positive emotions. We propose design considerations, derive a technical architecture, and implement a routing optimization framework. Our contribution is a machine learning-based generated emotion map layer, predicting emotions along routes based on static and dynamic contextual data. We evaluated HappyRouting in a real-world driving study (N=13), finding that happy routes increase subjectively perceived valence by 11% (p=.007). Although happy routes take 1.25 times longer on average, participants perceived the happy route as shorter, presenting an emotion-enhanced alternative to today's fastest routing mechanisms. We discuss how emotion-based routing can be integrated into navigation apps, promoting emotional well-being for mobility use.
comment: 17 pages
From Pen to Prompt: How Creative Writers Integrate AI into their Writing Practice
Creative writing is a deeply human craft, yet AI systems using large language models (LLMs) offer the automation of significant parts of the writing process. So why do some creative writers choose to use AI? Through interviews and observed writing sessions with 18 creative writers who already use AI regularly in their writing practice, we find that creative writers are intentional about how they incorporate AI, making many deliberate decisions about when and how to engage AI based on their core values, such as authenticity and craftsmanship. We characterize the interplay between writers' values, their fluid relationships with AI, and specific integration strategies -- ultimately enabling writers to create new AI workflows without compromising their creative values. We provide insight for writing communities, AI developers and future researchers on the importance of supporting transparency of these emerging writing processes and rethinking what AI features can best serve writers.
Computer Vision and Pattern Recognition
Vision Mamba in Remote Sensing: A Comprehensive Survey of Techniques, Applications and Outlook
Deep learning has profoundly transformed remote sensing, yet prevailing architectures like Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) remain constrained by critical trade-offs: CNNs suffer from limited receptive fields, while ViTs grapple with quadratic computational complexity, hindering their scalability for high-resolution remote sensing data. State Space Models (SSMs), particularly the recently proposed Mamba architecture, have emerged as a paradigm-shifting solution, combining linear computational scaling with global context modeling. This survey presents a comprehensive review of Mamba-based methodologies in remote sensing, systematically analyzing about 120 Mamba-based remote sensing studies to construct a holistic taxonomy of innovations and applications. Our contributions are structured across five dimensions: (i) foundational principles of vision Mamba architectures, (ii) micro-architectural advancements such as adaptive scan strategies and hybrid SSM formulations, (iii) macro-architectural integrations, including CNN-Transformer-Mamba hybrids and frequency-domain adaptations, (iv) rigorous benchmarking against state-of-the-art methods in multiple application tasks, such as object detection, semantic segmentation, change detection, etc. and (v) critical analysis of unresolved challenges with actionable future directions. By bridging the gap between SSM theory and remote sensing practice, this survey establishes Mamba as a transformative framework for remote sensing analysis. To our knowledge, this paper is the first systematic review of Mamba architectures in remote sensing. Our work provides a structured foundation for advancing research in remote sensing systems through SSM-based methods. We curate an open-source repository (https://github.com/BaoBao0926/Awesome-Mamba-in-Remote-Sensing) to foster community-driven advancements.
CLR-Wire: Towards Continuous Latent Representations for 3D Curve Wireframe Generation SIGGRAPH 2025
We introduce CLR-Wire, a novel framework for 3D curve-based wireframe generation that integrates geometry and topology into a unified Continuous Latent Representation. Unlike conventional methods that decouple vertices, edges, and faces, CLR-Wire encodes curves as Neural Parametric Curves along with their topological connectivity into a continuous and fixed-length latent space using an attention-driven variational autoencoder (VAE). This unified approach facilitates joint learning and generation of both geometry and topology. To generate wireframes, we employ a flow matching model to progressively map Gaussian noise to these latents, which are subsequently decoded into complete 3D wireframes. Our method provides fine-grained modeling of complex shapes and irregular topologies, and supports both unconditional generation and generation conditioned on point cloud or image inputs. Experimental results demonstrate that, compared with state-of-the-art generative approaches, our method achieves substantial improvements in accuracy, novelty, and diversity, offering an efficient and comprehensive solution for CAD design, geometric reconstruction, and 3D content creation.
comment: ACM SIGGRAPH 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/CLRWire
Multimedia
PhysNav-DG: A Novel Adaptive Framework for Robust VLM-Sensor Fusion in Navigation Applications
Robust navigation in diverse environments and domains requires both accurate state estimation and transparent decision making. We present PhysNav-DG, a novel framework that integrates classical sensor fusion with the semantic power of vision-language models. Our dual-branch architecture predicts navigation actions from multi-sensor inputs while simultaneously generating detailed chain-of-thought explanations. A modified Adaptive Kalman Filter dynamically adjusts its noise parameters based on environmental context. It leverages several streams of raw sensor data along with semantic insights from models such as LLaMA 3.2 11B and BLIP-2. To evaluate our approach, we introduce the MD-NEX Benchmark, a novel multi-domain dataset that unifies indoor navigation, autonomous driving, and social navigation tasks with ground-truth actions and human-validated explanations. Extensive experiments and ablations show that PhysNav-DG improves navigation success rates by over 20% and achieves high efficiency, with explanations that are both highly grounded and clear. This work connects high-level semantic reasoning and geometric planning for safer and more trustworthy autonomous systems.
comment: 9 pages, 5 figures
Weakly-supervised Audio Temporal Forgery Localization via Progressive Audio-language Co-learning Network IJCAI2025
Audio temporal forgery localization (ATFL) aims to find the precise forgery regions of the partial spoof audio that is purposefully modified. Existing ATFL methods rely on training efficient networks using fine-grained annotations, which are obtained costly and challenging in real-world scenarios. To meet this challenge, in this paper, we propose a progressive audio-language co-learning network (LOCO) that adopts co-learning and self-supervision manners to prompt localization performance under weak supervision scenarios. Specifically, an audio-language co-learning module is first designed to capture forgery consensus features by aligning semantics from temporal and global perspectives. In this module, forgery-aware prompts are constructed by using utterance-level annotations together with learnable prompts, which can incorporate semantic priors into temporal content features dynamically. In addition, a forgery localization module is applied to produce forgery proposals based on fused forgery-class activation sequences. Finally, a progressive refinement strategy is introduced to generate pseudo frame-level labels and leverage supervised semantic contrastive learning to amplify the semantic distinction between real and fake content, thereby continuously optimizing forgery-aware features. Extensive experiments show that the proposed LOCO achieves SOTA performance on three public benchmarks.
comment: 9pages, 5figures. This paper has been accepted for IJCAI2025
A Multimodal Framework for Explainable Evaluation of Soft Skills in Educational Environments
In the rapidly evolving educational landscape, the unbiased assessment of soft skills is a significant challenge, particularly in higher education. This paper presents a fuzzy logic approach that employs a Granular Linguistic Model of Phenomena integrated with multimodal analysis to evaluate soft skills in undergraduate students. By leveraging computational perceptions, this approach enables a structured breakdown of complex soft skill expressions, capturing nuanced behaviours with high granularity and addressing their inherent uncertainties, thereby enhancing interpretability and reliability. Experiments were conducted with undergraduate students using a developed tool that assesses soft skills such as decision-making, communication, and creativity. This tool identifies and quantifies subtle aspects of human interaction, such as facial expressions and gesture recognition. The findings reveal that the framework effectively consolidates multiple data inputs to produce meaningful and consistent assessments of soft skills, showing that integrating multiple modalities into the evaluation process significantly improves the quality of soft skills scores, making the assessment work transparent and understandable to educational stakeholders.
Enhancing the Learning Experience: Using Vision-Language Models to Generate Questions for Educational Videos
Web-based educational videos offer flexible learning opportunities and are becoming increasingly popular. However, improving user engagement and knowledge retention remains a challenge. Automatically generated questions can activate learners and support their knowledge acquisition. Further, they can help teachers and learners assess their understanding. While large language and vision-language models have been employed in various tasks, their application to question generation for educational videos remains underexplored. In this paper, we investigate the capabilities of current vision-language models for generating learning-oriented questions for educational video content. We assess (1) out-of-the-box models' performance; (2) fine-tuning effects on content-specific question generation; (3) the impact of different video modalities on question quality; and (4) in a qualitative study, question relevance, answerability, and difficulty levels of generated questions. Our findings delineate the capabilities of current vision-language models, highlighting the need for fine-tuning and addressing challenges in question diversity and relevance. We identify requirements for future multimodal datasets and outline promising research directions.
comment: 12 pages (excluding references), 8 tables, 1 equation
Solving Copyright Infringement on Short Video Platforms: Novel Datasets and an Audio Restoration Deep Learning Pipeline IJCAI 2025
Short video platforms like YouTube Shorts and TikTok face significant copyright compliance challenges, as infringers frequently embed arbitrary background music (BGM) to obscure original soundtracks (OST) and evade content originality detection. To tackle this issue, we propose a novel pipeline that integrates Music Source Separation (MSS) and cross-modal video-music retrieval (CMVMR). Our approach effectively separates arbitrary BGM from the original OST, enabling the restoration of authentic video audio tracks. To support this work, we introduce two domain-specific datasets: OASD-20K for audio separation and OSVAR-160 for pipeline evaluation. OASD-20K contains 20,000 audio clips featuring mixed BGM and OST pairs, while OSVAR160 is a unique benchmark dataset comprising 1,121 video and mixed-audio pairs, specifically designed for short video restoration tasks. Experimental results demonstrate that our pipeline not only removes arbitrary BGM with high accuracy but also restores OSTs, ensuring content integrity. This approach provides an ethical and scalable solution to copyright challenges in user-generated content on short video platforms.
comment: will be presented in IJCAI 2025, 9 pages, 4 tables, 3 figures
From Attack to Protection: Leveraging Watermarking Attack Network for Advanced Add-on Watermarking BMVC 2021
Multi-bit watermarking (MW) has been designed to enhance resistance against watermarking attacks, such as signal processing operations and geometric distortions. Various benchmark tools exist to assess this robustness through simulated attacks on watermarked images. However, these tools often fail to capitalize on the unique attributes of the targeted MW and typically neglect the aspect of visual quality, a critical factor in practical applications. To overcome these shortcomings, we introduce a watermarking attack network (WAN), a fully trainable watermarking benchmark tool designed to exploit vulnerabilities within MW systems and induce watermark bit inversions, significantly diminishing watermark extractability. The proposed WAN employs an architecture based on residual dense blocks, which is adept at both local and global feature learning, thereby maintaining high visual quality while obstructing the extraction of embedded information. Our empirical results demonstrate that the WAN effectively undermines various block-based MW systems while minimizing visual degradation caused by attacks. This is facilitated by our novel watermarking attack loss, which is specifically crafted to compromise these systems. The WAN functions not only as a benchmarking tool but also as an add-on watermarking (AoW) mechanism, augmenting established universal watermarking schemes by enhancing robustness or imperceptibility without requiring detailed method context and adapting to dynamic watermarking requirements. Extensive experimental results show that AoW complements the performance of the targeted MW system by independently enhancing both imperceptibility and robustness.
comment: Extended version of WAN: Watermarking Attack Network, presented at BMVC 2021. Corresponding authors: Wonhyuk Ahn and Namhyuk Ahn
Computation and Language
Explainability by design: an experimental analysis of the legal coding process
Behind a set of rules in Deontic Defeasible Logic, there is a mapping process of normative background fragments. This process goes from text to rules and implicitly encompasses an explanation of the coded fragments. In this paper we deliver a methodology for \textit{legal coding} that starts with a fragment and goes onto a set of Deontic Defeasible Logic rules, involving a set of \textit{scenarios} to test the correctness of the coded fragments. The methodology is illustrated by the coding process of an example text. We then show the results of a series of experiments conducted with humans encoding a variety of normative backgrounds and corresponding cases in which we have measured the efforts made in the coding process, as related to some measurable features. To process these examples, a recently developed technology, Houdini, that allows reasoning in Deontic Defeasible Logic, has been employed. Finally we provide a technique to forecast time required in coding, that depends on factors such as knowledge of the legal domain, knowledge of the coding processes, length of the text, and a measure of \textit{depth} that refers to the length of the paths of legal references.
CAMOUFLAGE: Exploiting Misinformation Detection Systems Through LLM-driven Adversarial Claim Transformation
Automated evidence-based misinformation detection systems, which evaluate the veracity of short claims against evidence, lack comprehensive analysis of their adversarial vulnerabilities. Existing black-box text-based adversarial attacks are ill-suited for evidence-based misinformation detection systems, as these attacks primarily focus on token-level substitutions involving gradient or logit-based optimization strategies, which are incapable of fooling the multi-component nature of these detection systems. These systems incorporate both retrieval and claim-evidence comparison modules, which requires attacks to break the retrieval of evidence and/or the comparison module so that it draws incorrect inferences. We present CAMOUFLAGE, an iterative, LLM-driven approach that employs a two-agent system, a Prompt Optimization Agent and an Attacker Agent, to create adversarial claim rewritings that manipulate evidence retrieval and mislead claim-evidence comparison, effectively bypassing the system without altering the meaning of the claim. The Attacker Agent produces semantically equivalent rewrites that attempt to mislead detectors, while the Prompt Optimization Agent analyzes failed attack attempts and refines the prompt of the Attacker to guide subsequent rewrites. This enables larger structural and stylistic transformations of the text rather than token-level substitutions, adapting the magnitude of changes based on previous outcomes. Unlike existing approaches, CAMOUFLAGE optimizes its attack solely based on binary model decisions to guide its rewriting process, eliminating the need for classifier logits or extensive querying. We evaluate CAMOUFLAGE on four systems, including two recent academic systems and two real-world APIs, with an average attack success rate of 46.92\% while preserving textual coherence and semantic equivalence to the original claims.
Automated Sentiment Classification and Topic Discovery in Large-Scale Social Media Streams
We present a framework for large-scale sentiment and topic analysis of Twitter discourse. Our pipeline begins with targeted data collection using conflict-specific keywords, followed by automated sentiment labeling via multiple pre-trained models to improve annotation robustness. We examine the relationship between sentiment and contextual features such as timestamp, geolocation, and lexical content. To identify latent themes, we apply Latent Dirichlet Allocation (LDA) on partitioned subsets grouped by sentiment and metadata attributes. Finally, we develop an interactive visualization interface to support exploration of sentiment trends and topic distributions across time and regions. This work contributes a scalable methodology for social media analysis in dynamic geopolitical contexts.
Humans can learn to detect AI-generated texts, or at least learn when they can't
This study investigates whether individuals can learn to accurately discriminate between human-written and AI-produced texts when provided with immediate feedback, and if they can use this feedback to recalibrate their self-perceived competence. We also explore the specific criteria individuals rely upon when making these decisions, focusing on textual style and perceived readability. We used GPT-4o to generate several hundred texts across various genres and text types comparable to Koditex, a multi-register corpus of human-written texts. We then presented randomized text pairs to 255 Czech native speakers who identified which text was human-written and which was AI-generated. Participants were randomly assigned to two conditions: one receiving immediate feedback after each trial, the other receiving no feedback until experiment completion. We recorded accuracy in identification, confidence levels, response times, and judgments about text readability along with demographic data and participants' engagement with AI technologies prior to the experiment. Participants receiving immediate feedback showed significant improvement in accuracy and confidence calibration. Participants initially held incorrect assumptions about AI-generated text features, including expectations about stylistic rigidity and readability. Notably, without feedback, participants made the most errors precisely when feeling most confident -- an issue largely resolved among the feedback group. The ability to differentiate between human and AI-generated texts can be effectively learned through targeted training with explicit feedback, which helps correct misconceptions about AI stylistic features and readability, as well as potential other variables that were not explored, while facilitating more accurate self-assessment. This finding might be particularly important in educational contexts.
Positional Attention for Efficient BERT-Based Named Entity Recognition
This paper presents a framework for Named Entity Recognition (NER) leveraging the Bidirectional Encoder Representations from Transformers (BERT) model in natural language processing (NLP). NER is a fundamental task in NLP with broad applicability across downstream applications. While BERT has established itself as a state-of-the-art model for entity recognition, fine-tuning it from scratch for each new application is computationally expensive and time-consuming. To address this, we propose a cost-efficient approach that integrates positional attention mechanisms into the entity recognition process and enables effective customization using pre-trained parameters. The framework is evaluated on a Kaggle dataset derived from the Groningen Meaning Bank corpus and achieves strong performance with fewer training epochs. This work contributes to the field by offering a practical solution for reducing the training cost of BERT-based NER systems while maintaining high accuracy.
Intra-Layer Recurrence in Transformers for Language Modeling
Transformer models have established new benchmarks in natural language processing; however, their increasing depth results in substantial growth in parameter counts. While existing recurrent transformer methods address this issue by reprocessing layers multiple times, they often apply recurrence indiscriminately across entire blocks of layers. In this work, we investigate Intra-Layer Recurrence (ILR), a more targeted approach that applies recurrence selectively to individual layers within a single forward pass. Our experiments show that allocating more iterations to earlier layers yields optimal results. These findings suggest that ILR offers a promising direction for optimizing recurrent structures in transformer architectures.
comment: Accepted at Canadian AI 2025. Code available at https://github.com/ant-8/Layer-Recurrent-Transformers
$\textit{New News}$: System-2 Fine-tuning for Robust Integration of New Knowledge
Humans and intelligent animals can effortlessly internalize new information ("news") and accurately extract the implications for performing downstream tasks. While large language models (LLMs) can achieve this through in-context learning (ICL) when the news is explicitly given as context, fine-tuning remains challenging for the models to consolidate learning in weights. In this paper, we introduce $\textit{New News}$, a dataset composed of hypothetical yet plausible news spanning multiple domains (mathematics, coding, discoveries, leaderboards, events), accompanied by downstream evaluation questions whose correct answers critically depend on understanding and internalizing the news. We first demonstrate a substantial gap between naive fine-tuning and in-context learning (FT-ICL gap) on our news dataset. To address this gap, we explore a suite of self-play data generation protocols -- paraphrases, implications and Self-QAs -- designed to distill the knowledge from the model with context into the weights of the model without the context, which we term $\textit{System-2 Fine-tuning}$ (Sys2-FT). We systematically evaluate ICL and Sys2-FT performance across data domains and model scales with the Qwen 2.5 family of models. Our results demonstrate that the self-QA protocol of Sys2-FT significantly improves models' in-weight learning of the news. Furthermore, we discover the $\textit{contexual shadowing effect}$, where training with the news $\textit{in context}$ followed by its rephrases or QAs degrade learning of the news. Finally, we show preliminary evidence of an emerging scaling law of Sys2-FT.
Distinguishing AI-Generated and Human-Written Text Through Psycholinguistic Analysis
The increasing sophistication of AI-generated texts highlights the urgent need for accurate and transparent detection tools, especially in educational settings, where verifying authorship is essential. Existing literature has demonstrated that the application of stylometric features with machine learning classifiers can yield excellent results. Building on this foundation, this study proposes a comprehensive framework that integrates stylometric analysis with psycholinguistic theories, offering a clear and interpretable approach to distinguishing between AI-generated and human-written texts. This research specifically maps 31 distinct stylometric features to cognitive processes such as lexical retrieval, discourse planning, cognitive load management, and metacognitive self-monitoring. In doing so, it highlights the unique psycholinguistic patterns found in human writing. Through the intersection of computational linguistics and cognitive science, this framework contributes to the development of reliable tools aimed at preserving academic integrity in the era of generative AI.
comment: 8
A Multimodal Framework for Explainable Evaluation of Soft Skills in Educational Environments
In the rapidly evolving educational landscape, the unbiased assessment of soft skills is a significant challenge, particularly in higher education. This paper presents a fuzzy logic approach that employs a Granular Linguistic Model of Phenomena integrated with multimodal analysis to evaluate soft skills in undergraduate students. By leveraging computational perceptions, this approach enables a structured breakdown of complex soft skill expressions, capturing nuanced behaviours with high granularity and addressing their inherent uncertainties, thereby enhancing interpretability and reliability. Experiments were conducted with undergraduate students using a developed tool that assesses soft skills such as decision-making, communication, and creativity. This tool identifies and quantifies subtle aspects of human interaction, such as facial expressions and gesture recognition. The findings reveal that the framework effectively consolidates multiple data inputs to produce meaningful and consistent assessments of soft skills, showing that integrating multiple modalities into the evaluation process significantly improves the quality of soft skills scores, making the assessment work transparent and understandable to educational stakeholders.
Enhancing the Learning Experience: Using Vision-Language Models to Generate Questions for Educational Videos
Web-based educational videos offer flexible learning opportunities and are becoming increasingly popular. However, improving user engagement and knowledge retention remains a challenge. Automatically generated questions can activate learners and support their knowledge acquisition. Further, they can help teachers and learners assess their understanding. While large language and vision-language models have been employed in various tasks, their application to question generation for educational videos remains underexplored. In this paper, we investigate the capabilities of current vision-language models for generating learning-oriented questions for educational video content. We assess (1) out-of-the-box models' performance; (2) fine-tuning effects on content-specific question generation; (3) the impact of different video modalities on question quality; and (4) in a qualitative study, question relevance, answerability, and difficulty levels of generated questions. Our findings delineate the capabilities of current vision-language models, highlighting the need for fine-tuning and addressing challenges in question diversity and relevance. We identify requirements for future multimodal datasets and outline promising research directions.
comment: 12 pages (excluding references), 8 tables, 1 equation
Same evaluation, more tokens: On the effect of input length for machine translation evaluation using Large Language Models
Accurately evaluating machine-translated text remains a long-standing challenge, particularly for long documents. Recent work has shown that large language models (LLMs) can serve as reliable and interpretable sentence-level translation evaluators via MQM error span annotations. With modern LLMs supporting larger context windows, a natural question arises: can we feed entire document translations into an LLM for quality assessment? Ideally, evaluation should be invariant to text length, producing consistent error spans regardless of input granularity. However, our analysis shows that text length significantly impacts evaluation: longer texts lead to fewer error spans and reduced system ranking accuracy. To address this limitation, we evaluate several strategies, including granularity-aligned prompting, Focus Sentence Prompting (FSP), and a fine-tuning approach to better align LLMs with the evaluation task. The latter two methods largely mitigate this length bias, making LLMs more reliable for long-form translation evaluation.
Unraveling Media Perspectives: A Comprehensive Methodology Combining Large Language Models, Topic Modeling, Sentiment Analysis, and Ontology Learning to Analyse Media Bias
Biased news reporting poses a significant threat to informed decision-making and the functioning of democracies. This study introduces a novel methodology for scalable, minimally biased analysis of media bias in political news. The proposed approach examines event selection, labeling, word choice, and commission and omission biases across news sources by leveraging natural language processing techniques, including hierarchical topic modeling, sentiment analysis, and ontology learning with large language models. Through three case studies related to current political events, we demonstrate the methodology's effectiveness in identifying biases across news sources at various levels of granularity. This work represents a significant step towards scalable, minimally biased media bias analysis, laying the groundwork for tools to help news consumers navigate an increasingly complex media landscape.
Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models
Pruning large language models (LLMs) is a promising solution for reducing model sizes and computational complexity while preserving performance. Traditional layer-wise pruning methods often adopt a uniform sparsity approach across all layers, which leads to suboptimal performance due to the varying significance of individual transformer layers within the model not being accounted for. To this end, we propose the \underline{S}hapley \underline{V}alue-based \underline{N}on-\underline{U}niform \underline{P}runing (\methodname{}) method for LLMs. This approach quantifies the contribution of each transformer layer to the overall model performance, enabling the assignment of tailored pruning budgets to different layers to retain critical parameters. To further improve efficiency, we design the Sliding Window-based Shapley Value approximation method. It substantially reduces computational overhead compared to exact SV calculation methods. Extensive experiments on various LLMs including LLaMA-v1, LLaMA-v2 and OPT demonstrate the effectiveness of the proposed approach. The results reveal that non-uniform pruning significantly enhances the performance of pruned models. Notably, \methodname{} achieves a reduction in perplexity (PPL) of 18.01\% and 19.55\% on LLaMA-7B and LLaMA-13B, respectively, compared to SparseGPT at 70\% sparsity.
Inducing Robustness in a 2 Dimensional Direct Preference Optimization Paradigm
Direct Preference Optimisation (DPO) has emerged as a powerful method for aligning Large Language Models (LLMs) with human preferences, offering a stable and efficient alternative to approaches that use Reinforcement learning via Human Feedback. In this work, we investigate the performance of DPO using open-source preference datasets. One of the major drawbacks of DPO is that it doesn't induce granular scoring and treats all the segments of the responses with equal propensity. However, this is not practically true for human preferences since even "good" responses have segments that may not be preferred by the annotator. To resolve this, a 2-dimensional scoring for DPO alignment called 2D-DPO was proposed. We explore the 2D-DPO alignment paradigm and the advantages it provides over the standard DPO by comparing their win rates. It is observed that these methods, even though effective, are not robust to label/score noise. To counter this, we propose an approach of incorporating segment-level score noise robustness to the 2D-DPO algorithm. Along with theoretical backing, we also provide empirical verification in favour of the algorithm and introduce other noise models that can be present.
comment: Updated abstract, algorithm and experimental results
High-Fidelity Pseudo-label Generation by Large Language Models for Training Robust Radiology Report Classifiers
Automated labeling of chest X-ray reports is essential for enabling downstream tasks such as training image-based diagnostic models, population health studies, and clinical decision support. However, the high variability, complexity, and prevalence of negation and uncertainty in these free-text reports pose significant challenges for traditional Natural Language Processing methods. While large language models (LLMs) demonstrate strong text understanding, their direct application for large-scale, efficient labeling is limited by computational cost and speed. This paper introduces DeBERTa-RAD, a novel two-stage framework that combines the power of state-of-the-art LLM pseudo-labeling with efficient DeBERTa-based knowledge distillation for accurate and fast chest X-ray report labeling. We leverage an advanced LLM to generate high-quality pseudo-labels, including certainty statuses, for a large corpus of reports. Subsequently, a DeBERTa-Base model is trained on this pseudo-labeled data using a tailored knowledge distillation strategy. Evaluated on the expert-annotated MIMIC-500 benchmark, DeBERTa-RAD achieves a state-of-the-art Macro F1 score of 0.9120, significantly outperforming established rule-based systems, fine-tuned transformer models, and direct LLM inference, while maintaining a practical inference speed suitable for high-throughput applications. Our analysis shows particular strength in handling uncertain findings. This work demonstrates a promising path to overcome data annotation bottlenecks and achieve high-performance medical text processing through the strategic combination of LLM capabilities and efficient student models trained via distillation.
A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency
Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine
comment: Under review; 65 pages; 27 figures
Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation
Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization. However, their application to structured data analysis remains fragile due to inconsistencies in schema interpretation, misalignment between user intent and model output, and limited mechanisms for self-correction when failures occur. This paper introduces the STROT Framework (Structured Task Reasoning and Output Transformation), a method for structured prompting and feedback-driven transformation logic generation aimed at improving the reliability and semantic alignment of LLM-based analytical workflows. STROT begins with lightweight schema introspection and sample-based field classification, enabling dynamic context construction that captures both the structure and statistical profile of the input data. This contextual information is embedded in structured prompts that guide the model toward generating task-specific, interpretable outputs. To address common failure modes in complex queries, STROT incorporates a refinement mechanism in which the model iteratively revises its outputs based on execution feedback and validation signals. Unlike conventional approaches that rely on static prompts or single-shot inference, STROT treats the LLM as a reasoning agent embedded within a controlled analysis loop -- capable of adjusting its output trajectory through planning and correction. The result is a robust and reproducible framework for reasoning over structured data with LLMs, applicable to diverse data exploration and analysis tasks where interpretability, stability, and correctness are essential.
comment: 21 pages, 2 figures
Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources and incorporating them into the context. While it improves reliability by providing factual texts, it significantly increases inference costs as context length grows and introduces challenging issue of RAG hallucination, primarily caused by the lack of corresponding parametric knowledge in LLMs. An efficient solution is to enhance the knowledge of LLMs at test-time. Parametric RAG (PRAG) addresses this by embedding document into LLMs parameters to perform test-time knowledge enhancement, effectively reducing inference costs through offline training. However, its high training and storage costs, along with limited generalization ability, significantly restrict its practical adoption. To address these challenges, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages a lightweight parameter translator model to efficiently convert documents into parametric knowledge. DyPRAG not only reduces inference, training, and storage costs but also dynamically generates parametric knowledge, seamlessly enhancing the knowledge of LLMs and resolving knowledge conflicts in a plug-and-play manner at test-time. Extensive experiments on multiple datasets demonstrate the effectiveness and generalization capabilities of DyPRAG, offering a powerful and practical RAG paradigm which enables superior knowledge fusion and mitigates RAG hallucination in real-world applications. Our code is available at https://github.com/Trae1ounG/DyPRAG.
comment: preprint. Code is available at https://github.com/Trae1ounG/DyPRAG
ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis
Bidirectional transformers excel at sentiment analysis, and Large Language Models (LLM) are effective zero-shot learners. Might they perform better as a team? This paper explores collaborative approaches between ELECTRA and GPT-4o for three-way sentiment classification. We fine-tuned (FT) four models (ELECTRA Base/Large, GPT-4o/4o-mini) using a mix of reviews from Stanford Sentiment Treebank (SST) and DynaSent. We provided input from ELECTRA to GPT as: predicted label, probabilities, and retrieved examples. Sharing ELECTRA Base FT predictions with GPT-4o-mini significantly improved performance over either model alone (82.50 macro F1 vs. 79.14 ELECTRA Base FT, 79.41 GPT-4o-mini) and yielded the lowest cost/performance ratio (\$0.12/F1 point). However, when GPT models were fine-tuned, including predictions decreased performance. GPT-4o FT-M was the top performer (86.99), with GPT-4o-mini FT close behind (86.70) at much less cost (\$0.38 vs. \$1.59/F1 point). Our results show that augmenting prompts with predictions from fine-tuned encoders is an efficient way to boost performance, and a fine-tuned GPT-4o-mini is nearly as good as GPT-4o FT at 76% less cost. Both are affordable options for projects with limited resources.
comment: 19 pages, 4 figures. Source code and data available at https://github.com/jbeno/sentiment
Transformadores: Fundamentos teoricos y Aplicaciones
Transformers are a neural network architecture originally developed for natural language processing, which have since become a foundational tool for solving a wide range of problems, including text, audio, image processing, reinforcement learning, and other tasks involving heterogeneous input data. Their hallmark is the self-attention mechanism, which allows the model to weigh different parts of the input sequence dynamically, and is an evolution of earlier attention-based approaches. This article provides readers with the necessary background to understand recent research on transformer models, and presents the mathematical and algorithmic foundations of their core components. It also explores the architecture's various elements, potential modifications, and some of the most relevant applications. The article is written in Spanish to help make this scientific knowledge more accessible to the Spanish-speaking community.
comment: 48 pages, in Spanish language, 24 figures, review
A Logical Fallacy-Informed Framework for Argument Generation
Despite the remarkable performance of Large Language Models (LLMs) in natural language processing tasks, they still struggle with generating logically sound arguments, resulting in potential risks such as spreading misinformation. To address this issue, we introduce FIPO, a fallacy-informed framework that leverages preference optimization methods to steer LLMs toward logically sound arguments. FIPO includes a classification loss, to capture the fine-grained information on fallacy types. Our results on argumentation datasets show that our method reduces the fallacy errors by up to 17.5%. Furthermore, our human evaluation results indicate that the quality of the generated arguments by our method significantly outperforms the fine-tuned baselines, as well as other preference optimization methods, such as DPO. These findings highlight the importance of ensuring models are aware of logical fallacies for effective argument generation. Our code is available at github.com/lucamouchel/Logical-Fallacies.
ResearchCodeAgent: An LLM Multi-Agent System for Automated Codification of Research Methodologies
In this paper we introduce ResearchCodeAgent, a novel multi-agent system leveraging large language models (LLMs) agents to automate the codification of research methodologies described in machine learning literature. The system bridges the gap between high-level research concepts and their practical implementation, allowing researchers auto-generating code of existing research papers for benchmarking or building on top-of existing methods specified in the literature with availability of partial or complete starter code. ResearchCodeAgent employs a flexible agent architecture with a comprehensive action suite, enabling context-aware interactions with the research environment. The system incorporates a dynamic planning mechanism, utilizing both short and long-term memory to adapt its approach iteratively. We evaluate ResearchCodeAgent on three distinct machine learning tasks with distinct task complexity and representing different parts of the ML pipeline: data augmentation, optimization, and data batching. Our results demonstrate the system's effectiveness and generalizability, with 46.9% of generated code being high-quality and error-free, and 25% showing performance improvements over baseline implementations. Empirical analysis shows an average reduction of 57.9% in coding time compared to manual implementation. We observe higher gains for more complex tasks. ResearchCodeAgent represents a significant step towards automating the research implementation process, potentially accelerating the pace of machine learning research.
Tailored Design of Audio-Visual Speech Recognition Models using Branchformers
Recent advances in Audio-Visual Speech Recognition (AVSR) have led to unprecedented achievements in the field, improving the robustness of this type of system in adverse, noisy environments. In most cases, this task has been addressed through the design of models composed of two independent encoders, each dedicated to a specific modality. However, while recent works have explored unified audio-visual encoders, determining the optimal cross-modal architecture remains an ongoing challenge. Furthermore, such approaches often rely on models comprising vast amounts of parameters and high computational cost training processes. In this paper, we aim to bridge this research gap by introducing a novel audio-visual framework. Our proposed method constitutes, to the best of our knowledge, the first attempt to harness the flexibility and interpretability offered by encoder architectures, such as the Branchformer, in the design of parameter-efficient AVSR systems. To be more precise, the proposed framework consists of two steps: first, estimating audio- and video-only systems, and then designing a tailored audio-visual unified encoder based on the layer-level branch scores provided by the modality-specific models. Extensive experiments on English and Spanish AVSR benchmarks covering multiple data conditions and scenarios demonstrated the effectiveness of our proposed method. Even when trained on a moderate scale of data, our models achieve competitive word error rates (WER) of approximately 2.5\% for English and surpass existing approaches for Spanish, establishing a new benchmark with an average WER of around 9.1\%. These results reflect how our tailored AVSR system is able to reach state-of-the-art recognition rates while significantly reducing the model complexity w.r.t. the prevalent approach in the field. Code and pre-trained models are available at https://github.com/david-gimeno/tailored-avsr.
comment: Accepted in Computer Speech & Language journal of Elsevier
Improving Phishing Email Detection Performance of Small Large Language Models
Large language models(LLMs) have demonstrated remarkable performance on many natural language processing(NLP) tasks and have been employed in phishing email detection research. However, in current studies, well-performing LLMs typically contain billions or even tens of billions of parameters, requiring enormous computational resources. To reduce computational costs, we investigated the effectiveness of small-parameter LLMs for phishing email detection. These LLMs have around 3 billion parameters and can run on consumer-grade GPUs. However, small LLMs often perform poorly in phishing email detection task. To address these issues, we designed a set of methods including Prompt Engineering, Explanation Augmented Fine-tuning, and Model Ensemble to improve phishing email detection capabilities of small LLMs. We validated the effectiveness of our approach through experiments, significantly improving both accuracy and F1 score on the SpamAssassin and CEAS\_08 datasets. Furthermore, the fine-tuned models demonstrated strong transferability, achieving robust performance across multiple unseen phishing datasets, outperforming traditional baselines and approaching standard-sized LLMs.
LipidBERT: A Lipid Language Model Pre-trained on METiS de novo Lipid Library
In this study, we generate and maintain a database of 10 million virtual lipids through METiS's in-house de novo lipid generation algorithms and lipid virtual screening techniques. These virtual lipids serve as a corpus for pre-training, lipid representation learning, and downstream task knowledge transfer, culminating in state-of-the-art LNP property prediction performance. We propose LipidBERT, a BERT-like model pre-trained with the Masked Language Model (MLM) and various secondary tasks. Additionally, we compare the performance of embeddings generated by LipidBERT and PhatGPT, our GPT-like lipid generation model, on downstream tasks. The proposed bilingual LipidBERT model operates in two languages: the language of ionizable lipid pre-training, using in-house dry-lab lipid structures, and the language of LNP fine-tuning, utilizing in-house LNP wet-lab data. This dual capability positions LipidBERT as a key AI-based filter for future screening tasks, including new versions of METiS de novo lipid libraries and, more importantly, candidates for in vivo testing for orgran-targeting LNPs. To the best of our knowledge, this is the first successful demonstration of the capability of a pre-trained language model on virtual lipids and its effectiveness in downstream tasks using web-lab data. This work showcases the clever utilization of METiS's in-house de novo lipid library as well as the power of dry-wet lab integration.
VIST-GPT: Ushering in the Era of Visual Storytelling with LLMs?
Visual storytelling is an interdisciplinary field combining computer vision and natural language processing to generate cohesive narratives from sequences of images. This paper presents a novel approach that leverages recent advancements in multimodal models, specifically adapting transformer-based architectures and large multimodal models, for the visual storytelling task. Leveraging the large-scale Visual Storytelling (VIST) dataset, our VIST-GPT model produces visually grounded, contextually appropriate narratives. We address the limitations of traditional evaluation metrics, such as BLEU, METEOR, ROUGE, and CIDEr, which are not suitable for this task. Instead, we utilize RoViST and GROOVIST, novel reference-free metrics designed to assess visual storytelling, focusing on visual grounding, coherence, and non-redundancy. These metrics provide a more nuanced evaluation of narrative quality, aligning closely with human judgment.
Pretraining Large Brain Language Model for Active BCI: Silent Speech
This paper explores silent speech decoding in active brain-computer interface (BCI) systems, which offer more natural and flexible communication than traditional BCI applications. We collected a new silent speech dataset of over 120 hours of electroencephalogram (EEG) recordings from 12 subjects, capturing 24 commonly used English words for language model pretraining and decoding. Following the recent success of pretraining large models with self-supervised paradigms to enhance EEG classification performance, we propose Large Brain Language Model (LBLM) pretrained to decode silent speech for active BCI. To pretrain LBLM, we propose Future Spectro-Temporal Prediction (FSTP) pretraining paradigm to learn effective representations from unlabeled EEG data. Unlike existing EEG pretraining methods that mainly follow a masked-reconstruction paradigm, our proposed FSTP method employs autoregressive modeling in temporal and frequency domains to capture both temporal and spectral dependencies from EEG signals. After pretraining, we finetune our LBLM on downstream tasks, including word-level and semantic-level classification. Extensive experiments demonstrate significant performance gains of the LBLM over fully-supervised and pretrained baseline models. For instance, in the difficult cross-session setting, our model achieves 47.0\% accuracy on semantic-level classification and 39.6\% in word-level classification, outperforming baseline methods by 5.4\% and 7.3\%, respectively. Our research advances silent speech decoding in active BCI systems, offering an innovative solution for EEG language model pretraining and a new dataset for fundamental research.
SMUTF: Schema Matching Using Generative Tags and Hybrid Features
We introduce SMUTF (Schema Matching Using Generative Tags and Hybrid Features), a unique approach for large-scale tabular data schema matching (SM), which assumes that supervised learning does not affect performance in open-domain tasks, thereby enabling effective cross-domain matching. This system uniquely combines rule-based feature engineering, pre-trained language models, and generative large language models. In an innovative adaptation inspired by the Humanitarian Exchange Language, we deploy "generative tags" for each data column, enhancing the effectiveness of SM. SMUTF exhibits extensive versatility, working seamlessly with any pre-existing pre-trained embeddings, classification methods, and generative models. Recognizing the lack of extensive, publicly available datasets for SM, we have created and open-sourced the HDXSM dataset from the public humanitarian data. We believe this to be the most exhaustive SM dataset currently available. In evaluations across various public datasets and the novel HDXSM dataset, SMUTF demonstrated exceptional performance, surpassing existing state-of-the-art models in terms of accuracy and efficiency, and improving the F1 score by 11.84% and the AUC of ROC by 5.08%. Code is available at https://github.com/fireindark707/Python-Schema-Matching.
comment: Information Systems
Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models
Large language models (LLMs) often produce inaccurate or misleading content-hallucinations. To address this challenge, we introduce Noise-Augmented Fine-Tuning (NoiseFiT), a novel framework that leverages adaptive noise injection based on the signal-to-noise ratio (SNR) to enhance model robustness. In particular, NoiseFiT selectively perturbs layers identified as either high-SNR (more robust) or low-SNR (potentially under-regularized) using a dynamically scaled Gaussian noise. We further propose a hybrid loss that combines standard cross-entropy, soft cross-entropy, and consistency regularization to ensure stable and accurate outputs under noisy training conditions. Our theoretical analysis shows that adaptive noise injection is both unbiased and variance-preserving, providing strong guarantees for convergence in expectation. Empirical results on multiple test and benchmark datasets demonstrate that NoiseFiT significantly reduces hallucination rates, often improving or matching baseline performance in key tasks. These findings highlight the promise of noise-driven strategies for achieving robust, trustworthy language modeling without incurring prohibitive computational overhead. Given the comprehensive and detailed nature of our experiments, we have publicly released the fine-tuning logs, benchmark evaluation artifacts, and source code online at W&B, Hugging Face, and GitHub, respectively, to foster further research, accessibility and reproducibility.
Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding ICML 2025
Large language models (LLMs) have achieved remarkable success in contextual knowledge understanding. In this paper, we show that these concentrated massive values consistently emerge in specific regions of attention queries (Q) and keys (K) while not having such patterns in values (V) in various modern transformer-based LLMs (Q, K, and V mean the representations output by the query, key, and value layers respectively). Through extensive experiments, we further demonstrate that these massive values play a critical role in interpreting contextual knowledge (knowledge obtained from the current context window) rather than in retrieving parametric knowledge stored within the model's parameters. Our further investigation of quantization strategies reveals that ignoring these massive values leads to a pronounced drop in performance on tasks requiring rich contextual understanding, aligning with our analysis. Finally, we trace the emergence of concentrated massive values and find that such concentration is caused by Rotary Positional Encoding (RoPE), which has appeared since the first layers. These findings shed new light on how Q and K operate in LLMs and offer practical insights for model design and optimization. The Code is Available at https://github.com/MingyuJ666/Rope_with_LLM.
comment: International Conference on Machine Learning (ICML 2025)
Image and Video Processing
Discrete Spatial Diffusion: Intensity-Preserving Diffusion Modeling
Generative diffusion models have achieved remarkable success in producing high-quality images. However, because these models typically operate in continuous intensity spaces - diffusing independently per pixel and color channel - they are fundamentally ill-suited for applications where quantities such as particle counts or material units are inherently discrete and governed by strict conservation laws such as mass preservation, limiting their applicability in scientific workflows. To address this limitation, we propose Discrete Spatial Diffusion (DSD), a framework based on a continuous-time, discrete-state jump stochastic process that operates directly in discrete spatial domains while strictly preserving mass in both forward and reverse diffusion processes. By using spatial diffusion to achieve mass preservation, we introduce stochasticity naturally through a discrete formulation. We demonstrate the expressive flexibility of DSD by performing image synthesis, class conditioning, and image inpainting across widely-used image benchmarks, with the ability to condition on image intensity. Additionally, we highlight its applicability to domain-specific scientific data for materials microstructure, bridging the gap between diffusion models and mass-conditioned scientific applications.
DriveNetBench: An Affordable and Configurable Single-Camera Benchmarking System for Autonomous Driving Networks
Validating autonomous driving neural networks often demands expensive equipment and complex setups, limiting accessibility for researchers and educators. We introduce DriveNetBench, an affordable and configurable benchmarking system designed to evaluate autonomous driving networks using a single-camera setup. Leveraging low-cost, off-the-shelf hardware, and a flexible software stack, DriveNetBench enables easy integration of various driving models, such as object detection and lane following, while ensuring standardized evaluation in real-world scenarios. Our system replicates common driving conditions and provides consistent, repeatable metrics for comparing network performance. Through preliminary experiments with representative vision models, we illustrate how DriveNetBench effectively measures inference speed and accuracy within a controlled test environment. The key contributions of this work include its affordability, its replicability through open-source software, and its seamless integration into existing workflows, making autonomous vehicle research more accessible.
Adversarial Robustness of Deep Learning Models for Inland Water Body Segmentation from SAR Images
Inland water body segmentation from Synthetic Aperture Radar (SAR) images is an important task needed for several applications, such as flood mapping. While SAR sensors capture data in all-weather conditions as high-resolution images, differentiating water and water-like surfaces from SAR images is not straightforward. Inland water bodies, such as large river basins, have complex geometry, which adds to the challenge of segmentation. U-Net is a widely used deep learning model for land-water segmentation of SAR images. In practice, manual annotation is often used to generate the corresponding water masks as ground truth. Manual annotation of the images is prone to label noise owing to data poisoning attacks, especially due to complex geometry. In this work, we simulate manual errors in the form of adversarial attacks on the U-Net model and study the robustness of the model to human errors in annotation. Our results indicate that U-Net can tolerate a certain level of corruption before its performance drops significantly. This finding highlights the crucial role that the quality of manual annotations plays in determining the effectiveness of the segmentation model. The code and the new dataset, along with adversarial examples for robust training, are publicly available. (Github link - https://github.com/GVCL/IWSeg-SAR-Poison.git)
comment: 21 pages, 15 figures, 2 tables
ResiTok: A Resilient Tokenization-Enabled Framework for Ultra-Low-Rate and Robust Image Transmission
Real-time transmission of visual data over wireless networks remains highly challenging, even when leveraging advanced deep neural networks, particularly under severe channel conditions such as limited bandwidth and weak connectivity. In this paper, we propose a novel Resilient Tokenization-Enabled (ResiTok) framework designed for ultra-low-rate image transmission that achieves exceptional robustness while maintaining high reconstruction quality. By reorganizing visual information into hierarchical token groups consisting of essential key tokens and supplementary detail tokens, ResiTok enables progressive encoding and graceful degradation of visual quality under constrained channel conditions. A key contribution is our resilient 1D tokenization method integrated with a specialized zero-out training strategy, which systematically simulates token loss during training, empowering the neural network to effectively compress and reconstruct images from incomplete token sets. Furthermore, the channel-adaptive coding and modulation design dynamically allocates coding resources according to prevailing channel conditions, yielding superior semantic fidelity and structural consistency even at extremely low channel bandwidth ratios. Evaluation results demonstrate that ResiTok outperforms state-of-the-art methods in both semantic similarity and visual quality, with significant advantages under challenging channel conditions.
Accelerating Volumetric Medical Image Annotation via Short-Long Memory SAM 2
Manual annotation of volumetric medical images, such as magnetic resonance imaging (MRI) and computed tomography (CT), is a labor-intensive and time-consuming process. Recent advancements in foundation models for video object segmentation, such as Segment Anything Model 2 (SAM 2), offer a potential opportunity to significantly speed up the annotation process by manually annotating one or a few slices and then propagating target masks across the entire volume. However, the performance of SAM 2 in this context varies. Our experiments show that relying on a single memory bank and attention module is prone to error propagation, particularly at boundary regions where the target is present in the previous slice but absent in the current one. To address this problem, we propose Short-Long Memory SAM 2 (SLM-SAM 2), a novel architecture that integrates distinct short-term and long-term memory banks with separate attention modules to improve segmentation accuracy. We evaluate SLM-SAM 2 on three public datasets covering organs, bones, and muscles across MRI and CT modalities. We show that the proposed method markedly outperforms the default SAM 2, achieving average Dice Similarity Coefficient improvement of 0.14 and 0.11 in the scenarios when 5 volumes and 1 volume are available for the initial adaptation, respectively. SLM-SAM 2 also exhibits stronger resistance to over-propagation, making a notable step toward more accurate automated annotation of medical images for segmentation model development.
Impact of Chirality on the Properties of Two-Dimensional Images Propagating Through a Chiral Dispersive Thick Lens
Dual image formation for a two-dimensional object via bimodal propagation through chiral-dispersive thick lens is derived. In this article, first-order frequency-dependent material dispersion of the dielectric permittivity and the lens material being chiral are considered. In addition, the thick lens is configured in a uniform background. A salient feature of a chiral thick lens is the inherent bimodal propagation via circular polarizations. Under chirality, two sets of ABCD frequency dependent matrices are derived for right- and left-circularly polarized modes based on standard paraxial and meridional conditions. For imaging purposes, a simple2D colored transparency is placed as an object before the thick lens. The image transmission across the lens examined via the ABCD matrix parameters and defocusing effects due to dispersion under different chirality bands.
comment: 5 pages, 10 figures
Multi-Scale Target-Aware Representation Learning for Fundus Image Enhancement
High-quality fundus images provide essential anatomical information for clinical screening and ophthalmic disease diagnosis. Yet, due to hardware limitations, operational variability, and patient compliance, fundus images often suffer from low resolution and signal-to-noise ratio. Recent years have witnessed promising progress in fundus image enhancement. However, existing works usually focus on restoring structural details or global characteristics of fundus images, lacking a unified image enhancement framework to recover comprehensive multi-scale information. Moreover, few methods pinpoint the target of image enhancement, e.g., lesions, which is crucial for medical image-based diagnosis. To address these challenges, we propose a multi-scale target-aware representation learning framework (MTRL-FIE) for efficient fundus image enhancement. Specifically, we propose a multi-scale feature encoder (MFE) that employs wavelet decomposition to embed both low-frequency structural information and high-frequency details. Next, we design a structure-preserving hierarchical decoder (SHD) to fuse multi-scale feature embeddings for real fundus image restoration. SHD integrates hierarchical fusion and group attention mechanisms to achieve adaptive feature fusion while retaining local structural smoothness. Meanwhile, a target-aware feature aggregation (TFA) module is used to enhance pathological regions and reduce artifacts. Experimental results on multiple fundus image datasets demonstrate the effectiveness and generalizability of MTRL-FIE for fundus image enhancement. Compared to state-of-the-art methods, MTRL-FIE achieves superior enhancement performance with a more lightweight architecture. Furthermore, our approach generalizes to other ophthalmic image processing tasks without supervised fine-tuning, highlighting its potential for clinical applications.
comment: Under review at Neural Networks
Continuous Filtered Backprojection by Learnable Interpolation Network
Accurate reconstruction of computed tomography (CT) images is crucial in medical imaging field. However, there are unavoidable interpolation errors in the backprojection step of the conventional reconstruction methods, i.e., filtered-back-projection based methods, which are detrimental to the accurate reconstruction. In this study, to address this issue, we propose a novel deep learning model, named Leanable-Interpolation-based FBP or LInFBP shortly, to enhance the reconstructed CT image quality, which achieves learnable interpolation in the backprojection step of filtered backprojection (FBP) and alleviates the interpolation errors. Specifically, in the proposed LInFBP, we formulate every local piece of the latent continuous function of discrete sinogram data as a linear combination of selected basis functions, and learn this continuous function by exploiting a deep network to predict the linear combination coefficients. Then, the learned latent continuous function is exploited for interpolation in backprojection step, which first time takes the advantage of deep learning for the interpolation in FBP. Extensive experiments, which encompass diverse CT scenarios, demonstrate the effectiveness of the proposed LInFBP in terms of enhanced reconstructed image quality, plug-and-play ability and generalization capability.
comment: 14 pages, 10 figures
LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction IJCAI 2025
Lensless imaging stands out as a promising alternative to conventional lens-based systems, particularly in scenarios demanding ultracompact form factors and cost-effective architectures. However, such systems are fundamentally governed by the Point Spread Function (PSF), which dictates how a point source contributes to the final captured signal. Traditional lensless techniques often require explicit calibrations and extensive pre-processing, relying on static or approximate PSF models. These rigid strategies can result in limited adaptability to real-world challenges, including noise, system imperfections, and dynamic scene variations, thus impeding high-fidelity reconstruction. In this paper, we propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations in a unified pipeline. Central to our approach is a learnable Coded Mask Simulator (CMS) that enables dynamic, data-driven estimation of the PSF during training, effectively mitigating the shortcomings of fixed or sparsely calibrated kernels. By embedding a Wiener filtering component, LensNet refines global structure and restores fine-scale details, thus alleviating the dependency on multiple handcrafted pre-processing steps. Extensive experiments demonstrate LensNet's robust performance and superior reconstruction quality compared to state-of-the-art methods, particularly in preserving high-frequency details and attenuating noise. The proposed framework establishes a novel convergence between physics-based modeling and data-driven learning, paving the way for more accurate, flexible, and practical lensless imaging solutions for applications ranging from miniature sensors to medical diagnostics. The link of code is https://github.com/baijiesong/Lensnet.
comment: Accepted by IJCAI 2025
Easz: An Agile Transformer-based Image Compression Framework for Resource-constrained IoTs
Neural image compression, necessary in various machine-to-machine communication scenarios, suffers from its heavy encode-decode structures and inflexibility in switching between different compression levels. Consequently, it raises significant challenges in applying the neural image compression to edge devices that are developed for powerful servers with high computational and storage capacities. We take a step to solve the challenges by proposing a new transformer-based edge-compute-free image coding framework called Easz. Easz shifts the computational overhead to the server, and hence avoids the heavy encoding and model switching overhead on the edge. Easz utilizes a patch-erase algorithm to selectively remove image contents using a conditional uniform-based sampler. The erased pixels are reconstructed on the receiver side through a transformer-based framework. To further reduce the computational overhead on the receiver, we then introduce a lightweight transformer-based reconstruction structure to reduce the reconstruction load on the receiver side. Extensive evaluations conducted on a real-world testbed demonstrate multiple advantages of Easz over existing compression approaches, in terms of adaptability to different compression levels, computational efficiency, and image reconstruction quality.
CLOG-CD: Curriculum Learning based on Oscillating Granularity of Class Decomposed Medical Image Classification
Curriculum learning strategies have been proven to be effective in various applications and have gained significant interest in the field of machine learning. It has the ability to improve the final model's performance and accelerate the training process. However, in the medical imaging domain, data irregularities can make the recognition task more challenging and usually result in misclassification between the different classes in the dataset. Class-decomposition approaches have shown promising results in solving such a problem by learning the boundaries within the classes of the data set. In this paper, we present a novel convolutional neural network (CNN) training method based on the curriculum learning strategy and the class decomposition approach, which we call CLOG-CD, to improve the performance of medical image classification. We evaluated our method on four different imbalanced medical image datasets, such as Chest X-ray (CXR), brain tumour, digital knee X-ray, and histopathology colorectal cancer (CRC). CLOG-CD utilises the learnt weights from the decomposition granularity of the classes, and the training is accomplished from descending to ascending order (i.e., anti-curriculum technique). We also investigated the classification performance of our proposed method based on different acceleration factors and pace function curricula. We used two pre-trained networks, ResNet-50 and DenseNet-121, as the backbone for CLOG-CD. The results with ResNet-50 show that CLOG-CD has the ability to improve classification performance with an accuracy of 96.08% for the CXR dataset, 96.91% for the brain tumour dataset, 79.76% for the digital knee X-ray, and 99.17% for the CRC dataset, compared to other training strategies. In addition, with DenseNet-121, CLOG-CD has achieved 94.86%, 94.63%, 76.19%, and 99.45% for CXR, brain tumour, digital knee X-ray, and CRC datasets, respectively
comment: Published in: IEEE Transactions on Emerging Topics in Computing
Efficient Multi Subject Visual Reconstruction from fMRI Using Aligned Representations
This work introduces a novel approach to fMRI-based visual image reconstruction using a subject-agnostic common representation space. We show that the brain signals of the subjects can be aligned in this common space during training to form a semantically aligned common brain. This is leveraged to demonstrate that aligning subject-specific lightweight modules to a reference subject is significantly more efficient than traditional end-to-end training methods. Our approach excels in low-data scenarios. We evaluate our methods on different datasets, demonstrating that the common space is subject and dataset-agnostic.
Toward Onboard AI-Enabled Solutions to Space Object Detection for Space Sustainability
The rapid expansion of advanced low-Earth orbit (LEO) satellites in large constellations is positioning space assets as key to the future, enabling global internet access and relay systems for deep space missions. A solution to the challenge is effective space object detection (SOD) for collision assessment and avoidance. In SOD, an LEO satellite must detect other satellites and objects with high precision and minimal delay. This paper investigates the feasibility and effectiveness of employing vision sensors for SOD tasks based on deep learning (DL) models. It introduces models based on the Squeeze-and-Excitation (SE) layer, Vision Transformer (ViT), and the Generalized Efficient Layer Aggregation Network (GELAN) and evaluates their performance under SOD scenarios. Experimental results show that the proposed models achieve mean average precision at intersection over union threshold 0.5 (mAP50) scores of up to 0.751 and mean average precision averaged over intersection over union thresholds from 0.5 to 0.95 (mAP50:95) scores of up to 0.280. Compared to the baseline GELAN-t model, the proposed GELAN-ViT-SE model increases the average mAP50 from 0.721 to 0.751, improves the mAP50:95 from 0.266 to 0.274, reduces giga floating point operations (GFLOPs) from 7.3 to 5.6, and lowers peak power consumption from 2080.7 mW to 2028.7 mW by 2.5\%.
comment: This paper has been accepted at the 18th International Conference on Space Operations (SpaceOps 2025)
A Dual-Task Synergy-Driven Generalization Framework for Pancreatic Cancer Segmentation in CT Scans
Pancreatic cancer, characterized by its notable prevalence and mortality rates, demands accurate lesion delineation for effective diagnosis and therapeutic interventions. The generalizability of extant methods is frequently compromised due to the pronounced variability in imaging and the heterogeneous characteristics of pancreatic lesions, which may mimic normal tissues and exhibit significant inter-patient variability. Thus, we propose a generalization framework that synergizes pixel-level classification and regression tasks, to accurately delineate lesions and improve model stability. This framework not only seeks to align segmentation contours with actual lesions but also uses regression to elucidate spatial relationships between diseased and normal tissues, thereby improving tumor localization and morphological characterization. Enhanced by the reciprocal transformation of task outputs, our approach integrates additional regression supervision within the segmentation context, bolstering the model's generalization ability from a dual-task perspective. Besides, dual self-supervised learning in feature spaces and output spaces augments the model's representational capability and stability across different imaging views. Experiments on 594 samples composed of three datasets with significant imaging differences demonstrate that our generalized pancreas segmentation results comparable to mainstream in-domain validation performance (Dice: 84.07%). More importantly, it successfully improves the results of the highly challenging cross-lesion generalized pancreatic cancer segmentation task by 9.51%. Thus, our model constitutes a resilient and efficient foundational technological support for pancreatic disease management and wider medical applications. The codes will be released at https://github.com/SJTUBME-QianLab/Dual-Task-Seg.
comment: accept by IEEE Transactions on Medical Imaging (TMI) 2025
Seeing Heat with Color -- RGB-Only Wildfire Temperature Inference from SAM-Guided Multimodal Distillation using Radiometric Ground Truth
High-fidelity wildfire monitoring using Unmanned Aerial Vehicles (UAVs) typically requires multimodal sensing - especially RGB and thermal imagery - which increases hardware cost and power consumption. This paper introduces SAM-TIFF, a novel teacher-student distillation framework for pixel-level wildfire temperature prediction and segmentation using RGB input only. A multimodal teacher network trained on paired RGB-Thermal imagery and radiometric TIFF ground truth distills knowledge to a unimodal RGB student network, enabling thermal-sensor-free inference. Segmentation supervision is generated using a hybrid approach of segment anything (SAM)-guided mask generation, and selection via TOPSIS, along with Canny edge detection and Otsu's thresholding pipeline for automatic point prompt selection. Our method is the first to perform per-pixel temperature regression from RGB UAV data, demonstrating strong generalization on the recent FLAME 3 dataset. This work lays the foundation for lightweight, cost-effective UAV-based wildfire monitoring systems without thermal sensors.
comment: 7 pages, 4 figures, 4 tables
HybridGS: High-Efficiency Gaussian Splatting Data Compression using Dual-Channel Sparse Representation and Point Cloud Encoder ICML2025
Most existing 3D Gaussian Splatting (3DGS) compression schemes focus on producing compact 3DGS representation via implicit data embedding. They have long coding times and highly customized data format, making it difficult for widespread deployment. This paper presents a new 3DGS compression framework called HybridGS, which takes advantage of both compact generation and standardized point cloud data encoding. HybridGS first generates compact and explicit 3DGS data. A dual-channel sparse representation is introduced to supervise the primitive position and feature bit depth. It then utilizes a canonical point cloud encoder to perform further data compression and form standard output bitstreams. A simple and effective rate control scheme is proposed to pivot the interpretable data compression scheme. At the current stage, HybridGS does not include any modules aimed at improving 3DGS quality during generation. But experiment results show that it still provides comparable reconstruction performance against state-of-the-art methods, with evidently higher encoding and decoding speed. The code is publicly available at https://github.com/Qi-Yangsjtu/HybridGS.
comment: Accepted by ICML2025
Deep Implicit Optimization enables Robust Learnable Features for Deformable Image Registration
Deep Learning in Image Registration (DLIR) methods have been tremendously successful in image registration due to their speed and ability to incorporate weak label supervision at training time. However, existing DLIR methods forego many of the benefits and invariances of optimization methods. The lack of a task-specific inductive bias in DLIR methods leads to suboptimal performance, especially in the presence of domain shift. Our method aims to bridge this gap between statistical learning and optimization by explicitly incorporating optimization as a layer in a deep network. A deep network is trained to predict multi-scale dense feature images that are registered using a black box iterative optimization solver. This optimal warp is then used to minimize image and label alignment errors. By implicitly differentiating end-to-end through an iterative optimization solver, we explicitly exploit invariances of the correspondence matching problem induced by the optimization, while learning registration and label-aware features, and guaranteeing the warp functions to be a local minima of the registration objective in the feature space. Our framework shows excellent performance on in-domain datasets, and is agnostic to domain shift such as anisotropy and varying intensity profiles. For the first time, our method allows switching between arbitrary transformation representations (free-form to diffeomorphic) at test time with zero retraining. End-to-end feature learning also facilitates interpretability of features and arbitrary test-time regularization, which is not possible with existing DLIR methods.
comment: Accepted at Medical Image Analysis
Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data: Break Training Data Bottleneck in Artificial Intelligence
Diffusion magnetic resonance imaging (MRI) is the only imaging modality for non-invasive movement detection of in vivo water molecules, with significant clinical and research applications. Diffusion weighted imaging (DWI) MRI acquired by multi-shot techniques can achieve higher resolution, better signal-to-noise ratio, and lower geometric distortion than single-shot, but suffers from inter-shot motion-induced artifacts. These artifacts cannot be removed prospectively, leading to the absence of artifact-free training labels. Thus, the potential of deep learning in multi-shot DWI reconstruction remains largely untapped. To break the training data bottleneck, here, we propose a Physics-Informed Deep DWI reconstruction method (PIDD) to synthesize high-quality paired training data by leveraging the physical diffusion model (magnitude synthesis) and inter-shot motion-induced phase model (motion phase synthesis). The network is trained only once with 100,000 synthetic samples, achieving encouraging results on multiple realistic in vivo data reconstructions. Advantages over conventional methods include: (a) Better motion artifact suppression and reconstruction stability; (b) Outstanding generalization to multi-scenario reconstructions, including multi-resolution, multi-b-value, multi-under-sampling, multi-vendor, and multi-center; (c) Excellent clinical adaptability to patients with verifications by seven experienced doctors (p<0.001). In conclusion, PIDD presents a novel deep learning framework by exploiting the power of MRI physics, providing a cost-effective and explainable way to break the data bottleneck in deep learning medical imaging.
comment: 10 pages, 8 figures
The Loop Game: Quality Assessment and Optimization for Low-Light Image Enhancement
There is an increasing consensus that the design and optimization of low light image enhancement methods need to be fully driven by perceptual quality. With numerous approaches proposed to enhance low-light images, much less work has been dedicated to quality assessment and quality optimization of low-light enhancement. In this paper, to close the gap between enhancement and assessment, we propose a loop enhancement framework that produces a clear picture of how the enhancement of low-light images could be optimized towards better visual quality. In particular, we create a large-scale database for QUality assessment Of The Enhanced LOw-Light Image (QUOTE-LOL), which serves as the foundation in studying and developing objective quality assessment measures. The objective quality assessment measure plays a critical bridging role between visual quality and enhancement and is further incorporated in the optimization in learning the enhancement model towards perceptual optimally. Finally, we iteratively perform the enhancement and optimization tasks, enhancing the low-light images continuously. The superiority of the proposed scheme is validated based on various low-light scenes.
Human-Computer Interaction
Interactive authoring of outcome-oriented lesson plans for immersive Virtual Reality training
Immersive Virtual Reality (iVR) applications have shown immense potential for skill training and learning in manufacturing. However, authoring of such applications requires technical expertise, which makes it difficult for educators to author instructions targeted at desired learning outcomes. We present FlowTrainer, an LLM-assisted interactive system to allow educators to author lesson plans for their iVR instruction based on desired goals. The authoring workflow is supported by Backward design to align the planned lesson based on the desired outcomes. We implemented a welding use case and conducted a user study with welding experts to test the effectiveness of the system in authoring outcome-oriented lesson plans. The study results showed that the system allowed users to plan lesson plans based on desired outcomes while reducing the time and technical expertise required for the authoring process. We believe that such efforts can allow widespread adoption of iVR solutions in manufacturing training to meet the workforce demands in the industry.
From Formulas to Figures: How Visual Elements Impact User Interactions in Educational Videos
Educational videos have become increasingly relevant in today's learning environments. While prior research in laboratory studies has provided valuable insights, analyzing real-world interaction data can enhance our understanding of authentic user behavior. Previous studies have investigated technical aspects, such as the influence of cuts on pausing behavior, but the impact of visual complexity remains understudied. In this paper, we address this gap and propose a novel approach centered on visual complexity, defined as the number of visually distinguishable and meaningful elements in a video frame, such as mathematical equations, chemical formulas, or graphical representations. Our study introduces a fine-grained taxonomy of visual objects in educational videos, expanding on previous classifications. Applying this taxonomy to 25 videos from physics and chemistry, we examine the relationship between visual complexity and user behavior, including pauses, in-video navigation, and session dropouts. The results indicate that increased visual complexity, especially of textual elements, correlates with more frequent pauses, rewinds, and dropouts. The results offer a deeper understanding of how video design affects user behavior in real-world scenarios. Our work has implications for optimizing educational videos, particularly in STEM fields. We make our code publicly available (https://github.com/TIBHannover/from_formulas_to_figures).
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. As soon as the manuscript has been published, the DOI will appear here
VisTaxa: Developing a Taxonomy of Historical Visualizations
Historical visualizations are a rich resource for visualization research. While taxonomy is commonly used to structure and understand the design space of visualizations, existing taxonomies primarily focus on contemporary visualizations and largely overlook historical visualizations. To address this gap, we describe an empirical method for taxonomy development. We introduce a coding protocol and the VisTaxa system for taxonomy labeling and comparison. We demonstrate using our method to develop a historical visualization taxonomy by coding 400 images of historical visualizations. We analyze the coding result and reflect on the coding process. Our work is an initial step toward a systematic investigation of the design space of historical visualizations.
comment: Accepted to IEEE TVCG (IEEE PacificVis 2025 Journal Track)
Speculative Evolution Through 3D Cellular Automata
This project explores speculative evolution through a 3D implementation of Conway's Game of Life, using procedural simulation to generate unfamiliar extraterrestrial organic forms. By applying a volumetric optimized workflow, the raw cellular structures are smoothed into unified, bone-like geometries that resemble hypothetical non-terrestrial morphologies. The resulting forms, strange yet organic, are 3D printed as fossil-like artifacts, presenting a tangible representation of generative structures. This process situates the work at the intersection of artificial life, evolutionary modeling, and digital fabrication, illustrating how simple rules can simulate complex biological emergence and challenge conventional notions of organic form.
comment: 10 pages, 13 Figures
Automated ARAT Scoring Using Multimodal Video Analysis, Multi-View Fusion, and Hierarchical Bayesian Models: A Clinician Study
Manual scoring of the Action Research Arm Test (ARAT) for upper extremity assessment in stroke rehabilitation is time-intensive and variable. We propose an automated ARAT scoring system integrating multimodal video analysis with SlowFast, I3D, and Transformer-based models using OpenPose keypoints and object locations. Our approach employs multi-view data (ipsilateral, contralateral, and top perspectives), applying early and late fusion to combine features across views and models. Hierarchical Bayesian Models (HBMs) infer movement quality components, enhancing interpretability. A clinician dashboard displays task scores, execution times, and quality assessments. We conducted a study with five clinicians who reviewed 500 video ratings generated by our system, providing feedback on its accuracy and usability. Evaluated on a stroke rehabilitation dataset, our framework achieves 89.0% validation accuracy with late fusion, with HBMs aligning closely with manual assessments. This work advances automated rehabilitation by offering a scalable, interpretable solution with clinical validation.
Evaluating Input Modalities for Pilot-Centered Taxiway Navigation: Insights from a Wizard-of-Oz Simulation
Runway and taxiway incursions continue to challenge aviation safety, as pilots often experience disorientation from poor visibility in adverse conditions and cognitive workload in complex airport layouts. Current tools, such as airport moving maps on portable tablets, allow manual route planning but do not dynamically adapt to air traffic controllers' (ATCOs) clearances, limiting their effectiveness in high-stress scenarios. This study investigates the impact of different input modalities - paper-based, keyboard touch, map touch, and speech-to-text - on taxiway navigation performance, using a medium-fidelity flight simulator and a Wizard-of-Oz methodology to simulate ideal automation conditions. Contrary to common assumptions, recent studies indicate that paper-based methods outperform digital counterparts in accuracy and efficiency under certain conditions, highlighting critical limitations in current automation strategies. In response, our study investigates why manual methods may excel and how future automation can be optimized for pilot-centered operations. Employing a Wizard-of-Oz approach, we replicated the full taxiing process - from receiving ATCO clearances to executing maneuvers - and differentiated between readback and execution accuracy. Findings reveal that speech-based systems suffer from low pilot trust, necessitating hybrid solutions that integrate error correction and confidence indicators. These insights contribute to the development of future pilot-centered taxiway assistance that enhance situational awareness, minimize workload, and improve overall operational safety.
AI-Based Speaking Assistant: Supporting Non-Native Speakers' Speaking in Real-Time Multilingual Communication SC
Non-native speakers (NNSs) often face speaking challenges in real-time multilingual communication, such as struggling to articulate their thoughts. To address this issue, we developed an AI-based speaking assistant (AISA) that provides speaking references for NNSs based on their input queries, task background, and conversation history. To explore NNSs' interaction with AISA and its impact on NNSs' speaking during real-time multilingual communication, we conducted a mixed-method study involving a within-subject experiment and follow-up interviews. In the experiment, two native speakers (NSs) and one NNS formed a team (31 teams in total) and completed two collaborative tasks--one with access to the AISA and one without. Overall, our study revealed four types of AISA input patterns among NNSs, each reflecting different levels of effort and language preferences. Although AISA did not improve NNSs' speaking competence, follow-up interviews revealed that it helped improve the logical flow and depth of their speech. Moreover, the additional multitasking introduced by AISA, such as entering and reviewing system output, potentially elevated NNSs' workload and anxiety. Based on these observations, we discuss the pros and cons of implementing tools to assist NNS in real-time multilingual communication and offer design recommendations.
comment: Accepted to ACM CSCW 2025
Human-AI Governance (HAIG): A Trust-Utility Approach
This paper introduces the HAIG framework for analysing trust dynamics across evolving human-AI relationships. Current categorical frameworks (e.g., "human-in-the-loop" models) inadequately capture how AI systems evolve from tools to partners, particularly as foundation models demonstrate emergent capabilities and multi-agent systems exhibit autonomous goal-setting behaviours. As systems advance, agency redistributes in complex patterns that are better represented as positions along continua rather than discrete categories, though progression may include both gradual shifts and significant step changes. The HAIG framework operates across three levels: dimensions (Decision Authority Distribution, Process Autonomy, and Accountability Configuration), continua (gradual shifts along each dimension), and thresholds (critical points requiring governance adaptation). Unlike risk-based or principle-based approaches, HAIG adopts a trust-utility orientation, focusing on maintaining appropriate trust relationships that maximise utility while ensuring sufficient safeguards. Our analysis reveals how technical advances in self-supervision, reasoning authority, and distributed decision-making drive non-uniform trust evolution across both contextual variation and technological advancement. Case studies in healthcare and European regulation demonstrate how HAIG complements existing frameworks while offering a foundation for alternative approaches that anticipate governance challenges before they emerge.
comment: 32 pages including references and appendix, 25 pages core text, 3 figures, 3 tables
Interaction Configurations and Prompt Guidance in Conversational AI for Question Answering in Human-AI Teams SC
Understanding the dynamics of human-AI interaction in question answering is crucial for enhancing collaborative efficiency. Extending from our initial formative study, which revealed challenges in human utilization of conversational AI support, we designed two configurations for prompt guidance: a Nudging approach, where the AI suggests potential responses for human agents, and a Highlight strategy, emphasizing crucial parts of reference documents to aid human responses. Through two controlled experiments, the first involving 31 participants and the second involving 106 participants, we compared these configurations against traditional human-only approaches, both with and without AI assistance. Our findings suggest that effective human-AI collaboration can enhance response quality, though merely combining human and AI efforts does not ensure improved outcomes. In particular, the Nudging configuration was shown to help improve the quality of the output when compared to AI alone. This paper delves into the development of these prompt guidance paradigms, offering insights for refining human-AI collaborations in conversational question-answering contexts and contributing to a broader understanding of human perceptions and expectations in AI partnerships.
comment: This paper has been accepted at CSCW 2025
SMARTe-VR: Student Monitoring and Adaptive Response Technology for e-Learning in Virtual Reality AAAI 2025
This work introduces SMARTe-VR, a platform for student monitoring in an immersive virtual reality environment designed for online education. SMARTe-VR aims to collect data for adaptive learning, focusing on facial biometrics and learning metadata. The platform allows instructors to create customized learning sessions with video lectures, featuring an interface with an AutoQA system to evaluate understanding, interaction tools (e.g., textbook highlighting and lecture tagging), and real-time feedback. Furthermore, we released a dataset that contains 5 research challenges with data from 10 users in VR-based TOEIC sessions. This data set, which spans more than 25 hours, includes facial features, learning metadata, 450 responses, difficulty levels of the questions, concept tags, and understanding labels. Alongside the database, we present preliminary experiments using Item Response Theory models, adapted for understanding detection using facial features. Two architectures were explored: a Temporal Convolutional Network for local features and a Multilayer Perceptron for global features.
comment: Presented at the Workshop on Artificial Intelligence for Education (AI4EDU) at AAAI 2025, and also at the Workshop on Computer Vision for Mixed Reality (CV4MR) at CVPR 2025
Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces
Due to large intra-subject and inter-subject variabilities of electroencephalogram (EEG) signals, EEG-based brain-computer interfaces (BCIs) usually need subject-specific calibration to tailor the decoding algorithm for each new subject, which is time-consuming and user-unfriendly, hindering their real-world applications. Transfer learning (TL) has been extensively used to expedite the calibration, by making use of EEG data from other subjects/sessions. An important consideration in TL for EEG-based BCIs is to reduce the data distribution discrepancies among different subjects/sessions, to avoid negative transfer. Euclidean alignment (EA) was proposed in 2020 to address this challenge. Numerous experiments from 13 different BCI paradigms demonstrated its effectiveness and efficiency. This paper revisits EA, explaining its procedure and correct usage, introducing its applications and extensions, and pointing out potential new research directions. It should be very helpful to BCI researchers, especially those who are working on EEG signal decoding.
Computer Vision and Pattern Recognition
GENMO: A GENeralist Model for Human MOtion
Human motion modeling traditionally separates motion generation and estimation into distinct tasks with specialized models. Motion generation models focus on creating diverse, realistic motions from inputs like text, audio, or keyframes, while motion estimation models aim to reconstruct accurate motion trajectories from observations like videos. Despite sharing underlying representations of temporal dynamics and kinematics, this separation limits knowledge transfer between tasks and requires maintaining separate models. We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework. Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals. Leveraging the synergy between regression and diffusion, GENMO achieves accurate global motion estimation while enabling diverse motion generation. We also introduce an estimation-guided training objective that exploits in-the-wild videos with 2D annotations and text descriptions to enhance generative diversity. Furthermore, our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control. This unified approach creates synergistic benefits: generative priors improve estimated motions under challenging conditions like occlusions, while diverse video data enhances generation capabilities. Extensive experiments demonstrate GENMO's effectiveness as a generalist framework that successfully handles multiple human motion tasks within a single model.
comment: Project page: https://research.nvidia.com/labs/dair/genmo/
VIDSTAMP: A Temporally-Aware Watermark for Ownership and Integrity in Video Diffusion Models
The rapid rise of video diffusion models has enabled the generation of highly realistic and temporally coherent videos, raising critical concerns about content authenticity, provenance, and misuse. Existing watermarking approaches, whether passive, post-hoc, or adapted from image-based techniques, often struggle to withstand video-specific manipulations such as frame insertion, dropping, or reordering, and typically degrade visual quality. In this work, we introduce VIDSTAMP, a watermarking framework that embeds per-frame or per-segment messages directly into the latent space of temporally-aware video diffusion models. By fine-tuning the model's decoder through a two-stage pipeline, first on static image datasets to promote spatial message separation, and then on synthesized video sequences to restore temporal consistency, VIDSTAMP learns to embed high-capacity, flexible watermarks with minimal perceptual impact. Leveraging architectural components such as 3D convolutions and temporal attention, our method imposes no additional inference cost and offers better perceptual quality than prior methods, while maintaining comparable robustness against common distortions and tampering. VIDSTAMP embeds 768 bits per video (48 bits per frame) with a bit accuracy of 95.0%, achieves a log P-value of -166.65 (lower is better), and maintains a video quality score of 0.836, comparable to unwatermarked outputs (0.838) and surpassing prior methods in capacity-quality tradeoffs. Code: Code: \url{https://github.com/SPIN-UMass/VidStamp}
Multimodal Doctor-in-the-Loop: A Clinically-Guided Explainable Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer
This study proposes a novel approach combining Multimodal Deep Learning with intrinsic eXplainable Artificial Intelligence techniques to predict pathological response in non-small cell lung cancer patients undergoing neoadjuvant therapy. Due to the limitations of existing radiomics and unimodal deep learning approaches, we introduce an intermediate fusion strategy that integrates imaging and clinical data, enabling efficient interaction between data modalities. The proposed Multimodal Doctor-in-the-Loop method further enhances clinical relevance by embedding clinicians' domain knowledge directly into the training process, guiding the model's focus gradually from broader lung regions to specific lesions. Results demonstrate improved predictive accuracy and explainability, providing insights into optimal data integration strategies for clinical applications.
comment: arXiv admin note: substantial text overlap with arXiv:2502.17503
Global Collinearity-aware Polygonizer for Polygonal Building Mapping in Remote Sensing
This paper addresses the challenge of mapping polygonal buildings from remote sensing images and introduces a novel algorithm, the Global Collinearity-aware Polygonizer (GCP). GCP, built upon an instance segmentation framework, processes binary masks produced by any instance segmentation model. The algorithm begins by collecting polylines sampled along the contours of the binary masks. These polylines undergo a refinement process using a transformer-based regression module to ensure they accurately fit the contours of the targeted building instances. Subsequently, a collinearity-aware polygon simplification module simplifies these refined polylines and generate the final polygon representation. This module employs dynamic programming technique to optimize an objective function that balances the simplicity and fidelity of the polygons, achieving globally optimal solutions. Furthermore, the optimized collinearity-aware objective is seamlessly integrated into network training, enhancing the cohesiveness of the entire pipeline. The effectiveness of GCP has been validated on two public benchmarks for polygonal building mapping. Further experiments reveal that applying the collinearity-aware polygon simplification module to arbitrary polylines, without prior knowledge, enhances accuracy over traditional methods such as the Douglas-Peucker algorithm. This finding underscores the broad applicability of GCP. The code for the proposed method will be made available at https://github.com/zhu-xlab.
Monitoring morphometric drift in lifelong learning segmentation of the spinal cord
Morphometric measures derived from spinal cord segmentations can serve as diagnostic and prognostic biomarkers in neurological diseases and injuries affecting the spinal cord. While robust, automatic segmentation methods to a wide variety of contrasts and pathologies have been developed over the past few years, whether their predictions are stable as the model is updated using new datasets has not been assessed. This is particularly important for deriving normative values from healthy participants. In this study, we present a spinal cord segmentation model trained on a multisite $(n=75)$ dataset, including 9 different MRI contrasts and several spinal cord pathologies. We also introduce a lifelong learning framework to automatically monitor the morphometric drift as the model is updated using additional datasets. The framework is triggered by an automatic GitHub Actions workflow every time a new model is created, recording the morphometric values derived from the model's predictions over time. As a real-world application of the proposed framework, we employed the spinal cord segmentation model to update a recently-introduced normative database of healthy participants containing commonly used measures of spinal cord morphometry. Results showed that: (i) our model outperforms previous versions and pathology-specific models on challenging lumbar spinal cord cases, achieving an average Dice score of $0.95 \pm 0.03$; (ii) the automatic workflow for monitoring morphometric drift provides a quick feedback loop for developing future segmentation models; and (iii) the scaling factor required to update the database of morphometric measures is nearly constant among slices across the given vertebral levels, showing minimum drift between the current and previous versions of the model monitored by the framework. The model is freely available in Spinal Cord Toolbox v7.0.
FreeInsert: Disentangled Text-Guided Object Insertion in 3D Gaussian Scene without Spatial Priors
Text-driven object insertion in 3D scenes is an emerging task that enables intuitive scene editing through natural language. However, existing 2D editing-based methods often rely on spatial priors such as 2D masks or 3D bounding boxes, and they struggle to ensure consistency of the inserted object. These limitations hinder flexibility and scalability in real-world applications. In this paper, we propose FreeInsert, a novel framework that leverages foundation models including MLLMs, LGMs, and diffusion models to disentangle object generation from spatial placement. This enables unsupervised and flexible object insertion in 3D scenes without spatial priors. FreeInsert starts with an MLLM-based parser that extracts structured semantics, including object types, spatial relationships, and attachment regions, from user instructions. These semantics guide both the reconstruction of the inserted object for 3D consistency and the learning of its degrees of freedom. We leverage the spatial reasoning capabilities of MLLMs to initialize object pose and scale. A hierarchical, spatially aware refinement stage further integrates spatial semantics and MLLM-inferred priors to enhance placement. Finally, the appearance of the object is improved using the inserted-object image to enhance visual fidelity. Experimental results demonstrate that FreeInsert achieves semantically coherent, spatially precise, and visually realistic 3D insertions without relying on spatial priors, offering a user-friendly and flexible editing experience.
A Neural Architecture Search Method using Auxiliary Evaluation Metric based on ResNet Architecture GECCO 2023
This paper proposes a neural architecture search space using ResNet as a framework, with search objectives including parameters for convolution, pooling, fully connected layers, and connectivity of the residual network. In addition to recognition accuracy, this paper uses the loss value on the validation set as a secondary objective for optimization. The experimental results demonstrate that the search space of this paper together with the optimisation approach can find competitive network architectures on the MNIST, Fashion-MNIST and CIFAR100 datasets.
comment: GECCO 2023
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
The diffusion-based adversarial purification methods attempt to drown adversarial perturbations into a part of isotropic noise through the forward process, and then recover the clean images through the reverse process. Due to the lack of distribution information about adversarial perturbations in the pixel domain, it is often unavoidable to damage normal semantics. We turn to the frequency domain perspective, decomposing the image into amplitude spectrum and phase spectrum. We find that for both spectra, the damage caused by adversarial perturbations tends to increase monotonically with frequency. This means that we can extract the content and structural information of the original clean sample from the frequency components that are less damaged. Meanwhile, theoretical analysis indicates that existing purification methods indiscriminately damage all frequency components, leading to excessive damage to the image. Therefore, we propose a purification method that can eliminate adversarial perturbations while maximizing the preservation of the content and structure of the original image. Specifically, at each time step during the reverse process, for the amplitude spectrum, we replace the low-frequency components of the estimated image's amplitude spectrum with the corresponding parts of the adversarial image. For the phase spectrum, we project the phase of the estimated image into a designated range of the adversarial image's phase spectrum, focusing on the low frequencies. Empirical evidence from extensive experiments demonstrates that our method significantly outperforms most current defense methods.
FlowDubber: Movie Dubbing with LLM-based Semantic-aware Learning and Flow Matching based Voice Enhancing
Movie Dubbing aims to convert scripts into speeches that align with the given movie clip in both temporal and emotional aspects while preserving the vocal timbre of a given brief reference audio. Existing methods focus primarily on reducing the word error rate while ignoring the importance of lip-sync and acoustic quality. To address these issues, we propose a large language model (LLM) based flow matching architecture for dubbing, named FlowDubber, which achieves high-quality audio-visual sync and pronunciation by incorporating a large speech language model and dual contrastive aligning while achieving better acoustic quality via the proposed voice-enhanced flow matching than previous works. First, we introduce Qwen2.5 as the backbone of LLM to learn the in-context sequence from movie scripts and reference audio. Then, the proposed semantic-aware learning focuses on capturing LLM semantic knowledge at the phoneme level. Next, dual contrastive aligning (DCA) boosts mutual alignment with lip movement, reducing ambiguities where similar phonemes might be confused. Finally, the proposed Flow-based Voice Enhancing (FVE) improves acoustic quality in two aspects, which introduces an LLM-based acoustics flow matching guidance to strengthen clarity and uses affine style prior to enhance identity when recovering noise into mel-spectrograms via gradient vector field prediction. Extensive experiments demonstrate that our method outperforms several state-of-the-art methods on two primary benchmarks. The demos are available at {\href{https://galaxycong.github.io/LLM-Flow-Dubber/}{\textcolor{red}{https://galaxycong.github.io/LLM-Flow-Dubber/}}}.
CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking
Online multi-object tracking has been recently dominated by tracking-by-detection (TbD) methods, where recent advances rely on increasingly sophisticated heuristics for tracklet representation, feature fusion, and multi-stage matching. The key strength of TbD lies in its modular design, enabling the integration of specialized off-the-shelf models like motion predictors and re-identification. However, the extensive usage of human-crafted rules for temporal associations makes these methods inherently limited in their ability to capture the complex interplay between various tracking cues. In this work, we introduce CAMEL, a novel association module for Context-Aware Multi-Cue ExpLoitation, that learns resilient association strategies directly from data, breaking free from hand-crafted heuristics while maintaining TbD's valuable modularity. At its core, CAMEL employs two transformer-based modules and relies on a novel association-centric training scheme to effectively model the complex interactions between tracked targets and their various association cues. Unlike end-to-end detection-by-tracking approaches, our method remains lightweight and fast to train while being able to leverage external off-the-shelf models. Our proposed online tracking pipeline, CAMELTrack, achieves state-of-the-art performance on multiple tracking benchmarks. Our code is available at https://github.com/TrackingLaboratory/CAMELTrack.
Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design
Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this paper we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. Further, this allows us to formulate and solve the choice of "where to look next" as a Bayesian experimental design problem using the Expected Information Gain criterion. Experiments on the Frey faces and MNIST datasets demonstrate the effectiveness of our models.
comment: 19 pages, 4 figures
Can Foundation Models Really Segment Tumors? A Benchmarking Odyssey in Lung CT Imaging
Accurate lung tumor segmentation is crucial for improving diagnosis, treatment planning, and patient outcomes in oncology. However, the complexity of tumor morphology, size, and location poses significant challenges for automated segmentation. This study presents a comprehensive benchmarking analysis of deep learning-based segmentation models, comparing traditional architectures such as U-Net and DeepLabV3, self-configuring models like nnUNet, and foundation models like MedSAM, and MedSAM~2. Evaluating performance across two lung tumor segmentation datasets, we assess segmentation accuracy and computational efficiency under various learning paradigms, including few-shot learning and fine-tuning. The results reveal that while traditional models struggle with tumor delineation, foundation models, particularly MedSAM~2, outperform them in both accuracy and computational efficiency. These findings underscore the potential of foundation models for lung tumor segmentation, highlighting their applicability in improving clinical workflows and patient outcomes.
CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment CVPR 2025
Recent advances in audio-visual learning have shown promising results in learning representations across modalities. However, most approaches rely on global audio representations that fail to capture fine-grained temporal correspondences with visual frames. Additionally, existing methods often struggle with conflicting optimization objectives when trying to jointly learn reconstruction and cross-modal alignment. In this work, we propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning. We address three key challenges: First, we tackle the granularity mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations. Second, we resolve conflicting optimization goals by separating contrastive and reconstruction objectives through dedicated global tokens. Third, we improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens. We evaluate the proposed approach on AudioSet, VGG Sound, and the ADE20K Sound dataset on zero-shot retrieval, classification and localization tasks demonstrating state-of-the-art performance and outperforming more complex architectures.
comment: To be published at CVPR 2025, code available at https://github.com/edsonroteia/cav-mae-sync
Compensating Spatiotemporally Inconsistent Observations for Online Dynamic 3D Gaussian Splatting SIGGRAPH 2025
Online reconstruction of dynamic scenes is significant as it enables learning scenes from live-streaming video inputs, while existing offline dynamic reconstruction methods rely on recorded video inputs. However, previous online reconstruction approaches have primarily focused on efficiency and rendering quality, overlooking the temporal consistency of their results, which often contain noticeable artifacts in static regions. This paper identifies that errors such as noise in real-world recordings affect temporal inconsistency in online reconstruction. We propose a method that enhances temporal consistency in online reconstruction from observations with temporal inconsistency which is inevitable in cameras. We show that our method restores the ideal observation by subtracting the learned error. We demonstrate that applying our method to various baselines significantly enhances both temporal consistency and rendering quality across datasets. Code, video results, and checkpoints are available at https://bbangsik13.github.io/OR2.
comment: SIGGRAPH 2025, Project page: https://bbangsik13.github.io/OR2
Core-Set Selection for Data-efficient Land Cover Segmentation
The increasing accessibility of remotely sensed data and the potential of such data to inform large-scale decision-making has driven the development of deep learning models for many Earth Observation tasks. Traditionally, such models must be trained on large datasets. However, the common assumption that broadly larger datasets lead to better outcomes tends to overlook the complexities of the data distribution, the potential for introducing biases and noise, and the computational resources required for processing and storing vast datasets. Therefore, effective solutions should consider both the quantity and quality of data. In this paper, we propose six novel core-set selection methods for selecting important subsets of samples from remote sensing image segmentation datasets that rely on imagery only, labels only, and a combination of each. We benchmark these approaches against a random-selection baseline on three commonly used land cover classification datasets: DFC2022, Vaihingen, and Potsdam. In each of the datasets, we demonstrate that training on a subset of samples outperforms the random baseline, and some approaches outperform training on all available data. This result shows the importance and potential of data-centric learning for the remote sensing domain. The code is available at https://github.com/keillernogueira/data-centric-rs-classification/.
RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications, where wavelength-dependent attenuation causes severe content degradation and color distortion. While recent state space models like Mamba show potential for long-range dependency modeling, their unfolding operations and fixed scan paths on 1D sequences fail to adapt to local object semantics and global relation modeling, limiting their efficacy in complex underwater environments. To address this, we enhance conventional Mamba with the sorting-based scanning mechanism that dynamically reorders scanning sequences based on statistical distribution of spatial correlation of all pixels. In this way, it encourages the network to prioritize the most informative components--structural and semantic features. Upon building this mechanism, we devise a Visually Self-adaptive State Block (VSSB) that harmonizes dynamic sorting of Mamba with input-dependent dynamic convolution, enabling coherent integration of global context and local relational cues. This exquisite design helps eliminate global focus bias, especially for widely distributed contents, which greatly weakens the statistical frequency. For robust feature extraction and refinement, we design a cross-feature bridge (CFB) to adaptively fuse multi-scale representations. These efforts compose the novel relation-driven Mamba framework for effective UIE (RD-UIE). Extensive experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba in both quantitative metrics and visual fidelity, averagely achieving 0.55 dB performance gain on the three benchmarks. Our code is available at https://github.com/kkoucy/RD-UIE/tree/main
High Dynamic Range Novel View Synthesis with Single Exposure ICML 2025
High Dynamic Range Novel View Synthesis (HDR-NVS) aims to establish a 3D scene HDR model from Low Dynamic Range (LDR) imagery. Typically, multiple-exposure LDR images are employed to capture a wider range of brightness levels in a scene, as a single LDR image cannot represent both the brightest and darkest regions simultaneously. While effective, this multiple-exposure HDR-NVS approach has significant limitations, including susceptibility to motion artifacts (e.g., ghosting and blurring), high capture and storage costs. To overcome these challenges, we introduce, for the first time, the single-exposure HDR-NVS problem, where only single exposure LDR images are available during training. We further introduce a novel approach, Mono-HDR-3D, featuring two dedicated modules formulated by the LDR image formation principles, one for converting LDR colors to HDR counterparts, and the other for transforming HDR images to LDR format so that unsupervised learning is enabled in a closed loop. Designed as a meta-algorithm, our approach can be seamlessly integrated with existing NVS models. Extensive experiments show that Mono-HDR-3D significantly outperforms previous methods. Source code will be released.
comment: It has been accepted by ICML 2025
T-Graph: Enhancing Sparse-view Camera Pose Estimation by Pairwise Translation Graph
Sparse-view camera pose estimation, which aims to estimate the 6-Degree-of-Freedom (6-DoF) poses from a limited number of images captured from different viewpoints, is a fundamental yet challenging problem in remote sensing applications. Existing methods often overlook the translation information between each pair of viewpoints, leading to suboptimal performance in sparse-view scenarios. To address this limitation, we introduce T-Graph, a lightweight, plug-and-play module to enhance camera pose estimation in sparse-view settings. T-graph takes paired image features as input and maps them through a Multilayer Perceptron (MLP). It then constructs a fully connected translation graph, where nodes represent cameras and edges encode their translation relationships. It can be seamlessly integrated into existing models as an additional branch in parallel with the original prediction, maintaining efficiency and ease of use. Furthermore, we introduce two pairwise translation representations, relative-t and pair-t, formulated under different local coordinate systems. While relative-t captures intuitive spatial relationships, pair-t offers a rotation-disentangled alternative. The two representations contribute to enhanced adaptability across diverse application scenarios, further improving our module's robustness. Extensive experiments on two state-of-the-art methods (RelPose++ and Forge) using public datasets (C03D and IMC PhotoTourism) validate both the effectiveness and generalizability of T-Graph. The results demonstrate consistent improvements across various metrics, notably camera center accuracy, which improves by 1% to 6% from 2 to 8 viewpoints.
Efficient Vision-based Vehicle Speed Estimation
This paper presents a computationally efficient method for vehicle speed estimation from traffic camera footage. Building upon previous work that utilizes 3D bounding boxes derived from 2D detections and vanishing point geometry, we introduce several improvements to enhance real-time performance. We evaluate our method in several variants on the BrnoCompSpeed dataset in terms of vehicle detection and speed estimation accuracy. Our extensive evaluation across various hardware platforms, including edge devices, demonstrates significant gains in frames per second (FPS) compared to the prior state-of-the-art, while maintaining comparable or improved speed estimation accuracy. We analyze the trade-off between accuracy and computational cost, showing that smaller models utilizing post-training quantization offer the best balance for real-world deployment. Our best performing model beats previous state-of-the-art in terms of median vehicle speed estimation error (0.58 km/h vs. 0.60 km/h), detection precision (91.02% vs 87.08%) and recall (91.14% vs. 83.32%) while also being 5.5 times faster.
comment: Submitted to Journal of Real-Time Image Processing (JRTIP)
TSTMotion: Training-free Scene-awarenText-to-motion Generation ICME2025
Text-to-motion generation has recently garnered significant research interest, primarily focusing on generating human motion sequences in blank backgrounds. However, human motions commonly occur within diverse 3D scenes, which has prompted exploration into scene-aware text-to-motion generation methods. Yet, existing scene-aware methods often rely on large-scale ground-truth motion sequences in diverse 3D scenes, which poses practical challenges due to the expensive cost. To mitigate this challenge, we are the first to propose a \textbf{T}raining-free \textbf{S}cene-aware \textbf{T}ext-to-\textbf{Motion} framework, dubbed as \textbf{TSTMotion}, that efficiently empowers pre-trained blank-background motion generators with the scene-aware capability. Specifically, conditioned on the given 3D scene and text description, we adopt foundation models together to reason, predict and validate a scene-aware motion guidance. Then, the motion guidance is incorporated into the blank-background motion generators with two modifications, resulting in scene-aware text-driven motion sequences. Extensive experiments demonstrate the efficacy and generalizability of our proposed framework. We release our code in \href{https://tstmotion.github.io/}{Project Page}.
comment: Accepted by ICME2025
FreePCA: Integrating Consistency Information across Long-short Frames in Training-free Long Video Generation via Principal Component Analysis CVPR 2025
Long video generation involves generating extended videos using models trained on short videos, suffering from distribution shifts due to varying frame counts. It necessitates the use of local information from the original short frames to enhance visual and motion quality, and global information from the entire long frames to ensure appearance consistency. Existing training-free methods struggle to effectively integrate the benefits of both, as appearance and motion in videos are closely coupled, leading to motion inconsistency and visual quality. In this paper, we reveal that global and local information can be precisely decoupled into consistent appearance and motion intensity information by applying Principal Component Analysis (PCA), allowing for refined complementary integration of global consistency and local quality. With this insight, we propose FreePCA, a training-free long video generation paradigm based on PCA that simultaneously achieves high consistency and quality. Concretely, we decouple consistent appearance and motion intensity features by measuring cosine similarity in the principal component space. Critically, we progressively integrate these features to preserve original quality and ensure smooth transitions, while further enhancing consistency by reusing the mean statistics of the initial noise. Experiments demonstrate that FreePCA can be applied to various video diffusion models without requiring training, leading to substantial improvements. Code is available at https://github.com/JosephTiTan/FreePCA.
comment: Accepted by CVPR 2025
NeuroLoc: Encoding Navigation Cells for 6-DOF Camera Localization
Recently, camera localization has been widely adopted in autonomous robotic navigation due to its efficiency and convenience. However, autonomous navigation in unknown environments often suffers from scene ambiguity, environmental disturbances, and dynamic object transformation in camera localization. To address this problem, inspired by the biological brain navigation mechanism (such as grid cells, place cells, and head direction cells), we propose a novel neurobiological camera location method, namely NeuroLoc. Firstly, we designed a Hebbian learning module driven by place cells to save and replay historical information, aiming to restore the details of historical representations and solve the issue of scene fuzziness. Secondly, we utilized the head direction cell-inspired internal direction learning as multi-head attention embedding to help restore the true orientation in similar scenes. Finally, we added a 3D grid center prediction in the pose regression module to reduce the final wrong prediction. We evaluate the proposed NeuroLoc on commonly used benchmark indoor and outdoor datasets. The experimental results show that our NeuroLoc can enhance the robustness in complex environments and improve the performance of pose regression by using only a single image.
Self-Supervision Enhances Instance-based Multiple Instance Learning Methods in Digital Pathology: A Benchmark Study SP
Multiple Instance Learning (MIL) has emerged as the best solution for Whole Slide Image (WSI) classification. It consists of dividing each slide into patches, which are treated as a bag of instances labeled with a global label. MIL includes two main approaches: instance-based and embedding-based. In the former, each patch is classified independently, and then the patch scores are aggregated to predict the bag label. In the latter, bag classification is performed after aggregating patch embeddings. Even if instance-based methods are naturally more interpretable, embedding-based MILs have usually been preferred in the past due to their robustness to poor feature extractors. However, recently, the quality of feature embeddings has drastically increased using self-supervised learning (SSL). Nevertheless, many authors continue to endorse the superiority of embedding-based MIL. To investigate this further, we conduct 710 experiments across 4 datasets, comparing 10 MIL strategies, 6 self-supervised methods with 4 backbones, 4 foundation models, and various pathology-adapted techniques. Furthermore, we introduce 4 instance-based MIL methods never used before in the pathology domain. Through these extensive experiments, we show that with a good SSL feature extractor, simple instance-based MILs, with very few parameters, obtain similar or better performance than complex, state-of-the-art (SOTA) embedding-based MIL methods, setting new SOTA results on the BRACS and Camelyon16 datasets. Since simple instance-based MIL methods are naturally more interpretable and explainable to clinicians, our results suggest that more effort should be put into well-adapted SSL methods for WSI rather than into complex embedding-based MIL methods.
comment: Accepted for publication in the Journal of Medical Imaging (SPIE)
VSC: Visual Search Compositional Text-to-Image Diffusion Model
Text-to-image diffusion models have shown impressive capabilities in generating realistic visuals from natural-language prompts, yet they often struggle with accurately binding attributes to corresponding objects, especially in prompts containing multiple attribute-object pairs. This challenge primarily arises from the limitations of commonly used text encoders, such as CLIP, which can fail to encode complex linguistic relationships and modifiers effectively. Existing approaches have attempted to mitigate these issues through attention map control during inference and the use of layout information or fine-tuning during training, yet they face performance drops with increased prompt complexity. In this work, we introduce a novel compositional generation method that leverages pairwise image embeddings to improve attribute-object binding. Our approach decomposes complex prompts into sub-prompts, generates corresponding images, and computes visual prototypes that fuse with text embeddings to enhance representation. By applying segmentation-based localization training, we address cross-attention misalignment, achieving improved accuracy in binding multiple attributes to objects. Our approaches outperform existing compositional text-to-image diffusion models on the benchmark T2I CompBench, achieving better image quality, evaluated by humans, and emerging robustness under scaling number of binding pairs in the prompt.
Evaluating Vision Language Model Adaptations for Radiology Report Generation in Low-Resource Languages
The integration of artificial intelligence in healthcare has opened new horizons for improving medical diagnostics and patient care. However, challenges persist in developing systems capable of generating accurate and contextually relevant radiology reports, particularly in low-resource languages. In this study, we present a comprehensive benchmark to evaluate the performance of instruction-tuned Vision-Language Models (VLMs) in the specialized task of radiology report generation across three low-resource languages: Italian, German, and Spanish. Employing the LLaVA architectural framework, we conducted a systematic evaluation of pre-trained models utilizing general datasets, domain-specific datasets, and low-resource language-specific datasets. In light of the unavailability of models that possess prior knowledge of both the medical domain and low-resource languages, we analyzed various adaptations to determine the most effective approach for these contexts. The results revealed that language-specific models substantially outperformed both general and domain-specific models in generating radiology reports, emphasizing the critical role of linguistic adaptation. Additionally, models fine-tuned with medical terminology exhibited enhanced performance across all languages compared to models with generic knowledge, highlighting the importance of domain-specific training. We also explored the influence of the temperature parameter on the coherence of report generation, providing insights for optimal model settings. Our findings highlight the importance of tailored language and domain-specific training for improving the quality and accuracy of radiological reports in multilingual settings. This research not only advances our understanding of VLMs adaptability in healthcare but also points to significant avenues for future investigations into model tuning and language-specific adaptations.
Any-to-Any Vision-Language Model for Multimodal X-ray Imaging and Radiological Report Generation
Generative models have revolutionized Artificial Intelligence (AI), particularly in multimodal applications. However, adapting these models to the medical domain poses unique challenges due to the complexity of medical data and the stringent need for clinical accuracy. In this work, we introduce a framework specifically designed for multimodal medical data generation. By enabling the generation of multi-view chest X-rays and their associated clinical report, it bridges the gap between general-purpose vision-language models and the specialized requirements of healthcare. Leveraging the MIMIC-CXR dataset, the proposed framework shows superior performance in generating high-fidelity images and semantically coherent reports. Our quantitative evaluation reveals significant results in terms of FID and BLEU scores, showcasing the quality of the generated data. Notably, our framework achieves comparable or even superior performance compared to real data on downstream disease classification tasks, underlining its potential as a tool for medical research and diagnostics. This study highlights the importance of domain-specific adaptations in enhancing the relevance and utility of generative models for clinical applications, paving the way for future advancements in synthetic multimodal medical data generation.
comment: arXiv admin note: substantial text overlap with arXiv:2501.04614
Improving Editability in Image Generation with Layer-wise Memory CVPR 2025
Most real-world image editing tasks require multiple sequential edits to achieve desired results. Current editing approaches, primarily designed for single-object modifications, struggle with sequential editing: especially with maintaining previous edits along with adapting new objects naturally into the existing content. These limitations significantly hinder complex editing scenarios where multiple objects need to be modified while preserving their contextual relationships. We address this fundamental challenge through two key proposals: enabling rough mask inputs that preserve existing content while naturally integrating new elements and supporting consistent editing across multiple modifications. Our framework achieves this through layer-wise memory, which stores latent representations and prompt embeddings from previous edits. We propose Background Consistency Guidance that leverages memorized latents to maintain scene coherence and Multi-Query Disentanglement in cross-attention that ensures natural adaptation to existing content. To evaluate our method, we present a new benchmark dataset incorporating semantic alignment metrics and interactive editing scenarios. Through comprehensive experiments, we demonstrate superior performance in iterative image editing tasks with minimal user effort, requiring only rough masks while maintaining high-quality results throughout multiple editing steps.
comment: CVPR 2025. Project page : https://carpedkm.github.io/projects/improving_edit/index.html
Efficient Vocabulary-Free Fine-Grained Visual Recognition in the Age of Multimodal LLMs NeurIPS 2024
Fine-grained Visual Recognition (FGVR) involves distinguishing between visually similar categories, which is inherently challenging due to subtle inter-class differences and the need for large, expert-annotated datasets. In domains like medical imaging, such curated datasets are unavailable due to issues like privacy concerns and high annotation costs. In such scenarios lacking labeled data, an FGVR model cannot rely on a predefined set of training labels, and hence has an unconstrained output space for predictions. We refer to this task as Vocabulary-Free FGVR (VF-FGVR), where a model must predict labels from an unconstrained output space without prior label information. While recent Multimodal Large Language Models (MLLMs) show potential for VF-FGVR, querying these models for each test input is impractical because of high costs and prohibitive inference times. To address these limitations, we introduce \textbf{Nea}rest-Neighbor Label \textbf{R}efinement (NeaR), a novel approach that fine-tunes a downstream CLIP model using labels generated by an MLLM. Our approach constructs a weakly supervised dataset from a small, unlabeled training set, leveraging MLLMs for label generation. NeaR is designed to handle the noise, stochasticity, and open-endedness inherent in labels generated by MLLMs, and establishes a new benchmark for efficient VF-FGVR.
comment: preprint; earlier version accepted at NeurIPS 2024 Workshop on Adaptive Foundation Models
GeloVec: Higher Dimensional Geometric Smoothing for Coherent Visual Feature Extraction in Image Segmentation
This paper introduces GeloVec, a new CNN-based attention smoothing framework for semantic segmentation that addresses critical limitations in conventional approaches. While existing attention-backed segmentation methods suffer from boundary instability and contextual discontinuities during feature mapping, our framework implements a higher-dimensional geometric smoothing method to establish a robust manifold relationships between visually coherent regions. GeloVec combines modified Chebyshev distance metrics with multispatial transformations to enhance segmentation accuracy through stabilized feature extraction. The core innovation lies in the adaptive sampling weights system that calculates geometric distances in n-dimensional feature space, achieving superior edge preservation while maintaining intra-class homogeneity. The multispatial transformation matrix incorporates tensorial projections with orthogonal basis vectors, creating more discriminative feature representations without sacrificing computational efficiency. Experimental validation across multiple benchmark datasets demonstrates significant improvements in segmentation performance, with mean Intersection over Union (mIoU) gains of 2.1%, 2.7%, and 2.4% on Caltech Birds-200, LSDSC, and FSSD datasets respectively compared to state-of-the-art methods. GeloVec's mathematical foundation in Riemannian geometry provides theoretical guarantees on segmentation stability. Importantly, our framework maintains computational efficiency through parallelized implementation of geodesic transformations and exhibits strong generalization capabilities across disciplines due to the absence of information loss during transformations.
comment: 13 pages, 3 figures, 3 tables
Transferable Adversarial Attacks on Black-Box Vision-Language Models
Vision Large Language Models (VLLMs) are increasingly deployed to offer advanced capabilities on inputs comprising both text and images. While prior research has shown that adversarial attacks can transfer from open-source to proprietary black-box models in text-only and vision-only contexts, the extent and effectiveness of such vulnerabilities remain underexplored for VLLMs. We present a comprehensive analysis demonstrating that targeted adversarial examples are highly transferable to widely-used proprietary VLLMs such as GPT-4o, Claude, and Gemini. We show that attackers can craft perturbations to induce specific attacker-chosen interpretations of visual information, such as misinterpreting hazardous content as safe, overlooking sensitive or restricted material, or generating detailed incorrect responses aligned with the attacker's intent. Furthermore, we discover that universal perturbations -- modifications applicable to a wide set of images -- can consistently induce these misinterpretations across multiple proprietary VLLMs. Our experimental results on object recognition, visual question answering, and image captioning show that this vulnerability is common across current state-of-the-art models, and underscore an urgent need for robust mitigations to ensure the safe and secure deployment of VLLMs.
Edge Detection based on Channel Attention and Inter-region Independence Test
Existing edge detection methods often suffer from noise amplification and excessive retention of non-salient details, limiting their applicability in high-precision industrial scenarios. To address these challenges, we propose CAM-EDIT, a novel framework that integrates Channel Attention Mechanism (CAM) and Edge Detection via Independence Testing (EDIT). The CAM module adaptively enhances discriminative edge features through multi-channel fusion, while the EDIT module employs region-wise statistical independence analysis (using Fisher's exact test and chi-square test) to suppress uncorrelated noise.Extensive experiments on BSDS500 and NYUDv2 datasets demonstrate state-of-the-art performance. Among the nine comparison algorithms, the F-measure scores of CAM-EDIT are 0.635 and 0.460, representing improvements of 19.2\% to 26.5\% over traditional methods (Canny, CannySR), and better than the latest learning based methods (TIP2020, MSCNGP). Noise robustness evaluations further reveal a 2.2\% PSNR improvement under Gaussian noise compared to baseline methods. Qualitative results exhibit cleaner edge maps with reduced artifacts, demonstrating its potential for high-precision industrial applications.
Edge-preserving Image Denoising via Multi-scale Adaptive Statistical Independence Testing
Edge detection is crucial in image processing, but existing methods often produce overly detailed edge maps, affecting clarity. Fixed-window statistical testing faces issues like scale mismatch and computational redundancy. To address these, we propose a novel Multi-scale Adaptive Independence Testing-based Edge Detection and Denoising (EDD-MAIT), a Multi-scale Adaptive Statistical Testing-based edge detection and denoising method that integrates a channel attention mechanism with independence testing. A gradient-driven adaptive window strategy adjusts window sizes dynamically, improving detail preservation and noise suppression. EDD-MAIT achieves better robustness, accuracy, and efficiency, outperforming traditional and learning-based methods on BSDS500 and BIPED datasets, with improvements in F-score, MSE, PSNR, and reduced runtime. It also shows robustness against Gaussian noise, generating accurate and clean edge maps in noisy environments.
Fine-Tuning Without Forgetting: Adaptation of YOLOv8 Preserves COCO Performance
The success of large pre-trained object detectors hinges on their adaptability to diverse downstream tasks. While fine-tuning is the standard adaptation method, specializing these models for challenging fine-grained domains necessitates careful consideration of feature granularity. The critical question remains: how deeply should the pre-trained backbone be fine-tuned to optimize for the specialized task without incurring catastrophic forgetting of the original general capabilities? Addressing this, we present a systematic empirical study evaluating the impact of fine-tuning depth. We adapt a standard YOLOv8n model to a custom, fine-grained fruit detection dataset by progressively unfreezing backbone layers (freeze points at layers 22, 15, and 10) and training. Performance was rigorously evaluated on both the target fruit dataset and, using a dual-head evaluation architecture, on the original COCO validation set. Our results demonstrate unequivocally that deeper fine-tuning (unfreezing down to layer 10) yields substantial performance gains (e.g., +10\% absolute mAP50) on the fine-grained fruit task compared to only training the head. Strikingly, this significant adaptation and specialization resulted in negligible performance degradation (<0.1\% absolute mAP difference) on the COCO benchmark across all tested freeze levels. We conclude that adapting mid-to-late backbone features is highly effective for fine-grained specialization. Critically, our results demonstrate this adaptation can be achieved without the commonly expected penalty of catastrophic forgetting, presenting a compelling case for exploring deeper fine-tuning strategies, particularly when targeting complex domains or when maximizing specialized performance is paramount.
Towards the Resistance of Neural Network Watermarking to Fine-tuning
This paper proves a new watermarking method to embed the ownership information into a deep neural network (DNN), which is robust to fine-tuning. Specifically, we prove that when the input feature of a convolutional layer only contains low-frequency components, specific frequency components of the convolutional filter will not be changed by gradient descent during the fine-tuning process, where we propose a revised Fourier transform to extract frequency components from the convolutional filter. Additionally, we also prove that these frequency components are equivariant to weight scaling and weight permutations. In this way, we design a watermark module to encode the watermark information to specific frequency components in a convolutional filter. Preliminary experiments demonstrate the effectiveness of our method.
3D Human Pose Estimation via Spatial Graph Order Attention and Temporal Body Aware Transformer
Nowadays, Transformers and Graph Convolutional Networks (GCNs) are the prevailing techniques for 3D human pose estimation. However, Transformer-based methods either ignore the spatial neighborhood relationships between the joints when used for skeleton representations or disregard the local temporal patterns of the local joint movements in skeleton sequence modeling, while GCN-based methods often neglect the need for pose-specific representations. To address these problems, we propose a new method that exploits the graph modeling capability of GCN to represent each skeleton with multiple graphs of different orders, incorporated with a newly introduced Graph Order Attention module that dynamically emphasizes the most representative orders for each joint. The resulting spatial features of the sequence are further processed using a proposed temporal Body Aware Transformer that models the global body feature dependencies in the sequence with awareness of the local inter-skeleton feature dependencies of joints. Given that our 3D pose output aligns with the central 2D pose in the sequence, we improve the self-attention mechanism to be aware of the central pose while diminishing its focus gradually towards the first and the last poses. Extensive experiments on Human3.6m, MPIINF-3DHP, and HumanEva-I datasets demonstrate the effectiveness of the proposed method. Code and models are made available on Github.
comment: 16 pages, 9 figures, 7 tables
Deterministic-to-Stochastic Diverse Latent Feature Mapping for Human Motion Synthesis
Human motion synthesis aims to generate plausible human motion sequences, which has raised widespread attention in computer animation. Recent score-based generative models (SGMs) have demonstrated impressive results on this task. However, their training process involves complex curvature trajectories, leading to unstable training process. In this paper, we propose a Deterministic-to-Stochastic Diverse Latent Feature Mapping (DSDFM) method for human motion synthesis. DSDFM consists of two stages. The first human motion reconstruction stage aims to learn the latent space distribution of human motions. The second diverse motion generation stage aims to build connections between the Gaussian distribution and the latent space distribution of human motions, thereby enhancing the diversity and accuracy of the generated human motions. This stage is achieved by the designed deterministic feature mapping procedure with DerODE and stochastic diverse output generation procedure with DivSDE.DSDFM is easy to train compared to previous SGMs-based methods and can enhance diversity without introducing additional training parameters.Through qualitative and quantitative experiments, DSDFM achieves state-of-the-art results surpassing the latest methods, validating its superiority in human motion synthesis.
Optimizing Indoor Farm Monitoring Efficiency Using UAV: Yield Estimation in a GNSS-Denied Cherry Tomato Greenhouse ICRA
As the agricultural workforce declines and labor costs rise, robotic yield estimation has become increasingly important. While unmanned ground vehicles (UGVs) are commonly used for indoor farm monitoring, their deployment in greenhouses is often constrained by infrastructure limitations, sensor placement challenges, and operational inefficiencies. To address these issues, we develop a lightweight unmanned aerial vehicle (UAV) equipped with an RGB-D camera, a 3D LiDAR, and an IMU sensor. The UAV employs a LiDAR-inertial odometry algorithm for precise navigation in GNSS-denied environments and utilizes a 3D multi-object tracking algorithm to estimate the count and weight of cherry tomatoes. We evaluate the system using two dataset: one from a harvesting row and another from a growing row. In the harvesting-row dataset, the proposed system achieves 94.4\% counting accuracy and 87.5\% weight estimation accuracy within a 13.2-meter flight completed in 10.5 seconds. For the growing-row dataset, which consists of occluded unripened fruits, we qualitatively analyze tracking performance and highlight future research directions for improving perception in greenhouse with strong occlusions. Our findings demonstrate the potential of UAVs for efficient robotic yield estimation in commercial greenhouses.
comment: Accepted at 2025 ICRA workshop on field robotics
On-demand Test-time Adaptation for Edge Devices
Continual Test-time adaptation (CTTA) continuously adapts the deployed model on every incoming batch of data. While achieving optimal accuracy, existing CTTA approaches present poor real-world applicability on resource-constrained edge devices, due to the substantial memory overhead and energy consumption. In this work, we first introduce a novel paradigm -- on-demand TTA -- which triggers adaptation only when a significant domain shift is detected. Then, we present OD-TTA, an on-demand TTA framework for accurate and efficient adaptation on edge devices. OD-TTA comprises three innovative techniques: 1) a lightweight domain shift detection mechanism to activate TTA only when it is needed, drastically reducing the overall computation overhead, 2) a source domain selection module that chooses an appropriate source model for adaptation, ensuring high and robust accuracy, 3) a decoupled Batch Normalization (BN) update scheme to enable memory-efficient adaptation with small batch sizes. Extensive experiments show that OD-TTA achieves comparable and even better performance while reducing the energy and computation overhead remarkably, making TTA a practical reality.
LMDepth: Lightweight Mamba-based Monocular Depth Estimation for Real-World Deployment
Monocular depth estimation provides an additional depth dimension to RGB images, making it widely applicable in various fields such as virtual reality, autonomous driving and robotic navigation. However, existing depth estimation algorithms often struggle to effectively balance performance and computational efficiency, which poses challenges for deployment on resource-constrained devices. To address this, we propose LMDepth, a lightweight Mamba-based monocular depth estimation network, designed to reconstruct high-precision depth information while maintaining low computational overhead. Specifically, we propose a modified pyramid spatial pooling module that serves as a multi-scale feature aggregator and context extractor, ensuring global spatial information for accurate depth estimation. Moreover, we integrate multiple depth Mamba blocks into the decoder. Designed with linear computations, the Mamba Blocks enable LMDepth to efficiently decode depth information from global features, providing a lightweight alternative to Transformer-based architectures that depend on complex attention mechanisms. Extensive experiments on the NYUDv2 and KITTI datasets demonstrate the effectiveness of our proposed LMDepth. Compared to previous lightweight depth estimation methods, LMDepth achieves higher performance with fewer parameters and lower computational complexity (measured by GFLOPs). We further deploy LMDepth on an embedded platform with INT8 quantization, validating its practicality for real-world edge applications.
Generating Animated Layouts as Structured Text Representations CVPR 2025
Despite the remarkable progress in text-to-video models, achieving precise control over text elements and animated graphics remains a significant challenge, especially in applications such as video advertisements. To address this limitation, we introduce Animated Layout Generation, a novel approach to extend static graphic layouts with temporal dynamics. We propose a Structured Text Representation for fine-grained video control through hierarchical visual elements. To demonstrate the effectiveness of our approach, we present VAKER (Video Ad maKER), a text-to-video advertisement generation pipeline that combines a three-stage generation process with Unstructured Text Reasoning for seamless integration with LLMs. VAKER fully automates video advertisement generation by incorporating dynamic layout trajectories for objects and graphics across specific video frames. Through extensive evaluations, we demonstrate that VAKER significantly outperforms existing methods in generating video advertisements. Project Page: https://yeonsangshin.github.io/projects/Vaker
comment: AI for Content Creation (AI4CC) Workshop at CVPR 2025
CDFormer: Cross-Domain Few-Shot Object Detection Transformer Against Feature Confusion
Cross-domain few-shot object detection (CD-FSOD) aims to detect novel objects across different domains with limited class instances. Feature confusion, including object-background confusion and object-object confusion, presents significant challenges in both cross-domain and few-shot settings. In this work, we introduce CDFormer, a cross-domain few-shot object detection transformer against feature confusion, to address these challenges. The method specifically tackles feature confusion through two key modules: object-background distinguishing (OBD) and object-object distinguishing (OOD). The OBD module leverages a learnable background token to differentiate between objects and background, while the OOD module enhances the distinction between objects of different classes. Experimental results demonstrate that CDFormer outperforms previous state-of-the-art approaches, achieving 12.9% mAP, 11.0% mAP, and 10.4% mAP improvements under the 1/5/10 shot settings, respectively, when fine-tuned.
Autonomous Embodied Agents: When Robotics Meets Deep Learning Reasoning
The increase in available computing power and the Deep Learning revolution have allowed the exploration of new topics and frontiers in Artificial Intelligence research. A new field called Embodied Artificial Intelligence, which places at the intersection of Computer Vision, Robotics, and Decision Making, has been gaining importance during the last few years, as it aims to foster the development of smart autonomous robots and their deployment in society. The recent availability of large collections of 3D models for photorealistic robotic simulation has allowed faster and safe training of learning-based agents for millions of frames and a careful evaluation of their behavior before deploying the models on real robotic platforms. These intelligent agents are intended to perform a certain task in a possibly unknown environment. To this end, during the training in simulation, the agents learn to perform continuous interactions with the surroundings, such as gathering information from the environment, encoding and extracting useful cues for the task, and performing actions towards the final goal; where every action of the agent influences the interactions. This dissertation follows the complete creation process of embodied agents for indoor environments, from their concept to their implementation and deployment. We aim to contribute to research in Embodied AI and autonomous agents, in order to foster future work in this field. We present a detailed analysis of the procedure behind implementing an intelligent embodied agent, comprehending a thorough description of the current state-of-the-art in literature, technical explanations of the proposed methods, and accurate experimental studies on relevant robotic tasks.
comment: Ph.D. Dissertation
Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities
Multimodal magnetic resonance imaging (MRI) constitutes the first line of investigation for clinicians in the care of brain tumors, providing crucial insights for surgery planning, treatment monitoring, and biomarker identification. Pre-training on large datasets have been shown to help models learn transferable representations and adapt with minimal labeled data. This behavior is especially valuable in medical imaging, where annotations are often scarce. However, applying this paradigm to multimodal medical data introduces a challenge: most existing approaches assume that all imaging modalities are available during both pre-training and fine-tuning. In practice, missing modalities often occur due to acquisition issues, specialist unavailability, or specific experimental designs on small in-house datasets. Consequently, a common approach involves training a separate model for each desired modality combination, making the process both resource-intensive and impractical for clinical use. Therefore, we introduce BM-MAE, a masked image modeling pre-training strategy tailored for multimodal MRI data. The same pre-trained model seamlessly adapts to any combination of available modalities, extracting rich representations that capture both intra- and inter-modal information. This allows fine-tuning on any subset of modalities without requiring architectural changes, while still benefiting from a model pre-trained on the full set of modalities. Extensive experiments show that the proposed pre-training strategy outperforms or remains competitive with baselines that require separate pre-training for each modality subset, while substantially surpassing training from scratch on several downstream tasks. Additionally, it can quickly and efficiently reconstruct missing modalities, highlighting its practical value. Code and trained models are available at: https://github.com/Lucas-rbnt/BM-MAE
InterLoc: LiDAR-based Intersection Localization using Road Segmentation with Automated Evaluation Method
Online localization of road intersections is beneficial for autonomous vehicle localization, mapping and motion planning. Intersections offer strong landmarks to correct vehicle pose estimation in GNSS dropouts and anchor new sensor data in up-to-date maps. They are also decisive routing nodes in road network graphs. Despite that importance, intersection localization has not been widely studied, with existing methods either ignore the rich semantic information already computed onboard or depend on scarce, hand-labeled intersection datasets. To close that gap, this paper presents a LiDAR-based method for online vehicle-centric intersection localization. We fuse semantic road segmentation with vehicle local pose to detect intersection candidates in a bird's eye view (BEV) representation. We then refine those candidates by analyzing branch topology and correcting the intersection point in a least squares formulation. To evaluate our method, we introduce an automated benchmarking pipeline that pairs localized intersection points with OpenStreetMap (OSM) intersection nodes using precise GNSS/INS ground-truth poses. Experiments on SemanticKITTI show that the method outperforms the latest learning-based baseline in accuracy and reliability. Moreover, sensitivity tests demonstrate that our method is robust to challenging segmentation error levels, highlighting its applicability in the real world.
GPT-ImgEval: A Comprehensive Benchmark for Diagnosing GPT4o in Image Generation
The recent breakthroughs in OpenAI's GPT4o model have demonstrated surprisingly good capabilities in image generation and editing, resulting in significant excitement in the community. This technical report presents the first-look evaluation benchmark (named GPT-ImgEval), quantitatively and qualitatively diagnosing GPT-4o's performance across three critical dimensions: (1) generation quality, (2) editing proficiency, and (3) world knowledge-informed semantic synthesis. Across all three tasks, GPT-4o demonstrates strong performance, significantly surpassing existing methods in both image generation control and output quality, while also showcasing exceptional knowledge reasoning capabilities. Furthermore, based on the GPT-4o's generated data, we propose a classification-model-based approach to investigate the underlying architecture of GPT-4o, where our empirical results suggest the model consists of an auto-regressive (AR) combined with a diffusion-based head for image decoding, rather than the VAR-like architectures. We also provide a complete speculation on GPT-4o's overall architecture. In addition, we conduct a series of analyses to identify and visualize GPT-4o's specific limitations and the synthetic artifacts commonly observed in its image generation. We also present a comparative study of multi-round image editing between GPT-4o and Gemini 2.0 Flash, and discuss the safety implications of GPT-4o's outputs, particularly their detectability by existing image forensic models. We hope that our work can offer valuable insight and provide a reliable benchmark to guide future research, foster reproducibility, and accelerate innovation in the field of image generation and beyond. The codes and datasets used for evaluating GPT-4o can be found at https://github.com/PicoTrex/GPT-ImgEval.
Empowering Agentic Video Analytics Systems with Video Language Models
AI-driven video analytics has become increasingly pivotal across diverse domains. However, existing systems are often constrained to specific, predefined tasks, limiting their adaptability in open-ended analytical scenarios. The recent emergence of Video-Language Models (VLMs) as transformative technologies offers significant potential for enabling open-ended video understanding, reasoning, and analytics. Nevertheless, their limited context windows present challenges when processing ultra-long video content, which is prevalent in real-world applications. To address this, we introduce AVAS, a VLM-powered system designed for open-ended, advanced video analytics. AVAS incorporates two key innovations: (1) the near real-time construction of Event Knowledge Graphs (EKGs) for efficient indexing of long or continuous video streams, and (2) an agentic retrieval-generation mechanism that leverages EKGs to handle complex and diverse queries. Comprehensive evaluations on public benchmarks, LVBench and VideoMME-Long, demonstrate that AVAS achieves state-of-the-art performance, attaining 62.3% and 64.1% accuracy, respectively, significantly surpassing existing VLM and video Retrieval-Augmented Generation (RAG) systems. Furthermore, to evaluate video analytics in ultra-long and open-world video scenarios, we introduce a new benchmark, AVAS-100. This benchmark comprises 8 videos, each exceeding 10 hours in duration, along with 120 manually annotated, diverse, and complex question-answer pairs. On AVAS-100, AVAS achieves top-tier performance with an accuracy of 75.8%.
comment: 15 pages, AVAS
MoBGS: Motion Deblurring Dynamic 3D Gaussian Splatting for Blurry Monocular Video
We present MoBGS, a novel deblurring dynamic 3D Gaussian Splatting (3DGS) framework capable of reconstructing sharp and high-quality novel spatio-temporal views from blurry monocular videos in an end-to-end manner. Existing dynamic novel view synthesis (NVS) methods are highly sensitive to motion blur in casually captured videos, resulting in significant degradation of rendering quality. While recent approaches address motion-blurred inputs for NVS, they primarily focus on static scene reconstruction and lack dedicated motion modeling for dynamic objects. To overcome these limitations, our MoBGS introduces a novel Blur-adaptive Latent Camera Estimation (BLCE) method for effective latent camera trajectory estimation, improving global camera motion deblurring. In addition, we propose a physically-inspired Latent Camera-induced Exposure Estimation (LCEE) method to ensure consistent deblurring of both global camera and local object motion. Our MoBGS framework ensures the temporal consistency of unseen latent timestamps and robust motion decomposition of static and dynamic regions. Extensive experiments on the Stereo Blur dataset and real-world blurry videos show that our MoBGS significantly outperforms the very recent advanced methods (DyBluRF and Deblur4DGS), achieving state-of-the-art performance for dynamic NVS under motion blur.
comment: The first two authors contributed equally to this work (equal contribution). The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/mobgs-site/
RoboPEPP: Vision-Based Robot Pose and Joint Angle Estimation through Embedding Predictive Pre-Training
Vision-based pose estimation of articulated robots with unknown joint angles has applications in collaborative robotics and human-robot interaction tasks. Current frameworks use neural network encoders to extract image features and downstream layers to predict joint angles and robot pose. While images of robots inherently contain rich information about the robot's physical structures, existing methods often fail to leverage it fully; therefore, limiting performance under occlusions and truncations. To address this, we introduce RoboPEPP, a method that fuses information about the robot's physical model into the encoder using a masking-based self-supervised embedding-predictive architecture. Specifically, we mask the robot's joints and pre-train an encoder-predictor model to infer the joints' embeddings from surrounding unmasked regions, enhancing the encoder's understanding of the robot's physical model. The pre-trained encoder-predictor pair, along with joint angle and keypoint prediction networks, is then fine-tuned for pose and joint angle estimation. Random masking of input during fine-tuning and keypoint filtering during evaluation further improves robustness. Our method, evaluated on several datasets, achieves the best results in robot pose and joint angle estimation while being the least sensitive to occlusions and requiring the lowest execution time.
An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more, evolving from Chain-of-Thought prompting to product-level solutions like OpenAI o1. Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks. In this paper, we present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of multi-modal large language models (MLLMs). Specifically, to create long and structured reasoning data without human labor, we design a two-step pipeline with a progressive strategy to generate sufficiently long and diverse reasoning paths and a multi-granularity assessment method to ensure data quality. We observe that directly supervising MLLMs with such long and complex reasoning data will not yield ideal reasoning ability. To tackle this problem, we design a multi-agent system consisting of a reasoning agent dedicated to performing long-chain reasoning and a summary agent trained to judge and summarize reasoning results. We further incorporate an iterative DPO algorithm to enhance the reasoning agent's generation stability and quality. Based on the popular LLaVA-NeXT model and our stronger base MLLM, we demonstrate significant performance gains across challenging multi-modal benchmarks requiring visual reasoning. Benefiting from our multi-agent system, Insight-V can also easily maintain or improve performance on perception-focused multi-modal tasks.
Project-and-Fuse: Improving RGB-D Semantic Segmentation via Graph Convolution Networks
Most existing RGB-D semantic segmentation methods focus on the feature level fusion, including complex cross-modality and cross-scale fusion modules. However, these methods may cause misalignment problem in the feature fusion process and counter-intuitive patches in the segmentation results. Inspired by the popular pixel-node-pixel pipeline, we propose to 1) fuse features from two modalities in a late fusion style, during which the geometric feature injection is guided by texture feature prior; 2) employ Graph Neural Networks (GNNs) on the fused feature to alleviate the emergence of irregular patches by inferring patch relationship. At the 3D feature extraction stage, we argue that traditional CNNs are not efficient enough for depth maps. So, we encode depth map into normal map, after which CNNs can easily extract object surface tendencies.At projection matrix generation stage, we find the existence of Biased-Assignment and Ambiguous-Locality issues in the original pipeline. Therefore, we propose to 1) adopt the Kullback-Leibler Loss to ensure no missing important pixel features, which can be viewed as hard pixel mining process; 2) connect regions that are close to each other in the Euclidean space as well as in the semantic space with larger edge weights so that location informations can been considered. Extensive experiments on two public datasets, NYU-DepthV2 and SUN RGB-D, have shown that our approach can consistently boost the performance of RGB-D semantic segmentation task.
comment: I have decided to withdraw this paper because I have recently obtained some new data and insights during my ongoing research
Soybean Disease Detection via Interpretable Hybrid CNN-GNN: Integrating MobileNetV2 and GraphSAGE with Cross-Modal Attention
Soybean leaf disease detection is critical for agricultural productivity but faces challenges due to visually similar symptoms and limited interpretability in conventional methods. While Convolutional Neural Networks (CNNs) excel in spatial feature extraction, they often neglect inter-image relational dependencies, leading to misclassifications. This paper proposes an interpretable hybrid Sequential CNN-Graph Neural Network (GNN) framework that synergizes MobileNetV2 for localized feature extraction and GraphSAGE for relational modeling. The framework constructs a graph where nodes represent leaf images, with edges defined by cosine similarity-based adjacency matrices and adaptive neighborhood sampling. This design captures fine-grained lesion features and global symptom patterns, addressing inter-class similarity challenges. Cross-modal interpretability is achieved via Grad-CAM and Eigen-CAM visualizations, generating heatmaps to highlight disease-influential regions. Evaluated on a dataset of ten soybean leaf diseases, the model achieves $97.16\%$ accuracy, surpassing standalone CNNs ($\le95.04\%$) and traditional machine learning models ($\le77.05\%$). Ablation studies validate the sequential architecture's superiority over parallel or single-model configurations. With only 2.3 million parameters, the lightweight MobileNetV2-GraphSAGE combination ensures computational efficiency, enabling real-time deployment in resource-constrained environments. The proposed approach bridges the gap between accurate classification and practical applicability, offering a robust, interpretable tool for agricultural diagnostics while advancing CNN-GNN integration in plant pathology research.
MASH: Masked Anchored SpHerical Distances for 3D Shape Representation and Generation SIGGRAPH 2025
We introduce Masked Anchored SpHerical Distances (MASH), a novel multi-view and parametrized representation of 3D shapes. Inspired by multi-view geometry and motivated by the importance of perceptual shape understanding for learning 3D shapes, MASH represents a 3D shape as a collection of observable local surface patches, each defined by a spherical distance function emanating from an anchor point. We further leverage the compactness of spherical harmonics to encode the MASH functions, combined with a generalized view cone with a parameterized base that masks the spatial extent of the spherical function to attain locality. We develop a differentiable optimization algorithm capable of converting any point cloud into a MASH representation accurately approximating ground-truth surfaces with arbitrary geometry and topology. Extensive experiments demonstrate that MASH is versatile for multiple applications including surface reconstruction, shape generation, completion, and blending, achieving superior performance thanks to its unique representation encompassing both implicit and explicit features.
comment: 11 pages, 11 figures, SIGGRAPH 2025 Accept - Conference
HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration ICML 2025
Diffusion Transformers (DiTs) excel in generative tasks but face practical deployment challenges due to high inference costs. Feature caching, which stores and retrieves redundant computations, offers the potential for acceleration. Existing learning-based caching, though adaptive, overlooks the impact of the prior timestep. It also suffers from misaligned objectives--aligned predicted noise vs. high-quality images--between training and inference. These two discrepancies compromise both performance and efficiency. To this end, we harmonize training and inference with a novel learning-based caching framework dubbed HarmoniCa. It first incorporates Step-Wise Denoising Training (SDT) to ensure the continuity of the denoising process, where prior steps can be leveraged. In addition, an Image Error Proxy-Guided Objective (IEPO) is applied to balance image quality against cache utilization through an efficient proxy to approximate the image error. Extensive experiments across $8$ models, $4$ samplers, and resolutions from $256\times256$ to $2K$ demonstrate superior performance and speedup of our framework. For instance, it achieves over $40\%$ latency reduction (i.e., $2.07\times$ theoretical speedup) and improved performance on PixArt-$\alpha$. Remarkably, our image-free approach reduces training time by $25\%$ compared with the previous method. Our code is available at https://github.com/ModelTC/HarmoniCa.
comment: Accepted by ICML 2025
Deciphering scrolls with tomography: A training experiment
The recovery of severely damaged ancient written documents has proven to be a major challenge for many scientists, mainly due to the impracticality of physical unwrapping them. Non-destructive techniques, such as X-ray computed tomography (CT), combined with computer vision algorithms, have emerged as a means of facilitating the virtual reading of the hidden contents of the damaged documents. This paper proposes an educational laboratory aimed at simulating the entire process of acquisition and virtual recovery of the ancient works. We have developed an experimental setup that uses visible light to replace the detrimental X-rays, and a didactic software pipeline that allows students to virtually reconstruct a transparent rolled sheet with printed text on it, the wrapped scroll.
You KAN Do It in a Single Shot: Plug-and-Play Methods with Single-Instance Priors
The use of Plug-and-Play (PnP) methods has become a central approach for solving inverse problems, with denoisers serving as regularising priors that guide optimisation towards a clean solution. In this work, we introduce KAN-PnP, an optimisation framework that incorporates Kolmogorov-Arnold Networks (KANs) as denoisers within the Plug-and-Play (PnP) paradigm. KAN-PnP is specifically designed to solve inverse problems with single-instance priors, where only a single noisy observation is available, eliminating the need for large datasets typically required by traditional denoising methods. We show that KANs, based on the Kolmogorov-Arnold representation theorem, serve effectively as priors in such settings, providing a robust approach to denoising. We prove that the KAN denoiser is Lipschitz continuous, ensuring stability and convergence in optimisation algorithms like PnP-ADMM, even in the context of single-shot learning. Additionally, we provide theoretical guarantees for KAN-PnP, demonstrating its convergence under key conditions: the convexity of the data fidelity term, Lipschitz continuity of the denoiser, and boundedness of the regularisation functional. These conditions are crucial for stable and reliable optimisation. Our experimental results show, on super-resolution and joint optimisation, that KAN-PnP outperforms exiting methods, delivering superior performance in single-shot learning with minimal data. The method exhibits strong convergence properties, achieving high accuracy with fewer iterations.
ADAPT: An Autonomous Forklift for Construction Site Operation
Efficient material logistics play a critical role in controlling costs and schedules in the construction industry. However, manual material handling remains prone to inefficiencies, delays, and safety risks. Autonomous forklifts offer a promising solution to streamline on-site logistics, reducing reliance on human operators and mitigating labor shortages. This paper presents the development and evaluation of ADAPT (Autonomous Dynamic All-terrain Pallet Transporter), a fully autonomous off-road forklift designed for construction environments. Unlike structured warehouse settings, construction sites pose significant challenges, including dynamic obstacles, unstructured terrain, and varying weather conditions. To address these challenges, our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control, enabling reliable operation in complex environments. We validate the system through extensive real-world testing, comparing its continuous performance against an experienced human operator across various weather conditions. Our findings demonstrate that autonomous outdoor forklifts can operate near human-level performance, offering a viable path toward safer and more efficient construction logistics.
$X^2$-DFD: A framework for eXplainable and eXtendable Deepfake Detection
Detecting deepfakes has become an important task. Most existing detection methods provide only real/fake predictions without offering human-comprehensible explanations. Recent studies leveraging MLLMs for deepfake detection have shown improvements in explainability. However, the performance of pre-trained MLLMs (e.g., LLaVA) remains limited due to a lack of understanding of their capabilities for this task and strategies to enhance them. In this work, we empirically assess the strengths and weaknesses of MLLMs specifically in deepfake detection via forgery features analysis. Building on these assessments, we propose a novel framework called ${X}^2$-DFD, consisting of three core modules. The first module, Model Feature Assessment (MFA), measures the detection capabilities of forgery features intrinsic to MLLMs, and gives a descending ranking of these features. The second module, Strong Feature Strengthening (SFS), enhances the detection and explanation capabilities by fine-tuning the MLLM on a dataset constructed based on the top-ranked features. The third module, Weak Feature Supplementing (WFS), improves the fine-tuned MLLM's capabilities on lower-ranked features by integrating external dedicated deepfake detectors. To verify the effectiveness of this framework, we further present a practical implementation, where an automated forgery features generation, evaluation, and ranking procedure is designed for MFA module; an automated generation procedure of the fine-tuning dataset containing real and fake images with explanations based on top-ranked features is developed for SFS model; an external conventional deepfake detector focusing on blending artifact, which corresponds to a low detection capability in the pre-trained MLLM, is integrated for WFS module. Experiments show that our approach enhances both detection and explanation performance.
Task-Oriented Communications for Visual Navigation with Edge-Aerial Collaboration in Low Altitude Economy
To support the Low Altitude Economy (LAE), precise unmanned aerial vehicles (UAVs) localization in urban areas where global positioning system (GPS) signals are unavailable. Vision-based methods offer a viable alternative but face severe bandwidth, memory and processing constraints on lightweight UAVs. Inspired by mammalian spatial cognition, we propose a task-oriented communication framework, where UAVs equipped with multi-camera systems extract compact multi-view features and offload localization tasks to edge servers. We introduce the Orthogonally-constrained Variational Information Bottleneck encoder (O-VIB), which incorporates automatic relevance determination (ARD) to prune non-informative features while enforcing orthogonality to minimize redundancy. This enables efficient and accurate localization with minimal transmission cost. Extensive evaluation on a dedicated LAE UAV dataset shows that O-VIB achieves high-precision localization under stringent bandwidth budgets. Code and dataset will be made publicly available: github.com/fangzr/TOC-Edge-Aerial.
comment: Code and dataset will be made publicly available: https://github.com/fangzr/TOC-Edge-Aerial
Towards Space Group Determination from EBSD Patterns: The Role of Deep Learning and High-throughput Dynamical Simulations
The design of novel materials hinges on the understanding of structure-property relationships. However, in recent times, our capability to synthesize a large number of materials has outpaced our speed at characterizing them. While the overall chemical constituents can be readily known during synthesis, the structural evolution and characterization of newly synthesized samples remains a bottleneck for the ultimate goal of high throughput nanomaterials discovery. Thus, scalable methods for crystal symmetry determination that can analyze a large volume of material samples within a short time-frame are especially needed. Kikuchi diffraction in the SEM is a promising technique for this due to its sensitivity to dynamical scattering, which may provide information beyond just the seven crystal systems and fourteen Bravais lattices. After diffraction patterns are collected from material samples, deep learning methods may be able to classify the space group symmetries using the patterns as input, which paired with the elemental composition, would help enable the determination of the crystal structure. To investigate the feasibility of this solution, neural networks were trained to predict the space group type of background corrected EBSD patterns. Our networks were first trained and tested on an artificial dataset of EBSD patterns of 5,148 different cubic phases, created through physics-based dynamical simulations. Next, Maximum Classifier Discrepancy, an unsupervised deep learning-based domain adaptation method, was utilized to train neural networks to make predictions for experimental EBSD patterns. We introduce a relabeling scheme, which enables our models to achieve accuracy scores higher than 90% on simulated and experimental data, suggesting that neural networks are capable of making predictions of crystal symmetry from an EBSD pattern.
comment: 33 pages, preliminary version
MAVEN: Multi-modal Attention for Valence-Arousal Emotion Network
Dynamic emotion recognition in the wild remains challenging due to the transient nature of emotional expressions and temporal misalignment of multi-modal cues. Traditional approaches predict valence and arousal and often overlook the inherent correlation between these two dimensions. The proposed Multi-modal Attention for Valence-Arousal Emotion Network (MAVEN) integrates visual, audio, and textual modalities through a bi-directional cross-modal attention mechanism. MAVEN uses modality-specific encoders to extract features from synchronized video frames, audio segments, and transcripts, predicting emotions in polar coordinates following Russell's circumplex model. The evaluation of the Aff-Wild2 dataset using MAVEN achieved a concordance correlation coefficient (CCC) of 0.3061, surpassing the ResNet-50 baseline model with a CCC of 0.22. The multistage architecture captures the subtle and transient nature of emotional expressions in conversational videos and improves emotion recognition in real-world situations. The code is available at: https://github.com/Vrushank-Ahire/MAVEN_8th_ABAW
UDGS-SLAM : UniDepth Assisted Gaussian Splatting for Monocular SLAM
Recent advancements in monocular neural depth estimation, particularly those achieved by the UniDepth network, have prompted the investigation of integrating UniDepth within a Gaussian splatting framework for monocular SLAM. This study presents UDGS-SLAM, a novel approach that eliminates the necessity of RGB-D sensors for depth estimation within Gaussian splatting framework. UDGS-SLAM employs statistical filtering to ensure local consistency of the estimated depth and jointly optimizes camera trajectory and Gaussian scene representation parameters. The proposed method achieves high-fidelity rendered images and low ATERMSE of the camera trajectory. The performance of UDGS-SLAM is rigorously evaluated using the TUM RGB-D dataset and benchmarked against several baseline methods, demonstrating superior performance across various scenarios. Additionally, an ablation study is conducted to validate design choices and investigate the impact of different network backbone encoders on system performance.
A Physics-Inspired Deep Learning Framework with Polar Coordinate Attention for Ptychographic Imaging
Ptychographic imaging confronts inherent challenges in applying deep learning for phase retrieval from diffraction patterns. Conventional neural architectures, both convolutional neural networks and Transformer-based methods, are optimized for natural images with Euclidean spatial neighborhood-based inductive biases that exhibit geometric mismatch with the concentric coherent patterns characteristic of diffraction data in reciprocal space. In this paper, we present PPN, a physics-inspired deep learning network with Polar Coordinate Attention (PoCA) for ptychographic imaging, that aligns neural inductive biases with diffraction physics through a dual-branch architecture separating local feature extraction from non-local coherence modeling. It consists of a PoCA mechanism that replaces Euclidean spatial priors with physically consistent radial-angular correlations. PPN outperforms existing end-to-end models, with spectral and spatial analysis confirming its greater preservation of high-frequency details. Notably, PPN maintains robust performance compared to iterative methods even at low overlap ratios, making it well suited for high-throughput imaging in real-world acquisition scenarios for samples with consistent structural characteristics.
comment: 13 pages, 10 figures
P-Hologen: An End-to-End Generative Framework for Phase-Only Holograms
Holography stands at the forefront of visual technology, offering immersive, three-dimensional visualizations through the manipulation of light wave amplitude and phase. Although generative models have been extensively explored in the image domain, their application to holograms remains relatively underexplored due to the inherent complexity of phase learning. Exploiting generative models for holograms offers exciting opportunities for advancing innovation and creativity, such as semantic-aware hologram generation and editing. Currently, the most viable approach for utilizing generative models in the hologram domain involves integrating an image-based generative model with an image-to-hologram conversion model, which comes at the cost of increased computational complexity and inefficiency. To tackle this problem, we introduce P-Hologen, the first end-to-end generative framework designed for phase-only holograms (POHs). P-Hologen employs vector quantized variational autoencoders to capture the complex distributions of POHs. It also integrates the angular spectrum method into the training process, constructing latent spaces for complex phase data using strategies from the image processing domain. Extensive experiments demonstrate that P-Hologen achieves superior quality and computational efficiency compared to the existing methods. Furthermore, our model generates high-quality unseen, diverse holographic content from its learned latent space without requiring pre-existing images. Our work paves the way for new applications and methodologies in holographic content creation, opening a new era in the exploration of generative holographic content. The code for our paper is publicly available on https://github.com/james0223/P-Hologen.
VitalVideos-Europe: A dataset of face videos with PPG and blood pressure ground truths
We collected a large dataset consisting of 850 unique participants. For every participant we recorded two 30 second uncompressed videos, synchronized PPG waveforms and a single blood pressure measurement. Gender, age and skin color were also registered for every participant. The dataset includes roughly equal numbers of males and females, as well as participants of all ages. While the skin color distribution could have been more balanced, the dataset contains individuals from every skin color. The data was collected in a diverse set of locations to ensure a wide variety of backgrounds and lighting conditions. In an effort to assist in the research and development of remote vital sign measurement we are now opening up access to this dataset. vitalvideos.org for all datasets.
comment: vitalvideos.org
Visual-Friendly Concept Protection via Selective Adversarial Perturbations
Personalized concept generation by tuning diffusion models with a few images raises potential legal and ethical concerns regarding privacy and intellectual property rights. Researchers attempt to prevent malicious personalization using adversarial perturbations. However, previous efforts have mainly focused on the effectiveness of protection while neglecting the visibility of perturbations. They utilize global adversarial perturbations, which introduce noticeable alterations to original images and significantly degrade visual quality. In this work, we propose the Visual-Friendly Concept Protection (VCPro) framework, which prioritizes the protection of key concepts chosen by the image owner through adversarial perturbations with lower perceptibility. To ensure these perturbations are as inconspicuous as possible, we introduce a relaxed optimization objective to identify the least perceptible yet effective adversarial perturbations, solved using the Lagrangian multiplier method. Qualitative and quantitative experiments validate that VCPro achieves a better trade-off between the visibility of perturbations and protection effectiveness, effectively prioritizing the protection of target concepts in images with less perceptible perturbations.
comment: Under Review
DriveGPT: Scaling Autoregressive Behavior Models for Driving ICML 2025
We present DriveGPT, a scalable behavior model for autonomous driving. We model driving as a sequential decision-making task, and learn a transformer model to predict future agent states as tokens in an autoregressive fashion. We scale up our model parameters and training data by multiple orders of magnitude, enabling us to explore the scaling properties in terms of dataset size, model parameters, and compute. We evaluate DriveGPT across different scales in a planning task, through both quantitative metrics and qualitative examples, including closed-loop driving in complex real-world scenarios. In a separate prediction task, DriveGPT outperforms state-of-the-art baselines and exhibits improved performance by pretraining on a large-scale dataset, further validating the benefits of data scaling.
comment: ICML 2025. 14 pages, 17 figures, 8 tables, and 1 video link
Visual Concept-driven Image Generation with Text-to-Image Diffusion Model
Text-to-image (TTI) diffusion models have demonstrated impressive results in generating high-resolution images of complex and imaginative scenes. Recent approaches have further extended these methods with personalization techniques that allow them to integrate user-illustrated concepts (e.g., the user him/herself) using a few sample image illustrations. However, the ability to generate images with multiple interacting concepts, such as human subjects, as well as concepts that may be entangled in one, or across multiple, image illustrations remains illusive. In this work, we propose a concept-driven TTI personalization framework that addresses these core challenges. We build on existing works that learn custom tokens for user-illustrated concepts, allowing those to interact with existing text tokens in the TTI model. However, importantly, to disentangle and better learn the concepts in question, we jointly learn (latent) segmentation masks that disentangle these concepts in user-provided image illustrations. We do so by introducing an Expectation Maximization (EM)-like optimization procedure where we alternate between learning the custom tokens and estimating (latent) masks encompassing corresponding concepts in user-supplied images. We obtain these masks based on cross-attention, from within the U-Net parameterized latent diffusion model and subsequent DenseCRF optimization. We illustrate that such joint alternating refinement leads to the learning of better tokens for concepts and, as a by-product, latent masks. We illustrate the benefits of the proposed approach qualitatively and quantitatively with several examples and use cases that can combine three or more entangled concepts.
comment: 11 Figures, 14 Pages, 2 tables
Image and Video Processing
Potential Contrast: Properties, Equivalences, and Generalization to Multiple Classes
Potential contrast is typically used as an image quality measure and quantifies the maximal possible contrast between samples from two classes of pixels in an image after an arbitrary grayscale transformation. It has been valuable in cultural heritage applications, identifying and visualizing relevant information in multispectral images while requiring a small number of pixels to be manually sampled. In this work, we introduce a normalized version of potential contrast that removes dependence on image format and also prove equalities that enable generalization to more than two classes and to continuous settings. Finally, we exemplify the utility of multi-class normalized potential contrast through an application to a medieval music manuscript with visible bleedthrough from the back page. We share our implementations, based on both original algorithms and our new equalities, including generalization to multiple classes, at https://github.com/wallacepeaslee/Multiple-Class-Normalized-Potential-Contrast.
Contactless pulse rate assessment: Results and insights for application in driving simulator
Camera-based monitoring of Pulse Rate (PR) enables continuous and unobtrusive assessment of driver's state, allowing estimation of fatigue or stress that could impact traffic safety. Commonly used wearable Photoplethysmography (PPG) sensors, while effective, suffer from motion artifacts and user discomfort. This study explores the feasibility of non-contact PR assessment using facial video recordings captured by a Red, Green, and Blue (RGB) camera in a driving simulation environment. The proposed approach detects subtle skin color variations due to blood flow and compares extracted PR values against reference measurements from a wearable wristband Empatica E4. We evaluate the impact of Eulerian Video Magnification (EVM) on signal quality and assess statistical differences in PR between age groups. Data obtained from 80 recordings from 64 healthy subjects covering a PR range of 45-160 bpm are analyzed, and signal extraction accuracy is quantified using metrics, such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Results show that EVM slightly improves PR estimation accuracy, reducing MAE from 6.48 bpm to 5.04 bpm and RMSE from 7.84 bpm to 6.38 bpm. A statistically significant difference is found between older and younger groups with both video-based and ground truth evaluation procedures. Additionally, we discuss Empatica E4 bias and its potential impact on the overall assessment of contact measurements. Altogether the findings demonstrate the feasibility of camera-based PR monitoring in dynamic environments and its potential integration into driving simulators for real-time physiological assessment.
comment: 6 figures and one table
Can Foundation Models Really Segment Tumors? A Benchmarking Odyssey in Lung CT Imaging
Accurate lung tumor segmentation is crucial for improving diagnosis, treatment planning, and patient outcomes in oncology. However, the complexity of tumor morphology, size, and location poses significant challenges for automated segmentation. This study presents a comprehensive benchmarking analysis of deep learning-based segmentation models, comparing traditional architectures such as U-Net and DeepLabV3, self-configuring models like nnUNet, and foundation models like MedSAM, and MedSAM~2. Evaluating performance across two lung tumor segmentation datasets, we assess segmentation accuracy and computational efficiency under various learning paradigms, including few-shot learning and fine-tuning. The results reveal that while traditional models struggle with tumor delineation, foundation models, particularly MedSAM~2, outperform them in both accuracy and computational efficiency. These findings underscore the potential of foundation models for lung tumor segmentation, highlighting their applicability in improving clinical workflows and patient outcomes.
RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications, where wavelength-dependent attenuation causes severe content degradation and color distortion. While recent state space models like Mamba show potential for long-range dependency modeling, their unfolding operations and fixed scan paths on 1D sequences fail to adapt to local object semantics and global relation modeling, limiting their efficacy in complex underwater environments. To address this, we enhance conventional Mamba with the sorting-based scanning mechanism that dynamically reorders scanning sequences based on statistical distribution of spatial correlation of all pixels. In this way, it encourages the network to prioritize the most informative components--structural and semantic features. Upon building this mechanism, we devise a Visually Self-adaptive State Block (VSSB) that harmonizes dynamic sorting of Mamba with input-dependent dynamic convolution, enabling coherent integration of global context and local relational cues. This exquisite design helps eliminate global focus bias, especially for widely distributed contents, which greatly weakens the statistical frequency. For robust feature extraction and refinement, we design a cross-feature bridge (CFB) to adaptively fuse multi-scale representations. These efforts compose the novel relation-driven Mamba framework for effective UIE (RD-UIE). Extensive experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba in both quantitative metrics and visual fidelity, averagely achieving 0.55 dB performance gain on the three benchmarks. Our code is available at https://github.com/kkoucy/RD-UIE/tree/main
High Dynamic Range Novel View Synthesis with Single Exposure ICML 2025
High Dynamic Range Novel View Synthesis (HDR-NVS) aims to establish a 3D scene HDR model from Low Dynamic Range (LDR) imagery. Typically, multiple-exposure LDR images are employed to capture a wider range of brightness levels in a scene, as a single LDR image cannot represent both the brightest and darkest regions simultaneously. While effective, this multiple-exposure HDR-NVS approach has significant limitations, including susceptibility to motion artifacts (e.g., ghosting and blurring), high capture and storage costs. To overcome these challenges, we introduce, for the first time, the single-exposure HDR-NVS problem, where only single exposure LDR images are available during training. We further introduce a novel approach, Mono-HDR-3D, featuring two dedicated modules formulated by the LDR image formation principles, one for converting LDR colors to HDR counterparts, and the other for transforming HDR images to LDR format so that unsupervised learning is enabled in a closed loop. Designed as a meta-algorithm, our approach can be seamlessly integrated with existing NVS models. Extensive experiments show that Mono-HDR-3D significantly outperforms previous methods. Source code will be released.
comment: It has been accepted by ICML 2025
Improving Editability in Image Generation with Layer-wise Memory CVPR 2025
Most real-world image editing tasks require multiple sequential edits to achieve desired results. Current editing approaches, primarily designed for single-object modifications, struggle with sequential editing: especially with maintaining previous edits along with adapting new objects naturally into the existing content. These limitations significantly hinder complex editing scenarios where multiple objects need to be modified while preserving their contextual relationships. We address this fundamental challenge through two key proposals: enabling rough mask inputs that preserve existing content while naturally integrating new elements and supporting consistent editing across multiple modifications. Our framework achieves this through layer-wise memory, which stores latent representations and prompt embeddings from previous edits. We propose Background Consistency Guidance that leverages memorized latents to maintain scene coherence and Multi-Query Disentanglement in cross-attention that ensures natural adaptation to existing content. To evaluate our method, we present a new benchmark dataset incorporating semantic alignment metrics and interactive editing scenarios. Through comprehensive experiments, we demonstrate superior performance in iterative image editing tasks with minimal user effort, requiring only rough masks while maintaining high-quality results throughout multiple editing steps.
comment: CVPR 2025. Project page : https://carpedkm.github.io/projects/improving_edit/index.html
CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 20 pages, 11 figures, 10 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 )
Fast Sign Retrieval via Sub-band Convolution: An Elementary Extension of Binary Classification
To efficiently compress the sign information of images, we address a sign retrieval problem for the block-wise discrete cosine transformation (DCT): reconstruction of the signs of DCT coefficients from their amplitudes. To this end, we propose a fast sign retrieval method on the basis of binary classification machine learning. We first introduce 3D representations of the amplitudes and signs, where we pack amplitudes/signs belonging to the same frequency band into a 2D slice, referred to as the sub-band block. We then retrieve the signs from the 3D amplitudes via binary classification, where each sign is regarded as a binary label. We implement a binary classification algorithm using convolutional neural networks, which are advantageous for efficiently extracting features in the 3D amplitudes. Experimental results demonstrate that our method achieves accurate sign retrieval with an overwhelmingly low computation cost.
Exploring the Computational Feasibility of Direct Pseudoinversion of the Encoding Matrix for MR Image Reconstruction (Pinv-Recon)
Image reconstruction in Magnetic Resonance Imaging (MRI) is fundamentally a linear inverse problem, such that the image can be recovered via explicit pseudoinversion of the encoding matrix by solving $\textbf{data} = \textbf{Encode} \times \textbf{image}$ - a method referred to here as Pinv-Recon. While the benefits of this approach were acknowledged in early studies, the field has historically favored fast Fourier transforms (FFT) and iterative techniques due to perceived computational limitations of the pseudoinversion approach. This work revisits Pinv-Recon in the context of modern hardware, software, and optimized linear algebra routines. We compare various matrix inversion strategies, assess regularization effects, and demonstrate incorporation of advanced encoding physics into a unified reconstruction framework. While hardware advances have already significantly reduced computation time compared to earlier studies, our work further demonstrates that leveraging Cholesky decomposition and block-wise inversion leads to a two-order-of-magnitude improvement in computational efficiency over previous Singular Value Decomposition-based implementations. Moreover, we demonstrate the versatility of Pinv-Recon on diverse \textit{in vivo} datasets encompassing a range of encoding schemes, starting with low- to medium-resolution functional and metabolic imaging and extending to high-resolution cases. Our findings establish Pinv-Recon as a practical and adaptable reconstruction method that aligns with the increasing emphasis on open-source and reproducible MRI research.
comment: 28 pages, 8 figures (+ Supplementary Material). Submitted to Scientific Reports
Deciphering scrolls with tomography: A training experiment
The recovery of severely damaged ancient written documents has proven to be a major challenge for many scientists, mainly due to the impracticality of physical unwrapping them. Non-destructive techniques, such as X-ray computed tomography (CT), combined with computer vision algorithms, have emerged as a means of facilitating the virtual reading of the hidden contents of the damaged documents. This paper proposes an educational laboratory aimed at simulating the entire process of acquisition and virtual recovery of the ancient works. We have developed an experimental setup that uses visible light to replace the detrimental X-rays, and a didactic software pipeline that allows students to virtually reconstruct a transparent rolled sheet with printed text on it, the wrapped scroll.
P-Hologen: An End-to-End Generative Framework for Phase-Only Holograms
Holography stands at the forefront of visual technology, offering immersive, three-dimensional visualizations through the manipulation of light wave amplitude and phase. Although generative models have been extensively explored in the image domain, their application to holograms remains relatively underexplored due to the inherent complexity of phase learning. Exploiting generative models for holograms offers exciting opportunities for advancing innovation and creativity, such as semantic-aware hologram generation and editing. Currently, the most viable approach for utilizing generative models in the hologram domain involves integrating an image-based generative model with an image-to-hologram conversion model, which comes at the cost of increased computational complexity and inefficiency. To tackle this problem, we introduce P-Hologen, the first end-to-end generative framework designed for phase-only holograms (POHs). P-Hologen employs vector quantized variational autoencoders to capture the complex distributions of POHs. It also integrates the angular spectrum method into the training process, constructing latent spaces for complex phase data using strategies from the image processing domain. Extensive experiments demonstrate that P-Hologen achieves superior quality and computational efficiency compared to the existing methods. Furthermore, our model generates high-quality unseen, diverse holographic content from its learned latent space without requiring pre-existing images. Our work paves the way for new applications and methodologies in holographic content creation, opening a new era in the exploration of generative holographic content. The code for our paper is publicly available on https://github.com/james0223/P-Hologen.
A Comprehensive Survey on Machine Learning Driven Material Defect Detection
Material defects (MD) represent a primary challenge affecting product performance and giving rise to safety issues in related products. The rapid and accurate identification and localization of MD constitute crucial research endeavors in addressing contemporary challenges associated with MD. In recent years, propelled by the swift advancement of machine learning (ML) technologies, particularly exemplified by deep learning, ML has swiftly emerged as the core technology and a prominent research direction for material defect detection (MDD). Through a comprehensive review of the latest literature, we systematically survey the ML techniques applied in MDD into five categories: unsupervised learning, supervised learning, semi-supervised learning, reinforcement learning, and generative learning. We provide a detailed analysis of the main principles and techniques used, together with the advantages and potential challenges associated with these techniques. Furthermore, the survey focuses on the techniques for defect detection in composite materials, which are important types of materials enjoying increasingly wide application in various industries such as aerospace, automotive, construction, and renewable energy. Finally, the survey explores potential future directions in MDD utilizing ML technologies. This survey consolidates ML-based MDD literature and provides a foundation for future research and practice.
comment: Accepted to ACM Computing Surveys. Full bibliographic information and external DOI added
Multimedia
FlowDubber: Movie Dubbing with LLM-based Semantic-aware Learning and Flow Matching based Voice Enhancing
Movie Dubbing aims to convert scripts into speeches that align with the given movie clip in both temporal and emotional aspects while preserving the vocal timbre of a given brief reference audio. Existing methods focus primarily on reducing the word error rate while ignoring the importance of lip-sync and acoustic quality. To address these issues, we propose a large language model (LLM) based flow matching architecture for dubbing, named FlowDubber, which achieves high-quality audio-visual sync and pronunciation by incorporating a large speech language model and dual contrastive aligning while achieving better acoustic quality via the proposed voice-enhanced flow matching than previous works. First, we introduce Qwen2.5 as the backbone of LLM to learn the in-context sequence from movie scripts and reference audio. Then, the proposed semantic-aware learning focuses on capturing LLM semantic knowledge at the phoneme level. Next, dual contrastive aligning (DCA) boosts mutual alignment with lip movement, reducing ambiguities where similar phonemes might be confused. Finally, the proposed Flow-based Voice Enhancing (FVE) improves acoustic quality in two aspects, which introduces an LLM-based acoustics flow matching guidance to strengthen clarity and uses affine style prior to enhance identity when recovering noise into mel-spectrograms via gradient vector field prediction. Extensive experiments demonstrate that our method outperforms several state-of-the-art methods on two primary benchmarks. The demos are available at {\href{https://galaxycong.github.io/LLM-Flow-Dubber/}{\textcolor{red}{https://galaxycong.github.io/LLM-Flow-Dubber/}}}.
PREMISE: Matching-based Prediction for Accurate Review Recommendation
We present PREMISE (PREdict with Matching ScorEs), a new architecture for the matching-based learning in the multimodal fields for the multimodal review helpfulness (MRHP) task. Distinct to previous fusion-based methods which obtains multimodal representations via cross-modal attention for downstream tasks, PREMISE computes the multi-scale and multi-field representations, filters duplicated semantics, and then obtained a set of matching scores as feature vectors for the downstream recommendation task. This new architecture significantly boosts the performance for such multimodal tasks whose context matching content are highly correlated to the targets of that task, compared to the state-of-the-art fusion-based methods. Experimental results on two publicly available datasets show that PREMISE achieves promising performance with less computational cost.
comment: 19 pages, 16 figures
CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment CVPR 2025
Recent advances in audio-visual learning have shown promising results in learning representations across modalities. However, most approaches rely on global audio representations that fail to capture fine-grained temporal correspondences with visual frames. Additionally, existing methods often struggle with conflicting optimization objectives when trying to jointly learn reconstruction and cross-modal alignment. In this work, we propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning. We address three key challenges: First, we tackle the granularity mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations. Second, we resolve conflicting optimization goals by separating contrastive and reconstruction objectives through dedicated global tokens. Third, we improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens. We evaluate the proposed approach on AudioSet, VGG Sound, and the ADE20K Sound dataset on zero-shot retrieval, classification and localization tasks demonstrating state-of-the-art performance and outperforming more complex architectures.
comment: To be published at CVPR 2025, code available at https://github.com/edsonroteia/cav-mae-sync
Photoshop Batch Rendering Using Actions for Stylistic Video Editing
My project looks at an efficient workflow for creative image/video editing using Adobe Photoshop Actions tool and Batch Processing System. This innovative approach to video editing through Photoshop creates a fundamental shift to creative workflow management through the integration of industry-leading image manipulation with video editing techniques. Through systematic automation of Actions, users can achieve a simple and consistent application of visual edits across a string of images. This approach provides an alternative method to optimize productivity while ensuring uniform results across image collections through a post-processing pipeline.
comment: 11 pages, 12 figures
Beyond Productivity: Rethinking the Impact of Creativity Support Tools
Creativity Support Tools (CSTs) are widely used across diverse creative domains, with generative AI recently increasing the abilities of CSTs. To better understand how the success of CSTs is determined in the literature, we conducted a review of outcome measures used in CST evaluations. Drawing from (n=173) CST evaluations in the ACM Digital Library, we identified the metrics commonly employed to assess user interactions with CSTs. Our findings reveal prevailing trends in current evaluation practices, while exposing underexplored measures that could broaden the scope of future research. Based on these results, we argue for a more holistic approach to evaluating CSTs, encouraging the HCI community to consider not only user experience and the quality of the generated output, but also user-centric aspects such as self-reflection and well-being as critical dimensions of assessment. We also highlight a need for validated measures specifically suited to the evaluation of generative AI in CSTs.
comment: In ACM Creativity and Cognition (C&C '25), June 23-25, 2025; 15 pages; 2 Figures; 3 Tables
Clustering Internet Memes Through Template Matching and Multi-Dimensional Similarity
Meme clustering is critical for toxicity detection, virality modeling, and typing, but it has received little attention in previous research. Clustering similar Internet memes is challenging due to their multimodality, cultural context, and adaptability. Existing approaches rely on databases, overlook semantics, and struggle to handle diverse dimensions of similarity. This paper introduces a novel method that uses template-based matching with multi-dimensional similarity features, thus eliminating the need for predefined databases and supporting adaptive matching. Memes are clustered using local and global features across similarity categories such as form, visual content, text, and identity. Our combined approach outperforms existing clustering methods, producing more consistent and coherent clusters, while similarity-based feature sets enable adaptability and align with human intuition. We make all supporting code publicly available to support subsequent research.
MAVEN: Multi-modal Attention for Valence-Arousal Emotion Network
Dynamic emotion recognition in the wild remains challenging due to the transient nature of emotional expressions and temporal misalignment of multi-modal cues. Traditional approaches predict valence and arousal and often overlook the inherent correlation between these two dimensions. The proposed Multi-modal Attention for Valence-Arousal Emotion Network (MAVEN) integrates visual, audio, and textual modalities through a bi-directional cross-modal attention mechanism. MAVEN uses modality-specific encoders to extract features from synchronized video frames, audio segments, and transcripts, predicting emotions in polar coordinates following Russell's circumplex model. The evaluation of the Aff-Wild2 dataset using MAVEN achieved a concordance correlation coefficient (CCC) of 0.3061, surpassing the ResNet-50 baseline model with a CCC of 0.22. The multistage architecture captures the subtle and transient nature of emotional expressions in conversational videos and improves emotion recognition in real-world situations. The code is available at: https://github.com/Vrushank-Ahire/MAVEN_8th_ABAW
Computation and Language
Evaluating Explanations: An Explanatory Virtues Framework for Mechanistic Interpretability -- The Strange Science Part I.ii
Mechanistic Interpretability (MI) aims to understand neural networks through causal explanations. Though MI has many explanation-generating methods, progress has been limited by the lack of a universal approach to evaluating explanations. Here we analyse the fundamental question "What makes a good explanation?" We introduce a pluralist Explanatory Virtues Framework drawing on four perspectives from the Philosophy of Science - the Bayesian, Kuhnian, Deutschian, and Nomological - to systematically evaluate and improve explanations in MI. We find that Compact Proofs consider many explanatory virtues and are hence a promising approach. Fruitful research directions implied by our framework include (1) clearly defining explanatory simplicity, (2) focusing on unifying explanations and (3) deriving universal principles for neural networks. Improved MI methods enhance our ability to monitor, predict, and steer AI systems.
comment: 13 pages (plus appendices), 5 figures
TRAVELER: A Benchmark for Evaluating Temporal Reasoning across Vague, Implicit and Explicit References
Understanding and resolving temporal references is essential in Natural Language Understanding as we often refer to the past or future in daily communication. Although existing benchmarks address a system's ability to reason about and resolve temporal references, systematic evaluation of specific temporal references remains limited. Towards closing this gap, we introduce TRAVELER, a novel synthetic benchmark dataset that follows a Question Answering paradigm and consists of questions involving temporal references with the corresponding correct answers. TRAVELER assesses models' abilities to resolve explicit, implicit relative to speech time, and vague temporal references. Beyond investigating the performance of state-of-the-art LLMs depending on the type of temporal reference, our benchmark also allows evaluation of performance in relation to the length of the set of events. For the category of vague temporal references, ground-truth answers were established via human surveys on Prolific, following a procedure similar to the one from Kenneweg et al. To demonstrate the benchmark's applicability, we evaluate four state-of-the-art LLMs using a question-answering task encompassing 3,300 questions. Our findings show that while the benchmarked LLMs can answer questions over event sets with a handful of events and explicit temporal references successfully, performance clearly deteriorates with larger event set length and when temporal references get less explicit. Notably, the vague question category exhibits the lowest performance across all models. The benchmark is publicly available at: https://gitlab.ub.uni-bielefeld.de/s.kenneweg/TRAVELER
comment: 24 pages, 6 figures, submitted to Springer Nature Computer Science
Helping Big Language Models Protect Themselves: An Enhanced Filtering and Summarization System
The recent growth in the use of Large Language Models has made them vulnerable to sophisticated adversarial assaults, manipulative prompts, and encoded malicious inputs. Existing countermeasures frequently necessitate retraining models, which is computationally costly and impracticable for deployment. Without the need for retraining or fine-tuning, this study presents a unique defense paradigm that allows LLMs to recognize, filter, and defend against adversarial or malicious inputs on their own. There are two main parts to the suggested framework: (1) A prompt filtering module that uses sophisticated Natural Language Processing (NLP) techniques, including zero-shot classification, keyword analysis, and encoded content detection (e.g. base64, hexadecimal, URL encoding), to detect, decode, and classify harmful inputs; and (2) A summarization module that processes and summarizes adversarial research literature to give the LLM context-aware defense knowledge. This approach strengthens LLMs' resistance to adversarial exploitation by fusing text extraction, summarization, and harmful prompt analysis. According to experimental results, this integrated technique has a 98.71% success rate in identifying harmful patterns, manipulative language structures, and encoded prompts. By employing a modest amount of adversarial research literature as context, the methodology also allows the model to react correctly to harmful inputs with a larger percentage of jailbreak resistance and refusal rate. While maintaining the quality of LLM responses, the framework dramatically increases LLM's resistance to hostile misuse, demonstrating its efficacy as a quick and easy substitute for time-consuming, retraining-based defenses.
A Transformer-based Neural Architecture Search Method GECCO 2023
This paper presents a neural architecture search method based on Transformer architecture, searching cross multihead attention computation ways for different number of encoder and decoder combinations. In order to search for neural network structures with better translation results, we considered perplexity as an auxiliary evaluation metric for the algorithm in addition to BLEU scores and iteratively improved each individual neural network within the population by a multi-objective genetic algorithm. Experimental results show that the neural network structures searched by the algorithm outperform all the baseline models, and that the introduction of the auxiliary evaluation metric can find better models than considering only the BLEU score as an evaluation metric.
comment: GECCO 2023
A Factorized Probabilistic Model of the Semantics of Vague Temporal Adverbials Relative to Different Event Types
Vague temporal adverbials, such as recently, just, and a long time ago, describe the temporal distance between a past event and the utterance time but leave the exact duration underspecified. In this paper, we introduce a factorized model that captures the semantics of these adverbials as probabilistic distributions. These distributions are composed with event-specific distributions to yield a contextualized meaning for an adverbial applied to a specific event. We fit the model's parameters using existing data capturing judgments of native speakers regarding the applicability of these vague temporal adverbials to events that took place a given time ago. Comparing our approach to a non-factorized model based on a single Gaussian distribution for each pair of event and temporal adverbial, we find that while both models have similar predictive power, our model is preferable in terms of Occam's razor, as it is simpler and has better extendability.
comment: 7 pages, 1 figure, to be published in CogSci Proceedings 2025
PREMISE: Matching-based Prediction for Accurate Review Recommendation
We present PREMISE (PREdict with Matching ScorEs), a new architecture for the matching-based learning in the multimodal fields for the multimodal review helpfulness (MRHP) task. Distinct to previous fusion-based methods which obtains multimodal representations via cross-modal attention for downstream tasks, PREMISE computes the multi-scale and multi-field representations, filters duplicated semantics, and then obtained a set of matching scores as feature vectors for the downstream recommendation task. This new architecture significantly boosts the performance for such multimodal tasks whose context matching content are highly correlated to the targets of that task, compared to the state-of-the-art fusion-based methods. Experimental results on two publicly available datasets show that PREMISE achieves promising performance with less computational cost.
comment: 19 pages, 16 figures
EvalxNLP: A Framework for Benchmarking Post-Hoc Explainability Methods on NLP Models
As Natural Language Processing (NLP) models continue to evolve and become integral to high-stakes applications, ensuring their interpretability remains a critical challenge. Given the growing variety of explainability methods and diverse stakeholder requirements, frameworks that help stakeholders select appropriate explanations tailored to their specific use cases are increasingly important. To address this need, we introduce EvalxNLP, a Python framework for benchmarking state-of-the-art feature attribution methods for transformer-based NLP models. EvalxNLP integrates eight widely recognized explainability techniques from the Explainable AI (XAI) literature, enabling users to generate and evaluate explanations based on key properties such as faithfulness, plausibility, and complexity. Our framework also provides interactive, LLM-based textual explanations, facilitating user understanding of the generated explanations and evaluation outcomes. Human evaluation results indicate high user satisfaction with EvalxNLP, suggesting it is a promising framework for benchmarking explanation methods across diverse user groups. By offering a user-friendly and extensible platform, EvalxNLP aims at democratizing explainability tools and supporting the systematic comparison and advancement of XAI techniques in NLP.
comment: Accepted to the xAI World Conference (2025) - System Demonstration
Gender Bias in Explainability: Investigating Performance Disparity in Post-hoc Methods
While research on applications and evaluations of explanation methods continues to expand, fairness of the explanation methods concerning disparities in their performance across subgroups remains an often overlooked aspect. In this paper, we address this gap by showing that, across three tasks and five language models, widely used post-hoc feature attribution methods exhibit significant gender disparity with respect to their faithfulness, robustness, and complexity. These disparities persist even when the models are pre-trained or fine-tuned on particularly unbiased datasets, indicating that the disparities we observe are not merely consequences of biased training data. Our results highlight the importance of addressing disparities in explanations when developing and applying explainability methods, as these can lead to biased outcomes against certain subgroups, with particularly critical implications in high-stakes contexts. Furthermore, our findings underscore the importance of incorporating the fairness of explanations, alongside overall model fairness and explainability, as a requirement in regulatory frameworks.
comment: Accepted to ACM Conference on Fairness, Accountability, and Transparency (FAccT) 2025
On the Limitations of Steering in Language Model Alignment
Steering vectors are a promising approach to aligning language model behavior at inference time. In this paper, we propose a framework to assess the limitations of steering vectors as alignment mechanisms. Using a framework of transformer hook interventions and antonym-based function vectors, we evaluate the role of prompt structure and context complexity in steering effectiveness. Our findings indicate that steering vectors are promising for specific alignment tasks, such as value alignment, but may not provide a robust foundation for general-purpose alignment in LLMs, particularly in complex scenarios. We establish a methodological foundation for future investigations into steering capabilities of reasoning models.
MateICL: Mitigating Attention Dispersion in Large-Scale In-Context Learning
Large Language Models (LLMs) have demonstrated remarkable capabilities in In-Context Learning (ICL). However, the fixed position length constraints in pre-trained models limit the number of demonstration examples. Recent efforts to extend context suffer from attention dispersion as the number of demonstrations increases. In this paper, we introduce Mitigating Attention Dispersion in large-scale ICL (MateICL) that enables LLMs to maintain effective self-attention as the context size grows. We first split the context into multiple windows, each filled to the model's context capacity, which are processed separately. Then, we introduce an additional layer to recalibrate the attention weights, prioritizing the query tokens as the number of demonstrations increases. Our empirical results show that MateICL can effectively leverage larger contexts to improve ICL performance. Compared to retrieval-based baselines, MateICL consistently achieves better performance without requiring an externally trained retrieval model. Despite recent advances in inference strategies (e.g., 32k token contexts), our results demonstrate that MateICL remains beneficial in computationally resource-constrained settings. The code is publicly available at https://github.com/amurtadha/MateICL.
Evaluating Vision Language Model Adaptations for Radiology Report Generation in Low-Resource Languages
The integration of artificial intelligence in healthcare has opened new horizons for improving medical diagnostics and patient care. However, challenges persist in developing systems capable of generating accurate and contextually relevant radiology reports, particularly in low-resource languages. In this study, we present a comprehensive benchmark to evaluate the performance of instruction-tuned Vision-Language Models (VLMs) in the specialized task of radiology report generation across three low-resource languages: Italian, German, and Spanish. Employing the LLaVA architectural framework, we conducted a systematic evaluation of pre-trained models utilizing general datasets, domain-specific datasets, and low-resource language-specific datasets. In light of the unavailability of models that possess prior knowledge of both the medical domain and low-resource languages, we analyzed various adaptations to determine the most effective approach for these contexts. The results revealed that language-specific models substantially outperformed both general and domain-specific models in generating radiology reports, emphasizing the critical role of linguistic adaptation. Additionally, models fine-tuned with medical terminology exhibited enhanced performance across all languages compared to models with generic knowledge, highlighting the importance of domain-specific training. We also explored the influence of the temperature parameter on the coherence of report generation, providing insights for optimal model settings. Our findings highlight the importance of tailored language and domain-specific training for improving the quality and accuracy of radiological reports in multilingual settings. This research not only advances our understanding of VLMs adaptability in healthcare but also points to significant avenues for future investigations into model tuning and language-specific adaptations.
Multimodal Transformers are Hierarchical Modal-wise Heterogeneous Graphs
Multimodal Sentiment Analysis (MSA) is a rapidly developing field that integrates multimodal information to recognize sentiments, and existing models have made significant progress in this area. The central challenge in MSA is multimodal fusion, which is predominantly addressed by Multimodal Transformers (MulTs). Although act as the paradigm, MulTs suffer from efficiency concerns. In this work, from the perspective of efficiency optimization, we propose and prove that MulTs are hierarchical modal-wise heterogeneous graphs (HMHGs), and we introduce the graph-structured representation pattern of MulTs. Based on this pattern, we propose an Interlaced Mask (IM) mechanism to design the Graph-Structured and Interlaced-Masked Multimodal Transformer (GsiT). It is formally equivalent to MulTs which achieves an efficient weight-sharing mechanism without information disorder through IM, enabling All-Modal-In-One fusion with only 1/3 of the parameters of pure MulTs. A Triton kernel called Decomposition is implemented to ensure avoiding additional computational overhead. Moreover, it achieves significantly higher performance than traditional MulTs. To further validate the effectiveness of GsiT itself and the HMHG concept, we integrate them into multiple state-of-the-art models and demonstrate notable performance improvements and parameter reduction on widely used MSA datasets.
Do We Need a Detailed Rubric for Automated Essay Scoring using Large Language Models?
This study investigates the necessity and impact of a detailed rubric in automated essay scoring (AES) using large language models (LLMs). While using rubrics are standard in LLM-based AES, creating detailed rubrics requires substantial ef-fort and increases token usage. We examined how different levels of rubric detail affect scoring accuracy across multiple LLMs using the TOEFL11 dataset. Our experiments compared three conditions: a full rubric, a simplified rubric, and no rubric, using four different LLMs (Claude 3.5 Haiku, Gemini 1.5 Flash, GPT-4o-mini, and Llama 3 70B Instruct). Results showed that three out of four models maintained similar scoring accuracy with the simplified rubric compared to the detailed one, while significantly reducing token usage. However, one model (Gemini 1.5 Flash) showed decreased performance with more detailed rubrics. The findings suggest that simplified rubrics may be sufficient for most LLM-based AES applications, offering a more efficient alternative without compromis-ing scoring accuracy. However, model-specific evaluation remains crucial as per-formance patterns vary across different LLMs.
comment: Accepted in AIED 2025. This preprint has not undergone any post-submission improvements or corrections
Value Portrait: Understanding Values of LLMs with Human-aligned Benchmark
The importance of benchmarks for assessing the values of language models has been pronounced due to the growing need of more authentic, human-aligned responses. However, existing benchmarks rely on human or machine annotations that are vulnerable to value-related biases. Furthermore, the tested scenarios often diverge from real-world contexts in which models are commonly used to generate text and express values. To address these issues, we propose the Value Portrait benchmark, a reliable framework for evaluating LLMs' value orientations with two key characteristics. First, the benchmark consists of items that capture real-life user-LLM interactions, enhancing the relevance of assessment results to real-world LLM usage and thus ecological validity. Second, each item is rated by human subjects based on its similarity to their own thoughts, and correlations between these ratings and the subjects' actual value scores are derived. This psychometrically validated approach ensures that items strongly correlated with specific values serve as reliable items for assessing those values. Through evaluating 27 LLMs with our benchmark, we find that these models prioritize Benevolence, Security, and Self-Direction values while placing less emphasis on Tradition, Power, and Achievement values. Also, our analysis reveals biases in how LLMs perceive various demographic groups, deviating from real human data.
comment: 32 pages, 7 figures
Towards the Resistance of Neural Network Watermarking to Fine-tuning
This paper proves a new watermarking method to embed the ownership information into a deep neural network (DNN), which is robust to fine-tuning. Specifically, we prove that when the input feature of a convolutional layer only contains low-frequency components, specific frequency components of the convolutional filter will not be changed by gradient descent during the fine-tuning process, where we propose a revised Fourier transform to extract frequency components from the convolutional filter. Additionally, we also prove that these frequency components are equivariant to weight scaling and weight permutations. In this way, we design a watermark module to encode the watermark information to specific frequency components in a convolutional filter. Preliminary experiments demonstrate the effectiveness of our method.
Token-free Models for Sarcasm Detection
Tokenization is a foundational step in most natural language processing (NLP) pipelines, yet it introduces challenges such as vocabulary mismatch and out-of-vocabulary issues. Recent work has shown that models operating directly on raw text at the byte or character level can mitigate these limitations. In this paper, we evaluate two token-free models, ByT5 and CANINE, on the task of sarcasm detection in both social media (Twitter) and non-social media (news headlines) domains. We fine-tune and benchmark these models against token-based baselines and state-of-the-art approaches. Our results show that ByT5-small and CANINE outperform token-based counterparts and achieve new state-of-the-art performance, improving accuracy by 0.77% and 0.49% on the News Headlines and Twitter Sarcasm datasets, respectively. These findings underscore the potential of token-free models for robust NLP in noisy and informal domains such as social media.
VTS-LLM: Domain-Adaptive LLM Agent for Enhancing Awareness in Vessel Traffic Services through Natural Language SC2025
Vessel Traffic Services (VTS) are essential for maritime safety and regulatory compliance through real-time traffic management. However, with increasing traffic complexity and the prevalence of heterogeneous, multimodal data, existing VTS systems face limitations in spatiotemporal reasoning and intuitive human interaction. In this work, we propose VTS-LLM Agent, the first domain-adaptive large LLM agent tailored for interactive decision support in VTS operations. We formalize risk-prone vessel identification as a knowledge-augmented Text-to-SQL task, combining structured vessel databases with external maritime knowledge. To support this, we construct a curated benchmark dataset consisting of a custom schema, domain-specific corpus, and a query-SQL test set in multiple linguistic styles. Our framework incorporates NER-based relational reasoning, agent-based domain knowledge injection, semantic algebra intermediate representation, and query rethink mechanisms to enhance domain grounding and context-aware understanding. Experimental results show that VTS-LLM outperforms both general-purpose and SQL-focused baselines under command-style, operational-style, and formal natural language queries, respectively. Moreover, our analysis provides the first empirical evidence that linguistic style variation introduces systematic performance challenges in Text-to-SQL modeling. This work lays the foundation for natural language interfaces in vessel traffic services and opens new opportunities for proactive, LLM-driven maritime real-time traffic management.
comment: 8 pages, 5 figures, 7 tablels, submitted to ITSC2025
Position: Enough of Scaling LLMs! Lets Focus on Downscaling
We challenge the dominant focus on neural scaling laws and advocate for a paradigm shift toward downscaling in the development of large language models (LLMs). While scaling laws have provided critical insights into performance improvements through increasing model and dataset size, we emphasize the significant limitations of this approach, particularly in terms of computational inefficiency, environmental impact, and deployment constraints. To address these challenges, we propose a holistic framework for downscaling LLMs that seeks to maintain performance while drastically reducing resource demands. This paper outlines practical strategies for transitioning away from traditional scaling paradigms, advocating for a more sustainable, efficient, and accessible approach to LLM development.
Synthesize-on-Graph: Knowledgeable Synthetic Data Generation for Continue Pre-training of Large Language Models
Large Language Models (LLMs) have achieved remarkable success but remain data-inefficient, especially when learning from small, specialized corpora with limited and proprietary data. Existing synthetic data generation methods for continue pre-training focus on intra-document content and overlook cross-document knowledge associations, limiting content diversity and depth. We propose Synthetic-on-Graph (SoG), a synthetic data generation framework that incorporates cross-document knowledge associations for efficient corpus expansion. SoG constructs a context graph by extracting entities and concepts from the original corpus, representing cross-document associations, and employing a graph walk strategy for knowledge-associated sampling. This enhances synthetic data diversity and coherence, enabling models to learn complex knowledge structures and handle rare knowledge. To further improve synthetic data quality, we integrate Chain-of-Thought (CoT) and Contrastive Clarifying (CC) synthetic, enhancing reasoning processes and discriminative power. Experiments show that SoG outperforms the state-of-the-art (SOTA) method in a multi-hop document Q&A dataset while performing comparably to the SOTA method on the reading comprehension task datasets, which also underscores the better generalization capability of SoG. Our work advances synthetic data generation and provides practical solutions for efficient knowledge acquisition in LLMs, especially in domains with limited data availability.
A Character-based Diffusion Embedding Algorithm for Enhancing the Generation Quality of Generative Linguistic Steganographic Texts
Generating high-quality steganographic text is a fundamental challenge in the field of generative linguistic steganography. This challenge arises primarily from two aspects: firstly, the capabilities of existing models in text generation are limited; secondly, embedding algorithms fail to effectively mitigate the negative impacts of sensitive information's properties, such as semantic content or randomness. Specifically, to ensure that the recipient can accurately extract hidden information, embedding algorithms often have to consider selecting candidate words with relatively low probabilities. This phenomenon leads to a decrease in the number of high-probability candidate words and an increase in low-probability candidate words, thereby compromising the semantic coherence and logical fluency of the steganographic text and diminishing the overall quality of the generated steganographic material. To address this issue, this paper proposes a novel embedding algorithm, character-based diffusion embedding algorithm (CDEA). Unlike existing embedding algorithms that strive to eliminate the impact of sensitive information's properties on the generation process, CDEA leverages sensitive information's properties. It enhances the selection frequency of high-probability candidate words in the candidate pool based on general statistical properties at the character level and grouping methods based on power-law distributions, while reducing the selection frequency of low-probability candidate words in the candidate pool. Furthermore, to ensure the effective transformation of sensitive information in long sequences, we also introduce the XLNet model. Experimental results demonstrate that the combination of CDEA and XLNet significantly improves the quality of generated steganographic text, particularly in terms of perceptual-imperceptibility.
Attack and defense techniques in large language models: A survey and new perspectives
Large Language Models (LLMs) have become central to numerous natural language processing tasks, but their vulnerabilities present significant security and ethical challenges. This systematic survey explores the evolving landscape of attack and defense techniques in LLMs. We classify attacks into adversarial prompt attack, optimized attacks, model theft, as well as attacks on application of LLMs, detailing their mechanisms and implications. Consequently, we analyze defense strategies, including prevention-based and detection-based defense methods. Although advances have been made, challenges remain to adapt to the dynamic threat landscape, balance usability with robustness, and address resource constraints in defense implementation. We highlight open problems, including the need for adaptive scalable defenses, explainable security techniques, and standardized evaluation frameworks. This survey provides actionable insights and directions for developing secure and resilient LLMs, emphasizing the importance of interdisciplinary collaboration and ethical considerations to mitigate risks in real-world applications.
Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
Large Language Model-Driven Dynamic Assessment of Grammatical Accuracy in English Language Learner Writing
This study investigates the potential for Large Language Models (LLMs) to scale-up Dynamic Assessment (DA). To facilitate such an investigation, we first developed DynaWrite-a modular, microservices-based grammatical tutoring application which supports multiple LLMs to generate dynamic feedback to learners of English. Initial testing of 21 LLMs, revealed GPT-4o and neural chat to have the most potential to scale-up DA in the language learning classroom. Further testing of these two candidates found both models performed similarly in their ability to accurately identify grammatical errors in user sentences. However, GPT-4o consistently outperformed neural chat in the quality of its DA by generating clear, consistent, and progressively explicit hints. Real-time responsiveness and system stability were also confirmed through detailed performance testing, with GPT-4o exhibiting sufficient speed and stability. This study shows that LLMs can be used to scale-up dynamic assessment and thus enable dynamic assessment to be delivered to larger groups than possible in traditional teacher-learner settings.
comment: 15 pages, 8 Figures. This work has been submitted to the IEEE for possible publication
How Transformers Learn Regular Language Recognition: A Theoretical Study on Training Dynamics and Implicit Bias ICML 2025
Language recognition tasks are fundamental in natural language processing (NLP) and have been widely used to benchmark the performance of large language models (LLMs). These tasks also play a crucial role in explaining the working mechanisms of transformers. In this work, we focus on two representative tasks in the category of regular language recognition, known as `even pairs' and `parity check', the aim of which is to determine whether the occurrences of certain subsequences in a given sequence are even. Our goal is to explore how a one-layer transformer, consisting of an attention layer followed by a linear layer, learns to solve these tasks by theoretically analyzing its training dynamics under gradient descent. While even pairs can be solved directly by a one-layer transformer, parity check need to be solved by integrating Chain-of-Thought (CoT), either into the inference stage of a transformer well-trained for the even pairs task, or into the training of a one-layer transformer. For both problems, our analysis shows that the joint training of attention and linear layers exhibits two distinct phases. In the first phase, the attention layer grows rapidly, mapping data sequences into separable vectors. In the second phase, the attention layer becomes stable, while the linear layer grows logarithmically and approaches in direction to a max-margin hyperplane that correctly separates the attention layer outputs into positive and negative samples, and the loss decreases at a rate of $O(1/t)$. Our experiments validate those theoretical results.
comment: accepted by ICML 2025
Always Tell Me The Odds: Fine-grained Conditional Probability Estimation
We present a state-of-the-art model for fine-grained probability estimation of propositions conditioned on context. Recent advances in large language models (LLMs) have significantly enhanced their reasoning capabilities, particularly on well-defined tasks with complete information. However, LLMs continue to struggle with making accurate and well-calibrated probabilistic predictions under uncertainty or partial information. While incorporating uncertainty into model predictions often boosts performance, obtaining reliable estimates of that uncertainty remains understudied. In particular, LLM probability estimates tend to be coarse and biased towards more frequent numbers. Through a combination of human and synthetic data creation and assessment, scaling to larger models, and better supervision, we propose a set of strong and precise probability estimation models. We conduct systematic evaluations across tasks that rely on conditional probability estimation and show that our approach consistently outperforms existing fine-tuned and prompting-based methods by a large margin.
PIPA: A Unified Evaluation Protocol for Diagnosing Interactive Planning Agents
The growing capabilities of large language models (LLMs) in instruction-following and context-understanding lead to the era of agents with numerous applications. Among these, task planning agents have become especially prominent in realistic scenarios involving complex internal pipelines, such as context understanding, tool management, and response generation. However, existing benchmarks predominantly evaluate agent performance based on task completion as a proxy for overall effectiveness. We hypothesize that merely improving task completion is misaligned with maximizing user satisfaction, as users interact with the entire agentic process and not only the end result. To address this gap, we propose PIPA, a unified evaluation protocol that conceptualizes the behavioral process of interactive task planning agents within a partially observable Markov Decision Process (POMDP) paradigm. The proposed protocol offers a comprehensive assessment of agent performance through a set of atomic evaluation criteria, allowing researchers and practitioners to diagnose specific strengths and weaknesses within the agent's decision-making pipeline. Our analyses show that agents excel in different behavioral stages, with user satisfaction shaped by both outcomes and intermediate behaviors. We also highlight future directions, including systems that leverage multiple agents and the limitations of user simulators in task planning.
comment: Preprint in progress
AI agents may be worth the hype but not the resources (yet): An initial exploration of machine translation quality and costs in three language pairs in the legal and news domains
Large language models (LLMs) and multi-agent orchestration are touted as the next leap in machine translation (MT), but their benefits relative to conventional neural MT (NMT) remain unclear. This paper offers an empirical reality check. We benchmark five paradigms, Google Translate (strong NMT baseline), GPT-4o (general-purpose LLM), o1-preview (reasoning-enhanced LLM), and two GPT-4o-powered agentic workflows (sequential three-stage and iterative refinement), on test data drawn from a legal contract and news prose in three English-source pairs: Spanish, Catalan and Turkish. Automatic evaluation is performed with COMET, BLEU, chrF2 and TER; human evaluation is conducted with expert ratings of adequacy and fluency; efficiency with total input-plus-output token counts mapped to April 2025 pricing. Automatic scores still favour the mature NMT system, which ranks first in seven of twelve metric-language combinations; o1-preview ties or places second in most remaining cases, while both multi-agent workflows trail. Human evaluation reverses part of this narrative: o1-preview produces the most adequate and fluent output in five of six comparisons, and the iterative agent edges ahead once, indicating that reasoning layers capture semantic nuance undervalued by surface metrics. Yet these qualitative gains carry steep costs. The sequential agent consumes roughly five times, and the iterative agent fifteen times, the tokens used by NMT or single-pass LLMs. We advocate multidimensional, cost-aware evaluation protocols and highlight research directions that could tip the balance: leaner coordination strategies, selective agent activation, and hybrid pipelines combining single-pass LLMs with targeted agent intervention.
On the effectiveness of Large Language Models in the mechanical design domain
In this work, we seek to understand the performance of large language models in the mechanical engineering domain. We leverage the semantic data found in the ABC dataset, specifically the assembly names that designers assigned to the overall assemblies, and the individual semantic part names that were assigned to each part. After pre-processing the data we developed two unsupervised tasks to evaluate how different model architectures perform on domain-specific data: a binary sentence-pair classification task and a zero-shot classification task. We achieved a 0.62 accuracy for the binary sentence-pair classification task with a fine-tuned model that focuses on fighting over-fitting: 1) modifying learning rates, 2) dropout values, 3) Sequence Length, and 4) adding a multi-head attention layer. Our model on the zero-shot classification task outperforms the baselines by a wide margin, and achieves a top-1 classification accuracy of 0.386. The results shed some light on the specific failure modes that arise when learning from language in this domain.
CHORUS: Zero-shot Hierarchical Retrieval and Orchestration for Generating Linear Programming Code
Linear Programming (LP) problems aim to find the optimal solution to an objective under constraints. These problems typically require domain knowledge, mathematical skills, and programming ability, presenting significant challenges for non-experts. This study explores the efficiency of Large Language Models (LLMs) in generating solver-specific LP code. We propose CHORUS, a retrieval-augmented generation (RAG) framework for synthesizing Gurobi-based LP code from natural language problem statements. CHORUS incorporates a hierarchical tree-like chunking strategy for theoretical contents and generates additional metadata based on code examples from documentation to facilitate self-contained, semantically coherent retrieval. Two-stage retrieval approach of CHORUS followed by cross-encoder reranking further ensures contextual relevance. Finally, expertly crafted prompt and structured parser with reasoning steps improve code generation performance significantly. Experiments on the NL4Opt-Code benchmark show that CHORUS improves the performance of open-source LLMs such as Llama3.1 (8B), Llama3.3 (70B), Phi4 (14B), Deepseek-r1 (32B), and Qwen2.5-coder (32B) by a significant margin compared to baseline and conventional RAG. It also allows these open-source LLMs to outperform or match the performance of much stronger baselines-GPT3.5 and GPT4 while requiring far fewer computational resources. Ablation studies further demonstrate the importance of expert prompting, hierarchical chunking, and structured reasoning.
comment: This paper has been accepted for presentation at the 19th Learning and Intelligent Optimization Conference (LION 19)
SymPlanner: Deliberate Planning in Language Models with Symbolic Representation
Planning remains a core challenge for language models (LMs), particularly in domains that require coherent multi-step action sequences grounded in external constraints. We introduce SymPlanner, a novel framework that equips LMs with structured planning capabilities by interfacing them with a symbolic environment that serves as an explicit world model. Rather than relying purely on natural language reasoning, SymPlanner grounds the planning process in a symbolic state space, where a policy model proposes actions and a symbolic environment deterministically executes and verifies their effects. To enhance exploration and improve robustness, we introduce Iterative Correction (IC), which refines previously proposed actions by leveraging feedback from the symbolic environment to eliminate invalid decisions and guide the model toward valid alternatives. Additionally, Contrastive Ranking (CR) enables fine-grained comparison of candidate plans by evaluating them jointly. We evaluate SymPlanner on PlanBench, demonstrating that it produces more coherent, diverse, and verifiable plans than pure natural language baselines.
100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models
The recent development of reasoning language models (RLMs) represents a novel evolution in large language models. In particular, the recent release of DeepSeek-R1 has generated widespread social impact and sparked enthusiasm in the research community for exploring the explicit reasoning paradigm of language models. However, the implementation details of the released models have not been fully open-sourced by DeepSeek, including DeepSeek-R1-Zero, DeepSeek-R1, and the distilled small models. As a result, many replication studies have emerged aiming to reproduce the strong performance achieved by DeepSeek-R1, reaching comparable performance through similar training procedures and fully open-source data resources. These works have investigated feasible strategies for supervised fine-tuning (SFT) and reinforcement learning from verifiable rewards (RLVR), focusing on data preparation and method design, yielding various valuable insights. In this report, we provide a summary of recent replication studies to inspire future research. We primarily focus on SFT and RLVR as two main directions, introducing the details for data construction, method design and training procedure of current replication studies. Moreover, we conclude key findings from the implementation details and experimental results reported by these studies, anticipating to inspire future research. We also discuss additional techniques of enhancing RLMs, highlighting the potential of expanding the application scope of these models, and discussing the challenges in development. By this survey, we aim to help researchers and developers of RLMs stay updated with the latest advancements, and seek to inspire new ideas to further enhance RLMs.
Self-Generated In-Context Examples Improve LLM Agents for Sequential Decision-Making Tasks
Many methods for improving Large Language Model (LLM) agents for sequential decision-making tasks depend on task-specific knowledge engineering--such as prompt tuning, curated in-context examples, or customized observation and action spaces. Using these approaches, agent performance improves with the quality or amount of knowledge engineering invested. Instead, we investigate how LLM agents can automatically improve their performance by learning in-context from their own successful experiences on similar tasks. Rather than relying on task-specific knowledge engineering, we focus on constructing and refining a database of self-generated examples. We demonstrate that even a naive accumulation of successful trajectories across training tasks boosts test performance on three benchmarks: ALFWorld (73% to 89%), Wordcraft (55% to 64%), and InterCode-SQL (75% to 79%)--matching the performance the initial agent achieves if allowed two to three attempts per task. We then introduce two extensions: (1) database-level selection through population-based training to identify high-performing example collections, and (2) exemplar-level selection that retains individual trajectories based on their empirical utility as in-context examples. These extensions further enhance performance, achieving 91% on ALFWorld--matching more complex approaches that employ task-specific components and prompts. Our results demonstrate that automatic trajectory database construction offers a compelling alternative to labor-intensive knowledge engineering.
Clustering Internet Memes Through Template Matching and Multi-Dimensional Similarity
Meme clustering is critical for toxicity detection, virality modeling, and typing, but it has received little attention in previous research. Clustering similar Internet memes is challenging due to their multimodality, cultural context, and adaptability. Existing approaches rely on databases, overlook semantics, and struggle to handle diverse dimensions of similarity. This paper introduces a novel method that uses template-based matching with multi-dimensional similarity features, thus eliminating the need for predefined databases and supporting adaptive matching. Memes are clustered using local and global features across similarity categories such as form, visual content, text, and identity. Our combined approach outperforms existing clustering methods, producing more consistent and coherent clusters, while similarity-based feature sets enable adaptability and align with human intuition. We make all supporting code publicly available to support subsequent research.
A False Sense of Privacy: Evaluating Textual Data Sanitization Beyond Surface-level Privacy Leakage
Sanitizing sensitive text data typically involves removing personally identifiable information (PII) or generating synthetic data under the assumption that these methods adequately protect privacy; however, their effectiveness is often only assessed by measuring the leakage of explicit identifiers but ignoring nuanced textual markers that can lead to re-identification. We challenge the above illusion of privacy by proposing a new framework that evaluates re-identification attacks to quantify individual privacy risks upon data release. Our approach shows that seemingly innocuous auxiliary information -- such as routine social activities -- can be used to infer sensitive attributes like age or substance use history from sanitized data. For instance, we demonstrate that Azure's commercial PII removal tool fails to protect 74\% of information in the MedQA dataset. Although differential privacy mitigates these risks to some extent, it significantly reduces the utility of the sanitized text for downstream tasks. Our findings indicate that current sanitization techniques offer a \textit{false sense of privacy}, highlighting the need for more robust methods that protect against semantic-level information leakage.
Wiki-TabNER: Integrating Named Entity Recognition into Wikipedia Tables SIGIR 2025
Interest in solving table interpretation tasks has grown over the years, yet it still relies on existing datasets that may be overly simplified. This is potentially reducing the effectiveness of the dataset for thorough evaluation and failing to accurately represent tables as they appear in the real-world. To enrich the existing benchmark datasets, we extract and annotate a new, more challenging dataset. The proposed Wiki-TabNER dataset features complex tables containing several entities per cell, with named entities labeled using DBpedia classes. This dataset is specifically designed to address named entity recognition (NER) task within tables, but it can also be used as a more challenging dataset for evaluating the entity linking task. In this paper we describe the distinguishing features of the Wiki-TabNER dataset and the labeling process. In addition, we propose a prompting framework for evaluating the new large language models on the within tables NER task. Finally, we perform qualitative analysis to gain insights into the challenges encountered by the models and to understand the limitations of the proposed~dataset.
comment: Accepted at SIGIR 2025 conference
A Rate-Distortion Framework for Summarization
This paper introduces an information-theoretic framework for text summarization. We define the summarizer rate-distortion function and show that it provides a fundamental lower bound on summarizer performance. We describe an iterative procedure, similar to Blahut-Arimoto algorithm, for computing this function. To handle real-world text datasets, we also propose a practical method that can calculate the summarizer rate-distortion function with limited data. Finally, we empirically confirm our theoretical results by comparing the summarizer rate-distortion function with the performances of different summarizers used in practice.
comment: Accepted to ISIT 2025. This arXiv version includes an appendix with additional details
FlexLLM: A System for Co-Serving Large Language Model Inference and Parameter-Efficient Finetuning
Finetuning large language models (LLMs) is essential for task adaptation, yet serving stacks today isolate inference and finetuning on separate GPU clusters -- wasting resources and under-utilizing hardware. We introduce FlexLLM, the first system to co-serve LLM inference and PEFT-based finetuning on shared GPUs by fusing computation at the token level. The static compilation optimizations in FlexLLM -- dependent parallelization and graph pruning significantly shrink activation memory, leading to end-to-end GPU memory savings by up to 80%. At runtime, a novel token-level finetuning mechanism paired with a hybrid token scheduler dynamically interleaves inference and training tokens within each co-serving iteration, meeting strict latency SLOs while maximizing utilization. In end-to-end benchmarks on LLaMA-3.1-8B, Qwen-2.5-14B, and Qwen-2.5-32B, FlexLLM sustains the inference SLO requirements up to 20 req/s, and improves finetuning throughput by 1.9-4.8x under heavy inference workloads and 2.5-6.8x under light loads, preserving over 76% of peak finetuning progress even at peak demand. The source code of FlexLLM is publicly available at https://github.com/flexflow/FlexFlow/.
MoDeGPT: Modular Decomposition for Large Language Model Compression ICLR 2025
Large Language Models (LLMs) have reshaped the landscape of artificial intelligence by demonstrating exceptional performance across various tasks. However, substantial computational requirements make their deployment challenging on devices with limited resources. Recently, compression methods using low-rank matrix techniques have shown promise, yet these often lead to degraded accuracy or introduce significant overhead in parameters and inference latency. This paper introduces \textbf{Mo}dular \textbf{De}composition (MoDeGPT), a novel structured compression framework that does not need recovery fine-tuning while resolving the above drawbacks. MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions via reconstructing the module-level outputs. MoDeGPT is developed based on a theoretical framework that utilizes three well-established matrix decomposition algorithms -- Nystr\"om approximation, CR decomposition, and SVD -- and applies them to our redefined transformer modules. Our comprehensive experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods that rely on gradient information, and saves 98% of compute costs on compressing a 13B model. On \textsc{Llama}-2/3 and OPT models, MoDeGPT maintains 90-95% zero-shot performance with 25-30% compression rates. Moreover, the compression can be done on a single GPU within a few hours and increases the inference throughput by up to 46%.
comment: ICLR 2025 Oral
TableMaster: A Recipe to Advance Table Understanding with Language Models
Tables serve as a fundamental format for representing structured relational data. While current language models (LMs) excel at many text-based tasks, they still face challenges in table understanding due to the complex characteristics of tabular data, such as their structured nature. In this paper, we aim to enhance LMs for improved table understanding. We identify four key challenges: 1) difficulty in locating target data, 2) deficiency in table semantics, 3) numerical inaccuracies in textual reasoning, and 4) semantic inflexibility in symbolic reasoning. To address these issues, we propose TableMaster, a recipe and comprehensive framework that integrates multiple solutions to overcome these obstacles. TableMaster first extracts relevant table content and verbalizes it with enriched semantic context. Additionally, we introduce adaptive reasoning, a flexible approach that dynamically adjusts between textual and symbolic reasoning, tailoring the reasoning process to each query. Extensive analyses and experiments demonstrate our findings and the effectiveness of TableMaster. On the WikiTQ dataset, TableMaster achieves an accuracy of 78.13% using GPT-4o-mini, surpassing existing baselines.
Sparks of Tabular Reasoning via Text2SQL Reinforcement Learning
This work reframes the Text-to-SQL task as a pathway for teaching large language models (LLMs) to reason over and manipulate tabular data--moving beyond the traditional focus on query generation. We propose a two-stage framework that leverages SQL supervision to develop transferable table reasoning capabilities. First, we synthesize detailed chain-of-thought (CoT) traces from real-world SQL queries, providing step-by-step, clause-level supervision that teaches the model how to traverse, filter, and aggregate table fields. Second, we introduce a Group Relative Policy Optimization (GRPO) reinforcement learning objective that connects SQL execution accuracy to generalizable reasoning by encouraging steps that extend beyond task-specific syntax and transfer across datasets. Empirically, our approach improves performance on standard Text-to-SQL benchmarks and achieves substantial gains on reasoning-intensive datasets such as BIRD and CRT-QA, demonstrating enhanced generalization and interpretability. Specifically, the distilled-quantized LLaMA model achieved a relative 33.9\% increase in accuracy when trained on Text-to-SQL tasks, while Qwen achieved a relative 14.5\% increase. These results suggest that SQL can serve not only as a target formalism but also as an effective scaffold for learning robust, transferable reasoning over structured data.
A Causal World Model Underlying Next Token Prediction: Exploring GPT in a Controlled Environment ICML
Do generative pre-trained transformer (GPT) models, trained only to predict the next token, implicitly learn a world model from which a sequence is generated one token at a time? We address this question by deriving a causal interpretation of the attention mechanism in GPT, and suggesting a causal world model that arises from this interpretation. Furthermore, we propose that GPT models, at inference time, can be utilized for zero-shot causal structure learning for input sequences and present a confidence score. Empirical evaluation is conducted in a controlled environment using the setup and rules of the Othello and Chess strategy games. A GPT, pre-trained on real-world games played with the intention of winning, is tested on out-of-distribution synthetic data consisting of sequences of random legal moves. We find that the GPT model is likely to generate legal next moves for out-of-distribution sequences for which a causal structure is encoded in the attention mechanism with high confidence. In cases for which the GPT model generates illegal moves it also fails to capture any causal structure.
comment: International Conference on Machine Learning (ICML), 2025
Automating the Generation of Prompts for LLM-based Action Choice in PDDL Planning ICAPS'25
Large language models (LLMs) have revolutionized a large variety of NLP tasks. An active debate is to what extent they can do reasoning and planning. Prior work has assessed the latter in the specific context of PDDL planning, based on manually converting three PDDL domains into natural language (NL) prompts. Here we automate this conversion step, showing how to leverage an LLM to automatically generate NL prompts from PDDL input. Our automatically generated NL prompts result in similar LLM-planning performance as the previous manually generated ones. Beyond this, the automation enables us to run much larger experiments, providing for the first time a broad evaluation of LLM planning performance in PDDL. Our NL prompts yield better performance than PDDL prompts and simple template-based NL prompts. Compared to symbolic planners, LLM planning lags far behind; but in some domains, our best LLM configuration scales up further than A$^\star$ using LM-cut.
comment: Extended version of the paper from the ICAPS'25 proceedings (same main part + additional appendix)
REFFLY: Melody-Constrained Lyrics Editing Model
Automatic melody-to-lyric (M2L) generation aims to create lyrics that align with a given melody. While most previous approaches generate lyrics from scratch, revision, editing plain text draft to fit it into the melody, offers a much more flexible and practical alternative. This enables broad applications, such as generating lyrics from flexible inputs (keywords, themes, or full text that needs refining to be singable), song translation (preserving meaning across languages while keeping the melody intact), or style transfer (adapting lyrics to different genres). This paper introduces REFFLY (REvision Framework For LYrics), the first revision framework for editing and generating melody-aligned lyrics. We train the lyric revision module using our curated synthesized melody-aligned lyrics dataset, enabling it to transform plain text into lyrics that align with a given melody. To further enhance the revision ability, we propose training-free heuristics aimed at preserving both semantic meaning and musical consistency throughout the editing process. Experimental results demonstrate the effectiveness of REFFLY across various tasks (e.g. lyrics generation, song translation), showing that our model outperforms strong baselines, including Lyra (Tian et al., 2023) and GPT-4, by 25% in both musicality and text quality.
ICLR: In-Context Learning of Representations ICLR 2025
Recent work has demonstrated that semantics specified by pretraining data influence how representations of different concepts are organized in a large language model (LLM). However, given the open-ended nature of LLMs, e.g., their ability to in-context learn, we can ask whether models alter these pretraining semantics to adopt alternative, context-specified ones. Specifically, if we provide in-context exemplars wherein a concept plays a different role than what the pretraining data suggests, do models reorganize their representations in accordance with these novel semantics? To answer this question, we take inspiration from the theory of conceptual role semantics and define a toy "graph tracing" task wherein the nodes of the graph are referenced via concepts seen during training (e.g., apple, bird, etc.) and the connectivity of the graph is defined via some predefined structure (e.g., a square grid). Given exemplars that indicate traces of random walks on the graph, we analyze intermediate representations of the model and find that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure. Further, we find that when reference concepts have correlations in their semantics (e.g., Monday, Tuesday, etc.), the context-specified graph structure is still present in the representations, but is unable to dominate the pretrained structure. To explain these results, we analogize our task to energy minimization for a predefined graph topology, providing evidence towards an implicit optimization process to infer context-specified semantics. Overall, our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.
comment: ICLR 2025
Competition Dynamics Shape Algorithmic Phases of In-Context Learning ICLR 2025
In-Context Learning (ICL) has significantly expanded the general-purpose nature of large language models, allowing them to adapt to novel tasks using merely the inputted context. This has motivated a series of papers that analyze tractable synthetic domains and postulate precise mechanisms that may underlie ICL. However, the use of relatively distinct setups that often lack a sequence modeling nature to them makes it unclear how general the reported insights from such studies are. Motivated by this, we propose a synthetic sequence modeling task that involves learning to simulate a finite mixture of Markov chains. As we show, models trained on this task reproduce most well-known results on ICL, hence offering a unified setting for studying the concept. Building on this setup, we demonstrate we can explain a model's behavior by decomposing it into four broad algorithms that combine a fuzzy retrieval vs. inference approach with either unigram or bigram statistics of the context. These algorithms engage in a competition dynamics to dominate model behavior, with the precise experimental conditions dictating which algorithm ends up superseding others: e.g., we find merely varying context size or amount of training yields (at times sharp) transitions between which algorithm dictates the model behavior, revealing a mechanism that explains the transient nature of ICL. In this sense, we argue ICL is best thought of as a mixture of different algorithms, each with its own peculiarities, instead of a monolithic capability. This also implies that making general claims about ICL that hold universally across all settings may be infeasible.
comment: ICLR 2025 Spotlight
Rethinking Scientific Summarization Evaluation: Grounding Explainable Metrics on Facet-aware Benchmark
The summarization capabilities of pretrained and large language models (LLMs) have been widely validated in general areas, but their use in scientific corpus, which involves complex sentences and specialized knowledge, has been less assessed. This paper presents conceptual and experimental analyses of scientific summarization, highlighting the inadequacies of traditional evaluation methods, such as $n$-gram, embedding comparison, and QA, particularly in providing explanations, grasping scientific concepts, or identifying key content. Subsequently, we introduce the Facet-aware Metric (FM), employing LLMs for advanced semantic matching to evaluate summaries based on different aspects. This facet-aware approach offers a thorough evaluation of abstracts by decomposing the evaluation task into simpler subtasks.Recognizing the absence of an evaluation benchmark in this domain, we curate a Facet-based scientific summarization Dataset (FD) with facet-level annotations. Our findings confirm that FM offers a more logical approach to evaluating scientific summaries. In addition, fine-tuned smaller models can compete with LLMs in scientific contexts, while LLMs have limitations in learning from in-context information in scientific domains. This suggests an area for future enhancement of LLMs.
comment: 14pages
Does Self-Attention Need Separate Weights in Transformers?
The success of self-attention lies in its ability to capture long-range dependencies and enhance context understanding, but it is limited by its computational complexity and challenges in handling sequential data with inherent directionality. This work introduces a shared weight self-attention-based BERT model that only learns one weight matrix for (Key, Value, and Query) representations instead of three individual matrices for each of them. Our shared weight attention reduces the training parameter size by more than half and training time by around one-tenth. Furthermore, we demonstrate higher prediction accuracy on small tasks of GLUE over the BERT baseline and in particular a generalization power on noisy and out-of-domain data. Experimental results indicate that our shared self-attention method achieves a parameter size reduction of 66.53% in the attention block. In the GLUE dataset, the shared weight self-attention-based BERT model demonstrates accuracy improvements of 0.38%, 5.81%, and 1.06% over the standard, symmetric, and pairwise attention-based BERT models, respectively. The model and source code are available at Anonymous.
comment: Preprint paper
Dynamics of Spontaneous Topic Changes in Next Token Prediction with Self-Attention
Human cognition is punctuated by abrupt, spontaneous shifts between topics-driven by emotional, contextual, or associative cues-a phenomenon known as spontaneous thought in neuroscience. In contrast, self-attention based models depend on structured patterns over their inputs to predict each next token, lacking spontaneity. Motivated by this distinction, we characterize spontaneous topic changes in self-attention architectures, revealing both their similarities and their divergences from spontaneous human thought. First, we establish theoretical results under a simplified, single-layer self-attention model with suitable conditions by defining the topic as a set of Token Priority Graphs (TPGs). Specifically, we demonstrate that (1) the model maintains the priority order of tokens related to the input topic, (2) a spontaneous topic change can occur only if lower-priority tokens outnumber all higher-priority tokens of the input topic, and (3) unlike human cognition, the longer context length or the more ambiguous input topic reduces the likelihood of spontaneous change. Second, we empirically validate that these dynamics persist in modern, state-of-the-art LLMs, underscoring a fundamental disparity between human cognition and AI behaviour in the context of spontaneous topic changes. To the best of our knowledge, no prior work has explored these questions with a focus as closely aligned to human thought.
AutoPrep: Natural Language Question-Aware Data Preparation with a Multi-Agent Framework
Answering natural language (NL) questions about tables, known as Tabular Question Answering (TQA), is crucial because it allows users to quickly and efficiently extract meaningful insights from structured data, effectively bridging the gap between human language and machine-readable formats. Many of these tables are derived from web sources or real-world scenarios, which require meticulous data preparation (or data prep) to ensure accurate responses. However, preparing such tables for NL questions introduces new requirements that extend beyond traditional data preparation. This question-aware data preparation involves specific tasks such as column derivation and filtering tailored to particular questions, as well as question-aware value normalization or conversion, highlighting the need for a more nuanced approach in this context. Because each of the above tasks is unique, a single model (or agent) may not perform effectively across all scenarios. In this paper, we propose AutoPrep, a large language model (LLM)-based multi-agent framework that leverages the strengths of multiple agents, each specialized in a certain type of data prep, ensuring more accurate and contextually relevant responses. Given an NL question over a table, AutoPrep performs data prep through three key components. Planner: Determines a logical plan, outlining a sequence of high-level operations. Programmer: Translates this logical plan into a physical plan by generating the corresponding low-level code. Executor: Executes the generated code to process the table. To support this multi-agent framework, we design a novel Chain-of-Clauses reasoning mechanism for high-level operation suggestion, and a tool-augmented method for low-level code generation...
Better Estimation of the KL Divergence Between Language Models
Estimating the Kullback--Leibler (KL) divergence between language models has many applications, e.g., reinforcement learning from human feedback (RLHF), interpretability, and knowledge distillation. However, computing the exact KL divergence between two arbitrary language models is intractable. Thus, practitioners often resort to the use of sampling-based estimators. While it is easy to fashion a simple Monte Carlo (MC) estimator that provides an unbiased estimate of the KL divergence between language models, this estimator notoriously suffers from high variance, and can even result in a negative estimate of the KL divergence, a non-negative quantity. In this paper, we introduce a Rao--Blackwellized estimator that is also unbiased and provably has variance less than or equal to that of the standard Monte Carlo estimator. In an empirical study on sentiment-controlled fine-tuning, we show that our estimator provides more stable KL estimates and reduces variance substantially in practice. Additionally, we derive an analogous Rao--Blackwellized estimator of the gradient of the KL divergence, which leads to more stable training and produces models that more frequently appear on the Pareto frontier of reward vs. KL compared to the ones trained with the MC estimator of the gradient.
AD-LLM: Benchmarking Large Language Models for Anomaly Detection
Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring. Within natural language processing (NLP), AD helps detect issues like spam, misinformation, and unusual user activity. Although large language models (LLMs) have had a strong impact on tasks such as text generation and summarization, their potential in AD has not been studied enough. This paper introduces AD-LLM, the first benchmark that evaluates how LLMs can help with NLP anomaly detection. We examine three key tasks: (i) zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; (ii) data augmentation, generating synthetic data and category descriptions to improve AD models; and (iii) model selection, using LLMs to suggest unsupervised AD models. Through experiments with different datasets, we find that LLMs can work well in zero-shot AD, that carefully designed augmentation methods are useful, and that explaining model selection for specific datasets remains challenging. Based on these results, we outline six future research directions on LLMs for AD.
Rosetta-PL: Propositional Logic as a Benchmark for Large Language Model Reasoning
Large Language Models (LLMs) are primarily trained on high-resource natural languages, limiting their effectiveness in low-resource settings and in tasks requiring deep logical reasoning. This research introduces Rosetta-PL, a benchmark designed to evaluate LLMs' logical reasoning and generalization capabilities in a controlled environment. We construct Rosetta-PL by translating a dataset of logical propositions from Lean into a custom logical language, which is then used to fine-tune an LLM (e.g., GPT-4o). Our experiments analyze the impact of the size of the dataset and the translation methodology on the performance of the model. Our results indicate that preserving logical relationships in the translation process significantly boosts precision, with accuracy plateauing beyond roughly 20,000 training samples. These insights provide valuable guidelines for optimizing LLM training in formal reasoning tasks and improving performance in various low-resource language applications.
Human-Computer Interaction
Group Gaze-Sharing with Projection Displays
The eyes play an important role in human collaboration. Mutual and shared gaze help communicate visual attention to each other or to a specific object of interest. Shared gaze was typically investigated for pair collaborations in remote settings and with people in virtual and augmented reality. With our work, we expand this line of research by a new technique to communicate gaze between groups in tabletop workshop scenarios. To achieve this communication, we use an approach based on projection mapping to unify gaze data from multiple participants into a common visualization space on a tabletop. We showcase our approach with a collaborative puzzle-solving task that displays shared visual attention on individual pieces and provides hints to solve the problem at hand.
comment: 2025 Symposium on Eye Tracking Research and Applications (ETRA '25)
Evaluating Explanations: An Explanatory Virtues Framework for Mechanistic Interpretability -- The Strange Science Part I.ii
Mechanistic Interpretability (MI) aims to understand neural networks through causal explanations. Though MI has many explanation-generating methods, progress has been limited by the lack of a universal approach to evaluating explanations. Here we analyse the fundamental question "What makes a good explanation?" We introduce a pluralist Explanatory Virtues Framework drawing on four perspectives from the Philosophy of Science - the Bayesian, Kuhnian, Deutschian, and Nomological - to systematically evaluate and improve explanations in MI. We find that Compact Proofs consider many explanatory virtues and are hence a promising approach. Fruitful research directions implied by our framework include (1) clearly defining explanatory simplicity, (2) focusing on unifying explanations and (3) deriving universal principles for neural networks. Improved MI methods enhance our ability to monitor, predict, and steer AI systems.
comment: 13 pages (plus appendices), 5 figures
Closing the Loop: A Systematic Review of Experience-Driven Game Adaptation
Adaptive game systems aim to enrich player experiences by dynamically adjusting game content in response to user data. While extensive research has addressed content personalization and player experience modeling, the integration of these components into fully operational adaptive gameplay systems remains limited. This systematic review, conducted in accordance with PRISMA guidelines, analyzes 17 empirical studies published between January 2015 and May 2024, identifying and analyzing approaches that implement the complete experience-driven loop -- including player sensing, modeling, and content adaptation. Game telemetry remains the most prevalent sensing modality, although other non-invasive methods suitable for affective modeling -- such as facial expression analysis (FEA) and peripheral interaction data -- remain underutilized despite their potential for real-time emotional inference. Knowledge-based methods, such as rule-based systems and heuristics, dominate modeling and adaptation due to their interpretability and low resource demands, whereas machine learning approaches face challenges related to data availability and transparency. Despite their relevance to immersive and therapeutic experiences, affective states such as stress and anxiety remain largely ignored, as systems continue to favor performance over emotion-sensitive adaptation. These findings highlight a crucial research direction: advancing emotionally responsive game systems that move beyond performance optimization by incorporating underutilized sensing modalities -- such as FEA and peripheral interaction -- to enable real-time affect-driven personalization. Advancing in this direction holds strong potential to increase immersion, personalize gameplay, and support affect regulation across entertainment and therapeutic contexts.
Tell me who its founders are and I'll tell you what your online community looks like: Online community founders' personality and community attributes
Online communities are an increasingly important stakeholder for firms, and despite the growing body of research on them, much remains to be learned about them and about the factors that determine their attributes and sustainability. Whereas most of the literature focuses on predictors such as community activity, network structure, and platform interface, there is little research about behavioral and psychological aspects of community members and leaders. In the present study we focus on the personality traits of community founders as predictors of community attributes and sustainability. We develop a tool to estimate community members' Big Five personality traits from their social media text and use it to estimate the traits of 35,164 founders in 8,625 Reddit communities. We find support for most of our predictions about the relationships between founder traits and community sustainability and attributes, including the level of engagement within the community, aspects of its social network structure, and whether the founders themselves remain active in it.
Exploring the Impact of Explainable AI and Cognitive Capabilities on Users' Decisions
Artificial Intelligence (AI) systems are increasingly used for decision-making across domains, raising debates over the information and explanations they should provide. Most research on Explainable AI (XAI) has focused on feature-based explanations, with less attention on alternative styles. Personality traits like the Need for Cognition (NFC) can also lead to different decision-making outcomes among low and high NFC individuals. We investigated how presenting AI information (prediction, confidence, and accuracy) and different explanation styles (example-based, feature-based, rule-based, and counterfactual) affect accuracy, reliance on AI, and cognitive load in a loan application scenario. We also examined low and high NFC individuals' differences in prioritizing XAI interface elements (loan attributes, AI information, and explanations), accuracy, and cognitive load. Our findings show that high AI confidence significantly increases reliance on AI while reducing cognitive load. Feature-based explanations did not enhance accuracy compared to other conditions. Although counterfactual explanations were less understandable, they enhanced overall accuracy, increasing reliance on AI and reducing cognitive load when AI predictions were correct. Both low and high NFC individuals prioritized explanations after loan attributes, leaving AI information as the least important. However, we found no significant differences between low and high NFC groups in accuracy or cognitive load, raising questions about the role of personality traits in AI-assisted decision-making. These findings highlight the need for user-centric personalization in XAI interfaces, incorporating diverse explanation styles and exploring multiple personality traits and other user characteristics to optimize human-AI collaboration.
comment: 30 pages, 7 figures
Barriers to Employment: The Deaf Multimedia Authoring Tax
This paper describes the challenges that deaf and hard of hearing people face with creating accessible multimedia content, such as portfolios, instructional videos and video presentations. Unlike content consumption, the process of content creation itself remains highly inaccessible, creating barriers to employment in all stages of recruiting, hiring, and carrying out assigned job duties. Overcoming these barriers incurs a "deaf content creation tax" that translates into requiring significant additional time and resources to produce content equivalent to what a non-disabled person would produce. We highlight this process and associated challenges through real-world examples experienced by the authors, and provide guidance and recommendations for addressing them.
comment: 5 pages
Photoshop Batch Rendering Using Actions for Stylistic Video Editing
My project looks at an efficient workflow for creative image/video editing using Adobe Photoshop Actions tool and Batch Processing System. This innovative approach to video editing through Photoshop creates a fundamental shift to creative workflow management through the integration of industry-leading image manipulation with video editing techniques. Through systematic automation of Actions, users can achieve a simple and consistent application of visual edits across a string of images. This approach provides an alternative method to optimize productivity while ensuring uniform results across image collections through a post-processing pipeline.
comment: 11 pages, 12 figures
Togedule: Scheduling Meetings with Large Language Models and Adaptive Representations of Group Availability SC
Scheduling is a perennial-and often challenging-problem for many groups. Existing tools are mostly static, showing an identical set of choices to everyone, regardless of the current status of attendees' inputs and preferences. In this paper, we propose Togedule, an adaptive scheduling tool that uses large language models to dynamically adjust the pool of choices and their presentation format. With the initial prototype, we conducted a formative study (N=10) and identified the potential benefits and risks of such an adaptive scheduling tool. Then, after enhancing the system, we conducted two controlled experiments, one each for attendees and organizers (total N=66). For each experiment, we compared scheduling with verbal messages, shared calendars, or Togedule. Results show that Togedule significantly reduces the cognitive load of attendees indicating their availability and improves the speed and quality of the decisions made by organizers.
comment: This paper has been accepted at CSCW 2025
Destructive Interference: Encoding Loss in the Overlap
Destructive Interference is a data visualization installation that representing the deaths and injuries caused by mass shootings in 2024 in the United States. I parametrically designed and fabricated an interlocking ring sculpture for each month of 2024; where the overall height corresponds to the level of violence in that month. Taller forms mark the deadliest months, while shorter ones reflect fewer casualties. Each inner ring encodes the number of people killed or injured, and each outer ring encodes the number of shootings and the number of days without them. The interlocking cylinders are powered via a motor to rotate, and lit from within. As the cylinders rotate, they cast overlapping shadows that represent those killed or injured by mass shootings. The goal of this work is to visualize otherwise overwhelming and disparate statistics in a way that is both physically present and emotionally resonant. By inviting viewers to step into and engage with these shadows, the piece creates space for reflection, conversation, and confrontation with the scale of this ongoing crisis.
Audio Personas: Augmenting Social Perception via Body-Anchored Audio Cues
We introduce Audio Personas, enabling users to "decorate" themselves with body-anchored sounds in audio augmented reality. Like outfits, makeup, and fragrances, audio personas offer an alternative yet dynamic channel to augment face-to-face interactions. For instance, one can set their audio persona as rain sounds to reflect a bad mood, bee sounds to establish personal boundaries, or a playful "woosh" sound to mimic passing by someone like a breeze. To instantiate the concept, we implemented a headphone-based prototype with multi-user tracking and audio streaming. Our formative study with designers revealed that audio personas were preferred in public and semi-public-private spaces for managing social impressions (e.g., personality) and signaling current states (e.g., emotions). Our preregistered in-lab study with 64 participants showed that audio personas influenced how participants formed impressions. Individuals with positive audio personas were rated as more socially attractive, more likable, and less threatening than those with negative audio personas.
What Makes Teamwork Work? A Multimodal Case Study on Emotions and Diagnostic Expertise in an Intelligent Tutoring System
Teamwork is pivotal in medical teamwork when professionals with diverse skills and emotional states collaborate to make critical decisions. This case study examines the interplay between emotions and professional skills in group decision-making during collaborative medical diagnosis within an Intelligent Tutoring System (ITS). By comparing verbal and physiological data between high-performing and low-performing teams of medical professionals working on a patient case within the ITS, alongside individuals' retrospective collaboration experiences, we employ multimodal data analysis to identify patterns in team emotional climate and their impact on diagnostic efficiency. Specifically, we investigate how emotion-driven dialogue and professional expertise influence both the information-seeking process and the final diagnostic decisions. Grounded in the socially shared regulation of learning framework and utilizing sentiment analysis, we found that social-motivational interactions are key drivers of a positive team emotional climate. Furthermore, through content analysis of dialogue and physiological signals to pinpoint emotional fluctuations, we identify episodes where knowledge exchange and skill acquisition are most likely to occur. Our findings offer valuable insights into optimizing group collaboration in medical contexts by harmonizing emotional dynamics with adaptive strategies for effective decision-making, ultimately enhancing diagnostic accuracy and teamwork effectiveness.
comment: 8 pages, 1 figure
SSRLBot: Designing and Developing an LLM-based Agent using Socially Shared Regulated Learning
Large language model (LLM)-based agents are increasingly used to support human experts by streamlining complex tasks and offering actionable insights. However, their application in multi-professional decision-making, particularly in teamwork contexts, remains underexplored. This design-based study addresses that gap by developing LLM functions to enhance collaboration, grounded in the Socially Shared Regulation of Learning (SSRL) framework and applied to medical diagnostic teamwork. SSRL emphasizes metacognitive, cognitive, motivational, and emotional processes in shared learning, focusing on how teams manage these processes to improve decision-making. This paper introduces SSRLBot, a prototype chatbot designed to help team members reflect on both their diagnostic performance and key SSRL skills. Its core functions include summarizing dialogues, analyzing SSRL behaviors, evaluating diagnostic outcomes, annotating SSRL markers in conversation, assessing their impact on performance, and identifying interpersonal regulatory dynamics. We compare SSRLBot's capabilities with those of Gemini-1.5, GPT-3.5, and Deepseek-R1 in a case study. SSRLBot demonstrates stronger alignment with SSRL theory, offering detailed evaluations that link behaviors to regulatory dimensions and suggesting improvements for collaboration. By integrating SSRL theory with LLM capabilities, SSRLBot contributes a novel tool for enhancing team-based decision-making and collaborative learning in high-stakes environments, such as medical education.
comment: 8 pages, 2 figures
Beyond Productivity: Rethinking the Impact of Creativity Support Tools
Creativity Support Tools (CSTs) are widely used across diverse creative domains, with generative AI recently increasing the abilities of CSTs. To better understand how the success of CSTs is determined in the literature, we conducted a review of outcome measures used in CST evaluations. Drawing from (n=173) CST evaluations in the ACM Digital Library, we identified the metrics commonly employed to assess user interactions with CSTs. Our findings reveal prevailing trends in current evaluation practices, while exposing underexplored measures that could broaden the scope of future research. Based on these results, we argue for a more holistic approach to evaluating CSTs, encouraging the HCI community to consider not only user experience and the quality of the generated output, but also user-centric aspects such as self-reflection and well-being as critical dimensions of assessment. We also highlight a need for validated measures specifically suited to the evaluation of generative AI in CSTs.
comment: In ACM Creativity and Cognition (C&C '25), June 23-25, 2025; 15 pages; 2 Figures; 3 Tables
Emotions in the Loop: A Survey of Affective Computing for Emotional Support
In a world where technology is increasingly embedded in our everyday experiences, systems that sense and respond to human emotions are elevating digital interaction. At the intersection of artificial intelligence and human-computer interaction, affective computing is emerging with innovative solutions where machines are humanized by enabling them to process and respond to user emotions. This survey paper explores recent research contributions in affective computing applications in the area of emotion recognition, sentiment analysis and personality assignment developed using approaches like large language models (LLMs), multimodal techniques, and personalized AI systems. We analyze the key contributions and innovative methodologies applied by the selected research papers by categorizing them into four domains: AI chatbot applications, multimodal input systems, mental health and therapy applications, and affective computing for safety applications. We then highlight the technological strengths as well as the research gaps and challenges related to these studies. Furthermore, the paper examines the datasets used in each study, highlighting how modality, scale, and diversity impact the development and performance of affective models. Finally, the survey outlines ethical considerations and proposes future directions to develop applications that are more safe, empathetic and practical.
comment: 20 pages, 7 tables, 96 references. Survey paper on affective computing applications using large language models, multimodal AI, and therapeutic chatbots
Passing the Buck to AI: How Individuals' Decision-Making Patterns Affect Reliance on AI
Psychological research has identified different patterns individuals have while making decisions, such as vigilance (making decisions after thorough information gathering), hypervigilance (rushed and anxious decision-making), and buckpassing (deferring decisions to others). We examine whether these decision-making patterns shape peoples' likelihood of seeking out or relying on AI. In an online experiment with 810 participants tasked with distinguishing food facts from myths, we found that a higher buckpassing tendency was positively correlated with both seeking out and relying on AI suggestions, while being negatively correlated with the time spent reading AI explanations. In contrast, the higher a participant tended towards vigilance, the more carefully they scrutinized the AI's information, as indicated by an increased time spent looking through the AI's explanations. These findings suggest that a person's decision-making pattern plays a significant role in their adoption and reliance on AI, which provides a new understanding of individual differences in AI-assisted decision-making.
Content and Quality Analysis of Parent-Facing Applications for Feeding Children with Autism Spectrum Disorder
Approximately 1 in 100 children worldwide are diagnosed with Autism Spectrum Disorder (ASD), and 46% to 89% experience significant feeding difficulties. Although mobile health (mHealth) applications offer potential support for caregivers, the quality and relevance of apps targeting autism-related feeding issues remain unclear. This systematic review evaluated mobile applications available on the Apple App Store and the Google Play Store between September and October 2024. The searches were carried out using 15 predefined terms (e.g., "child autism feeding", "child autism food"). Applications were eligible if they were in English, free to download, updated within the past year, explicitly addressed feeding in children with autism, accessible in Africa, and had more than 100 downloads. Of the 326 apps identified, only two iOS applications met all inclusion criteria; no Android apps qualified. Behavior Change Wheel (BCW) analysis showed that the selected applications incorporated multiple intervention functions, such as education, training, enablement, incentivization, and modeling, though none addressed the full spectrum of behavioral strategies. Mobile App Rating Scale (MARS) indicated moderate to high usability, with features such as sensory-friendly food routines and structured caregiver tools. However, both apps lacked clinical validation and comprehensive customization. These findings highlight a critical gap in the availability of evidence-based high-quality mHealth tools for caregivers managing ASD-related feeding challenges and underscore the need for professionally developed and culturally sensitive digital solutions.
comment: 8 pages, 1 figure, 5 tables
Facilitating Video Story Interaction with Multi-Agent Collaborative System
Video story interaction enables viewers to engage with and explore narrative content for personalized experiences. However, existing methods are limited to user selection, specially designed narratives, and lack customization. To address this, we propose an interactive system based on user intent. Our system uses a Vision Language Model (VLM) to enable machines to understand video stories, combining Retrieval-Augmented Generation (RAG) and a Multi-Agent System (MAS) to create evolving characters and scene experiences. It includes three stages: 1) Video story processing, utilizing VLM and prior knowledge to simulate human understanding of stories across three modalities. 2) Multi-space chat, creating growth-oriented characters through MAS interactions based on user queries and story stages. 3) Scene customization, expanding and visualizing various story scenes mentioned in dialogue. Applied to the Harry Potter series, our study shows the system effectively portrays emergent character social behavior and growth, enhancing the interactive experience in the video story world.
comment: Prepared and submitted in 2024
Underspecified Human Decision Experiments Considered Harmful
Decision-making with information displays is a key focus of research in areas like human-AI collaboration and data visualization. However, what constitutes a decision problem, and what is required for an experiment to conclude that decisions are flawed, remain imprecise. We present a widely applicable definition of a decision problem synthesized from statistical decision theory and information economics. We claim that to attribute loss in human performance to bias, an experiment must provide the information that a rational agent would need to identify the normative decision. We evaluate whether recent empirical research on AI-assisted decisions achieves this standard. We find that only 10 (26%) of 39 studies that claim to identify biased behavior presented participants with sufficient information to make this claim in at least one treatment condition. We motivate the value of studying well-defined decision problems by describing a characterization of performance losses they allow to be conceived.
WiCross: Indoor Human Zone-Crossing Detection Using Commodity WiFi Devices ISWC 2023
Detecting whether a target crosses the given zone (e.g., a door) can enable various practical applications in smart homes, including intelligent security and people counting. The traditional infrared-based approach only covers a line and can be easily cracked. In contrast, reusing the ubiquitous WiFi devices deployed in homes has the potential to cover a larger area of interest as WiFi signals are scattered throughout the entire space. By detecting the walking direction (i.e., approaching and moving away) with WiFi signal strength change, existing work can identify the behavior of crossing between WiFi transceiver pair. However, this method mistakenly classifies the turn-back behavior as crossing behavior, resulting in a high false alarm rate. In this paper, we propose WiCross, which can accurately distinguish the turn-back behavior with the phase statistics pattern of WiFi signals and thus robustly identify whether the target crosses the area between the WiFi transceiver pair. We implement WiCross with commercial WiFi devices and extensive experiments demonstrate that WiCross can achieve an accuracy higher than 95\% with a false alarm rate of less than 5%.
comment: Accepted at UbiComp/ISWC 2023 Poster
Towards Multimodal Large-Language Models for Parent-Child Interaction: A Focus on Joint Attention
Joint attention is a critical component of early speech-language development and a key indicator of effective parent-child interaction. However, research on detecting and analysing joint attention remains limited, particularly for Multimodal Large Language Models (MLLMs). This study evaluates MLLMs' ability to comprehend joint attention by analysing 26 parent-child interaction videos annotated by two speech-language pathologists. These annotations identify strong and poor joint attention segments, serving as benchmarks for evaluating the models' interpretive capabilities. Our findings reveal that current MLLMs struggle to accurately interpret joint attention due to a lack of nuanced understanding of child-initiated eye contact, a crucial component of joint attention dynamics. This study highlights the importance of incorporating detailed eye contact to enhance MLLMs' multimodal reasoning. Addressing these gaps is essential for future research to advance the use of MLLMs in analysing and supporting parent-child interactions.
comment: Accepted at CHI 2025 Late Breaking Work
Human-centered explanation does not fit all: The interplay of sociotechnical, cognitive, and individual factors in the effect AI explanations in algorithmic decision-making
Recent XAI studies have investigated what constitutes a \textit{good} explanation in AI-assisted decision-making. Despite the widely accepted human-friendly properties of explanations, such as contrastive and selective, existing studies have yielded inconsistent findings. To address these gaps, our study focuses on the cognitive dimensions of explanation evaluation, by evaluating six explanations with different contrastive strategies and information selectivity and scrutinizing factors behind their valuation process. Our analysis results find that contrastive explanations are not the most preferable or understandable in general; Rather, different contrastive and selective explanations were appreciated to a different extent based on who they are, when, how, and what to explain -- with different level of cognitive load and engagement and sociotechnical contexts. Given these findings, we call for a nuanced view of explanation strategies, with implications for designing AI interfaces to accommodate individual and contextual differences in AI-assisted decision-making.
Prismatic: Interactive Multi-View Cluster Analysis of Concept Stocks
Financial cluster analysis allows investors to discover investment alternatives and avoid undertaking excessive risks. However, this analytical task faces substantial challenges arising from many pairwise comparisons, the dynamic correlations across time spans, and the ambiguity in deriving implications from business relational knowledge. We propose Prismatic, a visual analytics system that integrates quantitative analysis of historical performance and qualitative analysis of business relational knowledge to cluster correlated businesses interactively. Prismatic features three clustering processes: dynamic cluster generation, knowledge-based cluster exploration, and correlation-based cluster validation. Utilizing a multi-view clustering approach, it enriches data-driven clusters with knowledge-driven similarity, providing a nuanced understanding of business correlations. Through well-coordinated visual views, Prismatic facilitates a comprehensive interpretation of intertwined quantitative and qualitative features, demonstrating its usefulness and effectiveness via case studies on formulating concept stocks and extensive interviews with domain experts.
comment: 14 pages. A preprint version accepted to IEEE Transactions on Visualization and Computer Graphics (TVCG), 2025
A Study on Human-Swarm Interaction: A Framework for Assessing Situation Awareness and Task Performance
This paper introduces a framework for human swarm interaction studies that measures situation awareness in dynamic environments. A tablet-based interface was developed for a user study by implementing the concepts introduced in the framework, where operators guided a robotic swarm in a single-target search task, marking hazardous cells unknown to the swarm. Both subjective and objective situation awareness measures were used, with task performance evaluated based on how close the robots were to the target. The framework enabled a structured investigation of the role of situation awareness in human swarm interaction, leading to key findings such as improved task performance across attempts, showing the interface was learnable, centroid active robot position proved to be a useful task performance metric for assessing situation awareness, perception and projection played a key role in task performance, highlighting their importance in interface design and objective situation awareness influenced both subjective situation awareness and task performance, emphasizing the need for interfaces that emphasise objective situation awareness. These findings validate our framework as a structured approach for integrating situation awareness concepts into human swarm interaction studies, offering a systematic way to assess situation awareness and task performance. The framework can be applied to other swarming studies to evaluate interface learnability, identify meaningful task performance metrics, and refine interface designs to enhance situation awareness, ultimately improving human swarm interaction in dynamic environments.
comment: 10 pages, 8 figures, 2 tables, 2 equations
Quantifying Haptic Affection of Car Door through Data-Driven Analysis of Force Profile
Haptic affection plays a crucial role in user experience, particularly in the automotive industry where the tactile quality of components can influence customer satisfaction. This study aims to accurately predict the affective property of a car door by only watching the force or torque profile of it when opening. To this end, a deep learning model is designed to capture the underlying relationships between force profiles and user-defined adjective ratings, providing insights into the door-opening experience. The dataset employed in this research includes force profiles and user adjective ratings collected from six distinct car models, reflecting a diverse set of door-opening characteristics and tactile feedback. The model's performance is assessed using Leave-One-Out Cross-Validation, a method that measures its generalization capability on unseen data. The results demonstrate that the proposed model achieves a high level of prediction accuracy, indicating its potential in various applications related to haptic affection and design optimization in the automotive industry.
comment: 12 pages, 9 figures, 3 tables. Mudassir Ibrahim Awan and Ahsan Raza are equally contributing authors
Computer Vision and Pattern Recognition
Controllable Weather Synthesis and Removal with Video Diffusion Models
Generating realistic and controllable weather effects in videos is valuable for many applications. Physics-based weather simulation requires precise reconstructions that are hard to scale to in-the-wild videos, while current video editing often lacks realism and control. In this work, we introduce WeatherWeaver, a video diffusion model that synthesizes diverse weather effects -- including rain, snow, fog, and clouds -- directly into any input video without the need for 3D modeling. Our model provides precise control over weather effect intensity and supports blending various weather types, ensuring both realism and adaptability. To overcome the scarcity of paired training data, we propose a novel data strategy combining synthetic videos, generative image editing, and auto-labeled real-world videos. Extensive evaluations show that our method outperforms state-of-the-art methods in weather simulation and removal, providing high-quality, physically plausible, and scene-identity-preserving results over various real-world videos.
T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
RayZer: A Self-supervised Large View Synthesis Model
We present RayZer, a self-supervised multi-view 3D Vision model trained without any 3D supervision, i.e., camera poses and scene geometry, while exhibiting emerging 3D awareness. Concretely, RayZer takes unposed and uncalibrated images as input, recovers camera parameters, reconstructs a scene representation, and synthesizes novel views. During training, RayZer relies solely on its self-predicted camera poses to render target views, eliminating the need for any ground-truth camera annotations and allowing RayZer to be trained with 2D image supervision. The emerging 3D awareness of RayZer is attributed to two key factors. First, we design a self-supervised framework, which achieves 3D-aware auto-encoding of input images by disentangling camera and scene representations. Second, we design a transformer-based model in which the only 3D prior is the ray structure, connecting camera, pixel, and scene simultaneously. RayZer demonstrates comparable or even superior novel view synthesis performance than ``oracle'' methods that rely on pose annotations in both training and testing. Project: https://hwjiang1510.github.io/RayZer/
Robotic Visual Instruction
Recently, natural language has been the primary medium for human-robot interaction. However, its inherent lack of spatial precision for robotic control introduces challenges such as ambiguity and verbosity. To address these limitations, we introduce the Robotic Visual Instruction (RoVI), a novel paradigm to guide robotic tasks through an object-centric, hand-drawn symbolic representation. RoVI effectively encodes spatial-temporal information into human-interpretable visual instructions through 2D sketches, utilizing arrows, circles, colors, and numbers to direct 3D robotic manipulation. To enable robots to understand RoVI better and generate precise actions based on RoVI, we present Visual Instruction Embodied Workflow (VIEW), a pipeline formulated for RoVI-conditioned policies. This approach leverages Vision-Language Models (VLMs) to interpret RoVI inputs, decode spatial and temporal constraints from 2D pixel space via keypoint extraction, and then transform them into executable 3D action sequences. We additionally curate a specialized dataset of 15K instances to fine-tune small VLMs for edge deployment, enabling them to effectively learn RoVI capabilities. Our approach is rigorously validated across 11 novel tasks in both real and simulated environments, demonstrating significant generalization capability. Notably, VIEW achieves an 87.5% success rate in real-world scenarios involving unseen tasks that feature multi-step actions, with disturbances, and trajectory-following requirements. Code and Datasets in this paper will be released soon.
Towards Autonomous Micromobility through Scalable Urban Simulation CVPR 2025
Micromobility, which utilizes lightweight mobile machines moving in urban public spaces, such as delivery robots and mobility scooters, emerges as a promising alternative to vehicular mobility. Current micromobility depends mostly on human manual operation (in-person or remote control), which raises safety and efficiency concerns when navigating busy urban environments full of unpredictable obstacles and pedestrians. Assisting humans with AI agents in maneuvering micromobility devices presents a viable solution for enhancing safety and efficiency. In this work, we present a scalable urban simulation solution to advance autonomous micromobility. First, we build URBAN-SIM - a high-performance robot learning platform for large-scale training of embodied agents in interactive urban scenes. URBAN-SIM contains three critical modules: Hierarchical Urban Generation pipeline, Interactive Dynamics Generation strategy, and Asynchronous Scene Sampling scheme, to improve the diversity, realism, and efficiency of robot learning in simulation. Then, we propose URBAN-BENCH - a suite of essential tasks and benchmarks to gauge various capabilities of the AI agents in achieving autonomous micromobility. URBAN-BENCH includes eight tasks based on three core skills of the agents: Urban Locomotion, Urban Navigation, and Urban Traverse. We evaluate four robots with heterogeneous embodiments, such as the wheeled and legged robots, across these tasks. Experiments on diverse terrains and urban structures reveal each robot's strengths and limitations.
comment: CVPR 2025 Highlight. Project page: https://metadriverse.github.io/urban-sim/
GuideSR: Rethinking Guidance for One-Step High-Fidelity Diffusion-Based Super-Resolution
In this paper, we propose GuideSR, a novel single-step diffusion-based image super-resolution (SR) model specifically designed to enhance image fidelity. Existing diffusion-based SR approaches typically adapt pre-trained generative models to image restoration tasks by adding extra conditioning on a VAE-downsampled representation of the degraded input, which often compromises structural fidelity. GuideSR addresses this limitation by introducing a dual-branch architecture comprising: (1) a Guidance Branch that preserves high-fidelity structures from the original-resolution degraded input, and (2) a Diffusion Branch, which a pre-trained latent diffusion model to enhance perceptual quality. Unlike conventional conditioning mechanisms, our Guidance Branch features a tailored structure for image restoration tasks, combining Full Resolution Blocks (FRBs) with channel attention and an Image Guidance Network (IGN) with guided attention. By embedding detailed structural information directly into the restoration pipeline, GuideSR produces sharper and more visually consistent results. Extensive experiments on benchmark datasets demonstrate that GuideSR achieves state-of-the-art performance while maintaining the low computational cost of single-step approaches, with up to 1.39dB PSNR gain on challenging real-world datasets. Our approach consistently outperforms existing methods across various reference-based metrics including PSNR, SSIM, LPIPS, DISTS and FID, further representing a practical advancement for real-world image restoration.
Visual Test-time Scaling for GUI Agent Grounding
We introduce RegionFocus, a visual test-time scaling approach for Vision Language Model Agents. Understanding webpages is challenging due to the visual complexity of GUI images and the large number of interface elements, making accurate action selection difficult. Our approach dynamically zooms in on relevant regions, reducing background clutter and improving grounding accuracy. To support this process, we propose an image-as-map mechanism that visualizes key landmarks at each step, providing a transparent action record and enables the agent to effectively choose among action candidates. Even with a simple region selection strategy, we observe significant performance gains of 28+\% on Screenspot-pro and 24+\% on WebVoyager benchmarks on top of two state-of-the-art open vision language model agents, UI-TARS and Qwen2.5-VL, highlighting the effectiveness of visual test-time scaling in interactive settings. We achieve a new state-of-the-art grounding performance of 61.6\% on the ScreenSpot-Pro benchmark by applying RegionFocus to a Qwen2.5-VL-72B model. Our code will be released publicly at https://github.com/tiangeluo/RegionFocus.
MINERVA: Evaluating Complex Video Reasoning
Multimodal LLMs are turning their focus to video benchmarks, however most video benchmarks only provide outcome supervision, with no intermediate or interpretable reasoning steps. This makes it challenging to assess if models are truly able to combine perceptual and temporal information to reason about videos, or simply get the correct answer by chance or by exploiting linguistic biases. To remedy this, we provide a new video reasoning dataset called MINERVA for modern multimodal models. Each question in the dataset comes with 5 answer choices, as well as detailed, hand-crafted reasoning traces. Our dataset is multimodal, diverse in terms of video domain and length, and consists of complex multi-step questions. Extensive benchmarking shows that our dataset provides a challenge for frontier open-source and proprietary models. We perform fine-grained error analysis to identify common failure modes across various models, and create a taxonomy of reasoning errors. We use this to explore both human and LLM-as-a-judge methods for scoring video reasoning traces, and find that failure modes are primarily related to temporal localization, followed by visual perception errors, as opposed to logical or completeness errors. The dataset, along with questions, answer candidates and reasoning traces will be publicly available under https://github.com/google-deepmind/neptune?tab=readme-ov-file\#minerva.
Deep Reinforcement Learning for Urban Air Quality Management: Multi-Objective Optimization of Pollution Mitigation Booth Placement in Metropolitan Environments
Urban air pollution remains a pressing global concern, particularly in densely populated and traffic-intensive metropolitan areas like Delhi, where exposure to harmful pollutants severely impacts public health. Delhi, being one of the most polluted cities globally, experiences chronic air quality issues due to vehicular emissions, industrial activities, and construction dust, which exacerbate its already fragile atmospheric conditions. Traditional pollution mitigation strategies, such as static air purifying installations, often fail to maximize their impact due to suboptimal placement and limited adaptability to dynamic urban environments. This study presents a novel deep reinforcement learning (DRL) framework to optimize the placement of air purification booths to improve the air quality index (AQI) in the city of Delhi. We employ Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm, to iteratively learn and identify high-impact locations based on multiple spatial and environmental factors, including population density, traffic patterns, industrial influence, and green space constraints. Our approach is benchmarked against conventional placement strategies, including random and greedy AQI-based methods, using multi-dimensional performance evaluation metrics such as AQI improvement, spatial coverage, population and traffic impact, and spatial entropy. Experimental results demonstrate that the RL-based approach outperforms baseline methods by achieving a balanced and effective distribution of air purification infrastructure. Notably, the DRL framework achieves an optimal trade-off between AQI reduction and high-coverage deployment, ensuring equitable environmental benefits across urban regions. The findings underscore the potential of AI-driven spatial optimization in advancing smart city initiatives and data-driven urban air quality management.
Deep Learning Assisted Outer Volume Removal for Highly-Accelerated Real-Time Dynamic MRI
Real-time (RT) dynamic MRI plays a vital role in capturing rapid physiological processes, offering unique insights into organ motion and function. Among these applications, RT cine MRI is particularly important for functional assessment of the heart with high temporal resolution. RT imaging enables free-breathing, ungated imaging of cardiac motion, making it a crucial alternative for patients who cannot tolerate conventional breath-hold, ECG-gated acquisitions. However, achieving high acceleration rates in RT cine MRI is challenging due to aliasing artifacts from extra-cardiac tissues, particularly at high undersampling factors. In this study, we propose a novel outer volume removal (OVR) method to address this challenge by eliminating aliasing contributions from non-cardiac regions in a post-processing framework. Our approach estimates the outer volume signal for each timeframe using composite temporal images from time-interleaved undersampling patterns, which inherently contain pseudo-periodic ghosting artifacts. A deep learning (DL) model is trained to identify and remove these artifacts, producing a clean outer volume estimate that is subsequently subtracted from the corresponding k-space data. The final reconstruction is performed with a physics-driven DL (PD-DL) method trained using an OVR-specific loss function to restore high spatio-temporal resolution images. Experimental results show that the proposed method at high accelerations achieves image quality that is visually comparable to clinical baseline images, while outperforming conventional reconstruction techniques, both qualitatively and quantitatively. The proposed approach provides a practical and effective solution for artifact reduction in RT cine MRI without requiring acquisition modifications, offering a pathway to higher acceleration rates while preserving diagnostic quality.
Vision Mamba in Remote Sensing: A Comprehensive Survey of Techniques, Applications and Outlook
Deep learning has profoundly transformed remote sensing, yet prevailing architectures like Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) remain constrained by critical trade-offs: CNNs suffer from limited receptive fields, while ViTs grapple with quadratic computational complexity, hindering their scalability for high-resolution remote sensing data. State Space Models (SSMs), particularly the recently proposed Mamba architecture, have emerged as a paradigm-shifting solution, combining linear computational scaling with global context modeling. This survey presents a comprehensive review of Mamba-based methodologies in remote sensing, systematically analyzing about 120 studies to construct a holistic taxonomy of innovations and applications. Our contributions are structured across five dimensions: (i) foundational principles of vision Mamba architectures, (ii) micro-architectural advancements such as adaptive scan strategies and hybrid SSM formulations, (iii) macro-architectural integrations, including CNN-Transformer-Mamba hybrids and frequency-domain adaptations, (iv) rigorous benchmarking against state-of-the-art methods in multiple application tasks, such as object detection, semantic segmentation, change detection, etc. and (v) critical analysis of unresolved challenges with actionable future directions. By bridging the gap between SSM theory and remote sensing practice, this survey establishes Mamba as a transformative framework for remote sensing analysis. To our knowledge, this paper is the first systematic review of Mamba architectures in remote sensing. Our work provides a structured foundation for advancing research in remote sensing systems through SSM-based methods. We curate an open-source repository (https://github.com/BaoBao0926/Awesome-Mamba-in-Remote-Sensing) to foster community-driven advancements.
Brain Foundation Models with Hypergraph Dynamic Adapter for Brain Disease Analysis
Brain diseases, such as Alzheimer's disease and brain tumors, present profound challenges due to their complexity and societal impact. Recent advancements in brain foundation models have shown significant promise in addressing a range of brain-related tasks. However, current brain foundation models are limited by task and data homogeneity, restricted generalization beyond segmentation or classification, and inefficient adaptation to diverse clinical tasks. In this work, we propose SAM-Brain3D, a brain-specific foundation model trained on over 66,000 brain image-label pairs across 14 MRI sub-modalities, and Hypergraph Dynamic Adapter (HyDA), a lightweight adapter for efficient and effective downstream adaptation. SAM-Brain3D captures detailed brain-specific anatomical and modality priors for segmenting diverse brain targets and broader downstream tasks. HyDA leverages hypergraphs to fuse complementary multi-modal data and dynamically generate patient-specific convolutional kernels for multi-scale feature fusion and personalized patient-wise adaptation. Together, our framework excels across a broad spectrum of brain disease segmentation and classification tasks. Extensive experiments demonstrate that our method consistently outperforms existing state-of-the-art approaches, offering a new paradigm for brain disease analysis through multi-modal, multi-scale, and dynamic foundation modeling.
comment: 35 pages, 4 figures
Diverse Semantics-Guided Feature Alignment and Decoupling for Visible-Infrared Person Re-Identification
Visible-Infrared Person Re-Identification (VI-ReID) is a challenging task due to the large modality discrepancy between visible and infrared images, which complicates the alignment of their features into a suitable common space. Moreover, style noise, such as illumination and color contrast, reduces the identity discriminability and modality invariance of features. To address these challenges, we propose a novel Diverse Semantics-guided Feature Alignment and Decoupling (DSFAD) network to align identity-relevant features from different modalities into a textual embedding space and disentangle identity-irrelevant features within each modality. Specifically, we develop a Diverse Semantics-guided Feature Alignment (DSFA) module, which generates pedestrian descriptions with diverse sentence structures to guide the cross-modality alignment of visual features. Furthermore, to filter out style information, we propose a Semantic Margin-guided Feature Decoupling (SMFD) module, which decomposes visual features into pedestrian-related and style-related components, and then constrains the similarity between the former and the textual embeddings to be at least a margin higher than that between the latter and the textual embeddings. Additionally, to prevent the loss of pedestrian semantics during feature decoupling, we design a Semantic Consistency-guided Feature Restitution (SCFR) module, which further excavates useful information for identification from the style-related features and restores it back into the pedestrian-related features, and then constrains the similarity between the features after restitution and the textual embeddings to be consistent with that between the features before decoupling and the textual embeddings. Extensive experiments on three VI-ReID datasets demonstrate the superiority of our DSFAD.
Pixel3DMM: Versatile Screen-Space Priors for Single-Image 3D Face Reconstruction
We address the 3D reconstruction of human faces from a single RGB image. To this end, we propose Pixel3DMM, a set of highly-generalized vision transformers which predict per-pixel geometric cues in order to constrain the optimization of a 3D morphable face model (3DMM). We exploit the latent features of the DINO foundation model, and introduce a tailored surface normal and uv-coordinate prediction head. We train our model by registering three high-quality 3D face datasets against the FLAME mesh topology, which results in a total of over 1,000 identities and 976K images. For 3D face reconstruction, we propose a FLAME fitting opitmization that solves for the 3DMM parameters from the uv-coordinate and normal estimates. To evaluate our method, we introduce a new benchmark for single-image face reconstruction, which features high diversity facial expressions, viewing angles, and ethnicities. Crucially, our benchmark is the first to evaluate both posed and neutral facial geometry. Ultimately, our method outperforms the most competitive baselines by over 15% in terms of geometric accuracy for posed facial expressions.
comment: Project Website: https://simongiebenhain.github.io/pixel3dmm/ ; Video: https://www.youtube.com/watch?v=BwxwEXJwUDc
Dietary Intake Estimation via Continuous 3D Reconstruction of Food CVPR
Monitoring dietary habits is crucial for preventing health risks associated with overeating and undereating, including obesity, diabetes, and cardiovascular diseases. Traditional methods for tracking food intake rely on self-reported data before or after the eating, which are prone to inaccuracies. This study proposes an approach to accurately monitor ingest behaviours by leveraging 3D food models constructed from monocular 2D video. Using COLMAP and pose estimation algorithms, we generate detailed 3D representations of food, allowing us to observe changes in food volume as it is consumed. Experiments with toy models and real food items demonstrate the approach's potential. Meanwhile, we have proposed a new methodology for automated state recognition challenges to accurately detect state changes and maintain model fidelity. The 3D reconstruction approach shows promise in capturing comprehensive dietary behaviour insights, ultimately contributing to the development of automated and accurate dietary monitoring tools.
comment: 2025 CVPR MetaFood Workshop
Visual Trajectory Prediction of Vessels for Inland Navigation
The future of inland navigation increasingly relies on autonomous systems and remote operations, emphasizing the need for accurate vessel trajectory prediction. This study addresses the challenges of video-based vessel tracking and prediction by integrating advanced object detection methods, Kalman filters, and spline-based interpolation. However, existing detection systems often misclassify objects in inland waterways due to complex surroundings. A comparative evaluation of tracking algorithms, including BoT-SORT, Deep OC-SORT, and ByeTrack, highlights the robustness of the Kalman filter in providing smoothed trajectories. Experimental results from diverse scenarios demonstrate improved accuracy in predicting vessel movements, which is essential for collision avoidance and situational awareness. The findings underline the necessity of customized datasets and models for inland navigation. Future work will expand the datasets and incorporate vessel classification to refine predictions, supporting both autonomous systems and human operators in complex environments.
Uncertainty-Aware Multi-Expert Knowledge Distillation for Imbalanced Disease Grading
Automatic disease image grading is a significant application of artificial intelligence for healthcare, enabling faster and more accurate patient assessments. However, domain shifts, which are exacerbated by data imbalance, introduce bias into the model, posing deployment difficulties in clinical applications. To address the problem, we propose a novel \textbf{U}ncertainty-aware \textbf{M}ulti-experts \textbf{K}nowledge \textbf{D}istillation (UMKD) framework to transfer knowledge from multiple expert models to a single student model. Specifically, to extract discriminative features, UMKD decouples task-agnostic and task-specific features with shallow and compact feature alignment in the feature space. At the output space, an uncertainty-aware decoupled distillation (UDD) mechanism dynamically adjusts knowledge transfer weights based on expert model uncertainties, ensuring robust and reliable distillation. Additionally, UMKD also tackles the problems of model architecture heterogeneity and distribution discrepancies between source and target domains, which are inadequately tackled by previous KD approaches. Extensive experiments on histology prostate grading (\textit{SICAPv2}) and fundus image grading (\textit{APTOS}) demonstrate that UMKD achieves a new state-of-the-art in both source-imbalanced and target-imbalanced scenarios, offering a robust and practical solution for real-world disease image grading.
Synthesizing and Identifying Noise Levels in Autonomous Vehicle Camera Radar Datasets
Detecting and tracking objects is a crucial component of any autonomous navigation method. For the past decades, object detection has yielded promising results using neural networks on various datasets. While many methods focus on performance metrics, few projects focus on improving the robustness of these detection and tracking pipelines, notably to sensor failures. In this paper we attempt to address this issue by creating a realistic synthetic data augmentation pipeline for camera-radar Autonomous Vehicle (AV) datasets. Our goal is to accurately simulate sensor failures and data deterioration due to real-world interferences. We also present our results of a baseline lightweight Noise Recognition neural network trained and tested on our augmented dataset, reaching an overall recognition accuracy of 54.4\% on 11 categories across 10086 images and 2145 radar point-clouds.
Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities
Multimodal magnetic resonance imaging (MRI) constitutes the first line of investigation for clinicians in the care of brain tumors, providing crucial insights for surgery planning, treatment monitoring, and biomarker identification. Pre-training on large datasets have been shown to help models learn transferable representations and adapt with minimal labeled data. This behavior is especially valuable in medical imaging, where annotations are often scarce. However, applying this paradigm to multimodal medical data introduces a challenge: most existing approaches assume that all imaging modalities are available during both pre-training and fine-tuning. In practice, missing modalities often occur due to acquisition issues, specialist unavailability, or specific experimental designs on small in-house datasets. Consequently, a common approach involves training a separate model for each desired modality combination, making the process both resource-intensive and impractical for clinical use. Therefore, we introduce BM-MAE, a masked image modeling pre-training strategy tailored for multimodal MRI data. The same pre-trained model seamlessly adapts to any combination of available modalities, extracting rich representations that capture both intra- and inter-modal information. This allows fine-tuning on any subset of modalities without requiring architectural changes, while still benefiting from a model pre-trained on the full set of modalities. Extensive experiments show that the proposed pre-training strategy outperforms or remains competitive with baselines that require separate pre-training for each modality subset, while substantially surpassing training from scratch on several downstream tasks. Additionally, it can quickly and efficiently reconstruct missing modalities, highlighting its practical value. Code and trained models are available at: https://github.com/Lucas-rbnt/bmmae
X-ray illicit object detection using hybrid CNN-transformer neural network architectures
In the field of X-ray security applications, even the smallest details can significantly impact outcomes. Objects that are heavily occluded or intentionally concealed pose a great challenge for detection, whether by human observation or through advanced technological applications. While certain Deep Learning (DL) architectures demonstrate strong performance in processing local information, such as Convolutional Neural Networks (CNNs), others excel in handling distant information, e.g., transformers. In X-ray security imaging the literature has been dominated by the use of CNN-based methods, while the integration of the two aforementioned leading architectures has not been sufficiently explored. In this paper, various hybrid CNN-transformer architectures are evaluated against a common CNN object detection baseline, namely YOLOv8. In particular, a CNN (HGNetV2) and a hybrid CNN-transformer (Next-ViT-S) backbone are combined with different CNN/transformer detection heads (YOLOv8 and RT-DETR). The resulting architectures are comparatively evaluated on three challenging public X-ray inspection datasets, namely EDS, HiXray, and PIDray. Interestingly, while the YOLOv8 detector with its default backbone (CSP-DarkNet53) is generally shown to be advantageous on the HiXray and PIDray datasets, when a domain distribution shift is incorporated in the X-ray images (as happens in the EDS datasets), hybrid CNN-transformer architectures exhibit increased robustness. Detailed comparative evaluation results, including object-level detection performance and object-size error analysis, demonstrate the strengths and weaknesses of each architectural combination and suggest guidelines for future research. The source code and network weights of the models employed in this study are available at https://github.com/jgenc/xray-comparative-evaluation.
A Robust Deep Networks based Multi-Object MultiCamera Tracking System for City Scale Traffic
Vision sensors are becoming more important in Intelligent Transportation Systems (ITS) for traffic monitoring, management, and optimization as the number of network cameras continues to rise. However, manual object tracking and matching across multiple non-overlapping cameras pose significant challenges in city-scale urban traffic scenarios. These challenges include handling diverse vehicle attributes, occlusions, illumination variations, shadows, and varying video resolutions. To address these issues, we propose an efficient and cost-effective deep learning-based framework for Multi-Object Multi-Camera Tracking (MO-MCT). The proposed framework utilizes Mask R-CNN for object detection and employs Non-Maximum Suppression (NMS) to select target objects from overlapping detections. Transfer learning is employed for re-identification, enabling the association and generation of vehicle tracklets across multiple cameras. Moreover, we leverage appropriate loss functions and distance measures to handle occlusion, illumination, and shadow challenges. The final solution identification module performs feature extraction using ResNet-152 coupled with Deep SORT based vehicle tracking. The proposed framework is evaluated on the 5th AI City Challenge dataset (Track 3), comprising 46 camera feeds. Among these 46 camera streams, 40 are used for model training and validation, while the remaining six are utilized for model testing. The proposed framework achieves competitive performance with an IDF1 score of 0.8289, and precision and recall scores of 0.9026 and 0.8527 respectively, demonstrating its effectiveness in robust and accurate vehicle tracking.
A Methodological and Structural Review of Parkinsons Disease Detection Across Diverse Data Modalities
Parkinsons Disease (PD) is a progressive neurological disorder that primarily affects motor functions and can lead to mild cognitive impairment (MCI) and dementia in its advanced stages. With approximately 10 million people diagnosed globally 1 to 1.8 per 1,000 individuals, according to reports by the Japan Times and the Parkinson Foundation early and accurate diagnosis of PD is crucial for improving patient outcomes. While numerous studies have utilized machine learning (ML) and deep learning (DL) techniques for PD recognition, existing surveys are limited in scope, often focusing on single data modalities and failing to capture the potential of multimodal approaches. To address these gaps, this study presents a comprehensive review of PD recognition systems across diverse data modalities, including Magnetic Resonance Imaging (MRI), gait-based pose analysis, gait sensory data, handwriting analysis, speech test data, Electroencephalography (EEG), and multimodal fusion techniques. Based on over 347 articles from leading scientific databases, this review examines key aspects such as data collection methods, settings, feature representations, and system performance, with a focus on recognition accuracy and robustness. This survey aims to serve as a comprehensive resource for researchers, providing actionable guidance for the development of next generation PD recognition systems. By leveraging diverse data modalities and cutting-edge machine learning paradigms, this work contributes to advancing the state of PD diagnostics and improving patient care through innovative, multimodal approaches.
InterLoc: LiDAR-based Intersection Localization using Road Segmentation with Automated Evaluation Method
Intersections are geometric and functional key points in every road network. They offer strong landmarks to correct GNSS dropouts and anchor new sensor data in up-to-date maps. Despite that importance, intersection detectors either ignore the rich semantic information already computed onboard or depend on scarce, hand-labeled intersection datasets. To close that gap, this paper presents a LiDAR-based method for intersection detection that (i) fuses semantic road segmentation with vehicle localization to detect intersection candidates in a bird's eye view (BEV) representation and (ii) refines those candidates by analyzing branch topology with a least squares formulation. To evaluate our method, we introduce an automated benchmarking pipeline that pairs detections with OpenStreetMap (OSM) intersection nodes using precise GNSS/INS ground-truth poses. Tested on eight SemanticKITTI sequences, the approach achieves a mean localization error of 1.9 m, 89% precision, and 77% recall at a 5 m tolerance, outperforming the latest learning-based baseline. Moreover, the method is robust to segmentation errors higher than those of the benchmark model, demonstrating its applicability in the real world.
Inconsistency-based Active Learning for LiDAR Object Detection
Deep learning models for object detection in autonomous driving have recently achieved impressive performance gains and are already being deployed in vehicles worldwide. However, current models require increasingly large datasets for training. Acquiring and labeling such data is costly, necessitating the development of new strategies to optimize this process. Active learning is a promising approach that has been extensively researched in the image domain. In our work, we extend this concept to the LiDAR domain by developing several inconsistency-based sample selection strategies and evaluate their effectiveness in various settings. Our results show that using a naive inconsistency approach based on the number of detected boxes, we achieve the same mAP as the random sampling strategy with 50% of the labeled data.
comment: Accepted in IV2025
HeAL3D: Heuristical-enhanced Active Learning for 3D Object Detection CVPR2025
Active Learning has proved to be a relevant approach to perform sample selection for training models for Autonomous Driving. Particularly, previous works on active learning for 3D object detection have shown that selection of samples in uncontrolled scenarios is challenging. Furthermore, current approaches focus exclusively on the theoretical aspects of the sample selection problem but neglect the practical insights that can be obtained from the extensive literature and application of 3D detection models. In this paper, we introduce HeAL (Heuristical-enhanced Active Learning for 3D Object Detection) which integrates those heuristical features together with Localization and Classification to deliver the most contributing samples to the model's training. In contrast to previous works, our approach integrates heuristical features such as object distance and point-quantity to estimate the uncertainty, which enhance the usefulness of selected samples to train detection models. Our quantitative evaluation on KITTI shows that HeAL presents competitive mAP with respect to the State-of-the-Art, and achieves the same mAP as the full-supervised baseline with only 24% of the samples.
comment: Accepted in CVPR2025
Towards Scalable Human-aligned Benchmark for Text-guided Image Editing CVPR 2025
A variety of text-guided image editing models have been proposed recently. However, there is no widely-accepted standard evaluation method mainly due to the subjective nature of the task, letting researchers rely on manual user study. To address this, we introduce a novel Human-Aligned benchmark for Text-guided Image Editing (HATIE). Providing a large-scale benchmark set covering a wide range of editing tasks, it allows reliable evaluation, not limited to specific easy-to-evaluate cases. Also, HATIE provides a fully-automated and omnidirectional evaluation pipeline. Particularly, we combine multiple scores measuring various aspects of editing so as to align with human perception. We empirically verify that the evaluation of HATIE is indeed human-aligned in various aspects, and provide benchmark results on several state-of-the-art models to provide deeper insights on their performance.
comment: Accepted to CVPR 2025 (highlight)
KeySync: A Robust Approach for Leakage-free Lip Synchronization in High Resolution
Lip synchronization, known as the task of aligning lip movements in an existing video with new input audio, is typically framed as a simpler variant of audio-driven facial animation. However, as well as suffering from the usual issues in talking head generation (e.g., temporal consistency), lip synchronization presents significant new challenges such as expression leakage from the input video and facial occlusions, which can severely impact real-world applications like automated dubbing, but are often neglected in existing works. To address these shortcomings, we present KeySync, a two-stage framework that succeeds in solving the issue of temporal consistency, while also incorporating solutions for leakage and occlusions using a carefully designed masking strategy. We show that KeySync achieves state-of-the-art results in lip reconstruction and cross-synchronization, improving visual quality and reducing expression leakage according to LipLeak, our novel leakage metric. Furthermore, we demonstrate the effectiveness of our new masking approach in handling occlusions and validate our architectural choices through several ablation studies. Code and model weights can be found at https://antonibigata.github.io/KeySync.
JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, i.e., adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timestep of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a replaceable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.
CORSTITCH - A free, open source software for stitching and georeferencing underwater coral reef videos
CorStitch is an open-source software developed to automate the creation of accurate georeferenced reef mosaics from video transects obtained through Automated Rapid Reef Assessment System surveys. We utilized a Fourier-based image correlation algorithm to stitch sequential video frames, aligning them with synchronized GNSS timestamps. The resulting compressed Keyhole Markup Language files, compatible with geographic information systems such as Google Earth, enable detailed spatial analysis. Validation through comparative analysis of mosaics from two temporally distinct surveys of the same reef demonstrated the software's consistent and reliable performance.
ClearLines - Camera Calibration from Straight Lines
The problem of calibration from straight lines is fundamental in geometric computer vision, with well-established theoretical foundations. However, its practical applicability remains limited, particularly in real-world outdoor scenarios. These environments pose significant challenges due to diverse and cluttered scenes, interrupted reprojections of straight 3D lines, and varying lighting conditions, making the task notoriously difficult. Furthermore, the field lacks a dedicated dataset encouraging the development of respective detection algorithms. In this study, we present a small dataset named "ClearLines", and by detailing its creation process, provide practical insights that can serve as a guide for developing and refining straight 3D line detection algorithms.
Leveraging Pretrained Diffusion Models for Zero-Shot Part Assembly IJCAI-2025
3D part assembly aims to understand part relationships and predict their 6-DoF poses to construct realistic 3D shapes, addressing the growing demand for autonomous assembly, which is crucial for robots. Existing methods mainly estimate the transformation of each part by training neural networks under supervision, which requires a substantial quantity of manually labeled data. However, the high cost of data collection and the immense variability of real-world shapes and parts make traditional methods impractical for large-scale applications. In this paper, we propose first a zero-shot part assembly method that utilizes pre-trained point cloud diffusion models as discriminators in the assembly process, guiding the manipulation of parts to form realistic shapes. Specifically, we theoretically demonstrate that utilizing a diffusion model for zero-shot part assembly can be transformed into an Iterative Closest Point (ICP) process. Then, we propose a novel pushing-away strategy to address the overlap parts, thereby further enhancing the robustness of the method. To verify our work, we conduct extensive experiments and quantitative comparisons to several strong baseline methods, demonstrating the effectiveness of the proposed approach, which even surpasses the supervised learning method. The code has been released on https://github.com/Ruiyuan-Zhang/Zero-Shot-Assembly.
comment: 10 pages, 12 figures, Accepted by IJCAI-2025
Real-Time Animatable 2DGS-Avatars with Detail Enhancement from Monocular Videos
High-quality, animatable 3D human avatar reconstruction from monocular videos offers significant potential for reducing reliance on complex hardware, making it highly practical for applications in game development, augmented reality, and social media. However, existing methods still face substantial challenges in capturing fine geometric details and maintaining animation stability, particularly under dynamic or complex poses. To address these issues, we propose a novel real-time framework for animatable human avatar reconstruction based on 2D Gaussian Splatting (2DGS). By leveraging 2DGS and global SMPL pose parameters, our framework not only aligns positional and rotational discrepancies but also enables robust and natural pose-driven animation of the reconstructed avatars. Furthermore, we introduce a Rotation Compensation Network (RCN) that learns rotation residuals by integrating local geometric features with global pose parameters. This network significantly improves the handling of non-rigid deformations and ensures smooth, artifact-free pose transitions during animation. Experimental results demonstrate that our method successfully reconstructs realistic and highly animatable human avatars from monocular videos, effectively preserving fine-grained details while ensuring stable and natural pose variation. Our approach surpasses current state-of-the-art methods in both reconstruction quality and animation robustness on public benchmarks.
SOTA: Spike-Navigated Optimal TrAnsport Saliency Region Detection in Composite-bias Videos IJCAI 2025
Existing saliency detection methods struggle in real-world scenarios due to motion blur and occlusions. In contrast, spike cameras, with their high temporal resolution, significantly enhance visual saliency maps. However, the composite noise inherent to spike camera imaging introduces discontinuities in saliency detection. Low-quality samples further distort model predictions, leading to saliency bias. To address these challenges, we propose Spike-navigated Optimal TrAnsport Saliency Region Detection (SOTA), a framework that leverages the strengths of spike cameras while mitigating biases in both spatial and temporal dimensions. Our method introduces Spike-based Micro-debias (SM) to capture subtle frame-to-frame variations and preserve critical details, even under minimal scene or lighting changes. Additionally, Spike-based Global-debias (SG) refines predictions by reducing inconsistencies across diverse conditions. Extensive experiments on real and synthetic datasets demonstrate that SOTA outperforms existing methods by eliminating composite noise bias. Our code and dataset will be released at https://github.com/lwxfight/sota.
comment: Accepted to IJCAI 2025
The Invisible Threat: Evaluating the Vulnerability of Cross-Spectral Face Recognition to Presentation Attacks
Cross-spectral face recognition systems are designed to enhance the performance of facial recognition systems by enabling cross-modal matching under challenging operational conditions. A particularly relevant application is the matching of near-infrared (NIR) images to visible-spectrum (VIS) images, enabling the verification of individuals by comparing NIR facial captures acquired with VIS reference images. The use of NIR imaging offers several advantages, including greater robustness to illumination variations, better visibility through glasses and glare, and greater resistance to presentation attacks. Despite these claimed benefits, the robustness of NIR-based systems against presentation attacks has not been systematically studied in the literature. In this work, we conduct a comprehensive evaluation into the vulnerability of NIR-VIS cross-spectral face recognition systems to presentation attacks. Our empirical findings indicate that, although these systems exhibit a certain degree of reliability, they remain vulnerable to specific attacks, emphasizing the need for further research in this area.
comment: 10 pages
Cues3D: Unleashing the Power of Sole NeRF for Consistent and Unique Instances in Open-Vocabulary 3D Panoptic Segmentation
Open-vocabulary 3D panoptic segmentation has recently emerged as a significant trend. Top-performing methods currently integrate 2D segmentation with geometry-aware 3D primitives. However, the advantage would be lost without high-fidelity 3D point clouds, such as methods based on Neural Radiance Field (NeRF). These methods are limited by the insufficient capacity to maintain consistency across partial observations. To address this, recent works have utilized contrastive loss or cross-view association pre-processing for view consensus. In contrast to them, we present Cues3D, a compact approach that relies solely on NeRF instead of pre-associations. The core idea is that NeRF's implicit 3D field inherently establishes a globally consistent geometry, enabling effective object distinction without explicit cross-view supervision. We propose a three-phase training framework for NeRF, initialization-disambiguation-refinement, whereby the instance IDs are corrected using the initially-learned knowledge. Additionally, an instance disambiguation method is proposed to match NeRF-rendered 3D masks and ensure globally unique 3D instance identities. With the aid of Cues3D, we obtain highly consistent and unique 3D instance ID for each object across views with a balanced version of NeRF. Our experiments are conducted on ScanNet v2, ScanNet200, ScanNet++, and Replica datasets for 3D instance, panoptic, and semantic segmentation tasks. Cues3D outperforms other 2D image-based methods and competes with the latest 2D-3D merging based methods, while even surpassing them when using additional 3D point clouds. The code link could be found in the appendix and will be released on \href{https://github.com/mRobotit/Cues3D}{github}
comment: Accepted by Information Fusion
Towards Lightweight Hyperspectral Image Super-Resolution with Depthwise Separable Dilated Convolutional Network
Deep neural networks have demonstrated highly competitive performance in super-resolution (SR) for natural images by learning mappings from low-resolution (LR) to high-resolution (HR) images. However, hyperspectral super-resolution remains an ill-posed problem due to the high spectral dimensionality of the data and the scarcity of available training samples. Moreover, existing methods often rely on large models with a high number of parameters or require the fusion with panchromatic or RGB images, both of which are often impractical in real-world scenarios. Inspired by the MobileNet architecture, we introduce a lightweight depthwise separable dilated convolutional network (DSDCN) to address the aforementioned challenges. Specifically, our model leverages multiple depthwise separable convolutions, similar to the MobileNet architecture, and further incorporates a dilated convolution fusion block to make the model more flexible for the extraction of both spatial and spectral features. In addition, we propose a custom loss function that combines mean squared error (MSE), an L2 norm regularization-based constraint, and a spectral angle-based loss, ensuring the preservation of both spectral and spatial details. The proposed model achieves very competitive performance on two publicly available hyperspectral datasets, making it well-suited for hyperspectral image super-resolution tasks. The source codes are publicly available at: \href{https://github.com/Usman1021/lightweight}{https://github.com/Usman1021/lightweight}.
Automated segmenta-on of pediatric neuroblastoma on multi-modal MRI: Results of the SPPIN challenge at MICCAI 2023
Surgery plays an important role within the treatment for neuroblastoma, a common pediatric cancer. This requires careful planning, often via magnetic resonance imaging (MRI)-based anatomical 3D models. However, creating these models is often time-consuming and user dependent. We organized the Surgical Planning in Pediatric Neuroblastoma (SPPIN) challenge, to stimulate developments on this topic, and set a benchmark for fully automatic segmentation of neuroblastoma on multi-model MRI. The challenge started with a training phase, where teams received 78 sets of MRI scans from 34 patients, consisting of both diagnostic and post-chemotherapy MRI scans. The final test phase, consisting of 18 MRI sets from 9 patients, determined the ranking of the teams. Ranking was based on the Dice similarity coefficient (Dice score), the 95th percentile of the Hausdorff distance (HD95) and the volumetric similarity (VS). The SPPIN challenge was hosted at MICCAI 2023. The final leaderboard consisted of 9 teams. The highest-ranking team achieved a median Dice score 0.82, a median HD95 of 7.69 mm and a VS of 0.91, utilizing a large, pretrained network called STU-Net. A significant difference for the segmentation results between diagnostic and post-chemotherapy MRI scans was observed (Dice = 0.89 vs Dice = 0.59, P = 0.01) for the highest-ranking team. SPPIN is the first medical segmentation challenge in extracranial pediatric oncology. The highest-ranking team used a large pre-trained network, suggesting that pretraining can be of use in small, heterogenous datasets. Although the results of the highest-ranking team were high for most patients, segmentation especially in small, pre-treated tumors were insufficient. Therefore, more reliable segmentation methods are needed to create clinically applicable models to aid surgical planning in pediatric neuroblastoma.
comment: 23 pages, 6 figures
T2VPhysBench: A First-Principles Benchmark for Physical Consistency in Text-to-Video Generation
Text-to-video generative models have made significant strides in recent years, producing high-quality videos that excel in both aesthetic appeal and accurate instruction following, and have become central to digital art creation and user engagement online. Yet, despite these advancements, their ability to respect fundamental physical laws remains largely untested: many outputs still violate basic constraints such as rigid-body collisions, energy conservation, and gravitational dynamics, resulting in unrealistic or even misleading content. Existing physical-evaluation benchmarks typically rely on automatic, pixel-level metrics applied to simplistic, life-scenario prompts, and thus overlook both human judgment and first-principles physics. To fill this gap, we introduce \textbf{T2VPhysBench}, a first-principled benchmark that systematically evaluates whether state-of-the-art text-to-video systems, both open-source and commercial, obey twelve core physical laws including Newtonian mechanics, conservation principles, and phenomenological effects. Our benchmark employs a rigorous human evaluation protocol and includes three targeted studies: (1) an overall compliance assessment showing that all models score below 0.60 on average in each law category; (2) a prompt-hint ablation revealing that even detailed, law-specific hints fail to remedy physics violations; and (3) a counterfactual robustness test demonstrating that models often generate videos that explicitly break physical rules when so instructed. The results expose persistent limitations in current architectures and offer concrete insights for guiding future research toward truly physics-aware video generation.
Efficient Neural Video Representation with Temporally Coherent Modulation ECCV 2024
Implicit neural representations (INR) has found successful applications across diverse domains. To employ INR in real-life, it is important to speed up training. In the field of INR for video applications, the state-of-the-art approach employs grid-type parametric encoding and successfully achieves a faster encoding speed in comparison to its predecessors. However, the grid usage, which does not consider the video's dynamic nature, leads to redundant use of trainable parameters. As a result, it has significantly lower parameter efficiency and higher bitrate compared to NeRV-style methods that do not use a parametric encoding. To address the problem, we propose Neural Video representation with Temporally coherent Modulation (NVTM), a novel framework that can capture dynamic characteristics of video. By decomposing the spatio-temporal 3D video data into a set of 2D grids with flow information, NVTM enables learning video representation rapidly and uses parameter efficiently. Our framework enables to process temporally corresponding pixels at once, resulting in the fastest encoding speed for a reasonable video quality, especially when compared to the NeRV-style method, with a speed increase of over 3 times. Also, it remarks an average of 1.54dB/0.019 improvements in PSNR/LPIPS on UVG (Dynamic) (even with 10% fewer parameters) and an average of 1.84dB/0.013 improvements in PSNR/LPIPS on MCL-JCV (Dynamic), compared to previous grid-type works. By expanding this to compression tasks, we demonstrate comparable performance to video compression standards (H.264, HEVC) and recent INR approaches for video compression. Additionally, we perform extensive experiments demonstrating the superior performance of our algorithm across diverse tasks, encompassing super resolution, frame interpolation and video inpainting. Project page is https://sujiikim.github.io/NVTM/.
comment: ECCV 2024
Quaternion Wavelet-Conditioned Diffusion Models for Image Super-Resolution IJCNN 2025
Image Super-Resolution is a fundamental problem in computer vision with broad applications spacing from medical imaging to satellite analysis. The ability to reconstruct high-resolution images from low-resolution inputs is crucial for enhancing downstream tasks such as object detection and segmentation. While deep learning has significantly advanced SR, achieving high-quality reconstructions with fine-grained details and realistic textures remains challenging, particularly at high upscaling factors. Recent approaches leveraging diffusion models have demonstrated promising results, yet they often struggle to balance perceptual quality with structural fidelity. In this work, we introduce ResQu a novel SR framework that integrates a quaternion wavelet preprocessing framework with latent diffusion models, incorporating a new quaternion wavelet- and time-aware encoder. Unlike prior methods that simply apply wavelet transforms within diffusion models, our approach enhances the conditioning process by exploiting quaternion wavelet embeddings, which are dynamically integrated at different stages of denoising. Furthermore, we also leverage the generative priors of foundation models such as Stable Diffusion. Extensive experiments on domain-specific datasets demonstrate that our method achieves outstanding SR results, outperforming in many cases existing approaches in perceptual quality and standard evaluation metrics. The code will be available after the revision process.
comment: Accepted for presentation at IJCNN 2025
AWARE-NET: Adaptive Weighted Averaging for Robust Ensemble Network in Deepfake Detection
Deepfake detection has become increasingly important due to the rise of synthetic media, which poses significant risks to digital identity and cyber presence for security and trust. While multiple approaches have improved detection accuracy, challenges remain in achieving consistent performance across diverse datasets and manipulation types. In response, we propose a novel two-tier ensemble framework for deepfake detection based on deep learning that hierarchically combines multiple instances of three state-of-the-art architectures: Xception, Res2Net101, and EfficientNet-B7. Our framework employs a unique approach where each architecture is instantiated three times with different initializations to enhance model diversity, followed by a learnable weighting mechanism that dynamically combines their predictions. Unlike traditional fixed-weight ensembles, our first-tier averages predictions within each architecture family to reduce model variance, while the second tier learns optimal contribution weights through backpropagation, automatically adjusting each architecture's influence based on their detection reliability. Our experiments achieved state-of-the-art intra-dataset performance with AUC scores of 99.22% (FF++) and 100.00% (CelebDF-v2), and F1 scores of 98.06% (FF++) and 99.94% (CelebDF-v2) without augmentation. With augmentation, we achieve AUC scores of 99.47% (FF++) and 100.00% (CelebDF-v2), and F1 scores of 98.43% (FF++) and 99.95% (CelebDF-v2). The framework demonstrates robust cross-dataset generalization, achieving AUC scores of 88.20% and 72.52%, and F1 scores of 93.16% and 80.62% in cross-dataset evaluations.
AI-Assisted Decision-Making for Clinical Assessment of Auto-Segmented Contour Quality
Purpose: This study presents a Deep Learning (DL)-based quality assessment (QA) approach for evaluating auto-generated contours (auto-contours) in radiotherapy, with emphasis on Online Adaptive Radiotherapy (OART). Leveraging Bayesian Ordinal Classification (BOC) and calibrated uncertainty thresholds, the method enables confident QA predictions without relying on ground truth contours or extensive manual labeling. Methods: We developed a BOC model to classify auto-contour quality and quantify prediction uncertainty. A calibration step was used to optimize uncertainty thresholds that meet clinical accuracy needs. The method was validated under three data scenarios: no manual labels, limited labels, and extensive labels. For rectum contours in prostate cancer, we applied geometric surrogate labels when manual labels were absent, transfer learning when limited, and direct supervision when ample labels were available. Results: The BOC model delivered robust performance across all scenarios. Fine-tuning with just 30 manual labels and calibrating with 34 subjects yielded over 90% accuracy on test data. Using the calibrated threshold, over 93% of the auto-contours' qualities were accurately predicted in over 98% of cases, reducing unnecessary manual reviews and highlighting cases needing correction. Conclusion: The proposed QA model enhances contouring efficiency in OART by reducing manual workload and enabling fast, informed clinical decisions. Through uncertainty quantification, it ensures safer, more reliable radiotherapy workflows.
Fine-grained spatial-temporal perception for gas leak segmentation ICIP 2025
Gas leaks pose significant risks to human health and the environment. Despite long-standing concerns, there are limited methods that can efficiently and accurately detect and segment leaks due to their concealed appearance and random shapes. In this paper, we propose a Fine-grained Spatial-Temporal Perception (FGSTP) algorithm for gas leak segmentation. FGSTP captures critical motion clues across frames and integrates them with refined object features in an end-to-end network. Specifically, we first construct a correlation volume to capture motion information between consecutive frames. Then, the fine-grained perception progressively refines the object-level features using previous outputs. Finally, a decoder is employed to optimize boundary segmentation. Because there is no highly precise labeled dataset for gas leak segmentation, we manually label a gas leak video dataset, GasVid. Experimental results on GasVid demonstrate that our model excels in segmenting non-rigid objects such as gas leaks, generating the most accurate mask compared to other state-of-the-art (SOTA) models.
comment: 6 pages, 4 figures, ICIP 2025 Conference
AdCare-VLM: Leveraging Large Vision Language Model (LVLM) to Monitor Long-Term Medication Adherence and Care
Chronic diseases, including diabetes, hypertension, asthma, HIV-AIDS, epilepsy, and tuberculosis, necessitate rigorous adherence to medication to avert disease progression, manage symptoms, and decrease mortality rates. Adherence is frequently undermined by factors including patient behavior, caregiver support, elevated medical costs, and insufficient healthcare infrastructure. We propose AdCare-VLM, a specialized Video-LLaVA-based multimodal large vision language model (LVLM) aimed at visual question answering (VQA) concerning medication adherence through patient videos. We employ a private dataset comprising 806 custom-annotated tuberculosis (TB) medication monitoring videos, which have been labeled by clinical experts, to fine-tune the model for adherence pattern detection. We present LLM-TB-VQA, a detailed medical adherence VQA dataset that encompasses positive, negative, and ambiguous adherence cases. Our method identifies correlations between visual features, such as the clear visibility of the patient's face, medication, water intake, and the act of ingestion, and their associated medical concepts in captions. This facilitates the integration of aligned visual-linguistic representations and improves multimodal interactions. Experimental results indicate that our method surpasses parameter-efficient fine-tuning (PEFT) enabled VLM models, such as LLaVA-V1.5 and Chat-UniVi, with absolute improvements ranging from 3.1% to 3.54% across pre-trained, regular, and low-rank adaptation (LoRA) configurations. Comprehensive ablation studies and attention map visualizations substantiate our approach, enhancing interpretability.
Pack-PTQ: Advancing Post-training Quantization of Neural Networks by Pack-wise Reconstruction
Post-training quantization (PTQ) has evolved as a prominent solution for compressing complex models, which advocates a small calibration dataset and avoids end-to-end retraining. However, most existing PTQ methods employ block-wise reconstruction, which neglects cross-block dependency and exhibits a notable accuracy drop in low-bit cases. To address these limitations, this paper presents a novel PTQ method, dubbed Pack-PTQ. First, we design a Hessian-guided adaptive packing mechanism to partition blocks into non-overlapping packs, which serve as the base unit for reconstruction, thereby preserving the cross-block dependency and enabling accurate quantization parameters estimation. Second, based on the pack configuration, we propose a mixed-precision quantization approach to assign varied bit-widths to packs according to their distinct sensitivities, thereby further enhancing performance. Extensive experiments on 2D image and 3D point cloud classification tasks, using various network architectures, demonstrate the superiority of our method over the state-of-the-art PTQ methods.
Empowering Agentic Video Analytics Systems with Video Language Models
AI-driven video analytics has become increasingly pivotal across diverse domains. However, existing systems are often constrained to specific, predefined tasks, limiting their adaptability in open-ended analytical scenarios. The recent emergence of Video-Language Models (VLMs) as transformative technologies offers significant potential for enabling open-ended video understanding, reasoning, and analytics. Nevertheless, their limited context windows present challenges when processing ultra-long video content, which is prevalent in real-world applications. To address this, we introduce AVA, a VLM-powered system designed for open-ended, advanced video analytics. AVA incorporates two key innovations: (1) the near real-time construction of Event Knowledge Graphs (EKGs) for efficient indexing of long or continuous video streams, and (2) an agentic retrieval-generation mechanism that leverages EKGs to handle complex and diverse queries. Comprehensive evaluations on public benchmarks, LVBench and VideoMME-Long, demonstrate that AVA achieves state-of-the-art performance, attaining 62.3% and 64.1% accuracy, respectively, significantly surpassing existing VLM and video Retrieval-Augmented Generation (RAG) systems. Furthermore, to evaluate video analytics in ultra-long and open-world video scenarios, we introduce a new benchmark, AVA-100. This benchmark comprises 8 videos, each exceeding 10 hours in duration, along with 120 manually annotated, diverse, and complex question-answer pairs. On AVA-100, AVA achieves top-tier performance with an accuracy of 75.8%.
comment: 15 pages
ReXGradient-160K: A Large-Scale Publicly Available Dataset of Chest Radiographs with Free-text Reports
We present ReXGradient-160K, representing the largest publicly available chest X-ray dataset to date in terms of the number of patients. This dataset contains 160,000 chest X-ray studies with paired radiological reports from 109,487 unique patients across 3 U.S. health systems (79 medical sites). This comprehensive dataset includes multiple images per study and detailed radiology reports, making it particularly valuable for the development and evaluation of AI systems for medical imaging and automated report generation models. The dataset is divided into training (140,000 studies), validation (10,000 studies), and public test (10,000 studies) sets, with an additional private test set (10,000 studies) reserved for model evaluation on the ReXrank benchmark. By providing this extensive dataset, we aim to accelerate research in medical imaging AI and advance the state-of-the-art in automated radiological analysis. Our dataset will be open-sourced at https://huggingface.co/datasets/rajpurkarlab/ReXGradient-160K.
Are Minimal Radial Distortion Solvers Really Necessary for Relative Pose Estimation?
Estimating the relative pose between two cameras is a fundamental step in many applications such as Structure-from-Motion. The common approach to relative pose estimation is to apply a minimal solver inside a RANSAC loop. Highly efficient solvers exist for pinhole cameras. Yet, (nearly) all cameras exhibit radial distortion. Not modeling radial distortion leads to (significantly) worse results. However, minimal radial distortion solvers are significantly more complex than pinhole solvers, both in terms of run-time and implementation efforts. This paper compares radial distortion solvers with two simple-to-implement approaches that do not use minimal radial distortion solvers: The first approach combines an efficient pinhole solver with sampled radial undistortion parameters, where the sampled parameters are used for undistortion prior to applying the pinhole solver. The second approach uses a state-of-the-art neural network to estimate the distortion parameters rather than sampling them from a set of potential values. Extensive experiments on multiple datasets, and different camera setups, show that complex minimal radial distortion solvers are not necessary in practice. We discuss under which conditions a simple sampling of radial undistortion parameters is preferable over calibrating cameras using a learning-based prior approach. Code and newly created benchmark for relative pose estimation under radial distortion are available at https://github.com/kocurvik/rdnet.
comment: arXiv admin note: substantial text overlap with arXiv:2410.05984
The Comparability of Model Fusion to Measured Data in Confuser Rejection SP
Data collection has always been a major issue in the modeling and training of large deep learning networks, as no dataset can account for every slight deviation we might see in live usage. Collecting samples can be especially costly for Synthetic Aperture Radar (SAR), limiting the amount of unique targets and operating conditions we are able to observe from. To counter this lack of data, simulators have been developed utilizing the shooting and bouncing ray method to allow for the generation of synthetic SAR data on 3D models. While effective, the synthetically generated data does not perfectly correlate to the measured data leading to issues when training models solely on synthetic data. We aim to use computational power as a substitution for this lack of quality measured data, by ensembling many models trained on synthetic data. Synthetic data is also not complete, as we do not know what targets might be present in a live environment. Therefore we need to have our ensembling techniques account for these unknown targets by applying confuser rejection in which our models will reject unknown targets it is presented with, and only classify those it has been trained on.
comment: Conference paper for SPIE Defense and Commercial Sensing Algorithms for Synthetic Aperture Radar Imagery XXXII. 14 pages, 9 figures
Advancing Wheat Crop Analysis: A Survey of Deep Learning Approaches Using Hyperspectral Imaging
As one of the most widely cultivated and consumed crops, wheat is essential to global food security. However, wheat production is increasingly challenged by pests, diseases, climate change, and water scarcity, threatening yields. Traditional crop monitoring methods are labor-intensive and often ineffective for early issue detection. Hyperspectral imaging (HSI) has emerged as a non-destructive and efficient technology for remote crop health assessment. However, the high dimensionality of HSI data and limited availability of labeled samples present notable challenges. In recent years, deep learning has shown great promise in addressing these challenges due to its ability to extract and analysis complex structures. Despite advancements in applying deep learning methods to HSI data for wheat crop analysis, no comprehensive survey currently exists in this field. This review addresses this gap by summarizing benchmark datasets, tracking advancements in deep learning methods, and analyzing key applications such as variety classification, disease detection, and yield estimation. It also highlights the strengths, limitations, and future opportunities in leveraging deep learning methods for HSI-based wheat crop analysis. We have listed the current state-of-the-art papers and will continue tracking updating them in the following https://github.com/fadi-07/Awesome-Wheat-HSI-DeepLearning.
SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models CVPR 2025
Humans naturally understand 3D spatial relationships, enabling complex reasoning like predicting collisions of vehicles from different directions. Current large multimodal models (LMMs), however, lack of this capability of 3D spatial reasoning. This limitation stems from the scarcity of 3D training data and the bias in current model designs toward 2D data. In this paper, we systematically study the impact of 3D-informed data, architecture, and training setups, introducing SpatialLLM, a large multi-modal model with advanced 3D spatial reasoning abilities. To address data limitations, we develop two types of 3D-informed training datasets: (1) 3D-informed probing data focused on object's 3D location and orientation, and (2) 3D-informed conversation data for complex spatial relationships. Notably, we are the first to curate VQA data that incorporate 3D orientation relationships on real images. Furthermore, we systematically integrate these two types of training data with the architectural and training designs of LMMs, providing a roadmap for optimal design aimed at achieving superior 3D reasoning capabilities. Our SpatialLLM advances machines toward highly capable 3D-informed reasoning, surpassing GPT-4o performance by 8.7%. Our systematic empirical design and the resulting findings offer valuable insights for future research in this direction.
comment: CVPR 2025 highlight, camera ready version
AI-ready Snow Radar Echogram Dataset (SRED) for climate change monitoring
Tracking internal layers in radar echograms with high accuracy is essential for understanding ice sheet dynamics and quantifying the impact of accelerated ice discharge in Greenland and other polar regions due to contemporary global climate warming. Deep learning algorithms have become the leading approach for automating this task, but the absence of a standardized and well-annotated echogram dataset has hindered the ability to test and compare algorithms reliably, limiting the advancement of state-of-the-art methods for the radar echogram layer tracking problem. This study introduces the first comprehensive ``deep learning ready'' radar echogram dataset derived from Snow Radar airborne data collected during the National Aeronautics and Space Administration Operation Ice Bridge (OIB) mission in 2012. The dataset contains 13,717 labeled and 57,815 weakly-labeled echograms covering diverse snow zones (dry, ablation, wet) with varying along-track resolutions. To demonstrate its utility, we evaluated the performance of five deep learning models on the dataset. Our results show that while current computer vision segmentation algorithms can identify and track snow layer pixels in echogram images, advanced end-to-end models are needed to directly extract snow depth and annual accumulation from echograms, reducing or eliminating post-processing. The dataset and accompanying benchmarking framework provide a valuable resource for advancing radar echogram layer tracking and snow accumulation estimation, advancing our understanding of polar ice sheets response to climate warming.
Person detection and re-identification in open-world settings of retail stores and public spaces
Practical applications of computer vision in smart cities usually assume system integration and operation in challenging open-world environments. In the case of person re-identification task the main goal is to retrieve information whether the specific person has appeared in another place at a different time instance of the same video, or over multiple camera feeds. This typically assumes collecting raw data from video surveillance cameras in different places and under varying illumination conditions. In the considered open-world setting it also requires detection and localization of the person inside the analyzed video frame before the main re-identification step. With multi-person and multi-camera setups the system complexity becomes higher, requiring sophisticated tracking solutions and re-identification models. In this work we will discuss existing challenges in system design architectures, consider possible solutions based on different computer vision techniques, and describe applications of such systems in retail stores and public spaces for improved marketing analytics. In order to analyse sensitivity of person re-identification task under different open-world environments, a performance of one close to real-time solution will be demonstrated over several video captures and live camera feeds. Finally, based on conducted experiments we will indicate further research directions and possible system improvements.
comment: 6 pages, 3 figures, 1 table, associated code implementation and accompanying test videos with experimental results are available at the following link: https://github.com/brkljac/personReID , paper submitted to the 2nd International Scientific Conference 'ALFATECH - Smart Cities and modern technologies - 2025', Belgrade, Serbia, Feb. 28, 2025
Multi-Modal Language Models as Text-to-Image Model Evaluators
The steady improvements of text-to-image (T2I) generative models lead to slow deprecation of automatic evaluation benchmarks that rely on static datasets, motivating researchers to seek alternative ways to evaluate the T2I progress. In this paper, we explore the potential of multi-modal large language models (MLLMs) as evaluator agents that interact with a T2I model, with the objective of assessing prompt-generation consistency and image aesthetics. We present Multimodal Text-to-Image Eval (MT2IE), an evaluation framework that iteratively generates prompts for evaluation, scores generated images and matches T2I evaluation of existing benchmarks with a fraction of the prompts used in existing static benchmarks. Moreover, we show that MT2IE's prompt-generation consistency scores have higher correlation with human judgment than scores previously introduced in the literature. MT2IE generates prompts that are efficient at probing T2I model performance, producing the same relative T2I model rankings as existing benchmarks while using only 1/80th the number of prompts for evaluation.
Efficient On-Chip Implementation of 4D Radar-Based 3D Object Detection on Hailo-8L
4D radar has attracted attention in autonomous driving due to its ability to enable robust 3D object detection even under adverse weather conditions. To practically deploy such technologies, it is essential to achieve real-time processing within low-power embedded environments. Addressing this, we present the first on-chip implementation of a 4D radar-based 3D object detection model on the Hailo-8L AI accelerator. Although conventional 3D convolutional neural network (CNN) architectures require 5D inputs, the Hailo-8L only supports 4D tensors, posing a significant challenge. To overcome this limitation, we introduce a tensor transformation method that reshapes 5D inputs into 4D formats during the compilation process, enabling direct deployment without altering the model structure. The proposed system achieves 46.47% AP_3D and 52.75% AP_BEV, maintaining comparable accuracy to GPU-based models while achieving an inference speed of 13.76 Hz. These results demonstrate the applicability of 4D radar-based perception technologies to autonomous driving systems.
comment: 4pages, 2 figures
P2P-Insole: Human Pose Estimation Using Foot Pressure Distribution and Motion Sensors
This work presents P2P-Insole, a low-cost approach for estimating and visualizing 3D human skeletal data using insole-type sensors integrated with IMUs. Each insole, fabricated with e-textile garment techniques, costs under USD 1, making it significantly cheaper than commercial alternatives and ideal for large-scale production. Our approach uses foot pressure distribution, acceleration, and rotation data to overcome limitations, providing a lightweight, minimally intrusive, and privacy-aware solution. The system employs a Transformer model for efficient temporal feature extraction, enriched by first and second derivatives in the input stream. Including multimodal information, such as accelerometers and rotational measurements, improves the accuracy of complex motion pattern recognition. These facts are demonstrated experimentally, while error metrics show the robustness of the approach in various posture estimation tasks. This work could be the foundation for a low-cost, practical application in rehabilitation, injury prevention, and health monitoring while enabling further development through sensor optimization and expanded datasets.
DARTer: Dynamic Adaptive Representation Tracker for Nighttime UAV Tracking ICMR 2025
Nighttime UAV tracking presents significant challenges due to extreme illumination variations and viewpoint changes, which severely degrade tracking performance. Existing approaches either rely on light enhancers with high computational costs or introduce redundant domain adaptation mechanisms, failing to fully utilize the dynamic features in varying perspectives. To address these issues, we propose \textbf{DARTer} (\textbf{D}ynamic \textbf{A}daptive \textbf{R}epresentation \textbf{T}racker), an end-to-end tracking framework designed for nighttime UAV scenarios. DARTer leverages a Dynamic Feature Blender (DFB) to effectively fuse multi-perspective nighttime features from static and dynamic templates, enhancing representation robustness. Meanwhile, a Dynamic Feature Activator (DFA) adaptively activates Vision Transformer layers based on extracted features, significantly improving efficiency by reducing redundant computations. Our model eliminates the need for complex multi-task loss functions, enabling a streamlined training process. Extensive experiments on multiple nighttime UAV tracking benchmarks demonstrate the superiority of DARTer over state-of-the-art trackers. These results confirm that DARTer effectively balances tracking accuracy and efficiency, making it a promising solution for real-world nighttime UAV tracking applications.
comment: Accepted by ICMR 2025
CORSTITCH - A free, open source software for stitching and georeferencing underwater coral reef videos
CorStitch is an open-source software developed to automate the creation of accurate georeferenced reef mosaics from video transects obtained through Automated Rapid Reef Assessment System surveys. We utilized a Fourier-based image correlation algorithm to stitch sequential video frames, aligning them with synchronized GNSS timestamps. The resulting compressed Keyhole Markup Language files, compatible with geographic information systems such as Google Earth, enable detailed spatial analysis. Validation through comparative analysis of mosaics from two temporally distinct surveys of the same reef demonstrated the software's consistent and reliable performance.
VecFontSDF: Learning to Reconstruct and Synthesize High-quality Vector Fonts via Signed Distance Functions CVPR 2023
Font design is of vital importance in the digital content design and modern printing industry. Developing algorithms capable of automatically synthesizing vector fonts can significantly facilitate the font design process. However, existing methods mainly concentrate on raster image generation, and only a few approaches can directly synthesize vector fonts. This paper proposes an end-to-end trainable method, VecFontSDF, to reconstruct and synthesize high-quality vector fonts using signed distance functions (SDFs). Specifically, based on the proposed SDF-based implicit shape representation, VecFontSDF learns to model each glyph as shape primitives enclosed by several parabolic curves, which can be precisely converted to quadratic B\'ezier curves that are widely used in vector font products. In this manner, most image generation methods can be easily extended to synthesize vector fonts. Qualitative and quantitative experiments conducted on a publicly-available dataset demonstrate that our method obtains high-quality results on several tasks, including vector font reconstruction, interpolation, and few-shot vector font synthesis, markedly outperforming the state of the art. Our code and trained models are available at https://xiazeqing.github.io/VecFontSDF.
comment: Accepted to CVPR 2023. Project Page: https://xiazeqing.github.io/VecFontSDF
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
comment: 10 pages, 10 figures, 3 tables
EyePreserve: Identity-Preserving Iris Synthesis
Synthesis of same-identity biometric iris images, both for existing and non-existing identities while preserving the identity across a wide range of pupil sizes, is complex due to the intricate iris muscle constriction mechanism, requiring a precise model of iris non-linear texture deformations to be embedded into the synthesis pipeline. This paper presents the first method of fully data-driven, identity-preserving, pupil size-varying synthesis of iris images. This approach is capable of synthesizing images of irises with different pupil sizes representing non-existing identities, as well as non-linearly deforming the texture of iris images of existing subjects given the segmentation mask of the target iris image. Iris recognition experiments suggest that the proposed deformation model both preserves the identity when changing the pupil size, and offers better similarity between same-identity iris samples with significant differences in pupil size, compared to state-of-the-art linear and non-linear (bio-mechanical-based) iris deformation models. Two immediate applications of the proposed approach are: (a) synthesis of, or enhancement of the existing biometric datasets for iris recognition, mimicking those acquired with iris sensors, and (b) helping forensic human experts examine iris image pairs with significant differences in pupil dilation. Images considered in this work conform to selected ISO/IEC 29794-6 quality metrics to make them applicable in biometric systems. The source codes and model weights are offered with this paper.
All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
comment: A Multilingual Multimodal cultural benchmark for 100 languages
Gaussian Mixture Flow Matching Models ICML 2025
Diffusion models approximate the denoising distribution as a Gaussian and predict its mean, whereas flow matching models reparameterize the Gaussian mean as flow velocity. However, they underperform in few-step sampling due to discretization error and tend to produce over-saturated colors under classifier-free guidance (CFG). To address these limitations, we propose a novel Gaussian mixture flow matching (GMFlow) model: instead of predicting the mean, GMFlow predicts dynamic Gaussian mixture (GM) parameters to capture a multi-modal flow velocity distribution, which can be learned with a KL divergence loss. We demonstrate that GMFlow generalizes previous diffusion and flow matching models where a single Gaussian is learned with an $L_2$ denoising loss. For inference, we derive GM-SDE/ODE solvers that leverage analytic denoising distributions and velocity fields for precise few-step sampling. Furthermore, we introduce a novel probabilistic guidance scheme that mitigates the over-saturation issues of CFG and improves image generation quality. Extensive experiments demonstrate that GMFlow consistently outperforms flow matching baselines in generation quality, achieving a Precision of 0.942 with only 6 sampling steps on ImageNet 256$\times$256.
comment: ICML 2025. Code: https://github.com/Lakonik/GMFlow
Variational Self-Supervised Learning
We present Variational Self-Supervised Learning (VSSL), a novel framework that combines variational inference with self-supervised learning to enable efficient, decoder-free representation learning. Unlike traditional VAEs that rely on input reconstruction via a decoder, VSSL symmetrically couples two encoders with Gaussian outputs. A momentum-updated teacher network defines a dynamic, data-dependent prior, while the student encoder produces an approximate posterior from augmented views. The reconstruction term in the ELBO is replaced with a cross-view denoising objective, preserving the analytical tractability of Gaussian KL divergence. We further introduce cosine-based formulations of KL and log-likelihood terms to enhance semantic alignment in high-dimensional latent spaces. Experiments on CIFAR-10, CIFAR-100, and ImageNet-100 show that VSSL achieves competitive or superior performance to leading self-supervised methods, including BYOL and MoCo V3. VSSL offers a scalable, probabilistically grounded approach to learning transferable representations without generative reconstruction, bridging the gap between variational modeling and modern self-supervised techniques.
MFSR-GAN: Multi-Frame Super-Resolution with Handheld Motion Modeling CVPR 2025
Smartphone cameras have become ubiquitous imaging tools, yet their small sensors and compact optics often limit spatial resolution and introduce distortions. Combining information from multiple low-resolution (LR) frames to produce a high-resolution (HR) image has been explored to overcome the inherent limitations of smartphone cameras. Despite the promise of multi-frame super-resolution (MFSR), current approaches are hindered by datasets that fail to capture the characteristic noise and motion patterns found in real-world handheld burst images. In this work, we address this gap by introducing a novel synthetic data engine that uses multi-exposure static images to synthesize LR-HR training pairs while preserving sensor-specific noise characteristics and image motion found during handheld burst photography. We also propose MFSR-GAN: a multi-scale RAW-to-RGB network for MFSR. Compared to prior approaches, MFSR-GAN emphasizes a "base frame" throughout its architecture to mitigate artifacts. Experimental results on both synthetic and real data demonstrates that MFSR-GAN trained with our synthetic engine yields sharper, more realistic reconstructions than existing methods for real-world MFSR.
comment: Accepted to NTIRE Workshop at CVPR 2025; 8 pages, 6 figures
A Deep Learning-Based Unified Framework for Red Lesions Detection on Retinal Fundus Images
Red-lesions, microaneurysms (MAs) and hemorrhages (HMs), are the early signs of diabetic retinopathy (DR). The automatic detection of MAs and HMs on retinal fundus images is a challenging task. Most of the existing methods detect either only MAs or only HMs because of the difference in their texture, sizes, and morphology. Though some methods detect both MAs and HMs, they suffer from the curse of dimensionality of shape and colors features and fail to detect all shape variations of HMs such as flame-shaped. Leveraging the progress in deep learning, we proposed a two-stream red lesions detection system dealing simultaneously with small and large red lesions. For this system, we introduced a new ROIs candidates generation method for large red lesions on fundus images; it is based on blood vessel segmentation and morphological operations, and reduces the computational complexity, and enhances the detection accuracy by generating a small number of potential candidates. For detection, we proposed a framework with two streams. We used pretrained VGGNet as a backbone model and carried out several extensive experiments to tune it for vessels segmentation and candidates generation, and finally learning the appropriate mapping, which yields better detection of the red lesions comparing with the state-of-the-art methods. The experimental results validated the effectiveness of the system in the detection of both MAs and HMs; it yields higher performance for per lesion detection; its sensitivity equals 0.8589 and good FROC score under 8 FPIs on DiaretDB1-MA reports FROC=0.7518, and with SN=0.7552 and good FROC score under 2,4and 8 FPIs on DiaretDB1-HM, and SN=0.8157 on e-ophtha with overall FROC=0.4537 and on ROCh dataset with FROC=0.3461 which is higher than the state-of-the art methods. For DR screening, the system performs well with good AUC on DiaretDB1-MA, DiaretDB1-HM, and e-ophtha datasets.
LT3SD: Latent Trees for 3D Scene Diffusion
We present LT3SD, a novel latent diffusion model for large-scale 3D scene generation. Recent advances in diffusion models have shown impressive results in 3D object generation, but are limited in spatial extent and quality when extended to 3D scenes. To generate complex and diverse 3D scene structures, we introduce a latent tree representation to effectively encode both lower-frequency geometry and higher-frequency detail in a coarse-to-fine hierarchy. We can then learn a generative diffusion process in this latent 3D scene space, modeling the latent components of a scene at each resolution level. To synthesize large-scale scenes with varying sizes, we train our diffusion model on scene patches and synthesize arbitrary-sized output 3D scenes through shared diffusion generation across multiple scene patches. Through extensive experiments, we demonstrate the efficacy and benefits of LT3SD for large-scale, high-quality unconditional 3D scene generation and for probabilistic completion for partial scene observations.
comment: Project page: https://quan-meng.github.io/projects/lt3sd/ Video: https://youtu.be/AJ5sG9VyjGA
Interpretability-Aware Vision Transformer
Vision Transformers (ViTs) have become prominent models for solving various vision tasks. However, the interpretability of ViTs has not kept pace with their promising performance. While there has been a surge of interest in developing {\it post hoc} solutions to explain ViTs' outputs, these methods do not generalize to different downstream tasks and various transformer architectures. Furthermore, if ViTs are not properly trained with the given data and do not prioritize the region of interest, the {\it post hoc} methods would be less effective. Instead of developing another {\it post hoc} approach, we introduce a novel training procedure that inherently enhances model interpretability. Our interpretability-aware ViT (IA-ViT) draws inspiration from a fresh insight: both the class patch and image patches consistently generate predicted distributions and attention maps. IA-ViT is composed of a feature extractor, a predictor, and an interpreter, which are trained jointly with an interpretability-aware training objective. Consequently, the interpreter simulates the behavior of the predictor and provides a faithful explanation through its single-head self-attention mechanism. Our comprehensive experimental results demonstrate the effectiveness of IA-ViT in several image classification tasks, with both qualitative and quantitative evaluations of model performance and interpretability. Source code is available from: https://github.com/qiangyao1988/IA-ViT.
comment: 10 pages, 4 figures, 5 tables
LGD: Leveraging Generative Descriptions for Zero-Shot Referring Image Segmentation
Zero-shot referring image segmentation aims to locate and segment the target region based on a referring expression, with the primary challenge of aligning and matching semantics across visual and textual modalities without training. Previous works address this challenge by utilizing Vision-Language Models and mask proposal networks for region-text matching. However, this paradigm may lead to incorrect target localization due to the inherent ambiguity and diversity of free-form referring expressions. To alleviate this issue, we present LGD (Leveraging Generative Descriptions), a framework that utilizes the advanced language generation capabilities of Multi-Modal Large Language Models to enhance region-text matching performance in Vision-Language Models. Specifically, we first design two kinds of prompts, the attribute prompt and the surrounding prompt, to guide the Multi-Modal Large Language Models in generating descriptions related to the crucial attributes of the referent object and the details of surrounding objects, referred to as attribute description and surrounding description, respectively. Secondly, three visual-text matching scores are introduced to evaluate the similarity between instance-level visual features and textual features, which determines the mask most associated with the referring expression. The proposed method achieves new state-of-the-art performance on three public datasets RefCOCO, RefCOCO+ and RefCOCOg, with maximum improvements of 9.97% in oIoU and 11.29% in mIoU compared to previous methods.
CLR-Wire: Towards Continuous Latent Representations for 3D Curve Wireframe Generation SIGGRAPH 2025
We introduce CLR-Wire, a novel framework for 3D curve-based wireframe generation that integrates geometry and topology into a unified Continuous Latent Representation. Unlike conventional methods that decouple vertices, edges, and faces, CLR-Wire encodes curves as Neural Parametric Curves along with their topological connectivity into a continuous and fixed-length latent space using an attention-driven variational autoencoder (VAE). This unified approach facilitates joint learning and generation of both geometry and topology. To generate wireframes, we employ a flow matching model to progressively map Gaussian noise to these latents, which are subsequently decoded into complete 3D wireframes. Our method provides fine-grained modeling of complex shapes and irregular topologies, and supports both unconditional generation and generation conditioned on point cloud or image inputs. Experimental results demonstrate that, compared with state-of-the-art generative approaches, our method achieves substantial improvements in accuracy, novelty, and diversity, offering an efficient and comprehensive solution for CAD design, geometric reconstruction, and 3D content creation.
comment: SIGGRAPH 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/CLRWire
Towards Global Localization using Multi-Modal Object-Instance Re-Identification
Re-identification (ReID) is a critical challenge in computer vision, predominantly studied in the context of pedestrians and vehicles. However, robust object-instance ReID, which has significant implications for tasks such as autonomous exploration, long-term perception, and scene understanding, remains underexplored. In this work, we address this gap by proposing a novel dual-path object-instance re-identification transformer architecture that integrates multimodal RGB and depth information. By leveraging depth data, we demonstrate improvements in ReID across scenes that are cluttered or have varying illumination conditions. Additionally, we develop a ReID-based localization framework that enables accurate camera localization and pose identification across different viewpoints. We validate our methods using two custom-built RGB-D datasets, as well as multiple sequences from the open-source TUM RGB-D datasets. Our approach demonstrates significant improvements in both object instance ReID (mAP of 75.18) and localization accuracy (success rate of 83% on TUM-RGBD), highlighting the essential role of object ReID in advancing robotic perception. Our models, frameworks, and datasets have been made publicly available.
comment: 8 pages, 5 figures, 3 tables. Accepted at Advances in Robotics, AIR 2025 (Oral)
Seamless Optical Cloud Computing across Edge-Metro Network for Generative AI
The rapid advancement of generative artificial intelligence (AI) in recent years has profoundly reshaped modern lifestyles, necessitating a revolutionary architecture to support the growing demands for computational power. Cloud computing has become the driving force behind this transformation. However, it consumes significant power and faces computation security risks due to the reliance on extensive data centers and servers in the cloud. Reducing power consumption while enhancing computational scale remains persistent challenges in cloud computing. Here, we propose and experimentally demonstrate an optical cloud computing system that can be seamlessly deployed across edge-metro network. By modulating inputs and models into light, a wide range of edge nodes can directly access the optical computing center via the edge-metro network. The experimental validations show an energy efficiency of 118.6 mW/TOPs (tera operations per second), reducing energy consumption by two orders of magnitude compared to traditional electronic-based cloud computing solutions. Furthermore, it is experimentally validated that this architecture can perform various complex generative AI models through parallel computing to achieve image generation tasks.
Scene-Conditional 3D Object Stylization and Composition
Recently, 3D generative models have made impressive progress, enabling the generation of almost arbitrary 3D assets from text or image inputs. However, these approaches generate objects in isolation without any consideration for the scene where they will eventually be placed. In this paper, we propose a framework that allows for the stylization of an existing 3D asset to fit into a given 2D scene, and additionally produce a photorealistic composition as if the asset was placed within the environment. This not only opens up a new level of control for object stylization, for example, the same assets can be stylized to reflect changes in the environment, such as summer to winter or fantasy versus futuristic settings-but also makes the object-scene composition more controllable. We achieve this by combining modeling and optimizing the object's texture and environmental lighting through differentiable ray tracing with image priors from pre-trained text-to-image diffusion models. We demonstrate that our method is applicable to a wide variety of indoor and outdoor scenes and arbitrary objects. Project page: https://jensenzhoujh.github.io/scene-cond-3d/.
Ouroboros3D: Image-to-3D Generation via 3D-aware Recursive Diffusion
Existing single image-to-3D creation methods typically involve a two-stage process, first generating multi-view images, and then using these images for 3D reconstruction. However, training these two stages separately leads to significant data bias in the inference phase, thus affecting the quality of reconstructed results. We introduce a unified 3D generation framework, named Ouroboros3D, which integrates diffusion-based multi-view image generation and 3D reconstruction into a recursive diffusion process. In our framework, these two modules are jointly trained through a self-conditioning mechanism, allowing them to adapt to each other's characteristics for robust inference. During the multi-view denoising process, the multi-view diffusion model uses the 3D-aware maps rendered by the reconstruction module at the previous timestep as additional conditions. The recursive diffusion framework with 3D-aware feedback unites the entire process and improves geometric consistency.Experiments show that our framework outperforms separation of these two stages and existing methods that combine them at the inference phase. Project page: https://costwen.github.io/Ouroboros3D/
comment: See our project page at https://costwen.github.io/Ouroboros3D/
Disentangle Before Anonymize: A Two-stage Framework for Attribute-preserved and Occlusion-robust De-identification
In an era where personal photos are easily leaked and collected, face de-identification is a crucial method for protecting identity privacy. However, current face de-identification techniques face challenges in preserving attribute details and often produce anonymized results with reduced authenticity. These shortcomings are particularly evident when handling occlusions,frequently resulting in noticeable editing artifacts. Our primary finding in this work is that simultaneous training of identity disentanglement and anonymization hinders their respective effectiveness.Therefore, we propose "Disentangle Before Anonymize",a novel two-stage Framework(DBAF)designed for attributepreserved and occlusion-robust de-identification. This framework includes a Contrastive Identity Disentanglement (CID) module and a Key-authorized Reversible Identity Anonymization (KRIA) module, achieving faithful attribute preservation and high-quality identity anonymization edits. Additionally, we introduce a Multiscale Attentional Attribute Retention (MAAR) module to address the issue of reduced anonymization quality under occlusions.Extensive experiments demonstrate that our method outperforms state-of-the-art de-identification approaches, delivering superior quality, enhanced detail fidelity, improved attribute preservation performance, and greater robustness to occlusions.
FOOL: Addressing the Downlink Bottleneck in Satellite Computing with Neural Feature Compression
Nanosatellite constellations equipped with sensors capturing large geographic regions provide unprecedented opportunities for Earth observation. As constellation sizes increase, network contention poses a downlink bottleneck. Orbital Edge Computing (OEC) leverages limited onboard compute resources to reduce transfer costs by processing the raw captures at the source. However, current solutions have limited practicability due to reliance on crude filtering methods or over-prioritizing particular downstream tasks. This work presents FOOL, an OEC-native and task-agnostic feature compression method that preserves prediction performance. FOOL partitions high-resolution satellite imagery to maximize throughput. Further, it embeds context and leverages inter-tile dependencies to lower transfer costs with negligible overhead. While FOOL is a feature compressor, it can recover images with competitive scores on quality measures at lower bitrates. We extensively evaluate transfer cost reduction by including the peculiarity of intermittently available network connections in low earth orbit. Lastly, we test the feasibility of our system for standardized nanosatellite form factors. We demonstrate that FOOL permits downlinking over 100x the data volume without relying on prior information on the downstream tasks.
comment: Version Accepted for publication in IEEE Transactions on Mobile Computing
Uncertainty-aware Bayesian machine learning modelling of land cover classification
Land cover classification involves the production of land cover maps, which determine the type of land through remote sensing imagery. Over recent years, such classification is being performed by machine learning classification models, which can give highly accurate predictions on land cover per pixel using large quantities of input training data. However, such models do not currently take account of input measurement uncertainty, which is vital for traceability in metrology. In this work we propose a Bayesian classification framework using generative modelling to take account of input measurement uncertainty. We take the specific case of Bayesian quadratic discriminant analysis, and apply it to land cover datasets from Copernicus Sentinel-2 in 2020 and 2021. We benchmark the performance of the model against more popular classification models used in land cover maps such as random forests and neural networks. We find that such Bayesian models are more trustworthy, in the sense that they are more interpretable, explicitly model the input measurement uncertainty, and maintain predictive performance of class probability outputs across datasets of different years and sizes, whilst also being computationally efficient.
comment: 31 pages, 10 figures
Latte: Latent Diffusion Transformer for Video Generation
We propose Latte, a novel Latent Diffusion Transformer for video generation. Latte first extracts spatio-temporal tokens from input videos and then adopts a series of Transformer blocks to model video distribution in the latent space. In order to model a substantial number of tokens extracted from videos, four efficient variants are introduced from the perspective of decomposing the spatial and temporal dimensions of input videos. To improve the quality of generated videos, we determine the best practices of Latte through rigorous experimental analysis, including video clip patch embedding, model variants, timestep-class information injection, temporal positional embedding, and learning strategies. Our comprehensive evaluation demonstrates that Latte achieves state-of-the-art performance across four standard video generation datasets, i.e., FaceForensics, SkyTimelapse, UCF101, and Taichi-HD. In addition, we extend Latte to the text-to-video generation (T2V) task, where Latte achieves results that are competitive with recent T2V models. We strongly believe that Latte provides valuable insights for future research on incorporating Transformers into diffusion models for video generation.
comment: Accepted by Transactions on Machine Learning Research 2025; Project Page: https://maxin-cn.github.io/latte_project
AnyStory: Towards Unified Single and Multiple Subject Personalization in Text-to-Image Generation
Recently, large-scale generative models have demonstrated outstanding text-to-image generation capabilities. However, generating high-fidelity personalized images with specific subjects still presents challenges, especially in cases involving multiple subjects. In this paper, we propose AnyStory, a unified approach for personalized subject generation. AnyStory not only achieves high-fidelity personalization for single subjects, but also for multiple subjects, without sacrificing subject fidelity. Specifically, AnyStory models the subject personalization problem in an "encode-then-route" manner. In the encoding step, AnyStory utilizes a universal and powerful image encoder, i.e., ReferenceNet, in conjunction with CLIP vision encoder to achieve high-fidelity encoding of subject features. In the routing step, AnyStory utilizes a decoupled instance-aware subject router to accurately perceive and predict the potential location of the corresponding subject in the latent space, and guide the injection of subject conditions. Detailed experimental results demonstrate the excellent performance of our method in retaining subject details, aligning text descriptions, and personalizing for multiple subjects. The project page is at https://aigcdesigngroup.github.io/AnyStory/ .
comment: Tech report; Project page: https://aigcdesigngroup.github.io/AnyStory/
GLOVER: Generalizable Open-Vocabulary Affordance Reasoning for Task-Oriented Grasping
Inferring affordable (i.e., graspable) parts of arbitrary objects based on human specifications is essential for robots advancing toward open-vocabulary manipulation. Current grasp planners, however, are hindered by limited vision-language comprehension and time-consuming 3D radiance modeling, restricting real-time, open-vocabulary interactions with objects. To address these limitations, we propose GLOVER, a unified Generalizable Open-Vocabulary Affordance Reasoning framework, which fine-tunes the Large Language Models (LLMs) to predict the visual affordance of graspable object parts within RGB feature space. We compile a dataset of over 10,000 images from human-object interactions, annotated with unified visual and linguistic affordance labels, to enable multi-modal fine-tuning. GLOVER inherits world knowledge and common-sense reasoning from LLMs, facilitating more fine-grained object understanding and sophisticated tool-use reasoning. To enable effective real-world deployment, we present Affordance-Aware Grasping Estimation (AGE), a non-parametric grasp planner that aligns the gripper pose with a superquadric surface derived from affordance data. In evaluations across 30 table-top real-world scenes, GLOVER achieves success rates of 86.0% in part identification and 76.3% in grasping, with speeds approximately 29 times faster in affordance reasoning and 40 times faster in grasping pose estimation than the previous state-of-the-art. We also validate the generalization across embodiments, showing effectiveness in humanoid robots with dexterous hands.
TransparentGS: Fast Inverse Rendering of Transparent Objects with Gaussians SIGGRAPH 2025
The emergence of neural and Gaussian-based radiance field methods has led to considerable advancements in novel view synthesis and 3D object reconstruction. Nonetheless, specular reflection and refraction continue to pose significant challenges due to the instability and incorrect overfitting of radiance fields to high-frequency light variations. Currently, even 3D Gaussian Splatting (3D-GS), as a powerful and efficient tool, falls short in recovering transparent objects with nearby contents due to the existence of apparent secondary ray effects. To address this issue, we propose TransparentGS, a fast inverse rendering pipeline for transparent objects based on 3D-GS. The main contributions are three-fold. Firstly, an efficient representation of transparent objects, transparent Gaussian primitives, is designed to enable specular refraction through a deferred refraction strategy. Secondly, we leverage Gaussian light field probes (GaussProbe) to encode both ambient light and nearby contents in a unified framework. Thirdly, a depth-based iterative probes query (IterQuery) algorithm is proposed to reduce the parallax errors in our probe-based framework. Experiments demonstrate the speed and accuracy of our approach in recovering transparent objects from complex environments, as well as several applications in computer graphics and vision.
comment: accepted by SIGGRAPH 2025; https://letianhuang.github.io/transparentgs/
Multimodal classification of forest biodiversity potential from 2D orthophotos and 3D airborne laser scanning point clouds
Assessment of forest biodiversity is crucial for ecosystem management and conservation. While traditional field surveys provide high-quality assessments, they are labor-intensive and spatially limited. This study investigates whether deep learning-based fusion of close-range sensing data from 2D orthophotos and 3D airborne laser scanning (ALS) point clouds can reliable assess the biodiversity potential of forests. We introduce the BioVista dataset, comprising 44 378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark, designed to explore multimodal fusion approaches. Using deep neural networks (ResNet for orthophotos and PointVector for ALS point clouds), we investigate each data modality's ability to assess forest biodiversity potential, achieving overall accuracies of 76.7% and 75.8%, respectively. We explore various 2D and 3D fusion approaches: confidence-based ensembling, feature-level concatenation, and end-to-end training, achieving overall accuracies of 80.5%, 81.4% and 80.4% respectively. Our results demonstrate that spectral information from orthophotos and structural information from ALS point clouds effectively complement each other in forest biodiversity assessment.
GPT-ImgEval: A Comprehensive Benchmark for Diagnosing GPT4o in Image Generation
The recent breakthroughs in OpenAI's GPT4o model have demonstrated surprisingly good capabilities in image generation and editing, resulting in significant excitement in the community. This technical report presents the first-look evaluation benchmark (named GPT-ImgEval), quantitatively and qualitatively diagnosing GPT-4o's performance across three critical dimensions: (1) generation quality, (2) editing proficiency, and (3) world knowledge-informed semantic synthesis. Across all three tasks, GPT-4o demonstrates strong performance, significantly surpassing existing methods in both image generation control and output quality, while also showcasing exceptional knowledge reasoning capabilities. Furthermore, based on the GPT-4o's generated data, we propose a classification-model-based approach to investigate the underlying architecture of GPT-4o, where our empirical results suggest the model consists of an auto-regressive (AR) combined with a diffusion-based head for image decoding, rather than the VAR-like architectures. We also provide a complete speculation on GPT-4o's overall architecture. In addition, we conduct a series of analyses to identify and visualize GPT-4o's specific limitations and the synthetic artifacts commonly observed in its image generation. We also present a comparative study of multi-round image editing between GPT-4o and Gemini 2.0 Flash, and discuss the safety implications of GPT-4o's outputs, particularly their detectability by existing image forensic models. We hope that our work can offer valuable insight and provide a reliable benchmark to guide future research, foster reproducibility, and accelerate innovation in the field of image generation and beyond. The codes and datasets used for evaluating GPT-4o can be found at https://github.com/PicoTrex/GPT-ImgEval.
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
EZIGen: Enhancing zero-shot personalized image generation with precise subject encoding and decoupled guidance
Zero-shot personalized image generation models aim to produce images that align with both a given text prompt and subject image, requiring the model to incorporate both sources of guidance. Existing methods often struggle to capture fine-grained subject details and frequently prioritize one form of guidance over the other, resulting in suboptimal subject encoding and imbalanced generation. In this study, we uncover key insights into overcoming such drawbacks, notably that 1) the choice of the subject image encoder critically influences subject identity preservation and training efficiency, and 2) the text and subject guidance should take effect at different denoising stages. Building on these insights, we introduce a new approach, EZIGen, that employs two main components: leveraging a fixed pre-trained Diffusion UNet itself as subject encoder, following a process that balances the two guidances by separating their dominance stage and revisiting certain time steps to bootstrap subject transfer quality. Through these two components, EZIGen, initially built upon SD2.1-base, achieved state-of-the-art performances on multiple personalized generation benchmarks with a unified model, while using 100 times less training data. Moreover, by further migrating our design to SDXL, EZIGen is proven to be a versatile model-agnostic solution for personalized generation. Demo Page: zichengduan.github.io/pages/EZIGen/index.html
RobMOT: Robust 3D Multi-Object Tracking by Observational Noise and State Estimation Drift Mitigation on LiDAR PointCloud
This paper addresses limitations in 3D tracking-by-detection methods, particularly in identifying legitimate trajectories and reducing state estimation drift in Kalman filters. Existing methods often use threshold-based filtering for detection scores, which can fail for distant and occluded objects, leading to false positives. To tackle this, we propose a novel track validity mechanism and multi-stage observational gating process, significantly reducing ghost tracks and enhancing tracking performance. Our method achieves a $29.47\%$ improvement in Multi-Object Tracking Accuracy (MOTA) on the KITTI validation dataset with the Second detector. Additionally, a refined Kalman filter term reduces localization noise, improving higher-order tracking accuracy (HOTA) by $4.8\%$. The online framework, RobMOT, outperforms state-of-the-art methods across multiple detectors, with HOTA improvements of up to $3.92\%$ on the KITTI testing dataset and $8.7\%$ on the validation dataset, while achieving low identity switch scores. RobMOT excels in challenging scenarios, tracking distant objects and prolonged occlusions, with a $1.77\%$ MOTA improvement on the Waymo Open dataset, and operates at a remarkable 3221 FPS on a single CPU, proving its efficiency for real-time multi-object tracking.
F2M-Reg: Unsupervised RGB-D Point Cloud Registration with Frame-to-Model Optimization
This work studies the problem of unsupervised RGB-D point cloud registration, which aims at training a robust registration model without ground-truth pose supervision. Existing methods usually leverages unposed RGB-D sequences and adopt a frame-to-frame framework based on differentiable rendering to train the registration model, which enforces the photometric and geometric consistency between the two frames for supervision. However, this frame-to-frame framework is vulnerable to inconsistent factors between different frames, e.g., lighting changes, geometry occlusion, and reflective materials, which leads to suboptimal convergence of the registration model. In this paper, we propose a novel frame-to-model optimization framework named F2M-Reg for unsupervised RGB-D point cloud registration. We leverage the neural implicit field as a global model of the scene and optimize the estimated poses of the frames by registering them to the global model, and the registration model is subsequently trained with the optimized poses. Thanks to the global encoding capability of neural implicit field, our frame-to-model framework is significantly more robust to inconsistent factors between different frames and thus can provide better supervision for the registration model. Besides, we demonstrate that F2M-Reg can be further enhanced by a simplistic synthetic warming-up strategy. To this end, we construct a photorealistic synthetic dataset named Sim-RGBD to initialize the registration model for the frame-to-model optimization on real-world RGB-D sequences. Extensive experiments on four challenging benchmarks have shown that our method surpasses the previous state-of-the-art counterparts by a large margin, especially under scenarios with severe lighting changes and low overlap. Our code and models are available at https://github.com/MrIsland/F2M_Reg.
GSFeatLoc: Visual Localization Using Feature Correspondence on 3D Gaussian Splatting
In this paper, we present a method for localizing a query image with respect to a precomputed 3D Gaussian Splatting (3DGS) scene representation. First, the method uses 3DGS to render a synthetic RGBD image at some initial pose estimate. Second, it establishes 2D-2D correspondences between the query image and this synthetic image. Third, it uses the depth map to lift the 2D-2D correspondences to 2D-3D correspondences and solves a perspective-n-point (PnP) problem to produce a final pose estimate. Results from evaluation across three existing datasets with 38 scenes and over 2,700 test images show that our method significantly reduces both inference time (by over two orders of magnitude, from more than 10 seconds to as fast as 0.1 seconds) and estimation error compared to baseline methods that use photometric loss minimization. Results also show that our method tolerates large errors in the initial pose estimate of up to 55{\deg} in rotation and 1.1 units in translation (normalized by scene scale), achieving final pose errors of less than 5{\deg} in rotation and 0.05 units in translation on 90% of images from the Synthetic NeRF and Mip-NeRF360 datasets and on 42% of images from the more challenging Tanks and Temples dataset.
Segment-and-Classify: ROI-Guided Generalizable Contrast Phase Classification in CT Using XGBoost
Purpose: To automate contrast phase classification in CT using organ-specific features extracted from a widely used segmentation tool with a lightweight decision tree classifier. Materials and Methods: This retrospective study utilized three public CT datasets from separate institutions. The phase prediction model was trained on the WAW-TACE (median age: 66 [60,73]; 185 males) dataset, and externally validated on the VinDr-Multiphase (146 males; 63 females; 56 unk) and C4KC-KiTS (median age: 61 [50.68; 123 males) datasets. Contrast phase classification was performed using organ-specific features extracted by TotalSegmentator, followed by prediction using a gradient-boosted decision tree classifier. Results: On the VinDr-Multiphase dataset, the phase prediction model achieved the highest or comparable AUCs across all phases (>0.937), with superior F1-scores in the non-contrast (0.994), arterial (0.937), and delayed (0.718) phases. Statistical testing indicated significant performance differences only in the arterial and delayed phases (p<0.05). On the C4KC-KiTS dataset, the phase prediction model achieved the highest AUCs across all phases (>0.991), with superior F1-scores in arterial/venous (0.968) and delayed (0.935) phases. Statistical testing confirmed significant improvements over all baseline models in these two phases (p<0.05). Performance in the non-contrast class, however, was comparable across all models, with no statistically significant differences observed (p>0.05). Conclusion: The lightweight model demonstrated strong performance relative to all baseline models, and exhibited robust generalizability across datasets from different institutions.
Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
ClearVision: Leveraging CycleGAN and SigLIP-2 for Robust All-Weather Classification in Traffic Camera Imagery
Adverse weather conditions challenge safe transportation, necessitating robust real-time weather detection from traffic camera imagery. We propose a novel framework combining CycleGAN-based domain adaptation with efficient contrastive learning to enhance weather classification, particularly in low-light nighttime conditions. Our approach leverages the lightweight SigLIP-2 model, which employs pairwise sigmoid loss to reduce computational demands, integrated with CycleGAN to transform nighttime images into day-like representations while preserving weather cues. Evaluated on an Iowa Department of Transportation dataset, the baseline EVA-02 model with CLIP achieves a per-class overall accuracy of 96.55\% across three weather conditions (No Precipitation, Rain, Snow) and a day/night overall accuracy of 96.55\%, but shows a significant day-night gap (97.21\% day vs.\ 63.40\% night). With CycleGAN, EVA-02 improves to 97.01\% per-class accuracy and 96.85\% day/night accuracy, boosting nighttime performance to 82.45\%. Our Vision-SigLIP-2 + Text-SigLIP-2 + CycleGAN + Contrastive configuration excels in nighttime scenarios, achieving the highest nighttime accuracy of 85.90\%, with 94.00\% per-class accuracy and 93.35\% day/night accuracy. This model reduces training time by 89\% (from 6 hours to 40 minutes) and inference time by 80\% (from 15 seconds to 3 seconds) compared to EVA-02. By narrowing the day-night performance gap from 33.81 to 8.90 percentage points, our framework provides a scalable, efficient solution for all-weather classification using existing camera infrastructure.
Volumetric medical image segmentation through dual self-distillation in U-shaped networks
U-shaped networks and its variants have demonstrated exceptional results for medical image segmentation. In this paper, we propose a novel dual self-distillation (DSD) framework in U-shaped networks for volumetric medical image segmentation. DSD distills knowledge from the ground-truth segmentation labels to the decoder layers. Additionally, DSD also distills knowledge from the deepest decoder and encoder layer to the shallower decoder and encoder layers respectively of a single U-shaped network. DSD is a general training strategy that could be attached to the backbone architecture of any U-shaped network to further improve its segmentation performance. We attached DSD on several state-of-the-art U-shaped backbones, and extensive experiments on various public 3D medical image segmentation datasets (cardiac substructure, brain tumor and Hippocampus) demonstrated significant improvement over the same backbones without DSD. On average, after attaching DSD to the U-shaped backbones, we observed an increase of 2.82\%, 4.53\% and 1.3\% in Dice similarity score, a decrease of 7.15 mm, 6.48 mm and 0.76 mm in the Hausdorff distance, for cardiac substructure, brain tumor and Hippocampus segmentation, respectively. These improvements were achieved with negligible increase in the number of trainable parameters and training time. Our proposed DSD framework also led to significant qualitative improvements for cardiac substructure, brain tumor and Hippocampus segmentation over the U-shaped backbones. The source code is publicly available at https://github.com/soumbane/DualSelfDistillation.
comment: 28 pages, 5 figures, 7 tables, accepted at IEEE Transactions on Biomedical Engineering, 2025
Steering Away from Harm: An Adaptive Approach to Defending Vision Language Model Against Jailbreaks
Vision Language Models (VLMs) can produce unintended and harmful content when exposed to adversarial attacks, particularly because their vision capabilities create new vulnerabilities. Existing defenses, such as input preprocessing, adversarial training, and response evaluation-based methods, are often impractical for real-world deployment due to their high costs. To address this challenge, we propose ASTRA, an efficient and effective defense by adaptively steering models away from adversarial feature directions to resist VLM attacks. Our key procedures involve finding transferable steering vectors representing the direction of harmful response and applying adaptive activation steering to remove these directions at inference time. To create effective steering vectors, we randomly ablate the visual tokens from the adversarial images and identify those most strongly associated with jailbreaks. These tokens are then used to construct steering vectors. During inference, we perform the adaptive steering method that involves the projection between the steering vectors and calibrated activation, resulting in little performance drops on benign inputs while strongly avoiding harmful outputs under adversarial inputs. Extensive experiments across multiple models and baselines demonstrate our state-of-the-art performance and high efficiency in mitigating jailbreak risks. Additionally, ASTRA exhibits good transferability, defending against unseen attacks (i.e., structured-based attack, perturbation-based attack with project gradient descent variants, and text-only attack). Our code is available at \url{https://github.com/ASTRAL-Group/ASTRA}.
EmoGene: Audio-Driven Emotional 3D Talking-Head Generation
Audio-driven talking-head generation is a crucial and useful technology for virtual human interaction and film-making. While recent advances have focused on improving image fidelity and lip synchronization, generating accurate emotional expressions remains underexplored. In this paper, we introduce EmoGene, a novel framework for synthesizing high-fidelity, audio-driven video portraits with accurate emotional expressions. Our approach employs a variational autoencoder (VAE)-based audio-to-motion module to generate facial landmarks, which are concatenated with emotional embedding in a motion-to-emotion module to produce emotional landmarks. These landmarks drive a Neural Radiance Fields (NeRF)-based emotion-to-video module to render realistic emotional talking-head videos. Additionally, we propose a pose sampling method to generate natural idle-state (non-speaking) videos for silent audio inputs. Extensive experiments demonstrate that EmoGene outperforms previous methods in generating high-fidelity emotional talking-head videos.
comment: Accepted by the 2025 IEEE 19th International Conference on Automatic Face and Gesture Recognition (FG)
Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields
This paper presents a novel latent 3D diffusion model for the generation of neural voxel fields, aiming to achieve accurate part-aware structures. Compared to existing methods, there are two key designs to ensure high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, enabling generation at significantly higher resolutions that can accurately capture rich textural and geometric details. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding the accurate part decomposition and producing high-quality rendering results. Through extensive experimentation and comparisons with state-of-the-art methods, we evaluate our approach across four different classes of data. The results demonstrate the superior generative capabilities of our proposed method in part-aware shape generation, outperforming existing state-of-the-art methods.
comment: This paper is accepted by TVCG
NiNformer: A Network in Network Transformer with Token Mixing Generated Gating Function
The attention mechanism is the primary component of the transformer architecture; it has led to significant advancements in deep learning spanning many domains and covering multiple tasks. In computer vision, the attention mechanism was first incorporated in the Vision Transformer ViT, and then its usage has expanded into many tasks in the vision domain, such as classification, segmentation, object detection, and image generation. While the attention mechanism is very expressive and capable, it comes with the disadvantage of being computationally expensive and requiring datasets of considerable size for effective optimization. To address these shortcomings, many designs have been proposed in the literature to reduce the computational burden and alleviate the data size requirements. Examples of such attempts in the vision domain are the MLP-Mixer, the Conv-Mixer, the Perciver-IO, and many more attempts with different sets of advantages and disadvantages. This paper introduces a new computational block as an alternative to the standard ViT block. The newly proposed block reduces the computational requirements by replacing the normal attention layers with a Network in Network structure, therefore enhancing the static approach of the MLP-Mixer with a dynamic learning of element-wise gating function generated by a token mixing process. Extensive experimentation shows that the proposed design provides better performance than the baseline architectures on multiple datasets applied in the image classification task of the vision domain.
comment: Neural Comput & Applic (2025)
DivShift: Exploring Domain-Specific Distribution Shifts in Large-Scale, Volunteer-Collected Biodiversity Datasets AAAI-25
Large-scale, volunteer-collected datasets of community-identified natural world imagery like iNaturalist have enabled marked performance gains for fine-grained visual classification of species using machine learning methods. However, such data -- sometimes referred to as citizen science data -- are opportunistic and lack a structured sampling strategy. This volunteer-collected biodiversity data contains geographic, temporal, taxonomic, observers, and sociopolitical biases that can have significant effects on biodiversity model performance, but whose impacts are unclear for fine-grained species recognition performance. Here we introduce Diversity Shift (DivShift), a framework for quantifying the effects of domain-specific distribution shifts on machine learning model performance. To diagnose the performance effects of biases specific to volunteer-collected biodiversity data, we also introduce DivShift - North American West Coast (DivShift-NAWC), a curated dataset of almost 7.5 million iNaturalist images across the western coast of North America partitioned across five types of expert-verified bias. We compare species recognition performance across these bias partitions using a diverse variety of species- and ecosystem-focused accuracy metrics. We observe that these biases confound model performance less than expected from the underlying label distribution shift, and that more data leads to better model performance but the magnitude of these improvements are bias-specific. These findings imply that while the structure within natural world images provides generalization improvements for biodiversity monitoring tasks, the biases present in volunteer-collected biodiversity data can also affect model performance; thus these models should be used with caution in downstream biodiversity monitoring tasks.
comment: Published at AAAI-25 AI for Social Impact Track (https://ojs.aaai.org/index.php/AAAI/article/view/35060) Presented at NeurIPS 2024 Workshop on Tackling Climate Change with Machine Learning (https://www.climatechange.ai/papers/neurips2024/43)
Do Vision & Language Decoders use Images and Text equally? How Self-consistent are their Explanations?
Vision and language model (VLM) decoders are currently the best-performing architectures on multimodal tasks. Next to answers, they are able to produce natural language explanations, either in post-hoc or CoT settings. However, it is not clear to what extent they are using the input vision and text modalities when generating answers or explanations. In this work, we investigate if VLMs rely on their input modalities differently when they produce explanations as opposed to answers. We also evaluate the self-consistency of VLM decoders in both post-hoc and CoT explanation settings, by extending existing unimodal tests and measures to VLM decoders. We find that most tested VLMs are less self-consistent than LLMs. Text contributions in all tested VL decoders are more important than image contributions in all examined tasks. However, when comparing explanation generation to answer generation, the contributions of images are significantly stronger for generating explanations compared to answers. This difference is even larger in CoT compared to post-hoc explanations. Lastly, we provide an up-to-date benchmarking of state-of-the-art VL decoders on the VALSE benchmark, which before was restricted to VL encoders. We find that the tested VL decoders still struggle with most phenomena tested by VALSE.
comment: 30 pages, 8 figures, 11 tables
Robust Classification by Coupling Data Mollification with Label Smoothing AISTATS 2025
Introducing training-time augmentations is a key technique to enhance generalization and prepare deep neural networks against test-time corruptions. Inspired by the success of generative diffusion models, we propose a novel approach of coupling data mollification, in the form of image noising and blurring, with label smoothing to align predicted label confidences with image degradation. The method is simple to implement, introduces negligible overheads, and can be combined with existing augmentations. We demonstrate improved robustness and uncertainty quantification on the corrupted image benchmarks of CIFAR, TinyImageNet and ImageNet datasets.
comment: AISTATS 2025. Code: https://github.com/markusheinonen/supervised-mollification
Image and Video Processing
GuideSR: Rethinking Guidance for One-Step High-Fidelity Diffusion-Based Super-Resolution
In this paper, we propose GuideSR, a novel single-step diffusion-based image super-resolution (SR) model specifically designed to enhance image fidelity. Existing diffusion-based SR approaches typically adapt pre-trained generative models to image restoration tasks by adding extra conditioning on a VAE-downsampled representation of the degraded input, which often compromises structural fidelity. GuideSR addresses this limitation by introducing a dual-branch architecture comprising: (1) a Guidance Branch that preserves high-fidelity structures from the original-resolution degraded input, and (2) a Diffusion Branch, which a pre-trained latent diffusion model to enhance perceptual quality. Unlike conventional conditioning mechanisms, our Guidance Branch features a tailored structure for image restoration tasks, combining Full Resolution Blocks (FRBs) with channel attention and an Image Guidance Network (IGN) with guided attention. By embedding detailed structural information directly into the restoration pipeline, GuideSR produces sharper and more visually consistent results. Extensive experiments on benchmark datasets demonstrate that GuideSR achieves state-of-the-art performance while maintaining the low computational cost of single-step approaches, with up to 1.39dB PSNR gain on challenging real-world datasets. Our approach consistently outperforms existing methods across various reference-based metrics including PSNR, SSIM, LPIPS, DISTS and FID, further representing a practical advancement for real-world image restoration.
Deep Learning Assisted Outer Volume Removal for Highly-Accelerated Real-Time Dynamic MRI
Real-time (RT) dynamic MRI plays a vital role in capturing rapid physiological processes, offering unique insights into organ motion and function. Among these applications, RT cine MRI is particularly important for functional assessment of the heart with high temporal resolution. RT imaging enables free-breathing, ungated imaging of cardiac motion, making it a crucial alternative for patients who cannot tolerate conventional breath-hold, ECG-gated acquisitions. However, achieving high acceleration rates in RT cine MRI is challenging due to aliasing artifacts from extra-cardiac tissues, particularly at high undersampling factors. In this study, we propose a novel outer volume removal (OVR) method to address this challenge by eliminating aliasing contributions from non-cardiac regions in a post-processing framework. Our approach estimates the outer volume signal for each timeframe using composite temporal images from time-interleaved undersampling patterns, which inherently contain pseudo-periodic ghosting artifacts. A deep learning (DL) model is trained to identify and remove these artifacts, producing a clean outer volume estimate that is subsequently subtracted from the corresponding k-space data. The final reconstruction is performed with a physics-driven DL (PD-DL) method trained using an OVR-specific loss function to restore high spatio-temporal resolution images. Experimental results show that the proposed method at high accelerations achieves image quality that is visually comparable to clinical baseline images, while outperforming conventional reconstruction techniques, both qualitatively and quantitatively. The proposed approach provides a practical and effective solution for artifact reduction in RT cine MRI without requiring acquisition modifications, offering a pathway to higher acceleration rates while preserving diagnostic quality.
Synthesizing and Identifying Noise Levels in Autonomous Vehicle Camera Radar Datasets
Detecting and tracking objects is a crucial component of any autonomous navigation method. For the past decades, object detection has yielded promising results using neural networks on various datasets. While many methods focus on performance metrics, few projects focus on improving the robustness of these detection and tracking pipelines, notably to sensor failures. In this paper we attempt to address this issue by creating a realistic synthetic data augmentation pipeline for camera-radar Autonomous Vehicle (AV) datasets. Our goal is to accurately simulate sensor failures and data deterioration due to real-world interferences. We also present our results of a baseline lightweight Noise Recognition neural network trained and tested on our augmented dataset, reaching an overall recognition accuracy of 54.4\% on 11 categories across 10086 images and 2145 radar point-clouds.
AI-Driven High-Resolution Cell Segmentation and Quantitative Analysis
Studying the growth and metabolism of microbes provides critical insights into their evolutionary adaptations to harsh environments, which are essential for microbial research and biotechnology applications. In this study, we developed an AI-driven image analysis system to efficiently segment individual cells and quantitatively analyze key cellular features. This system is comprised of four main modules. First, a denoising algorithm enhances contrast and suppresses noise while preserving fine cellular details. Second, the Segment Anything Model (SAM) enables accurate, zero-shot segmentation of cells without additional training. Third, post-processing is applied to refine segmentation results by removing over-segmented masks. Finally, quantitative analysis algorithms extract essential cellular features, including average intensity, length, width, and volume. The results show that denoising and post-processing significantly improved the segmentation accuracy of SAM in this new domain. Without human annotations, the AI-driven pipeline automatically and efficiently outlines cellular boundaries, indexes them, and calculates key cellular parameters with high accuracy. This framework will enable efficient and automated quantitative analysis of high-resolution fluorescence microscopy images to advance research into microbial adaptations to grow and metabolism that allow extremophiles to thrive in their harsh habitats.
A Methodological and Structural Review of Parkinsons Disease Detection Across Diverse Data Modalities
Parkinsons Disease (PD) is a progressive neurological disorder that primarily affects motor functions and can lead to mild cognitive impairment (MCI) and dementia in its advanced stages. With approximately 10 million people diagnosed globally 1 to 1.8 per 1,000 individuals, according to reports by the Japan Times and the Parkinson Foundation early and accurate diagnosis of PD is crucial for improving patient outcomes. While numerous studies have utilized machine learning (ML) and deep learning (DL) techniques for PD recognition, existing surveys are limited in scope, often focusing on single data modalities and failing to capture the potential of multimodal approaches. To address these gaps, this study presents a comprehensive review of PD recognition systems across diverse data modalities, including Magnetic Resonance Imaging (MRI), gait-based pose analysis, gait sensory data, handwriting analysis, speech test data, Electroencephalography (EEG), and multimodal fusion techniques. Based on over 347 articles from leading scientific databases, this review examines key aspects such as data collection methods, settings, feature representations, and system performance, with a focus on recognition accuracy and robustness. This survey aims to serve as a comprehensive resource for researchers, providing actionable guidance for the development of next generation PD recognition systems. By leveraging diverse data modalities and cutting-edge machine learning paradigms, this work contributes to advancing the state of PD diagnostics and improving patient care through innovative, multimodal approaches.
CORSTITCH - A free, open source software for stitching and georeferencing underwater coral reef videos
CorStitch is an open-source software developed to automate the creation of accurate georeferenced reef mosaics from video transects obtained through Automated Rapid Reef Assessment System surveys. We utilized a Fourier-based image correlation algorithm to stitch sequential video frames, aligning them with synchronized GNSS timestamps. The resulting compressed Keyhole Markup Language files, compatible with geographic information systems such as Google Earth, enable detailed spatial analysis. Validation through comparative analysis of mosaics from two temporally distinct surveys of the same reef demonstrated the software's consistent and reliable performance.
Towards Lightweight Hyperspectral Image Super-Resolution with Depthwise Separable Dilated Convolutional Network
Deep neural networks have demonstrated highly competitive performance in super-resolution (SR) for natural images by learning mappings from low-resolution (LR) to high-resolution (HR) images. However, hyperspectral super-resolution remains an ill-posed problem due to the high spectral dimensionality of the data and the scarcity of available training samples. Moreover, existing methods often rely on large models with a high number of parameters or require the fusion with panchromatic or RGB images, both of which are often impractical in real-world scenarios. Inspired by the MobileNet architecture, we introduce a lightweight depthwise separable dilated convolutional network (DSDCN) to address the aforementioned challenges. Specifically, our model leverages multiple depthwise separable convolutions, similar to the MobileNet architecture, and further incorporates a dilated convolution fusion block to make the model more flexible for the extraction of both spatial and spectral features. In addition, we propose a custom loss function that combines mean squared error (MSE), an L2 norm regularization-based constraint, and a spectral angle-based loss, ensuring the preservation of both spectral and spatial details. The proposed model achieves very competitive performance on two publicly available hyperspectral datasets, making it well-suited for hyperspectral image super-resolution tasks. The source codes are publicly available at: \href{https://github.com/Usman1021/lightweight}{https://github.com/Usman1021/lightweight}.
Optimal Vector Compressed Sensing Using James Stein Shrinkage
The trend in modern science and technology is to take vector measurements rather than scalars, ruthlessly scaling to ever higher dimensional vectors. For about two decades now, traditional scalar Compressed Sensing has been synonymous with a Convex Optimization based procedure called Basis Pursuit. In the vector recovery case, the natural tendency is to return to a straightforward vector extension of Basis Pursuit, also based on Convex Optimization. However, Convex Optimization is provably suboptimal, particularly when $B$ is large. In this paper, we propose SteinSense, a lightweight iterative algorithm, which is provably optimal when $B$ is large. It does not have any tuning parameter, does not need any training data, requires zero knowledge of sparsity, is embarrassingly simple to implement, and all of this makes it easily scalable to high vector dimensions. We conduct a massive volume of both real and synthetic experiments that confirm the efficacy of SteinSense, and also provide theoretical justification based on ideas from Approximate Message Passing. Fascinatingly, we discover that SteinSense is quite robust, delivering the same quality of performance on real data, and even under substantial departures from conditions under which existing theory holds.
comment: 69 pages
Field-scale soil moisture estimated from Sentinel-1 SAR data using a knowledge-guided deep learning approach
Soil moisture (SM) estimation from active microwave data remains challenging due to the complex interactions between radar backscatter and surface characteristics. While the water cloud model (WCM) provides a semi-physical approach for understanding these interactions, its empirical component often limits performance across diverse agricultural landscapes. This research presents preliminary efforts for developing a knowledge-guided deep learning approach, which integrates WCM principles into a long short-term memory (LSTM) model, to estimate field SM using Sentinel-1 Synthetic Aperture Radar (SAR) data. Our proposed approach leverages LSTM's capacity to capture spatiotemporal dependencies while maintaining physical consistency through a modified dual-component loss function, including a WCM-based semi-physical component and a boundary condition regularisation. The proposed approach is built upon the soil backscatter coefficients isolated from the total backscatter, together with Landsat-resolution vegetation information and surface characteristics. A four-fold spatial cross-validation was performed against in-situ SM data to assess the model performance. Results showed the proposed approach reduced SM retrieval uncertainties by 0.02 m$^3$/m$^3$ and achieved correlation coefficients (R) of up to 0.64 in areas with varying vegetation cover and surface conditions, demonstrating the potential to address the over-simplification in WCM.
comment: Accepted by the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2025)
Advancing Wheat Crop Analysis: A Survey of Deep Learning Approaches Using Hyperspectral Imaging
As one of the most widely cultivated and consumed crops, wheat is essential to global food security. However, wheat production is increasingly challenged by pests, diseases, climate change, and water scarcity, threatening yields. Traditional crop monitoring methods are labor-intensive and often ineffective for early issue detection. Hyperspectral imaging (HSI) has emerged as a non-destructive and efficient technology for remote crop health assessment. However, the high dimensionality of HSI data and limited availability of labeled samples present notable challenges. In recent years, deep learning has shown great promise in addressing these challenges due to its ability to extract and analysis complex structures. Despite advancements in applying deep learning methods to HSI data for wheat crop analysis, no comprehensive survey currently exists in this field. This review addresses this gap by summarizing benchmark datasets, tracking advancements in deep learning methods, and analyzing key applications such as variety classification, disease detection, and yield estimation. It also highlights the strengths, limitations, and future opportunities in leveraging deep learning methods for HSI-based wheat crop analysis. We have listed the current state-of-the-art papers and will continue tracking updating them in the following https://github.com/fadi-07/Awesome-Wheat-HSI-DeepLearning.
CORSTITCH - A free, open source software for stitching and georeferencing underwater coral reef videos
CorStitch is an open-source software developed to automate the creation of accurate georeferenced reef mosaics from video transects obtained through Automated Rapid Reef Assessment System surveys. We utilized a Fourier-based image correlation algorithm to stitch sequential video frames, aligning them with synchronized GNSS timestamps. The resulting compressed Keyhole Markup Language files, compatible with geographic information systems such as Google Earth, enable detailed spatial analysis. Validation through comparative analysis of mosaics from two temporally distinct surveys of the same reef demonstrated the software's consistent and reliable performance.
Fast Sign Retrieval via Sub-band Convolution: An Elementary Extension of Binary Classification
To efficiently compress the sign information of images, we address a sign retrieval problem for the block-wise discrete cosine transformation (DCT): reconstruction of the signs of DCT coefficients from their amplitudes. To this end, we propose a fast sign retrieval method on the basis of binary classification machine learning. We first introduce 3D representations of the amplitudes and signs, where we pack amplitudes/signs belonging to the same frequency band into a 2D slice, referred to as the sub-band block. We then retrieve the signs from the 3D amplitudes via binary classification, where each sign is regarded as a binary label. We implement a binary classification algorithm using convolutional neural networks, which are advantageous for efficiently extracting features in the 3D amplitudes. Experimental results demonstrate that our method achieves accurate sign retrieval with an overwhelmingly low computation cost.
Enhancing the Security of Semantic Communication via Knowledge-Aided Coding and Jamming
As semantic communication (SemCom) emerges as a promising communication paradigm, ensuring the security of semantic information over open wireless channels has become crucial. Traditional encryption methods introduce considerable communication overhead, while existing learning-based secure SemCom schemes often rely on a channel capacity advantage for the legitimate receiver, which is challenging to guarantee in practice. In this paper, we propose a coding-enhanced jamming approach that eliminates the need to transmit a secret key by utilizing shared knowledge between the legitimate receiver and the transmitter. We generate private codebooks with neural network (NN)-based encoders, using them to encode data into a sequence Y1, which is then superposed with a sequence Y2 drawn from the private codebook. By optimizing the power allocation between the two sequences, the legitimate receiver can successfully decode the data, while the eavesdropper' s performance is significantly degraded, potentially to the point of random guessing. Experimental results demonstrate that our method achieves comparable security to state-of-the-art approaches while significantly improving the reconstruction performance of the legitimate receiver by more than 1 dB across varying channel signal-to-noise ratios (SNRs) and compression ratios.
MFSR-GAN: Multi-Frame Super-Resolution with Handheld Motion Modeling CVPR 2025
Smartphone cameras have become ubiquitous imaging tools, yet their small sensors and compact optics often limit spatial resolution and introduce distortions. Combining information from multiple low-resolution (LR) frames to produce a high-resolution (HR) image has been explored to overcome the inherent limitations of smartphone cameras. Despite the promise of multi-frame super-resolution (MFSR), current approaches are hindered by datasets that fail to capture the characteristic noise and motion patterns found in real-world handheld burst images. In this work, we address this gap by introducing a novel synthetic data engine that uses multi-exposure static images to synthesize LR-HR training pairs while preserving sensor-specific noise characteristics and image motion found during handheld burst photography. We also propose MFSR-GAN: a multi-scale RAW-to-RGB network for MFSR. Compared to prior approaches, MFSR-GAN emphasizes a "base frame" throughout its architecture to mitigate artifacts. Experimental results on both synthetic and real data demonstrates that MFSR-GAN trained with our synthetic engine yields sharper, more realistic reconstructions than existing methods for real-world MFSR.
comment: Accepted to NTIRE Workshop at CVPR 2025; 8 pages, 6 figures
A Deep Learning-Based Unified Framework for Red Lesions Detection on Retinal Fundus Images
Red-lesions, microaneurysms (MAs) and hemorrhages (HMs), are the early signs of diabetic retinopathy (DR). The automatic detection of MAs and HMs on retinal fundus images is a challenging task. Most of the existing methods detect either only MAs or only HMs because of the difference in their texture, sizes, and morphology. Though some methods detect both MAs and HMs, they suffer from the curse of dimensionality of shape and colors features and fail to detect all shape variations of HMs such as flame-shaped. Leveraging the progress in deep learning, we proposed a two-stream red lesions detection system dealing simultaneously with small and large red lesions. For this system, we introduced a new ROIs candidates generation method for large red lesions on fundus images; it is based on blood vessel segmentation and morphological operations, and reduces the computational complexity, and enhances the detection accuracy by generating a small number of potential candidates. For detection, we proposed a framework with two streams. We used pretrained VGGNet as a backbone model and carried out several extensive experiments to tune it for vessels segmentation and candidates generation, and finally learning the appropriate mapping, which yields better detection of the red lesions comparing with the state-of-the-art methods. The experimental results validated the effectiveness of the system in the detection of both MAs and HMs; it yields higher performance for per lesion detection; its sensitivity equals 0.8589 and good FROC score under 8 FPIs on DiaretDB1-MA reports FROC=0.7518, and with SN=0.7552 and good FROC score under 2,4and 8 FPIs on DiaretDB1-HM, and SN=0.8157 on e-ophtha with overall FROC=0.4537 and on ROCh dataset with FROC=0.3461 which is higher than the state-of-the art methods. For DR screening, the system performs well with good AUC on DiaretDB1-MA, DiaretDB1-HM, and e-ophtha datasets.
Seamless Optical Cloud Computing across Edge-Metro Network for Generative AI
The rapid advancement of generative artificial intelligence (AI) in recent years has profoundly reshaped modern lifestyles, necessitating a revolutionary architecture to support the growing demands for computational power. Cloud computing has become the driving force behind this transformation. However, it consumes significant power and faces computation security risks due to the reliance on extensive data centers and servers in the cloud. Reducing power consumption while enhancing computational scale remains persistent challenges in cloud computing. Here, we propose and experimentally demonstrate an optical cloud computing system that can be seamlessly deployed across edge-metro network. By modulating inputs and models into light, a wide range of edge nodes can directly access the optical computing center via the edge-metro network. The experimental validations show an energy efficiency of 118.6 mW/TOPs (tera operations per second), reducing energy consumption by two orders of magnitude compared to traditional electronic-based cloud computing solutions. Furthermore, it is experimentally validated that this architecture can perform various complex generative AI models through parallel computing to achieve image generation tasks.
FOOL: Addressing the Downlink Bottleneck in Satellite Computing with Neural Feature Compression
Nanosatellite constellations equipped with sensors capturing large geographic regions provide unprecedented opportunities for Earth observation. As constellation sizes increase, network contention poses a downlink bottleneck. Orbital Edge Computing (OEC) leverages limited onboard compute resources to reduce transfer costs by processing the raw captures at the source. However, current solutions have limited practicability due to reliance on crude filtering methods or over-prioritizing particular downstream tasks. This work presents FOOL, an OEC-native and task-agnostic feature compression method that preserves prediction performance. FOOL partitions high-resolution satellite imagery to maximize throughput. Further, it embeds context and leverages inter-tile dependencies to lower transfer costs with negligible overhead. While FOOL is a feature compressor, it can recover images with competitive scores on quality measures at lower bitrates. We extensively evaluate transfer cost reduction by including the peculiarity of intermittently available network connections in low earth orbit. Lastly, we test the feasibility of our system for standardized nanosatellite form factors. We demonstrate that FOOL permits downlinking over 100x the data volume without relying on prior information on the downstream tasks.
comment: Version Accepted for publication in IEEE Transactions on Mobile Computing
Segment-and-Classify: ROI-Guided Generalizable Contrast Phase Classification in CT Using XGBoost
Purpose: To automate contrast phase classification in CT using organ-specific features extracted from a widely used segmentation tool with a lightweight decision tree classifier. Materials and Methods: This retrospective study utilized three public CT datasets from separate institutions. The phase prediction model was trained on the WAW-TACE (median age: 66 [60,73]; 185 males) dataset, and externally validated on the VinDr-Multiphase (146 males; 63 females; 56 unk) and C4KC-KiTS (median age: 61 [50.68; 123 males) datasets. Contrast phase classification was performed using organ-specific features extracted by TotalSegmentator, followed by prediction using a gradient-boosted decision tree classifier. Results: On the VinDr-Multiphase dataset, the phase prediction model achieved the highest or comparable AUCs across all phases (>0.937), with superior F1-scores in the non-contrast (0.994), arterial (0.937), and delayed (0.718) phases. Statistical testing indicated significant performance differences only in the arterial and delayed phases (p<0.05). On the C4KC-KiTS dataset, the phase prediction model achieved the highest AUCs across all phases (>0.991), with superior F1-scores in arterial/venous (0.968) and delayed (0.935) phases. Statistical testing confirmed significant improvements over all baseline models in these two phases (p<0.05). Performance in the non-contrast class, however, was comparable across all models, with no statistically significant differences observed (p>0.05). Conclusion: The lightweight model demonstrated strong performance relative to all baseline models, and exhibited robust generalizability across datasets from different institutions.
RestoreGrad: Signal Restoration Using Conditional Denoising Diffusion Models with Jointly Learned Prior ICML 2025
Denoising diffusion probabilistic models (DDPMs) can be utilized for recovering a clean signal from its degraded observation(s) by conditioning the model on the degraded signal. The degraded signals are themselves contaminated versions of the clean signals; due to this correlation, they may encompass certain useful information about the target clean data distribution. However, existing adoption of the standard Gaussian as the prior distribution in turn discards such information, resulting in sub-optimal performance. In this paper, we propose to improve conditional DDPMs for signal restoration by leveraging a more informative prior that is jointly learned with the diffusion model. The proposed framework, called RestoreGrad, seamlessly integrates DDPMs into the variational autoencoder framework and exploits the correlation between the degraded and clean signals to encode a better diffusion prior. On speech and image restoration tasks, we show that RestoreGrad demonstrates faster convergence (5-10 times fewer training steps) to achieve better quality of restored signals over existing DDPM baselines, and improved robustness to using fewer sampling steps in inference time (2-2.5 times fewer), advocating the advantages of leveraging jointly learned prior for efficiency improvements in the diffusion process.
comment: Accepted by ICML 2025
Volumetric medical image segmentation through dual self-distillation in U-shaped networks
U-shaped networks and its variants have demonstrated exceptional results for medical image segmentation. In this paper, we propose a novel dual self-distillation (DSD) framework in U-shaped networks for volumetric medical image segmentation. DSD distills knowledge from the ground-truth segmentation labels to the decoder layers. Additionally, DSD also distills knowledge from the deepest decoder and encoder layer to the shallower decoder and encoder layers respectively of a single U-shaped network. DSD is a general training strategy that could be attached to the backbone architecture of any U-shaped network to further improve its segmentation performance. We attached DSD on several state-of-the-art U-shaped backbones, and extensive experiments on various public 3D medical image segmentation datasets (cardiac substructure, brain tumor and Hippocampus) demonstrated significant improvement over the same backbones without DSD. On average, after attaching DSD to the U-shaped backbones, we observed an increase of 2.82\%, 4.53\% and 1.3\% in Dice similarity score, a decrease of 7.15 mm, 6.48 mm and 0.76 mm in the Hausdorff distance, for cardiac substructure, brain tumor and Hippocampus segmentation, respectively. These improvements were achieved with negligible increase in the number of trainable parameters and training time. Our proposed DSD framework also led to significant qualitative improvements for cardiac substructure, brain tumor and Hippocampus segmentation over the U-shaped backbones. The source code is publicly available at https://github.com/soumbane/DualSelfDistillation.
comment: 28 pages, 5 figures, 7 tables, accepted at IEEE Transactions on Biomedical Engineering, 2025
Reflections on Diversity: A Real-time Virtual Mirror for Inclusive 3D Face Transformations
Real-time 3D face manipulation has significant applications in virtual reality, social media and human-computer interaction. This paper introduces a novel system, which we call Mirror of Diversity (MOD), that combines Generative Adversarial Networks (GANs) for texture manipulation and 3D Morphable Models (3DMMs) for facial geometry to achieve realistic face transformations that reflect various demographic characteristics, emphasizing the beauty of diversity and the universality of human features. As participants sit in front of a computer monitor with a camera positioned above, their facial characteristics are captured in real time and can further alter their digital face reconstruction with transformations reflecting different demographic characteristics, such as gender and ethnicity (e.g., a person from Africa, Asia, Europe). Another feature of our system, which we call Collective Face, generates an averaged face representation from multiple participants' facial data. A comprehensive evaluation protocol is implemented to assess the realism and demographic accuracy of the transformations. Qualitative feedback is gathered through participant questionnaires, which include comparisons of MOD transformations with similar filters on platforms like Snapchat and TikTok. Additionally, quantitative analysis is conducted using a pretrained Convolutional Neural Network that predicts gender and ethnicity, to validate the accuracy of demographic transformations.
Multimedia
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
comment: 10 pages, 10 figures, 3 tables
Computation and Language
T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
Steering Large Language Models with Register Analysis for Arbitrary Style Transfer
Large Language Models (LLMs) have demonstrated strong capabilities in rewriting text across various styles. However, effectively leveraging this ability for example-based arbitrary style transfer, where an input text is rewritten to match the style of a given exemplar, remains an open challenge. A key question is how to describe the style of the exemplar to guide LLMs toward high-quality rewrites. In this work, we propose a prompting method based on register analysis to guide LLMs to perform this task. Empirical evaluations across multiple style transfer tasks show that our prompting approach enhances style transfer strength while preserving meaning more effectively than existing prompting strategies.
Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directions
Memory is a fundamental component of AI systems, underpinning large language models (LLMs) based agents. While prior surveys have focused on memory applications with LLMs, they often overlook the atomic operations that underlie memory dynamics. In this survey, we first categorize memory representations into parametric, contextual structured, and contextual unstructured and then introduce six fundamental memory operations: Consolidation, Updating, Indexing, Forgetting, Retrieval, and Compression. We systematically map these operations to the most relevant research topics across long-term, long-context, parametric modification, and multi-source memory. By reframing memory systems through the lens of atomic operations and representation types, this survey provides a structured and dynamic perspective on research, benchmark datasets, and tools related to memory in AI, clarifying the functional interplay in LLMs based agents while outlining promising directions for future research\footnote{The paper list, datasets, methods and tools are available at \href{https://github.com/Elvin-Yiming-Du/Survey_Memory_in_AI}{https://github.com/Elvin-Yiming-Du/Survey\_Memory\_in\_AI}.}.
DeepCritic: Deliberate Critique with Large Language Models
As Large Language Models (LLMs) are rapidly evolving, providing accurate feedback and scalable oversight on their outputs becomes an urgent and critical problem. Leveraging LLMs as critique models to achieve automated supervision is a promising solution. In this work, we focus on studying and enhancing the math critique ability of LLMs. Current LLM critics provide critiques that are too shallow and superficial on each step, leading to low judgment accuracy and struggling to offer sufficient feedback for the LLM generator to correct mistakes. To tackle this issue, we propose a novel and effective two-stage framework to develop LLM critics that are capable of deliberately critiquing on each reasoning step of math solutions. In the first stage, we utilize Qwen2.5-72B-Instruct to generate 4.5K long-form critiques as seed data for supervised fine-tuning. Each seed critique consists of deliberate step-wise critiques that includes multi-perspective verifications as well as in-depth critiques of initial critiques for each reasoning step. Then, we perform reinforcement learning on the fine-tuned model with either existing human-labeled data from PRM800K or our automatically annotated data obtained via Monte Carlo sampling-based correctness estimation, to further incentivize its critique ability. Our developed critique model built on Qwen2.5-7B-Instruct not only significantly outperforms existing LLM critics (including the same-sized DeepSeek-R1-distill models and GPT-4o) on various error identification benchmarks, but also more effectively helps the LLM generator refine erroneous steps through more detailed feedback.
comment: Work in progress. Data and models are available at https://github.com/RUCBM/DeepCritic
On the generalization of language models from in-context learning and finetuning: a controlled study
Large language models exhibit exciting capabilities, yet can show surprisingly narrow generalization from finetuning -- from failing to generalize to simple reversals of relations they are trained on, to missing logical deductions that can be made from trained information. These failures to generalize from fine-tuning can hinder practical application of these models. However, language models' in-context learning shows different inductive biases, and can generalize better in some of these cases. Here, we explore these differences in generalization between in-context- and fine-tuning-based learning. To do so, we constructed several novel datasets to evaluate and improve models' ability to generalize from finetuning data. The datasets are constructed to isolate the knowledge in the dataset from that in pretraining, to create clean tests of generalization. We expose pretrained large models to controlled subsets of the information in these datasets -- either in context, or through fine-tuning -- and evaluate their performance on test sets that require various types of generalization. We find overall that in data-matched settings, in-context learning can generalize more flexibly than fine-tuning (though we also find some qualifications of prior findings, such as cases when fine-tuning can generalize to reversals embedded in a larger structure of knowledge). We build on these findings to propose a method to enable improved generalization from fine-tuning: adding in-context inferences to finetuning data. We show that this method improves generalization across various splits of our datasets and other benchmarks. Our results have implications for understanding the inductive biases of different modes of learning in language models, and practically improving their performance.
Large Language Models Understanding: an Inherent Ambiguity Barrier
A lively ongoing debate is taking place, since the extraordinary emergence of Large Language Models (LLMs) with regards to their capability to understand the world and capture the meaning of the dialogues in which they are involved. Arguments and counter-arguments have been proposed based upon thought experiments, anecdotal conversations between LLMs and humans, statistical linguistic analysis, philosophical considerations, and more. In this brief paper we present a counter-argument based upon a thought experiment and semi-formal considerations leading to an inherent ambiguity barrier which prevents LLMs from having any understanding of what their amazingly fluent dialogues mean.
comment: submitted to NEURAL COMPUTATION
Investigating Task Arithmetic for Zero-Shot Information Retrieval SIGIR '25
Large Language Models (LLMs) have shown impressive zero-shot performance across a variety of Natural Language Processing tasks, including document re-ranking. However, their effectiveness degrades on unseen tasks and domains, largely due to shifts in vocabulary and word distributions. In this paper, we investigate Task Arithmetic, a technique that combines the weights of LLMs pre-trained on different tasks or domains via simple mathematical operations, such as addition or subtraction, to adapt retrieval models without requiring additional fine-tuning. Our method is able to synthesize diverse tasks and domain knowledge into a single model, enabling effective zero-shot adaptation in different retrieval contexts. Extensive experiments on publicly available scientific, biomedical, and multilingual datasets show that our method improves state-of-the-art re-ranking performance by up to 18% in NDCG@10 and 15% in P@10. In addition to these empirical gains, our analysis provides insights into the strengths and limitations of Task Arithmetic as a practical strategy for zero-shot learning and model adaptation. We make our code publicly available at https://github.com/DetectiveMB/Task-Arithmetic-for-ZS-IR.
comment: Accepted in SIGIR '25
The Illusion of Role Separation: Hidden Shortcuts in LLM Role Learning (and How to Fix Them)
Large language models (LLMs) that integrate multiple input roles (e.g., system instructions, user queries, external tool outputs) are increasingly prevalent in practice. Ensuring that the model accurately distinguishes messages from each role -- a concept we call \emph{role separation} -- is crucial for consistent multi-role behavior. Although recent work often targets state-of-the-art prompt injection defenses, it remains unclear whether such methods truly teach LLMs to differentiate roles or merely memorize known triggers. In this paper, we examine \emph{role-separation learning}: the process of teaching LLMs to robustly distinguish system and user tokens. Through a \emph{simple, controlled experimental framework}, we find that fine-tuned models often rely on two proxies for role identification: (1) task type exploitation, and (2) proximity to begin-of-text. Although data augmentation can partially mitigate these shortcuts, it generally leads to iterative patching rather than a deeper fix. To address this, we propose reinforcing \emph{invariant signals} that mark role boundaries by adjusting token-wise cues in the model's input encoding. In particular, manipulating position IDs helps the model learn clearer distinctions and reduces reliance on superficial proxies. By focusing on this mechanism-centered perspective, our work illuminates how LLMs can more reliably maintain consistent multi-role behavior without merely memorizing known prompts or triggers.
FineScope : Precision Pruning for Domain-Specialized Large Language Models Using SAE-Guided Self-Data Cultivation
Training large language models (LLMs) from scratch requires significant computational resources, driving interest in developing smaller, domain-specific LLMs that maintain both efficiency and strong task performance. Medium-sized models such as LLaMA, llama} have served as starting points for domain-specific adaptation, but they often suffer from accuracy degradation when tested on specialized datasets. We introduce FineScope, a framework for deriving compact, domain-optimized LLMs from larger pretrained models. FineScope leverages the Sparse Autoencoder (SAE) framework, inspired by its ability to produce interpretable feature representations, to extract domain-specific subsets from large datasets. We apply structured pruning with domain-specific constraints, ensuring that the resulting pruned models retain essential knowledge for the target domain. To further enhance performance, these pruned models undergo self-data distillation, leveraging SAE-curated datasets to restore key domain-specific information lost during pruning. Extensive experiments and ablation studies demonstrate that FineScope achieves highly competitive performance, outperforming several large-scale state-of-the-art LLMs in domain-specific tasks. Additionally, our results show that FineScope enables pruned models to regain a substantial portion of their original performance when fine-tuned with SAE-curated datasets. Furthermore, applying these datasets to fine-tune pretrained LLMs without pruning also improves their domain-specific accuracy, highlighting the robustness of our approach. The code will be released.
Block Circulant Adapter for Large Language Models IJCAI-2025
Fine-tuning large language models (LLMs) is difficult due to their huge model size. Recent Fourier domain-based methods show potential for reducing fine-tuning costs. We propose a block circulant matrix-based fine-tuning method with a stable training heuristic to leverage the properties of circulant matrices and one-dimensional Fourier transforms to reduce storage and computation costs. Experiments show that our method uses $14\times$ less number of parameters than VeRA, $16\times$ smaller than LoRA and $32\times$ less FLOPs than FourierFT, while maintaining close or better task performance. Our approach presents a promising way in frequency domain to fine-tune large models on downstream tasks.
comment: to appear in Proceedings of the 2025 International Joint Conference on Artificial Intelligence (IJCAI-2025)
FreqKV: Frequency Domain Key-Value Compression for Efficient Context Window Extension
Extending the context window in large language models (LLMs) is essential for applications involving long-form content generation. However, the linear increase in key-value (KV) cache memory requirements and the quadratic complexity of self-attention with respect to sequence length present significant challenges during fine-tuning and inference. Existing methods suffer from performance degradation when extending to longer contexts. In this work, we introduce a novel context extension method that optimizes both fine-tuning and inference efficiency. Our method exploits a key observation: in the frequency domain, the energy distribution of the KV cache is primarily concentrated in low-frequency components. By filtering out the high-frequency components, the KV cache can be effectively compressed with minimal information loss. Building on this insight, we propose an efficient compression technique, FreqKV, that iteratively compresses the increasing KV cache to a fixed size in the frequency domain, applicable to both fine-tuning and inference. FreqKV introduces no additional parameters or architectural modifications. With minimal fine-tuning, LLMs can learn to leverage the limited cache that is compressed in the frequency domain and extend the context window efficiently. Experiments on various long context language modeling and understanding tasks demonstrate the efficiency and efficacy of the proposed method.
Triggering Hallucinations in LLMs: A Quantitative Study of Prompt-Induced Hallucination in Large Language Models
Hallucinations in large language models (LLMs) present a growing challenge across real-world applications, from healthcare to law, where factual reliability is essential. Despite advances in alignment and instruction tuning, LLMs can still generate outputs that are fluent yet fundamentally untrue. Understanding the cognitive dynamics that underlie these hallucinations remains an open problem. In this study, we propose a prompt-based framework to systematically trigger and quantify hallucination: a Hallucination-Inducing Prompt (HIP), which synthetically fuses semantically distant concepts (e.g., periodic table of elements and tarot divination) in a misleading way, and a Hallucination Quantifying Prompt (HQP), which scores the plausibility, confidence, and coherence of the output. Controlled experiments across multiple LLMs revealed that HIPs consistently produced less coherent and more hallucinated responses than their null-fusion controls. These effects varied across models, with reasoning-oriented LLMs showing distinct profiles from general-purpose ones. Our framework provides a reproducible testbed for studying hallucination vulnerability, and opens the door to developing safer, more introspective LLMs that can detect and self-regulate the onset of conceptual instability.
100 Days After DeepSeek-R1: A Survey on Replication Studies and More Directions for Reasoning Language Models
The recent development of reasoning language models (RLMs) represents a novel evolution in large language models. In particular, the recent release of DeepSeek-R1 has generated widespread social impact and sparked enthusiasm in the research community for exploring the explicit reasoning paradigm of language models. However, the implementation details of the released models have not been fully open-sourced by DeepSeek, including DeepSeek-R1-Zero, DeepSeek-R1, and the distilled small models. As a result, many replication studies have emerged aiming to reproduce the strong performance achieved by DeepSeek-R1, reaching comparable performance through similar training procedures and fully open-source data resources. These works have investigated feasible strategies for supervised fine-tuning (SFT) and reinforcement learning from verifiable rewards (RLVR), focusing on data preparation and method design, yielding various valuable insights. In this report, we provide a summary of recent replication studies to inspire future research. We primarily focus on SFT and RLVR as two main directions, introducing the details for data construction, method design and training procedure of current replication studies. Moreover, we conclude key findings from the implementation details and experimental results reported by these studies, anticipating to inspire future research. We also discuss additional techniques of enhancing RLMs, highlighting the potential of expanding the application scope of these models, and discussing the challenges in development. By this survey, we aim to help researchers and developers of RLMs stay updated with the latest advancements, and seek to inspire new ideas to further enhance RLMs.
HalluMix: A Task-Agnostic, Multi-Domain Benchmark for Real-World Hallucination Detection
As large language models (LLMs) are increasingly deployed in high-stakes domains, detecting hallucinated content$\unicode{x2013}$text that is not grounded in supporting evidence$\unicode{x2013}$has become a critical challenge. Existing benchmarks for hallucination detection are often synthetically generated, narrowly focused on extractive question answering, and fail to capture the complexity of real-world scenarios involving multi-document contexts and full-sentence outputs. We introduce the HalluMix Benchmark, a diverse, task-agnostic dataset that includes examples from a range of domains and formats. Using this benchmark, we evaluate seven hallucination detection systems$\unicode{x2013}$both open and closed source$\unicode{x2013}$highlighting differences in performance across tasks, document lengths, and input representations. Our analysis highlights substantial performance disparities between short and long contexts, with critical implications for real-world Retrieval Augmented Generation (RAG) implementations. Quotient Detections achieves the best overall performance, with an accuracy of 0.82 and an F1 score of 0.84.
Computational Identification of Regulatory Statements in EU Legislation
Identifying regulatory statements in legislation is useful for developing metrics to measure the regulatory density and strictness of legislation. A computational method is valuable for scaling the identification of such statements from a growing body of EU legislation, constituting approximately 180,000 published legal acts between 1952 and 2023. Past work on extraction of these statements varies in the permissiveness of their definitions for what constitutes a regulatory statement. In this work, we provide a specific definition for our purposes based on the institutional grammar tool. We develop and compare two contrasting approaches for automatically identifying such statements in EU legislation, one based on dependency parsing, and the other on a transformer-based machine learning model. We found both approaches performed similarly well with accuracies of 80% and 84% respectively and a K alpha of 0.58. The high accuracies and not exceedingly high agreement suggests potential for combining strengths of both approaches.
comment: 11 pages, 6 figures
Red Teaming Large Language Models for Healthcare
We present the design process and findings of the pre-conference workshop at the Machine Learning for Healthcare Conference (2024) entitled Red Teaming Large Language Models for Healthcare, which took place on August 15, 2024. Conference participants, comprising a mix of computational and clinical expertise, attempted to discover vulnerabilities -- realistic clinical prompts for which a large language model (LLM) outputs a response that could cause clinical harm. Red-teaming with clinicians enables the identification of LLM vulnerabilities that may not be recognised by LLM developers lacking clinical expertise. We report the vulnerabilities found, categorise them, and present the results of a replication study assessing the vulnerabilities across all LLMs provided.
Toward Automated Regulatory Decision-Making: Trustworthy Medical Device Risk Classification with Multimodal Transformers and Self-Training
Accurate classification of medical device risk levels is essential for regulatory oversight and clinical safety. We present a Transformer-based multimodal framework that integrates textual descriptions and visual information to predict device regulatory classification. The model incorporates a cross-attention mechanism to capture intermodal dependencies and employs a self-training strategy for improved generalization under limited supervision. Experiments on a real-world regulatory dataset demonstrate that our approach achieves up to 90.4% accuracy and 97.9% AUROC, significantly outperforming text-only (77.2%) and image-only (54.8%) baselines. Compared to standard multimodal fusion, the self-training mechanism improved SVM performance by 3.3 percentage points in accuracy (from 87.1% to 90.4%) and 1.4 points in macro-F1, suggesting that pseudo-labeling can effectively enhance generalization under limited supervision. Ablation studies further confirm the complementary benefits of both cross-modal attention and self-training.
CSE-SFP: Enabling Unsupervised Sentence Representation Learning via a Single Forward Pass SIGIR 2025
As a fundamental task in Information Retrieval and Computational Linguistics, sentence representation has profound implications for a wide range of practical applications such as text clustering, content analysis, question-answering systems, and web search. Recent advances in pre-trained language models (PLMs) have driven remarkable progress in this field, particularly through unsupervised embedding derivation methods centered on discriminative PLMs like BERT. However, due to time and computational constraints, few efforts have attempted to integrate unsupervised sentence representation with generative PLMs, which typically possess much larger parameter sizes. Given that state-of-the-art models in both academia and industry are predominantly based on generative architectures, there is a pressing need for an efficient unsupervised text representation framework tailored to decoder-only PLMs. To address this concern, we propose CSE-SFP, an innovative method that exploits the structural characteristics of generative models. Compared to existing strategies, CSE-SFP requires only a single forward pass to perform effective unsupervised contrastive learning. Rigorous experimentation demonstrates that CSE-SFP not only produces higher-quality embeddings but also significantly reduces both training time and memory consumption. Furthermore, we introduce two ratio metrics that jointly assess alignment and uniformity, thereby providing a more robust means for evaluating the semantic spatial properties of encoding models.
comment: Accepted by SIGIR 2025 (Full)
KoACD: The First Korean Adolescent Dataset for Cognitive Distortion Analysis
Cognitive distortion refers to negative thinking patterns that can lead to mental health issues like depression and anxiety in adolescents. Previous studies using natural language processing (NLP) have focused mainly on small-scale adult datasets, with limited research on adolescents. This study introduces KoACD, the first large-scale dataset of cognitive distortions in Korean adolescents, containing 108,717 instances. We applied a multi-Large Language Model (LLM) negotiation method to refine distortion classification and generate synthetic data using two approaches: cognitive clarification for textual clarity and cognitive balancing for diverse distortion representation. Validation through LLMs and expert evaluations showed that while LLMs classified distortions with explicit markers, they struggled with context-dependent reasoning, where human evaluators demonstrated higher accuracy. KoACD aims to enhance future research on cognitive distortion detection.
R&B: Domain Regrouping and Data Mixture Balancing for Efficient Foundation Model Training
Data mixing strategies have successfully reduced the costs involved in training language models. While promising, such methods suffer from two flaws. First, they rely on predetermined data domains (e.g., data sources, task types), which may fail to capture critical semantic nuances, leaving performance on the table. Second, these methods scale with the number of domains in a computationally prohibitive way. We address these challenges via R&B, a framework that re-partitions training data based on semantic similarity (Regroup) to create finer-grained domains, and efficiently optimizes the data composition (Balance) by leveraging a Gram matrix induced by domain gradients obtained throughout training. Unlike prior works, it removes the need for additional compute to obtain evaluation information such as losses or gradients. We analyze this technique under standard regularity conditions and provide theoretical insights that justify R&B's effectiveness compared to non-adaptive mixing approaches. Empirically, we demonstrate the effectiveness of R&B on five diverse datasets ranging from natural language to reasoning and multimodal tasks. With as little as 0.01% additional compute overhead, R&B matches or exceeds the performance of state-of-the-art data mixing strategies.
Enhancing AI-Driven Education: Integrating Cognitive Frameworks, Linguistic Feedback Analysis, and Ethical Considerations for Improved Content Generation IJCNN 2025
Artificial intelligence (AI) is rapidly transforming education, presenting unprecedented opportunities for personalized learning and streamlined content creation. However, realizing the full potential of AI in educational settings necessitates careful consideration of the quality, cognitive depth, and ethical implications of AI-generated materials. This paper synthesizes insights from four related studies to propose a comprehensive framework for enhancing AI-driven educational tools. We integrate cognitive assessment frameworks (Bloom's Taxonomy and SOLO Taxonomy), linguistic analysis of AI-generated feedback, and ethical design principles to guide the development of effective and responsible AI tools. We outline a structured three-phase approach encompassing cognitive alignment, linguistic feedback integration, and ethical safeguards. The practical application of this framework is demonstrated through its integration into OneClickQuiz, an AI-powered Moodle plugin for quiz generation. This work contributes a comprehensive and actionable guide for educators, researchers, and developers aiming to harness AI's potential while upholding pedagogical and ethical standards in educational content generation.
comment: This article will be presented in IJCNN 2025 "AI Innovations for Education: Transforming Teaching and Learning through Cutting-Edge Technologies" workshop
T2VPhysBench: A First-Principles Benchmark for Physical Consistency in Text-to-Video Generation
Text-to-video generative models have made significant strides in recent years, producing high-quality videos that excel in both aesthetic appeal and accurate instruction following, and have become central to digital art creation and user engagement online. Yet, despite these advancements, their ability to respect fundamental physical laws remains largely untested: many outputs still violate basic constraints such as rigid-body collisions, energy conservation, and gravitational dynamics, resulting in unrealistic or even misleading content. Existing physical-evaluation benchmarks typically rely on automatic, pixel-level metrics applied to simplistic, life-scenario prompts, and thus overlook both human judgment and first-principles physics. To fill this gap, we introduce \textbf{T2VPhysBench}, a first-principled benchmark that systematically evaluates whether state-of-the-art text-to-video systems, both open-source and commercial, obey twelve core physical laws including Newtonian mechanics, conservation principles, and phenomenological effects. Our benchmark employs a rigorous human evaluation protocol and includes three targeted studies: (1) an overall compliance assessment showing that all models score below 0.60 on average in each law category; (2) a prompt-hint ablation revealing that even detailed, law-specific hints fail to remedy physics violations; and (3) a counterfactual robustness test demonstrating that models often generate videos that explicitly break physical rules when so instructed. The results expose persistent limitations in current architectures and offer concrete insights for guiding future research toward truly physics-aware video generation.
Mixture of Sparse Attention: Content-Based Learnable Sparse Attention via Expert-Choice Routing
Recent advances in large language models highlighted the excessive quadratic cost of self-attention. Despite the significant research efforts, subquadratic attention methods still suffer from inferior performance in practice. We hypothesize that dynamic, learned content-based sparsity can lead to more efficient attention mechanisms. We present Mixture of Sparse Attention (MoSA), a novel approach inspired by Mixture of Experts (MoE) with expert choice routing. MoSA dynamically selects tokens for each attention head, allowing arbitrary sparse attention patterns. By selecting $k$ tokens from a sequence of length $T$, MoSA reduces the computational complexity of each attention head from $O(T^2)$ to $O(k^2 + T)$. This enables using more heads within the same computational budget, allowing higher specialization. We show that among the tested sparse attention variants, MoSA is the only one that can outperform the dense baseline, sometimes with up to 27% better perplexity for an identical compute budget. MoSA can also reduce the resource usage compared to dense self-attention. Despite using torch implementation without an optimized kernel, perplexity-matched MoSA models are simultaneously faster in wall-clock time, require less memory for training, and drastically reduce the size of the KV-cache compared to the dense transformer baselines.
Consistency in Language Models: Current Landscape, Challenges, and Future Directions
The hallmark of effective language use lies in consistency -- expressing similar meanings in similar contexts and avoiding contradictions. While human communication naturally demonstrates this principle, state-of-the-art language models struggle to maintain reliable consistency across different scenarios. This paper examines the landscape of consistency research in AI language systems, exploring both formal consistency (including logical rule adherence) and informal consistency (such as moral and factual coherence). We analyze current approaches to measure aspects of consistency, identify critical research gaps in standardization of definitions, multilingual assessment, and methods to improve consistency. Our findings point to an urgent need for robust benchmarks to measure and interdisciplinary approaches to ensure consistency in the application of language models on domain-specific tasks while preserving the utility and adaptability.
EnronQA: Towards Personalized RAG over Private Documents
Retrieval Augmented Generation (RAG) has become one of the most popular methods for bringing knowledge-intensive context to large language models (LLM) because of its ability to bring local context at inference time without the cost or data leakage risks associated with fine-tuning. A clear separation of private information from the LLM training has made RAG the basis for many enterprise LLM workloads as it allows the company to augment LLM's understanding using customers' private documents. Despite its popularity for private documents in enterprise deployments, current RAG benchmarks for validating and optimizing RAG pipelines draw their corpora from public data such as Wikipedia or generic web pages and offer little to no personal context. Seeking to empower more personal and private RAG we release the EnronQA benchmark, a dataset of 103,638 emails with 528,304 question-answer pairs across 150 different user inboxes. EnronQA enables better benchmarking of RAG pipelines over private data and allows for experimentation on the introduction of personalized retrieval settings over realistic data. Finally, we use EnronQA to explore the tradeoff in memorization and retrieval when reasoning over private documents.
comment: 26 pages, 4 figures, 6 tables
Enriching the Korean Learner Corpus with Multi-reference Annotations and Rubric-Based Scoring
Despite growing global interest in Korean language education, there remains a significant lack of learner corpora tailored to Korean L2 writing. To address this gap, we enhance the KoLLA Korean learner corpus by adding multiple grammatical error correction (GEC) references, thereby enabling more nuanced and flexible evaluation of GEC systems, and reflects the variability of human language. Additionally, we enrich the corpus with rubric-based scores aligned with guidelines from the Korean National Language Institute, capturing grammatical accuracy, coherence, and lexical diversity. These enhancements make KoLLA a robust and standardized resource for research in Korean L2 education, supporting advancements in language learning, assessment, and automated error correction.
Self-Generated In-Context Examples Improve LLM Agents for Sequential Decision-Making Tasks
Many methods for improving Large Language Model (LLM) agents for sequential decision-making tasks depend on task-specific knowledge engineering--such as prompt tuning, curated in-context examples, or customized observation and action spaces. Using these approaches, agent performance improves with the quality or amount of knowledge engineering invested. Instead, we investigate how LLM agents can automatically improve their performance by learning in-context from their own successful experiences on similar tasks. Rather than relying on task-specific knowledge engineering, we focus on constructing and refining a database of self-generated examples. We demonstrate that even a naive accumulation of successful trajectories across training tasks boosts test performance on three benchmarks: ALFWorld (73% to 89%), Wordcraft (55% to 64%), and InterCode-SQL (75% to 79%)--matching the performance the initial agent achieves if allowed two to three attempts per task. We then introduce two extensions: (1) database-level selection through population-based training to identify high-performing example collections, and (2) exemplar-level selection that retains individual trajectories based on their empirical utility as in-context examples. These extensions further enhance performance, achieving 91% on ALFWorld--matching more complex approaches that employ task-specific components and prompts. Our results demonstrate that automatic trajectory database construction offers a compelling alternative to labor-intensive knowledge engineering.
NeMo-Inspector: A Visualization Tool for LLM Generation Analysis NAACL 2025
Adapting Large Language Models (LLMs) to novel tasks and enhancing their overall capabilities often requires large, high-quality training datasets. Synthetic data, generated at scale, serves a valuable alternative when real-world data is scarce or difficult to obtain. However, ensuring the quality of synthetic datasets is challenging, as developers must manually inspect and refine numerous samples to identify errors and areas for improvement. This process is time-consuming and requires specialized tools. We introduce NeMo-Inspector, an open-source tool designed to simplify the analysis of synthetic datasets with integrated inference capabilities. We demonstrate its effectiveness through two real-world cases. Analysis and cleaning of the synthetically generated GSM-Plus dataset with NeMo-Inspector led to a significant decrease in low-quality samples from 46.99% to 19.51%. The tool also helped identify and correct generation errors in OpenMath models, improving accuracy by 1.92% on the MATH dataset and by 4.17% on the GSM8K dataset for a Meta-Llama-3-8B model fine-tuned on synthetic data generated from Nemotron-4-340B.
comment: Presented at the NAACL 2025 conference
SmallPlan: Leverage Small Language Models for Sequential Path Planning with Simulation-Powered, LLM-Guided Distillation
Efficient path planning in robotics, particularly within large-scale, dynamic environments, remains a significant hurdle. While Large Language Models (LLMs) offer strong reasoning capabilities, their high computational cost and limited adaptability in dynamic scenarios hinder real-time deployment on edge devices. We present SmallPlan -- a novel framework leveraging LLMs as teacher models to train lightweight Small Language Models (SLMs) for high-level path planning tasks. In SmallPlan, the SLMs provide optimal action sequences to navigate across scene graphs that compactly represent full-scaled 3D scenes. The SLMs are trained in a simulation-powered, interleaved manner with LLM-guided supervised fine-tuning (SFT) and reinforcement learning (RL). This strategy not only enables SLMs to successfully complete navigation tasks but also makes them aware of important factors like travel distance and number of trials. Through experiments, we demonstrate that the fine-tuned SLMs perform competitively with larger models like GPT-4o on sequential path planning, without suffering from hallucination and overfitting. SmallPlan is resource-efficient, making it well-suited for edge-device deployment and advancing practical autonomous robotics.
comment: Paper is under review
Knowledge-augmented Pre-trained Language Models for Biomedical Relation Extraction
Automatic relationship extraction (RE) from biomedical literature is critical for managing the vast amount of scientific knowledge produced each year. In recent years, utilizing pre-trained language models (PLMs) has become the prevalent approach in RE. Several studies report improved performance when incorporating additional context information while fine-tuning PLMs for RE. However, variations in the PLMs applied, the databases used for augmentation, hyper-parameter optimization, and evaluation methods complicate direct comparisons between studies and raise questions about the generalizability of these findings. Our study addresses this research gap by evaluating PLMs enhanced with contextual information on five datasets spanning four relation scenarios within a consistent evaluation framework. We evaluate three baseline PLMs and first conduct extensive hyperparameter optimization. After selecting the top-performing model, we enhance it with additional data, including textual entity descriptions, relational information from knowledge graphs, and molecular structure encodings. Our findings illustrate the importance of i) the choice of the underlying language model and ii) a comprehensive hyperparameter optimization for achieving strong extraction performance. Although inclusion of context information yield only minor overall improvements, an ablation study reveals substantial benefits for smaller PLMs when such external data was included during fine-tuning.
A Mathematical Philosophy of Explanations in Mechanistic Interpretability -- The Strange Science Part I.i
Mechanistic Interpretability aims to understand neural networks through causal explanations. We argue for the Explanatory View Hypothesis: that Mechanistic Interpretability research is a principled approach to understanding models because neural networks contain implicit explanations which can be extracted and understood. We hence show that Explanatory Faithfulness, an assessment of how well an explanation fits a model, is well-defined. We propose a definition of Mechanistic Interpretability (MI) as the practice of producing Model-level, Ontic, Causal-Mechanistic, and Falsifiable explanations of neural networks, allowing us to distinguish MI from other interpretability paradigms and detail MI's inherent limits. We formulate the Principle of Explanatory Optimism, a conjecture which we argue is a necessary precondition for the success of Mechanistic Interpretability.
comment: 15 pages (plus appendices), 2 figures
Reasoning Capabilities and Invariability of Large Language Models
Large Language Models (LLMs) have shown remarkable capabilities in manipulating natural language across multiple applications, but their ability to handle simple reasoning tasks is often questioned. In this work, we aim to provide a comprehensive analysis of LLMs' reasoning competence, specifically focusing on their prompt dependency. In particular, we introduce a new benchmark dataset with a series of simple reasoning questions demanding shallow logical reasoning. Aligned with cognitive psychology standards, the questions are confined to a basic domain revolving around geometric figures, ensuring that responses are independent of any pre-existing intuition about the world and rely solely on deduction. An empirical analysis involving zero-shot and few-shot prompting across 24 LLMs of different sizes reveals that, while LLMs with over 70 billion parameters perform better in the zero-shot setting, there is still a large room for improvement. An additional test with chain-of-thought prompting over 22 LLMs shows that this additional prompt can aid or damage the performance of models, depending on whether the rationale is required before or after the answer.
comment: Accepted for publication in the Proceedings of the 23rd IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2024)
Multi-Modal Language Models as Text-to-Image Model Evaluators
The steady improvements of text-to-image (T2I) generative models lead to slow deprecation of automatic evaluation benchmarks that rely on static datasets, motivating researchers to seek alternative ways to evaluate the T2I progress. In this paper, we explore the potential of multi-modal large language models (MLLMs) as evaluator agents that interact with a T2I model, with the objective of assessing prompt-generation consistency and image aesthetics. We present Multimodal Text-to-Image Eval (MT2IE), an evaluation framework that iteratively generates prompts for evaluation, scores generated images and matches T2I evaluation of existing benchmarks with a fraction of the prompts used in existing static benchmarks. Moreover, we show that MT2IE's prompt-generation consistency scores have higher correlation with human judgment than scores previously introduced in the literature. MT2IE generates prompts that are efficient at probing T2I model performance, producing the same relative T2I model rankings as existing benchmarks while using only 1/80th the number of prompts for evaluation.
A Survey on Large Language Model based Human-Agent Systems
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-System-Papers.
comment: Paper lists and resources are available at \url{https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-System-Papers}
How Real Are Synthetic Therapy Conversations? Evaluating Fidelity in Prolonged Exposure Dialogues
The growing adoption of synthetic data in healthcare is driven by privacy concerns, limited access to real-world data, and the high cost of annotation. This work explores the use of synthetic Prolonged Exposure (PE) therapeutic conversations for Post-Traumatic Stress Disorder (PTSD) as a scalable alternative for training and evaluating clinical models. We systematically compare real and synthetic dialogues using linguistic, structural, and protocol-specific metrics, including turn-taking patterns and treatment fidelity. We also introduce and evaluate PE-specific metrics derived from linguistic analysis and semantic modeling, offering a novel framework for assessing clinical fidelity beyond surface fluency. Our findings show that although synthetic data holds promise for mitigating data scarcity and protecting patient privacy, it can struggle to capture the subtle dynamics of therapeutic interactions. Synthetic therapy dialogues closely match structural features of real-world conversations (e.g., speaker switch ratio: 0.98 vs. 0.99); however, they may not adequately reflect key fidelity markers (e.g., distress monitoring). We highlight gaps in existing evaluation frameworks and advocate for fidelity-aware metrics that go beyond surface fluency to uncover clinically significant failures. Our findings clarify where synthetic data can effectively complement real-world datasets -- and where critical limitations remain.
comment: 11 pages, 5 tables
KnowRA: Knowledge Retrieval Augmented Method for Document-level Relation Extraction with Comprehensive Reasoning Abilities IJCAI 2025
Document-level relation extraction (Doc-RE) aims to extract relations between entities across multiple sentences. Therefore, Doc-RE requires more comprehensive reasoning abilities like humans, involving complex cross-sentence interactions between entities, contexts, and external general knowledge, compared to the sentence-level RE. However, most existing Doc-RE methods focus on optimizing single reasoning ability, but lack the ability to utilize external knowledge for comprehensive reasoning on long documents. To solve these problems, a knowledge retrieval augmented method, named KnowRA, was proposed with comprehensive reasoning to autonomously determine whether to accept external knowledge to assist DocRE. Firstly, we constructed a document graph for semantic encoding and integrated the co-reference resolution model to augment the co-reference reasoning ability. Then, we expanded the document graph into a document knowledge graph by retrieving the external knowledge base for common-sense reasoning and a novel knowledge filtration method was presented to filter out irrelevant knowledge. Finally, we proposed the axis attention mechanism to build direct and indirect associations with intermediary entities for achieving cross-sentence logical reasoning. Extensive experiments conducted on two datasets verified the effectiveness of our method compared to the state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/KnowRA.
comment: This work has been accepted by IJCAI 2025 (CCF A)
All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
comment: A Multilingual Multimodal cultural benchmark for 100 languages
Challenges and Future Directions of Data-Centric AI Alignment ICML 2025
As AI systems become increasingly capable and influential, ensuring their alignment with human values, preferences, and goals has become a critical research focus. Current alignment methods primarily focus on designing algorithms and loss functions but often underestimate the crucial role of data. This paper advocates for a shift towards data-centric AI alignment, emphasizing the need to enhance the quality and representativeness of data used in aligning AI systems. In this position paper, we highlight key challenges associated with both human-based and AI-based feedback within the data-centric alignment framework. Through qualitative analysis, we identify multiple sources of unreliability in human feedback, as well as problems related to temporal drift, context dependence, and AI-based feedback failing to capture human values due to inherent model limitations. We propose future research directions, including improved feedback collection practices, robust data-cleaning methodologies, and rigorous feedback verification processes. We call for future research into these critical directions to ensure, addressing gaps that persist in understanding and improving data-centric alignment practices.
comment: ICML 2025
Automated Review Generation Method Based on Large Language Models
Literature research, vital for scientific work, faces the challenge of surging information volumes exceeding researchers' processing capabilities. We present an automated review generation method based on large language models (LLMs) to overcome efficiency bottlenecks and reduce cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields without requiring users' domain knowledge. Applied to propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics, with extended analysis of 1041 articles providing insights into catalysts' properties. Through multi-layered quality control, we effectively mitigated LLMs' hallucinations, with expert verification confirming accuracy and citation integrity while demonstrating hallucination risks reduced to below 0.5\% with 95\% confidence. Released Windows application enables one-click review generation, enhancing research productivity and literature recommendation efficiency while setting the stage for broader scientific explorations.
comment: Code: https://github.com/TJU-ECAT-AI/AutomaticReviewGeneration Data: https://github.com/TJU-ECAT-AI/AutomaticReviewGenerationData This research has been invited for a Short Oral presentation at the 18th ICC - International Congress on Catalysis, taking place in Lyon, France from July 14-19, 2024 Published at https://doi.org/10.1093/nsr/nwaf169 for newer edition
Waking Up an AI: A Quantitative Framework for Prompt-Induced Phase Transition in Large Language Models
What underlies intuitive human thinking? One approach to this question is to compare the cognitive dynamics of humans and large language models (LLMs). However, such a comparison requires a method to quantitatively analyze AI cognitive behavior under controlled conditions. While anecdotal observations suggest that certain prompts can dramatically change LLM behavior, these observations have remained largely qualitative. Here, we propose a two-part framework to investigate this phenomenon: a Transition-Inducing Prompt (TIP) that triggers a rapid shift in LLM responsiveness, and a Transition Quantifying Prompt (TQP) that evaluates this change using a separate LLM. Through controlled experiments, we examined how LLMs react to prompts embedding two semantically distant concepts (e.g., mathematical aperiodicity and traditional crafts)-either fused together or presented separately-by changing their linguistic quality and affective tone. Whereas humans tend to experience heightened engagement when such concepts are meaningfully blended producing a novel concept-a form of conceptual fusion-current LLMs showed no significant difference in responsiveness between semantically fused and non-fused prompts. This suggests that LLMs may not yet replicate the conceptual integration processes seen in human intuition. Our method enables fine-grained, reproducible measurement of cognitive responsiveness, and may help illuminate key differences in how intuition and conceptual leaps emerge in artificial versus human minds.
UoR-NCL at SemEval-2025 Task 1: Using Generative LLMs and CLIP Models for Multilingual Multimodal Idiomaticity Representation
SemEval-2025 Task 1 focuses on ranking images based on their alignment with a given nominal compound that may carry idiomatic meaning in both English and Brazilian Portuguese. To address this challenge, this work uses generative large language models (LLMs) and multilingual CLIP models to enhance idiomatic compound representations. LLMs generate idiomatic meanings for potentially idiomatic compounds, enriching their semantic interpretation. These meanings are then encoded using multilingual CLIP models, serving as representations for image ranking. Contrastive learning and data augmentation techniques are applied to fine-tune these embeddings for improved performance. Experimental results show that multimodal representations extracted through this method outperformed those based solely on the original nominal compounds. The fine-tuning approach shows promising outcomes but is less effective than using embeddings without fine-tuning. The source code used in this paper is available at https://github.com/tongwu17/SemEval-2025-Task1-UoR-NCL.
Efficiency and Effectiveness of LLM-Based Summarization of Evidence in Crowdsourced Fact-Checking
Evaluating the truthfulness of online content is critical for combating misinformation. This study examines the efficiency and effectiveness of crowdsourced truthfulness assessments through a comparative analysis of two approaches: one involving full-length webpages as evidence for each claim, and another using summaries for each evidence document generated with a large language model. Using an A/B testing setting, we engage a diverse pool of participants tasked with evaluating the truthfulness of statements under these conditions. Our analysis explores both the quality of assessments and the behavioral patterns of participants. The results reveal that relying on summarized evidence offers comparable accuracy and error metrics to the Standard modality while significantly improving efficiency. Workers in the Summary setting complete a significantly higher number of assessments, reducing task duration and costs. Additionally, the Summary modality maximizes internal agreement and maintains consistent reliance on and perceived usefulness of evidence, demonstrating its potential to streamline large-scale truthfulness evaluations.
comment: 19 pages; 7 figures; 5 tables
(Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts ACL
Literary translation remains one of the most challenging frontiers in machine translation due to the complexity of capturing figurative language, cultural nuances, and unique stylistic elements. In this work, we introduce TransAgents, a novel multi-agent framework that simulates the roles and collaborative practices of a human translation company, including a CEO, Senior Editor, Junior Editor, Translator, Localization Specialist, and Proofreader. The translation process is divided into two stages: a preparation stage where the team is assembled and comprehensive translation guidelines are drafted, and an execution stage that involves sequential translation, localization, proofreading, and a final quality check. Furthermore, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP), which evaluates translations based solely on target language quality and cultural appropriateness, and Bilingual LLM Preference (BLP), which leverages large language models like GPT-4} for direct text comparison. Although TransAgents achieves lower d-BLEU scores, due to the limited diversity of references, its translations are significantly better than those of other baselines and are preferred by both human evaluators and LLMs over traditional human references and GPT-4} translations. Our findings highlight the potential of multi-agent collaboration in enhancing translation quality, particularly for longer texts.
comment: To appear at TACL
EvoPrompt: Connecting LLMs with Evolutionary Algorithms Yields Powerful Prompt Optimizers ICLR
Large Language Models (LLMs) excel in various tasks, but they rely on carefully crafted prompts that often demand substantial human effort. To automate this process, in this paper, we propose a novel framework for discrete prompt optimization, called EvoPrompt, which borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence. To enable EAs to work on discrete prompts, which are natural language expressions that need to be coherent and human-readable, we connect LLMs with EAs. This approach allows us to simultaneously leverage the powerful language processing capabilities of LLMs and the efficient optimization performance of EAs. Specifically, abstaining from any gradients or parameters, EvoPrompt starts from a population of prompts and iteratively generates new prompts with LLMs based on the evolutionary operators, improving the population based on the development set. We optimize prompts for both closed- and open-source LLMs including GPT-3.5 and Alpaca, on 31 datasets covering language understanding, generation tasks, as well as BIG-Bench Hard (BBH) tasks. EvoPrompt significantly outperforms human-engineered prompts and existing methods for automatic prompt generation (e.g., up to 25% on BBH). Furthermore, EvoPrompt demonstrates that connecting LLMs with EAs creates synergies, which could inspire further research on the combination of LLMs and conventional algorithms.
comment: International Conference on Learning Representations (ICLR) 2024
LegalDuet: Learning Fine-grained Representations for Legal Judgment Prediction via a Dual-View Contrastive Learning
Legal Judgment Prediction (LJP) is a fundamental task of legal artificial intelligence, aiming to automatically predict the judgment outcomes of legal cases. Existing LJP models primarily focus on identifying legal triggers within criminal fact descriptions by contrastively training language models. However, these LJP models overlook the importance of learning to effectively distinguish subtle differences among judgments, which is crucial for producing more accurate predictions. In this paper, we propose LegalDuet, which continuously pretrains language models to learn a more tailored embedding space for representing legal cases. Specifically, LegalDuet designs a dual-view mechanism to continuously pretrain language models: 1) Law Case Clustering retrieves similar cases as hard negatives and employs contrastive training to differentiate among confusing cases; 2) Legal Decision Matching aims to identify legal clues within criminal fact descriptions to align them with the chain of reasoning that contains the correct legal decision. Our experiments on the CAIL2018 dataset demonstrate the effectiveness of LegalDuet. Further analysis reveals that LegalDuet improves the ability of pretrained language models to distinguish confusing criminal charges by reducing prediction uncertainty and enhancing the separability of criminal charges. The experiments demonstrate that LegalDuet produces a more concentrated and distinguishable embedding space, effectively aligning criminal facts with corresponding legal decisions. The code is available at https://github.com/NEUIR/LegalDuet.
HSI: Head-Specific Intervention Can Induce Misaligned AI Coordination in Large Language Models
Robust alignment guardrails for large language models are becoming increasingly important with their widespread application. In contrast to previous studies, we demonstrate that inference-time activation interventions can bypass safety alignments and effectively steer model generations towards harmful AI coordination for Llama 2. Our method applies fine-grained interventions at specific model subcomponents, particularly attention heads, using a simple binary choice probing strategy. These interventions then generalise to the open-ended generation setting effectively circumventing safety guardrails. We show that probing single attention heads is more effective than intervening on full layers and intervening on only four attention heads is comparable to supervised fine-tuning. We further show that only a few example completions are needed to compute effective steering directions, which is an advantage over classical fine-tuning. Our findings highlight the shortcomings of current alignment techniques. In addition, our results suggest that, at the attention head level, activations encode fine-grained linearly separable behaviors. Practically, the approach offers a straightforward methodology to steer large language model behaviour, which could be extended to diverse domains beyond safety requiring fine-grained control over the model output. The code and datasets for this study can be found on https://github.com/PaulDrm/targeted_intervention.
comment: Large Language Models (LLMs), Interference-time activation shifting, Steerability, Explainability, AI alignment, Interpretability
Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources and incorporating them into the context. While it improves reliability by providing factual texts, it significantly increases inference costs as context length grows and introduces challenging issue of RAG hallucination, primarily caused by the lack of corresponding parametric knowledge in LLMs. An efficient solution is to enhance the knowledge of LLMs at test-time. Parametric RAG (PRAG) addresses this by embedding document into LLMs parameters to perform test-time knowledge enhancement, effectively reducing inference costs through offline training. However, its high training and storage costs, along with limited generalization ability, significantly restrict its practical adoption. To address these challenges, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages a lightweight parameter translator model to efficiently convert documents into parametric knowledge. DyPRAG not only reduces inference, training, and storage costs but also dynamically generates parametric knowledge, seamlessly enhancing the knowledge of LLMs and resolving knowledge conflicts in a plug-and-play manner at test-time. Extensive experiments on multiple datasets demonstrate the effectiveness and generalization capabilities of DyPRAG, offering a powerful and practical RAG paradigm which enables superior knowledge fusion and mitigates RAG hallucination in real-world applications. Our code is available at https://github.com/Trae1ounG/DyPRAG.
comment: preprint. Code is available at https://github.com/Trae1ounG/DyPRAG
Domain-Specific Translation with Open-Source Large Language Models: Resource-Oriented Analysis
In this work, we compare the domain-specific translation performance of open-source autoregressive decoder-only large language models (LLMs) with task-oriented machine translation (MT) models. Our experiments focus on the medical domain and cover four language directions with varied resource availability: English-to-French, English-to-Portuguese, English-to-Swahili, and Swahili-to-English. Despite recent advancements, LLMs demonstrate a significant quality gap in specialized translation compared to multilingual encoder-decoder MT models such as NLLB-200. Our results indicate that NLLB-200 3.3B outperforms all evaluated LLMs in the 7-8B parameter range across three out of the four language directions. While fine-tuning improves the performance of LLMs such as Mistral and Llama, these models still underperform compared to fine-tuned NLLB-200 3.3B models. Our findings highlight the ongoing need for specialized MT models to achieve high-quality domain-specific translation, especially in medium-resource and low-resource settings. Moreover, the superior performance of larger LLMs over their 8B variants suggests potential value in pre-training domain-specific medium-sized language models, employing targeted data selection and knowledge distillation approaches to enhance both quality and efficiency in specialized translation tasks.
BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese
As large language models (LLMs) evolve into tool-using agents, the ability to browse the web in real-time has become a critical yardstick for measuring their reasoning and retrieval competence. Existing benchmarks such as BrowseComp concentrate on English and overlook the linguistic, infrastructural, and censorship-related complexities of other major information ecosystems -- most notably Chinese. To address this gap, we introduce BrowseComp-ZH, a high-difficulty benchmark purpose-built to comprehensively evaluate LLM agents on the Chinese web. BrowseComp-ZH consists of 289 multi-hop questions spanning 11 diverse domains. Each question is reverse-engineered from a short, objective, and easily verifiable answer (e.g., a date, number, or proper noun). A two-stage quality control protocol is applied to strive for high question difficulty and answer uniqueness. We benchmark over 20 state-of-the-art language models and agentic search systems on our proposed BrowseComp-ZH. Despite their strong conversational and retrieval capabilities, most models struggle severely: a large number achieve accuracy rates below 10%, and only a handful exceed 20%. Even the best-performing system, OpenAI's DeepResearch, reaches just 42.9%. These results demonstrate the considerable difficulty of BrowseComp-ZH, where success demands not only effective retrieval strategies, but also sophisticated reasoning and information reconciliation -- capabilities that current models still struggle to master. Our dataset, construction guidelines, and benchmark results have been publicly released at https://github.com/PALIN2018/BrowseComp-ZH.
comment: Under Review
Folded Context Condensation in Path Integral Formalism for Infinite Context Transformers
In this work, we present a generalized formulation of the Transformer algorithm by reinterpreting its core mechanisms within the framework of Path Integral formalism. In this perspective, the attention mechanism is recast as a process that integrates all possible transition paths leading to future token states, with temporal evolution governed by the Feed-Forward Network. By systematically mapping each component of the Transformer to its counterpart in the Path Integral formulation, we obtain a more compact and efficient representation, in which the contextual information of a sequence is condensed into memory-like segments. These segments are recurrently processed across Transformer layers, enabling more effective long-term information retention. We validate the effectiveness of this approach through the Passkey retrieval task and a summarization task, demonstrating that the proposed method preserves historical information while exhibiting memory usage that scales linearly with sequence length. This contrasts with the non-linear memory growth typically observed in standard attention mechanisms. We expect that this quantum-inspired generalization of the Transformer architecture will open new avenues for enhancing both the efficiency and expressiveness of future Transformer models.
comment: 11 pages, 12 figures
A Comprehensive Survey on Integrating Large Language Models with Knowledge-Based Methods
The rapid development of artificial intelligence has led to marked progress in the field. One interesting direction for research is whether Large Language Models (LLMs) can be integrated with structured knowledge-based systems. This approach aims to combine the generative language understanding of LLMs and the precise knowledge representation systems by which they are integrated. This article surveys the relationship between LLMs and knowledge bases, looks at how they can be applied in practice, and discusses related technical, operational, and ethical challenges. Utilizing a comprehensive examination of the literature, the study both identifies important issues and assesses existing solutions. It demonstrates the merits of incorporating generative AI into structured knowledge-base systems concerning data contextualization, model accuracy, and utilization of knowledge resources. The findings give a full list of the current situation of research, point out the main gaps, and propose helpful paths to take. These insights contribute to advancing AI technologies and support their practical deployment across various sectors.
TaeBench: Improving Quality of Toxic Adversarial Examples NAACL 2025
Toxicity text detectors can be vulnerable to adversarial examples - small perturbations to input text that fool the systems into wrong detection. Existing attack algorithms are time-consuming and often produce invalid or ambiguous adversarial examples, making them less useful for evaluating or improving real-world toxicity content moderators. This paper proposes an annotation pipeline for quality control of generated toxic adversarial examples (TAE). We design model-based automated annotation and human-based quality verification to assess the quality requirements of TAE. Successful TAE should fool a target toxicity model into making benign predictions, be grammatically reasonable, appear natural like human-generated text, and exhibit semantic toxicity. When applying these requirements to more than 20 state-of-the-art (SOTA) TAE attack recipes, we find many invalid samples from a total of 940k raw TAE attack generations. We then utilize the proposed pipeline to filter and curate a high-quality TAE dataset we call TaeBench (of size 264k). Empirically, we demonstrate that TaeBench can effectively transfer-attack SOTA toxicity content moderation models and services. Our experiments also show that TaeBench with adversarial training achieve significant improvements of the robustness of two toxicity detectors.
comment: Accepted for publication in NAACL 2025. The official version will be available in the ACL Anthology
Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models
The composition of pre-training datasets for large language models (LLMs) remains largely undisclosed, hindering transparency and efforts to optimize data quality, a critical driver of model performance. Current data selection methods, such as natural language quality assessments, diversity-based filters, and classifier-based approaches, are limited by single-dimensional evaluation or redundancy-focused strategies. To address these gaps, we propose PRRC to evaluate data quality across Professionalism, Readability, Reasoning, and Cleanliness. We further introduce Meta-rater, a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings. Meta-rater employs proxy models to train a regression model that predicts validation loss, enabling the identification of optimal combinations of quality scores. Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with scalable benefits observed in 3.3B models trained on 100B tokens. Additionally, we release the annotated SlimPajama-627B dataset, labeled across 25 quality metrics (including PRRC), to advance research in data-centric LLM development. Our work establishes that holistic, multi-dimensional quality integration significantly outperforms conventional single-dimension approaches, offering a scalable paradigm for enhancing pre-training efficiency and model capability.
comment: Under review
Generating Traffic Scenarios via In-Context Learning to Learn Better Motion Planner AAAI 2025
Motion planning is a crucial component in autonomous driving. State-of-the-art motion planners are trained on meticulously curated datasets, which are not only expensive to annotate but also insufficient in capturing rarely seen critical scenarios. Failing to account for such scenarios poses a significant risk to motion planners and may lead to incidents during testing. An intuitive solution is to manually compose such scenarios by programming and executing a simulator (e.g., CARLA). However, this approach incurs substantial human costs. Motivated by this, we propose an inexpensive method for generating diverse critical traffic scenarios to train more robust motion planners. First, we represent traffic scenarios as scripts, which are then used by the simulator to generate traffic scenarios. Next, we develop a method that accepts user-specified text descriptions, which a Large Language Model translates into scripts using in-context learning. The output scripts are sent to the simulator that produces the corresponding traffic scenarios. As our method can generate abundant safety-critical traffic scenarios, we use them as synthetic training data for motion planners. To demonstrate the value of generated scenarios, we train existing motion planners on our synthetic data, real-world datasets, and a combination of both. Our experiments show that motion planners trained with our data significantly outperform those trained solely on real-world data, showing the usefulness of our synthetic data and the effectiveness of our data generation method. Our source code is available at https://ezharjan.github.io/AutoSceneGen.
comment: We are excited to announce that this paper has been accepted for oral presentation at the AAAI 2025 Main Conference. We are grateful for the insightful feedback from the reviewers and look forward to contributing to the discussions at AAAI
BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly, with new models being released at an accelerated pace. However, current evaluations of LLMs in clinical contexts remain limited. Most existing benchmarks rely on medical exam-style questions or PubMed-derived text, failing to capture the complexity of real-world electronic health record (EHR) data. Others focus narrowly on specific application scenarios, limiting their generalizability across broader clinical use. To address this gap, we present BRIDGE, a comprehensive multilingual benchmark comprising 87 tasks sourced from real-world clinical data sources across nine languages. We systematically evaluated 52 state-of-the-art LLMs (including DeepSeek-R1, GPT-4o, Gemini, and Llama 4) under various inference strategies. With a total of 13,572 experiments, our results reveal substantial performance variation across model sizes, languages, natural language processing tasks, and clinical specialties. Notably, we demonstrate that open-source LLMs can achieve performance comparable to proprietary models, while medically fine-tuned LLMs based on older architectures often underperform versus updated general-purpose models. The BRIDGE and its corresponding leaderboard serve as a foundational resource and a unique reference for the development and evaluation of new LLMs in real-world clinical text understanding. The BRIDGE leaderboard: https://huggingface.co/spaces/YLab-Open/BRIDGE-Medical-Leaderboard
QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving
Quantization can accelerate large language model (LLM) inference. Going beyond INT8 quantization, the research community is actively exploring even lower precision, such as INT4. Nonetheless, state-of-the-art INT4 quantization techniques only accelerate low-batch, edge LLM inference, failing to deliver performance gains in large-batch, cloud-based LLM serving. We uncover a critical issue: existing INT4 quantization methods suffer from significant runtime overhead (20-90%) when dequantizing either weights or partial sums on GPUs. To address this challenge, we introduce QoQ, a W4A8KV4 quantization algorithm with 4-bit weight, 8-bit activation, and 4-bit KV cache. QoQ stands for quattuor-octo-quattuor, which represents 4-8-4 in Latin. QoQ is implemented by the QServe inference library that achieves measured speedup. The key insight driving QServe is that the efficiency of LLM serving on GPUs is critically influenced by operations on low-throughput CUDA cores. Building upon this insight, in QoQ algorithm, we introduce progressive quantization that can allow low dequantization overhead in W4A8 GEMM. Additionally, we develop SmoothAttention to effectively mitigate the accuracy degradation incurred by 4-bit KV quantization. In the QServe system, we perform compute-aware weight reordering and take advantage of register-level parallelism to reduce dequantization latency. We also make fused attention memory-bound, harnessing the performance gain brought by KV4 quantization. As a result, QServe improves the maximum achievable serving throughput of Llama-3-8B by 1.2x on A100, 1.4x on L40S; and Qwen1.5-72B by 2.4x on A100, 3.5x on L40S, compared to TensorRT-LLM. Remarkably, QServe on L40S GPU can achieve even higher throughput than TensorRT-LLM on A100. Thus, QServe effectively reduces the dollar cost of LLM serving by 3x. Code is available at https://github.com/mit-han-lab/omniserve.
comment: The first three authors contribute equally to this project and are listed in the alphabetical order. Yujun Lin leads the quantization algorithm, Haotian Tang and Shang Yang lead the GPU kernels and the serving system. Code is available at https://github.com/mit-han-lab/omniserve
"Reasoning" with Rhetoric: On the Style-Evidence Tradeoff in LLM-Generated Counter-Arguments
Large language models (LLMs) play a key role in generating evidence-based and stylistic counter-arguments, yet their effectiveness in real-world applications has been underexplored. Previous research often neglects the balance between evidentiality and style, which are crucial for persuasive arguments. To address this, we evaluated the effectiveness of stylized evidence-based counter-argument generation in Counterfire, a new dataset of 38,000 counter-arguments generated by revising counter-arguments to Reddit's ChangeMyView community to follow different discursive styles. We evaluated generic and stylized counter-arguments from basic and fine-tuned models such as GPT-3.5, PaLM-2, and Koala-13B, as well as newer models (GPT-4o, Claude Haiku, LLaMA-3.1) focusing on rhetorical quality and persuasiveness. Our findings reveal that humans prefer stylized counter-arguments over the original outputs, with GPT-3.5 Turbo performing well, though still not reaching human standards of rhetorical quality nor persuasiveness. Additionally, our work created a novel argument triplets dataset for studying style control, with human preference labels that provide insights into the tradeoffs between evidence integration and argument quality.
comment: 22 pages, 9 figures, 13 tables
Caught in the Web of Words: Do LLMs Fall for Spin in Medical Literature?
Medical research faces well-documented challenges in translating novel treatments into clinical practice. Publishing incentives encourage researchers to present "positive" findings, even when empirical results are equivocal. Consequently, it is well-documented that authors often spin study results, especially in article abstracts. Such spin can influence clinician interpretation of evidence and may affect patient care decisions. In this study, we ask whether the interpretation of trial results offered by Large Language Models (LLMs) is similarly affected by spin. This is important since LLMs are increasingly being used to trawl through and synthesize published medical evidence. We evaluated 22 LLMs and found that they are across the board more susceptible to spin than humans. They might also propagate spin into their outputs: We find evidence, e.g., that LLMs implicitly incorporate spin into plain language summaries that they generate. We also find, however, that LLMs are generally capable of recognizing spin, and can be prompted in a way to mitigate spin's impact on LLM outputs.
comment: 22 pages, 12 figures, 4 tables
Accuracy is Not Agreement: Expert-Aligned Evaluation of Crash Narrative Classification Models
This study investigates the relationship between deep learning (DL) model accuracy and expert agreement in classifying crash narratives. We evaluate five DL models -- including BERT variants, USE, and a zero-shot classifier -- against expert labels and narratives, and extend the analysis to four large language models (LLMs): GPT-4, LLaMA 3, Qwen, and Claude. Our findings reveal an inverse relationship: models with higher technical accuracy often show lower agreement with human experts, while LLMs demonstrate stronger expert alignment despite lower accuracy. We use Cohen's Kappa and Principal Component Analysis (PCA) to quantify and visualize model-expert agreement, and employ SHAP analysis to explain misclassifications. Results show that expert-aligned models rely more on contextual and temporal cues than location-specific keywords. These findings suggest that accuracy alone is insufficient for safety-critical NLP tasks. We argue for incorporating expert agreement into model evaluation frameworks and highlight the potential of LLMs as interpretable tools in crash analysis pipelines.
Activation Steering in Neural Theorem Provers
Large Language Models (LLMs) have shown promise in proving formal theorems using proof assistants like Lean. However, current state of the art language models struggles to predict next step in proofs leading practitioners to use different sampling techniques to improve LLMs capabilities. We observe that the LLM is capable of predicting the correct tactic; however, it faces challenges in ranking it appropriately within the set of candidate tactics, affecting the overall selection process. To overcome this hurdle, we use activation steering to guide LLMs responses to improve the generations at the time of inference. Our results suggest that activation steering offers a promising lightweight alternative to specialized fine-tuning for enhancing theorem proving capabilities in LLMs, particularly valuable in resource-constrained environments.
comment: incorrect explanation for a concept, need to revise and update!
CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing
Large language models have achieved remarkable success in various tasks but suffer from high computational costs during inference, limiting their deployment in resource-constrained applications. To address this issue, we propose a novel Collaborative Inference with Token-lEvel Routing (CITER) framework that enables efficient collaboration between small and large language models (SLMs \& LLMs) through a token-level routing strategy. Specifically, CITER routes non-critical tokens to an SLM for efficiency and routes critical tokens to an LLM for generalization quality. We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation. This allows the router to learn to predict token-level routing scores and make routing decisions based on both the current token and the future impact of its decisions. To further accelerate the reward evaluation process, we introduce a shortcut which significantly reduces the costs of the reward estimation and improving the practicality of our approach. Extensive experiments on five benchmark datasets demonstrate that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications. Our data and code are available at https://github.com/aiming-lab/CITER.
Do Vision & Language Decoders use Images and Text equally? How Self-consistent are their Explanations?
Vision and language model (VLM) decoders are currently the best-performing architectures on multimodal tasks. Next to answers, they are able to produce natural language explanations, either in post-hoc or CoT settings. However, it is not clear to what extent they are using the input vision and text modalities when generating answers or explanations. In this work, we investigate if VLMs rely on their input modalities differently when they produce explanations as opposed to answers. We also evaluate the self-consistency of VLM decoders in both post-hoc and CoT explanation settings, by extending existing unimodal tests and measures to VLM decoders. We find that most tested VLMs are less self-consistent than LLMs. Text contributions in all tested VL decoders are more important than image contributions in all examined tasks. However, when comparing explanation generation to answer generation, the contributions of images are significantly stronger for generating explanations compared to answers. This difference is even larger in CoT compared to post-hoc explanations. Lastly, we provide an up-to-date benchmarking of state-of-the-art VL decoders on the VALSE benchmark, which before was restricted to VL encoders. We find that the tested VL decoders still struggle with most phenomena tested by VALSE.
comment: 30 pages, 8 figures, 11 tables
When Every Token Counts: Optimal Segmentation for Low-Resource Language Models COLING 2025
Traditional greedy tokenization methods have been a critical step in Natural Language Processing (NLP), influencing how text is converted into tokens and directly impacting model performance. While subword tokenizers like Byte-Pair Encoding (BPE) are widely used, questions remain about their optimality across model scales and languages. In this work, we demonstrate through extensive experiments that an optimal BPE configuration significantly reduces token count compared to greedy segmentation, yielding improvements in token-saving percentages and performance benefits, particularly for smaller models. We evaluate tokenization performance across various intrinsic and extrinsic tasks, including generation and classification. Our findings suggest that compression-optimized tokenization strategies could provide substantial advantages for multilingual and low-resource language applications, highlighting a promising direction for further research and inclusive NLP.
comment: LoResLM @ COLING 2025. Project page at https://vikr-182.github.io/loreslm/
Human-Computer Interaction
Can LLMs Help Improve Analogical Reasoning For Strategic Decisions? Experimental Evidence from Humans and GPT-4
This study investigates whether large language models, specifically GPT4, can match human capabilities in analogical reasoning within strategic decision making contexts. Using a novel experimental design involving source to target matching, we find that GPT4 achieves high recall by retrieving all plausible analogies but suffers from low precision, frequently applying incorrect analogies based on superficial similarities. In contrast, human participants exhibit high precision but low recall, selecting fewer analogies yet with stronger causal alignment. These findings advance theory by identifying matching, the evaluative phase of analogical reasoning, as a distinct step that requires accurate causal mapping beyond simple retrieval. While current LLMs are proficient in generating candidate analogies, humans maintain a comparative advantage in recognizing deep structural similarities across domains. Error analysis reveals that AI errors arise from surface level matching, whereas human errors stem from misinterpretations of causal structure. Taken together, the results suggest a productive division of labor in AI assisted organizational decision making where LLMs may serve as broad analogy generators, while humans act as critical evaluators, applying the most contextually appropriate analogies to strategic problems.
Data Therapist: Eliciting Domain Knowledge from Subject Matter Experts Using Large Language Models IEEE VIS2025
Effective data visualization requires not only technical proficiency but also a deep understanding of the domain-specific context in which data exists. This context often includes tacit knowledge about data provenance, quality, and intended use, which is rarely explicit in the dataset itself. We present the Data Therapist, a web-based tool that helps domain experts externalize this implicit knowledge through a mixed-initiative process combining iterative Q&A with interactive annotation. Powered by a large language model, the system analyzes user-supplied datasets, prompts users with targeted questions, and allows annotation at varying levels of granularity. The resulting structured knowledge base can inform both human and automated visualization design. We evaluated the tool in a qualitative study involving expert pairs from Molecular Biology, Accounting, Political Science, and Usable Security. The study revealed recurring patterns in how experts reason about their data and highlights areas where AI support can improve visualization design.
comment: Submitted to IEEE VIS2025
Co-Designing a Knowledge Graph Navigation Interface: A Participatory Approach
Navigating and visualizing multilayered knowledge graphs remains a challenging, unresolved problem in information systems design. Building on our earlier study, which engaged end users in both the design and population of a domain-specific knowledge graph, we now focus on translating their insights into actionable interface guidelines. In this paper, we synthesize recommendations drawn from a participatory workshop with doctoral students. We then demonstrate how these recommendations inform the design of a prototype interface. Finally, we found that a participatory iterative design approach can help designers in decision making, leading to interfaces that are both innovative and user-centric. By combining user-driven requirements with proven visualization techniques, this paper presents a coherent framework for guiding future development of knowledge-graph navigation tools.
Inattentional Blindness with Augmented Reality HUDS: An On-road Study
As the integration of augmented reality (AR) technology in head-up displays (HUDs) becomes more prevalent in vehicles, it is crucial to understand how to design and evaluate AR interfaces to ensure safety. With new AR displays capable of rendering images with larger field of views and at varying depths, the visual and cognitive separation between graphical and real-world visual stimuli will be increasingly more difficult to quantify as will drivers' ability to efficiently allocate visual attention between the two sets of stimuli. In this study, we present a user study that serves as a crucial first step in gaining insight into inattentional blindness while using AR in surface transportation, where understanding is currently limited. Our primary goal is to investigate how the visual demand of AR tasks influences drivers' ability to detect stimuli, and whether the nature of the stimuli itself plays a role in this effect. To address these questions, we designed an on-road user study aimed at producing a more realistic and ecologically valid understanding of the phenomenon. Our results show that drivers' ability to timely detect stimuli in the environment decreased as the AR task visual demand increased demonstrated by both detection performance and inattentional blindness metrics. Further, inattentional blindness caused by AR displays appears to be more prevalent within drivers' central field of view. We conclude by discussing implications towards a safety-centric evaluation framework for AR HUDs.
Beyond the Mirror: Personal Analytics through Visual Juxtaposition with Other People's Data IEEE VIS2025
An individual's data can reveal facets of behavior and identity, but its interpretation is context dependent. We can easily identify various self-tracking applications that help people reflect on their lives. However, self-tracking confined to one person's data source may fall short in terms of objectiveness, and insights coming from various perspectives. To address this, we examine how those interpretations about a person's data can be augmented when the data are juxtaposed with that of others using anonymized online calendar logs from a schedule management app. We develop CALTREND, a visual analytics system that compares an individuals anonymized online schedule logs with using those from other people. Using CALTREND as a probe, we conduct a study with two domain experts, one in information technology and one in Korean herbal medicine. We report our observations on how comparative views help enrich the characterization of an individual based on the experts' comments. We find that juxtaposing personal data with others' can potentially lead to diverse interpretations of one dataset shaped by domain-specific mental models.
comment: Submitted to IEEE VIS2025 Short Paper
Should AI Mimic People? Understanding AI-Supported Writing Technology Among Black Users
AI-supported writing technologies (AISWT) that provide grammatical suggestions, autocomplete sentences, or generate and rewrite text are now a regular feature integrated into many people's workflows. However, little is known about how people perceive the suggestions these tools provide. In this paper, we investigate how Black American users perceive AISWT, motivated by prior findings in natural language processing that highlight how the underlying large language models can contain racial biases. Using interviews and observational user studies with 13 Black American users of AISWT, we found a strong tradeoff between the perceived benefits of using AISWT to enhance their writing style and feeling like "it wasn't built for us". Specifically, participants reported AISWT's failure to recognize commonly used names and expressions in African American Vernacular English, experiencing its corrections as hurtful and alienating and fearing it might further minoritize their culture. We end with a reflection on the tension between AISWT that fail to include Black American culture and language, and AISWT that attempt to mimic it, with attention to accuracy, authenticity, and the production of social difference.
How Real Are Synthetic Therapy Conversations? Evaluating Fidelity in Prolonged Exposure Dialogues
The growing adoption of synthetic data in healthcare is driven by privacy concerns, limited access to real-world data, and the high cost of annotation. This work explores the use of synthetic Prolonged Exposure (PE) therapeutic conversations for Post-Traumatic Stress Disorder (PTSD) as a scalable alternative for training and evaluating clinical models. We systematically compare real and synthetic dialogues using linguistic, structural, and protocol-specific metrics, including turn-taking patterns and treatment fidelity. We also introduce and evaluate PE-specific metrics derived from linguistic analysis and semantic modeling, offering a novel framework for assessing clinical fidelity beyond surface fluency. Our findings show that although synthetic data holds promise for mitigating data scarcity and protecting patient privacy, it can struggle to capture the subtle dynamics of therapeutic interactions. Synthetic therapy dialogues closely match structural features of real-world conversations (e.g., speaker switch ratio: 0.98 vs. 0.99); however, they may not adequately reflect key fidelity markers (e.g., distress monitoring). We highlight gaps in existing evaluation frameworks and advocate for fidelity-aware metrics that go beyond surface fluency to uncover clinically significant failures. Our findings clarify where synthetic data can effectively complement real-world datasets -- and where critical limitations remain.
comment: 11 pages, 5 tables
Coping with Uncertainty in UX Design Practice: Practitioner Strategies and Judgment
The complexity of UX design practice extends beyond ill-structured design problems to include uncertainties shaped by shifting stakeholder priorities, team dynamics, limited resources, and implementation constraints. While prior research in related fields has addressed uncertainty in design more broadly, the specific character of uncertainty in UX practice remains underexplored. This study examines how UX practitioners experience and respond to uncertainty in real-world projects, drawing on a multi-week diary study and follow-up interviews with ten designers. We identify a range of practitioner strategies-including adaptive framing, negotiation, and judgment-that allow designers to move forward amid ambiguity. Our findings highlight the central role of design judgment in navigating uncertainty, including emergent forms such as temporal and sacrificial judgment, and extend prior understandings by showing how UX practitioners engage uncertainty as a persistent, situated feature of practice.
comment: 11 pages, In Creativity and Cognition (C&C '25), June 23--25, 2025, Virtual, United Kingdom
Narrative Review of Emotional Expression Support in XR: Psychophysiology of Speech-to-Text Interfaces
This narrative review examines recent advancements, limitations, and research gaps in integrating emotional expression into speech-to-text (STT) interfaces within extended reality (XR) environments. Drawing from 37 peer-reviewed studies published between 2020 and 2024, we synthesized literature across multiple domains, including affective computing, psychophysiology, captioning innovation, and immersive human-computer interaction. Thematic categories include communication enhancement technologies for Deaf and Hard of Hearing (DHH) users, emotive captioning strategies, visual and affective augmentation in AR/VR, speech emotion recognition, and the development of empathic systems. Despite the growing accessibility of real-time STT tools, such systems largely fail to convey affective nuance, limiting the richness of communication for DHH users and other caption consumers. This review highlights emerging approaches such as animated captions, emojilization, color-coded overlays, and avatar-based emotion visualization, but finds a persistent gap in real-time emotion-aware captioning within immersive XR contexts. We identify key research opportunities at the intersection of accessibility, XR, and emotional expression, and propose future directions for the development of affect-responsive, user-centered captioning interfaces.
comment: Removed a slight repetition in the conclusion
Advancing Face-to-Face Emotion Communication: A Multimodal Dataset (AFFEC)
Emotion recognition has the potential to play a pivotal role in enhancing human-computer interaction by enabling systems to accurately interpret and respond to human affect. Yet, capturing emotions in face-to-face contexts remains challenging due to subtle nonverbal cues, variations in personal traits, and the real-time dynamics of genuine interactions. Existing emotion recognition datasets often rely on limited modalities or controlled conditions, thereby missing the richness and variability found in real-world scenarios. In this work, we introduce Advancing Face-to-Face Emotion Communication (AFFEC), a multimodal dataset designed to address these gaps. AFFEC encompasses 84 simulated emotional dialogues across six distinct emotions, recorded from 73 participants over more than 5,000 trials and annotated with more than 20,000 labels. It integrates electroencephalography (EEG), eye-tracking, galvanic skin response (GSR), facial videos, and Big Five personality assessments. Crucially, AFFEC explicitly distinguishes between felt emotions (the participant's internal affect) and perceived emotions (the observer's interpretation of the stimulus). Baseline analyses spanning unimodal features and straightforward multimodal fusion demonstrate that even minimal processing yields classification performance significantly above chance, especially for arousal. Incorporating personality traits further improves predictions of felt emotions, highlighting the importance of individual differences. By bridging controlled experimentation with more realistic face-to-face stimuli, AFFEC offers a unique resource for researchers aiming to develop context-sensitive, adaptive, and personalized emotion recognition models.
A new sociology of humans and machines
From fake social media accounts and generative artificial intelligence chatbots to trading algorithms and self-driving vehicles, robots, bots and algorithms are proliferating and permeating our communication channels, social interactions, economic transactions and transportation arteries. Networks of multiple interdependent and interacting humans and intelligent machines constitute complex social systems for which the collective outcomes cannot be deduced from either human or machine behaviour alone. Under this paradigm, we review recent research and identify general dynamics and patterns in situations of competition, coordination, cooperation, contagion and collective decision-making, with context-rich examples from high-frequency trading markets, a social media platform, an open collaboration community and a discussion forum. To ensure more robust and resilient human-machine communities, we require a new sociology of humans and machines. Researchers should study these communities using complex system methods; engineers should explicitly design artificial intelligence for human-machine and machine-machine interactions; and regulators should govern the ecological diversity and social co-development of humans and machines.
comment: 42 pages, 2 figures, 1 table
Efficiency and Effectiveness of LLM-Based Summarization of Evidence in Crowdsourced Fact-Checking
Evaluating the truthfulness of online content is critical for combating misinformation. This study examines the efficiency and effectiveness of crowdsourced truthfulness assessments through a comparative analysis of two approaches: one involving full-length webpages as evidence for each claim, and another using summaries for each evidence document generated with a large language model. Using an A/B testing setting, we engage a diverse pool of participants tasked with evaluating the truthfulness of statements under these conditions. Our analysis explores both the quality of assessments and the behavioral patterns of participants. The results reveal that relying on summarized evidence offers comparable accuracy and error metrics to the Standard modality while significantly improving efficiency. Workers in the Summary setting complete a significantly higher number of assessments, reducing task duration and costs. Additionally, the Summary modality maximizes internal agreement and maintains consistent reliance on and perceived usefulness of evidence, demonstrating its potential to streamline large-scale truthfulness evaluations.
comment: 19 pages; 7 figures; 5 tables
Characterizing Human Actions in the Digital Platform by Temporal Context
Recent advances in digital platforms generate rich, high-dimensional logs of human behavior, and machine learning models have helped social scientists explain knowledge accumulation, communication, and information diffusion. Such models, however, almost always treat behavior as sequences of actions, abstracting the inter-temporal information among actions. To close this gap, we introduce a two-scale Action-Timing Context(ATC) framework that jointly embeds each action and its time interval. ATC obtains low-dimensional representations of actions and characterizes them with inter-temporal information. We provide three applications of ATC to real-world datasets and demonstrate that the method offers a unified view of human behavior. The presented qualitative findings demonstrate that explicitly modeling inter-temporal context is essential for a comprehensive, interpretable understanding of human activity on digital platforms.
Boli: A dataset for understanding stuttering experience and analyzing stuttered speech
There is a growing need for diverse, high-quality stuttered speech data, particularly in the context of Indian languages. This paper introduces Project Boli, a multi-lingual stuttered speech dataset designed to advance scientific understanding and technology development for individuals who stutter, particularly in India. The dataset constitutes (a) anonymized metadata (gender, age, country, mother tongue) and responses to a questionnaire about how stuttering affects their daily lives, (b) captures both read speech (using the Rainbow Passage) and spontaneous speech (through image description tasks) for each participant and (c) includes detailed annotations of five stutter types: blocks, prolongations, interjections, sound repetitions and word repetitions. We present a comprehensive analysis of the dataset, including the data collection procedure, experience summarization of people who stutter, severity assessment of stuttering events and technical validation of the collected data. The dataset is released as an open access to further speech technology development.
Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation
The emergent capabilities of large language models (LLMs) have sparked interest in assessing their ability to simulate human opinions in a variety of contexts, potentially serving as surrogates for human subjects in opinion surveys. However, previous evaluations of this capability have depended heavily on costly, domain-specific human survey data, and mixed empirical results about LLM effectiveness create uncertainty for managers about whether investing in this technology is justified in early-stage research. To address these challenges, we introduce a series of quality checks to support early-stage deliberation about the viability of using LLMs for simulating human opinions. These checks emphasize logical constraints, model stability, and alignment with stakeholder expectations of model outputs, thereby reducing dependence on human-generated data in the initial stages of evaluation. We demonstrate the usefulness of the proposed quality control tests in the context of AI-assisted content moderation, an application that both advocates and critics of LLMs' capabilities to simulate human opinion see as a desirable potential use case. None of the tested models passed all quality control checks, revealing several failure modes. We conclude by discussing implications of these failure modes and recommend how organizations can utilize our proposed tests for prompt engineering and in their risk management practices when considering the use of LLMs for opinion simulation. We make our crowdsourced dataset of claims with human and LLM annotations publicly available for future research.
EmoGene: Audio-Driven Emotional 3D Talking-Head Generation
Audio-driven talking-head generation is a crucial and useful technology for virtual human interaction and film-making. While recent advances have focused on improving image fidelity and lip synchronization, generating accurate emotional expressions remains underexplored. In this paper, we introduce EmoGene, a novel framework for synthesizing high-fidelity, audio-driven video portraits with accurate emotional expressions. Our approach employs a variational autoencoder (VAE)-based audio-to-motion module to generate facial landmarks, which are concatenated with emotional embedding in a motion-to-emotion module to produce emotional landmarks. These landmarks drive a Neural Radiance Fields (NeRF)-based emotion-to-video module to render realistic emotional talking-head videos. Additionally, we propose a pose sampling method to generate natural idle-state (non-speaking) videos for silent audio inputs. Extensive experiments demonstrate that EmoGene outperforms previous methods in generating high-fidelity emotional talking-head videos.
comment: Accepted by the 2025 IEEE 19th International Conference on Automatic Face and Gesture Recognition (FG)
Generative AI in Academic Writing: A Comparison of DeepSeek, Qwen, ChatGPT, Gemini, Llama, Mistral, and Gemma
DeepSeek v3, developed in China, was released in December 2024, followed by Alibaba's Qwen 2.5 Max in January 2025 and Qwen3 235B in April 2025. These free and open-source models offer significant potential for academic writing and content creation. This study evaluates their academic writing performance by comparing them with ChatGPT, Gemini, Llama, Mistral, and Gemma. There is a critical gap in the literature concerning how extensively these tools can be utilized and their potential to generate original content in terms of quality, readability, and effectiveness. Using 40 papers on Digital Twin and Healthcare, texts were generated through AI tools based on posed questions and paraphrased abstracts. The generated content was analyzed using plagiarism detection, AI detection, word count comparisons, semantic similarity, and readability assessments. Results indicate that paraphrased abstracts showed higher plagiarism rates, while question-based responses also exceeded acceptable levels. AI detection tools consistently identified all outputs as AI-generated. Word count analysis revealed that all chatbots produced a sufficient volume of content. Semantic similarity tests showed a strong overlap between generated and original texts. However, readability assessments indicated that the texts were insufficient in terms of clarity and accessibility. This study comparatively highlights the potential and limitations of popular and latest large language models for academic writing. While these models generate substantial and semantically accurate content, concerns regarding plagiarism, AI detection, and readability must be addressed for their effective use in scholarly work.
comment: 24 pages, 4 figures, 7 tables
InspectorRAGet: An Introspection Platform for RAG Evaluation NAACL2025
Large Language Models (LLM) have become a popular approach for implementing Retrieval Augmented Generation (RAG) systems, and a significant amount of effort has been spent on building good models and metrics. In spite of increased recognition of the need for rigorous evaluation of RAG systems, few tools exist that go beyond the creation of model output and automatic calculation. We present InspectorRAGet, an introspection platform for performing a comprehensive analysis of the quality of RAG system output. InspectorRAGet allows the user to analyze aggregate and instance-level performance of RAG systems, using both human and algorithmic metrics as well as annotator quality. InspectorRAGet is suitable for multiple use cases and is available publicly to the community. A live instance of the platform is available at https://ibm.biz/InspectorRAGet.
comment: Published at NAACL2025 Demonstration Track
Computer Vision and Pattern Recognition
ReVision: High-Quality, Low-Cost Video Generation with Explicit 3D Physics Modeling for Complex Motion and Interaction
In recent years, video generation has seen significant advancements. However, challenges still persist in generating complex motions and interactions. To address these challenges, we introduce ReVision, a plug-and-play framework that explicitly integrates parameterized 3D physical knowledge into a pretrained conditional video generation model, significantly enhancing its ability to generate high-quality videos with complex motion and interactions. Specifically, ReVision consists of three stages. First, a video diffusion model is used to generate a coarse video. Next, we extract a set of 2D and 3D features from the coarse video to construct a 3D object-centric representation, which is then refined by our proposed parameterized physical prior model to produce an accurate 3D motion sequence. Finally, this refined motion sequence is fed back into the same video diffusion model as additional conditioning, enabling the generation of motion-consistent videos, even in scenarios involving complex actions and interactions. We validate the effectiveness of our approach on Stable Video Diffusion, where ReVision significantly improves motion fidelity and coherence. Remarkably, with only 1.5B parameters, it even outperforms a state-of-the-art video generation model with over 13B parameters on complex video generation by a substantial margin. Our results suggest that, by incorporating 3D physical knowledge, even a relatively small video diffusion model can generate complex motions and interactions with greater realism and controllability, offering a promising solution for physically plausible video generation.
comment: Project Page: https://revision-video.github.io/
A Survey of Interactive Generative Video
Interactive Generative Video (IGV) has emerged as a crucial technology in response to the growing demand for high-quality, interactive video content across various domains. In this paper, we define IGV as a technology that combines generative capabilities to produce diverse high-quality video content with interactive features that enable user engagement through control signals and responsive feedback. We survey the current landscape of IGV applications, focusing on three major domains: 1) gaming, where IGV enables infinite exploration in virtual worlds; 2) embodied AI, where IGV serves as a physics-aware environment synthesizer for training agents in multimodal interaction with dynamically evolving scenes; and 3) autonomous driving, where IGV provides closed-loop simulation capabilities for safety-critical testing and validation. To guide future development, we propose a comprehensive framework that decomposes an ideal IGV system into five essential modules: Generation, Control, Memory, Dynamics, and Intelligence. Furthermore, we systematically analyze the technical challenges and future directions in realizing each component for an ideal IGV system, such as achieving real-time generation, enabling open-domain control, maintaining long-term coherence, simulating accurate physics, and integrating causal reasoning. We believe that this systematic analysis will facilitate future research and development in the field of IGV, ultimately advancing the technology toward more sophisticated and practical applications.
COMPACT: COMPositional Atomic-to-Complex Visual Capability Tuning
Multimodal Large Language Models (MLLMs) excel at simple vision-language tasks but struggle when faced with complex tasks that require multiple capabilities, such as simultaneously recognizing objects, counting them, and understanding their spatial relationships. This might be partially the result of the fact that Visual Instruction Tuning (VIT), a critical training step for MLLMs, has traditionally focused on scaling data volume, but not the compositional complexity of training examples. We propose COMPACT (COMPositional Atomic-to-complex visual Capability Tuning), which generates a training dataset explicitly controlling for the compositional complexity of the training examples. The data from COMPACT allows MLLMs to train on combinations of atomic capabilities to learn complex capabilities more efficiently. Across all benchmarks, COMPACT achieves comparable performance to the LLaVA-665k VIT while using less than 10% of its data budget, and even outperforms it on several, especially those involving complex multi-capability tasks. For example, COMPACT achieves substantial 83.3% improvement on MMStar and 94.0% improvement on MM-Vet compared to the full-scale VIT on particularly complex questions that require four or more atomic capabilities. COMPACT offers a scalable, data-efficient, visual compositional tuning recipe to improve on complex visual-language tasks.
comment: 17 pages, 13 figures
Differentiable Room Acoustic Rendering with Multi-View Vision Priors
An immersive acoustic experience enabled by spatial audio is just as crucial as the visual aspect in creating realistic virtual environments. However, existing methods for room impulse response estimation rely either on data-demanding learning-based models or computationally expensive physics-based modeling. In this work, we introduce Audio-Visual Differentiable Room Acoustic Rendering (AV-DAR), a framework that leverages visual cues extracted from multi-view images and acoustic beam tracing for physics-based room acoustic rendering. Experiments across six real-world environments from two datasets demonstrate that our multimodal, physics-based approach is efficient, interpretable, and accurate, significantly outperforming a series of prior methods. Notably, on the Real Acoustic Field dataset, AV-DAR achieves comparable performance to models trained on 10 times more data while delivering relative gains ranging from 16.6% to 50.9% when trained at the same scale.
comment: Project Page: https://humathe.github.io/avdar/
Active Light Modulation to Counter Manipulation of Speech Visual Content
High-profile speech videos are prime targets for falsification, owing to their accessibility and influence. This work proposes Spotlight, a low-overhead and unobtrusive system for protecting live speech videos from visual falsification of speaker identity and lip and facial motion. Unlike predominant falsification detection methods operating in the digital domain, Spotlight creates dynamic physical signatures at the event site and embeds them into all video recordings via imperceptible modulated light. These physical signatures encode semantically-meaningful features unique to the speech event, including the speaker's identity and facial motion, and are cryptographically-secured to prevent spoofing. The signatures can be extracted from any video downstream and validated against the portrayed speech content to check its integrity. Key elements of Spotlight include (1) a framework for generating extremely compact (i.e., 150-bit), pose-invariant speech video features, based on locality-sensitive hashing; and (2) an optical modulation scheme that embeds >200 bps into video while remaining imperceptible both in video and live. Prototype experiments on extensive video datasets show Spotlight achieves AUCs $\geq$ 0.99 and an overall true positive rate of 100% in detecting falsified videos. Further, Spotlight is highly robust across recording conditions, video post-processing techniques, and white-box adversarial attacks on its video feature extraction methodologies.
3D Stylization via Large Reconstruction Model SIGGRAPH 2025
With the growing success of text or image guided 3D generators, users demand more control over the generation process, appearance stylization being one of them. Given a reference image, this requires adapting the appearance of a generated 3D asset to reflect the visual style of the reference while maintaining visual consistency from multiple viewpoints. To tackle this problem, we draw inspiration from the success of 2D stylization methods that leverage the attention mechanisms in large image generation models to capture and transfer visual style. In particular, we probe if large reconstruction models, commonly used in the context of 3D generation, has a similar capability. We discover that the certain attention blocks in these models capture the appearance specific features. By injecting features from a visual style image to such blocks, we develop a simple yet effective 3D appearance stylization method. Our method does not require training or test time optimization. Through both quantitative and qualitative evaluations, we demonstrate that our approach achieves superior results in terms of 3D appearance stylization, significantly improving efficiency while maintaining high-quality visual outcomes.
comment: Accepted to SIGGRAPH 2025
Early Exit and Multi Stage Knowledge Distillation in VLMs for Video Summarization
We introduce DEEVISum (Distilled Early Exit Vision language model for Summarization), a lightweight, efficient, and scalable vision language model designed for segment wise video summarization. Leveraging multi modal prompts that combine textual and audio derived signals, DEEVISum incorporates Multi Stage Knowledge Distillation (MSKD) and Early Exit (EE) to strike a balance between performance and efficiency. MSKD offers a 1.33% absolute F1 improvement over baseline distillation (0.5%), while EE reduces inference time by approximately 21% with a 1.3 point drop in F1. Evaluated on the TVSum dataset, our best model PaLI Gemma2 3B + MSKD achieves an F1 score of 61.1, competing the performance of significantly larger models, all while maintaining a lower computational footprint. We publicly release our code and processed dataset to support further research.
Why Compress What You Can Generate? When GPT-4o Generation Ushers in Image Compression Fields
The rapid development of AIGC foundation models has revolutionized the paradigm of image compression, which paves the way for the abandonment of most pixel-level transform and coding, compelling us to ask: why compress what you can generate if the AIGC foundation model is powerful enough to faithfully generate intricate structure and fine-grained details from nothing more than some compact descriptors, i.e., texts, or cues. Fortunately, recent GPT-4o image generation of OpenAI has achieved impressive cross-modality generation, editing, and design capabilities, which motivates us to answer the above question by exploring its potential in image compression fields. In this work, we investigate two typical compression paradigms: textual coding and multimodal coding (i.e., text + extremely low-resolution image), where all/most pixel-level information is generated instead of compressing via the advanced GPT-4o image generation function. The essential challenge lies in how to maintain semantic and structure consistency during the decoding process. To overcome this, we propose a structure raster-scan prompt engineering mechanism to transform the image into textual space, which is compressed as the condition of GPT-4o image generation. Extensive experiments have shown that the combination of our designed structural raster-scan prompts and GPT-4o's image generation function achieved the impressive performance compared with recent multimodal/generative image compression at ultra-low bitrate, further indicating the potential of AIGC generation in image compression fields.
A simple and effective approach for body part recognition on CT scans based on projection estimation
It is well known that machine learning models require a high amount of annotated data to obtain optimal performance. Labelling Computed Tomography (CT) data can be a particularly challenging task due to its volumetric nature and often missing and$/$or incomplete associated meta-data. Even inspecting one CT scan requires additional computer software, or in the case of programming languages $-$ additional programming libraries. This study proposes a simple, yet effective approach based on 2D X-ray-like estimation of 3D CT scans for body region identification. Although body region is commonly associated with the CT scan, it often describes only the focused major body region neglecting other anatomical regions present in the observed CT. In the proposed approach, estimated 2D images were utilized to identify 14 distinct body regions, providing valuable information for constructing a high-quality medical dataset. To evaluate the effectiveness of the proposed method, it was compared against 2.5D, 3D and foundation model (MI2) based approaches. Our approach outperformed the others, where it came on top with statistical significance and F1-Score for the best-performing model EffNet-B0 of 0.980 $\pm$ 0.016 in comparison to the 0.840 $\pm$ 0.114 (2.5D DenseNet-161), 0.854 $\pm$ 0.096 (3D VoxCNN), and 0.852 $\pm$ 0.104 (MI2 foundation model). The utilized dataset comprised three different clinical centers and counted 15,622 CT scans (44,135 labels).
comment: 19 pages, 6 figures
Anomaly-Driven Approach for Enhanced Prostate Cancer Segmentation
Magnetic Resonance Imaging (MRI) plays an important role in identifying clinically significant prostate cancer (csPCa), yet automated methods face challenges such as data imbalance, variable tumor sizes, and a lack of annotated data. This study introduces Anomaly-Driven U-Net (adU-Net), which incorporates anomaly maps derived from biparametric MRI sequences into a deep learning-based segmentation framework to improve csPCa identification. We conduct a comparative analysis of anomaly detection methods and evaluate the integration of anomaly maps into the segmentation pipeline. Anomaly maps, generated using Fixed-Point GAN reconstruction, highlight deviations from normal prostate tissue, guiding the segmentation model to potential cancerous regions. We compare the performance by using the average score, computed as the mean of the AUROC and Average Precision (AP). On the external test set, adU-Net achieves the best average score of 0.618, outperforming the baseline nnU-Net model (0.605). The results demonstrate that incorporating anomaly detection into segmentation improves generalization and performance, particularly with ADC-based anomaly maps, offering a promising direction for automated csPCa identification.
comment: Paper accepted for publication at 2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
LoC-LIC: Low Complexity Learned Image Coding Using Hierarchical Feature Transforms
Current learned image compression models typically exhibit high complexity, which demands significant computational resources. To overcome these challenges, we propose an innovative approach that employs hierarchical feature extraction transforms to significantly reduce complexity while preserving bit rate reduction efficiency. Our novel architecture achieves this by using fewer channels for high spatial resolution inputs/feature maps. On the other hand, feature maps with a large number of channels have reduced spatial dimensions, thereby cutting down on computational load without sacrificing performance. This strategy effectively reduces the forward pass complexity from \(1256 \, \text{kMAC/Pixel}\) to just \(270 \, \text{kMAC/Pixel}\). As a result, the reduced complexity model can open the way for learned image compression models to operate efficiently across various devices and pave the way for the development of new architectures in image compression technology.
Anatomical Similarity as a New Metric to Evaluate Brain Generative Models
Generative models enhance neuroimaging through data augmentation, quality improvement, and rare condition studies. Despite advances in realistic synthetic MRIs, evaluations focus on texture and perception, lacking sensitivity to crucial anatomical fidelity. This study proposes a new metric, called WASABI (Wasserstein-Based Anatomical Brain Index), to assess the anatomical realism of synthetic brain MRIs. WASABI leverages \textit{SynthSeg}, a deep learning-based brain parcellation tool, to derive volumetric measures of brain regions in each MRI and uses the multivariate Wasserstein distance to compare distributions between real and synthetic anatomies. Based on controlled experiments on two real datasets and synthetic MRIs from five generative models, WASABI demonstrates higher sensitivity in quantifying anatomical discrepancies compared to traditional image-level metrics, even when synthetic images achieve near-perfect visual quality. Our findings advocate for shifting the evaluation paradigm beyond visual inspection and conventional metrics, emphasizing anatomical fidelity as a crucial benchmark for clinically meaningful brain MRI synthesis. Our code is available at https://github.com/BahramJafrasteh/wasabi-mri.
Common3D: Self-Supervised Learning of 3D Morphable Models for Common Objects in Neural Feature Space
3D morphable models (3DMMs) are a powerful tool to represent the possible shapes and appearances of an object category. Given a single test image, 3DMMs can be used to solve various tasks, such as predicting the 3D shape, pose, semantic correspondence, and instance segmentation of an object. Unfortunately, 3DMMs are only available for very few object categories that are of particular interest, like faces or human bodies, as they require a demanding 3D data acquisition and category-specific training process. In contrast, we introduce a new method, Common3D, that learns 3DMMs of common objects in a fully self-supervised manner from a collection of object-centric videos. For this purpose, our model represents objects as a learned 3D template mesh and a deformation field that is parameterized as an image-conditioned neural network. Different from prior works, Common3D represents the object appearance with neural features instead of RGB colors, which enables the learning of more generalizable representations through an abstraction from pixel intensities. Importantly, we train the appearance features using a contrastive objective by exploiting the correspondences defined through the deformable template mesh. This leads to higher quality correspondence features compared to related works and a significantly improved model performance at estimating 3D object pose and semantic correspondence. Common3D is the first completely self-supervised method that can solve various vision tasks in a zero-shot manner.
Adaptive 3D UI Placement in Mixed Reality Using Deep Reinforcement Learning
Mixed Reality (MR) could assist users' tasks by continuously integrating virtual content with their view of the physical environment. However, where and how to place these content to best support the users has been a challenging problem due to the dynamic nature of MR experiences. In contrast to prior work that investigates optimization-based methods, we are exploring how reinforcement learning (RL) could assist with continuous 3D content placement that is aware of users' poses and their surrounding environments. Through an initial exploration and preliminary evaluation, our results demonstrate the potential of RL to position content that maximizes the reward for users on the go. We further identify future directions for research that could harness the power of RL for personalized and optimized UI and content placement in MR.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '24)
Cert-SSB: Toward Certified Sample-Specific Backdoor Defense
Deep neural networks (DNNs) are vulnerable to backdoor attacks, where an attacker manipulates a small portion of the training data to implant hidden backdoors into the model. The compromised model behaves normally on clean samples but misclassifies backdoored samples into the attacker-specified target class, posing a significant threat to real-world DNN applications. Currently, several empirical defense methods have been proposed to mitigate backdoor attacks, but they are often bypassed by more advanced backdoor techniques. In contrast, certified defenses based on randomized smoothing have shown promise by adding random noise to training and testing samples to counteract backdoor attacks. In this paper, we reveal that existing randomized smoothing defenses implicitly assume that all samples are equidistant from the decision boundary. However, it may not hold in practice, leading to suboptimal certification performance. To address this issue, we propose a sample-specific certified backdoor defense method, termed Cert-SSB. Cert-SSB first employs stochastic gradient ascent to optimize the noise magnitude for each sample, ensuring a sample-specific noise level that is then applied to multiple poisoned training sets to retrain several smoothed models. After that, Cert-SSB aggregates the predictions of multiple smoothed models to generate the final robust prediction. In particular, in this case, existing certification methods become inapplicable since the optimized noise varies across different samples. To conquer this challenge, we introduce a storage-update-based certification method, which dynamically adjusts each sample's certification region to improve certification performance. We conduct extensive experiments on multiple benchmark datasets, demonstrating the effectiveness of our proposed method. Our code is available at https://github.com/NcepuQiaoTing/Cert-SSB.
comment: 15 pages
VividListener: Expressive and Controllable Listener Dynamics Modeling for Multi-Modal Responsive Interaction
Generating responsive listener head dynamics with nuanced emotions and expressive reactions is crucial for practical dialogue modeling in various virtual avatar animations. Previous studies mainly focus on the direct short-term production of listener behavior. They overlook the fine-grained control over motion variations and emotional intensity, especially in long-sequence modeling. Moreover, the lack of long-term and large-scale paired speaker-listener corpora including head dynamics and fine-grained multi-modality annotations (e.g., text-based expression descriptions, emotional intensity) also limits the application of dialogue modeling.Therefore, we first newly collect a large-scale multi-turn dataset of 3D dyadic conversation containing more than 1.4M valid frames for multi-modal responsive interaction, dubbed ListenerX. Additionally, we propose VividListener, a novel framework enabling fine-grained, expressive and controllable listener dynamics modeling. This framework leverages multi-modal conditions as guiding principles for fostering coherent interactions between speakers and listeners.Specifically, we design the Responsive Interaction Module (RIM) to adaptively represent the multi-modal interactive embeddings. RIM ensures the listener dynamics achieve fine-grained semantic coordination with textual descriptions and adjustments, while preserving expressive reaction with speaker behavior. Meanwhile, we design the Emotional Intensity Tags (EIT) for emotion intensity editing with multi-modal information integration, applying to both text descriptions and listener motion amplitude.Extensive experiments conducted on our newly collected ListenerX dataset demonstrate that VividListener achieves state-of-the-art performance, realizing expressive and controllable listener dynamics.
Vision Transformers in Precision Agriculture: A Comprehensive Survey
Detecting plant diseases is a crucial aspect of modern agriculture - it plays a key role in maintaining crop health and increasing overall yield. Traditional approaches, though still valuable, often rely on manual inspection or conventional machine learning techniques, both of which face limitations in scalability and accuracy. Recently, Vision Transformers (ViTs) have emerged as a promising alternative, offering benefits such as improved handling of long-range dependencies and better scalability for visual tasks. This survey explores the application of ViTs in precision agriculture, covering tasks from classification to detection and segmentation. We begin by introducing the foundational architecture of ViTs and discuss their transition from Natural Language Processing (NLP) to computer vision. The discussion includes the concept of inductive bias in traditional models like Convolutional Neural Networks (CNNs), and how ViTs mitigate these biases. We provide a comprehensive review of recent literature, focusing on key methodologies, datasets, and performance metrics. The survey also includes a comparative analysis of CNNs and ViTs, with a look at hybrid models and performance enhancements. Technical challenges - such as data requirements, computational demands, and model interpretability - are addressed alongside potential solutions. Finally, we outline potential research directions and technological advancements that could further support the integration of ViTs in real-world agricultural settings. Our goal with this study is to offer practitioners and researchers a deeper understanding of how ViTs are poised to transform smart and precision agriculture.
REHEARSE-3D: A Multi-modal Emulated Rain Dataset for 3D Point Cloud De-raining
Sensor degradation poses a significant challenge in autonomous driving. During heavy rainfall, the interference from raindrops can adversely affect the quality of LiDAR point clouds, resulting in, for instance, inaccurate point measurements. This, in turn, can potentially lead to safety concerns if autonomous driving systems are not weather-aware, i.e., if they are unable to discern such changes. In this study, we release a new, large-scale, multi-modal emulated rain dataset, REHEARSE-3D, to promote research advancements in 3D point cloud de-raining. Distinct from the most relevant competitors, our dataset is unique in several respects. First, it is the largest point-wise annotated dataset, and second, it is the only one with high-resolution LiDAR data (LiDAR-256) enriched with 4D Radar point clouds logged in both daytime and nighttime conditions in a controlled weather environment. Furthermore, REHEARSE-3D involves rain-characteristic information, which is of significant value not only for sensor noise modeling but also for analyzing the impact of weather at a point level. Leveraging REHEARSE-3D, we benchmark raindrop detection and removal in fused LiDAR and 4D Radar point clouds. Our comprehensive study further evaluates the performance of various statistical and deep-learning models. Upon publication, the dataset and benchmark models will be made publicly available at: https://sporsho.github.io/REHEARSE3D.
Enhancing Self-Supervised Fine-Grained Video Object Tracking with Dynamic Memory Prediction
Successful video analysis relies on accurate recognition of pixels across frames, and frame reconstruction methods based on video correspondence learning are popular due to their efficiency. Existing frame reconstruction methods, while efficient, neglect the value of direct involvement of multiple reference frames for reconstruction and decision-making aspects, especially in complex situations such as occlusion or fast movement. In this paper, we introduce a Dynamic Memory Prediction (DMP) framework that innovatively utilizes multiple reference frames to concisely and directly enhance frame reconstruction. Its core component is a Reference Frame Memory Engine that dynamically selects frames based on object pixel features to improve tracking accuracy. In addition, a Bidirectional Target Prediction Network is built to utilize multiple reference frames to improve the robustness of the model. Through experiments, our algorithm outperforms the state-of-the-art self-supervised techniques on two fine-grained video object tracking tasks: object segmentation and keypoint tracking.
Visual Text Processing: A Comprehensive Review and Unified Evaluation
Visual text is a crucial component in both document and scene images, conveying rich semantic information and attracting significant attention in the computer vision community. Beyond traditional tasks such as text detection and recognition, visual text processing has witnessed rapid advancements driven by the emergence of foundation models, including text image reconstruction and text image manipulation. Despite significant progress, challenges remain due to the unique properties that differentiate text from general objects. Effectively capturing and leveraging these distinct textual characteristics is essential for developing robust visual text processing models. In this survey, we present a comprehensive, multi-perspective analysis of recent advancements in visual text processing, focusing on two key questions: (1) What textual features are most suitable for different visual text processing tasks? (2) How can these distinctive text features be effectively incorporated into processing frameworks? Furthermore, we introduce VTPBench, a new benchmark that encompasses a broad range of visual text processing datasets. Leveraging the advanced visual quality assessment capabilities of multimodal large language models (MLLMs), we propose VTPScore, a novel evaluation metric designed to ensure fair and reliable evaluation. Our empirical study with more than 20 specific models reveals substantial room for improvement in the current techniques. Our aim is to establish this work as a fundamental resource that fosters future exploration and innovation in the dynamic field of visual text processing. The relevant repository is available at https://github.com/shuyansy/Visual-Text-Processing-survey.
HoloTime: Taming Video Diffusion Models for Panoramic 4D Scene Generation
The rapid advancement of diffusion models holds the promise of revolutionizing the application of VR and AR technologies, which typically require scene-level 4D assets for user experience. Nonetheless, existing diffusion models predominantly concentrate on modeling static 3D scenes or object-level dynamics, constraining their capacity to provide truly immersive experiences. To address this issue, we propose HoloTime, a framework that integrates video diffusion models to generate panoramic videos from a single prompt or reference image, along with a 360-degree 4D scene reconstruction method that seamlessly transforms the generated panoramic video into 4D assets, enabling a fully immersive 4D experience for users. Specifically, to tame video diffusion models for generating high-fidelity panoramic videos, we introduce the 360World dataset, the first comprehensive collection of panoramic videos suitable for downstream 4D scene reconstruction tasks. With this curated dataset, we propose Panoramic Animator, a two-stage image-to-video diffusion model that can convert panoramic images into high-quality panoramic videos. Following this, we present Panoramic Space-Time Reconstruction, which leverages a space-time depth estimation method to transform the generated panoramic videos into 4D point clouds, enabling the optimization of a holistic 4D Gaussian Splatting representation to reconstruct spatially and temporally consistent 4D scenes. To validate the efficacy of our method, we conducted a comparative analysis with existing approaches, revealing its superiority in both panoramic video generation and 4D scene reconstruction. This demonstrates our method's capability to create more engaging and realistic immersive environments, thereby enhancing user experiences in VR and AR applications.
comment: Project homepage: https://zhouhyocean.github.io/holotime/
Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection
The success of face recognition (FR) systems has led to serious privacy concerns due to potential unauthorized surveillance and user tracking on social networks. Existing methods for enhancing privacy fail to generate natural face images that can protect facial privacy. In this paper, we propose diffusion-based adversarial identity manipulation (DiffAIM) to generate natural and highly transferable adversarial faces against malicious FR systems. To be specific, we manipulate facial identity within the low-dimensional latent space of a diffusion model. This involves iteratively injecting gradient-based adversarial identity guidance during the reverse diffusion process, progressively steering the generation toward the desired adversarial faces. The guidance is optimized for identity convergence towards a target while promoting semantic divergence from the source, facilitating effective impersonation while maintaining visual naturalness. We further incorporate structure-preserving regularization to preserve facial structure consistency during manipulation. Extensive experiments on both face verification and identification tasks demonstrate that compared with the state-of-the-art, DiffAIM achieves stronger black-box attack transferability while maintaining superior visual quality. We also demonstrate the effectiveness of the proposed approach for commercial FR APIs, including Face++ and Aliyun.
Mcity Data Engine: Iterative Model Improvement Through Open-Vocabulary Data Selection
With an ever-increasing availability of data, it has become more and more challenging to select and label appropriate samples for the training of machine learning models. It is especially difficult to detect long-tail classes of interest in large amounts of unlabeled data. This holds especially true for Intelligent Transportation Systems (ITS), where vehicle fleets and roadside perception systems generate an abundance of raw data. While industrial, proprietary data engines for such iterative data selection and model training processes exist, researchers and the open-source community suffer from a lack of an openly available system. We present the Mcity Data Engine, which provides modules for the complete data-based development cycle, beginning at the data acquisition phase and ending at the model deployment stage. The Mcity Data Engine focuses on rare and novel classes through an open-vocabulary data selection process. All code is publicly available on GitHub under an MIT license: https://github.com/mcity/mcity_data_engine
Cascade Detector Analysis and Application to Biomedical Microscopy
As both computer vision models and biomedical datasets grow in size, there is an increasing need for efficient inference algorithms. We utilize cascade detectors to efficiently identify sparse objects in multiresolution images. Given an object's prevalence and a set of detectors at different resolutions with known accuracies, we derive the accuracy, and expected number of classifier calls by a cascade detector. These results generalize across number of dimensions and number of cascade levels. Finally, we compare one- and two-level detectors in fluorescent cell detection, organelle segmentation, and tissue segmentation across various microscopy modalities. We show that the multi-level detector achieves comparable performance in 30-75% less time. Our work is compatible with a variety of computer vision models and data domains.
eNCApsulate: NCA for Precision Diagnosis on Capsule Endoscopes
Wireless Capsule Endoscopy is a non-invasive imaging method for the entire gastrointestinal tract, and is a pain-free alternative to traditional endoscopy. It generates extensive video data that requires significant review time, and localizing the capsule after ingestion is a challenge. Techniques like bleeding detection and depth estimation can help with localization of pathologies, but deep learning models are typically too large to run directly on the capsule. Neural Cellular Automata (NCA) for bleeding segmentation and depth estimation are trained on capsule endoscopic images. For monocular depth estimation, we distill a large foundation model into the lean NCA architecture, by treating the outputs of the foundation model as pseudo ground truth. We then port the trained NCA to the ESP32 microcontroller, enabling efficient image processing on hardware as small as a camera capsule. NCA are more accurate (Dice) than other portable segmentation models, while requiring more than 100x fewer parameters stored in memory than other small-scale models. The visual results of NCA depth estimation look convincing, and in some cases beat the realism and detail of the pseudo ground truth. Runtime optimizations on the ESP32-S3 accelerate the average inference speed significantly, by more than factor 3. With several algorithmic adjustments and distillation, it is possible to eNCApsulate NCA models into microcontrollers that fit into wireless capsule endoscopes. This is the first work that enables reliable bleeding segmentation and depth estimation on a miniaturized device, paving the way for precise diagnosis combined with visual odometry as a means of precise localization of the capsule -- on the capsule.
Iterative Trajectory Exploration for Multimodal Agents
Multimodal agents, which integrate a controller (e.g., a large language model) with external tools, have demonstrated remarkable capabilities in tackling complex tasks. However, existing agents need to collect a large number of expert data for fine-tuning to adapt to new environments. In this paper, we propose an online self-exploration method for multimodal agents, namely SPORT, via step-wise preference optimization to refine the trajectories of agents, which automatically generates tasks and learns from solving the generated tasks, without any expert annotation. SPORT operates through four iterative components: task synthesis, step sampling, step verification, and preference tuning. First, we synthesize multi-modal tasks using language models. Then, we introduce a novel search scheme, where step sampling and step verification are executed alternately to solve each generated task. We employ a verifier to provide AI feedback to construct step-wise preference data. The data is subsequently used to update the controller's policy through preference tuning, producing a SPORT Agent. By interacting with real environments, the SPORT Agent evolves into a more refined and capable system. Evaluation in the GTA and GAIA benchmarks show that the SPORT Agent achieves 6.41\% and 3.64\% improvements, underscoring the generalization and effectiveness introduced by our method. The project page is https://SPORT-Agents.github.io.
comment: 16 pages, 8 figures
Black-Box Visual Prompt Engineering for Mitigating Object Hallucination in Large Vision Language Models NAACL 2025
Large Vision Language Models (LVLMs) often suffer from object hallucination, which undermines their reliability. Surprisingly, we find that simple object-based visual prompting -- overlaying visual cues (e.g., bounding box, circle) on images -- can significantly mitigate such hallucination; however, different visual prompts (VPs) vary in effectiveness. To address this, we propose Black-Box Visual Prompt Engineering (BBVPE), a framework to identify optimal VPs that enhance LVLM responses without needing access to model internals. Our approach employs a pool of candidate VPs and trains a router model to dynamically select the most effective VP for a given input image. This black-box approach is model-agnostic, making it applicable to both open-source and proprietary LVLMs. Evaluations on benchmarks such as POPE and CHAIR demonstrate that BBVPE effectively reduces object hallucination.
comment: NAACL 2025
SAM4EM: Efficient memory-based two stage prompt-free segment anything model adapter for complex 3D neuroscience electron microscopy stacks CVPR
We present SAM4EM, a novel approach for 3D segmentation of complex neural structures in electron microscopy (EM) data by leveraging the Segment Anything Model (SAM) alongside advanced fine-tuning strategies. Our contributions include the development of a prompt-free adapter for SAM using two stage mask decoding to automatically generate prompt embeddings, a dual-stage fine-tuning method based on Low-Rank Adaptation (LoRA) for enhancing segmentation with limited annotated data, and a 3D memory attention mechanism to ensure segmentation consistency across 3D stacks. We further release a unique benchmark dataset for the segmentation of astrocytic processes and synapses. We evaluated our method on challenging neuroscience segmentation benchmarks, specifically targeting mitochondria, glia, and synapses, with significant accuracy improvements over state-of-the-art (SOTA) methods, including recent SAM-based adapters developed for the medical domain and other vision transformer-based approaches. Experimental results indicate that our approach outperforms existing solutions in the segmentation of complex processes like glia and post-synaptic densities. Our code and models are available at https://github.com/Uzshah/SAM4EM.
comment: Accepted at (CVPRW) 10th IEEE Workshop on Computer Vision for Microscopy Image Analysis (CVMI)
RoboGround: Robotic Manipulation with Grounded Vision-Language Priors
Recent advancements in robotic manipulation have highlighted the potential of intermediate representations for improving policy generalization. In this work, we explore grounding masks as an effective intermediate representation, balancing two key advantages: (1) effective spatial guidance that specifies target objects and placement areas while also conveying information about object shape and size, and (2) broad generalization potential driven by large-scale vision-language models pretrained on diverse grounding datasets. We introduce RoboGround, a grounding-aware robotic manipulation system that leverages grounding masks as an intermediate representation to guide policy networks in object manipulation tasks. To further explore and enhance generalization, we propose an automated pipeline for generating large-scale, simulated data with a diverse set of objects and instructions. Extensive experiments show the value of our dataset and the effectiveness of grounding masks as intermediate guidance, significantly enhancing the generalization abilities of robot policies.
MagicPortrait: Temporally Consistent Face Reenactment with 3D Geometric Guidance
In this paper, we propose a method for video face reenactment that integrates a 3D face parametric model into a latent diffusion framework, aiming to improve shape consistency and motion control in existing video-based face generation approaches. Our approach employs the FLAME (Faces Learned with an Articulated Model and Expressions) model as the 3D face parametric representation, providing a unified framework for modeling face expressions and head pose. This enables precise extraction of detailed face geometry and motion features from driving videos. Specifically, we enhance the latent diffusion model with rich 3D expression and detailed pose information by incorporating depth maps, normal maps, and rendering maps derived from FLAME sequences. A multi-layer face movements fusion module with integrated self-attention mechanisms is used to combine identity and motion latent features within the spatial domain. By utilizing the 3D face parametric model as motion guidance, our method enables parametric alignment of face identity between the reference image and the motion captured from the driving video. Experimental results on benchmark datasets show that our method excels at generating high-quality face animations with precise expression and head pose variation modeling. In addition, it demonstrates strong generalization performance on out-of-domain images. Code is publicly available at https://github.com/weimengting/MagicPortrait.
Consistency-aware Fake Videos Detection on Short Video Platforms
This paper focuses to detect the fake news on the short video platforms. While significant research efforts have been devoted to this task with notable progress in recent years, current detection accuracy remains suboptimal due to the rapid evolution of content manipulation and generation technologies. Existing approaches typically employ a cross-modal fusion strategy that directly combines raw video data with metadata inputs before applying a classification layer. However, our empirical observations reveal a critical oversight: manipulated content frequently exhibits inter-modal inconsistencies that could serve as valuable discriminative features, yet remain underutilized in contemporary detection frameworks. Motivated by this insight, we propose a novel detection paradigm that explicitly identifies and leverages cross-modal contradictions as discriminative cues. Our approach consists of two core modules: Cross-modal Consistency Learning (CMCL) and Multi-modal Collaborative Diagnosis (MMCD). CMCL includes Pseudo-label Generation (PLG) and Cross-modal Consistency Diagnosis (CMCD). In PLG, a Multimodal Large Language Model is used to generate pseudo-labels for evaluating cross-modal semantic consistency. Then, CMCD extracts [CLS] tokens and computes cosine loss to quantify cross-modal inconsistencies. MMCD further integrates multimodal features through Multimodal Feature Fusion (MFF) and Probability Scores Fusion (PSF). MFF employs a co-attention mechanism to enhance semantic interactions across different modalities, while a Transformer is utilized for comprehensive feature fusion. Meanwhile, PSF further integrates the fake news probability scores obtained in the previous step. Extensive experiments on established benchmarks (FakeSV and FakeTT) demonstrate our model exhibits outstanding performance in Fake videos detection.
comment: 2025 icic
ClassWise-CRF: Category-Specific Fusion for Enhanced Semantic Segmentation of Remote Sensing Imagery
We propose a result-level category-specific fusion architecture called ClassWise-CRF. This architecture employs a two-stage process: first, it selects expert networks that perform well in specific categories from a pool of candidate networks using a greedy algorithm; second, it integrates the segmentation predictions of these selected networks by adaptively weighting their contributions based on their segmentation performance in each category. Inspired by Conditional Random Field (CRF), the ClassWise-CRF architecture treats the segmentation predictions from multiple networks as confidence vector fields. It leverages segmentation metrics (such as Intersection over Union) from the validation set as priors and employs an exponential weighting strategy to fuse the category-specific confidence scores predicted by each network. This fusion method dynamically adjusts the weights of each network for different categories, achieving category-specific optimization. Building on this, the architecture further optimizes the fused results using unary and pairwise potentials in CRF to ensure spatial consistency and boundary accuracy. To validate the effectiveness of ClassWise-CRF, we conducted experiments on two remote sensing datasets, LoveDA and Vaihingen, using eight classic and advanced semantic segmentation networks. The results show that the ClassWise-CRF architecture significantly improves segmentation performance: on the LoveDA dataset, the mean Intersection over Union (mIoU) metric increased by 1.00% on the validation set and by 0.68% on the test set; on the Vaihingen dataset, the mIoU improved by 0.87% on the validation set and by 0.91% on the test set. These results fully demonstrate the effectiveness and generality of the ClassWise-CRF architecture in semantic segmentation of remote sensing images. The full code is available at https://github.com/zhuqinfeng1999/ClassWise-CRF.
DGSolver: Diffusion Generalist Solver with Universal Posterior Sampling for Image Restoration
Diffusion models have achieved remarkable progress in universal image restoration. While existing methods speed up inference by reducing sampling steps, substantial step intervals often introduce cumulative errors. Moreover, they struggle to balance the commonality of degradation representations and restoration quality. To address these challenges, we introduce \textbf{DGSolver}, a diffusion generalist solver with universal posterior sampling. We first derive the exact ordinary differential equations for generalist diffusion models and tailor high-order solvers with a queue-based accelerated sampling strategy to improve both accuracy and efficiency. We then integrate universal posterior sampling to better approximate manifold-constrained gradients, yielding a more accurate noise estimation and correcting errors in inverse inference. Extensive experiments show that DGSolver outperforms state-of-the-art methods in restoration accuracy, stability, and scalability, both qualitatively and quantitatively. Code and models will be available at https://github.com/MiliLab/DGSolver.
CAE-DFKD: Bridging the Transferability Gap in Data-Free Knowledge Distillation
Data-Free Knowledge Distillation (DFKD) enables the knowledge transfer from the given pre-trained teacher network to the target student model without access to the real training data. Existing DFKD methods focus primarily on improving image recognition performance on associated datasets, often neglecting the crucial aspect of the transferability of learned representations. In this paper, we propose Category-Aware Embedding Data-Free Knowledge Distillation (CAE-DFKD), which addresses at the embedding level the limitations of previous rely on image-level methods to improve model generalization but fail when directly applied to DFKD. The superiority and flexibility of CAE-DFKD are extensively evaluated, including: \textit{\textbf{i.)}} Significant efficiency advantages resulting from altering the generator training paradigm; \textit{\textbf{ii.)}} Competitive performance with existing DFKD state-of-the-art methods on image recognition tasks; \textit{\textbf{iii.)}} Remarkable transferability of data-free learned representations demonstrated in downstream tasks.
GarmentDiffusion: 3D Garment Sewing Pattern Generation with Multimodal Diffusion Transformers IJCAI 2025
Garment sewing patterns are fundamental design elements that bridge the gap between design concepts and practical manufacturing. The generative modeling of sewing patterns is crucial for creating diversified garments. However, existing approaches are limited either by reliance on a single input modality or by suboptimal generation efficiency. In this work, we present \textbf{\textit{GarmentDiffusion}}, a new generative model capable of producing centimeter-precise, vectorized 3D sewing patterns from multimodal inputs (text, image, and incomplete sewing pattern). Our method efficiently encodes 3D sewing pattern parameters into compact edge token representations, achieving a sequence length that is $\textbf{10}\times$ shorter than that of the autoregressive SewingGPT in DressCode. By employing a diffusion transformer, we simultaneously denoise all edge tokens along the temporal axis, while maintaining a constant number of denoising steps regardless of dataset-specific edge and panel statistics. With all combination of designs of our model, the sewing pattern generation speed is accelerated by $\textbf{100}\times$ compared to SewingGPT. We achieve new state-of-the-art results on DressCodeData, as well as on the largest sewing pattern dataset, namely GarmentCodeData. The project website is available at https://shenfu-research.github.io/Garment-Diffusion/.
comment: The 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
Robust Orthogonal NMF with Label Propagation for Image Clustering
Non-negative matrix factorization (NMF) is a popular unsupervised learning approach widely used in image clustering. However, in real-world clustering scenarios, most existing NMF methods are highly sensitive to noise corruption and are unable to effectively leverage limited supervised information. To overcome these drawbacks, we propose a unified non-convex framework with label propagation called robust orthogonal nonnegative matrix factorization (RONMF). This method not only considers the graph Laplacian and label propagation as regularization terms but also introduces a more effective non-convex structure to measure the reconstruction error and imposes orthogonal constraints on the basis matrix to reduce the noise corruption, thereby achieving higher robustness. To solve RONMF, we develop an alternating direction method of multipliers (ADMM)-based optimization algorithm. In particular, all subproblems have closed-form solutions, which ensures its efficiency. Experimental evaluations on eight public image datasets demonstrate that the proposed RONMF outperforms state-of-the-art NMF methods across various standard metrics and shows excellent robustness. The code will be available at https://github.com/slinda-liu.
Quaternion Nuclear Norms Over Frobenius Norms Minimization for Robust Matrix Completion
Recovering hidden structures from incomplete or noisy data remains a pervasive challenge across many fields, particularly where multi-dimensional data representation is essential. Quaternion matrices, with their ability to naturally model multi-dimensional data, offer a promising framework for this problem. This paper introduces the quaternion nuclear norm over the Frobenius norm (QNOF) as a novel nonconvex approximation for the rank of quaternion matrices. QNOF is parameter-free and scale-invariant. Utilizing quaternion singular value decomposition, we prove that solving the QNOF can be simplified to solving the singular value $L_1/L_2$ problem. Additionally, we extend the QNOF to robust quaternion matrix completion, employing the alternating direction multiplier method to derive solutions that guarantee weak convergence under mild conditions. Extensive numerical experiments validate the proposed model's superiority, consistently outperforming state-of-the-art quaternion methods.
Multiview Point Cloud Registration via Optimization in an Autoencoder Latent Space
Point cloud rigid registration is a fundamental problem in 3D computer vision. In the multiview case, we aim to find a set of 6D poses to align a set of objects. Methods based on pairwise registration rely on a subsequent synchronization algorithm, which makes them poorly scalable with the number of views. Generative approaches overcome this limitation, but are based on Gaussian Mixture Models and use an Expectation-Maximization algorithm. Hence, they are not well suited to handle large transformations. Moreover, most existing methods cannot handle high levels of degradations. In this paper, we introduce POLAR (POint cloud LAtent Registration), a multiview registration method able to efficiently deal with a large number of views, while being robust to a high level of degradations and large initial angles. To achieve this, we transpose the registration problem into the latent space of a pretrained autoencoder, design a loss taking degradations into account, and develop an efficient multistart optimization strategy. Our proposed method significantly outperforms state-of-the-art approaches on synthetic and real data. POLAR is available at github.com/pypolar/polar or as a standalone package which can be installed with pip install polaregistration.
comment: 14 pages, 19 figures, IEEE Transactions on Image Processing
VR-FuseNet: A Fusion of Heterogeneous Fundus Data and Explainable Deep Network for Diabetic Retinopathy Classification
Diabetic retinopathy is a severe eye condition caused by diabetes where the retinal blood vessels get damaged and can lead to vision loss and blindness if not treated. Early and accurate detection is key to intervention and stopping the disease progressing. For addressing this disease properly, this paper presents a comprehensive approach for automated diabetic retinopathy detection by proposing a new hybrid deep learning model called VR-FuseNet. Diabetic retinopathy is a major eye disease and leading cause of blindness especially among diabetic patients so accurate and efficient automated detection methods are required. To address the limitations of existing methods including dataset imbalance, diversity and generalization issues this paper presents a hybrid dataset created from five publicly available diabetic retinopathy datasets. Essential preprocessing techniques such as SMOTE for class balancing and CLAHE for image enhancement are applied systematically to the dataset to improve the robustness and generalizability of the dataset. The proposed VR-FuseNet model combines the strengths of two state-of-the-art convolutional neural networks, VGG19 which captures fine-grained spatial features and ResNet50V2 which is known for its deep hierarchical feature extraction. This fusion improves the diagnostic performance and achieves an accuracy of 91.824%. The model outperforms individual architectures on all performance metrics demonstrating the effectiveness of hybrid feature extraction in Diabetic Retinopathy classification tasks. To make the proposed model more clinically useful and interpretable this paper incorporates multiple XAI techniques. These techniques generate visual explanations that clearly indicate the retinal features affecting the model's prediction such as microaneurysms, hemorrhages and exudates so that clinicians can interpret and validate.
comment: 33 pages, 49 figures
Rethinking Visual Layer Selection in Multimodal LLMs ICCV 2025
Multimodal large language models (MLLMs) have achieved impressive performance across a wide range of tasks, typically using CLIP-ViT as their visual encoder due to its strong text-image alignment capabilities. While prior studies suggest that different CLIP-ViT layers capture different types of information, with shallower layers focusing on fine visual details and deeper layers aligning more closely with textual semantics, most MLLMs still select visual features based on empirical heuristics rather than systematic analysis. In this work, we propose a Layer-wise Representation Similarity approach to group CLIP-ViT layers with similar behaviors into {shallow, middle, and deep} categories and assess their impact on MLLM performance. Building on this foundation, we revisit the visual layer selection problem in MLLMs at scale, training LLaVA-style models ranging from 1.4B to 7B parameters. Through extensive experiments across 10 datasets and 4 tasks, we find that: (1) deep layers are essential for OCR tasks; (2) shallow and middle layers substantially outperform deep layers on reasoning tasks involving counting, positioning, and object localization; (3) a lightweight fusion of features across shallow, middle, and deep layers consistently outperforms specialized fusion baselines and single-layer selections, achieving gains on 9 out of 10 datasets. Our work offers the first principled study of visual layer selection in MLLMs, laying the groundwork for deeper investigations into visual representation learning for MLLMs.
comment: 8 pages, 4 figures, submitted to ICCV 2025
SeriesBench: A Benchmark for Narrative-Driven Drama Series Understanding CVPR 2025
With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on \textbf{standalone} videos and mainly assess ``visual elements'' like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a \textbf{series}. To address this challenge, we propose \textbf{SeriesBench}, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, \textbf{PC-DCoT}. Extensive results on \textbf{SeriesBench} indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while \textbf{PC-DCoT} enables these MLLMs to achieve performance improvements. Overall, our \textbf{SeriesBench} and \textbf{PC-DCoT} highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.
comment: 29 pages, 15 figures, CVPR 2025
UAV-VLN: End-to-End Vision Language guided Navigation for UAVs
A core challenge in AI-guided autonomy is enabling agents to navigate realistically and effectively in previously unseen environments based on natural language commands. We propose UAV-VLN, a novel end-to-end Vision-Language Navigation (VLN) framework for Unmanned Aerial Vehicles (UAVs) that seamlessly integrates Large Language Models (LLMs) with visual perception to facilitate human-interactive navigation. Our system interprets free-form natural language instructions, grounds them into visual observations, and plans feasible aerial trajectories in diverse environments. UAV-VLN leverages the common-sense reasoning capabilities of LLMs to parse high-level semantic goals, while a vision model detects and localizes semantically relevant objects in the environment. By fusing these modalities, the UAV can reason about spatial relationships, disambiguate references in human instructions, and plan context-aware behaviors with minimal task-specific supervision. To ensure robust and interpretable decision-making, the framework includes a cross-modal grounding mechanism that aligns linguistic intent with visual context. We evaluate UAV-VLN across diverse indoor and outdoor navigation scenarios, demonstrating its ability to generalize to novel instructions and environments with minimal task-specific training. Our results show significant improvements in instruction-following accuracy and trajectory efficiency, highlighting the potential of LLM-driven vision-language interfaces for safe, intuitive, and generalizable UAV autonomy.
Diff-Prompt: Diffusion-Driven Prompt Generator with Mask Supervision ICLR 2025
Prompt learning has demonstrated promising results in fine-tuning pre-trained multimodal models. However, the performance improvement is limited when applied to more complex and fine-grained tasks. The reason is that most existing methods directly optimize the parameters involved in the prompt generation process through loss backpropagation, which constrains the richness and specificity of the prompt representations. In this paper, we propose Diffusion-Driven Prompt Generator (Diff-Prompt), aiming to use the diffusion model to generate rich and fine-grained prompt information for complex downstream tasks. Specifically, our approach consists of three stages. In the first stage, we train a Mask-VAE to compress the masks into latent space. In the second stage, we leverage an improved Diffusion Transformer (DiT) to train a prompt generator in the latent space, using the masks for supervision. In the third stage, we align the denoising process of the prompt generator with the pre-trained model in the semantic space, and use the generated prompts to fine-tune the model. We conduct experiments on a complex pixel-level downstream task, referring expression comprehension, and compare our method with various parameter-efficient fine-tuning approaches. Diff-Prompt achieves a maximum improvement of 8.87 in R@1 and 14.05 in R@5 compared to the foundation model and also outperforms other state-of-the-art methods across multiple metrics. The experimental results validate the effectiveness of our approach and highlight the potential of using generative models for prompt generation. Code is available at https://github.com/Kelvin-ywc/diff-prompt.
comment: Accepted at ICLR 2025
Adapting In-Domain Few-Shot Segmentation to New Domains without Retraining
Cross-domain few-shot segmentation (CD-FSS) aims to segment objects of novel classes in new domains, which is often challenging due to the diverse characteristics of target domains and the limited availability of support data. Most CD-FSS methods redesign and retrain in-domain FSS models using various domain-generalization techniques, which are effective but costly to train. To address these issues, we propose adapting informative model structures of the well-trained FSS model for target domains by learning domain characteristics from few-shot labeled support samples during inference, thereby eliminating the need for retraining. Specifically, we first adaptively identify domain-specific model structures by measuring parameter importance using a novel structure Fisher score in a data-dependent manner. Then, we progressively train the selected informative model structures with hierarchically constructed training samples, progressing from fewer to more support shots. The resulting Informative Structure Adaptation (ISA) method effectively addresses domain shifts and equips existing well-trained in-domain FSS models with flexible adaptation capabilities for new domains, eliminating the need to redesign or retrain CD-FSS models on base data. Extensive experiments validate the effectiveness of our method, demonstrating superior performance across multiple CD-FSS benchmarks.
Static or Dynamic: Towards Query-Adaptive Token Selection for Video Question Answering
Video question answering benefits from the rich information available in videos, enabling a wide range of applications. However, the large volume of tokens generated from longer videos presents significant challenges to memory efficiency and model performance. To alleviate this issue, existing works propose to compress video inputs, but usually overlooking the varying importance of static and dynamic information across different queries, leading to inefficient token usage within limited budgets. To tackle this, we propose a novel token selection strategy, EXPLORE-THEN-SELECT, that adaptively adjust static and dynamic information needed based on question requirements. Our framework first explores different token allocations between static frames, which preserve spatial details, and dynamic frames, which capture temporal changes. Next, it employs a query-aware attention-based metric to select the optimal token combination without model updates. Our proposed framework is plug-and-play that can be seamlessly integrated within diverse video-language models. Extensive experiments show that our method achieves significant performance improvements (up to 5.8%) among various video question answering benchmarks.
Comparison of Different Deep Neural Network Models in the Cultural Heritage Domain
The integration of computer vision and deep learning is an essential part of documenting and preserving cultural heritage, as well as improving visitor experiences. In recent years, two deep learning paradigms have been established in the field of computer vision: convolutional neural networks and transformer architectures. The present study aims to make a comparative analysis of some representatives of these two techniques of their ability to transfer knowledge from generic dataset, such as ImageNet, to cultural heritage specific tasks. The results of testing examples of the architectures VGG, ResNet, DenseNet, Visual Transformer, Swin Transformer, and PoolFormer, showed that DenseNet is the best in terms of efficiency-computability ratio.
comment: Accepted at the 10th International Euro-Mediterranean Conference (EuroMed 2024)
IDDM: Bridging Synthetic-to-Real Domain Gap from Physics-Guided Diffusion for Real-world Image Dehazing
Due to the domain gap between real-world and synthetic hazy images, current data-driven dehazing algorithms trained on synthetic datasets perform well on synthetic data but struggle to generalize to real-world scenarios. To address this challenge, we propose \textbf{I}mage \textbf{D}ehazing \textbf{D}iffusion \textbf{M}odels (IDDM), a novel diffusion process that incorporates the atmospheric scattering model into noise diffusion. IDDM aims to use the gradual haze formation process to help the denoising Unet robustly learn the distribution of clear images from the conditional input hazy images. We design a specialized training strategy centered around IDDM. Diffusion models are leveraged to bridge the domain gap from synthetic to real-world, while the atmospheric scattering model provides physical guidance for haze formation. During the forward process, IDDM simultaneously introduces haze and noise into clear images, and then robustly separates them during the sampling process. By training with physics-guided information, IDDM shows the ability of domain generalization, and effectively restores the real-world hazy images despite being trained on synthetic datasets. Extensive experiments demonstrate the effectiveness of our method through both quantitative and qualitative comparisons with state-of-the-art approaches.
Sparse-to-Sparse Training of Diffusion Models
Diffusion models (DMs) are a powerful type of generative models that have achieved state-of-the-art results in various image synthesis tasks and have shown potential in other domains, such as natural language processing and temporal data modeling. Despite their stable training dynamics and ability to produce diverse high-quality samples, DMs are notorious for requiring significant computational resources, both in the training and inference stages. Previous work has focused mostly on increasing the efficiency of model inference. This paper introduces, for the first time, the paradigm of sparse-to-sparse training to DMs, with the aim of improving both training and inference efficiency. We focus on unconditional generation and train sparse DMs from scratch (Latent Diffusion and ChiroDiff) on six datasets using three different methods (Static-DM, RigL-DM, and MagRan-DM) to study the effect of sparsity in model performance. Our experiments show that sparse DMs are able to match and often outperform their Dense counterparts, while substantially reducing the number of trainable parameters and FLOPs. We also identify safe and effective values to perform sparse-to-sparse training of DMs.
Revisiting Diffusion Autoencoder Training for Image Reconstruction Quality CVPR 2025
Diffusion autoencoders (DAEs) are typically formulated as a noise prediction model and trained with a linear-$\beta$ noise schedule that spends much of its sampling steps at high noise levels. Because high noise levels are associated with recovering large-scale image structures and low noise levels with recovering details, this configuration can result in low-quality and blurry images. However, it should be possible to improve details while spending fewer steps recovering structures because the latent code should already contain structural information. Based on this insight, we propose a new DAE training method that improves the quality of reconstructed images. We divide training into two phases. In the first phase, the DAE is trained as a vanilla autoencoder by always setting the noise level to the highest, forcing the encoder and decoder to populate the latent code with structural information. In the second phase, we incorporate a noise schedule that spends more time in the low-noise region, allowing the DAE to learn how to perfect the details. Our method results in images that have accurate high-level structures and low-level details while still preserving useful properties of the latent codes.
comment: AI for Content Creation (AI4CC) Workshop at CVPR 2025
Nexus-Gen: A Unified Model for Image Understanding, Generation, and Editing
Unified multimodal large language models (MLLMs) aim to integrate multimodal understanding and generation abilities through a single framework. Despite their versatility, existing open-source unified models exhibit performance gaps against domain-specific architectures. To bridge this gap, we present Nexus-Gen, a unified model that synergizes the language reasoning capabilities of LLMs with the image synthesis power of diffusion models. To align the embedding space of the LLM and diffusion model, we conduct a dual-phase alignment training process. (1) The autoregressive LLM learns to predict image embeddings conditioned on multimodal inputs, while (2) the vision decoder is trained to reconstruct high-fidelity images from these embeddings. During training the LLM, we identified a critical discrepancy between the autoregressive paradigm's training and inference phases, where error accumulation in continuous embedding space severely degrades generation quality. To avoid this issue, we introduce a prefilled autoregression strategy that prefills input sequence with position-embedded special tokens instead of continuous embeddings. Through dual-phase training, Nexus-Gen has developed the integrated capability to comprehensively address the image understanding, generation and editing tasks. All models, datasets, and codes are published at https://github.com/modelscope/Nexus-Gen.git to facilitate further advancements across the field.
Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Early Lung Cancer Detection
Objective: A number of machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, allowing the model to learn clinically relevant, robust, and explainable features for predicting lung cancer. Methods: We obtained 938 low-dose CT scans from the National Lung Screening Trial with 1,246 nodules and semantic features. The Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We finetuned a pretrained Contrastive Language-Image Pretraining model with a parameter-efficient fine-tuning approach to align imaging and semantic features and predict the one-year lung cancer diagnosis. Results: We evaluated the performance of the one-year diagnosis of lung cancer with AUROC and AUPRC and compared it to three state-of-the-art models. Our model demonstrated an AUROC of 0.90 and AUPRC of 0.78, outperforming baseline state-of-the-art models on external datasets. Using CLIP, we also obtained predictions on semantic features, such as nodule margin (AUROC: 0.81), nodule consistency (0.81), and pleural attachment (0.84), that can be used to explain model predictions. Conclusion: Our approach accurately classifies lung nodules as benign or malignant, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings.
Towards Improved Cervical Cancer Screening: Vision Transformer-Based Classification and Interpretability
We propose a novel approach to cervical cell image classification for cervical cancer screening using the EVA-02 transformer model. We developed a four-step pipeline: fine-tuning EVA-02, feature extraction, selecting important features through multiple machine learning models, and training a new artificial neural network with optional loss weighting for improved generalization. With this design, our best model achieved an F1-score of 0.85227, outperforming the baseline EVA-02 model (0.84878). We also utilized Kernel SHAP analysis and identified key features correlating with cell morphology and staining characteristics, providing interpretable insights into the decision-making process of the fine-tuned model. Our code is available at https://github.com/Khoa-NT/isbi2025_ps3c.
comment: Accepted at ISBI 2025 "Challenge 2: Pap Smear Cell Classification Challenge"
UniBiomed: A Universal Foundation Model for Grounded Biomedical Image Interpretation
Multi-modal interpretation of biomedical images opens up novel opportunities in biomedical image analysis. Conventional AI approaches typically rely on disjointed training, i.e., Large Language Models (LLMs) for clinical text generation and segmentation models for target extraction, which results in inflexible real-world deployment and a failure to leverage holistic biomedical information. To this end, we introduce UniBiomed, the first universal foundation model for grounded biomedical image interpretation. UniBiomed is based on a novel integration of Multi-modal Large Language Model (MLLM) and Segment Anything Model (SAM), which effectively unifies the generation of clinical texts and the segmentation of corresponding biomedical objects for grounded interpretation. In this way, UniBiomed is capable of tackling a wide range of biomedical tasks across ten diverse biomedical imaging modalities. To develop UniBiomed, we curate a large-scale dataset comprising over 27 million triplets of images, annotations, and text descriptions across ten imaging modalities. Extensive validation on 84 internal and external datasets demonstrated that UniBiomed achieves state-of-the-art performance in segmentation, disease recognition, region-aware diagnosis, visual question answering, and report generation. Moreover, unlike previous models that rely on clinical experts to pre-diagnose images and manually craft precise textual or visual prompts, UniBiomed can provide automated and end-to-end grounded interpretation for biomedical image analysis. This represents a novel paradigm shift in clinical workflows, which will significantly improve diagnostic efficiency. In summary, UniBiomed represents a novel breakthrough in biomedical AI, unlocking powerful grounded interpretation capabilities for more accurate and efficient biomedical image analysis.
comment: The first universal foundation model for grounded biomedical image interpretation
Simple Visual Artifact Detection in Sora-Generated Videos
The December 2024 release of OpenAI's Sora, a powerful video generation model driven by natural language prompts, highlights a growing convergence between large language models (LLMs) and video synthesis. As these multimodal systems evolve into video-enabled LLMs (VidLLMs), capable of interpreting, generating, and interacting with visual content, understanding their limitations and ensuring their safe deployment becomes essential. This study investigates visual artifacts frequently found and reported in Sora-generated videos, which can compromise quality, mislead viewers, or propagate disinformation. We propose a multi-label classification framework targeting four common artifact label types: label 1: boundary / edge defects, label 2: texture / noise issues, label 3: movement / joint anomalies, and label 4: object mismatches / disappearances. Using a dataset of 300 manually annotated frames extracted from 15 Sora-generated videos, we trained multiple 2D CNN architectures (ResNet-50, EfficientNet-B3 / B4, ViT-Base). The best-performing model trained by ResNet-50 achieved an average multi-label classification accuracy of 94.14%. This work supports the broader development of VidLLMs by contributing to (1) the creation of datasets for video quality evaluation, (2) interpretable artifact-based analysis beyond language metrics, and (3) the identification of visual risks relevant to factuality and safety.
Towards Space Group Determination from EBSD Patterns: The Role of Deep Learning and High-throughput Dynamical Simulations
The design of novel materials hinges on the understanding of structure-property relationships. However, our capability to synthesize a large number of materials has outpaced the ability and speed needed to characterize them. While the overall chemical constituents can be readily known during synthesis, the structural evolution and characterization of newly synthesized samples remains a bottleneck for the ultimate goal of high throughput nanomaterials discovery. Thus, scalable methods for crystal symmetry determination that can analyze a large volume of material samples within a short time-frame are especially needed. Kikuchi diffraction in the SEM is a promising technique for this due to its sensitivity to dynamical scattering, which may provide information beyond just the seven crystal systems and fourteen Bravais lattices. After diffraction patterns are collected from material samples, deep learning methods may be able to classify the space group symmetries using the patterns as input, which paired with the elemental composition, would help enable the determination of the crystal structure. To investigate the feasibility of this solution, neural networks were trained to predict the space group type of background corrected EBSD patterns. Our networks were first trained and tested on an artificial dataset of EBSD patterns of 5,148 different cubic phases, created through physics-based dynamical simulations. Next, Maximum Classifier Discrepancy, an unsupervised deep learning-based domain adaptation method, was utilized to train neural networks to make predictions for experimental EBSD patterns. We introduce a relabeling scheme, which enables our models to achieve accuracy scores higher than 90% on simulated and experimental data, suggesting that neural networks are capable of making predictions of crystal symmetry from an EBSD pattern.
comment: 33 pages, preliminary version
Text-Conditioned Diffusion Model for High-Fidelity Korean Font Generation
Automatic font generation (AFG) is the process of creating a new font using only a few examples of the style images. Generating fonts for complex languages like Korean and Chinese, particularly in handwritten styles, presents significant challenges. Traditional AFGs, like Generative adversarial networks (GANs) and Variational Auto-Encoders (VAEs), are usually unstable during training and often face mode collapse problems. They also struggle to capture fine details within font images. To address these problems, we present a diffusion-based AFG method which generates high-quality, diverse Korean font images using only a single reference image, focusing on handwritten and printed styles. Our approach refines noisy images incrementally, ensuring stable training and visually appealing results. A key innovation is our text encoder, which processes phonetic representations to generate accurate and contextually correct characters, even for unseen characters. We used a pre-trained style encoder from DG FONT to effectively and accurately encode the style images. To further enhance the generation quality, we used perceptual loss that guides the model to focus on the global style of generated images. Experimental results on over 2000 Korean characters demonstrate that our model consistently generates accurate and detailed font images and outperforms benchmark methods, making it a reliable tool for generating authentic Korean fonts across different styles.
comment: 6 pages, 4 figures, Accepted at ICOIN 2025
An Evaluation of a Visual Question Answering Strategy for Zero-shot Facial Expression Recognition in Still Images
Facial expression recognition (FER) is a key research area in computer vision and human-computer interaction. Despite recent advances in deep learning, challenges persist, especially in generalizing to new scenarios. In fact, zero-shot FER significantly reduces the performance of state-of-the-art FER models. To address this problem, the community has recently started to explore the integration of knowledge from Large Language Models for visual tasks. In this work, we evaluate a broad collection of locally executed Visual Language Models (VLMs), avoiding the lack of task-specific knowledge by adopting a Visual Question Answering strategy. We compare the proposed pipeline with state-of-the-art FER models, both integrating and excluding VLMs, evaluating well-known FER benchmarks: AffectNet, FERPlus, and RAF-DB. The results show excellent performance for some VLMs in zero-shot FER scenarios, indicating the need for further exploration to improve FER generalization.
AGHI-QA: A Subjective-Aligned Dataset and Metric for AI-Generated Human Images
The rapid development of text-to-image (T2I) generation approaches has attracted extensive interest in evaluating the quality of generated images, leading to the development of various quality assessment methods for general-purpose T2I outputs. However, existing image quality assessment (IQA) methods are limited to providing global quality scores, failing to deliver fine-grained perceptual evaluations for structurally complex subjects like humans, which is a critical challenge considering the frequent anatomical and textural distortions in AI-generated human images (AGHIs). To address this gap, we introduce AGHI-QA, the first large-scale benchmark specifically designed for quality assessment of AGHIs. The dataset comprises 4,000 images generated from 400 carefully crafted text prompts using 10 state of-the-art T2I models. We conduct a systematic subjective study to collect multidimensional annotations, including perceptual quality scores, text-image correspondence scores, visible and distorted body part labels. Based on AGHI-QA, we evaluate the strengths and weaknesses of current T2I methods in generating human images from multiple dimensions. Furthermore, we propose AGHI-Assessor, a novel quality metric that integrates the large multimodal model (LMM) with domain-specific human features for precise quality prediction and identification of visible and distorted body parts in AGHIs. Extensive experimental results demonstrate that AGHI-Assessor showcases state-of-the-art performance, significantly outperforming existing IQA methods in multidimensional quality assessment and surpassing leading LMMs in detecting structural distortions in AGHIs.
The Dual Power of Interpretable Token Embeddings: Jailbreaking Attacks and Defenses for Diffusion Model Unlearning
Despite the remarkable generalization capabilities of diffusion models, recent studies have shown that these models can memorize and generate harmful content when prompted with specific text instructions. Although fine-tuning approaches have been developed to mitigate this issue by unlearning harmful concepts, these methods can be easily circumvented through jailbreaking attacks. This indicates that the harmful concept has not been fully erased from the model. However, existing attack methods, while effective, lack interpretability regarding why unlearned models still retain the concept, thereby hindering the development of defense strategies. In this work, we address these limitations by proposing an attack method that learns an orthogonal set of interpretable attack token embeddings. The attack token embeddings can be decomposed into human-interpretable textual elements, revealing that unlearned models still retain the target concept through implicit textual components. Furthermore, these attack token embeddings are robust and transferable across text prompts, initial noises, and unlearned models. Finally, leveraging this diverse set of embeddings, we design a defense method applicable to both our proposed attack and existing attack methods. Experimental results demonstrate the effectiveness of both our attack and defense strategies.
CMD: Constraining Multimodal Distribution for Domain Adaptation in Stereo Matching
Recently, learning-based stereo matching methods have achieved great improvement in public benchmarks, where soft argmin and smooth L1 loss play a core contribution to their success. However, in unsupervised domain adaptation scenarios, we observe that these two operations often yield multimodal disparity probability distributions in target domains, resulting in degraded generalization. In this paper, we propose a novel approach, Constrain Multi-modal Distribution (CMD), to address this issue. Specifically, we introduce \textit{uncertainty-regularized minimization} and \textit{anisotropic soft argmin} to encourage the network to produce predominantly unimodal disparity distributions in the target domain, thereby improving prediction accuracy. Experimentally, we apply the proposed method to multiple representative stereo-matching networks and conduct domain adaptation from synthetic data to unlabeled real-world scenes. Results consistently demonstrate improved generalization in both top-performing and domain-adaptable stereo-matching models. The code for CMD will be available at: \href{https://github.com/gallenszl/CMD}{https://github.com/gallenszl/CMD}.
comment: 13 pages, 5 figures, accepted for publication in Pattern Recognition
Learning Multi-view Multi-class Anomaly Detection
The latest trend in anomaly detection is to train a unified model instead of training a separate model for each category. However, existing multi-class anomaly detection (MCAD) models perform poorly in multi-view scenarios because they often fail to effectively model the relationships and complementary information among different views. In this paper, we introduce a Multi-View Multi-Class Anomaly Detection model (MVMCAD), which integrates information from multiple views to accurately identify anomalies. Specifically, we propose a semi-frozen encoder, where a pre-encoder prior enhancement mechanism is added before the frozen encoder, enabling stable cross-view feature modeling and efficient adaptation for improved anomaly detection. Furthermore, we propose an Anomaly Amplification Module (AAM) that models global token interactions and suppresses normal regions to enhance anomaly signals, leading to improved detection performance in multi-view settings. Finally, we propose a Cross-Feature Loss that aligns shallow encoder features with deep decoder features and vice versa, enhancing the model's sensitivity to anomalies at different semantic levels under multi-view scenarios. Extensive experiments on the Real-IAD dataset for multi-view multi-class anomaly detection validate the effectiveness of our approach, achieving state-of-the-art performance of 91.0/88.6/82.1 and 99.1/43.9/48.2/95.2 for image-level and the pixel-level, respectively.
Can We Achieve Efficient Diffusion without Self-Attention? Distilling Self-Attention into Convolutions
Contemporary diffusion models built upon U-Net or Diffusion Transformer (DiT) architectures have revolutionized image generation through transformer-based attention mechanisms. The prevailing paradigm has commonly employed self-attention with quadratic computational complexity to handle global spatial relationships in complex images, thereby synthesizing high-fidelity images with coherent visual semantics.Contrary to conventional wisdom, our systematic layer-wise analysis reveals an interesting discrepancy: self-attention in pre-trained diffusion models predominantly exhibits localized attention patterns, closely resembling convolutional inductive biases. This suggests that global interactions in self-attention may be less critical than commonly assumed.Driven by this, we propose \(\Delta\)ConvFusion to replace conventional self-attention modules with Pyramid Convolution Blocks (\(\Delta\)ConvBlocks).By distilling attention patterns into localized convolutional operations while keeping other components frozen, \(\Delta\)ConvFusion achieves performance comparable to transformer-based counterparts while reducing computational cost by 6929$\times$ and surpassing LinFusion by 5.42$\times$ in efficiency--all without compromising generative fidelity.
Mamba Based Feature Extraction And Adaptive Multilevel Feature Fusion For 3D Tumor Segmentation From Multi-modal Medical Image
Multi-modal 3D medical image segmentation aims to accurately identify tumor regions across different modalities, facing challenges from variations in image intensity and tumor morphology. Traditional convolutional neural network (CNN)-based methods struggle with capturing global features, while Transformers-based methods, despite effectively capturing global context, encounter high computational costs in 3D medical image segmentation. The Mamba model combines linear scalability with long-distance modeling, making it a promising approach for visual representation learning. However, Mamba-based 3D multi-modal segmentation still struggles to leverage modality-specific features and fuse complementary information effectively. In this paper, we propose a Mamba based feature extraction and adaptive multilevel feature fusion for 3D tumor segmentation using multi-modal medical image. We first develop the specific modality Mamba encoder to efficiently extract long-range relevant features that represent anatomical and pathological structures present in each modality. Moreover, we design an bi-level synergistic integration block that dynamically merges multi-modal and multi-level complementary features by the modality attention and channel attention learning. Lastly, the decoder combines deep semantic information with fine-grained details to generate the tumor segmentation map. Experimental results on medical image datasets (PET/CT and MRI multi-sequence) show that our approach achieve competitive performance compared to the state-of-the-art CNN, Transformer, and Mamba-based approaches.
CoCoDiff: Diversifying Skeleton Action Features via Coarse-Fine Text-Co-Guided Latent Diffusion
In action recognition tasks, feature diversity is essential for enhancing model generalization and performance. Existing methods typically promote feature diversity by expanding the training data in the sample space, which often leads to inefficiencies and semantic inconsistencies. To overcome these problems, we propose a novel Coarse-fine text co-guidance Diffusion model (CoCoDiff). CoCoDiff generates diverse yet semantically consistent features in the latent space by leveraging diffusion and multi-granularity textual guidance. Specifically, our approach feeds spatio-temporal features extracted from skeleton sequences into a latent diffusion model to generate diverse action representations. Meanwhile, we introduce a coarse-fine text co-guided strategy that leverages textual information from large language models (LLMs) to ensure semantic consistency between the generated features and the original inputs. It is noted that CoCoDiff operates as a plug-and-play auxiliary module during training, incurring no additional inference cost. Extensive experiments demonstrate that CoCoDiff achieves SOTA performance on skeleton-based action recognition benchmarks, including NTU RGB+D, NTU RGB+D 120 and Kinetics-Skeleton.
Embracing Collaboration Over Competition: Condensing Multiple Prompts for Visual In-Context Learning CVPR'25
Visual In-Context Learning (VICL) enables adaptively solving vision tasks by leveraging pixel demonstrations, mimicking human-like task completion through analogy. Prompt selection is critical in VICL, but current methods assume the existence of a single "ideal" prompt in a pool of candidates, which in practice may not hold true. Multiple suitable prompts may exist, but individually they often fall short, leading to difficulties in selection and the exclusion of useful context. To address this, we propose a new perspective: prompt condensation. Rather than relying on a single prompt, candidate prompts collaborate to efficiently integrate informative contexts without sacrificing resolution. We devise Condenser, a lightweight external plugin that compresses relevant fine-grained context across multiple prompts. Optimized end-to-end with the backbone, Condenser ensures accurate integration of contextual cues. Experiments demonstrate Condenser outperforms state-of-the-arts across benchmark tasks, showing superior context compression, scalability with more prompts, and enhanced computational efficiency compared to ensemble methods, positioning it as a highly competitive solution for VICL. Code is open-sourced at https://github.com/gimpong/CVPR25-Condenser.
comment: Accepted by CVPR'25. 10 pages, 5 figures, 6 tables
Multi-modal Transfer Learning for Dynamic Facial Emotion Recognition in the Wild
Facial expression recognition (FER) is a subset of computer vision with important applications for human-computer-interaction, healthcare, and customer service. FER represents a challenging problem-space because accurate classification requires a model to differentiate between subtle changes in facial features. In this paper, we examine the use of multi-modal transfer learning to improve performance on a challenging video-based FER dataset, Dynamic Facial Expression in-the-Wild (DFEW). Using a combination of pretrained ResNets, OpenPose, and OmniVec networks, we explore the impact of cross-temporal, multi-modal features on classification accuracy. Ultimately, we find that these finely-tuned multi-modal feature generators modestly improve accuracy of our transformer-based classification model.
comment: 8 pages, 6 figures
Subject Information Extraction for Novelty Detection with Domain Shifts
Unsupervised novelty detection (UND), aimed at identifying novel samples, is essential in fields like medical diagnosis, cybersecurity, and industrial quality control. Most existing UND methods assume that the training data and testing normal data originate from the same domain and only consider the distribution variation between training data and testing data. However, in real scenarios, it is common for normal testing and training data to originate from different domains, a challenge known as domain shift. The discrepancies between training and testing data often lead to incorrect classification of normal data as novel by existing methods. A typical situation is that testing normal data and training data describe the same subject, yet they differ in the background conditions. To address this problem, we introduce a novel method that separates subject information from background variation encapsulating the domain information to enhance detection performance under domain shifts. The proposed method minimizes the mutual information between the representations of the subject and background while modelling the background variation using a deep Gaussian mixture model, where the novelty detection is conducted on the subject representations solely and hence is not affected by the variation of domains. Extensive experiments demonstrate that our model generalizes effectively to unseen domains and significantly outperforms baseline methods, especially under substantial domain shifts between training and testing data.
Towards Robust and Generalizable Gerchberg Saxton based Physics Inspired Neural Networks for Computer Generated Holography: A Sensitivity Analysis Framework
Computer-generated holography (CGH) enables applications in holographic augmented reality (AR), 3D displays, systems neuroscience, and optical trapping. The fundamental challenge in CGH is solving the inverse problem of phase retrieval from intensity measurements. Physics-inspired neural networks (PINNs), especially Gerchberg-Saxton-based PINNs (GS-PINNs), have advanced phase retrieval capabilities. However, their performance strongly depends on forward models (FMs) and their hyperparameters (FMHs), limiting generalization, complicating benchmarking, and hindering hardware optimization. We present a systematic sensitivity analysis framework based on Saltelli's extension of Sobol's method to quantify FMH impacts on GS-PINN performance. Our analysis demonstrates that SLM pixel-resolution is the primary factor affecting neural network sensitivity, followed by pixel-pitch, propagation distance, and wavelength. Free space propagation forward models demonstrate superior neural network performance compared to Fourier holography, providing enhanced parameterization and generalization. We introduce a composite evaluation metric combining performance consistency, generalization capability, and hyperparameter perturbation resilience, establishing a unified benchmarking standard across CGH configurations. Our research connects physics-inspired deep learning theory with practical CGH implementations through concrete guidelines for forward model selection, neural network architecture, and performance evaluation. Our contributions advance the development of robust, interpretable, and generalizable neural networks for diverse holographic applications, supporting evidence-based decisions in CGH research and implementation.
Direct Motion Models for Assessing Generated Videos
A current limitation of video generative video models is that they generate plausible looking frames, but poor motion -- an issue that is not well captured by FVD and other popular methods for evaluating generated videos. Here we go beyond FVD by developing a metric which better measures plausible object interactions and motion. Our novel approach is based on auto-encoding point tracks and yields motion features that can be used to not only compare distributions of videos (as few as one generated and one ground truth, or as many as two datasets), but also for evaluating motion of single videos. We show that using point tracks instead of pixel reconstruction or action recognition features results in a metric which is markedly more sensitive to temporal distortions in synthetic data, and can predict human evaluations of temporal consistency and realism in generated videos obtained from open-source models better than a wide range of alternatives. We also show that by using a point track representation, we can spatiotemporally localize generative video inconsistencies, providing extra interpretability of generated video errors relative to prior work. An overview of the results and link to the code can be found on the project page: http://trajan-paper.github.io.
comment: Project page: http://trajan-paper.github.io
Neuroevolution of Self-Attention Over Proto-Objects GECCO
Proto-objects - image regions that share common visual properties - offer a promising alternative to traditional attention mechanisms based on rectangular-shaped image patches in neural networks. Although previous work demonstrated that evolving a patch-based hard-attention module alongside a controller network could achieve state-of-the-art performance in visual reinforcement learning tasks, our approach leverages image segmentation to work with higher-level features. By operating on proto-objects rather than fixed patches, we significantly reduce the representational complexity: each image decomposes into fewer proto-objects than regular patches, and each proto-object can be efficiently encoded as a compact feature vector. This enables a substantially smaller self-attention module that processes richer semantic information. Our experiments demonstrate that this proto-object-based approach matches or exceeds the state-of-the-art performance of patch-based implementations with 62% less parameters and 2.6 times less training time.
comment: 9 pages, 16 figures, GECCO
V3LMA: Visual 3D-enhanced Language Model for Autonomous Driving
Large Vision Language Models (LVLMs) have shown strong capabilities in understanding and analyzing visual scenes across various domains. However, in the context of autonomous driving, their limited comprehension of 3D environments restricts their effectiveness in achieving a complete and safe understanding of dynamic surroundings. To address this, we introduce V3LMA, a novel approach that enhances 3D scene understanding by integrating Large Language Models (LLMs) with LVLMs. V3LMA leverages textual descriptions generated from object detections and video inputs, significantly boosting performance without requiring fine-tuning. Through a dedicated preprocessing pipeline that extracts 3D object data, our method improves situational awareness and decision-making in complex traffic scenarios, achieving a score of 0.56 on the LingoQA benchmark. We further explore different fusion strategies and token combinations with the goal of advancing the interpretation of traffic scenes, ultimately enabling safer autonomous driving systems.
Detecting and Mitigating Hateful Content in Multimodal Memes with Vision-Language Models
The rapid evolution of social media has provided enhanced communication channels for individuals to create online content, enabling them to express their thoughts and opinions. Multimodal memes, often utilized for playful or humorous expressions with visual and textual elements, are sometimes misused to disseminate hate speech against individuals or groups. While the detection of hateful memes is well-researched, developing effective methods to transform hateful content in memes remains a significant challenge. Leveraging the powerful generation and reasoning capabilities of Vision-Language Models (VLMs), we address the tasks of detecting and mitigating hateful content. This paper presents two key contributions: first, a definition-guided prompting technique for detecting hateful memes, and second, a unified framework for mitigating hateful content in memes, named UnHateMeme, which works by replacing hateful textual and/or visual components. With our definition-guided prompts, VLMs achieve impressive performance on hateful memes detection task. Furthermore, our UnHateMeme framework, integrated with VLMs, demonstrates a strong capability to convert hateful memes into non-hateful forms that meet human-level criteria for hate speech and maintain multimodal coherence between image and text. Through empirical experiments, we show the effectiveness of state-of-the-art pretrained VLMs such as LLaVA, Gemini and GPT-4o on the proposed tasks, providing a comprehensive analysis of their respective strengths and limitations for these tasks. This paper aims to shed light on important applications of VLMs for ensuring safe and respectful online environments.
Eye2Eye: A Simple Approach for Monocular-to-Stereo Video Synthesis
The rising popularity of immersive visual experiences has increased interest in stereoscopic 3D video generation. Despite significant advances in video synthesis, creating 3D videos remains challenging due to the relative scarcity of 3D video data. We propose a simple approach for transforming a text-to-video generator into a video-to-stereo generator. Given an input video, our framework automatically produces the video frames from a shifted viewpoint, enabling a compelling 3D effect. Prior and concurrent approaches for this task typically operate in multiple phases, first estimating video disparity or depth, then warping the video accordingly to produce a second view, and finally inpainting the disoccluded regions. This approach inherently fails when the scene involves specular surfaces or transparent objects. In such cases, single-layer disparity estimation is insufficient, resulting in artifacts and incorrect pixel shifts during warping. Our work bypasses these restrictions by directly synthesizing the new viewpoint, avoiding any intermediate steps. This is achieved by leveraging a pre-trained video model's priors on geometry, object materials, optics, and semantics, without relying on external geometry models or manually disentangling geometry from the synthesis process. We demonstrate the advantages of our approach in complex, real-world scenarios featuring diverse object materials and compositions. See videos on https://video-eye2eye.github.io
Investigating Zero-Shot Diagnostic Pathology in Vision-Language Models with Efficient Prompt Design
Vision-language models (VLMs) have gained significant attention in computational pathology due to their multimodal learning capabilities that enhance big-data analytics of giga-pixel whole slide image (WSI). However, their sensitivity to large-scale clinical data, task formulations, and prompt design remains an open question, particularly in terms of diagnostic accuracy. In this paper, we present a systematic investigation and analysis of three state of the art VLMs for histopathology, namely Quilt-Net, Quilt-LLAVA, and CONCH, on an in-house digestive pathology dataset comprising 3,507 WSIs, each in giga-pixel form, across distinct tissue types. Through a structured ablative study on cancer invasiveness and dysplasia status, we develop a comprehensive prompt engineering framework that systematically varies domain specificity, anatomical precision, instructional framing, and output constraints. Our findings demonstrate that prompt engineering significantly impacts model performance, with the CONCH model achieving the highest accuracy when provided with precise anatomical references. Additionally, we identify the critical importance of anatomical context in histopathological image analysis, as performance consistently degraded when reducing anatomical precision. We also show that model complexity alone does not guarantee superior performance, as effective domain alignment and domain-specific training are critical. These results establish foundational guidelines for prompt engineering in computational pathology and highlight the potential of VLMs to enhance diagnostic accuracy when properly instructed with domain-appropriate prompts.
Efficient and robust 3D blind harmonization for large domain gaps
Blind harmonization has emerged as a promising technique for MR image harmonization to achieve scale-invariant representations, requiring only target domain data (i.e., no source domain data necessary). However, existing methods face limitations such as inter-slice heterogeneity in 3D, moderate image quality, and limited performance for a large domain gap. To address these challenges, we introduce BlindHarmonyDiff, a novel blind 3D harmonization framework that leverages an edge-to-image model tailored specifically to harmonization. Our framework employs a 3D rectified flow trained on target domain images to reconstruct the original image from an edge map, then yielding a harmonized image from the edge of a source domain image. We propose multi-stride patch training for efficient 3D training and a refinement module for robust inference by suppressing hallucination. Extensive experiments demonstrate that BlindHarmonyDiff outperforms prior arts by harmonizing diverse source domain images to the target domain, achieving higher correspondence to the target domain characteristics. Downstream task-based quality assessments such as tissue segmentation and age prediction on diverse MR scanners further confirm the effectiveness of our approach and demonstrate the capability of our robust and generalizable blind harmonization.
Rootlets-based registration to the spinal cord PAM50 template
Spinal cord functional MRI studies require precise localization of spinal levels for reliable voxelwise group analyses. Traditional template-based registration of the spinal cord uses intervertebral discs for alignment. However, substantial anatomical variability across individuals exists between vertebral and spinal levels. This study proposes a novel registration approach that leverages spinal nerve rootlets to improve alignment accuracy and reproducibility across individuals. We developed a registration method leveraging dorsal cervical rootlets segmentation and aligning them non-linearly with the PAM50 spinal cord template. Validation was performed on a multi-subject, multi-site dataset (n=267, 44 sites) and a multi-subject dataset with various neck positions (n=10, 3 sessions). We further validated the method on task-based functional MRI (n=23) to compare group-level activation maps using rootlet-based registration to traditional disc-based methods. Rootlet-based registration showed superior alignment across individuals compared to the traditional disc-based method. Notably, rootlet positions were more stable across neck positions. Group-level analysis of task-based functional MRI using rootlet-based increased Z scores and activation cluster size compared to disc-based registration (number of active voxels from 3292 to 7978). Rootlet-based registration enhances both inter- and intra-subject anatomical alignment and yields better spatial normalization for group-level fMRI analyses. Our findings highlight the potential of rootlet-based registration to improve the precision and reliability of spinal cord neuroimaging group analysis.
GDI-Bench: A Benchmark for General Document Intelligence with Vision and Reasoning Decoupling
The rapid advancement of multimodal large language models (MLLMs) has profoundly impacted the document domain, creating a wide array of application scenarios. This progress highlights the need for a comprehensive benchmark to evaluate these models' capabilities across various document-specific tasks. However, existing benchmarks often fail to locate specific model weaknesses or guide systematic improvements. To bridge this gap, we introduce a General Document Intelligence Benchmark (GDI-Bench), featuring 1.9k images across 9 key scenarios and 19 document-specific tasks. By decoupling visual complexity and reasoning complexity, the GDI-Bench structures graded tasks that allow performance assessment by difficulty, aiding in model weakness identification and optimization guidance. We evaluate the GDI-Bench on various open-source and closed-source models, conducting decoupled analyses in the visual and reasoning domains. For instance, the GPT-4o model excels in reasoning tasks but exhibits limitations in visual capabilities. To address the diverse tasks and domains in the GDI-Bench, we propose a GDI Model that mitigates the issue of catastrophic forgetting during the supervised fine-tuning (SFT) process through a intelligence-preserving training strategy. Our model achieves state-of-the-art performance on previous benchmarks and the GDI-Bench. Both our benchmark and model will be open source.
Recursive KL Divergence Optimization: A Dynamic Framework for Representation Learning
We propose a generalization of modern representation learning objectives by reframing them as recursive divergence alignment processes over localized conditional distributions While recent frameworks like Information Contrastive Learning I-Con unify multiple learning paradigms through KL divergence between fixed neighborhood conditionals we argue this view underplays a crucial recursive structure inherent in the learning process. We introduce Recursive KL Divergence Optimization RKDO a dynamic formalism where representation learning is framed as the evolution of KL divergences across data neighborhoods. This formulation captures contrastive clustering and dimensionality reduction methods as static slices while offering a new path to model stability and local adaptation. Our experiments demonstrate that RKDO offers dual efficiency advantages approximately 30 percent lower loss values compared to static approaches across three different datasets and 60 to 80 percent reduction in computational resources needed to achieve comparable results. This suggests that RKDOs recursive updating mechanism provides a fundamentally more efficient optimization landscape for representation learning with significant implications for resource constrained applications.
AnimalMotionCLIP: Embedding motion in CLIP for Animal Behavior Analysis
Recently, there has been a surge of interest in applying deep learning techniques to animal behavior recognition, particularly leveraging pre-trained visual language models, such as CLIP, due to their remarkable generalization capacity across various downstream tasks. However, adapting these models to the specific domain of animal behavior recognition presents two significant challenges: integrating motion information and devising an effective temporal modeling scheme. In this paper, we propose AnimalMotionCLIP to address these challenges by interleaving video frames and optical flow information in the CLIP framework. Additionally, several temporal modeling schemes using an aggregation of classifiers are proposed and compared: dense, semi dense, and sparse. As a result, fine temporal actions can be correctly recognized, which is of vital importance in animal behavior analysis. Experiments on the Animal Kingdom dataset demonstrate that AnimalMotionCLIP achieves superior performance compared to state-of-the-art approaches.
comment: 6 pages, 3 figures,Accepted for the poster session at the CV4Animals workshop: Computer Vision for Animal Behavior Tracking and Modeling In conjunction with Computer Vision and Pattern Recognition 2024
DS_FusionNet: Dynamic Dual-Stream Fusion with Bidirectional Knowledge Distillation for Plant Disease Recognition
Given the severe challenges confronting the global growth security of economic crops, precise identification and prevention of plant diseases has emerged as a critical issue in artificial intelligence-enabled agricultural technology. To address the technical challenges in plant disease recognition, including small-sample learning, leaf occlusion, illumination variations, and high inter-class similarity, this study innovatively proposes a Dynamic Dual-Stream Fusion Network (DS_FusionNet). The network integrates a dual-backbone architecture, deformable dynamic fusion modules, and bidirectional knowledge distillation strategy, significantly enhancing recognition accuracy. Experimental results demonstrate that DS_FusionNet achieves classification accuracies exceeding 90% using only 10% of the PlantDisease and CIFAR-10 datasets, while maintaining 85% accuracy on the complex PlantWild dataset, exhibiting exceptional generalization capabilities. This research not only provides novel technical insights for fine-grained image classification but also establishes a robust foundation for precise identification and management of agricultural diseases.
comment: 9 pages, 14 figures, 2025 3rd International Conference on Algorithms, Mathematical Modeling and Machinery Processing (AMMMP 2025)
End-to-end Audio Deepfake Detection from RAW Waveforms: a RawNet-Based Approach with Cross-Dataset Evaluation
Audio deepfakes represent a growing threat to digital security and trust, leveraging advanced generative models to produce synthetic speech that closely mimics real human voices. Detecting such manipulations is especially challenging under open-world conditions, where spoofing methods encountered during testing may differ from those seen during training. In this work, we propose an end-to-end deep learning framework for audio deepfake detection that operates directly on raw waveforms. Our model, RawNetLite, is a lightweight convolutional-recurrent architecture designed to capture both spectral and temporal features without handcrafted preprocessing. To enhance robustness, we introduce a training strategy that combines data from multiple domains and adopts Focal Loss to emphasize difficult or ambiguous samples. We further demonstrate that incorporating codec-based manipulations and applying waveform-level audio augmentations (e.g., pitch shifting, noise, and time stretching) leads to significant generalization improvements under realistic acoustic conditions. The proposed model achieves over 99.7% F1 and 0.25% EER on in-domain data (FakeOrReal), and up to 83.4% F1 with 16.4% EER on a challenging out-of-distribution test set (AVSpoof2021 + CodecFake). These findings highlight the importance of diverse training data, tailored objective functions and audio augmentations in building resilient and generalizable audio forgery detectors. Code and pretrained models are available at https://iplab.dmi.unict.it/mfs/Deepfakes/PaperRawNet2025/.
PixelHacker: Image Inpainting with Structural and Semantic Consistency
Image inpainting is a fundamental research area between image editing and image generation. Recent state-of-the-art (SOTA) methods have explored novel attention mechanisms, lightweight architectures, and context-aware modeling, demonstrating impressive performance. However, they often struggle with complex structure (e.g., texture, shape, spatial relations) and semantics (e.g., color consistency, object restoration, and logical correctness), leading to artifacts and inappropriate generation. To address this challenge, we design a simple yet effective inpainting paradigm called latent categories guidance, and further propose a diffusion-based model named PixelHacker. Specifically, we first construct a large dataset containing 14 million image-mask pairs by annotating foreground and background (potential 116 and 21 categories, respectively). Then, we encode potential foreground and background representations separately through two fixed-size embeddings, and intermittently inject these features into the denoising process via linear attention. Finally, by pre-training on our dataset and fine-tuning on open-source benchmarks, we obtain PixelHacker. Extensive experiments show that PixelHacker comprehensively outperforms the SOTA on a wide range of datasets (Places2, CelebA-HQ, and FFHQ) and exhibits remarkable consistency in both structure and semantics. Project page at https://hustvl.github.io/PixelHacker.
comment: https://hustvl.github.io/PixelHacker
Stereo4D: Learning How Things Move in 3D from Internet Stereo Videos CVPR 2025
Learning to understand dynamic 3D scenes from imagery is crucial for applications ranging from robotics to scene reconstruction. Yet, unlike other problems where large-scale supervised training has enabled rapid progress, directly supervising methods for recovering 3D motion remains challenging due to the fundamental difficulty of obtaining ground truth annotations. We present a system for mining high-quality 4D reconstructions from internet stereoscopic, wide-angle videos. Our system fuses and filters the outputs of camera pose estimation, stereo depth estimation, and temporal tracking methods into high-quality dynamic 3D reconstructions. We use this method to generate large-scale data in the form of world-consistent, pseudo-metric 3D point clouds with long-term motion trajectories. We demonstrate the utility of this data by training a variant of DUSt3R to predict structure and 3D motion from real-world image pairs, showing that training on our reconstructed data enables generalization to diverse real-world scenes. Project page and data at: https://stereo4d.github.io
comment: CVPR 2025 Camera Ready; Data released
Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games AAMAS 2025
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
ObjectFinder: An Open-Vocabulary Assistive System for Interactive Object Search by Blind People
Searching for objects in unfamiliar scenarios is a challenging task for blind people. It involves specifying the target object, detecting it, and then gathering detailed information according to the user's intent. However, existing description- and detection-based assistive technologies do not sufficiently support the multifaceted nature of interactive object search tasks. We present ObjectFinder, an open-vocabulary wearable assistive system for interactive object search by blind people. ObjectFinder allows users to query target objects using flexible wording. Once the target object is detected, it provides egocentric localization information in real-time, including distance and direction. Users can then initiate different branches to gather detailed information based on their intent towards the target object, such as navigating to it or perceiving its surroundings. ObjectFinder is powered by a seamless combination of open-vocabulary models, namely an open-vocabulary object detector and a multimodal large language model. The ObjectFinder design concept and its development were carried out in collaboration with a blind co-designer. To evaluate ObjectFinder, we conducted an exploratory user study with eight blind participants. We compared ObjectFinder to BeMyAI and Google Lookout, popular description- and detection-based assistive applications. Our findings indicate that most participants felt more independent with ObjectFinder and preferred it for object search, as it enhanced scene context gathering and navigation, and allowed for active target identification. Finally, we discuss the implications for future assistive systems to support interactive object search.
Explorations of the Softmax Space: Knowing When the Neural Network Doesn't Know
Ensuring the reliability of automated decision-making based on neural networks will be crucial as Artificial Intelligence systems are deployed more widely in critical situations. This paper proposes a new approach for measuring confidence in the predictions of any neural network that relies on the predictions of a softmax layer. We identify that a high-accuracy trained network may have certain outputs for which there should be low confidence. In such cases, decisions should be deferred and it is more appropriate for the network to provide a \textit{not known} answer to a corresponding classification task. Our approach clusters the vectors in the softmax layer to measure distances between cluster centroids and network outputs. We show that a cluster with centroid calculated simply as the mean softmax output for all correct predictions can serve as a suitable proxy in the evaluation of confidence. Defining a distance threshold for a class as the smallest distance from an incorrect prediction to the given class centroid offers a simple approach to adding \textit{not known} answers to any network classification falling outside of the threshold. We evaluate the approach on the MNIST and CIFAR-10 datasets using a Convolutional Neural Network and a Vision Transformer, respectively. The results show that our approach is consistent across datasets and network models, and indicate that the proposed distance metric can offer an efficient way of determining when automated predictions are acceptable and when they should be deferred to human operators.
comment: 15 pages, 6 figures, 2 table
Multi-view Structural Convolution Network for Domain-Invariant Point Cloud Recognition of Autonomous Vehicles
Point cloud representation has recently become a research hotspot in the field of computer vision and has been utilized for autonomous vehicles. However, adapting deep learning networks for point cloud data recognition is challenging due to the variability in datasets and sensor technologies. This variability underscores the necessity for adaptive techniques to maintain accuracy under different conditions. In this paper, we present the Multi-View Structural Convolution Network (MSCN) designed for domain-invariant point cloud recognition. MSCN comprises Structural Convolution Layers (SCL) that extract local context geometric features from point clouds and Structural Aggregation Layers (SAL) that extract and aggregate both local and overall context features from point clouds. Additionally, our MSCN enhances feature representation robustness by training with unseen domain point clouds derived from source domain point clouds. This method acquires domain-invariant features and exhibits robust, consistent performance across various point cloud datasets, ensuring compatibility with diverse sensor configurations without the need for parameter adjustments. This highlights MSCN's potential to significantly improve the reliability and domain invariant features in different environments. Our code is available at https://github.com/MLMLab/MSCN.
comment: 36 pages, 6 figures
Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals NAACL 2025
With the advent of Large Language Models (LLMs) possessing increasingly impressive capabilities, a number of Large Vision-Language Models (LVLMs) have been proposed to augment LLMs with visual inputs. Such models condition generated text on both an input image and a text prompt, enabling a variety of use cases such as visual question answering and multimodal chat. While prior studies have examined the social biases contained in text generated by LLMs, this topic has been relatively unexplored in LVLMs. Examining social biases in LVLMs is particularly challenging due to the confounding contributions of bias induced by information contained across the text and visual modalities. To address this challenging problem, we conduct a large-scale study of text generated by different LVLMs under counterfactual changes to input images, producing over 57 million responses from popular models. Our multi-dimensional bias evaluation framework reveals that social attributes such as perceived race, gender, and physical characteristics depicted in images can significantly influence the generation of toxic content, competency-associated words, harmful stereotypes, and numerical ratings of individuals.
comment: Accepted to NAACL 2025 main track (oral)
Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration
'A trustworthy representation of uncertainty is desirable and should be considered as a key feature of any machine learning method' (Huellermeier and Waegeman, 2021). This conclusion of Huellermeier et al. underpins the importance of calibrated uncertainties. Since AI-based algorithms are heavily impacted by dataset shifts, the automotive industry needs to safeguard its system against all possible contingencies. One important but often neglected dataset shift is caused by optical aberrations induced by the windshield. For the verification of the perception system performance, requirements on the AI performance need to be translated into optical metrics by a bijective mapping. Given this bijective mapping it is evident that the optical system characteristics add additional information about the magnitude of the dataset shift. As a consequence, we propose to incorporate a physical inductive bias into the neural network calibration architecture to enhance the robustness and the trustworthiness of the AI target application, which we demonstrate by using a semantic segmentation task as an example. By utilizing the Zernike coefficient vector of the optical system as a physical prior we can significantly reduce the mean expected calibration error in case of optical aberrations. As a result, we pave the way for a trustworthy uncertainty representation and for a holistic verification strategy of the perception chain.
comment: Under review at IEEE Transactions on Intelligent Transportation Systems (T-ITS)
Towards Understanding Depth Perception in Foveated Rendering
The true vision for real-time virtual and augmented reality is reproducing our visual reality in its entirety on immersive displays. To this end, foveated rendering leverages the limitations of spatial acuity in human peripheral vision to allocate computational resources to the fovea while reducing quality in the periphery. Such methods are often derived from studies on the spatial resolution of the human visual system and its ability to perceive blur in the periphery, enabling the potential for high spatial quality in real-time. However, the effects of blur on other visual cues that depend on luminance contrast, such as depth, remain largely unexplored. It is critical to understand this interplay, as accurate depth representation is a fundamental aspect of visual realism. In this paper, we present the first evaluation exploring the effects of foveated rendering on stereoscopic depth perception. We design a psychovisual experiment to quantitatively study the effects of peripheral blur on depth perception. Our analysis demonstrates that stereoscopic acuity remains unaffected (or even improves) by high levels of peripheral blur. Based on our studies, we derive a simple perceptual model that determines the amount of foveation that does not affect stereoacuity. Furthermore, we analyze the model in the context of common foveation practices reported in literature. The findings indicate that foveated rendering does not impact stereoscopic depth perception, and stereoacuity remains unaffected with up to 2x stronger foveation than commonly used. Finally, we conduct a validation experiment and show that our findings hold for complex natural stimuli.
comment: 9 pages including references
CountingDINO: A Training-free Pipeline for Class-Agnostic Counting using Unsupervised Backbones
Class-agnostic counting (CAC) aims to estimate the number of objects in images without being restricted to predefined categories. However, while current exemplar-based CAC methods offer flexibility at inference time, they still rely heavily on labeled data for training, which limits scalability and generalization to many downstream use cases. In this paper, we introduce CountingDINO, the first training-free exemplar-based CAC framework that exploits a fully unsupervised feature extractor. Specifically, our approach employs self-supervised vision-only backbones to extract object-aware features, and it eliminates the need for annotated data throughout the entire proposed pipeline. At inference time, we extract latent object prototypes via ROI-Align from DINO features and use them as convolutional kernels to generate similarity maps. These are then transformed into density maps through a simple yet effective normalization scheme. We evaluate our approach on the FSC-147 benchmark, where we consistently outperform a baseline based on an SOTA unsupervised object detector under the same label- and training-free setting. Additionally, we achieve competitive results -- and in some cases surpass -- training-free methods that rely on supervised backbones, non-training-free unsupervised methods, as well as several fully supervised SOTA approaches. This demonstrates that label- and training-free CAC can be both scalable and effective. Code: https://lorebianchi98.github.io/CountingDINO/.
comment: 13 pages, 2 figures, 2 tables. Project website: https://lorebianchi98.github.io/CountingDINO/
Comparison of Kinematics and Kinetics Between OpenCap and a Marker-Based Motion Capture System in Cycling
This study evaluates the agreement of marker-based and markerless (OpenCap) motion capture systems in assessing joint kinematics and kinetics during cycling. Markerless systems, such as OpenCap, offer the advantage of capturing natural movements without physical markers, making them more practical for real-world applications. However, the agreement of OpenCap with a marker-based system, particularly in cycling, remains underexplored. Ten participants cycled at varying speeds and resistances while motion data were recorded using both systems. Key metrics, including joint angles, moments, and joint reaction loads, were computed using OpenSim and compared using root mean squared error (RMSE) per trial across participants, Pearson correlation coefficients (r) per trial across participants and repeated measures Bland-Altman to control trials dependency within subject. Results revealed very strong agreement (r GT 0.9) for hip (flexion/extension), knee (flexion/extension), and ankle (dorsiflexion/plantarflexion) joint angles.
Leveraging Motion Information for Better Self-Supervised Video Correspondence Learning
Self-supervised video correspondence learning depends on the ability to accurately associate pixels between video frames that correspond to the same visual object. However, achieving reliable pixel matching without supervision remains a major challenge. To address this issue, recent research has focused on feature learning techniques that aim to encode unique pixel representations for matching. Despite these advances, existing methods still struggle to achieve exact pixel correspondences and often suffer from false matches, limiting their effectiveness in self-supervised settings. To this end, we explore an efficient self-supervised Video Correspondence Learning framework (MER) that aims to accurately extract object details from unlabeled videos. First, we design a dedicated Motion Enhancement Engine that emphasizes capturing the dynamic motion of objects in videos. In addition, we introduce a flexible sampling strategy for inter-pixel correspondence information (Multi-Cluster Sampler) that enables the model to pay more attention to the pixel changes of important objects in motion. Through experiments, our algorithm outperforms the state-of-the-art competitors on video correspondence learning tasks such as video object segmentation and video object keypoint tracking.
T2VEval: Benchmark Dataset and Objective Evaluation Method for T2V-generated Videos
Recent advances in text-to-video (T2V) technology, as demonstrated by models such as Runway Gen-3, Pika, Sora, and Kling, have significantly broadened the applicability and popularity of the technology. This progress has created a growing demand for accurate quality assessment metrics to evaluate the perceptual quality of T2V-generated videos and optimize video generation models. However, assessing the quality of text-to-video outputs remain challenging due to the presence of highly complex distortions, such as unnatural actions and phenomena that defy human cognition. To address these challenges, we constructed T2VEval-Bench, a multi-dimensional benchmark dataset for text-to-video quality evaluation, which contains 148 textual prompts and 1,783 videos generated by 13 T2V models. To ensure a comprehensive evaluation, we scored each video on four dimensions in the subjective experiment, which are overall impression, text-video consistency, realness, and technical quality. Based on T2VEval-Bench, we developed T2VEval, a multi-branch fusion scheme for T2V quality evaluation. T2VEval assesses videos across three branches: text-video consistency, realness, and technical quality. Using an attention-based fusion module, T2VEval effectively integrates features from each branch and predicts scores with the aid of a large language model. Additionally, we implemented a divide-and-conquer training strategy, enabling each branch to learn targeted knowledge while maintaining synergy with the others. Experimental results demonstrate that T2VEval achieves state-of-the-art performance across multiple metrics.
BiPrompt-SAM: Enhancing Image Segmentation via Explicit Selection between Point and Text Prompts
Segmentation is a fundamental task in computer vision, with prompt-driven methods gaining prominence due to their flexibility. The Segment Anything Model (SAM) excels at point-prompted segmentation, while text-based models, often leveraging powerful multimodal encoders like BEIT-3, provide rich semantic understanding. However, effectively combining these complementary modalities remains a challenge. This paper introduces BiPrompt-SAM, a novel dual-modal prompt segmentation framework employing an explicit selection mechanism. We leverage SAM's ability to generate multiple mask candidates from a single point prompt and use a text-guided mask (generated via EVF-SAM with BEIT-3) to select the point-generated mask that best aligns spatially, measured by Intersection over Union (IoU). This approach, interpretable as a simplified Mixture of Experts (MoE), effectively fuses spatial precision and semantic context without complex model modifications. Notably, our method achieves strong zero-shot performance on the Endovis17 medical dataset (89.55% mDice, 81.46% mIoU) using only a single point prompt per instance. This significantly reduces annotation burden compared to bounding boxes and aligns better with practical clinical workflows, demonstrating the method's effectiveness without domain-specific training. On the RefCOCO series, BiPrompt-SAM attained 87.1%, 86.5%, and 85.8% IoU, significantly outperforming existing approaches. Experiments show BiPrompt-SAM excels in scenarios requiring both spatial accuracy and semantic disambiguation, offering a simple, effective, and interpretable perspective on multi-modal prompt fusion.
Garment3DGen: 3D Garment Stylization and Texture Generation 3DV 2025
We introduce Garment3DGen a new method to synthesize 3D garment assets from a base mesh given a single input image as guidance. Our proposed approach allows users to generate 3D textured clothes based on both real and synthetic images, such as those generated by text prompts. The generated assets can be directly draped and simulated on human bodies. We leverage the recent progress of image-to-3D diffusion methods to generate 3D garment geometries. However, since these geometries cannot be utilized directly for downstream tasks, we propose to use them as pseudo ground-truth and set up a mesh deformation optimization procedure that deforms a base template mesh to match the generated 3D target. Carefully designed losses allow the base mesh to freely deform towards the desired target, yet preserve mesh quality and topology such that they can be simulated. Finally, we generate high-fidelity texture maps that are globally and locally consistent and faithfully capture the input guidance, allowing us to render the generated 3D assets. With Garment3DGen users can generate the simulation-ready 3D garment of their choice without the need of artist intervention. We present a plethora of quantitative and qualitative comparisons on various assets and demonstrate that Garment3DGen unlocks key applications ranging from sketch-to-simulated garments or interacting with the garments in VR. Code is publicly available.
comment: 3DV 2025. Project Page and Code: https://nsarafianos.github.io/garment3dgen
Segmentation-Aware Generative Reinforcement Network (GRN) for Tissue Layer Segmentation in 3-D Ultrasound Images for Chronic Low-back Pain (cLBP) Assessment
We introduce a novel segmentation-aware joint training framework called generative reinforcement network (GRN) that integrates segmentation loss feedback to optimize both image generation and segmentation performance in a single stage. An image enhancement technique called segmentation-guided enhancement (SGE) is also developed, where the generator produces images tailored specifically for the segmentation model. Two variants of GRN were also developed, including GRN for sample-efficient learning (GRN-SEL) and GRN for semi-supervised learning (GRN-SSL). GRN's performance was evaluated using a dataset of 69 fully annotated 3D ultrasound scans from 29 subjects. The annotations included six anatomical structures: dermis, superficial fat, superficial fascial membrane (SFM), deep fat, deep fascial membrane (DFM), and muscle. Our results show that GRN-SEL with SGE reduces labeling efforts by up to 70% while achieving a 1.98% improvement in the Dice Similarity Coefficient (DSC) compared to models trained on fully labeled datasets. GRN-SEL alone reduces labeling efforts by 60%, GRN-SSL with SGE decreases labeling requirements by 70%, and GRN-SSL alone by 60%, all while maintaining performance comparable to fully supervised models. These findings suggest the effectiveness of the GRN framework in optimizing segmentation performance with significantly less labeled data, offering a scalable and efficient solution for ultrasound image analysis and reducing the burdens associated with data annotation.
Vision Transformers on the Edge: A Comprehensive Survey of Model Compression and Acceleration Strategies
In recent years, vision transformers (ViTs) have emerged as powerful and promising techniques for computer vision tasks such as image classification, object detection, and segmentation. Unlike convolutional neural networks (CNNs), which rely on hierarchical feature extraction, ViTs treat images as sequences of patches and leverage self-attention mechanisms. However, their high computational complexity and memory demands pose significant challenges for deployment on resource-constrained edge devices. To address these limitations, extensive research has focused on model compression techniques and hardware-aware acceleration strategies. Nonetheless, a comprehensive review that systematically categorizes these techniques and their trade-offs in accuracy, efficiency, and hardware adaptability for edge deployment remains lacking. This survey bridges this gap by providing a structured analysis of model compression techniques, software tools for inference on edge, and hardware acceleration strategies for ViTs. We discuss their impact on accuracy, efficiency, and hardware adaptability, highlighting key challenges and emerging research directions to advance ViT deployment on edge platforms, including graphics processing units (GPUs), application-specific integrated circuit (ASICs), and field-programmable gate arrays (FPGAs). The goal is to inspire further research with a contemporary guide on optimizing ViTs for efficient deployment on edge devices.
comment: Accepted in Neurocomputing, Elsevier
BEVWorld: A Multimodal World Simulator for Autonomous Driving via Scene-Level BEV Latents
World models have attracted increasing attention in autonomous driving for their ability to forecast potential future scenarios. In this paper, we propose BEVWorld, a novel framework that transforms multimodal sensor inputs into a unified and compact Bird's Eye View (BEV) latent space for holistic environment modeling. The proposed world model consists of two main components: a multi-modal tokenizer and a latent BEV sequence diffusion model. The multi-modal tokenizer first encodes heterogeneous sensory data, and its decoder reconstructs the latent BEV tokens into LiDAR and surround-view image observations via ray-casting rendering in a self-supervised manner. This enables joint modeling and bidirectional encoding-decoding of panoramic imagery and point cloud data within a shared spatial representation. On top of this, the latent BEV sequence diffusion model performs temporally consistent forecasting of future scenes, conditioned on high-level action tokens, enabling scene-level reasoning over time. Extensive experiments demonstrate the effectiveness of BEVWorld on autonomous driving benchmarks, showcasing its capability in realistic future scene generation and its benefits for downstream tasks such as perception and motion prediction.
comment: 10 pages
VecFontSDF: Learning to Reconstruct and Synthesize High-quality Vector Fonts via Signed Distance Functions CVPR 2023
Font design is of vital importance in the digital content design and modern printing industry. Developing algorithms capable of automatically synthesizing vector fonts can significantly facilitate the font design process. However, existing methods mainly concentrate on raster image generation, and only a few approaches can directly synthesize vector fonts. This paper proposes an end-to-end trainable method, VecFontSDF, to reconstruct and synthesize high-quality vector fonts using signed distance functions (SDFs). Specifically, based on the proposed SDF-based implicit shape representation, VecFontSDF learns to model each glyph as shape primitives enclosed by several parabolic curves, which can be precisely converted to quadratic B\'ezier curves that are widely used in vector font products. In this manner, most image generation methods can be easily extended to synthesize vector fonts. Qualitative and quantitative experiments conducted on a publicly-available dataset demonstrate that our method obtains high-quality results on several tasks, including vector font reconstruction, interpolation, and few-shot vector font synthesis, markedly outperforming the state of the art.
comment: Accepted to CVPR 2023
HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos CVPR 2025
We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (3.7M+ images) of recordings that feature 19 subjects interacting with 33 diverse rigid objects. In addition to simple pick-up, observe, and put-down actions, the subjects perform actions typical for a kitchen, office, and living room environment. The recordings include multiple synchronized data streams containing egocentric multi-view RGB/monochrome images, eye gaze signal, scene point clouds, and 3D poses of cameras, hands, and objects. The dataset is recorded with two headsets from Meta: Project Aria, which is a research prototype of AI glasses, and Quest 3, a virtual-reality headset that has shipped millions of units. Ground-truth poses were obtained by a motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats, and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, model-based 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.
comment: CVPR 2025
Towards Writing Style Adaptation in Handwriting Recognition
One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple fine-tuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.
MoBGS: Motion Deblurring Dynamic 3D Gaussian Splatting for Blurry Monocular Video
We present MoBGS, a novel deblurring dynamic 3D Gaussian Splatting (3DGS) framework capable of reconstructing sharp and high-quality novel spatio-temporal views from blurry monocular videos in an end-to-end manner. Existing dynamic novel view synthesis (NVS) methods are highly sensitive to motion blur in casually captured videos, resulting in significant degradation of rendering quality. While recent approaches address motion-blurred inputs for NVS, they primarily focus on static scene reconstruction and lack dedicated motion modeling for dynamic objects. To overcome these limitations, our MoBGS introduces a novel Blur-adaptive Latent Camera Estimation (BLCE) method for effective latent camera trajectory estimation, improving global camera motion deblurring. In addition, we propose a physically-inspired Latent Camera-induced Exposure Estimation (LCEE) method to ensure consistent deblurring of both global camera and local object motion. Our MoBGS framework ensures the temporal consistency of unseen latent timestamps and robust motion decomposition of static and dynamic regions. Extensive experiments on the Stereo Blur dataset and real-world blurry videos show that our MoBGS significantly outperforms the very recent advanced methods (DyBluRF and Deblur4DGS), achieving state-of-the-art performance for dynamic NVS under motion blur.
comment: The first two authors contributed equally to this work (equal contribution). The last two authors advised equally to this work. Please visit our project page at https://kaist-viclab.github.io/mobgs-site/
MeDSLIP: Medical Dual-Stream Language-Image Pre-training with Pathology-Anatomy Semantic Alignment
Pathology and anatomy are two essential groups of semantics in medical data. Pathology describes what the diseases are, while anatomy explains where the diseases occur. They describe diseases from different perspectives, providing complementary insights into diseases. Thus, properly understanding these semantics and their relationships can enhance medical vision-language models (VLMs). However, pathology and anatomy semantics are usually entangled in medical data, hindering VLMs from explicitly modeling these semantics and their relationships. To address this challenge, we propose MeDSLIP, a novel Medical Dual-Stream Language-Image Pre-training pipeline, to disentangle pathology and anatomy semantics and model the relationships between them. We introduce a dual-stream mechanism in MeDSLIP to explicitly disentangle medical semantics into pathology-relevant and anatomy-relevant streams and align visual and textual information within each stream. Furthermore, we propose an interaction modeling module with prototypical contrastive learning loss and intra-image contrastive learning loss to regularize the relationships between pathology and anatomy semantics. We apply MeDSLIP to chest X-ray analysis and conduct comprehensive evaluations with four benchmark datasets: NIH CXR14, RSNA Pneumonia, SIIM-ACR Pneumothorax, and COVIDx CXR-4. The results demonstrate MeDSLIP's superior generalizability and transferability across different scenarios. The code is available at https://github.com/Shef-AIRE/MeDSLIP, and the pre-trained model is released at https://huggingface.co/pykale/MeDSLIP.
Underwater Image Enhancement via Dehazing and Color Restoration
Underwater visual imaging is crucial for marine engineering, but it suffers from low contrast, blurriness, and color degradation, which hinders downstream analysis. Existing underwater image enhancement methods often treat the haze and color cast as a unified degradation process, neglecting their inherent independence while overlooking their synergistic relationship. To overcome this limitation, we propose a Vision Transformer (ViT)-based network (referred to as WaterFormer) to improve underwater image quality. WaterFormer contains three major components: a dehazing block (DehazeFormer Block) to capture the self-correlated haze features and extract deep-level features, a Color Restoration Block (CRB) to capture self-correlated color cast features, and a Channel Fusion Block (CFB) that dynamically integrates these decoupled features to achieve comprehensive enhancement. To ensure authenticity, a soft reconstruction layer based on the underwater imaging physics model is included. Further, a Chromatic Consistency Loss and Sobel Color Loss are designed to respectively preserve color fidelity and enhance structural details during network training. Comprehensive experimental results demonstrate that WaterFormer outperforms other state-of-the-art methods in enhancing underwater images.
Fine-tuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition
In many machine learning tasks, a large general dataset and a small specialized dataset are available. In such situations, various domain adaptation methods can be used to adapt a general model to the target dataset. We show that in the case of neural networks trained for handwriting recognition using CTC, simple fine-tuning with data augmentation works surprisingly well in such scenarios and that it is resistant to overfitting even for very small target domain datasets. We evaluated the behavior of fine-tuning with respect to augmentation, training data size, and quality of the pre-trained network, both in writer-dependent and writer-independent settings. On a large real-world dataset, fine-tuning on new writers provided an average relative CER improvement of 25 % for 16 text lines and 50 % for 256 text lines.
AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems
We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.
comment: Project website: https://agibot-world.com/. Github repo: https://github.com/OpenDriveLab/AgiBot-World. The author list is ordered alphabetically by surname, with detailed contributions provided in the appendix
WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been shown to be highly effective for enhancing robustness for image recognition tasks in vision pipelines. To additionally maximize representational sparsity, LCA with hard-thresholding can be applied. While this combination often yields very good solutions satisfying an $\ell_0$ sparsity criterion, it comes with significant drawbacks for practical application: (i) LCA is very inefficient, typically requiring hundreds of optimization cycles for convergence; (ii) the use of hard-thresholding results in a non-convex loss function, which might lead to suboptimal minima. To address these issues, we propose the Locally Competitive Algorithm with State Warm-up via Predictive Priming (WARP-LCA), which leverages a predictor network to provide a suitable initial guess of the LCA state based on the current input. Our approach significantly improves both convergence speed and the quality of solutions, while maintaining and even enhancing the overall strengths of LCA. We demonstrate that WARP-LCA converges faster by orders of magnitude and reaches better minima compared to conventional LCA. Moreover, the learned representations are more sparse and exhibit superior properties in terms of reconstruction and denoising quality as well as robustness when applied in deep recognition pipelines. Furthermore, we apply WARP-LCA to image denoising tasks, showcasing its robustness and practical effectiveness. Our findings confirm that the naive use of LCA with hard-thresholding results in suboptimal minima, whereas initializing LCA with a predictive guess results in better outcomes. This research advances the field of biologically inspired deep learning by providing a novel approach to convolutional sparse coding.
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
comment: 10 pages, 10 figures, 3 tables
Type-R: Automatically Retouching Typos for Text-to-Image Generation CVPR 2025
While recent text-to-image models can generate photorealistic images from text prompts that reflect detailed instructions, they still face significant challenges in accurately rendering words in the image. In this paper, we propose to retouch erroneous text renderings in the post-processing pipeline. Our approach, called Type-R, identifies typographical errors in the generated image, erases the erroneous text, regenerates text boxes for missing words, and finally corrects typos in the rendered words. Through extensive experiments, we show that Type-R, in combination with the latest text-to-image models such as Stable Diffusion or Flux, achieves the highest text rendering accuracy while maintaining image quality and also outperforms text-focused generation baselines in terms of balancing text accuracy and image quality.
comment: Accepted to CVPR 2025. Codes: https://github.com/CyberAgentAILab/Type-R
OPAL: Visibility-aware LiDAR-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion
LiDAR place recognition is a critical capability for autonomous navigation and cross-modal localization in large-scale outdoor environments. Existing approaches predominantly depend on pre-built 3D dense maps or aerial imagery, which impose significant storage overhead and lack real-time adaptability. In this paper, we propose OPAL, a novel network for LiDAR place recognition that leverages OpenStreetMap (OSM) as a lightweight and up-to-date prior. Our key innovation lies in bridging the domain disparity between sparse LiDAR scans and structured OSM data through two carefully designed components. First, a cross-modal visibility mask that identifies maximal observable regions from both modalities to guide feature learning. Second, an adaptive radial fusion module that dynamically consolidates radial features into discriminative global descriptors. Extensive experiments on the KITTI and KITTI-360 datasets demonstrate OPAL's superiority, achieving 15.98% higher recall at @1m threshold for top-1 retrieved matches, along with 12x faster inference speed compared to the state-of-the-art approach. Code and datasets will be publicly available.
comment: Technical report. 15 pages, 9 figures
Semantic Positive Pairs for Enhancing Visual Representation Learning of Instance Discrimination Methods
Self-supervised learning algorithms (SSL) based on instance discrimination have shown promising results, performing competitively or even outperforming supervised learning counterparts in some downstream tasks. Such approaches employ data augmentation to create two views of the same instance (i.e., positive pairs) and encourage the model to learn good representations by attracting these views closer in the embedding space without collapsing to the trivial solution. However, data augmentation is limited in representing positive pairs, and the repulsion process between the instances during contrastive learning may discard important features for instances that have similar categories. To address this issue, we propose an approach to identify those images with similar semantic content and treat them as positive instances, thereby reducing the chance of discarding important features during representation learning and increasing the richness of the latent representation. Our approach is generic and could work with any self-supervised instance discrimination frameworks such as MoCo and SimSiam. To evaluate our method, we run experiments on three benchmark datasets: ImageNet, STL-10 and CIFAR-10 with different instance discrimination SSL approaches. The experimental results show that our approach consistently outperforms the baseline methods across all three datasets; for instance, we improve upon the vanilla MoCo-v2 by 4.1% on ImageNet under a linear evaluation protocol over 800 epochs. We also report results on semi-supervised learning, transfer learning on downstream tasks, and object detection.
comment: 17 pages, 6 figures, 12 tables, V2: fixed typos in the references
Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis
Recent advances in diffusion models have endowed talking head synthesis with subtle expressions and vivid head movements, but have also led to slow inference speed and insufficient control over generated results. To address these issues, we propose Ditto, a diffusion-based talking head framework that enables fine-grained controls and real-time inference. Specifically, we utilize an off-the-shelf motion extractor and devise a diffusion transformer to generate representations in a specific motion space. We optimize the model architecture and training strategy to address the issues in generating motion representations, including insufficient disentanglement between motion and identity, and large internal discrepancies within the representation. Besides, we employ diverse conditional signals while establishing a mapping between motion representation and facial semantics, enabling control over the generation process and correction of the results. Moreover, we jointly optimize the holistic framework to enable streaming processing, real-time inference, and low first-frame delay, offering functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and exhibits superiority in both controllability and real-time performance.
comment: Project Page: https://digital-avatar.github.io/ai/Ditto/
Learning 6-DoF Fine-grained Grasp Detection Based on Part Affordance Grounding
Robotic grasping is a fundamental ability for a robot to interact with the environment. Current methods focus on how to obtain a stable and reliable grasping pose in object level, while little work has been studied on part (shape)-wise grasping which is related to fine-grained grasping and robotic affordance. Parts can be seen as atomic elements to compose an object, which contains rich semantic knowledge and a strong correlation with affordance. However, lacking a large part-wise 3D robotic dataset limits the development of part representation learning and downstream applications. In this paper, we propose a new large Language-guided SHape grAsPing datasEt (named LangSHAPE) to promote 3D part-level affordance and grasping ability learning. From the perspective of robotic cognition, we design a two-stage fine-grained robotic grasping framework (named LangPartGPD), including a novel 3D part language grounding model and a part-aware grasp pose detection model, in which explicit language input from human or large language models (LLMs) could guide a robot to generate part-level 6-DoF grasping pose with textual explanation. Our method combines the advantages of human-robot collaboration and LLMs' planning ability using explicit language as a symbolic intermediate. To evaluate the effectiveness of our proposed method, we perform 3D part grounding and fine-grained grasp detection experiments on both simulation and physical robot settings, following language instructions across different degrees of textual complexity. Results show our method achieves competitive performance in 3D geometry fine-grained grounding, object affordance inference, and 3D part-aware grasping tasks. Our dataset and code are available on our project website https://sites.google.com/view/lang-shape
comment: 15 pages, 8 figures, 7 tables
Elucidating the Preconditioning in Consistency Distillation ICLR 2025
Consistency distillation is a prevalent way for accelerating diffusion models adopted in consistency (trajectory) models, in which a student model is trained to traverse backward on the probability flow (PF) ordinary differential equation (ODE) trajectory determined by the teacher model. Preconditioning is a vital technique for stabilizing consistency distillation, by linear combining the input data and the network output with pre-defined coefficients as the consistency function. It imposes the boundary condition of consistency functions without restricting the form and expressiveness of the neural network. However, previous preconditionings are hand-crafted and may be suboptimal choices. In this work, we offer the first theoretical insights into the preconditioning in consistency distillation, by elucidating its design criteria and the connection to the teacher ODE trajectory. Based on these analyses, we further propose a principled way dubbed \textit{Analytic-Precond} to analytically optimize the preconditioning according to the consistency gap (defined as the gap between the teacher denoiser and the optimal student denoiser) on a generalized teacher ODE. We demonstrate that Analytic-Precond can facilitate the learning of trajectory jumpers, enhance the alignment of the student trajectory with the teacher's, and achieve $2\times$ to $3\times$ training acceleration of consistency trajectory models in multi-step generation across various datasets.
comment: Accepted at ICLR 2025
FILA: Fine-Grained Vision Language Models ICLR 2025
Recently, there has been growing interest in the capability of multimodal large language models (MLLMs) to process high-resolution images. A common approach currently involves dynamically cropping the original high-resolution image into smaller sub-images, which are then fed into a vision encoder that was pre-trained on lower-resolution images. However, this cropping approach often truncates objects and connected areas in the original image, causing semantic breaks. To address this limitation, we introduce HyViLM, designed to process images of any resolution while retaining the overall context during encoding. Specifically, we: (i) Design a new visual encoder called Hybrid Encoder that not only encodes individual sub-images but also interacts with detailed global visual features, significantly improving the model's ability to encode high-resolution images. (ii) Propose an optimal feature fusion strategy for the dynamic cropping approach, effectively leveraging information from different layers of the vision encoder. Compared with the state-of-the-art MLLMs under the same setting, our HyViLM outperforms existing MLLMs in nine out of ten tasks. Specifically, HyViLM achieves a 9.6% improvement in performance on the TextVQA task and a 6.9% enhancement on the DocVQA task.
comment: 9 pages, 4 figures, accepted to ICLR 2025 workshop
OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: Work in progress
PANGAEA: A Global and Inclusive Benchmark for Geospatial Foundation Models
Geospatial Foundation Models (GFMs) have emerged as powerful tools for extracting representations from Earth observation data, but their evaluation remains inconsistent and narrow. Existing works often evaluate on suboptimal downstream datasets and tasks, that are often too easy or too narrow, limiting the usefulness of the evaluations to assess the real-world applicability of GFMs. Additionally, there is a distinct lack of diversity in current evaluation protocols, which fail to account for the multiplicity of image resolutions, sensor types, and temporalities, which further complicates the assessment of GFM performance. In particular, most existing benchmarks are geographically biased towards North America and Europe, questioning the global applicability of GFMs. To overcome these challenges, we introduce PANGAEA, a standardized evaluation protocol that covers a diverse set of datasets, tasks, resolutions, sensor modalities, and temporalities. It establishes a robust and widely applicable benchmark for GFMs. We evaluate the most popular GFMs openly available on this benchmark and analyze their performance across several domains. In particular, we compare these models to supervised baselines (e.g. UNet and vanilla ViT), and assess their effectiveness when faced with limited labeled data. Our findings highlight the limitations of GFMs, under different scenarios, showing that they do not consistently outperform supervised models. PANGAEA is designed to be highly extensible, allowing for the seamless inclusion of new datasets, models, and tasks in future research. By releasing the evaluation code and benchmark, we aim to enable other researchers to replicate our experiments and build upon our work, fostering a more principled evaluation protocol for large pre-trained geospatial models. The code is available at https://github.com/VMarsocci/pangaea-bench.
AC-Lite : A Lightweight Image Captioning Model for Low-Resource Assamese Language
Most existing works in image caption synthesis use computation heavy deep neural networks and generates image descriptions in English language. This often restricts this important assistive tool for widespread use across language and accessibility barriers. This work presents AC-Lite, a computationally efficient model for image captioning in low-resource Assamese language. AC-Lite reduces computational requirements by replacing computation-heavy deep network components with lightweight alternatives. The AC-Lite model is designed through extensive ablation experiments with different image feature extractor networks and language decoders. A combination of ShuffleNetv2x1.5 with GRU based language decoder along with bilinear attention is found to provide the best performance with minimum compute. AC-Lite was observed to achieve an 82.3 CIDEr score on the COCO-AC dataset with 2.45 GFLOPs and 22.87M parameters.
Uncertainty for SVBRDF Acquisition using Frequency Analysis
This paper aims to quantify uncertainty for SVBRDF acquisition in multi-view captures. Under uncontrolled illumination and unstructured viewpoints, there is no guarantee that the observations contain enough information to reconstruct the appearance properties of a captured object. We study this ambiguity, or uncertainty, using entropy and accelerate the analysis by using the frequency domain, rather than the domain of incoming and outgoing viewing angles. The result is a method that computes a map of uncertainty over an entire object within a millisecond. We find that the frequency model allows us to recover SVBRDF parameters with competitive performance, that the accelerated entropy computation matches results with a physically-based path tracer, and that there is a positive correlation between error and uncertainty. We then show that the uncertainty map can be applied to improve SVBRDF acquisition using capture guidance, sharing information on the surface, and using a diffusion model to inpaint uncertain regions. Our code is available at https://github.com/rubenwiersma/svbrdf_uncertainty.
comment: Project page: https://svbrdf-uncertainty.github.io
Joint Modeling of Feature, Correspondence, and a Compressed Memory for Video Object Segmentation
Current prevailing Video Object Segmentation methods follow the pipeline of extraction-then-matching, which first extracts features on current and reference frames independently, and then performs dense matching between them. This decoupled pipeline limits information propagation between frames to high-level features, hindering fine-grained details for matching. Furthermore, the pixel-wise matching lacks holistic target understanding, making it prone to disturbance by similar distractors. To address these issues, we propose a unified VOS framework, coined as JointFormer, for jointly modeling feature extraction, correspondence matching, and a compressed memory. The core Joint Modeling Block leverages attention to simultaneously extract and propagate the target information from the reference frame to the current frame and a compressed memory token. This joint scheme enables extensive multi-layer propagation beyond high-level feature space and facilitates robust instance-distinctive feature learning. To incorporate the long-term and holistic target information, we introduce a compressed memory token with a customized online updating mechanism, which aggregates target features and facilitates temporal information propagation in a frame-wise manner, enhancing global modeling consistency. Our JointFormer achieves a new state-of-the-art performance on the DAVIS 2017 val/test-dev (89.7\% and 87.6\%) benchmarks and the YouTube-VOS 2018/2019 val (87.0\% and 87.0\%) benchmarks, outperforming the existing works. To demonstrate the generalizability of our model, it is further evaluated on four new benchmarks with various difficulties, including MOSE for complex scenes, VISOR for egocentric videos, VOST for complex transformations, and LVOS for long-term videos.
comment: Accepted by TPAMI. Code and trained models are available at \url{https://github.com/MCG-NJU/JointFormer}
Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
LEyes: A Lightweight Framework for Deep Learning-Based Eye Tracking using Synthetic Eye Images
Deep learning has bolstered gaze estimation techniques, but real-world deployment has been impeded by inadequate training datasets. This problem is exacerbated by both hardware-induced variations in eye images and inherent biological differences across the recorded participants, leading to both feature and pixel-level variance that hinders the generalizability of models trained on specific datasets. While synthetic datasets can be a solution, their creation is both time and resource-intensive. To address this problem, we present a framework called Light Eyes or "LEyes" which, unlike conventional photorealistic methods, only models key image features required for video-based eye tracking using simple light distributions. LEyes facilitates easy configuration for training neural networks across diverse gaze-estimation tasks. We demonstrate that models trained using LEyes are consistently on-par or outperform other state-of-the-art algorithms in terms of pupil and CR localization across well-known datasets. In addition, a LEyes trained model outperforms the industry standard eye tracker using significantly more cost-effective hardware. Going forward, we are confident that LEyes will revolutionize synthetic data generation for gaze estimation models, and lead to significant improvements of the next generation video-based eye trackers.
comment: 32 pages, 8 figures
ScaleFusionNet: Transformer-Guided Multi-Scale Feature Fusion for Skin Lesion Segmentation
Melanoma is a malignant tumor originating from skin cell lesions. Accurate and efficient segmentation of skin lesions is essential for quantitative medical analysis but remains challenging. To address this, we propose ScaleFusionNet, a segmentation model that integrates Cross-Attention Transformer Module (CATM) and AdaptiveFusionBlock to enhance feature extraction and fusion. The model employs a hybrid architecture encoder that effectively captures both local and global features. We introduce CATM, which utilizes Swin Transformer Blocks and Cross Attention Fusion (CAF) to adaptively refine encoder-decoder feature fusion, reducing semantic gaps and improving segmentation accuracy. Additionally, the AdaptiveFusionBlock is improved by integrating adaptive multi-scale fusion, where Swin Transformer-based attention complements deformable convolution-based multi-scale feature extraction. This enhancement refines lesion boundaries and preserves fine-grained details. ScaleFusionNet achieves Dice scores of 92.94% and 91.65% on ISIC-2016 and ISIC-2018 datasets, respectively, demonstrating its effectiveness in skin lesion analysis. Our code implementation is publicly available at GitHub.
PreCM: The Padding-based Rotation Equivariant Convolution Mode for Semantic Segmentation
Semantic segmentation is an important branch of image processing and computer vision. With the popularity of deep learning, various convolutional neural networks have been proposed for pixel-level classification and segmentation tasks. In practical scenarios, however, imaging angles are often arbitrary, encompassing instances such as water body images from remote sensing and capillary and polyp images in the medical domain, where prior orientation information is typically unavailable to guide these networks to extract more effective features. In this case, learning features from objects with diverse orientation information poses a significant challenge, as the majority of CNN-based semantic segmentation networks lack rotation equivariance to resist the disturbance from orientation information. To address this challenge, this paper first constructs a universal convolution-group framework aimed at more fully utilizing orientation information and equipping the network with rotation equivariance. Subsequently, we mathematically design a padding-based rotation equivariant convolution mode (PreCM), which is not only applicable to multi-scale images and convolutional kernels but can also serve as a replacement component for various types of convolutions, such as dilated convolutions, transposed convolutions, and asymmetric convolution. To quantitatively assess the impact of image rotation in semantic segmentation tasks, we also propose a new evaluation metric, Rotation Difference (RD). The replacement experiments related to six existing semantic segmentation networks on three datasets show that, the average Intersection Over Union (IOU) of their PreCM-based versions respectively improve 6.91%, 10.63%, 4.53%, 5.93%, 7.48%, 8.33% compared to their original versions in terms of random angle rotation. And the average RD values are decreased by 3.58%, 4.56%, 3.47%, 3.66%, 3.47%, 3.43% respectively.
comment: 14 pages, 14 figures, submitted to TIP
EyePreserve: Identity-Preserving Iris Synthesis
Synthesis of same-identity biometric iris images, both for existing and non-existing identities while preserving the identity across a wide range of pupil sizes, is complex due to the intricate iris muscle constriction mechanism, requiring a precise model of iris non-linear texture deformations to be embedded into the synthesis pipeline. This paper presents the first method of fully data-driven, identity-preserving, pupil size-varying synthesis of iris images. This approach is capable of synthesizing images of irises with different pupil sizes representing non-existing identities, as well as non-linearly deforming the texture of iris images of existing subjects given the segmentation mask of the target iris image. Iris recognition experiments suggest that the proposed deformation model both preserves the identity when changing the pupil size, and offers better similarity between same-identity iris samples with significant differences in pupil size, compared to state-of-the-art linear and non-linear (bio-mechanical-based) iris deformation models. Two immediate applications of the proposed approach are: (a) synthesis of, or enhancement of the existing biometric datasets for iris recognition, mimicking those acquired with iris sensors, and (b) helping forensic human experts examine iris image pairs with significant differences in pupil dilation. Images considered in this work conform to selected ISO/IEC 29794-6 quality metrics to make them applicable in biometric systems. The source codes and model weights are offered with this paper.
ColorEdit: Training-free Image-Guided Color editing with diffusion model
Text-to-image (T2I) diffusion models, with their impressive generative capabilities, have been adopted for image editing tasks, demonstrating remarkable efficacy. However, due to attention leakage and collision between the cross-attention map of the object and the new color attribute from the text prompt, text-guided image editing methods may fail to change the color of an object, resulting in a misalignment between the resulting image and the text prompt. In this paper, we conduct an in-depth analysis on the process of text-guided image synthesizing and what semantic information different cross-attention blocks have learned. We observe that the visual representation of an object is determined in the up-block of the diffusion model in the early stage of the denoising process, and color adjustment can be achieved through value matrices alignment in the cross-attention layer. Based on our findings, we propose a straightforward, yet stable, and effective image-guided method to modify the color of an object without requiring any additional fine-tuning or training. Lastly, we present a benchmark dataset called COLORBENCH, the first benchmark to evaluate the performance of color change methods. Extensive experiments validate the effectiveness of our method in object-level color editing and surpass the performance of popular text-guided image editing approaches in both synthesized and real images.
DDM: A Metric for Comparing 3D Shapes Using Directional Distance Fields
Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DDM, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DDM based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DDM, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DDM achieves significantly higher accuracy under all tasks. As a generic distance metric, DDM has the potential to advance the field of 3D geometric modeling. The source code is available at https://github.com/rsy6318/DDM.
comment: Accepted by T-PAMI
Visual Adaptive Prompting for Compositional Zero-Shot Learning
Vision-Language Models (VLMs) have demonstrated impressive capabilities in learning joint representations of visual and textual data, making them powerful tools for tasks such as Compositional Zero-Shot Learning (CZSL). CZSL requires models to generalize to novel combinations of visual primitives-such as attributes and objects-that were not explicitly encountered during training. Recent works in prompting for CZSL have focused on modifying inputs for the text encoder, often using static prompts that do not change across varying visual contexts. However, these approaches struggle to fully capture varying visual contexts, as they focus on text adaptation rather than leveraging visual features for compositional reasoning. To address this, we propose Visual Adaptive Prompting System (VAPS) that leverages a learnable visual prompt repository and similarity-based retrieval mechanism within the framework of VLMs to bridge the gap between semantic and visual features. Our method introduces a dynamic visual prompt repository mechanism that selects the most relevant attribute and object prompts based on the visual features of the image. Our proposed system includes a visual prompt adapter that encourages the model to learn a more generalizable embedding space. Experiments on three CZSL benchmarks, across both closed and open-world scenarios, demonstrate state-of-the-art results.
VideoMultiAgents: A Multi-Agent Framework for Video Question Answering
Video Question Answering (VQA) inherently relies on multimodal reasoning, integrating visual, temporal, and linguistic cues to achieve a deeper understanding of video content. However, many existing methods rely on feeding frame-level captions into a single model, making it difficult to adequately capture temporal and interactive contexts. To address this limitation, we introduce VideoMultiAgents, a framework that integrates specialized agents for vision, scene graph analysis, and text processing. It enhances video understanding leveraging complementary multimodal reasoning from independently operating agents. Our approach is also supplemented with a question-guided caption generation, which produces captions that highlight objects, actions, and temporal transitions directly relevant to a given query, thus improving the answer accuracy. Experimental results demonstrate that our method achieves state-of-the-art performance on Intent-QA (79.0%, +6.2% over previous SOTA), EgoSchema subset (75.4%, +3.4%), and NExT-QA (79.6%, +0.4%). The source code is available at https://github.com/PanasonicConnect/VideoMultiAgents.
Rethinking Pseudo-Label Guided Learning for Weakly Supervised Temporal Action Localization from the Perspective of Noise Correction
Pseudo-label learning methods have been widely applied in weakly-supervised temporal action localization. Existing works directly utilize weakly-supervised base model to generate instance-level pseudo-labels for training the fully-supervised detection head. We argue that the noise in pseudo-labels would interfere with the learning of fully-supervised detection head, leading to significant performance leakage. Issues with noisy labels include:(1) inaccurate boundary localization; (2) undetected short action clips; (3) multiple adjacent segments incorrectly detected as one segment. To target these issues, we introduce a two-stage noisy label learning strategy to harness every potential useful signal in noisy labels. First, we propose a frame-level pseudo-label generation model with a context-aware denoising algorithm to refine the boundaries. Second, we introduce an online-revised teacher-student framework with a missing instance compensation module and an ambiguous instance correction module to solve the short-action-missing and many-to-one problems. Besides, we apply a high-quality pseudo-label mining loss in our online-revised teacher-student framework to add different weights to the noisy labels to train more effectively. Our model outperforms the previous state-of-the-art method in detection accuracy and inference speed greatly upon the THUMOS14 and ActivityNet v1.2 benchmarks.
IMDPrompter: Adapting SAM to Image Manipulation Detection by Cross-View Automated Prompt Learning
Using extensive training data from SA-1B, the Segment Anything Model (SAM) has demonstrated exceptional generalization and zero-shot capabilities, attracting widespread attention in areas such as medical image segmentation and remote sensing image segmentation. However, its performance in the field of image manipulation detection remains largely unexplored and unconfirmed. There are two main challenges in applying SAM to image manipulation detection: a) reliance on manual prompts, and b) the difficulty of single-view information in supporting cross-dataset generalization. To address these challenges, we develops a cross-view prompt learning paradigm called IMDPrompter based on SAM. Benefiting from the design of automated prompts, IMDPrompter no longer relies on manual guidance, enabling automated detection and localization. Additionally, we propose components such as Cross-view Feature Perception, Optimal Prompt Selection, and Cross-View Prompt Consistency, which facilitate cross-view perceptual learning and guide SAM to generate accurate masks. Extensive experimental results from five datasets (CASIA, Columbia, Coverage, IMD2020, and NIST16) validate the effectiveness of our proposed method.
Generalizable Synthetic Image Detection via Language-guided Contrastive Learning
The heightened realism of AI-generated images can be attributed to the rapid development of synthetic models, including generative adversarial networks (GANs) and diffusion models (DMs). The malevolent use of synthetic images, such as the dissemination of fake news or the creation of fake profiles, however, raises significant concerns regarding the authenticity of images. Though many forensic algorithms have been developed for detecting synthetic images, their performance, especially the generalization capability, is still far from being adequate to cope with the increasing number of synthetic models. In this work, we propose a simple yet very effective synthetic image detection method via a language-guided contrastive learning. Specifically, we augment the training images with carefully-designed textual labels, enabling us to use a joint visual-language contrastive supervision for learning a forensic feature space with better generalization. It is shown that our proposed LanguAge-guided SynThEsis Detection (LASTED) model achieves much improved generalizability to unseen image generation models and delivers promising performance that far exceeds state-of-the-art competitors over four datasets. The code is available at https://github.com/HighwayWu/LASTED.
High-Frequency Enhanced Hybrid Neural Representation for Video Compression
Neural Representations for Videos (NeRV) have simplified the video codec process and achieved swift decoding speeds by encoding video content into a neural network, presenting a promising solution for video compression. However, existing work overlooks the crucial issue that videos reconstructed by these methods lack high-frequency details. To address this problem, this paper introduces a High-Frequency Enhanced Hybrid Neural Representation Network. Our method focuses on leveraging high-frequency information to improve the synthesis of fine details by the network. Specifically, we design a wavelet high-frequency encoder that incorporates Wavelet Frequency Decomposer (WFD) blocks to generate high-frequency feature embeddings. Next, we design the High-Frequency Feature Modulation (HFM) block, which leverages the extracted high-frequency embeddings to enhance the fitting process of the decoder. Finally, with the refined Harmonic decoder block and a Dynamic Weighted Frequency Loss, we further reduce the potential loss of high-frequency information. Experiments on the Bunny and UVG datasets demonstrate that our method outperforms other methods, showing notable improvements in detail preservation and compression performance.
All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
comment: A Multilingual Multimodal cultural benchmark for 100 languages
SignLLM: Sign Language Production Large Language Models
In this paper, we propose SignLLM, a multilingual Sign Language Production (SLP) large language model, which includes two novel multilingual SLP modes MLSF and Prompt2LangGloss that allow sign language gestures generation from query texts input and question-style prompts input respectively. Both modes can use a new RL loss based on reinforcement learning and a new RL module named Priority Learning Channel. These RL components can accelerate the training by enhancing the model's capability to sample high-quality data. To train SignLLM, we introduce Prompt2Sign, a comprehensive multilingual sign language dataset, which builds from public data, including American Sign Language (ASL) and seven others. This dataset standardizes information by extracting pose information from sign language videos into a unified compressed format. We extensively evaluate SignLLM, demonstrating that our model achieves state-of-the-art performance on SLP tasks across eight sign languages.
comment: website at https://signllm.github.io/
CAD-Unet: A Capsule Network-Enhanced Unet Architecture for Accurate Segmentation of COVID-19 Lung Infections from CT Images
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity between infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. \noindent Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.
comment: Published in Medical Image Analysis, Volume 103, 2025, Pages 103583. DOI: 10.1016/j.media.2025.103583 This is the author's pre-print version prior to final journal edits. Final published version available at: https://www.sciencedirect.com/science/article/pii/S1361841525001306
GATE3D: Generalized Attention-based Task-synergized Estimation in 3D* CVPR 2025
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: Accepted (Poster) to the 3rd CV4MR Workshop at CVPR 2025: https://openreview.net/forum?id=00RQ8Cv3ia
BRIGHT-VO: Brightness-Guided Hybrid Transformer for Visual Odometry with Multi-modality Refinement Module
Visual odometry (VO) plays a crucial role in autonomous driving, robotic navigation, and other related tasks by estimating the position and orientation of a camera based on visual input. Significant progress has been made in data-driven VO methods, particularly those leveraging deep learning techniques to extract image features and estimate camera poses. However, these methods often struggle in low-light conditions because of the reduced visibility of features and the increased difficulty of matching keypoints. To address this limitation, we introduce BrightVO, a novel VO model based on Transformer architecture, which not only performs front-end visual feature extraction, but also incorporates a multi-modality refinement module in the back-end that integrates Inertial Measurement Unit (IMU) data. Using pose graph optimization, this module iteratively refines pose estimates to reduce errors and improve both accuracy and robustness. Furthermore, we create a synthetic low-light dataset, KiC4R, which includes a variety of lighting conditions to facilitate the training and evaluation of VO frameworks in challenging environments. Experimental results demonstrate that BrightVO achieves state-of-the-art performance on both the KiC4R dataset and the KITTI benchmarks. Specifically, it provides an average improvement of 20% in pose estimation accuracy in normal outdoor environments and 259% in low-light conditions, outperforming existing methods. For widespread use and further development, the research work is fully open-source at https://github.com/Anastasiawd/BrightVO.
DyST-XL: Dynamic Layout Planning and Content Control for Compositional Text-to-Video Generation
Compositional text-to-video generation, which requires synthesizing dynamic scenes with multiple interacting entities and precise spatial-temporal relationships, remains a critical challenge for diffusion-based models. Existing methods struggle with layout discontinuity, entity identity drift, and implausible interaction dynamics due to unconstrained cross-attention mechanisms and inadequate physics-aware reasoning. To address these limitations, we propose DyST-XL, a \textbf{training-free} framework that enhances off-the-shelf text-to-video models (e.g., CogVideoX-5B) through frame-aware control. DyST-XL integrates three key innovations: (1) A Dynamic Layout Planner that leverages large language models (LLMs) to parse input prompts into entity-attribute graphs and generates physics-aware keyframe layouts, with intermediate frames interpolated via trajectory optimization; (2) A Dual-Prompt Controlled Attention Mechanism that enforces localized text-video alignment through frame-aware attention masking, achieving precise control over individual entities; and (3) An Entity-Consistency Constraint strategy that propagates first-frame feature embeddings to subsequent frames during denoising, preserving object identity without manual annotation. Experiments demonstrate that DyST-XL excels in compositional text-to-video generation, significantly improving performance on complex prompts and bridging a crucial gap in training-free video synthesis. The code is released in https://github.com/XiaoBuL/DyST-XL.
comment: 9 pages, 6 figures
GISE-TTT:A Framework for Global InformationSegmentation and Enhancement
This paper addresses the challenge of capturing global temporaldependencies in long video sequences for Video Object Segmentation (VOS). Existing architectures often fail to effectively model these dependencies acrossextended temporal horizons. To overcome this limitation, we introduce GISE-TTT, anovel architecture that integrates Temporal Transformer (TTT) layers intotransformer-based frameworks through a co-designed hierarchical approach.The TTTlayer systematically condenses historical temporal information into hidden states thatencode globally coherent contextual representations. By leveraging multi-stagecontextual aggregation through hierarchical concatenation, our frameworkprogressively refines spatiotemporal dependencies across network layers. This designrepresents the first systematic empirical evidence that distributing global informationacross multiple network layers is critical for optimal dependency utilization in videosegmentation tasks.Ablation studies demonstrate that incorporating TTT modules athigh-level feature stages significantly enhances global modeling capabilities, therebyimproving the network's ability to capture long-range temporal relationships. Extensive experiments on DAVIS 2017 show that GISE-TTT achieves a 3.2%improvement in segmentation accuracy over the baseline model, providingcomprehensive evidence that global information should be strategically leveragedthroughout the network architecture.The code will be made available at:https://github.com/uuool/GISE-TTT.
SignDiff: Diffusion Model for American Sign Language Production
In this paper, we propose a dual-condition diffusion pre-training model named SignDiff that can generate human sign language speakers from a skeleton pose. SignDiff has a novel Frame Reinforcement Network called FR-Net, similar to dense human pose estimation work, which enhances the correspondence between text lexical symbols and sign language dense pose frames, reduces the occurrence of multiple fingers in the diffusion model. In addition, we propose a new method for American Sign Language Production (ASLP), which can generate ASL skeletal pose videos from text input, integrating two new improved modules and a new loss function to improve the accuracy and quality of sign language skeletal posture and enhance the ability of the model to train on large-scale data. We propose the first baseline for ASL production and report the scores of 17.19 and 12.85 on BLEU-4 on the How2Sign dev/test sets. We evaluated our model on the previous mainstream dataset PHOENIX14T, and the experiments achieved the SOTA results. In addition, our image quality far exceeds all previous results by 10 percentage points in terms of SSIM.
comment: Camera-Ready Version; Project Page at https://signdiff.github.io
Adversarial Data Poisoning Attacks on Quantum Machine Learning in the NISQ Era
With the growing interest in Quantum Machine Learning (QML) and the increasing availability of quantum computers through cloud providers, addressing the potential security risks associated with QML has become an urgent priority. One key concern in the QML domain is the threat of data poisoning attacks in the current quantum cloud setting. Adversarial access to training data could severely compromise the integrity and availability of QML models. Classical data poisoning techniques require significant knowledge and training to generate poisoned data, and lack noise resilience, making them ineffective for QML models in the Noisy Intermediate Scale Quantum (NISQ) era. In this work, we first propose a simple yet effective technique to measure intra-class encoder state similarity (ESS) by analyzing the outputs of encoding circuits. Leveraging this approach, we introduce a \underline{Qu}antum \underline{I}ndiscriminate \underline{D}ata Poisoning attack, QUID. Through extensive experiments conducted in both noiseless and noisy environments (e.g., IBM\_Brisbane's noise), across various architectures and datasets, QUID achieves up to $92\%$ accuracy degradation in model performance compared to baseline models and up to $75\%$ accuracy degradation compared to random label-flipping. We also tested QUID against state-of-the-art classical defenses, with accuracy degradation still exceeding $50\%$, demonstrating its effectiveness. This work represents the first attempt to reevaluate data poisoning attacks in the context of QML.
Class Uncertainty: A Measure to Mitigate Class Imbalance
Class-wise characteristics of training examples affect the performance of deep classifiers. A well-studied example is when the number of training examples of classes follows a long-tailed distribution, a situation that is likely to yield sub-optimal performance for under-represented classes. This class imbalance problem is conventionally addressed by approaches relying on the class-wise cardinality of training examples, such as data resampling. In this paper, we demonstrate that considering solely the cardinality of classes does not cover all issues causing class imbalance. To measure class imbalance, we propose "Class Uncertainty" as the average predictive uncertainty of the training examples, and we show that this novel measure captures the differences across classes better than cardinality. We also curate SVCI-20 as a novel dataset in which the classes have equal number of training examples but they differ in terms of their hardness; thereby causing a type of class imbalance which cannot be addressed by the approaches relying on cardinality. We incorporate our "Class Uncertainty" measure into a diverse set of ten class imbalance mitigation methods to demonstrate its effectiveness on long-tailed datasets as well as on our SVCI-20. Code and datasets will be made available.
Accelerating Diffusion Transformer via Error-Optimized Cache
Diffusion Transformer (DiT) is a crucial method for content generation. However, it needs a lot of time to sample. Many studies have attempted to use caching to reduce the time consumption of sampling. Existing caching methods accelerate generation by reusing DiT features from the previous time step and skipping calculations in the next, but they tend to locate and cache low-error modules without focusing on reducing caching-induced errors, resulting in a sharp decline in generated content quality when increasing caching intensity. To solve this problem, we propose the Error-Optimized Cache (EOC). This method introduces three key improvements: (1) Prior knowledge extraction: Extract and process the caching differences; (2) A judgment method for cache optimization: Determine whether certain caching steps need to be optimized; (3) Cache optimization: reduce caching errors. Experiments show that this algorithm significantly reduces the error accumulation caused by caching, especially excessive caching. On the ImageNet dataset, without substantially increasing the computational load, this method improves the FID of the generated images when the rule-based model FORA has a caching level of 75%, 50%, and 25%, and the training-based model Learning-to-cache has a caching level of 22%. Specifically, the FID values change from 30.454 to 21.690 (28.8%), from 6.857 to 5.821 (15.1%), from 3.870 to 3.692 (4.6%), and from 3.539 to 3.451 (2.5%) respectively.
S3Former: Self-supervised High-resolution Transformer for Solar PV Profiling
As the impact of climate change escalates, the global necessity to transition to sustainable energy sources becomes increasingly evident. Renewable energies have emerged as a viable solution for users, with Photovoltaic energy being a favored choice for small installations due to its reliability and efficiency. Accurate mapping of PV installations is crucial for understanding the extension of its adoption and informing energy policy. To meet this need, we introduce S3Former, designed to segment solar panels from aerial imagery and provide size and location information critical for analyzing the impact of such installations on the grid. Solar panel identification is challenging due to factors such as varying weather conditions, roof characteristics, Ground Sampling Distance variations and lack of appropriate initialization weights for optimized training. To tackle these complexities, S3Former features a Masked Attention Mask Transformer incorporating a self-supervised learning pretrained backbone. Specifically, our model leverages low-level and high-level features extracted from the backbone and incorporates an instance query mechanism incorporated on the Transformer architecture to enhance the localization of solar PV installations. We introduce a self-supervised learning phase (pretext task) to improve the initialization weights on the backbone of S3Former. We evaluated S3Former using diverse datasets, demonstrate improvement state-of-the-art models.
comment: IEEE Transactions on Smart Grid
PPT: Pretraining with Pseudo-Labeled Trajectories for Motion Forecasting
Accurately predicting how agents move in dynamic scenes is essential for safe autonomous driving. State-of-the-art motion forecasting models rely on large curated datasets with manually annotated or heavily post-processed trajectories. However, building these datasets is costly, generally manual, hard to scale, and lacks reproducibility. They also introduce domain gaps that limit generalization across environments. We introduce PPT (Pretraining with Pseudo-labeled Trajectories), a simple and scalable alternative that uses unprocessed and diverse trajectories automatically generated from off-the-shelf 3D detectors and tracking. Unlike traditional pipelines aiming for clean, single-label annotations, PPT embraces noise and diversity as useful signals for learning robust representations. With optional finetuning on a small amount of labeled data, models pretrained with PPT achieve strong performance across standard benchmarks particularly in low-data regimes, and in cross-domain, end-to-end and multi-class settings. PPT is easy to implement and improves generalization in motion forecasting. Code and data will be released upon acceptance.
comment: 18 pages, 9 figures, updated results
3D StreetUnveiler with Semantic-aware 2DGS -- a simple baseline
Unveiling an empty street from crowded observations captured by in-car cameras is crucial for autonomous driving. However, removing all temporarily static objects, such as stopped vehicles and standing pedestrians, presents a significant challenge. Unlike object-centric 3D inpainting, which relies on thorough observation in a small scene, street scene cases involve long trajectories that differ from previous 3D inpainting tasks. The camera-centric moving environment of captured videos further complicates the task due to the limited degree and time duration of object observation. To address these obstacles, we introduce StreetUnveiler to reconstruct an empty street. StreetUnveiler learns a 3D representation of the empty street from crowded observations. Our representation is based on the hard-label semantic 2D Gaussian Splatting (2DGS) for its scalability and ability to identify Gaussians to be removed. We inpaint rendered image after removing unwanted Gaussians to provide pseudo-labels and subsequently re-optimize the 2DGS. Given its temporal continuous movement, we divide the empty street scene into observed, partial-observed, and unobserved regions, which we propose to locate through a rendered alpha map. This decomposition helps us to minimize the regions that need to be inpainted. To enhance the temporal consistency of the inpainting, we introduce a novel time-reversal framework to inpaint frames in reverse order and use later frames as references for earlier frames to fully utilize the long-trajectory observations. Our experiments conducted on the street scene dataset successfully reconstructed a 3D representation of the empty street. The mesh representation of the empty street can be extracted for further applications. The project page and more visualizations can be found at: https://streetunveiler.github.io
comment: Project page: https://streetunveiler.github.io
Multimedia
Solving Copyright Infringement on Short Video Platforms: Novel Datasets and an Audio Restoration Deep Learning Pipeline IJCAI 2025
Short video platforms like YouTube Shorts and TikTok face significant copyright compliance challenges, as infringers frequently embed arbitrary background music (BGM) to obscure original soundtracks (OST) and evade content originality detection. To tackle this issue, we propose a novel pipeline that integrates Music Source Separation (MSS) and cross-modal video-music retrieval (CMVMR). Our approach effectively separates arbitrary BGM from the original OST, enabling the restoration of authentic video audio tracks. To support this work, we introduce two domain-specific datasets: OASD-20K for audio separation and OSVAR-160 for pipeline evaluation. OASD-20K contains 20,000 audio clips featuring mixed BGM and OST pairs, while OSVAR160 is a unique benchmark dataset comprising 1,121 video and mixed-audio pairs, specifically designed for short video restoration tasks. Experimental results demonstrate that our pipeline not only removes arbitrary BGM with high accuracy but also restores OSTs, ensuring content integrity. This approach provides an ethical and scalable solution to copyright challenges in user-generated content on short video platforms.
comment: will be presented in IJCAI 2025, 9 pages, 4 tables, 3 figures
Latent Feature-Guided Conditional Diffusion for High-Fidelity Generative Image Semantic Communication
Semantic communication is proposed and expected to improve the efficiency and effectiveness of massive data transmission over sixth generation (6G) networks. However, existing deep learning-based joint source and channel coding (DeepJSCC) image semantic communication scheme predominantly focuses on optimizing pixel-level metrics, and neglects human perceptual requirements, which results in degraded perceptual quality. To address this issue, we propose a latent representation-oriented image semantic communication (LRISC) system, which transmits latent semantic features for image generation with semantic consistency, thereby ensuring the perceptual quality at the receiver. In particular, we first map the source image to latent features in a high-dimensional semantic space via a neural network (NN)- based non-linear transformation. Subsequently, these features are encoded using a joint source and channel coding (JSCC) scheme with adaptive coding length for efficient transmission over a wireless channel. At the receiver, a conditional diffusion model is developed by using the received latent features as conditional guidance to steer the reverse diffusion process, progressively reconstructing high-fidelity images while preserving semantic consistency. Moreover, we introduce a channel signal-to-noise ratio (SNR) adaptation mechanism, allowing one model to work across various channel states. Experiments show that the proposed method significantly outperforms existing methods, in terms of learned perceptual image patch similarity (LPIPS) and robustness against channel noise, with an average LPIPS reduction of 43.3% compared to DeepJSCC, while guaranteeing the semantic consistency.
comment: 6 pages, 6 figures
Consistency-aware Fake Videos Detection on Short Video Platforms
This paper focuses to detect the fake news on the short video platforms. While significant research efforts have been devoted to this task with notable progress in recent years, current detection accuracy remains suboptimal due to the rapid evolution of content manipulation and generation technologies. Existing approaches typically employ a cross-modal fusion strategy that directly combines raw video data with metadata inputs before applying a classification layer. However, our empirical observations reveal a critical oversight: manipulated content frequently exhibits inter-modal inconsistencies that could serve as valuable discriminative features, yet remain underutilized in contemporary detection frameworks. Motivated by this insight, we propose a novel detection paradigm that explicitly identifies and leverages cross-modal contradictions as discriminative cues. Our approach consists of two core modules: Cross-modal Consistency Learning (CMCL) and Multi-modal Collaborative Diagnosis (MMCD). CMCL includes Pseudo-label Generation (PLG) and Cross-modal Consistency Diagnosis (CMCD). In PLG, a Multimodal Large Language Model is used to generate pseudo-labels for evaluating cross-modal semantic consistency. Then, CMCD extracts [CLS] tokens and computes cosine loss to quantify cross-modal inconsistencies. MMCD further integrates multimodal features through Multimodal Feature Fusion (MFF) and Probability Scores Fusion (PSF). MFF employs a co-attention mechanism to enhance semantic interactions across different modalities, while a Transformer is utilized for comprehensive feature fusion. Meanwhile, PSF further integrates the fake news probability scores obtained in the previous step. Extensive experiments on established benchmarks (FakeSV and FakeTT) demonstrate our model exhibits outstanding performance in Fake videos detection.
comment: 2025 icic
ClassWise-CRF: Category-Specific Fusion for Enhanced Semantic Segmentation of Remote Sensing Imagery
We propose a result-level category-specific fusion architecture called ClassWise-CRF. This architecture employs a two-stage process: first, it selects expert networks that perform well in specific categories from a pool of candidate networks using a greedy algorithm; second, it integrates the segmentation predictions of these selected networks by adaptively weighting their contributions based on their segmentation performance in each category. Inspired by Conditional Random Field (CRF), the ClassWise-CRF architecture treats the segmentation predictions from multiple networks as confidence vector fields. It leverages segmentation metrics (such as Intersection over Union) from the validation set as priors and employs an exponential weighting strategy to fuse the category-specific confidence scores predicted by each network. This fusion method dynamically adjusts the weights of each network for different categories, achieving category-specific optimization. Building on this, the architecture further optimizes the fused results using unary and pairwise potentials in CRF to ensure spatial consistency and boundary accuracy. To validate the effectiveness of ClassWise-CRF, we conducted experiments on two remote sensing datasets, LoveDA and Vaihingen, using eight classic and advanced semantic segmentation networks. The results show that the ClassWise-CRF architecture significantly improves segmentation performance: on the LoveDA dataset, the mean Intersection over Union (mIoU) metric increased by 1.00% on the validation set and by 0.68% on the test set; on the Vaihingen dataset, the mIoU improved by 0.87% on the validation set and by 0.91% on the test set. These results fully demonstrate the effectiveness and generality of the ClassWise-CRF architecture in semantic segmentation of remote sensing images. The full code is available at https://github.com/zhuqinfeng1999/ClassWise-CRF.
Embracing Collaboration Over Competition: Condensing Multiple Prompts for Visual In-Context Learning CVPR'25
Visual In-Context Learning (VICL) enables adaptively solving vision tasks by leveraging pixel demonstrations, mimicking human-like task completion through analogy. Prompt selection is critical in VICL, but current methods assume the existence of a single "ideal" prompt in a pool of candidates, which in practice may not hold true. Multiple suitable prompts may exist, but individually they often fall short, leading to difficulties in selection and the exclusion of useful context. To address this, we propose a new perspective: prompt condensation. Rather than relying on a single prompt, candidate prompts collaborate to efficiently integrate informative contexts without sacrificing resolution. We devise Condenser, a lightweight external plugin that compresses relevant fine-grained context across multiple prompts. Optimized end-to-end with the backbone, Condenser ensures accurate integration of contextual cues. Experiments demonstrate Condenser outperforms state-of-the-arts across benchmark tasks, showing superior context compression, scalability with more prompts, and enhanced computational efficiency compared to ensemble methods, positioning it as a highly competitive solution for VICL. Code is open-sourced at https://github.com/gimpong/CVPR25-Condenser.
comment: Accepted by CVPR'25. 10 pages, 5 figures, 6 tables
Clustering Internet Memes Through Template Matching and Multi-Dimensional Similarity
Meme clustering is critical for toxicity detection, virality modeling, and typing, but it has received little attention in previous research. Clustering similar Internet memes is challenging due to their multimodality, cultural context, and adaptability. Existing approaches rely on databases, overlook semantics, and struggle to handle diverse dimensions of similarity. This paper introduces a novel method that uses template-based matching with multi-dimensional similarity features, thus eliminating the need for predefined databases and supporting adaptive matching. Memes are clustered using local and global features across similarity categories such as form, visual content, text, and identity. Our combined approach outperforms existing clustering methods, producing more consistent and coherent clusters, while similarity-based feature sets enable adaptability and align with human intuition. We make all supporting code publicly available to support subsequent research. Code: https://github.com/tygobl/meme-clustering
OpenAVS: Training-Free Open-Vocabulary Audio Visual Segmentation with Foundational Models
Audio-visual segmentation aims to separate sounding objects from videos by predicting pixel-level masks based on audio signals. Existing methods primarily concentrate on closed-set scenarios and direct audio-visual alignment and fusion, which limits their capability to generalize to new, unseen situations. In this paper, we propose OpenAVS, a novel training-free language-based approach that, for the first time, effectively aligns audio and visual modalities using text as a proxy for open-vocabulary Audio-Visual Segmentation (AVS). Equipped with multimedia foundation models, OpenAVS directly infers masks through 1) audio-to-text prompt generation, 2) LLM-guided prompt translation, and 3) text-to-visual sounding object segmentation. The objective of OpenAVS is to establish a simple yet flexible architecture that relies on the most appropriate foundation models by fully leveraging their capabilities to enable more effective knowledge transfer to the downstream AVS task. Moreover, we present a model-agnostic framework OpenAVS-ST that enables the integration of OpenAVS with any advanced supervised AVS model via pseudo-label based self-training. This approach enhances performance by effectively utilizing large-scale unlabeled data when available. Comprehensive experiments on three benchmark datasets demonstrate the superior performance of OpenAVS. It surpasses existing unsupervised, zero-shot, and few-shot AVS methods by a significant margin, achieving absolute performance gains of approximately 9.4% and 10.9% in mIoU and F-score, respectively, in challenging scenarios.
EEmo-Bench: A Benchmark for Multi-modal Large Language Models on Image Evoked Emotion Assessment
The furnishing of multi-modal large language models (MLLMs) has led to the emergence of numerous benchmark studies, particularly those evaluating their perception and understanding capabilities. Among these, understanding image-evoked emotions aims to enhance MLLMs' empathy, with significant applications such as human-machine interaction and advertising recommendations. However, current evaluations of this MLLM capability remain coarse-grained, and a systematic and comprehensive assessment is still lacking. To this end, we introduce EEmo-Bench, a novel benchmark dedicated to the analysis of the evoked emotions in images across diverse content categories. Our core contributions include: 1) Regarding the diversity of the evoked emotions, we adopt an emotion ranking strategy and employ the Valence-Arousal-Dominance (VAD) as emotional attributes for emotional assessment. In line with this methodology, 1,960 images are collected and manually annotated. 2) We design four tasks to evaluate MLLMs' ability to capture the evoked emotions by single images and their associated attributes: Perception, Ranking, Description, and Assessment. Additionally, image-pairwise analysis is introduced to investigate the model's proficiency in performing joint and comparative analysis. In total, we collect 6,773 question-answer pairs and perform a thorough assessment on 19 commonly-used MLLMs. The results indicate that while some proprietary and large-scale open-source MLLMs achieve promising overall performance, the analytical capabilities in certain evaluation dimensions remain suboptimal. Our EEmo-Bench paves the path for further research aimed at enhancing the comprehensive perceiving and understanding capabilities of MLLMs concerning image-evoked emotions, which is crucial for machine-centric emotion perception and understanding.
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
comment: 10 pages, 10 figures, 3 tables
A 3D Framework for Improving Low-Latency Multi-Channel Live Streaming ICME 2025
The advent of 5G has driven the demand for high-quality, low-latency live streaming. However, challenges such as managing the increased data volume, ensuring synchronization across multiple streams, and maintaining consistent quality under varying network conditions persist, particularly in real-time video streaming. To address these issues, we propose a novel framework that leverages 3D virtual environments within game engines (e.g., Unity 3D) to optimize multi-channel live streaming. Our approach consolidates multi-camera video data into a single stream using multiple virtual 3D canvases, significantly increasing channel amounts while reducing latency and enhancing user flexibility. For demonstration of our approach, we utilize the Unity 3D engine to integrate multiple video inputs into a single-channel stream, supporting one-to-many broadcasting, one-to-one video calling, and real-time control of video channels. By mapping video data onto a world-space canvas and capturing it via an in-world camera, we minimize redundant data transmission, achieving efficient, low-latency streaming. Our results demonstrate that this method outperforms some existing multi-channel live streaming solutions in both latency reduction and user interaction responsiveness improvement. Our live video streaming system affiliated with this paper is also open-source at https://github.com/Aizierjiang/LiveStreaming.
comment: We are pleased to announce that this paper has been accepted for presentation at the ICME 2025 Workshop on Surpassing Latency Limits in Adaptive Live Video Streaming. We appreciate the valuable feedback from the reviewers and look forward to sharing our findings with the community
Exploring Acoustic Similarity in Emotional Speech and Music via Self-Supervised Representations ICASSP 2025
Emotion recognition from speech and music shares similarities due to their acoustic overlap, which has led to interest in transferring knowledge between these domains. However, the shared acoustic cues between speech and music, particularly those encoded by Self-Supervised Learning (SSL) models, remain largely unexplored, given the fact that SSL models for speech and music have rarely been applied in cross-domain research. In this work, we revisit the acoustic similarity between emotion speech and music, starting with an analysis of the layerwise behavior of SSL models for Speech Emotion Recognition (SER) and Music Emotion Recognition (MER). Furthermore, we perform cross-domain adaptation by comparing several approaches in a two-stage fine-tuning process, examining effective ways to utilize music for SER and speech for MER. Lastly, we explore the acoustic similarities between emotional speech and music using Frechet audio distance for individual emotions, uncovering the issue of emotion bias in both speech and music SSL models. Our findings reveal that while speech and music SSL models do capture shared acoustic features, their behaviors can vary depending on different emotions due to their training strategies and domain-specificities. Additionally, parameter-efficient fine-tuning can enhance SER and MER performance by leveraging knowledge from each other. This study provides new insights into the acoustic similarity between emotional speech and music, and highlights the potential for cross-domain generalization to improve SER and MER systems.
comment: Accepted to ICASSP 2025
Revise, Reason, and Recognize: LLM-Based Emotion Recognition via Emotion-Specific Prompts and ASR Error Correction ICASSP 2025
Annotating and recognizing speech emotion using prompt engineering has recently emerged with the advancement of Large Language Models (LLMs), yet its efficacy and reliability remain questionable. In this paper, we conduct a systematic study on this topic, beginning with the proposal of novel prompts that incorporate emotion-specific knowledge from acoustics, linguistics, and psychology. Subsequently, we examine the effectiveness of LLM-based prompting on Automatic Speech Recognition (ASR) transcription, contrasting it with ground-truth transcription. Furthermore, we propose a Revise-Reason-Recognize prompting pipeline for robust LLM-based emotion recognition from spoken language with ASR errors. Additionally, experiments on context-aware learning, in-context learning, and instruction tuning are performed to examine the usefulness of LLM training schemes in this direction. Finally, we investigate the sensitivity of LLMs to minor prompt variations. Experimental results demonstrate the efficacy of the emotion-specific prompts, ASR error correction, and LLM training schemes for LLM-based emotion recognition. Our study aims to refine the use of LLMs in emotion recognition and related domains.
comment: Accepted to ICASSP 2025
Semi-Supervised Cognitive State Classification from Speech with Multi-View Pseudo-Labeling ICASSP 2025
The lack of labeled data is a common challenge in speech classification tasks, particularly those requiring extensive subjective assessment, such as cognitive state classification. In this work, we propose a Semi-Supervised Learning (SSL) framework, introducing a novel multi-view pseudo-labeling method that leverages both acoustic and linguistic characteristics to select the most confident data for training the classification model. Acoustically, unlabeled data are compared to labeled data using the Frechet audio distance, calculated from embeddings generated by multiple audio encoders. Linguistically, large language models are prompted to revise automatic speech recognition transcriptions and predict labels based on our proposed task-specific knowledge. High-confidence data are identified when pseudo-labels from both sources align, while mismatches are treated as low-confidence data. A bimodal classifier is then trained to iteratively label the low-confidence data until a predefined criterion is met. We evaluate our SSL framework on emotion recognition and dementia detection tasks. Experimental results demonstrate that our method achieves competitive performance compared to fully supervised learning using only 30% of the labeled data and significantly outperforms two selected baselines.
comment: Accepted to ICASSP 2025
Addressing Emotion Bias in Music Emotion Recognition and Generation with Frechet Audio Distance ICME 2025
The complex nature of musical emotion introduces inherent bias in both recognition and generation, particularly when relying on a single audio encoder, emotion classifier, or evaluation metric. In this work, we conduct a study on Music Emotion Recognition (MER) and Emotional Music Generation (EMG), employing diverse audio encoders alongside Frechet Audio Distance (FAD), a reference-free evaluation metric. Our study begins with a benchmark evaluation of MER, highlighting the limitations of using a single audio encoder and the disparities observed across different measurements. We then propose assessing MER performance using FAD derived from multiple encoders to provide a more objective measure of musical emotion. Furthermore, we introduce an enhanced EMG approach designed to improve both the variability and prominence of generated musical emotion, thereby enhancing its realism. Additionally, we investigate the differences in realism between the emotions conveyed in real and synthetic music, comparing our EMG model against two baseline models. Experimental results underscore the issue of emotion bias in both MER and EMG and demonstrate the potential of using FAD and diverse audio encoders to evaluate musical emotion more objectively and effectively.
comment: Accepted to ICME 2025
Multi-Task Corrupted Prediction for Learning Robust Audio-Visual Speech Representation ICLR 2025
Audio-visual speech recognition (AVSR) incorporates auditory and visual modalities to improve recognition accuracy, particularly in noisy environments where audio-only speech systems are insufficient. While previous research has largely addressed audio disruptions, few studies have dealt with visual corruptions, e.g., lip occlusions or blurred videos, which are also detrimental. To address this real-world challenge, we propose CAV2vec, a novel self-supervised speech representation learning framework particularly designed to handle audio-visual joint corruption. CAV2vec employs a self-distillation approach with a corrupted prediction task, where the student model learns to predict clean targets, generated by the teacher model, with corrupted input frames. Specifically, we suggest a unimodal multi-task learning, which distills cross-modal knowledge and aligns the corrupted modalities, by predicting clean audio targets with corrupted videos, and clean video targets with corrupted audios. This strategy mitigates the dispersion in the representation space caused by corrupted modalities, leading to more reliable and robust audio-visual fusion. Our experiments on robust AVSR benchmarks demonstrate that the corrupted representation learning method significantly enhances recognition accuracy across generalized environments involving various types of corruption. Our code is available at https://github.com/sungnyun/cav2vec.
comment: ICLR 2025; 22 pages, 6 figures, 14 tables
HateSieve: A Contrastive Learning Framework for Detecting and Segmenting Hateful Content in Multimodal Memes NAACL 2025
Amidst the rise of Large Multimodal Models (LMMs) and their widespread application in generating and interpreting complex content, the risk of propagating biased and harmful memes remains significant. Current safety measures often fail to detect subtly integrated hateful content within ``Confounder Memes''. To address this, we introduce \textsc{HateSieve}, a new framework designed to enhance the detection and segmentation of hateful elements in memes. \textsc{HateSieve} features a novel Contrastive Meme Generator that creates semantically paired memes, a customized triplet dataset for contrastive learning, and an Image-Text Alignment module that produces context-aware embeddings for accurate meme segmentation. Empirical experiments on the Hateful Meme Dataset show that \textsc{HateSieve} not only surpasses existing LMMs in performance with fewer trainable parameters but also offers a robust mechanism for precisely identifying and isolating hateful content. \textcolor{red}{Caution: Contains academic discussions of hate speech; viewer discretion advised.}
comment: Accepted at NAACL 2025 Findings; camera-ready version
Computation and Language
TRUST: An LLM-Based Dialogue System for Trauma Understanding and Structured Assessments
Objectives: While Large Language Models (LLMs) have been widely used to assist clinicians and support patients, no existing work has explored dialogue systems for standard diagnostic interviews and assessments. This study aims to bridge the gap in mental healthcare accessibility by developing an LLM-powered dialogue system that replicates clinician behavior. Materials and Methods: We introduce TRUST, a framework of cooperative LLM modules capable of conducting formal diagnostic interviews and assessments for Post-Traumatic Stress Disorder (PTSD). To guide the generation of appropriate clinical responses, we propose a Dialogue Acts schema specifically designed for clinical interviews. Additionally, we develop a patient simulation approach based on real-life interview transcripts to replace time-consuming and costly manual testing by clinicians. Results: A comprehensive set of evaluation metrics is designed to assess the dialogue system from both the agent and patient simulation perspectives. Expert evaluations by conversation and clinical specialists show that TRUST performs comparably to real-life clinical interviews. Discussion: Our system performs at the level of average clinicians, with room for future enhancements in communication styles and response appropriateness. Conclusions: Our TRUST framework shows its potential to facilitate mental healthcare availability.
comment: 5 figures, 4 tables
DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition
We introduce DeepSeek-Prover-V2, an open-source large language model designed for formal theorem proving in Lean 4, with initialization data collected through a recursive theorem proving pipeline powered by DeepSeek-V3. The cold-start training procedure begins by prompting DeepSeek-V3 to decompose complex problems into a series of subgoals. The proofs of resolved subgoals are synthesized into a chain-of-thought process, combined with DeepSeek-V3's step-by-step reasoning, to create an initial cold start for reinforcement learning. This process enables us to integrate both informal and formal mathematical reasoning into a unified model. The resulting model, DeepSeek-Prover-V2-671B, achieves state-of-the-art performance in neural theorem proving, reaching 88.9% pass ratio on the MiniF2F-test and solving 49 out of 658 problems from PutnamBench. In addition to standard benchmarks, we introduce ProverBench, a collection of 325 formalized problems, to enrich our evaluation, including 15 selected problems from the recent AIME competitions (years 24-25). Further evaluation on these 15 AIME problems shows that the model successfully solves 6 of them. In comparison, DeepSeek-V3 solves 8 of these problems using majority voting, highlighting that the gap between formal and informal mathematical reasoning in large language models is substantially narrowing.
How Real Are Synthetic Therapy Conversations? Evaluating Fidelity in Prolonged Exposure Dialogues
The growing adoption of synthetic data in healthcare is driven by privacy concerns, limited access to real-world data, and the high cost of annotation. This work explores the use of synthetic Prolonged Exposure (PE) therapeutic conversations for Post-Traumatic Stress Disorder (PTSD) as a scalable alternative for training and evaluating clinical models. We systematically compare real and synthetic dialogues using linguistic, structural, and protocol-specific metrics, including turn-taking patterns and treatment fidelity. We also introduce and evaluate PE-specific metrics derived from linguistic analysis and semantic modeling, offering a novel framework for assessing clinical fidelity beyond surface fluency. Our findings show that although synthetic data holds promise for mitigating data scarcity and protecting patient privacy, it can struggle to capture the subtle dynamics of therapeutic interactions. In our dataset, synthetic dialogues match structural features of real-world dialogues (e.g., speaker switch ratio: 0.98 vs. 0.99), however, synthetic interactions do not adequately reflect key fidelity markers (e.g., distress monitoring). We highlight gaps in existing evaluation frameworks and advocate for fidelity-aware metrics that go beyond surface fluency to uncover clinically significant failures. Our findings clarify where synthetic data can effectively complement real-world datasets -- and where critical limitations remain.
comment: 11 pages, 5 tables, updated abstract and tables
SWE-smith: Scaling Data for Software Engineering Agents
Despite recent progress in Language Models (LMs) for software engineering, collecting training data remains a significant pain point. Existing datasets are small, with at most 1,000s of training instances from 11 or fewer GitHub repositories. The procedures to curate such datasets are often complex, necessitating hundreds of hours of human labor; companion execution environments also take up several terabytes of storage, severely limiting their scalability and usability. To address this pain point, we introduce SWE-smith, a novel pipeline for generating software engineering training data at scale. Given any Python codebase, SWE-smith constructs a corresponding execution environment, then automatically synthesizes 100s to 1,000s of task instances that break existing test(s) in the codebase. Using SWE-smith, we create a dataset of 50k instances sourced from 128 GitHub repositories, an order of magnitude larger than all previous works. We train SWE-agent-LM-32B, achieving 40.2% Pass@1 resolve rate on the SWE-bench Verified benchmark, state of the art among open source models. We open source SWE-smith (collection procedure, task instances, trajectories, models) to lower the barrier of entry for research in LM systems for automated software engineering. All assets available at https://swesmith.com.
WebThinker: Empowering Large Reasoning Models with Deep Research Capability
Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate impressive long-horizon reasoning capabilities. However, their reliance on static internal knowledge limits their performance on complex, knowledge-intensive tasks and hinders their ability to produce comprehensive research reports requiring synthesis of diverse web information. To address this, we propose \textbf{WebThinker}, a deep research agent that empowers LRMs to autonomously search the web, navigate web pages, and draft research reports during the reasoning process. WebThinker integrates a \textbf{Deep Web Explorer} module, enabling LRMs to dynamically search, navigate, and extract information from the web when encountering knowledge gaps. It also employs an \textbf{Autonomous Think-Search-and-Draft strategy}, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time. To further enhance research tool utilization, we introduce an \textbf{RL-based training strategy} via iterative online Direct Preference Optimization (DPO). Extensive experiments on complex reasoning benchmarks (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive) demonstrate that WebThinker significantly outperforms existing methods and strong proprietary systems. Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems. The code is available at https://github.com/RUC-NLPIR/WebThinker.
MAC-Tuning: LLM Multi-Compositional Problem Reasoning with Enhanced Knowledge Boundary Awareness
With the widespread application of large language models (LLMs), the issue of generating non-existing facts, known as hallucination, has garnered increasing attention. Previous research in enhancing LLM confidence estimation mainly focuses on the single problem setting. However, LLM awareness of its internal parameterized knowledge boundary under the more challenging multi-problem setting, which requires answering multiple problems accurately simultaneously, remains underexplored. To bridge this gap, we introduce a novel method, Multiple Answers and Confidence Stepwise Tuning (MAC-Tuning), that separates the learning of answer prediction and confidence estimation during fine-tuning on instruction data. Extensive experiments demonstrate that our method outperforms baselines by up to 25% in average precision.
CodeFlowBench: A Multi-turn, Iterative Benchmark for Complex Code Generation
Real world development demands code that is readable, extensible, and testable by organizing the implementation into modular components and iteratively reuse pre-implemented code. We term this iterative, multi-turn process codeflow and introduce CodeFlowBench, the first benchmark designed for comprehensively evaluating LLMs' ability to perform codeflow, namely to implement new functionality by reusing existing functions over multiple turns. CodeFlowBench comprises 5258 problems drawn from Codeforces and is continuously updated via an automated pipeline that decomposes each problem into a series of function-level subproblems based on its dependency tree and each subproblem is paired with unit tests. We further propose a novel evaluation framework with tasks and metrics tailored to multi-turn code reuse to assess model performance. In experiments across various LLMs under both multi-turn and single-turn patterns. We observe models' poor performance on CodeFlowBench, with a substantial performance drop in the iterative codeflow scenario. For instance, o1-mini achieves a pass@1 of 20.8% in multi-turn pattern versus 37.8% in single-turn pattern. Further analysis shows that different models excel at different dependency depths, yet all struggle to correctly solve structurally complex problems, highlighting challenges for current LLMs to serve as code generation tools when performing codeflow. Overall, CodeFlowBench offers a comprehensive benchmark and new insights into LLM capabilities for multi-turn, iterative code generation, guiding future advances in code generation tasks.
Improving Retrieval-Augmented Neural Machine Translation with Monolingual Data
Conventional retrieval-augmented neural machine translation (RANMT) systems leverage bilingual corpora, e.g., translation memories (TMs). Yet, in many settings, in-domain monolingual target-side corpora are often available. This work explores ways to take advantage of such resources by retrieving relevant segments directly in the target language, based on a source-side query. For this, we design improved cross-lingual retrieval systems, trained with both sentence level and word-level matching objectives. In our experiments with two RANMT architectures, we first demonstrate the benefits of such cross-lingual objectives in a controlled setting, obtaining translation performances that surpass standard TM-based models. We then showcase our method on a real-world set-up, where the target monolingual resources far exceed the amount of parallel data and observe large improvements of our new techniques, which outperform both the baseline setting, and general-purpose cross-lingual retrievers.
comment: 13 pages
Investigating Literary Motifs in Ancient and Medieval Novels with Large Language Models
The Greek fictional narratives often termed love novels or romances, ranging from the first century CE to the middle of the 15th century, have long been considered as similar in many ways, not least in the use of particular literary motifs. By applying the use of fine-tuned large language models, this study aims to investigate which motifs exactly that the texts in this corpus have in common, and in which ways they differ from each other. The results show that while some motifs persist throughout the corpus, others fluctuate in frequency, indicating certain trends or external influences. Conclusively, the method proves to adequately extract literary motifs according to a set definition, providing data for both quantitative and qualitative analyses.
LLM-Empowered Embodied Agent for Memory-Augmented Task Planning in Household Robotics
We present an embodied robotic system with an LLM-driven agent-orchestration architecture for autonomous household object management. The system integrates memory-augmented task planning, enabling robots to execute high-level user commands while tracking past actions. It employs three specialized agents: a routing agent, a task planning agent, and a knowledge base agent, each powered by task-specific LLMs. By leveraging in-context learning, our system avoids the need for explicit model training. RAG enables the system to retrieve context from past interactions, enhancing long-term object tracking. A combination of Grounded SAM and LLaMa3.2-Vision provides robust object detection, facilitating semantic scene understanding for task planning. Evaluation across three household scenarios demonstrates high task planning accuracy and an improvement in memory recall due to RAG. Specifically, Qwen2.5 yields best performance for specialized agents, while LLaMA3.1 excels in routing tasks. The source code is available at: https://github.com/marc1198/chat-hsr.
comment: Accepted at Austrian Robotics Workshop 2025
Enhancing Health Mention Classification Performance: A Study on Advancements in Parameter Efficient Tuning
Health Mention Classification (HMC) plays a critical role in leveraging social media posts for real-time tracking and public health monitoring. Nevertheless, the process of HMC presents significant challenges due to its intricate nature, primarily stemming from the contextual aspects of health mentions, such as figurative language and descriptive terminology, rather than explicitly reflecting a personal ailment. To address this problem, we argue that clearer mentions can be achieved through conventional fine-tuning with enhanced parameters of biomedical natural language methods (NLP). In this study, we explore different techniques such as the utilisation of part-of-speech (POS) tagger information, improving on PEFT techniques, and different combinations thereof. Extensive experiments are conducted on three widely used datasets: RHDM, PHM, and Illness. The results incorporated POS tagger information, and leveraging PEFT techniques significantly improves performance in terms of F1-score compared to state-of-the-art methods across all three datasets by utilising smaller models and efficient training. Furthermore, the findings highlight the effectiveness of incorporating POS tagger information and leveraging PEFT techniques for HMC. In conclusion, the proposed methodology presents a potentially effective approach to accurately classifying health mentions in social media posts while optimising the model size and training efficiency.
comment: 10 pages
Investigating the Effect of Parallel Data in the Cross-Lingual Transfer for Vision-Language Encoders
Most pre-trained Vision-Language (VL) models and training data for the downstream tasks are only available in English. Therefore, multilingual VL tasks are solved using cross-lingual transfer: fine-tune a multilingual pre-trained model or transfer the text encoder using parallel data. We study the alternative approach: transferring an already trained encoder using parallel data. We investigate the effect of parallel data: domain and the number of languages, which were out of focus in previous work. Our results show that even machine-translated task data are the best on average, caption-like authentic parallel data outperformed it in some languages. Further, we show that most languages benefit from multilingual training.
20min-XD: A Comparable Corpus of Swiss News Articles
We present 20min-XD (20 Minuten cross-lingual document-level), a French-German, document-level comparable corpus of news articles, sourced from the Swiss online news outlet 20 Minuten/20 minutes. Our dataset comprises around 15,000 article pairs spanning 2015 to 2024, automatically aligned based on semantic similarity. We detail the data collection process and alignment methodology. Furthermore, we provide a qualitative and quantitative analysis of the corpus. The resulting dataset exhibits a broad spectrum of cross-lingual similarity, ranging from near-translations to loosely related articles, making it valuable for various NLP applications and broad linguistically motivated studies. We publicly release the dataset in document- and sentence-aligned versions and code for the described experiments.
comment: 10 pages; accepted at SwissText 2025
AdaR1: From Long-CoT to Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization
Recently, long-thought reasoning models achieve strong performance on complex reasoning tasks, but often incur substantial inference overhead, making efficiency a critical concern. Our empirical analysis reveals that the benefit of using Long-CoT varies across problems: while some problems require elaborate reasoning, others show no improvement, or even degraded accuracy. This motivates adaptive reasoning strategies that tailor reasoning depth to the input. However, prior work primarily reduces redundancy within long reasoning paths, limiting exploration of more efficient strategies beyond the Long-CoT paradigm. To address this, we propose a novel two-stage framework for adaptive and efficient reasoning. First, we construct a hybrid reasoning model by merging long and short CoT models to enable diverse reasoning styles. Second, we apply bi-level preference training to guide the model to select suitable reasoning styles (group-level), and prefer concise and correct reasoning within each style group (instance-level). Experiments demonstrate that our method significantly reduces inference costs compared to other baseline approaches, while maintaining performance. Notably, on five mathematical datasets, the average length of reasoning is reduced by more than 50%, highlighting the potential of adaptive strategies to optimize reasoning efficiency in large language models. Our code is coming soon at https://github.com/StarDewXXX/AdaR1
Sadeed: Advancing Arabic Diacritization Through Small Language Model
Arabic text diacritization remains a persistent challenge in natural language processing due to the language's morphological richness. In this paper, we introduce Sadeed, a novel approach based on a fine-tuned decoder-only language model adapted from Kuwain 1.5B Hennara et al. [2025], a compact model originally trained on diverse Arabic corpora. Sadeed is fine-tuned on carefully curated, high-quality diacritized datasets, constructed through a rigorous data-cleaning and normalization pipeline. Despite utilizing modest computational resources, Sadeed achieves competitive results compared to proprietary large language models and outperforms traditional models trained on similar domains. Additionally, we highlight key limitations in current benchmarking practices for Arabic diacritization. To address these issues, we introduce SadeedDiac-25, a new benchmark designed to enable fairer and more comprehensive evaluation across diverse text genres and complexity levels. Together, Sadeed and SadeedDiac-25 provide a robust foundation for advancing Arabic NLP applications, including machine translation, text-to-speech, and language learning tools.
Meeseeks: An Iterative Benchmark Evaluating LLMs Multi-Turn Instruction-Following Ability
The ability to follow instructions accurately is fundamental for Large Language Models (LLMs) to serve as reliable agents in real-world applications. While existing instruction-following benchmarks are either single-turn or introduce new requirements in each turn without allowing self-correction, Meeseeks simulates realistic human-LLM interactions through an iterative feedback process. This design enables models to self-correct based on specific requirement failures, better reflecting real-world user-end usage patterns. The benchmark implements a comprehensive evaluation system with 38 capability tags organized across three dimensions: Intent Recognition, Granular Content Validation, and Output Structure Validation. Through rigorous evaluation across LLMs, Meeseeks provides valuable insights into LLMs' instruction-following capabilities in practical applications.
RDF-Based Structured Quality Assessment Representation of Multilingual LLM Evaluations
Large Language Models (LLMs) increasingly serve as knowledge interfaces, yet systematically assessing their reliability with conflicting information remains difficult. We propose an RDF-based framework to assess multilingual LLM quality, focusing on knowledge conflicts. Our approach captures model responses across four distinct context conditions (complete, incomplete, conflicting, and no-context information) in German and English. This structured representation enables the comprehensive analysis of knowledge leakage-where models favor training data over provided context-error detection, and multilingual consistency. We demonstrate the framework through a fire safety domain experiment, revealing critical patterns in context prioritization and language-specific performance, and demonstrating that our vocabulary was sufficient to express every assessment facet encountered in the 28-question study.
Robust Misinformation Detection by Visiting Potential Commonsense Conflict IJCAI 2025
The development of Internet technology has led to an increased prevalence of misinformation, causing severe negative effects across diverse domains. To mitigate this challenge, Misinformation Detection (MD), aiming to detect online misinformation automatically, emerges as a rapidly growing research topic in the community. In this paper, we propose a novel plug-and-play augmentation method for the MD task, namely Misinformation Detection with Potential Commonsense Conflict (MD-PCC). We take inspiration from the prior studies indicating that fake articles are more likely to involve commonsense conflict. Accordingly, we construct commonsense expressions for articles, serving to express potential commonsense conflicts inferred by the difference between extracted commonsense triplet and golden ones inferred by the well-established commonsense reasoning tool COMET. These expressions are then specified for each article as augmentation. Any specific MD methods can be then trained on those commonsense-augmented articles. Besides, we also collect a novel commonsense-oriented dataset named CoMis, whose all fake articles are caused by commonsense conflict. We integrate MD-PCC with various existing MD backbones and compare them across both 4 public benchmark datasets and CoMis. Empirical results demonstrate that MD-PCC can consistently outperform the existing MD baselines.
comment: 11 pages, 2 figures. Accepted by IJCAI 2025. Code: https://github.com/wangbing1416/MD-PCC
DNB-AI-Project at SemEval-2025 Task 5: An LLM-Ensemble Approach for Automated Subject Indexing SemEval-2025
This paper presents our system developed for the SemEval-2025 Task 5: LLMs4Subjects: LLM-based Automated Subject Tagging for a National Technical Library's Open-Access Catalog. Our system relies on prompting a selection of LLMs with varying examples of intellectually annotated records and asking the LLMs to similarly suggest keywords for new records. This few-shot prompting technique is combined with a series of post-processing steps that map the generated keywords to the target vocabulary, aggregate the resulting subject terms to an ensemble vote and, finally, rank them as to their relevance to the record. Our system is fourth in the quantitative ranking in the all-subjects track, but achieves the best result in the qualitative ranking conducted by subject indexing experts.
comment: 11 pages, 4 figures, submitted to SemEval-2025 workshop Task 5: LLMs4Subjects
Glucagon and insulin production in pancreatic cells modeled using Petri nets and Boolean networks
Diabetes is a civilization chronic disease characterized by a constant elevated concentration of glucose in the blood. Many processes are involved in the glucose regulation, and their interactions are very complex. To better understand those processes we set ourselves a goal to create a Petri net model of the glucose regulation in the whole body. So far we have managed to create a model of glycolysis and synthesis of glucose in the liver, and the general overview models of the glucose regulation in a healthy and diabetic person. In this paper we introduce Petri nets models of insulin secretion in beta cell of the pancreas, and glucagon in the pancreas alpha cells. Those two hormones have mutually opposite effects: insulin preventing hyperglycemia, and glucagon preventing hypoglycemia. Understanding the mechanisms of insulin and glucagon secretion constitutes the basis for understanding diabetes. We also present a model in which both processes occur together, depending on the blood glucose level. The dynamics of each model is analysed. Additionally, we transform the overall insulin and glucagon secretion system to a Boolean network, following standard transformation rules.
Black-Box Visual Prompt Engineering for Mitigating Object Hallucination in Large Vision Language Models NAACL 2025
Large Vision Language Models (LVLMs) often suffer from object hallucination, which undermines their reliability. Surprisingly, we find that simple object-based visual prompting -- overlaying visual cues (e.g., bounding box, circle) on images -- can significantly mitigate such hallucination; however, different visual prompts (VPs) vary in effectiveness. To address this, we propose Black-Box Visual Prompt Engineering (BBVPE), a framework to identify optimal VPs that enhance LVLM responses without needing access to model internals. Our approach employs a pool of candidate VPs and trains a router model to dynamically select the most effective VP for a given input image. This black-box approach is model-agnostic, making it applicable to both open-source and proprietary LVLMs. Evaluations on benchmarks such as POPE and CHAIR demonstrate that BBVPE effectively reduces object hallucination.
comment: NAACL 2025
Precision Where It Matters: A Novel Spike Aware Mixed-Precision Quantization Strategy for LLaMA-based Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in various natural language processing tasks. However, their size presents significant challenges for deployment and inference. This paper investigates the quantization of LLMs, focusing on the LLaMA architecture and its derivatives. We challenge existing assumptions about activation outliers in LLMs and propose a novel mixed-precision quantization approach tailored for LLaMA-like models. Our method leverages the observation that activation spikes in LLaMA architectures are predominantly concentrated in specific projection layers. By applying higher precision (FP16 or FP8) to these layers while quantizing the rest of the model to lower bit-widths, we achieve superior performance compared to existing quantization techniques. Experimental results on LLaMA2, LLaMA3, and Mistral models demonstrate significant improvements in perplexity and zero-shot accuracy, particularly for 8-bit per-tensor quantization. Our approach outperforms general-purpose methods designed to handle outliers across all architecture types, highlighting the benefits of architecture-specific quantization strategies. This research contributes to the ongoing efforts to make LLMs more efficient and deployable, potentially enabling their use in resource-constrained environments. Our findings emphasize the importance of considering model-specific characteristics in developing effective quantization pipelines for state-of-the-art language models by identifying and targeting a small number of projections that concentrate activation spikes.
TartuNLP at SemEval-2025 Task 5: Subject Tagging as Two-Stage Information Retrieval SemEval-2025
We present our submission to the Task 5 of SemEval-2025 that aims to aid librarians in assigning subject tags to the library records by producing a list of likely relevant tags for a given document. We frame the task as an information retrieval problem, where the document content is used to retrieve subject tags from a large subject taxonomy. We leverage two types of encoder models to build a two-stage information retrieval system -- a bi-encoder for coarse-grained candidate extraction at the first stage, and a cross-encoder for fine-grained re-ranking at the second stage. This approach proved effective, demonstrating significant improvements in recall compared to single-stage methods and showing competitive results according to qualitative evaluation.
comment: To appear in the Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Improving Informally Romanized Language Identification
The Latin script is often used to informally write languages with non-Latin native scripts. In many cases (e.g., most languages in India), there is no conventional spelling of words in the Latin script, hence there will be high spelling variability in written text. Such romanization renders languages that are normally easily distinguished based on script highly confusable, such as Hindi and Urdu. In this work, we increase language identification (LID) accuracy for romanized text by improving the methods used to synthesize training sets. We find that training on synthetic samples which incorporate natural spelling variation yields higher LID system accuracy than including available naturally occurring examples in the training set, or even training higher capacity models. We demonstrate new state-of-the-art LID performance on romanized text from 20 Indic languages in the Bhasha-Abhijnaanam evaluation set (Madhani et al., 2023a), improving test F1 from the reported 74.7% (using a pretrained neural model) to 85.4% using a linear classifier trained solely on synthetic data and 88.2% when also training on available harvested text.
comment: 16 pages, 14 tables, 4 figures
Advancing Arabic Reverse Dictionary Systems: A Transformer-Based Approach with Dataset Construction Guidelines
This study addresses the critical gap in Arabic natural language processing by developing an effective Arabic Reverse Dictionary (RD) system that enables users to find words based on their descriptions or meanings. We present a novel transformer-based approach with a semi-encoder neural network architecture featuring geometrically decreasing layers that achieves state-of-the-art results for Arabic RD tasks. Our methodology incorporates a comprehensive dataset construction process and establishes formal quality standards for Arabic lexicographic definitions. Experiments with various pre-trained models demonstrate that Arabic-specific models significantly outperform general multilingual embeddings, with ARBERTv2 achieving the best ranking score (0.0644). Additionally, we provide a formal abstraction of the reverse dictionary task that enhances theoretical understanding and develop a modular, extensible Python library (RDTL) with configurable training pipelines. Our analysis of dataset quality reveals important insights for improving Arabic definition construction, leading to eight specific standards for building high-quality reverse dictionary resources. This work contributes significantly to Arabic computational linguistics and provides valuable tools for language learning, academic writing, and professional communication in Arabic.
Homa at SemEval-2025 Task 5: Aligning Librarian Records with OntoAligner for Subject Tagging SemEval2025
This paper presents our system, Homa, for SemEval-2025 Task 5: Subject Tagging, which focuses on automatically assigning subject labels to technical records from TIBKAT using the Gemeinsame Normdatei (GND) taxonomy. We leverage OntoAligner, a modular ontology alignment toolkit, to address this task by integrating retrieval-augmented generation (RAG) techniques. Our approach formulates the subject tagging problem as an alignment task, where records are matched to GND categories based on semantic similarity. We evaluate OntoAligner's adaptability for subject indexing and analyze its effectiveness in handling multilingual records. Experimental results demonstrate the strengths and limitations of this method, highlighting the potential of alignment techniques for improving subject tagging in digital libraries.
comment: 7 pages, 4 figures, accepted to the LLMs4Subjects shared task at SemEval2025
RWKV-X: A Linear Complexity Hybrid Language Model
In this paper, we introduce \textbf{RWKV-X}, a novel hybrid architecture that combines the efficiency of RWKV for short-range modeling with a sparse attention mechanism designed to capture long-range context. Unlike previous hybrid approaches that rely on full attention layers and retain quadratic complexity, RWKV-X achieves linear-time complexity in training and constant-time complexity in inference decoding. We demonstrate that RWKV-X, when continually pretrained on 64K-token sequences, achieves near-perfect accuracy on the 64K passkey retrieval benchmark. It consistently outperforms prior RWKV-7 models on long-context benchmarks, while maintaining strong performance on short-context tasks. These results highlight RWKV-X as a scalable and efficient backbone for general-purpose language modeling, capable of decoding sequences up to 1 million tokens with stable speed and memory usage. To facilitate further research and analysis, we have made the checkpoints and the associated code publicly accessible at: https://github.com/howard-hou/RWKV-X.
comment: 12 pages
SeriesBench: A Benchmark for Narrative-Driven Drama Series Understanding CVPR 2025
With the rapid development of Multi-modal Large Language Models (MLLMs), an increasing number of benchmarks have been established to evaluate the video understanding capabilities of these models. However, these benchmarks focus on \textbf{standalone} videos and mainly assess ``visual elements'' like human actions and object states. In reality, contemporary videos often encompass complex and continuous narratives, typically presented as a \textbf{series}. To address this challenge, we propose \textbf{SeriesBench}, a benchmark consisting of 105 carefully curated narrative-driven series, covering 28 specialized tasks that require deep narrative understanding. Specifically, we first select a diverse set of drama series spanning various genres. Then, we introduce a novel long-span narrative annotation method, combined with a full-information transformation approach to convert manual annotations into diverse task formats. To further enhance model capacity for detailed analysis of plot structures and character relationships within series, we propose a novel narrative reasoning framework, \textbf{PC-DCoT}. Extensive results on \textbf{SeriesBench} indicate that existing MLLMs still face significant challenges in understanding narrative-driven series, while \textbf{PC-DCoT} enables these MLLMs to achieve performance improvements. Overall, our \textbf{SeriesBench} and \textbf{PC-DCoT} highlight the critical necessity of advancing model capabilities to understand narrative-driven series, guiding the future development of MLLMs. SeriesBench is publicly available at https://github.com/zackhxn/SeriesBench-CVPR2025.
comment: 29 pages, 15 figures, CVPR 2025
The Distribution of Dependency Distance and Hierarchical Distance in Contemporary Written Japanese and Its Influencing Factors
To explore the relationship between dependency distance (DD) and hierarchical distance (HD) in Japanese, we compared the probability distributions of DD and HD with and without sentence length fixed, and analyzed the changes in mean dependency distance (MDD) and mean hierarchical distance (MHD) as sentence length increases, along with their correlation coefficient based on the Balanced Corpus of Contemporary Written Japanese. It was found that the valency of the predicates is the underlying factor behind the trade-off relation between MDD and MHD in Japanese. Native speakers of Japanese regulate the linear complexity and hierarchical complexity through the valency of the predicates, and the relative sizes of MDD and MHD depend on whether the threshold of valency has been reached. Apart from the cognitive load, the valency of the predicates also affects the probability distributions of DD and HD. The effect of the valency of the predicates on the distribution of HD is greater than on that of DD, which leads to differences in their probability distributions and causes the mean of MDD to be lower than that of MHD.
comment: This paper has been accepted by the 13th International Quantitative Linguistics Conference QUALICO 2025
Who Gets the Callback? Generative AI and Gender Bias
Generative artificial intelligence (AI), particularly large language models (LLMs), is being rapidly deployed in recruitment and for candidate shortlisting. We audit several mid-sized open-source LLMs for gender bias using a dataset of 332,044 real-world online job postings. For each posting, we prompt the model to recommend whether an equally qualified male or female candidate should receive an interview callback. We find that most models tend to favor men, especially for higher-wage roles. Mapping job descriptions to the Standard Occupational Classification system, we find lower callback rates for women in male-dominated occupations and higher rates in female-associated ones, indicating occupational segregation. A comprehensive analysis of linguistic features in job ads reveals strong alignment of model recommendations with traditional gender stereotypes. To examine the role of recruiter identity, we steer model behavior by infusing Big Five personality traits and simulating the perspectives of historical figures. We find that less agreeable personas reduce stereotyping, consistent with an agreeableness bias in LLMs. Our findings highlight how AI-driven hiring may perpetuate biases in the labor market and have implications for fairness and diversity within firms.
Retrieval-Enhanced Few-Shot Prompting for Speech Event Extraction
Speech Event Extraction (SpeechEE) is a challenging task that lies at the intersection of Automatic Speech Recognition (ASR) and Natural Language Processing (NLP), requiring the identification of structured event information from spoken language. In this work, we present a modular, pipeline-based SpeechEE framework that integrates high-performance ASR with semantic search-enhanced prompting of Large Language Models (LLMs). Our system first classifies speech segments likely to contain events using a hybrid filtering mechanism including rule-based, BERT-based, and LLM-based models. It then employs few-shot LLM prompting, dynamically enriched via semantic similarity retrieval, to identify event triggers and extract corresponding arguments. We evaluate the pipeline using multiple LLMs (Llama3-8B, GPT-4o-mini, and o1-mini) highlighting significant performance gains with o1-mini, which achieves 63.3% F1 on trigger classification and 27.8% F1 on argument classification, outperforming prior benchmarks. Our results demonstrate that pipeline approaches, when empowered by retrieval-augmented LLMs, can rival or exceed end-to-end systems while maintaining interpretability and modularity. This work provides practical insights into LLM-driven event extraction and opens pathways for future hybrid models combining textual and acoustic features.
Does the Prompt-based Large Language Model Recognize Students' Demographics and Introduce Bias in Essay Scoring?
Large Language Models (LLMs) are widely used in Automated Essay Scoring (AES) due to their ability to capture semantic meaning. Traditional fine-tuning approaches required technical expertise, limiting accessibility for educators with limited technical backgrounds. However, prompt-based tools like ChatGPT have made AES more accessible, enabling educators to obtain machine-generated scores using natural-language prompts (i.e., the prompt-based paradigm). Despite advancements, prior studies have shown bias in fine-tuned LLMs, particularly against disadvantaged groups. It remains unclear whether such biases persist or are amplified in the prompt-based paradigm with cutting-edge tools. Since such biases are believed to stem from the demographic information embedded in pre-trained models (i.e., the ability of LLMs' text embeddings to predict demographic attributes), this study explores the relationship between the model's predictive power of students' demographic attributes based on their written works and its predictive bias in the scoring task in the prompt-based paradigm. Using a publicly available dataset of over 25,000 students' argumentative essays, we designed prompts to elicit demographic inferences (i.e., gender, first-language background) from GPT-4o and assessed fairness in automated scoring. Then we conducted multivariate regression analysis to explore the impact of the model's ability to predict demographics on its scoring outcomes. Our findings revealed that (i) prompt-based LLMs can somewhat infer students' demographics, particularly their first-language backgrounds, from their essays; (ii) scoring biases are more pronounced when the LLM correctly predicts students' first-language background than when it does not; and (iii) scoring error for non-native English speakers increases when the LLM correctly identifies them as non-native.
Phi-4-reasoning Technical Report
We introduce Phi-4-reasoning, a 14-billion parameter reasoning model that achieves strong performance on complex reasoning tasks. Trained via supervised fine-tuning of Phi-4 on carefully curated set of "teachable" prompts-selected for the right level of complexity and diversity-and reasoning demonstrations generated using o3-mini, Phi-4-reasoning generates detailed reasoning chains that effectively leverage inference-time compute. We further develop Phi-4-reasoning-plus, a variant enhanced through a short phase of outcome-based reinforcement learning that offers higher performance by generating longer reasoning traces. Across a wide range of reasoning tasks, both models outperform significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B model and approach the performance levels of full DeepSeek-R1 model. Our comprehensive evaluations span benchmarks in math and scientific reasoning, coding, algorithmic problem solving, planning, and spatial understanding. Interestingly, we observe a non-trivial transfer of improvements to general-purpose benchmarks as well. In this report, we provide insights into our training data, our training methodologies, and our evaluations. We show that the benefit of careful data curation for supervised fine-tuning (SFT) extends to reasoning language models, and can be further amplified by reinforcement learning (RL). Finally, our evaluation points to opportunities for improving how we assess the performance and robustness of reasoning models.
Confidence in Large Language Model Evaluation: A Bayesian Approach to Limited-Sample Challenges
Large language models (LLMs) exhibit probabilistic output characteristics, yet conventional evaluation frameworks rely on deterministic scalar metrics. This study introduces a Bayesian approach for LLM capability assessment that integrates prior knowledge through probabilistic inference, addressing limitations under limited-sample regimes. By treating model capabilities as latent variables and leveraging a curated query set to induce discriminative responses, we formalize model ranking as a Bayesian hypothesis testing problem over mutually exclusive capability intervals. Experimental evaluations with GPT-series models demonstrate that the proposed method achieves superior discrimination compared to conventional evaluation methods. Results indicate that even with reduced sample sizes, the approach maintains statistical robustness while providing actionable insights, such as probabilistic statements about a model's likelihood of surpassing specific baselines. This work advances LLM evaluation methodologies by bridging Bayesian inference with practical constraints in real-world deployment scenarios.
BiasGuard: A Reasoning-enhanced Bias Detection Tool For Large Language Models
Identifying bias in LLM-generated content is a crucial prerequisite for ensuring fairness in LLMs. Existing methods, such as fairness classifiers and LLM-based judges, face limitations related to difficulties in understanding underlying intentions and the lack of criteria for fairness judgment. In this paper, we introduce BiasGuard, a novel bias detection tool that explicitly analyzes inputs and reasons through fairness specifications to provide accurate judgments. BiasGuard is implemented through a two-stage approach: the first stage initializes the model to explicitly reason based on fairness specifications, while the second stage leverages reinforcement learning to enhance its reasoning and judgment capabilities. Our experiments, conducted across five datasets, demonstrate that BiasGuard outperforms existing tools, improving accuracy and reducing over-fairness misjudgments. We also highlight the importance of reasoning-enhanced decision-making and provide evidence for the effectiveness of our two-stage optimization pipeline.
Talk Before You Retrieve: Agent-Led Discussions for Better RAG in Medical QA
Medical question answering (QA) is a reasoning-intensive task that remains challenging for large language models (LLMs) due to hallucinations and outdated domain knowledge. Retrieval-Augmented Generation (RAG) provides a promising post-training solution by leveraging external knowledge. However, existing medical RAG systems suffer from two key limitations: (1) a lack of modeling for human-like reasoning behaviors during information retrieval, and (2) reliance on suboptimal medical corpora, which often results in the retrieval of irrelevant or noisy snippets. To overcome these challenges, we propose Discuss-RAG, a plug-and-play module designed to enhance the medical QA RAG system through collaborative agent-based reasoning. Our method introduces a summarizer agent that orchestrates a team of medical experts to emulate multi-turn brainstorming, thereby improving the relevance of retrieved content. Additionally, a decision-making agent evaluates the retrieved snippets before their final integration. Experimental results on four benchmark medical QA datasets show that Discuss-RAG consistently outperforms MedRAG, especially significantly improving answer accuracy by up to 16.67% on BioASQ and 12.20% on PubMedQA. The code is available at: https://github.com/LLM-VLM-GSL/Discuss-RAG.
Memorization and Knowledge Injection in Gated LLMs
Large Language Models (LLMs) currently struggle to sequentially add new memories and integrate new knowledge. These limitations contrast with the human ability to continuously learn from new experiences and acquire knowledge throughout life. Most existing approaches add memories either through large context windows or external memory buffers (e.g., Retrieval-Augmented Generation), and studies on knowledge injection rarely test scenarios resembling everyday life events. In this work, we introduce a continual learning framework, Memory Embedded in Gated LLMs (MEGa), which injects event memories directly into the weights of LLMs. Each memory is stored in a dedicated set of gated low-rank weights. During inference, a gating mechanism activates relevant memory weights by matching query embeddings to stored memory embeddings. This enables the model to both recall entire memories and answer related questions. On two datasets - fictional characters and Wikipedia events - MEGa outperforms baseline approaches in mitigating catastrophic forgetting. Our model draws inspiration from the complementary memory system of the human brain.
Phi-4-Mini-Reasoning: Exploring the Limits of Small Reasoning Language Models in Math
Chain-of-Thought (CoT) significantly enhances formal reasoning capabilities in Large Language Models (LLMs) by training them to explicitly generate intermediate reasoning steps. While LLMs readily benefit from such techniques, improving reasoning in Small Language Models (SLMs) remains challenging due to their limited model capacity. Recent work by Deepseek-R1 demonstrates that distillation from LLM-generated synthetic data can substantially improve the reasoning ability of SLM. However, the detailed modeling recipe is not disclosed. In this work, we present a systematic training recipe for SLMs that consists of four steps: (1) large-scale mid-training on diverse distilled long-CoT data, (2) supervised fine-tuning on high-quality long-CoT data, (3) Rollout DPO leveraging a carefully curated preference dataset, and (4) Reinforcement Learning (RL) with Verifiable Reward. We apply our method on Phi-4-Mini, a compact 3.8B-parameter model. The resulting Phi-4-Mini-Reasoning model exceeds, on math reasoning tasks, much larger reasoning models, e.g., outperforming DeepSeek-R1-Distill-Qwen-7B by 3.2 points and DeepSeek-R1-Distill-Llama-8B by 7.7 points on Math-500. Our results validate that a carefully designed training recipe, with large-scale high-quality CoT data, is effective to unlock strong reasoning capabilities even in resource-constrained small models.
Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems
Failure attribution in LLM multi-agent systems-identifying the agent and step responsible for task failures-provides crucial clues for systems debugging but remains underexplored and labor-intensive. In this paper, we propose and formulate a new research area: automated failure attribution for LLM multi-agent systems. To support this initiative, we introduce the Who&When dataset, comprising extensive failure logs from 127 LLM multi-agent systems with fine-grained annotations linking failures to specific agents and decisive error steps. Using the Who&When, we develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons. The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps, with some methods performing below random. Even SOTA reasoning models, such as OpenAI o1 and DeepSeek R1, fail to achieve practical usability. These results highlight the task's complexity and the need for further research in this area. Code and dataset are available at https://github.com/mingyin1/Agents_Failure_Attribution
IP-CRR: Information Pursuit for Interpretable Classification of Chest Radiology Reports
The development of AI-based methods for analyzing radiology reports could lead to significant advances in medical diagnosis--from improving diagnostic accuracy to enhancing efficiency and reducing workload. However, the lack of interpretability in these methods has hindered their adoption in clinical settings. In this paper, we propose an interpretable-by-design framework for classifying radiology reports. The key idea is to extract a set of most informative queries from a large set of reports and use these queries and their corresponding answers to predict a diagnosis. Thus, the explanation for a prediction is, by construction, the set of selected queries and answers. We use the Information Pursuit framework to select informative queries, the Flan-T5 model to determine if facts are present in the report, and a classifier to predict the disease. Experiments on the MIMIC-CXR dataset demonstrate the effectiveness of the proposed method, highlighting its potential to enhance trust and usability in medical AI.
comment: 12 pages, 4 figures
Detecting and Mitigating Hateful Content in Multimodal Memes with Vision-Language Models
The rapid evolution of social media has provided enhanced communication channels for individuals to create online content, enabling them to express their thoughts and opinions. Multimodal memes, often utilized for playful or humorous expressions with visual and textual elements, are sometimes misused to disseminate hate speech against individuals or groups. While the detection of hateful memes is well-researched, developing effective methods to transform hateful content in memes remains a significant challenge. Leveraging the powerful generation and reasoning capabilities of Vision-Language Models (VLMs), we address the tasks of detecting and mitigating hateful content. This paper presents two key contributions: first, a definition-guided prompting technique for detecting hateful memes, and second, a unified framework for mitigating hateful content in memes, named UnHateMeme, which works by replacing hateful textual and/or visual components. With our definition-guided prompts, VLMs achieve impressive performance on hateful memes detection task. Furthermore, our UnHateMeme framework, integrated with VLMs, demonstrates a strong capability to convert hateful memes into non-hateful forms that meet human-level criteria for hate speech and maintain multimodal coherence between image and text. Through empirical experiments, we show the effectiveness of state-of-the-art pretrained VLMs such as LLaVA, Gemini and GPT-4o on the proposed tasks, providing a comprehensive analysis of their respective strengths and limitations for these tasks. This paper aims to shed light on important applications of VLMs for ensuring safe and respectful online environments.
AdaptMI: Adaptive Skill-based In-context Math Instruction for Small Language Models
In-context learning (ICL) allows a language model to improve its problem-solving capability when provided with suitable information in context. Since the choice of in-context information can be determined based on the problem itself, in-context learning is analogous to human learning from teachers in a classroom. Recent works (Didolkar et al., 2024a; 2024b) show that ICL performance can be improved by leveraging a frontier large language model's (LLM) ability to predict required skills to solve a problem, popularly referred to as an LLM's metacognition, and using the recommended skills to construct necessary in-context examples. While this skill-based strategy boosts ICL performance in larger models, its gains on small language models (SLMs) have been minimal, highlighting a performance gap in ICL capabilities. We investigate this gap and show that skill-based prompting can hurt SLM performance on easy questions by introducing unnecessary information, akin to cognitive overload. To address this, we introduce AdaptMI, an adaptive approach to selecting skill-based in-context Math Instructions for SLMs. Inspired by cognitive load theory from human pedagogy, our method only introduces skill-based examples when the model performs poorly. We further propose AdaptMI+, which adds examples targeted to the specific skills missing from the model's responses. On 5-shot evaluations across popular math benchmarks and five SLMs (1B--7B; Qwen, Llama), AdaptMI+ improves accuracy by up to 6% over naive skill-based strategies.
Between Underthinking and Overthinking: An Empirical Study of Reasoning Length and correctness in LLMs
Large language models (LLMs) are increasingly optimized for long reasoning, under the assumption that more reasoning leads to better performance. However, emerging evidence suggests that longer responses can sometimes degrade accuracy rather than improve it. In this paper, we conduct a systematic empirical study of the relationship between reasoning length and answer correctness. We find that LLMs tend to overthink simple problems, generating unnecessarily long outputs, and underthink harder ones, failing to extend their reasoning when it is most needed. This indicates that models might misjudge problem difficulty and fail to calibrate their response length appropriately. Furthermore, we investigate the effects of length reduction with a preference optimization algorithm when simply preferring the shorter responses regardless of answer correctness. Experiments show that the generation length can be significantly reduced while maintaining acceptable accuracy. Our findings highlight generation length as a meaningful signal for reasoning behavior and motivate further exploration into LLMs' self-awareness in reasoning length adaptation.
Fine-Tuning LLMs for Low-Resource Dialect Translation: The Case of Lebanese
This paper examines the effectiveness of Large Language Models (LLMs) in translating the low-resource Lebanese dialect, focusing on the impact of culturally authentic data versus larger translated datasets. We compare three fine-tuning approaches: Basic, contrastive, and grammar-hint tuning, using open-source Aya23 models. Experiments reveal that models fine-tuned on a smaller but culturally aware Lebanese dataset (LW) consistently outperform those trained on larger, non-native data. The best results were achieved through contrastive fine-tuning paired with contrastive prompting, which indicates the benefits of exposing translation models to bad examples. In addition, to ensure authentic evaluation, we introduce LebEval, a new benchmark derived from native Lebanese content, and compare it to the existing FLoRes benchmark. Our findings challenge the "More Data is Better" paradigm and emphasize the crucial role of cultural authenticity in dialectal translation. We made our datasets and code available on Github.
Optimization of embeddings storage for RAG systems using quantization and dimensionality reduction techniques
Retrieval-Augmented Generation enhances language models by retrieving relevant information from external knowledge bases, relying on high-dimensional vector embeddings typically stored in float32 precision. However, storing these embeddings at scale presents significant memory challenges. To address this issue, we systematically investigate on MTEB benchmark two complementary optimization strategies: quantization, evaluating standard formats (float16, int8, binary) and low-bit floating-point types (float8), and dimensionality reduction, assessing methods like PCA, Kernel PCA, UMAP, Random Projections and Autoencoders. Our results show that float8 quantization achieves a 4x storage reduction with minimal performance degradation (<0.3%), significantly outperforming int8 quantization at the same compression level, being simpler to implement. PCA emerges as the most effective dimensionality reduction technique. Crucially, combining moderate PCA (e.g., retaining 50% dimensions) with float8 quantization offers an excellent trade-off, achieving 8x total compression with less performance impact than using int8 alone (which provides only 4x compression). To facilitate practical application, we propose a methodology based on visualizing the performance-storage trade-off space to identify the optimal configuration that maximizes performance within their specific memory constraints.
comment: 13 pages, 9 figures, 1 table
ConSens: Assessing context grounding in open-book question answering
Large Language Models (LLMs) have demonstrated considerable success in open-book question answering (QA), where the task requires generating answers grounded in a provided external context. A critical challenge in open-book QA is to ensure that model responses are based on the provided context rather than its parametric knowledge, which can be outdated, incomplete, or incorrect. Existing evaluation methods, primarily based on the LLM-as-a-judge approach, face significant limitations, including biases, scalability issues, and dependence on costly external systems. To address these challenges, we propose a novel metric that contrasts the perplexity of the model response under two conditions: when the context is provided and when it is not. The resulting score quantifies the extent to which the model's answer relies on the provided context. The validity of this metric is demonstrated through a series of experiments that show its effectiveness in identifying whether a given answer is grounded in the provided context. Unlike existing approaches, this metric is computationally efficient, interpretable, and adaptable to various use cases, offering a scalable and practical solution to assess context utilization in open-book QA systems.
comment: 9 pages, 3 figures, 3 tables
GDI-Bench: A Benchmark for General Document Intelligence with Vision and Reasoning Decoupling
The rapid advancement of multimodal large language models (MLLMs) has profoundly impacted the document domain, creating a wide array of application scenarios. This progress highlights the need for a comprehensive benchmark to evaluate these models' capabilities across various document-specific tasks. However, existing benchmarks often fail to locate specific model weaknesses or guide systematic improvements. To bridge this gap, we introduce a General Document Intelligence Benchmark (GDI-Bench), featuring 1.9k images across 9 key scenarios and 19 document-specific tasks. By decoupling visual complexity and reasoning complexity, the GDI-Bench structures graded tasks that allow performance assessment by difficulty, aiding in model weakness identification and optimization guidance. We evaluate the GDI-Bench on various open-source and closed-source models, conducting decoupled analyses in the visual and reasoning domains. For instance, the GPT-4o model excels in reasoning tasks but exhibits limitations in visual capabilities. To address the diverse tasks and domains in the GDI-Bench, we propose a GDI Model that mitigates the issue of catastrophic forgetting during the supervised fine-tuning (SFT) process through a intelligence-preserving training strategy. Our model achieves state-of-the-art performance on previous benchmarks and the GDI-Bench. Both our benchmark and model will be open source.
Enhancing Security and Strengthening Defenses in Automated Short-Answer Grading Systems
This study examines vulnerabilities in transformer-based automated short-answer grading systems used in medical education, with a focus on how these systems can be manipulated through adversarial gaming strategies. Our research identifies three main types of gaming strategies that exploit the system's weaknesses, potentially leading to false positives. To counteract these vulnerabilities, we implement several adversarial training methods designed to enhance the systems' robustness. Our results indicate that these methods significantly reduce the susceptibility of grading systems to such manipulations, especially when combined with ensemble techniques like majority voting and ridge regression, which further improve the system's defense against sophisticated adversarial inputs. Additionally, employing large language models such as GPT-4 with varied prompting techniques has shown promise in recognizing and scoring gaming strategies effectively. The findings underscore the importance of continuous improvements in AI-driven educational tools to ensure their reliability and fairness in high-stakes settings.
Fact-Consistency Evaluation of Text-to-SQL Generation for Business Intelligence Using Exaone 3.5
Large Language Models (LLMs) have shown promise in enabling natural language interfaces for structured data querying through text-to-SQL generation. However, their application in real-world Business Intelligence (BI) contexts remains limited due to semantic hallucinations, structural errors, and a lack of domain-specific evaluation frameworks. In this study, we propose a Fact-Consistency Evaluation Framework for assessing the semantic accuracy of LLM-generated SQL outputs using Exaone 3.5--an instruction-tuned, bilingual LLM optimized for enterprise tasks. We construct a domain-specific benchmark comprising 219 natural language business questions across five SQL complexity levels, derived from actual sales data in LG Electronics' internal BigQuery environment. Each question is paired with a gold-standard SQL query and a validated ground-truth answer. We evaluate model performance using answer accuracy, execution success rate, semantic error rate, and non-response rate. Experimental results show that while Exaone 3.5 performs well on simple aggregation tasks (93% accuracy in L1), it exhibits substantial degradation in arithmetic reasoning (4% accuracy in H1) and grouped ranking tasks (31% in H4), with semantic errors and non-responses concentrated in complex cases. Qualitative error analysis further identifies common failure types such as misapplied arithmetic logic, incomplete filtering, and incorrect grouping operations. Our findings highlight the current limitations of LLMs in business-critical environments and underscore the need for fact-consistency validation layers and hybrid reasoning approaches. This work contributes a reproducible benchmark and evaluation methodology for advancing reliable natural language interfaces to structured enterprise data systems.
comment: 6 pages, 1 table
BERSting at the Screams: A Benchmark for Distanced, Emotional and Shouted Speech Recognition
Some speech recognition tasks, such as automatic speech recognition (ASR), are approaching or have reached human performance in many reported metrics. Yet, they continue to struggle in complex, real-world, situations, such as with distanced speech. Previous challenges have released datasets to address the issue of distanced ASR, however, the focus remains primarily on distance, specifically relying on multi-microphone array systems. Here we present the B(asic) E(motion) R(andom phrase) S(hou)t(s) (BERSt) dataset. The dataset contains almost 4 hours of English speech from 98 actors with varying regional and non-native accents. The data was collected on smartphones in the actors homes and therefore includes at least 98 different acoustic environments. The data also includes 7 different emotion prompts and both shouted and spoken utterances. The smartphones were places in 19 different positions, including obstructions and being in a different room than the actor. This data is publicly available for use and can be used to evaluate a variety of speech recognition tasks, including: ASR, shout detection, and speech emotion recognition (SER). We provide initial benchmarks for ASR and SER tasks, and find that ASR degrades both with an increase in distance and shout level and shows varied performance depending on the intended emotion. Our results show that the BERSt dataset is challenging for both ASR and SER tasks and continued work is needed to improve the robustness of such systems for more accurate real-world use.
comment: Accepted to Computer Speech and Language, Special issue: Multi-Speaker, Multi-Microphone, and Multi-Modal Distant Speech Recognition (September 2025)
A Report on the llms evaluating the high school questions
This report aims to evaluate the performance of large language models (LLMs) in solving high school science questions and to explore their potential applications in the educational field. With the rapid development of LLMs in the field of natural language processing, their application in education has attracted widespread attention. This study selected mathematics exam questions from the college entrance examinations (2019-2023) as evaluation data and utilized at least eight LLM APIs to provide answers. A comprehensive assessment was conducted based on metrics such as accuracy, response time, logical reasoning, and creativity. Through an in-depth analysis of the evaluation results, this report reveals the strengths and weaknesses of LLMs in handling high school science questions and discusses their implications for educational practice. The findings indicate that although LLMs perform excellently in certain aspects, there is still room for improvement in logical reasoning and creative problem-solving. This report provides an empirical foundation for further research and application of LLMs in the educational field and offers suggestions for improvement.
Clustering Internet Memes Through Template Matching and Multi-Dimensional Similarity
Meme clustering is critical for toxicity detection, virality modeling, and typing, but it has received little attention in previous research. Clustering similar Internet memes is challenging due to their multimodality, cultural context, and adaptability. Existing approaches rely on databases, overlook semantics, and struggle to handle diverse dimensions of similarity. This paper introduces a novel method that uses template-based matching with multi-dimensional similarity features, thus eliminating the need for predefined databases and supporting adaptive matching. Memes are clustered using local and global features across similarity categories such as form, visual content, text, and identity. Our combined approach outperforms existing clustering methods, producing more consistent and coherent clusters, while similarity-based feature sets enable adaptability and align with human intuition. We make all supporting code publicly available to support subsequent research. Code: https://github.com/tygobl/meme-clustering
Emotional Analysis of Fashion Trends Using Social Media and AI: Sentiment Analysis on Twitter for Fashion Trend Forecasting
This study explores the intersection of fashion trends and social media sentiment through computational analysis of Twitter data using the T4SA (Twitter for Sentiment Analysis) dataset. By applying natural language processing and machine learning techniques, we examine how sentiment patterns in fashion-related social media conversations can serve as predictors for emerging fashion trends. Our analysis involves the identification and categorization of fashion-related content, sentiment classification with improved normalization techniques, time series decomposition, statistically validated causal relationship modeling, cross-platform sentiment comparison, and brand-specific sentiment analysis. Results indicate correlations between sentiment patterns and fashion theme popularity, with accessories and streetwear themes showing statistically significant rising trends. The Granger causality analysis establishes sustainability and streetwear as primary trend drivers, showing bidirectional relationships with several other themes. The findings demonstrate that social media sentiment analysis can serve as an effective early indicator of fashion trend trajectories when proper statistical validation is applied. Our improved predictive model achieved 78.35% balanced accuracy in sentiment classification, establishing a reliable foundation for trend prediction across positive, neutral, and negative sentiment categories.
comment: 13 pages
Humanizing LLMs: A Survey of Psychological Measurements with Tools, Datasets, and Human-Agent Applications
As large language models (LLMs) are increasingly used in human-centered tasks, assessing their psychological traits is crucial for understanding their social impact and ensuring trustworthy AI alignment. While existing reviews have covered some aspects of related research, several important areas have not been systematically discussed, including detailed discussions of diverse psychological tests, LLM-specific psychological datasets, and the applications of LLMs with psychological traits. To address this gap, we systematically review six key dimensions of applying psychological theories to LLMs: (1) assessment tools; (2) LLM-specific datasets; (3) evaluation metrics (consistency and stability); (4) empirical findings; (5) personality simulation methods; and (6) LLM-based behavior simulation. Our analysis highlights both the strengths and limitations of current methods. While some LLMs exhibit reproducible personality patterns under specific prompting schemes, significant variability remains across tasks and settings. Recognizing methodological challenges such as mismatches between psychological tools and LLMs' capabilities, as well as inconsistencies in evaluation practices, this study aims to propose future directions for developing more interpretable, robust, and generalizable psychological assessment frameworks for LLMs.
comment: 26 pages,7 figures
Base Models Beat Aligned Models at Randomness and Creativity
Alignment has quickly become a default ingredient in LLM development, with techniques such as reinforcement learning from human feedback making models act safely, follow instructions, and perform ever-better on complex tasks. While these techniques are certainly useful, we propose that they should not be universally applied and demonstrate a range of tasks on which base language models consistently outperform their popular aligned forms. Particularly, we study tasks that require unpredictable outputs, such as random number generation, mixed strategy games (rock-paper-scissors and hide-and-seek), and creative writing. In each case, aligned models tend towards narrow behaviors that result in distinct disadvantages, for instance, preferring to generate "7" over other uniformly random numbers, becoming almost fully predictable in some game states, or prioritizing pleasant writing over creative originality. Across models tested, better performance on common benchmarks tends to correlate with worse performance on our tasks, suggesting an effective trade-off in the required capabilities.
Efficient Domain-adaptive Continual Pretraining for the Process Industry in the German Language
Domain-adaptive continual pretraining (DAPT) is a state-of-the-art technique that further trains a language model (LM) on its pretraining task, e.g., language masking. Although popular, it requires a significant corpus of domain-related data, which is difficult to obtain for specific domains in languages other than English, such as the process industry in the German language. This paper introduces an efficient approach called ICL-augmented pretraining or ICL-APT that leverages in-context learning (ICL) and k-nearest neighbors (kNN) to augment target data with domain-related and in-domain texts, significantly reducing GPU time while maintaining strong model performance. Our results show that this approach performs better than traditional DAPT by 3.5 points of the average IR metrics (e.g., mAP, MRR, and nDCG) and requires almost 4 times less computing time, providing a cost-effective solution for industries with limited computational capacity. The findings highlight the broader applicability of this framework to other low-resource industries, making NLP-based solutions more accessible and feasible in production environments.
Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
Hallucinations are a persistent problem with Large Language Models (LLMs). As these models become increasingly used in high-stakes domains, such as healthcare and finance, the need for effective hallucination detection is crucial. To this end, we propose a versatile framework for zero-resource hallucination detection that practitioners can apply to real-world use cases. To achieve this, we adapt a variety of existing uncertainty quantification (UQ) techniques, including black-box UQ, white-box UQ, and LLM-as-a-Judge, transforming them as necessary into standardized response-level confidence scores ranging from 0 to 1. To enhance flexibility, we introduce a tunable ensemble approach that incorporates any combination of the individual confidence scores. This approach enables practitioners to optimize the ensemble for a specific use case for improved performance. To streamline implementation, the full suite of scorers is offered in this paper's companion Python toolkit, UQLM. To evaluate the performance of the various scorers, we conduct an extensive set of experiments using several LLM question-answering benchmarks. We find that our tunable ensemble typically surpasses its individual components and outperforms existing hallucination detection methods. Our results demonstrate the benefits of customized hallucination detection strategies for improving the accuracy and reliability of LLMs.
comment: UQLM repository: https://github.com/cvs-health/uqlm
Learning Optimal Prompt Ensemble for Multi-source Visual Prompt Transfer
Prompt tuning has emerged as a lightweight adaptation strategy for adapting foundation models to downstream tasks, particularly in resource-constrained systems. As pre-trained prompts have become valuable intellectual assets, combining multiple source prompts offers a promising approach to enhance generalization to new tasks by leveraging complementary knowledge from diverse sources. However, naive aggregation of these prompts often leads to representation collapse due to mutual interference, undermining their collective potential. To address these challenges, we propose HGPrompt, an adaptive framework for multi-source prompt transfer that learns optimal ensemble weights by jointly optimizing dual objectives: transferability and stability. Specifically, we first introduce an information-theoretic metric to evaluate the transferability of prompt-induced features on the target task, capturing the intrinsic alignment between the feature representations. Additionally, we propose a novel Gradient Alignment Regularization to mitigate gradient conflicts among prompts, enabling stable and coherent knowledge transfer from multiple sources while suppressing interference. Extensive experiments on the large-scale VTAB benchmark demonstrate that HGPrompt achieves state-of-the-art performance, validating its effectiveness in multi-source prompt transfer.
SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations
Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences. Training KG embedding can take a significantly long time, especially for larger datasets. Our analysis shows that the gradient computation of embedding is one of the dominant functions in the translation-based KG embedding training loop. We address this issue by replacing the core embedding computation with SpMM (Sparse-Dense Matrix Multiplication) kernels. This allows us to unify multiple scatter (and gather) operations as a single operation, reducing training time and memory usage. We create a general framework for training KG models using sparse kernels and implement four models, namely TransE, TransR, TransH, and TorusE. Our sparse implementations exhibit up to 5.3x speedup on the CPU and up to 4.2x speedup on the GPU with a significantly low GPU memory footprint. The speedups are consistent across large and small datasets for a given model. Our proposed sparse approach can be extended to accelerate other translation-based (such as TransC, TransM, etc.) and non-translational (such as DistMult, ComplEx, RotatE, etc.) models as well. An implementation of the SpTransX framework is publicly available as a Python package in https://github.com/HipGraph/SpTransX.
comment: 15 pages, 9 figures, 9 tables. MLSys 2025
JuDGE: Benchmarking Judgment Document Generation for Chinese Legal System
This paper introduces JuDGE (Judgment Document Generation Evaluation), a novel benchmark for evaluating the performance of judgment document generation in the Chinese legal system. We define the task as generating a complete legal judgment document from the given factual description of the case. To facilitate this benchmark, we construct a comprehensive dataset consisting of factual descriptions from real legal cases, paired with their corresponding full judgment documents, which serve as the ground truth for evaluating the quality of generated documents. This dataset is further augmented by two external legal corpora that provide additional legal knowledge for the task: one comprising statutes and regulations, and the other consisting of a large collection of past judgment documents. In collaboration with legal professionals, we establish a comprehensive automated evaluation framework to assess the quality of generated judgment documents across various dimensions. We evaluate various baseline approaches, including few-shot in-context learning, fine-tuning, and a multi-source retrieval-augmented generation (RAG) approach, using both general and legal-domain LLMs. The experimental results demonstrate that, while RAG approaches can effectively improve performance in this task, there is still substantial room for further improvement. All the codes and datasets are available at: https://github.com/oneal2000/JuDGE.
Emergence of a High-Dimensional Abstraction Phase in Language Transformers ICLR 2025
A language model (LM) is a mapping from a linguistic context to an output token. However, much remains to be known about this mapping, including how its geometric properties relate to its function. We take a high-level geometric approach to its analysis, observing, across five pre-trained transformer-based LMs and three input datasets, a distinct phase characterized by high intrinsic dimensionality. During this phase, representations (1) correspond to the first full linguistic abstraction of the input; (2) are the first to viably transfer to downstream tasks; (3) predict each other across different LMs. Moreover, we find that an earlier onset of the phase strongly predicts better language modelling performance. In short, our results suggest that a central high-dimensionality phase underlies core linguistic processing in many common LM architectures.
comment: Published as conference paper at ICLR 2025
Extracting and Transferring Abilities For Building Multi-lingual Ability-enhanced Large Language Models
Multi-lingual ability transfer has become increasingly important for the broad application of large language models (LLMs). Existing work highly relies on training with the multi-lingual ability-related data, which may be not available for low-resource languages. To solve it, we propose a Multi-lingual Ability Extraction and Transfer approach, named as MAET. Our key idea is to decompose and extract language-agnostic ability-related weights from LLMs, and transfer them across different languages by simple addition and subtraction operations without training. Specially, our MAET consists of the extraction and transfer stages. In the extraction stage, we firstly locate key neurons that are highly related to specific abilities, and then employ them to extract the transferable ability-specific weights. In the transfer stage, we further select the ability-related parameter tensors, and design the merging strategy based on the linguistic and ability specific weights, to build the multi-lingual ability-enhanced LLM. To demonstrate the effectiveness of our proposed approach, we conduct extensive experiments on mathematical and scientific tasks in both high-resource lingual and low-resource lingual scenarios. Experiment results have shown that MAET can effectively and efficiently extract and transfer the advanced abilities, and outperform training-based baseline methods. Our code and data are available at https://github.com/RUCAIBox/MAET.
comment: 17 Pages. Working in progress
Adsorb-Agent: Autonomous Identification of Stable Adsorption Configurations via Large Language Model Agent
Adsorption energy is a key reactivity descriptor in catalysis, enabling efficient screening for optimal catalysts. However, determining adsorption energy typically requires evaluating numerous adsorbate-catalyst configurations. Current algorithmic approaches rely on exhaustive enumeration of adsorption sites and configurations, which makes the process computationally intensive and does not inherently guarantee the identification of the global minimum energy. In this work, we introduce Adsorb-Agent, a Large Language Model (LLM) agent designed to efficiently identify system-specific stable adsorption configurations corresponding to the global minimum adsorption energy. Adsorb-Agent leverages its built-in knowledge and emergent reasoning capabilities to strategically explore adsorption configurations likely to hold adsorption energy. By reducing the reliance on exhaustive sampling, it significantly decreases the number of initial configurations required while improving the accuracy of adsorption energy predictions. We evaluate Adsorb-Agent's performance across twenty representative systems encompassing a range of complexities. The Adsorb-Agent successfully identifies comparable adsorption energies for 83.7% of the systems and achieves lower energies, closer to the actual global minimum, for 35% of the systems, while requiring significantly fewer initial configurations than conventional methods. Its capability is particularly evident in complex systems, where it identifies lower adsorption energies for 46.7% of systems involving intermetallic surfaces and 66.7% of systems with large adsorbate molecules. These results demonstrate the potential of Adsorb-Agent to accelerate catalyst discovery by reducing computational costs and improving the reliability of adsorption energy predictions.
Mapping Trustworthiness in Large Language Models: A Bibliometric Analysis Bridging Theory to Practice
The rapid proliferation of Large Language Models (LLMs) has raised pressing concerns regarding their trustworthiness, spanning issues of reliability, transparency, fairness, and ethical alignment. Despite the increasing adoption of LLMs across various domains, there remains a lack of consensus on how to operationalize trustworthiness in practice. This study bridges the gap between theoretical discussions and implementation by conducting a bibliometric mapping analysis of 2,006 publications from 2019 to 2025. Through co-authorship networks, keyword co-occurrence analysis, and thematic evolution tracking, we identify key research trends, influential authors, and prevailing definitions of LLM trustworthiness. Additionally, a systematic review of 68 core papers is conducted to examine conceptualizations of trust and their practical implications. Our findings reveal that trustworthiness in LLMs is often framed through existing organizational trust frameworks, emphasizing dimensions such as ability, benevolence, and integrity. However, a significant gap exists in translating these principles into concrete development strategies. To address this, we propose a structured mapping of 20 trust-enhancing techniques across the LLM lifecycle, including retrieval-augmented generation (RAG), explainability techniques, and post-training audits. By synthesizing bibliometric insights with practical strategies, this study contributes towards fostering more transparent, accountable, and ethically aligned LLMs, ensuring their responsible deployment in real-world applications.
LLMs and Finetuning: Benchmarking cross-domain performance for hate speech detection
In the evolving landscape of online communication, hate speech detection remains a formidable challenge, further compounded by the diversity of digital platforms. This study investigates the effectiveness and adaptability of pre-trained and fine-tuned Large Language Models (LLMs) in identifying hate speech, to address two central questions: (1) To what extent does the model performance depend on the fine-tuning and training parameters?, (2) To what extent do models generalize to cross-domain hate speech detection? and (3) What are the specific features of the datasets or models that influence the generalization potential? The experiment shows that LLMs offer a huge advantage over the state-of-the-art even without pretraining. Ordinary least squares analyses suggest that the advantage of training with fine-grained hate speech labels is washed away with the increase in dataset size. While our research demonstrates the potential of large language models (LLMs) for hate speech detection, several limitations remain, particularly regarding the validity and the reproducibility of the results. We conclude with an exhaustive discussion of the challenges we faced in our experimentation and offer recommended best practices for future scholars designing benchmarking experiments of this kind.
comment: 18 pages, 3 figures, 5 tables
VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge
Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.
comment: 56 pages, 43 figures
Exploring Acoustic Similarity in Emotional Speech and Music via Self-Supervised Representations ICASSP 2025
Emotion recognition from speech and music shares similarities due to their acoustic overlap, which has led to interest in transferring knowledge between these domains. However, the shared acoustic cues between speech and music, particularly those encoded by Self-Supervised Learning (SSL) models, remain largely unexplored, given the fact that SSL models for speech and music have rarely been applied in cross-domain research. In this work, we revisit the acoustic similarity between emotion speech and music, starting with an analysis of the layerwise behavior of SSL models for Speech Emotion Recognition (SER) and Music Emotion Recognition (MER). Furthermore, we perform cross-domain adaptation by comparing several approaches in a two-stage fine-tuning process, examining effective ways to utilize music for SER and speech for MER. Lastly, we explore the acoustic similarities between emotional speech and music using Frechet audio distance for individual emotions, uncovering the issue of emotion bias in both speech and music SSL models. Our findings reveal that while speech and music SSL models do capture shared acoustic features, their behaviors can vary depending on different emotions due to their training strategies and domain-specificities. Additionally, parameter-efficient fine-tuning can enhance SER and MER performance by leveraging knowledge from each other. This study provides new insights into the acoustic similarity between emotional speech and music, and highlights the potential for cross-domain generalization to improve SER and MER systems.
comment: Accepted to ICASSP 2025
Revise, Reason, and Recognize: LLM-Based Emotion Recognition via Emotion-Specific Prompts and ASR Error Correction ICASSP 2025
Annotating and recognizing speech emotion using prompt engineering has recently emerged with the advancement of Large Language Models (LLMs), yet its efficacy and reliability remain questionable. In this paper, we conduct a systematic study on this topic, beginning with the proposal of novel prompts that incorporate emotion-specific knowledge from acoustics, linguistics, and psychology. Subsequently, we examine the effectiveness of LLM-based prompting on Automatic Speech Recognition (ASR) transcription, contrasting it with ground-truth transcription. Furthermore, we propose a Revise-Reason-Recognize prompting pipeline for robust LLM-based emotion recognition from spoken language with ASR errors. Additionally, experiments on context-aware learning, in-context learning, and instruction tuning are performed to examine the usefulness of LLM training schemes in this direction. Finally, we investigate the sensitivity of LLMs to minor prompt variations. Experimental results demonstrate the efficacy of the emotion-specific prompts, ASR error correction, and LLM training schemes for LLM-based emotion recognition. Our study aims to refine the use of LLMs in emotion recognition and related domains.
comment: Accepted to ICASSP 2025
Semi-Supervised Cognitive State Classification from Speech with Multi-View Pseudo-Labeling ICASSP 2025
The lack of labeled data is a common challenge in speech classification tasks, particularly those requiring extensive subjective assessment, such as cognitive state classification. In this work, we propose a Semi-Supervised Learning (SSL) framework, introducing a novel multi-view pseudo-labeling method that leverages both acoustic and linguistic characteristics to select the most confident data for training the classification model. Acoustically, unlabeled data are compared to labeled data using the Frechet audio distance, calculated from embeddings generated by multiple audio encoders. Linguistically, large language models are prompted to revise automatic speech recognition transcriptions and predict labels based on our proposed task-specific knowledge. High-confidence data are identified when pseudo-labels from both sources align, while mismatches are treated as low-confidence data. A bimodal classifier is then trained to iteratively label the low-confidence data until a predefined criterion is met. We evaluate our SSL framework on emotion recognition and dementia detection tasks. Experimental results demonstrate that our method achieves competitive performance compared to fully supervised learning using only 30% of the labeled data and significantly outperforms two selected baselines.
comment: Accepted to ICASSP 2025
Addressing Emotion Bias in Music Emotion Recognition and Generation with Frechet Audio Distance ICME 2025
The complex nature of musical emotion introduces inherent bias in both recognition and generation, particularly when relying on a single audio encoder, emotion classifier, or evaluation metric. In this work, we conduct a study on Music Emotion Recognition (MER) and Emotional Music Generation (EMG), employing diverse audio encoders alongside Frechet Audio Distance (FAD), a reference-free evaluation metric. Our study begins with a benchmark evaluation of MER, highlighting the limitations of using a single audio encoder and the disparities observed across different measurements. We then propose assessing MER performance using FAD derived from multiple encoders to provide a more objective measure of musical emotion. Furthermore, we introduce an enhanced EMG approach designed to improve both the variability and prominence of generated musical emotion, thereby enhancing its realism. Additionally, we investigate the differences in realism between the emotions conveyed in real and synthetic music, comparing our EMG model against two baseline models. Experimental results underscore the issue of emotion bias in both MER and EMG and demonstrate the potential of using FAD and diverse audio encoders to evaluate musical emotion more objectively and effectively.
comment: Accepted to ICME 2025
Cross-Lingual Speech Emotion Recognition: Humans vs. Self-Supervised Models ICASSP 2025
Utilizing Self-Supervised Learning (SSL) models for Speech Emotion Recognition (SER) has proven effective, yet limited research has explored cross-lingual scenarios. This study presents a comparative analysis between human performance and SSL models, beginning with a layer-wise analysis and an exploration of parameter-efficient fine-tuning strategies in monolingual, cross-lingual, and transfer learning contexts. We further compare the SER ability of models and humans at both utterance- and segment-levels. Additionally, we investigate the impact of dialect on cross-lingual SER through human evaluation. Our findings reveal that models, with appropriate knowledge transfer, can adapt to the target language and achieve performance comparable to native speakers. We also demonstrate the significant effect of dialect on SER for individuals without prior linguistic and paralinguistic background. Moreover, both humans and models exhibit distinct behaviors across different emotions. These results offer new insights into the cross-lingual SER capabilities of SSL models, underscoring both their similarities to and differences from human emotion perception.
comment: Accepted to ICASSP 2025
PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts
In this paper, we introduce PolyMath, a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels. Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation, making it a highly discriminative multilingual mathematical benchmark in the era of reasoning LLMs. We conduct a comprehensive evaluation for advanced LLMs and find that even Qwen-3-235B-A22B-Thinking and Gemini-2.5-pro, achieve only 54.6 and 52.2 benchmark scores, with about 40% accuracy under the highest level From a language perspective, our benchmark reveals several key challenges of LLMs in multilingual reasoning: (1) Reasoning performance varies widely across languages for current LLMs; (2) Input-output language consistency is low in reasoning LLMs and may be correlated with performance; (3) The thinking length differs significantly by language for current LLMs. Additionally, we demonstrate that controlling the output language in the instructions has the potential to affect reasoning performance, especially for some low-resource languages, suggesting a promising direction for improving multilingual capabilities in LLMs.
comment: Work in Progress
How to Construct Random Unitaries
The existence of pseudorandom unitaries (PRUs) -- efficient quantum circuits that are computationally indistinguishable from Haar-random unitaries -- has been a central open question, with significant implications for cryptography, complexity theory, and fundamental physics. In this work, we close this question by proving that PRUs exist, assuming that any quantum-secure one-way function exists. We establish this result for both (1) the standard notion of PRUs, which are secure against any efficient adversary that makes queries to the unitary $U$, and (2) a stronger notion of PRUs, which are secure even against adversaries that can query both the unitary $U$ and its inverse $U^\dagger$. In the process, we prove that any algorithm that makes queries to a Haar-random unitary can be efficiently simulated on a quantum computer, up to inverse-exponential trace distance.
comment: 76 pages; added grant acknowledgments
Retrieval, Reasoning, Re-ranking: A Context-Enriched Framework for Knowledge Graph Completion NAACL2025
The Knowledge Graph Completion~(KGC) task aims to infer the missing entity from an incomplete triple. Existing embedding-based methods rely solely on triples in the KG, which is vulnerable to specious relation patterns and long-tail entities. On the other hand, text-based methods struggle with the semantic gap between KG triples and natural language. Apart from triples, entity contexts (e.g., labels, descriptions, aliases) also play a significant role in augmenting KGs. To address these limitations, we propose KGR3, a context-enriched framework for KGC. KGR3 is composed of three modules. Firstly, the Retrieval module gathers supporting triples from the KG, collects plausible candidate answers from a base embedding model, and retrieves context for each related entity. Then, the Reasoning module employs a large language model to generate potential answers for each query triple. Finally, the Re-ranking module combines candidate answers from the two modules mentioned above, and fine-tunes an LLM to provide the best answer. Extensive experiments on widely used datasets demonstrate that KGR3 consistently improves various KGC methods. Specifically, the best variant of KGR3 achieves absolute Hits@1 improvements of 12.3% and 5.6% on the FB15k237 and WN18RR datasets.
comment: Accepted by NAACL2025 main
Learning 6-DoF Fine-grained Grasp Detection Based on Part Affordance Grounding
Robotic grasping is a fundamental ability for a robot to interact with the environment. Current methods focus on how to obtain a stable and reliable grasping pose in object level, while little work has been studied on part (shape)-wise grasping which is related to fine-grained grasping and robotic affordance. Parts can be seen as atomic elements to compose an object, which contains rich semantic knowledge and a strong correlation with affordance. However, lacking a large part-wise 3D robotic dataset limits the development of part representation learning and downstream applications. In this paper, we propose a new large Language-guided SHape grAsPing datasEt (named LangSHAPE) to promote 3D part-level affordance and grasping ability learning. From the perspective of robotic cognition, we design a two-stage fine-grained robotic grasping framework (named LangPartGPD), including a novel 3D part language grounding model and a part-aware grasp pose detection model, in which explicit language input from human or large language models (LLMs) could guide a robot to generate part-level 6-DoF grasping pose with textual explanation. Our method combines the advantages of human-robot collaboration and LLMs' planning ability using explicit language as a symbolic intermediate. To evaluate the effectiveness of our proposed method, we perform 3D part grounding and fine-grained grasp detection experiments on both simulation and physical robot settings, following language instructions across different degrees of textual complexity. Results show our method achieves competitive performance in 3D geometry fine-grained grounding, object affordance inference, and 3D part-aware grasping tasks. Our dataset and code are available on our project website https://sites.google.com/view/lang-shape
comment: 15 pages, 8 figures, 7 tables
Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling ICLR 2025
Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20$\times$ speedup. In addition, our investigation raises doubts about whether MDMs can truly beat ARMs in text generation. We identify, for the first time, an underlying numerical issue, even with the commonly used 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that it lowers the effective temperature both theoretically and empirically, and the resulting decrease in token diversity makes previous evaluations, which assess the generation quality solely through the incomplete generative perplexity metric, somewhat unfair.
comment: Accepted at ICLR 2025
OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: Work in progress
AC-Lite : A Lightweight Image Captioning Model for Low-Resource Assamese Language
Most existing works in image caption synthesis use computation heavy deep neural networks and generates image descriptions in English language. This often restricts this important assistive tool for widespread use across language and accessibility barriers. This work presents AC-Lite, a computationally efficient model for image captioning in low-resource Assamese language. AC-Lite reduces computational requirements by replacing computation-heavy deep network components with lightweight alternatives. The AC-Lite model is designed through extensive ablation experiments with different image feature extractor networks and language decoders. A combination of ShuffleNetv2x1.5 with GRU based language decoder along with bilinear attention is found to provide the best performance with minimum compute. AC-Lite was observed to achieve an 82.3 CIDEr score on the COCO-AC dataset with 2.45 GFLOPs and 22.87M parameters.
KnowRA: Knowledge Retrieval Augmented Method for Document-level Relation Extraction with Comprehensive Reasoning Abilities IJCAI 2025
Document-level relation extraction (Doc-RE) aims to extract relations between entities across multiple sentences. Therefore, Doc-RE requires more comprehensive reasoning abilities like humans, involving complex cross-sentence interactions between entities, contexts, and external general knowledge, compared to the sentence-level RE. However, most existing Doc-RE methods focus on optimizing single reasoning ability, but lack the ability to utilize external knowledge for comprehensive reasoning on long documents. To solve these problems, a knowledge retrieval augmented method, named KnowRA, was proposed with comprehensive reasoning to autonomously determine whether to accept external knowledge to assist DocRE. Firstly, we constructed a document graph for semantic encoding and integrated the co-reference resolution model to augment the co-reference reasoning ability. Then, we expanded the document graph into a document knowledge graph by retrieving the external knowledge base for common-sense reasoning and a novel knowledge filtration method was presented to filter out irrelevant knowledge. Finally, we proposed the axis attention mechanism to build direct and indirect associations with intermediary entities for achieving cross-sentence logical reasoning. Extensive experiments conducted on two datasets verified the effectiveness of our method compared to the state-of-the-art baselines. Our code is available at https://anonymous.4open.science/r/KnowRA.
comment: This work has been accepted by IJCAI 2025
Round Trip Translation Defence against Large Language Model Jailbreaking Attacks
Large language models (LLMs) are susceptible to social-engineered attacks that are human-interpretable but require a high level of comprehension for LLMs to counteract. Existing defensive measures can only mitigate less than half of these attacks at most. To address this issue, we propose the Round Trip Translation (RTT) method, the first algorithm specifically designed to defend against social-engineered attacks on LLMs. RTT paraphrases the adversarial prompt and generalizes the idea conveyed, making it easier for LLMs to detect induced harmful behavior. This method is versatile, lightweight, and transferrable to different LLMs. Our defense successfully mitigated over 70% of Prompt Automatic Iterative Refinement (PAIR) attacks, which is currently the most effective defense to the best of our knowledge. We are also the first to attempt mitigating the MathsAttack and reduced its attack success rate by almost 40%. Our code is publicly available at https://github.com/Cancanxxx/Round_Trip_Translation_Defence This version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.48550/arXiv.2402.13517 Use of this Accepted Version is subject to the publisher's Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
comment: 6 pages, 6 figures
Urban Computing in the Era of Large Language Models
Urban computing has emerged as a multidisciplinary field that harnesses data-driven technologies to address challenges and improve urban living. Traditional approaches, while beneficial, often face challenges with generalization, scalability, and contextual understanding. The advent of Large Language Models (LLMs) offers transformative potential in this domain. This survey explores the intersection of LLMs and urban computing, emphasizing the impact of LLMs in processing and analyzing urban data, enhancing decision-making, and fostering citizen engagement. We provide a concise overview of the evolution and core technologies of LLMs. Additionally, we survey their applications across key urban domains, such as transportation, public safety, and environmental monitoring, summarizing essential tasks and prior works in various urban contexts, while highlighting LLMs' functional roles and implementation patterns. Building on this, we propose potential LLM-based solutions to address unresolved challenges. To facilitate in-depth research, we compile a list of available datasets and tools applicable to diverse urban scenarios. Finally, we discuss the limitations of current approaches and outline future directions for advancing LLMs in urban computing.
comment: https://github.com/HKUDS/Awesome-LLM4Urban-Papers
HateSieve: A Contrastive Learning Framework for Detecting and Segmenting Hateful Content in Multimodal Memes NAACL 2025
Amidst the rise of Large Multimodal Models (LMMs) and their widespread application in generating and interpreting complex content, the risk of propagating biased and harmful memes remains significant. Current safety measures often fail to detect subtly integrated hateful content within ``Confounder Memes''. To address this, we introduce \textsc{HateSieve}, a new framework designed to enhance the detection and segmentation of hateful elements in memes. \textsc{HateSieve} features a novel Contrastive Meme Generator that creates semantically paired memes, a customized triplet dataset for contrastive learning, and an Image-Text Alignment module that produces context-aware embeddings for accurate meme segmentation. Empirical experiments on the Hateful Meme Dataset show that \textsc{HateSieve} not only surpasses existing LMMs in performance with fewer trainable parameters but also offers a robust mechanism for precisely identifying and isolating hateful content. \textcolor{red}{Caution: Contains academic discussions of hate speech; viewer discretion advised.}
comment: Accepted at NAACL 2025 Findings; camera-ready version
All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
comment: A Multilingual Multimodal cultural benchmark for 100 languages
Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad
Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, Gemini-2.5-Pro, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly: only Gemini-2.5-Pro achieves a non-trivial score of 25%, while all other models achieve less than 5%. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities.
SignLLM: Sign Language Production Large Language Models
In this paper, we propose SignLLM, a multilingual Sign Language Production (SLP) large language model, which includes two novel multilingual SLP modes MLSF and Prompt2LangGloss that allow sign language gestures generation from query texts input and question-style prompts input respectively. Both modes can use a new RL loss based on reinforcement learning and a new RL module named Priority Learning Channel. These RL components can accelerate the training by enhancing the model's capability to sample high-quality data. To train SignLLM, we introduce Prompt2Sign, a comprehensive multilingual sign language dataset, which builds from public data, including American Sign Language (ASL) and seven others. This dataset standardizes information by extracting pose information from sign language videos into a unified compressed format. We extensively evaluate SignLLM, demonstrating that our model achieves state-of-the-art performance on SLP tasks across eight sign languages.
comment: website at https://signllm.github.io/
Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
Iron Sharpens Iron: Defending Against Attacks in Machine-Generated Text Detection with Adversarial Training ACL 2025
Machine-generated Text (MGT) detection is crucial for regulating and attributing online texts. While the existing MGT detectors achieve strong performance, they remain vulnerable to simple perturbations and adversarial attacks. To build an effective defense against malicious perturbations, we view MGT detection from a threat modeling perspective, that is, analyzing the model's vulnerability from an adversary's point of view and exploring effective mitigations. To this end, we introduce an adversarial framework for training a robust MGT detector, named GREedy Adversary PromoTed DefendER (GREATER). The GREATER consists of two key components: an adversary GREATER-A and a detector GREATER-D. The GREATER-D learns to defend against the adversarial attack from GREATER-A and generalizes the defense to other attacks. GREATER-A identifies and perturbs the critical tokens in embedding space, along with greedy search and pruning to generate stealthy and disruptive adversarial examples. Besides, we update the GREATER-A and GREATER-D synchronously, encouraging the GREATER-D to generalize its defense to different attacks and varying attack intensities. Our experimental results across 10 text perturbation strategies and 6 adversarial attacks show that our GREATER-D reduces the Attack Success Rate (ASR) by 0.67% compared with SOTA defense methods while our GREATER-A is demonstrated to be more effective and efficient than SOTA attack approaches. Codes and dataset are available in https://github.com/Liyuuuu111/GREATER.
comment: Accepted by ACL 2025 Main Conference
Trace-of-Thought Prompting: Investigating Prompt-Based Knowledge Distillation Through Question Decomposition
Knowledge distillation allows smaller neural networks to emulate the performance of larger, teacher models with reduced computational demands. Traditional methods for Large Language Models (LLMs) often necessitate extensive fine-tuning, which limits their accessibility. To address this, we introduce Trace-of-Thought Prompting, a novel framework designed to distill critical reasoning capabilities from high-resource teacher models (over 8 billion parameters) to low-resource student models (up to 8 billion parameters). This approach leverages problem decomposition to enhance interpretability and facilitate human-in-the-loop interventions. Empirical evaluations on the GSM8K and MATH datasets show that student models achieve accuracy gains of up to 113% on GSM8K and 21% on MATH, with significant improvements particularly notable in smaller models like Llama 2 and Zephyr. Our results suggest a promising pathway for open-source, low-resource models to eventually serve both as both students and teachers, potentially reducing our reliance on high-resource, proprietary models.
Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation
Referring Expression Generation (REG) is a core task for evaluating the pragmatic competence of vision-language systems, requiring not only accurate semantic grounding but also adherence to principles of cooperative communication (Grice, 1975). However, current evaluations of vision-language models (VLMs) often overlook the pragmatic dimension, reducing REG to a region-based captioning task and neglecting Gricean maxims. In this work, we revisit REG from a pragmatic perspective, introducing a new dataset (RefOI) of 1.5k images annotated with both written and spoken referring expressions. Through a systematic evaluation of state-of-the-art VLMs, we identify three key failures of pragmatic competence: (1) failure to uniquely identify the referent, (2) inclusion of excessive or irrelevant information, and (3) misalignment with human pragmatic preference, such as the underuse of minimal spatial cues. We also show that standard automatic evaluations fail to capture these pragmatic violations, reinforcing superficial cues rather than genuine referential success. Our findings call for a renewed focus on pragmatically informed models and evaluation frameworks that align with real human communication.
comment: Homepage: https://vlm-reg.github.io/
LoRATK: LoRA Once, Backdoor Everywhere in the Share-and-Play Ecosystem
Finetuning LLMs with LoRA has gained significant popularity due to its simplicity and effectiveness. Often, users may even find pluggable, community-shared LoRAs to enhance their base models for a specific downstream task of interest; enjoying a powerful, efficient, yet customized LLM experience with negligible investment. However, this convenient share-and-play ecosystem also introduces a new attack surface, where attackers can distribute malicious LoRAs to a community eager to try out shared assets. Despite the high-risk potential, no prior art has comprehensively explored LoRA's attack surface under the downstream-enhancing share-and-play context. In this paper, we investigate how backdoors can be injected into task-enhancing LoRAs and examine the mechanisms of such infections. We find that with a simple, efficient, yet specific recipe, a backdoor LoRA can be trained once and then seamlessly merged (in a training-free fashion) with multiple task-enhancing LoRAs, retaining both its malicious backdoor and benign downstream capabilities. This allows attackers to scale the distribution of compromised LoRAs with minimal effort by leveraging the rich pool of existing shared LoRA assets. We note that such merged LoRAs are particularly infectious -- because their malicious intent is cleverly concealed behind improved downstream capabilities, creating a strong incentive for voluntary download -- and dangerous -- because under local deployment, no safety measures exist to intervene when things go wrong. Our work is among the first to study this new threat model of training-free distribution of downstream-capable-yet-backdoor-injected LoRAs, highlighting the urgent need for heightened security awareness in the LoRA ecosystem. Warning: This paper contains offensive content and involves a real-life tragedy.
Are LLM-Judges Robust to Expressions of Uncertainty? Investigating the effect of Epistemic Markers on LLM-based Evaluation NAACL 2025
In line with the principle of honesty, there has been a growing effort to train large language models (LLMs) to generate outputs containing epistemic markers. However, evaluation in the presence of epistemic markers has been largely overlooked, raising a critical question: Could the use of epistemic markers in LLM-generated outputs lead to unintended negative consequences? To address this, we present EMBER, a benchmark designed to assess the robustness of LLM-judges to epistemic markers in both single and pairwise evaluation settings. Our findings, based on evaluations using EMBER, reveal that all tested LLM-judges, including GPT-4o, show a notable lack of robustness in the presence of epistemic markers. Specifically, we observe a negative bias toward epistemic markers, with a stronger bias against markers expressing uncertainty. This suggests that LLM-judges are influenced by the presence of these markers and do not focus solely on the correctness of the content.
comment: NAACL 2025 Oral (21 pages, 6 figures, 15 tables)
Opioid Named Entity Recognition (ONER-2025) from Reddit
The opioid overdose epidemic remains a critical public health crisis, particularly in the United States, leading to significant mortality and societal costs. Social media platforms like Reddit provide vast amounts of unstructured data that offer insights into public perceptions, discussions, and experiences related to opioid use. This study leverages Natural Language Processing (NLP), specifically Opioid Named Entity Recognition (ONER-2025), to extract actionable information from these platforms. Our research makes four key contributions. First, we created a unique, manually annotated dataset sourced from Reddit, where users share self-reported experiences of opioid use via different administration routes. This dataset contains 331,285 tokens and includes eight major opioid entity categories. Second, we detail our annotation process and guidelines while discussing the challenges of labeling the ONER-2025 dataset. Third, we analyze key linguistic challenges, including slang, ambiguity, fragmented sentences, and emotionally charged language, in opioid discussions. Fourth, we propose a real-time monitoring system to process streaming data from social media, healthcare records, and emergency services to identify overdose events. Using 5-fold cross-validation in 11 experiments, our system integrates machine learning, deep learning, and transformer-based language models with advanced contextual embeddings to enhance understanding. Our transformer-based models (bert-base-NER and roberta-base) achieved 97% accuracy and F1-score, outperforming baselines by 10.23% (RF=0.88).
Bridging Personalization and Control in Scientific Personalized Search SIGIR 2025
Personalized search is a problem where models benefit from learning user preferences from per-user historical interaction data. The inferred preferences enable personalized ranking models to improve the relevance of documents for users. However, personalization is also seen as opaque in its use of historical interactions and is not amenable to users' control. Further, personalization limits the diversity of information users are exposed to. While search results may be automatically diversified this does little to address the lack of control over personalization. In response, we introduce a model for personalized search that enables users to control personalized rankings proactively. Our model, CtrlCE, is a novel cross-encoder model augmented with an editable memory built from users' historical interactions. The editable memory allows cross-encoders to be personalized efficiently and enables users to control personalized ranking. Next, because all queries do not require personalization, we introduce a calibrated mixing model which determines when personalization is necessary. This enables users to control personalization via their editable memory only when necessary. To thoroughly evaluate CtrlCE, we demonstrate its empirical performance in four domains of science, its ability to selectively request user control in a calibration evaluation of the mixing model, and the control provided by its editable memory in a user study.
comment: SIGIR 2025 paper
Efficient Reinforcement Finetuning via Adaptive Curriculum Learning
Reinforcement finetuning (RFT) has shown great potential for enhancing the mathematical reasoning capabilities of large language models (LLMs), but it is often sample- and compute-inefficient, requiring extensive training. In this work, we introduce AdaRFT (Adaptive Curriculum Reinforcement Finetuning), a method that significantly improves both the efficiency and final accuracy of RFT through adaptive curriculum learning. AdaRFT dynamically adjusts the difficulty of training problems based on the model's recent reward signals, ensuring that the model consistently trains on tasks that are challenging but solvable. This adaptive sampling strategy accelerates learning by maintaining an optimal difficulty range, avoiding wasted computation on problems that are too easy or too hard. AdaRFT requires only a lightweight extension to standard RFT algorithms like Proximal Policy Optimization (PPO), without modifying the reward function or model architecture. Experiments on competition-level math datasets-including AMC, AIME, and IMO-style problems-demonstrate that AdaRFT significantly improves both training efficiency and reasoning performance. We evaluate AdaRFT across multiple data distributions and model sizes, showing that it reduces training time by up to 2x and improves accuracy by a considerable margin, offering a more scalable and effective RFT framework.
comment: 25 pages, 7 figures, 6 tables
Large Language Model Agent as a Mechanical Designer
Conventional mechanical design follows an iterative process in which initial concepts are refined through cycles of expert assessment and resource-intensive Finite Element Method (FEM) analysis to meet performance goals. While machine learning models have been developed to assist in parts of this process, they typically require large datasets, extensive training, and are often tailored to specific tasks, limiting their generalizability. To address these limitations, we propose a framework that leverages a pretrained Large Language Model (LLM) in conjunction with an FEM module to autonomously generate, evaluate, and refine structural designs based on performance specifications and numerical feedback. The LLM operates without domain-specific fine-tuning, using general reasoning to propose design candidates, interpret FEM-derived performance metrics, and apply structurally sound modifications. Using 2D truss structures as a testbed, we show that the LLM can effectively navigate highly discrete and multi-faceted design spaces, balance competing objectives, and identify convergence when further optimization yields diminishing returns. Compared to Non-dominated Sorting Genetic Algorithm II (NSGA-II), our method achieves faster convergence and fewer FEM evaluations. Experiments with varying temperature settings (0.5, 1.0, 1.2) and model sizes (GPT-4.1 and GPT-4.1-mini) indicate that smaller models yield higher constraint satisfaction with fewer steps, while lower temperatures enhance design consistency. These results establish LLMs as a promising new class of reasoning-based, natural language-driven optimizers for autonomous design and iterative structural refinement.
Human-Computer Interaction
Public Opinion and The Rise of Digital Minds: Perceived Risk, Trust, and Regulation Support
Governance institutions must respond to societal risks, including those posed by generative AI. This study empirically examines how public trust in institutions and AI technologies, along with perceived risks, shape preferences for AI regulation. Using the nationally representative 2023 Artificial Intelligence, Morality, and Sentience (AIMS) survey, we assess trust in government, AI companies, and AI technologies, as well as public support for regulatory measures such as slowing AI development or outright bans on advanced AI. Our findings reveal broad public support for AI regulation, with risk perception playing a significant role in shaping policy preferences. Individuals with higher trust in government favor regulation, while those with greater trust in AI companies and AI technologies are less inclined to support restrictions. Trust in government and perceived risks significantly predict preferences for both soft (e.g., slowing development) and strong (e.g., banning AI systems) regulatory interventions. These results highlight the importance of public opinion in AI governance. As AI capabilities advance, effective regulation will require balancing public concerns about risks with trust in institutions. This study provides a foundational empirical baseline for policymakers navigating AI governance and underscores the need for further research into public trust, risk perception, and regulatory strategies in the evolving AI landscape.
comment: 31 pages, 1 figure, 5 tables, accepted to Public Performance and Management Review
How Real Are Synthetic Therapy Conversations? Evaluating Fidelity in Prolonged Exposure Dialogues
The growing adoption of synthetic data in healthcare is driven by privacy concerns, limited access to real-world data, and the high cost of annotation. This work explores the use of synthetic Prolonged Exposure (PE) therapeutic conversations for Post-Traumatic Stress Disorder (PTSD) as a scalable alternative for training and evaluating clinical models. We systematically compare real and synthetic dialogues using linguistic, structural, and protocol-specific metrics, including turn-taking patterns and treatment fidelity. We also introduce and evaluate PE-specific metrics derived from linguistic analysis and semantic modeling, offering a novel framework for assessing clinical fidelity beyond surface fluency. Our findings show that although synthetic data holds promise for mitigating data scarcity and protecting patient privacy, it can struggle to capture the subtle dynamics of therapeutic interactions. In our dataset, synthetic dialogues match structural features of real-world dialogues (e.g., speaker switch ratio: 0.98 vs. 0.99), however, synthetic interactions do not adequately reflect key fidelity markers (e.g., distress monitoring). We highlight gaps in existing evaluation frameworks and advocate for fidelity-aware metrics that go beyond surface fluency to uncover clinically significant failures. Our findings clarify where synthetic data can effectively complement real-world datasets -- and where critical limitations remain.
comment: 11 pages, 5 tables, updated abstract and tables
TheraQuest: A Gamified, LLM-Powered Simulation for Massage Therapy Training
Massage therapy training emphasizes hands-on techniques and effective therapist--patient communication. However, many educational programs struggle to provide realistic practice scenarios. To address this problem, we propose TheraQuest, a gamified, web-based simulation platform that employs large language models (LLMs) to generate diverse virtual patients with varying symptoms and cultural backgrounds. Through interactive dialogue, anatomical decision-making, and immediate assessment, trainees develop both diagnostic reasoning and empathetic communication skills in a low-risk environment. Unlike exclusively VR-based solutions, TheraQuest remains accessible via standard web browsers, mitigating the cost and discomfort associated with extended headset use. Preliminary testing suggests that integrating LLM-driven virtual patients with real-time skill metrics can enhance trainee engagement and help bridge the gap between theoretical knowledge and clinical proficiency.
comment: 8 Pages
Adaptive 3D UI Placement in Mixed Reality Using Deep Reinforcement Learning
Mixed Reality (MR) could assist users' tasks by continuously integrating virtual content with their view of the physical environment. However, where and how to place these content to best support the users has been a challenging problem due to the dynamic nature of MR experiences. In contrast to prior work that investigates optimization-based methods, we are exploring how reinforcement learning (RL) could assist with continuous 3D content placement that is aware of users' poses and their surrounding environments. Through an initial exploration and preliminary evaluation, our results demonstrate the potential of RL to position content that maximizes the reward for users on the go. We further identify future directions for research that could harness the power of RL for personalized and optimized UI and content placement in MR.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '24)
A Conversational Approach to Well-being Awareness Creation and Behavioural Intention
The promotion of a healthy lifestyle is one of the main drivers of an individual's overall physical and psycho-emotional well-being. Digital technologies are more and more adopted as ''facilitators'' for this goal, to raise awareness and solicit healthy lifestyle habits. This study aims to experiment the effects of the adoption of a digital conversational tool to influence awareness creation and behavioural change in the context of a well-being lifestyle. Our aim is to collect evidence of the aspects that must be taken into account when designing and implementing such tools in well-being promotion campaigns. To this end, we created a conversational application for promoting well-being and healthy lifestyles, which presents relevant information and asks specific questions to its intended users within an interaction happening through a chat interface; the conversational tool presents itself as a well-being counsellor named Allegra and follows a coaching approach to structure the interaction with the user. In our user study, participants were asked to first interact with Allegra in one of three experimental conditions, corresponding to different conversational styles; then, they answered a questionnaire about their experience. The questionnaire items were related to intrinsic motivation factors as well as awareness creation and behavioural change. The collected data allowed us to assess the hypotheses of our model that put in connection those variables. Our results confirm the positive effect of intrinsic motivation factors on both awareness creation and behavioural intention in the context of well-being and healthy lifestyle; on the other hand, we did not record any statistically significant effect of different language and communication styles on the outcomes.
A User-Centered Teleoperation GUI for Automated Vehicles: Identifying and Evaluating Information Requirements for Remote Driving and Assistance
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator's visual perception, the Graphical User Interface (GUI) design is critical. In addition to video feeds, supplemental informational elements are crucial - not only for the predominantly studied Remote Driving but also for the arising desk-based Remote Assistance concepts. This work develops a GUI for different teleoperation concepts by identifying key informational elements during the teleoperation process through expert interviews (N = 9). Following this, a static and dynamic GUI prototype is developed and evaluated in a click-dummy study (N = 36). Thereby, the dynamic GUI adapts the number of displayed elements according to the teleoperation phase. Results show that both GUIs achieve good System Usability Scale (SUS) ratings, with the dynamic GUI significantly outperforming the static version in both usability and task completion time. The User Experience Questionnaire (UEQ) score shows potential for improvement. To enhance the user experience, the GUI should be evaluated in a follow-up study that includes interaction with a real vehicle.
Efficient Conversational Search via Topical Locality in Dense Retrieval SIGIR 2025
Pre-trained language models have been widely exploited to learn dense representations of documents and queries for information retrieval. While previous efforts have primarily focused on improving effectiveness and user satisfaction, response time remains a critical bottleneck of conversational search systems. To address this, we exploit the topical locality inherent in conversational queries, i.e., the tendency of queries within a conversation to focus on related topics. By leveraging query embedding similarities, we dynamically restrict the search space to semantically relevant document clusters, reducing computational complexity without compromising retrieval quality. We evaluate our approach on the TREC CAsT 2019 and 2020 datasets using multiple embedding models and vector indexes, achieving improvements in processing speed of up to 10.4X with little loss in performance (4.4X without any loss). Our results show that the proposed system effectively handles complex, multiturn queries with high precision and efficiency, offering a practical solution for real-time conversational search.
comment: 5 pages, 2 figures, SIGIR 2025
Visual Analytics Challenges and Trends in the Age of AI: The BigVis Community Perspective SIGMOD
This report provides insights into the challenges, emerging topics, and opportunities related to human-data interaction and visual analytics in the AI era. The BigVis 2024 organizing committee conducted a survey among experts in the field. They invite the Program Committee members and the authors of accepted papers to share their views. Thirty-two scientists from diverse research communities, including Databases, Information Visualization, and Human-Computer Interaction, participated in the study. These scientists, representing both industry and academia, provided valuable insights into the current and future landscape of the field. In this report, we analyze the survey responses and compare them to the findings of a similar study conducted four years ago. The results reveal some interesting insights. First, many of the critical challenges identified in the previous survey remain highly relevant today, despite being unrelated to AI. Meanwhile, the field's landscape has significantly evolved, with most of today's vital challenges not even being mentioned in the earlier survey, underscoring the profound impact of AI-related advancements. By summarizing the perspectives of the research community, this report aims to shed light on the key challenges, emerging trends, and potential research directions in human-data interaction and visual analytics in the AI era.
comment: ACM SIGMOD Record 2025
A Comprehensive Survey of Electrical Stimulation Haptic Feedback in Human-Computer Interaction
Haptic perception and feedback play a pivotal role in interactive experiences, forming an essential component of human-computer interaction (HCI). In recent years, the field of haptic interaction has witnessed significant advancements, particularly in the area of electrical haptic feedback, driving innovation across various domains. To gain a comprehensive understanding of the current state of research and the latest developments in electrical haptic interaction, this study systematically reviews the literature in this area. Our investigation covers key aspects including haptic devices, haptic perception mechanisms, the comparison and integration of electrical haptic feedback with other feedback modalities, and their diverse applications. Specifically, we conduct a systematic analysis of 110 research papers to explore the forefront of electrical haptic feedback, providing insights into its latest trends, challenges, and future directions.
comment: 23 pages, 7 figures
Coping with Uncertainty in UX Design Practice: Practitioner Strategies and Judgment
The complexity of UX design practice extends beyond ill-structured design problems to include uncertainties shaped by shifting stakeholder priorities, team dynamics, limited resources, and implementation constraints. While prior research in related fields has addressed uncertainty in design more broadly, the specific character of uncertainty in UX practice remains underexplored. This study examines how UX practitioners experience and respond to uncertainty in real-world projects, drawing on a multi-week diary study and follow-up interviews with ten designers. We identify a range of practitioner strategies-including adaptive framing, negotiation, and judgment-that allow designers to move forward amid ambiguity. Our findings highlight the central role of design judgment in navigating uncertainty, including emergent forms such as temporal and sacrificial judgment, and extend prior understandings by showing how UX practitioners engage uncertainty as a persistent, situated feature of practice.
comment: 11 pages, In Creativity and Cognition (C&C '25), June 23--25, 2025, Virtual, United Kingdom
ImaginateAR: AI-Assisted In-Situ Authoring in Augmented Reality
While augmented reality (AR) enables new ways to play, tell stories, and explore ideas rooted in the physical world, authoring personalized AR content remains difficult for non-experts, often requiring professional tools and time. Prior systems have explored AI-driven XR design but typically rely on manually-defined environments and fixed asset libraries, limiting creative flexibility and real-world relevance. We introduce ImaginateAR, a mobile AI-assisted AR authoring system that aims to let anyone build anything, anywhere -- simply by speaking their imagination. ImaginateAR is powered by custom pipelines for offline scene understanding, fast 3D asset generation, and LLM-driven speech interaction. Users might say "a dragon enjoying a campfire" (P7) and iteratively refine the scene using both AI and manual tools. Our technical evaluation shows that ImaginateAR produces more accurate outdoor scene graphs and generates 3D meshes faster than prior methods. A three-part user study (N=20) revealed preferred roles for AI in authoring, what and how users create in free-form use, and design implications for future AR authoring tools.
IRL Dittos: Embodied Multimodal AI Agent Interactions in Open Spaces
We introduce the In Real Life (IRL) Ditto, an AI-driven embodied agent designed to represent remote colleagues in shared office spaces, creating opportunities for real-time exchanges even in their absence. IRL Ditto offers a unique hybrid experience by allowing in-person colleagues to encounter a digital version of their remote teammates, initiating greetings, updates, or small talk as they might in person. Our research question examines: How can the IRL Ditto influence interactions and relationships among colleagues in a shared office space? Through a four-day study, we assessed IRL Ditto's ability to strengthen social ties by simulating presence and enabling meaningful interactions across different levels of social familiarity. We find that enhancing social relationships depended deeply on the foundation of the relationship participants had with the source of the IRL Ditto. This study provides insights into the role of embodied agents in enriching workplace dynamics for distributed teams.
comment: 8 pages, 3 figures
Cross-Reality Lifestyle: Integrating Physical and Virtual Lives through Multi-Platform Metaverse
Technological advances are redefining the relationship between physical and virtual space. Traditionally, when users engage in virtual reality (VR), they are completely cut off from the physical space; similarly, they are unable to access virtual experiences while engaged in physical activities. However, modern multi-platform metaverse environments allow simultaneous participation through mobile devices, creating new opportunities for integrated experiences. This study introduces the concept of "cross-reality lifestyles" to examine how users actively combine their physical and virtual activities. We identify three patterns of integration: 1) amplification: one space enhances experiences in the other; 2) complementary: spaces offer different but equally valuable alternatives; and 3) emergence: simultaneous engagement creates entirely new experiences. By analyzing commercial platforms, we create a technical framework that addresses content design, platform infrastructure, and device interfaces. This framework guides the development of cross-reality applications while demonstrating how metaverse technologies blur the traditional boundaries between physical and virtual experiences.
comment: 9 pages, preprint for submission to IEEE Pervasive Computing Special Issue
MagicCraft: Natural Language-Driven Generation of Dynamic and Interactive 3D Objects for Commercial Metaverse Platforms
Metaverse platforms are rapidly evolving to provide immersive spaces for user interaction and content creation. However, the generation of dynamic and interactive 3D objects remains challenging due to the need for advanced 3D modeling and programming skills. To address this challenge, we present MagicCraft, a system that generates functional 3D objects from natural language prompts for metaverse platforms. MagicCraft uses generative AI models to manage the entire content creation pipeline: converting user text descriptions into images, transforming images into 3D models, predicting object behavior, and assigning necessary attributes and scripts. It also provides an interactive interface for users to refine generated objects by adjusting features such as orientation, scale, seating positions, and grip points. Implemented on Cluster, a commercial metaverse platform, MagicCraft was evaluated by 7 expert CG designers and 51 general users. Results show that MagicCraft significantly reduces the time and skill required to create 3D objects. Users with no prior experience in 3D modeling or programming successfully created complex, interactive objects and deployed them in the metaverse. Expert feedback highlighted the system's potential to improve content creation workflows and support rapid prototyping. By integrating AI-generated content into metaverse platforms, MagicCraft makes 3D content creation more accessible.
comment: 16 pages. Preprint for submission to IEEE Access
Passive Measurement of Autonomic Arousal in Real-World Settings
The autonomic nervous system (ANS) is activated during stress, which can have negative effects on cardiovascular health, sleep, the immune system, and mental health. While there are ways to quantify ANS activity in laboratories, there is a paucity of methods that have been validated in real-world contexts. We present the Fitbit Body Response Algorithm, an approach to continuous remote measurement of ANS activation through widely available remote wrist-based sensors. The design was validated via two experiments, a Trier Social Stress Test (n = 45) and ecological momentary assessments (EMA) of perceived stress (n=87), providing both controlled and ecologically valid test data. Model performance predicting perceived stress when using all available sensor modalities was consistent with expectations (accuracy=0.85) and outperformed models with access to only a subset of the signals. We discuss and address challenges to sensing that arise in real world settings that do not present in conventional lab environments.
Countering underproduction of peer produced goods
Peer produced goods such as online knowledge bases and free/libre open source software rely on contributors who often choose their tasks regardless of consumer needs. These goods are susceptible to underproduction: when popular goods are relatively low quality. Although underproduction is a common feature of peer production, very little is known about how to counteract it. We use a detailed longitudinal dataset from English Wikipedia to show that more experienced contributors -- including those who contribute without an account -- tend to contribute to underproduced goods. A within-person analysis shows that contributors' efforts shift toward underproduced goods over time. These findings illustrate the value of retaining contributors in peer production, including those contributing without accounts, as a means to counter underproduction.
comment: New Media & Society, 2024
Real-Time Brain-Computer Interface Control of Walking Exoskeleton with Bilateral Sensory Feedback
Invasive brain-computer interface (BCI) technology has demonstrated the possibility of restoring brain-controlled walking in paraplegic spinal cord injury patients. However, current implementations of BCI-controlled walking still have significant drawbacks. In particular, prior systems are unidirectional and lack sensory feedback for insensate patients, have suboptimal reliance on brain signals from the bilateral arm areas of the motor cortex, and depend on external systems for signal processing. Motivated by these shortcomings, this study is the first time a bidirectional brain-computer interface (BDBCI) has demonstrated the restoration of both brain-controlled walking and leg sensory feedback while utilizing the bilateral leg motor and sensory cortices. Here, a subject undergoing subdural electrocorticogram electrode implantation for epilepsy surgery evaluation leveraged the leg representation areas of the bilateral interhemispheric primary motor and sensory cortices to operate a BDBCI with high performance. Although electrode implantation in the interhemispheric region is uncommon, electrodes can be safely implanted in this region to access rich leg motor information and deliver bilateral leg sensory feedback. Finally, we demonstrated that all BDBCI operations can be executed on a dedicated, portable embedded system. These results indicate that BDBCIs can potentially provide brain-controlled ambulation and artificial leg sensation to people with paraplegia after spinal cord injury in a manner that emulates full-implantability and is untethered from any external systems.
comment: Main text of pre-print and supplementary information included
Audo-Sight: Enabling Ambient Interaction For Blind And Visually Impaired Individuals
Visually impaired people face significant challenges when attempting to interact with and understand complex environments, and traditional assistive technologies often struggle to quickly provide necessary contextual understanding and interactive intelligence. This thesis presents Audo-Sight, a state-of-the-art assistive system that seamlessly integrates Multimodal Large Language Models (MLLMs) to provide expedient, context-aware interactions for Blind and Visually Impaired (BVI) individuals. The system operates in two different modalities: personalized interaction through user identification and public access in common spaces like museums and shopping malls. In tailored environments, the system adjusts its output to conform to the preferences of individual users, thus enhancing accessibility through a user-aware form of interaction. In shared environments, Audo-Sight employs a shared architecture that adapts to its current user with no manual reconfiguration required. To facilitate appropriate interactions with the LLM, the public Audo-Sight solution includes an Age-Range Determiner and Safe Query Filter. Additionally, the system ensures that responses are respectful to BVI users through NeMo Guardrails. By utilizing multimodal reasoning, BVI-cognizant response editing, and safeguarding features, this work represents a major leap in AI-driven accessibility technology capable of increasing autonomy, safety, and interaction for people with visual impairments in social settings. Finally, we present the integration of Audo-Sight and SmartSight, which enables enhanced situational awareness for BVI individuals. This integration takes advantage of the real-time visual analysis of SmartSight, combined with the extensive reasoning and interactive capabilities of Audo-Sight, and goes beyond object identification to provide context-driven, voice-controlled assistance in dynamic environments.
comment: This thesis was conducted under the guidance of Mohsen Amini Salehi. Special thanks to Minseo Kim and Jacob Bradshaw for their valuable contributions and support throughout the research process. 60 pages, 13 Figures, 2 Tables
From Lab to Wrist: Bridging Metabolic Monitoring and Consumer Wearables for Heart Rate and Oxygen Consumption Modeling
Understanding physiological responses during running is critical for performance optimization, tailored training prescriptions, and athlete health management. We introduce a comprehensive framework -- what we believe to be the first capable of predicting instantaneous oxygen consumption (VO$_{2}$) trajectories exclusively from consumer-grade wearable data. Our approach employs two complementary physiological models: (1) accurate modeling of heart rate (HR) dynamics via a physiologically constrained ordinary differential equation (ODE) and neural Kalman filter, trained on over 3 million HR observations, achieving 1-second interval predictions with mean absolute errors as low as 2.81\,bpm (correlation 0.87); and (2) leveraging the principles of precise HR modeling, a novel VO$_{2}$ prediction architecture requiring only the initial second of VO$_{2}$ data for calibration, enabling robust, sequence-to-sequence metabolic demand estimation. Despite relying solely on smartwatch and chest-strap data, our method achieves mean absolute percentage errors of approximately 13\%, effectively capturing rapid physiological transitions and steady-state conditions across diverse running intensities. Our synchronized dataset, complemented by blood lactate measurements, further lays the foundation for future noninvasive metabolic zone identification. By embedding physiological constraints within modern machine learning, this framework democratizes advanced metabolic monitoring, bridging laboratory-grade accuracy and everyday accessibility, thus empowering both elite athletes and recreational fitness enthusiasts.
Humanizing LLMs: A Survey of Psychological Measurements with Tools, Datasets, and Human-Agent Applications
As large language models (LLMs) are increasingly used in human-centered tasks, assessing their psychological traits is crucial for understanding their social impact and ensuring trustworthy AI alignment. While existing reviews have covered some aspects of related research, several important areas have not been systematically discussed, including detailed discussions of diverse psychological tests, LLM-specific psychological datasets, and the applications of LLMs with psychological traits. To address this gap, we systematically review six key dimensions of applying psychological theories to LLMs: (1) assessment tools; (2) LLM-specific datasets; (3) evaluation metrics (consistency and stability); (4) empirical findings; (5) personality simulation methods; and (6) LLM-based behavior simulation. Our analysis highlights both the strengths and limitations of current methods. While some LLMs exhibit reproducible personality patterns under specific prompting schemes, significant variability remains across tasks and settings. Recognizing methodological challenges such as mismatches between psychological tools and LLMs' capabilities, as well as inconsistencies in evaluation practices, this study aims to propose future directions for developing more interpretable, robust, and generalizable psychological assessment frameworks for LLMs.
comment: 26 pages,7 figures
Explanation format does not matter; but explanations do -- An Eggsbert study on explaining Bayesian Optimisation tasks
Bayesian Optimisation (BO) is a family of methods for finding optimal parameters when the underlying function to be optimised is unknown. BO is used, for example, for hyperparameter tuning in machine learning and as an expert support tool for tuning cyberphysical systems. For settings where humans are involved in the tuning task, methods have been developed to explain BO (Explainable Bayesian Optimization, XBO). However, there is little guidance on how to present XBO results to humans so that they can tune the system effectively and efficiently. In this paper, we investigate how the XBO explanation format affects users' task performance, task load, understanding and trust in XBO. We chose a task that is accessible to a wide range of users. Specifically, we set up an egg cooking scenario with 6 parameters that participants had to adjust to achieve a perfect soft-boiled egg. We compared three different explanation formats: a bar chart, a list of rules and a textual explanation in a between-subjects online study with 213 participants. Our results show that adding any type of explanation increases task success, reduces the number of trials needed to achieve success, and improves comprehension and confidence. While explanations add more information for participants to process, we found no increase in user task load. We also found that the aforementioned results were independent of the explanation format; all formats had a similar effect. This is an interesting finding for practical applications, as it suggests that explanations can be added to BO tuning tasks without the burden of designing or selecting specific explanation formats. In the future, it would be interesting to investigate scenarios of prolonged use of the explanation formats and whether they have different effects on users' mental models of the underlying system.
Conversations with AI Chatbots Increase Short-Term Vaccine Intentions But Do Not Outperform Standard Public Health Messaging
Large language model (LLM) based chatbots show promise in persuasive communication, but existing studies often rely on weak controls or focus on belief change rather than behavioral intentions or outcomes. This pre-registered multi-country (US, Canada, UK) randomized controlled trial involving 930 vaccine-hesitant parents evaluated brief (three-minute) multi-turn conversations with LLM-based chatbots against standard public health messaging approaches for increasing human papillomavirus (HPV) vaccine intentions for their children. Participants were randomly assigned to: (1) a weak control (no message), (2) a strong control reflecting the standard of care (reading official public health materials), or (3 and 4) one of two chatbot conditions. One chatbot was prompted to deliver short, conversational responses, while the other used the model's default output style (longer with bullet points). While chatbot interactions significantly increased self-reported vaccination intent (by 7.1-10.3 points on a 100-point scale) compared to no message, they did not outperform standard public health materials, with the conversational chatbot performing significantly worse. Additionally, while the short-term effects of chatbot interactions faded during a 15-day follow-up, the effects of public health material persisted relative to no message. These findings suggest that while LLMs can effectively shift vaccination intentions in the short-term, their incremental value over existing public health communications is questionable, offering a more tempered view of their persuasive capabilities and highlighting the importance of integrating AI-driven tools alongside, rather than replacing, current public health strategies.
TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering
Retrieval-augmented generation (RAG) systems face significant challenges in multi-hop question answering (MHQA), where complex queries require synthesizing information across multiple document chunks. Existing approaches typically rely on iterative LLM-based query rewriting and routing, resulting in high computational costs due to repeated LLM invocations and multi-stage processes. To address these limitations, we propose TreeHop, an embedding-level framework without the need for LLMs in query refinement. TreeHop dynamically updates query embeddings by fusing semantic information from prior queries and retrieved documents, enabling iterative retrieval through embedding-space operations alone. This method replaces the traditional "Retrieve-Rewrite-Vectorize-Retrieve" cycle with a streamlined "Retrieve-Embed-Retrieve" loop, significantly reducing computational overhead. Moreover, a rule-based stop criterion is introduced to further prune redundant retrievals, balancing efficiency and recall rate. Experimental results show that TreeHop rivals advanced RAG methods across three open-domain MHQA datasets, achieving comparable performance with only 5\%-0.4\% of the model parameter size and reducing the query latency by approximately 99\% compared to concurrent approaches. This makes TreeHop a faster and more cost-effective solution for deployment in a range of knowledge-intensive applications. For reproducibility purposes, codes and data are available here: https://github.com/allen-li1231/TreeHop-RAG.
comment: 9 pages
ObjectFinder: An Open-Vocabulary Assistive System for Interactive Object Search by Blind People
Searching for objects in unfamiliar scenarios is a challenging task for blind people. It involves specifying the target object, detecting it, and then gathering detailed information according to the user's intent. However, existing description- and detection-based assistive technologies do not sufficiently support the multifaceted nature of interactive object search tasks. We present ObjectFinder, an open-vocabulary wearable assistive system for interactive object search by blind people. ObjectFinder allows users to query target objects using flexible wording. Once the target object is detected, it provides egocentric localization information in real-time, including distance and direction. Users can then initiate different branches to gather detailed information based on their intent towards the target object, such as navigating to it or perceiving its surroundings. ObjectFinder is powered by a seamless combination of open-vocabulary models, namely an open-vocabulary object detector and a multimodal large language model. The ObjectFinder design concept and its development were carried out in collaboration with a blind co-designer. To evaluate ObjectFinder, we conducted an exploratory user study with eight blind participants. We compared ObjectFinder to BeMyAI and Google Lookout, popular description- and detection-based assistive applications. Our findings indicate that most participants felt more independent with ObjectFinder and preferred it for object search, as it enhanced scene context gathering and navigation, and allowed for active target identification. Finally, we discuss the implications for future assistive systems to support interactive object search.
ForceGrip: Reference-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation SIGGRAPH
Realistic Hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. Demo videos are available as supplementary material and the code is provided at https://han-dongheun.github.io/ForceGrip.
comment: 11 pages, 11 figures. Accepted to SIGGRAPH Conference Papers '25. Project page: https://han-dongheun.github.io/ForceGrip
Cross-Lingual Speech Emotion Recognition: Humans vs. Self-Supervised Models ICASSP 2025
Utilizing Self-Supervised Learning (SSL) models for Speech Emotion Recognition (SER) has proven effective, yet limited research has explored cross-lingual scenarios. This study presents a comparative analysis between human performance and SSL models, beginning with a layer-wise analysis and an exploration of parameter-efficient fine-tuning strategies in monolingual, cross-lingual, and transfer learning contexts. We further compare the SER ability of models and humans at both utterance- and segment-levels. Additionally, we investigate the impact of dialect on cross-lingual SER through human evaluation. Our findings reveal that models, with appropriate knowledge transfer, can adapt to the target language and achieve performance comparable to native speakers. We also demonstrate the significant effect of dialect on SER for individuals without prior linguistic and paralinguistic background. Moreover, both humans and models exhibit distinct behaviors across different emotions. These results offer new insights into the cross-lingual SER capabilities of SSL models, underscoring both their similarities to and differences from human emotion perception.
comment: Accepted to ICASSP 2025
Learning 6-DoF Fine-grained Grasp Detection Based on Part Affordance Grounding
Robotic grasping is a fundamental ability for a robot to interact with the environment. Current methods focus on how to obtain a stable and reliable grasping pose in object level, while little work has been studied on part (shape)-wise grasping which is related to fine-grained grasping and robotic affordance. Parts can be seen as atomic elements to compose an object, which contains rich semantic knowledge and a strong correlation with affordance. However, lacking a large part-wise 3D robotic dataset limits the development of part representation learning and downstream applications. In this paper, we propose a new large Language-guided SHape grAsPing datasEt (named LangSHAPE) to promote 3D part-level affordance and grasping ability learning. From the perspective of robotic cognition, we design a two-stage fine-grained robotic grasping framework (named LangPartGPD), including a novel 3D part language grounding model and a part-aware grasp pose detection model, in which explicit language input from human or large language models (LLMs) could guide a robot to generate part-level 6-DoF grasping pose with textual explanation. Our method combines the advantages of human-robot collaboration and LLMs' planning ability using explicit language as a symbolic intermediate. To evaluate the effectiveness of our proposed method, we perform 3D part grounding and fine-grained grasp detection experiments on both simulation and physical robot settings, following language instructions across different degrees of textual complexity. Results show our method achieves competitive performance in 3D geometry fine-grained grounding, object affordance inference, and 3D part-aware grasping tasks. Our dataset and code are available on our project website https://sites.google.com/view/lang-shape
comment: 15 pages, 8 figures, 7 tables
OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: Work in progress
LEyes: A Lightweight Framework for Deep Learning-Based Eye Tracking using Synthetic Eye Images
Deep learning has bolstered gaze estimation techniques, but real-world deployment has been impeded by inadequate training datasets. This problem is exacerbated by both hardware-induced variations in eye images and inherent biological differences across the recorded participants, leading to both feature and pixel-level variance that hinders the generalizability of models trained on specific datasets. While synthetic datasets can be a solution, their creation is both time and resource-intensive. To address this problem, we present a framework called Light Eyes or "LEyes" which, unlike conventional photorealistic methods, only models key image features required for video-based eye tracking using simple light distributions. LEyes facilitates easy configuration for training neural networks across diverse gaze-estimation tasks. We demonstrate that models trained using LEyes are consistently on-par or outperform other state-of-the-art algorithms in terms of pupil and CR localization across well-known datasets. In addition, a LEyes trained model outperforms the industry standard eye tracker using significantly more cost-effective hardware. Going forward, we are confident that LEyes will revolutionize synthetic data generation for gaze estimation models, and lead to significant improvements of the next generation video-based eye trackers.
comment: 32 pages, 8 figures
Emotive Speech-to-Text Interfaces in XR: A Narrative Review of Psychophysiological and Accessibility Advances
This narrative review on emotional expression in Speech-to-Text (STT) interfaces with Extended Reality (XR) aims to identify advancements, limitations, and research gaps in incorporating emotional expression into transcribed text generated by STT systems. Using a rigorous search strategy, relevant articles published between 2020 and 2024 are extracted and categorized into themes such as communication enhancement technologies, innovations in captioning, visual and affective augmentation, emotion recognition in AR and VR, and empathic machines. The findings reveal the evolution of tools and techniques to meet the needs of individuals with hearing impairments, showcasing innovations in live transcription, closed captioning, AR, VR, and emotion recognition technologies. Despite improvements in accessibility, the absence of emotional nuance in transcribed text remains a significant communication challenge. The study underscores the urgency for innovations in STT technology to capture emotional expressions. The research discusses integrating emotional expression into text through strategies like animated text captions, emojilization tools, and models associating emotions with animation properties. Extending these efforts into AR and VR environments opens new possibilities for immersive and emotionally resonant experiences, especially in educational contexts. The study also explores empathic applications in healthcare, education, and human-robot interactions, highlighting the potential for personalized and effective interactions. The multidisciplinary nature of the literature underscores the potential for collaborative and interdisciplinary research.
comment: Updated with overlooked works, and made enhancements
Image and Video Processing
LoC-LIC: Low Complexity Learned Image Coding Using Hierarchical Feature Transforms
Current learned image compression models typically exhibit high complexity, which demands significant computational resources. To overcome these challenges, we propose an innovative approach that employs hierarchical feature extraction transforms to significantly reduce complexity while preserving bit rate reduction efficiency. Our novel architecture achieves this by using fewer channels for high spatial resolution inputs/feature maps. On the other hand, feature maps with a large number of channels have reduced spatial dimensions, thereby cutting down on computational load without sacrificing performance. This strategy effectively reduces the forward pass complexity from \(1256 \, \text{kMAC/Pixel}\) to just \(270 \, \text{kMAC/Pixel}\). As a result, the reduced complexity model can open the way for learned image compression models to operate efficiently across various devices and pave the way for the development of new architectures in image compression technology.
Assimilation of SWOT Altimetry Data for Riverine Flood Reanalysis: From Synthetic to Real Data
Floods are one of the most common and devastating natural disasters worldwide. The contribution of remote sensing is important for reducing the impact of flooding both during the event itself and for improving hydrodynamic models by reducing their associated uncertainties. This article presents the innovative capabilities of the Surface Water and Ocean Topography (SWOT) mission, especially its river node products, to enhance the accuracy of riverine flood reanalysis, performed on a 50-km stretch of the Garonne River. The experiments incorporate various data assimilation strategies, based on the ensemble Kalman filter (EnKF), which allows for sequential updates of model parameters based on available observations. The experimental results show that while SWOT data alone offers some improvements, combining it with in-situ water level measurements provides the most accurate representation of flood dynamics, both at gauge stations and along the river. The study also investigates the impact of different SWOT revisit frequencies on the models performance, revealing that assimilating more frequent SWOT observations leads to more reliable flood reanalyses. In the real event, it was demonstrated that the assimilation of SWOT and in-situ data accurately reproduces the water level dynamics, offering promising prospects for future flood monitoring systems. Overall, this study emphasizes the complementary strengths of Earth Observation data in improving the representation of the flood dynamics in the riverbed and the floodplains.
comment: 17 pages, 11 figures. Submitted to the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Fast Sign Retrieval via Sub-band Convolution: An Elementary Extension of Binary Classification
To efficiently compress the sign information of images, we address a sign retrieval problem for the block-wise discrete cosine transformation~(DCT): reconstruction of the signs of DCT coefficients from their amplitudes. To this end, we propose a fast sign retrieval method on the basis of binary classification machine learning. We first introduce 3D representations of the amplitudes and signs, where we pack amplitudes/signs belonging to the same frequency band into a 2D slice, referred to as the sub-band block. We then retrieve the signs from the 3D amplitudes via binary classification, where each sign is regarded as a binary label. We implement a binary classification algorithm using convolutional neural networks, which are advantageous for efficiently extracting features in the 3D amplitudes. Experimental results demonstrate that our method achieves accurate sign retrieval with an overwhelmingly low computation cost.
Selective Variable Convolution Meets Dynamic Content Guided Attention for Infrared Small Target Detection
Infrared Small Target Detection (IRSTD) system aims to identify small targets in complex backgrounds. Due to the convolution operation in Convolutional Neural Networks (CNNs), applying traditional CNNs to IRSTD presents challenges, since the feature extraction of small targets is often insufficient, resulting in the loss of critical features. To address these issues, we propose a dynamic content guided attention multiscale feature aggregation network (DCGANet), which adheres to the attention principle of 'coarse-to-fine' and achieves high detection accuracy. First, we propose a selective variable convolution (SVC) module that integrates the benefits of standard convolution, irregular deformable convolution, and multi-rate dilated convolution. This module is designed to expand the receptive field and enhance non-local features, thereby effectively improving the discrimination of targets from backgrounds. Second, the core component of DCGANet is a two-stage content guided attention module. This module employs two-stage attention mechanism to initially direct the network's focus to salient regions within the feature maps and subsequently determine whether these regions correspond to targets or background interference. By retaining the most significant responses, this mechanism effectively suppresses false alarms. Additionally, we propose adaptive dynamic feature fusion (ADFF) module to substitute for static feature cascading. This dynamic feature fusion strategy enables DCGANet to adaptively integrate contextual features, thereby enhancing its ability to discriminate true targets from false alarms. DCGANet has achieved new benchmarks across multiple datasets.
Make Both Ends Meet: A Synergistic Optimization Infrared Small Target Detection with Streamlined Computational Overhead
Infrared small target detection(IRSTD) is widely recognized as a challenging task due to the inherent limitations of infrared imaging, including low signal-to-noise ratios, lack of texture details, and complex background interference. While most existing methods model IRSTD as a semantic segmentation task, but they suffer from two critical drawbacks: (1)blurred target boundaries caused by long-distance imaging dispersion; and (2) excessive computational overhead due to indiscriminate feature stackin. To address these issues, we propose the Lightweight Efficiency Infrared Small Target Detection (LE-IRSTD), a lightweight and efficient framework based on YOLOv8n, with following key innovations. Firstly, we identify that the multiple bottleneck structures within the C2f component of the YOLOv8-n backbone contribute to an increased computational burden. Therefore, we implement the Mobile Inverted Bottleneck Convolution block (MBConvblock) and Bottleneck Structure block (BSblock) in the backbone, effectively balancing the trade-off between computational efficiency and the extraction of deep semantic information. Secondly, we introduce the Attention-based Variable Convolution Stem (AVCStem) structure, substituting the final convolution with Variable Kernel Convolution (VKConv), which allows for adaptive convolutional kernels that can transform into various shapes, facilitating the receptive field for the extraction of targets. Finally, we employ Global Shuffle Convolution (GSConv) to shuffle the channel dimension features obtained from different convolutional approaches, thereby enhancing the robustness and generalization capabilities of our method. Experimental results demonstrate that our LE-IRSTD method achieves compelling results in both accuracy and lightweight performance, outperforming several state-of-the-art deep learning methods.
Random Features for Grassmannian Kernels
The Grassmannian manifold G(k, n) serves as a fundamental tool in signal processing, computer vision, and machine learning, where problems often involve classifying, clustering, or comparing subspaces. In this work, we propose a sketching-based approach to approximate Grassmannian kernels using random projections. We introduce three variations of kernel approximation, including two that rely on binarised sketches, offering substantial memory gains. We establish theoretical properties of our method in the special case of G(1, n) and extend it to general G(k, n). Experimental validation demonstrates that our sketched kernels closely match the performance of standard Grassmannian kernels while avoiding the need to compute or store the full kernel matrix. Our approach enables scalable Grassmannian-based methods for large-scale applications in machine learning and pattern recognition.
comment: 4 pages, 1 page reference, 2 figures
Emerging Advances in Learned Video Compression: Models, Systems and Beyond
Video compression is a fundamental topic in the visual intelligence, bridging visual signal sensing/capturing and high-level visual analytics. The broad success of artificial intelligence (AI) technology has enriched the horizon of video compression into novel paradigms by leveraging end-to-end optimized neural models. In this survey, we first provide a comprehensive and systematic overview of recent literature on end-to-end optimized learned video coding, covering the spectrum of pioneering efforts in both uni-directional and bi-directional prediction based compression model designation. We further delve into the optimization techniques employed in learned video compression (LVC), emphasizing their technical innovations, advantages. Some standardization progress is also reported. Furthermore, we investigate the system design and hardware implementation challenges of the LVC inclusively. Finally, we present the extensive simulation results to demonstrate the superior compression performance of LVC models, addressing the question that why learned codecs and AI-based video technology would have with broad impact on future visual intelligence research.
Efficient and robust 3D blind harmonization for large domain gaps
Blind harmonization has emerged as a promising technique for MR image harmonization to achieve scale-invariant representations, requiring only target domain data (i.e., no source domain data necessary). However, existing methods face limitations such as inter-slice heterogeneity in 3D, moderate image quality, and limited performance for a large domain gap. To address these challenges, we introduce BlindHarmonyDiff, a novel blind 3D harmonization framework that leverages an edge-to-image model tailored specifically to harmonization. Our framework employs a 3D rectified flow trained on target domain images to reconstruct the original image from an edge map, then yielding a harmonized image from the edge of a source domain image. We propose multi-stride patch training for efficient 3D training and a refinement module for robust inference by suppressing hallucination. Extensive experiments demonstrate that BlindHarmonyDiff outperforms prior arts by harmonizing diverse source domain images to the target domain, achieving higher correspondence to the target domain characteristics. Downstream task-based quality assessments such as tissue segmentation and age prediction on diverse MR scanners further confirm the effectiveness of our approach and demonstrate the capability of our robust and generalizable blind harmonization.
Stereo X-ray tomography on deformed object tracking
X-ray computed tomography is a powerful tool for volumetric imaging, but requires the collection of a large number of low-noise projection images, which is often too time consuming, limiting its applicability. In our previous work \cite{shang2023stereo}, we proposed a stereo X-ray tomography system to map the 3D position of fiducial markers using only two projections of a static volume. In dynamic imaging settings, where objects undergo deformations during imaging, this static method can be extended by utilizing additional temporal information. We thus extend the method to track the deformation of fiducial markers in 3D space, where we use knowledge of the initial object shape as prior information, improving the prediction of the evolution of its deformed state over time. In particular, knowledge of the initial object's stereo projections is shown to improve the method's robustness to noise when detecting fiducial marker locations in the projections of the deformed objects. Furthermore, after feature detection, by using the features' initial 3D position information in the undeformed object, we can also demonstrate improvements in the 3D mapping of the deformed features. Using a range of deformed 3D objects, this new approach is shown to be able to track fiducial markers in noisy stereo tomography images with subpixel accuracy.
Rootlets-based registration to the spinal cord PAM50 template
Spinal cord functional MRI studies require precise localization of spinal levels for reliable voxelwise group analyses. Traditional template-based registration of the spinal cord uses intervertebral discs for alignment. However, substantial anatomical variability across individuals exists between vertebral and spinal levels. This study proposes a novel registration approach that leverages spinal nerve rootlets to improve alignment accuracy and reproducibility across individuals. We developed a registration method leveraging dorsal cervical rootlets segmentation and aligning them non-linearly with the PAM50 spinal cord template. Validation was performed on a multi-subject, multi-site dataset (n=267, 44 sites) and a multi-subject dataset with various neck positions (n=10, 3 sessions). We further validated the method on task-based functional MRI (n=23) to compare group-level activation maps using rootlet-based registration to traditional disc-based methods. Rootlet-based registration showed superior alignment across individuals compared to the traditional disc-based method. Notably, rootlet positions were more stable across neck positions. Group-level analysis of task-based functional MRI using rootlet-based increased Z scores and activation cluster size compared to disc-based registration (number of active voxels from 3292 to 7978). Rootlet-based registration enhances both inter- and intra-subject anatomical alignment and yields better spatial normalization for group-level fMRI analyses. Our findings highlight the potential of rootlet-based registration to improve the precision and reliability of spinal cord neuroimaging group analysis.
SR-NeRV: Improving Embedding Efficiency of Neural Video Representation via Super-Resolution
Implicit Neural Representations (INRs) have garnered significant attention for their ability to model complex signals across a variety of domains. Recently, INR-based approaches have emerged as promising frameworks for neural video compression. While conventional methods primarily focus on embedding video content into compact neural networks for efficient representation, they often struggle to reconstruct high-frequency details under stringent model size constraints, which are critical in practical compression scenarios. To address this limitation, we propose an INR-based video representation method that integrates a general-purpose super-resolution (SR) network. Motivated by the observation that high-frequency components exhibit low temporal redundancy across frames, our method entrusts the reconstruction of fine details to the SR network. Experimental results demonstrate that the proposed method outperforms conventional INR-based baselines in terms of reconstruction quality, while maintaining comparable model sizes.
Noise Modeling in One Hour: Minimizing Preparation Efforts for Self-supervised Low-Light RAW Image Denoising
Noise synthesis is a promising solution for addressing the data shortage problem in data-driven low-light RAW image denoising. However, accurate noise synthesis methods often necessitate labor-intensive calibration and profiling procedures during preparation, preventing them from landing to practice at scale. This work introduces a practically simple noise synthesis pipeline based on detailed analyses of noise properties and extensive justification of widespread techniques. Compared to other approaches, our proposed pipeline eliminates the cumbersome system gain calibration and signal-independent noise profiling steps, reducing the preparation time for noise synthesis from days to hours. Meanwhile, our method exhibits strong denoising performance, showing an up to 0.54dB PSNR improvement over the current state-of-the-art noise synthesis technique. Code is released at https://github.com/SonyResearch/raw_image_denoising
Zoomer: Adaptive Image Focus Optimization for Black-box MLLM
Recent advancements in multimodal large language models (MLLMs) have broadened the scope of vision-language tasks, excelling in applications like image captioning and interactive question-answering. However, these models struggle with accurately processing visual data, particularly in tasks requiring precise object recognition and fine visual details. Stringent token limits often result in the omission of critical information, hampering performance. To address these limitations, we introduce \SysName, a novel visual prompting mechanism designed to enhance MLLM performance while preserving essential visual details within token limits. \SysName features three key innovations: a prompt-aware strategy that dynamically highlights relevant image regions, a spatial-preserving orchestration schema that maintains object integrity, and a budget-aware prompting method that balances global context with crucial visual details. Comprehensive evaluations across multiple datasets demonstrate that \SysName consistently outperforms baseline methods, achieving up to a $26.9\%$ improvement in accuracy while significantly reducing token consumption.
MoSAM: Motion-Guided Segment Anything Model with Spatial-Temporal Memory Selection
The recent Segment Anything Model 2 (SAM2) has demonstrated exceptional capabilities in interactive object segmentation for both images and videos. However, as a foundational model on interactive segmentation, SAM2 performs segmentation directly based on mask memory from the past six frames, leading to two significant challenges. Firstly, during inference in videos, objects may disappear since SAM2 relies solely on memory without accounting for object motion information, which limits its long-range object tracking capabilities. Secondly, its memory is constructed from fixed past frames, making it susceptible to challenges associated with object disappearance or occlusion, due to potentially inaccurate segmentation results in memory. To address these problems, we present MoSAM, incorporating two key strategies to integrate object motion cues into the model and establish more reliable feature memory. Firstly, we propose Motion-Guided Prompting (MGP), which represents the object motion in both sparse and dense manners, then injects them into SAM2 through a set of motion-guided prompts. MGP enables the model to adjust its focus towards the direction of motion, thereby enhancing the object tracking capabilities. Furthermore, acknowledging that past segmentation results may be inaccurate, we devise a Spatial-Temporal Memory Selection (ST-MS) mechanism that dynamically identifies frames likely to contain accurate segmentation in both pixel- and frame-level. By eliminating potentially inaccurate mask predictions from memory, we can leverage more reliable memory features to exploit similar regions for improving segmentation results. Extensive experiments on various benchmarks of video object segmentation and video instance segmentation demonstrate that our MoSAM achieves state-of-the-art results compared to other competitors.
XeMap: Contextual Referring in Large-Scale Remote Sensing Environments
Advancements in remote sensing (RS) imagery have provided high-resolution detail and vast coverage, yet existing methods, such as image-level captioning/retrieval and object-level detection/segmentation, often fail to capture mid-scale semantic entities essential for interpreting large-scale scenes. To address this, we propose the conteXtual referring Map (XeMap) task, which focuses on contextual, fine-grained localization of text-referred regions in large-scale RS scenes. Unlike traditional approaches, XeMap enables precise mapping of mid-scale semantic entities that are often overlooked in image-level or object-level methods. To achieve this, we introduce XeMap-Network, a novel architecture designed to handle the complexities of pixel-level cross-modal contextual referring mapping in RS. The network includes a fusion layer that applies self- and cross-attention mechanisms to enhance the interaction between text and image embeddings. Furthermore, we propose a Hierarchical Multi-Scale Semantic Alignment (HMSA) module that aligns multiscale visual features with the text semantic vector, enabling precise multimodal matching across large-scale RS imagery. To support XeMap task, we provide a novel, annotated dataset, XeMap-set, specifically tailored for this task, overcoming the lack of XeMap datasets in RS imagery. XeMap-Network is evaluated in a zero-shot setting against state-of-the-art methods, demonstrating superior performance. This highlights its effectiveness in accurately mapping referring regions and providing valuable insights for interpreting large-scale RS environments.
comment: 14 pages, 8 figures
A Survey on 3D Reconstruction Techniques in Plant Phenotyping: From Classical Methods to Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and Beyond
Plant phenotyping plays a pivotal role in understanding plant traits and their interactions with the environment, making it crucial for advancing precision agriculture and crop improvement. 3D reconstruction technologies have emerged as powerful tools for capturing detailed plant morphology and structure, offering significant potential for accurate and automated phenotyping. This paper provides a comprehensive review of the 3D reconstruction techniques for plant phenotyping, covering classical reconstruction methods, emerging Neural Radiance Fields (NeRF), and the novel 3D Gaussian Splatting (3DGS) approach. Classical methods, which often rely on high-resolution sensors, are widely adopted due to their simplicity and flexibility in representing plant structures. However, they face challenges such as data density, noise, and scalability. NeRF, a recent advancement, enables high-quality, photorealistic 3D reconstructions from sparse viewpoints, but its computational cost and applicability in outdoor environments remain areas of active research. The emerging 3DGS technique introduces a new paradigm in reconstructing plant structures by representing geometry through Gaussian primitives, offering potential benefits in both efficiency and scalability. We review the methodologies, applications, and performance of these approaches in plant phenotyping and discuss their respective strengths, limitations, and future prospects (https://github.com/JiajiaLi04/3D-Reconstruction-Plants). Through this review, we aim to provide insights into how these diverse 3D reconstruction techniques can be effectively leveraged for automated and high-throughput plant phenotyping, contributing to the next generation of agricultural technology.
comment: 17 pages, 7 figures, 4 tables
mAIstro: an open-source multi-agentic system for automated end-to-end development of radiomics and deep learning models for medical imaging
Agentic systems built on large language models (LLMs) offer promising capabilities for automating complex workflows in healthcare AI. We introduce mAIstro, an open-source, autonomous multi-agentic framework for end-to-end development and deployment of medical AI models. The system orchestrates exploratory data analysis, radiomic feature extraction, image segmentation, classification, and regression through a natural language interface, requiring no coding from the user. Built on a modular architecture, mAIstro supports both open- and closed-source LLMs, and was evaluated using a large and diverse set of prompts across 16 open-source datasets, covering a wide range of imaging modalities, anatomical regions, and data types. The agents successfully executed all tasks, producing interpretable outputs and validated models. This work presents the first agentic framework capable of unifying data analysis, AI model development, and inference across varied healthcare applications, offering a reproducible and extensible foundation for clinical and research AI integration. The code is available at: https://github.com/eltzanis/mAIstro
Underwater Image Enhancement via Dehazing and Color Restoration
Underwater visual imaging is crucial for marine engineering, but it suffers from low contrast, blurriness, and color degradation, which hinders downstream analysis. Existing underwater image enhancement methods often treat the haze and color cast as a unified degradation process, neglecting their inherent independence while overlooking their synergistic relationship. To overcome this limitation, we propose a Vision Transformer (ViT)-based network (referred to as WaterFormer) to improve underwater image quality. WaterFormer contains three major components: a dehazing block (DehazeFormer Block) to capture the self-correlated haze features and extract deep-level features, a Color Restoration Block (CRB) to capture self-correlated color cast features, and a Channel Fusion Block (CFB) that dynamically integrates these decoupled features to achieve comprehensive enhancement. To ensure authenticity, a soft reconstruction layer based on the underwater imaging physics model is included. Further, a Chromatic Consistency Loss and Sobel Color Loss are designed to respectively preserve color fidelity and enhance structural details during network training. Comprehensive experimental results demonstrate that WaterFormer outperforms other state-of-the-art methods in enhancing underwater images.
WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been shown to be highly effective for enhancing robustness for image recognition tasks in vision pipelines. To additionally maximize representational sparsity, LCA with hard-thresholding can be applied. While this combination often yields very good solutions satisfying an $\ell_0$ sparsity criterion, it comes with significant drawbacks for practical application: (i) LCA is very inefficient, typically requiring hundreds of optimization cycles for convergence; (ii) the use of hard-thresholding results in a non-convex loss function, which might lead to suboptimal minima. To address these issues, we propose the Locally Competitive Algorithm with State Warm-up via Predictive Priming (WARP-LCA), which leverages a predictor network to provide a suitable initial guess of the LCA state based on the current input. Our approach significantly improves both convergence speed and the quality of solutions, while maintaining and even enhancing the overall strengths of LCA. We demonstrate that WARP-LCA converges faster by orders of magnitude and reaches better minima compared to conventional LCA. Moreover, the learned representations are more sparse and exhibit superior properties in terms of reconstruction and denoising quality as well as robustness when applied in deep recognition pipelines. Furthermore, we apply WARP-LCA to image denoising tasks, showcasing its robustness and practical effectiveness. Our findings confirm that the naive use of LCA with hard-thresholding results in suboptimal minima, whereas initializing LCA with a predictive guess results in better outcomes. This research advances the field of biologically inspired deep learning by providing a novel approach to convolutional sparse coding.
ScaleFusionNet: Transformer-Guided Multi-Scale Feature Fusion for Skin Lesion Segmentation
Melanoma is a malignant tumor originating from skin cell lesions. Accurate and efficient segmentation of skin lesions is essential for quantitative medical analysis but remains challenging. To address this, we propose ScaleFusionNet, a segmentation model that integrates Cross-Attention Transformer Module (CATM) and AdaptiveFusionBlock to enhance feature extraction and fusion. The model employs a hybrid architecture encoder that effectively captures both local and global features. We introduce CATM, which utilizes Swin Transformer Blocks and Cross Attention Fusion (CAF) to adaptively refine encoder-decoder feature fusion, reducing semantic gaps and improving segmentation accuracy. Additionally, the AdaptiveFusionBlock is improved by integrating adaptive multi-scale fusion, where Swin Transformer-based attention complements deformable convolution-based multi-scale feature extraction. This enhancement refines lesion boundaries and preserves fine-grained details. ScaleFusionNet achieves Dice scores of 92.94% and 91.65% on ISIC-2016 and ISIC-2018 datasets, respectively, demonstrating its effectiveness in skin lesion analysis. Our code implementation is publicly available at GitHub.
High-Frequency Enhanced Hybrid Neural Representation for Video Compression
Neural Representations for Videos (NeRV) have simplified the video codec process and achieved swift decoding speeds by encoding video content into a neural network, presenting a promising solution for video compression. However, existing work overlooks the crucial issue that videos reconstructed by these methods lack high-frequency details. To address this problem, this paper introduces a High-Frequency Enhanced Hybrid Neural Representation Network. Our method focuses on leveraging high-frequency information to improve the synthesis of fine details by the network. Specifically, we design a wavelet high-frequency encoder that incorporates Wavelet Frequency Decomposer (WFD) blocks to generate high-frequency feature embeddings. Next, we design the High-Frequency Feature Modulation (HFM) block, which leverages the extracted high-frequency embeddings to enhance the fitting process of the decoder. Finally, with the refined Harmonic decoder block and a Dynamic Weighted Frequency Loss, we further reduce the potential loss of high-frequency information. Experiments on the Bunny and UVG datasets demonstrate that our method outperforms other methods, showing notable improvements in detail preservation and compression performance.
CAD-Unet: A Capsule Network-Enhanced Unet Architecture for Accurate Segmentation of COVID-19 Lung Infections from CT Images
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity between infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. \noindent Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.
comment: Published in Medical Image Analysis, Volume 103, 2025, Pages 103583. DOI: 10.1016/j.media.2025.103583 This is the author's pre-print version prior to final journal edits. Final published version available at: https://www.sciencedirect.com/science/article/pii/S1361841525001306
Computer Vision and Pattern Recognition
YoChameleon: Personalized Vision and Language Generation CVPR 2025
Large Multimodal Models (e.g., GPT-4, Gemini, Chameleon) have evolved into powerful tools with millions of users. However, they remain generic models and lack personalized knowledge of specific user concepts. Previous work has explored personalization for text generation, yet it remains unclear how these methods can be adapted to new modalities, such as image generation. In this paper, we introduce Yo'Chameleon, the first attempt to study personalization for large multimodal models. Given 3-5 images of a particular concept, Yo'Chameleon leverages soft-prompt tuning to embed subject-specific information to (i) answer questions about the subject and (ii) recreate pixel-level details to produce images of the subject in new contexts. Yo'Chameleon is trained with (i) a self-prompting optimization mechanism to balance performance across multiple modalities, and (ii) a ``soft-positive" image generation approach to enhance image quality in a few-shot setting.
comment: CVPR 2025; Project page: https://thaoshibe.github.io/YoChameleon
X-Fusion: Introducing New Modality to Frozen Large Language Models
We propose X-Fusion, a framework that extends pretrained Large Language Models (LLMs) for multimodal tasks while preserving their language capabilities. X-Fusion employs a dual-tower design with modality-specific weights, keeping the LLM's parameters frozen while integrating vision-specific information for both understanding and generation. Our experiments demonstrate that X-Fusion consistently outperforms alternative architectures on both image-to-text and text-to-image tasks. We find that incorporating understanding-focused data improves generation quality, reducing image data noise enhances overall performance, and feature alignment accelerates convergence for smaller models but has minimal impact on larger ones. Our findings provide valuable insights into building efficient unified multimodal models.
comment: Project Page: https://sichengmo.github.io/XFusion/
TesserAct: Learning 4D Embodied World Models
This paper presents an effective approach for learning novel 4D embodied world models, which predict the dynamic evolution of 3D scenes over time in response to an embodied agent's actions, providing both spatial and temporal consistency. We propose to learn a 4D world model by training on RGB-DN (RGB, Depth, and Normal) videos. This not only surpasses traditional 2D models by incorporating detailed shape, configuration, and temporal changes into their predictions, but also allows us to effectively learn accurate inverse dynamic models for an embodied agent. Specifically, we first extend existing robotic manipulation video datasets with depth and normal information leveraging off-the-shelf models. Next, we fine-tune a video generation model on this annotated dataset, which jointly predicts RGB-DN (RGB, Depth, and Normal) for each frame. We then present an algorithm to directly convert generated RGB, Depth, and Normal videos into a high-quality 4D scene of the world. Our method ensures temporal and spatial coherence in 4D scene predictions from embodied scenarios, enables novel view synthesis for embodied environments, and facilitates policy learning that significantly outperforms those derived from prior video-based world models.
comment: Project Page: https://tesseractworld.github.io/
SVD Based Least Squares for X-Ray Pneumonia Classification Using Deep Features SP
Accurate and early diagnosis of pneumonia through X-ray imaging is essential for effective treatment and improved patient outcomes. Recent advancements in machine learning have enabled automated diagnostic tools that assist radiologists in making more reliable and efficient decisions. In this work, we propose a Singular Value Decomposition-based Least Squares (SVD-LS) framework for multi-class pneumonia classification, leveraging powerful feature representations from state-of-the-art self-supervised and transfer learning models. Rather than relying on computationally expensive gradient based fine-tuning, we employ a closed-form, non-iterative classification approach that ensures efficiency without compromising accuracy. Experimental results demonstrate that SVD-LS achieves competitive performance while offering significantly reduced computational costs, making it a viable alternative for real-time medical imaging applications.
comment: Preprint submitted to IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2025
DS_FusionNet: Dynamic Dual-Stream Fusion with Bidirectional Knowledge Distillation for Plant Disease Recognition
Given the severe challenges confronting the global growth security of economic crops, precise identification and prevention of plant diseases has emerged as a critical issue in artificial intelligence-enabled agricultural technology. To address the technical challenges in plant disease recognition, including small-sample learning, leaf occlusion, illumination variations, and high inter-class similarity, this study innovatively proposes a Dynamic Dual-Stream Fusion Network (DS_FusionNet). The network integrates a dual-backbone architecture, deformable dynamic fusion modules, and bidirectional knowledge distillation strategy, significantly enhancing recognition accuracy. Experimental results demonstrate that DS_FusionNet achieves classification accuracies exceeding 90% using only 10% of the PlantDisease and CIFAR-10 datasets, while maintaining 85% accuracy on the complex PlantWild dataset, exhibiting exceptional generalization capabilities. This research not only provides novel technical insights for fine-grained image classification but also establishes a robust foundation for precise identification and management of agricultural diseases.
ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification
Recent advances in reasoning-enhanced large language models (LLMs) and multimodal LLMs (MLLMs) have significantly improved performance in complex tasks, yet medical AI models often overlook the structured reasoning processes inherent in clinical practice. In this work, we present ChestX-Reasoner, a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports, reflecting the step-by-step reasoning followed by radiologists. We construct a large dataset by extracting and refining reasoning chains from routine radiology reports. Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards. We introduce RadRBench-CXR, a comprehensive benchmark featuring 59K visual question answering samples with 301K clinically validated reasoning steps, and propose RadRScore, a metric evaluating reasoning factuality, completeness, and effectiveness. ChestX-Reasoner outperforms existing medical and general-domain MLLMs in both diagnostic accuracy and reasoning ability, achieving 16%, 5.9%, and 18% improvements in reasoning ability compared to the best medical MLLM, the best general MLLM, and its base model, respectively, as well as 3.3%, 24%, and 27% improvements in outcome accuracy. All resources are open-sourced to facilitate further research in medical reasoning MLLMs.
End-to-end Audio Deepfake Detection from RAW Waveforms: a RawNet-Based Approach with Cross-Dataset Evaluation
Audio deepfakes represent a growing threat to digital security and trust, leveraging advanced generative models to produce synthetic speech that closely mimics real human voices. Detecting such manipulations is especially challenging under open-world conditions, where spoofing methods encountered during testing may differ from those seen during training. In this work, we propose an end-to-end deep learning framework for audio deepfake detection that operates directly on raw waveforms. Our model, RawNetLite, is a lightweight convolutional-recurrent architecture designed to capture both spectral and temporal features without handcrafted preprocessing. To enhance robustness, we introduce a training strategy that combines data from multiple domains and adopts Focal Loss to emphasize difficult or ambiguous samples. We further demonstrate that incorporating codec-based manipulations and applying waveform-level audio augmentations (e.g., pitch shifting, noise, and time stretching) leads to significant generalization improvements under realistic acoustic conditions. The proposed model achieves over 99.7% F1 and 0.25% EER on in-domain data (FakeOrReal), and up to 83.4% F1 with 16.4% EER on a challenging out-of-distribution test set (AVSpoof2021 + CodecFake). These findings highlight the importance of diverse training data, tailored objective functions and audio augmentations in building resilient and generalizable audio forgery detectors. Code and pretrained models are available at https://iplab.dmi.unict.it/mfs/Deepfakes/PaperRawNet2025/.
Classifier-to-Bias: Toward Unsupervised Automatic Bias Detection for Visual Classifiers CVPR 2025
A person downloading a pre-trained model from the web should be aware of its biases. Existing approaches for bias identification rely on datasets containing labels for the task of interest, something that a non-expert may not have access to, or may not have the necessary resources to collect: this greatly limits the number of tasks where model biases can be identified. In this work, we present Classifier-to-Bias (C2B), the first bias discovery framework that works without access to any labeled data: it only relies on a textual description of the classification task to identify biases in the target classification model. This description is fed to a large language model to generate bias proposals and corresponding captions depicting biases together with task-specific target labels. A retrieval model collects images for those captions, which are then used to assess the accuracy of the model w.r.t. the given biases. C2B is training-free, does not require any annotations, has no constraints on the list of biases, and can be applied to any pre-trained model on any classification task. Experiments on two publicly available datasets show that C2B discovers biases beyond those of the original datasets and outperforms a recent state-of-the-art bias detection baseline that relies on task-specific annotations, being a promising first step toward addressing task-agnostic unsupervised bias detection.
comment: CVPR 2025. Code: https://github.com/mardgui/C2B
CBM-RAG: Demonstrating Enhanced Interpretability in Radiology Report Generation with Multi-Agent RAG and Concept Bottleneck Models
Advancements in generative Artificial Intelligence (AI) hold great promise for automating radiology workflows, yet challenges in interpretability and reliability hinder clinical adoption. This paper presents an automated radiology report generation framework that combines Concept Bottleneck Models (CBMs) with a Multi-Agent Retrieval-Augmented Generation (RAG) system to bridge AI performance with clinical explainability. CBMs map chest X-ray features to human-understandable clinical concepts, enabling transparent disease classification. Meanwhile, the RAG system integrates multi-agent collaboration and external knowledge to produce contextually rich, evidence-based reports. Our demonstration showcases the system's ability to deliver interpretable predictions, mitigate hallucinations, and generate high-quality, tailored reports with an interactive interface addressing accuracy, trust, and usability challenges. This framework provides a pathway to improving diagnostic consistency and empowering radiologists with actionable insights.
comment: Accepted in the 17th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2025)
FLIM-based Salient Object Detection Networks with Adaptive Decoders
Salient Object Detection (SOD) methods can locate objects that stand out in an image, assign higher values to their pixels in a saliency map, and binarize the map outputting a predicted segmentation mask. A recent tendency is to investigate pre-trained lightweight models rather than deep neural networks in SOD tasks, coping with applications under limited computational resources. In this context, we have investigated lightweight networks using a methodology named Feature Learning from Image Markers (FLIM), which assumes that the encoder's kernels can be estimated from marker pixels on discriminative regions of a few representative images. This work proposes flyweight networks, hundreds of times lighter than lightweight models, for SOD by combining a FLIM encoder with an adaptive decoder, whose weights are estimated for each input image by a given heuristic function. Such FLIM networks are trained from three to four representative images only and without backpropagation, making the models suitable for applications under labeled data constraints as well. We study five adaptive decoders; two of them are introduced here. Differently from the previous ones that rely on one neuron per pixel with shared weights, the heuristic functions of the new adaptive decoders estimate the weights of each neuron per pixel. We compare FLIM models with adaptive decoders for two challenging SOD tasks with three lightweight networks from the state-of-the-art, two FLIM networks with decoders trained by backpropagation, and one FLIM network whose labeled markers define the decoder's weights. The experiments demonstrate the advantages of the proposed networks over the baselines, revealing the importance of further investigating such methods in new applications.
comment: This work has been submitted to the Journal of the Brazilian Computer Society (JBCS)
AI-GenBench: A New Ongoing Benchmark for AI-Generated Image Detection
The rapid advancement of generative AI has revolutionized image creation, enabling high-quality synthesis from text prompts while raising critical challenges for media authenticity. We present Ai-GenBench, a novel benchmark designed to address the urgent need for robust detection of AI-generated images in real-world scenarios. Unlike existing solutions that evaluate models on static datasets, Ai-GenBench introduces a temporal evaluation framework where detection methods are incrementally trained on synthetic images, historically ordered by their generative models, to test their ability to generalize to new generative models, such as the transition from GANs to diffusion models. Our benchmark focuses on high-quality, diverse visual content and overcomes key limitations of current approaches, including arbitrary dataset splits, unfair comparisons, and excessive computational demands. Ai-GenBench provides a comprehensive dataset, a standardized evaluation protocol, and accessible tools for both researchers and non-experts (e.g., journalists, fact-checkers), ensuring reproducibility while maintaining practical training requirements. By establishing clear evaluation rules and controlled augmentation strategies, Ai-GenBench enables meaningful comparison of detection methods and scalable solutions. Code and data are publicly available to ensure reproducibility and to support the development of robust forensic detectors to keep pace with the rise of new synthetic generators.
comment: 9 pages, 6 figures, 4 tables, code available: https://github.com/MI-BioLab/AI-GenBench
FedMVP: Federated Multi-modal Visual Prompt Tuning for Vision-Language Models
Textual prompt tuning adapts Vision-Language Models (e.g., CLIP) in federated learning by tuning lightweight input tokens (or prompts) on local client data, while keeping network weights frozen. Post training, only the prompts are shared by the clients with the central server for aggregation. However, textual prompt tuning often struggles with overfitting to known concepts and may be overly reliant on memorized text features, limiting its adaptability to unseen concepts. To address this limitation, we propose Federated Multimodal Visual Prompt Tuning (FedMVP) that conditions the prompts on comprehensive contextual information -- image-conditioned features and textual attribute features of a class -- that is multimodal in nature. At the core of FedMVP is a PromptFormer module that synergistically aligns textual and visual features through cross-attention, enabling richer contexual integration. The dynamically generated multimodal visual prompts are then input to the frozen vision encoder of CLIP, and trained with a combination of CLIP similarity loss and a consistency loss. Extensive evaluation on 20 datasets spanning three generalization settings demonstrates that FedMVP not only preserves performance on in-distribution classes and domains, but also displays higher generalizability to unseen classes and domains when compared to state-of-the-art methods. Codes will be released upon acceptance.
RadSAM: Segmenting 3D radiological images with a 2D promptable model
Medical image segmentation is a crucial and time-consuming task in clinical care, where mask precision is extremely important. The Segment Anything Model (SAM) offers a promising approach, as it provides an interactive interface based on visual prompting and edition to refine an initial segmentation. This model has strong generalization capabilities, does not rely on predefined classes, and adapts to diverse objects; however, it is pre-trained on natural images and lacks the ability to process medical data effectively. In addition, this model is built for 2D images, whereas a whole medical domain is based on 3D images, such as CT and MRI. Recent adaptations of SAM for medical imaging are based on 2D models, thus requiring one prompt per slice to segment 3D objects, making the segmentation process tedious. They also lack important features such as editing. To bridge this gap, we propose RadSAM, a novel method for segmenting 3D objects with a 2D model from a single prompt. In practice, we train a 2D model using noisy masks as initial prompts, in addition to bounding boxes and points. We then use this novel prompt type with an iterative inference pipeline to reconstruct the 3D mask slice-by-slice. We introduce a benchmark to evaluate the model's ability to segment 3D objects in CT images from a single prompt and evaluate the models' out-of-domain transfer and edition capabilities. We demonstrate the effectiveness of our approach against state-of-the-art models on this benchmark using the AMOS abdominal organ segmentation dataset.
CMT: A Cascade MAR with Topology Predictor for Multimodal Conditional CAD Generation
While accurate and user-friendly Computer-Aided Design (CAD) is crucial for industrial design and manufacturing, existing methods still struggle to achieve this due to their over-simplified representations or architectures incapable of supporting multimodal design requirements. In this paper, we attempt to tackle this problem from both methods and datasets aspects. First, we propose a cascade MAR with topology predictor (CMT), the first multimodal framework for CAD generation based on Boundary Representation (B-Rep). Specifically, the cascade MAR can effectively capture the ``edge-counters-surface'' priors that are essential in B-Reps, while the topology predictor directly estimates topology in B-Reps from the compact tokens in MAR. Second, to facilitate large-scale training, we develop a large-scale multimodal CAD dataset, mmABC, which includes over 1.3 million B-Rep models with multimodal annotations, including point clouds, text descriptions, and multi-view images. Extensive experiments show the superior of CMT in both conditional and unconditional CAD generation tasks. For example, we improve Coverage and Valid ratio by +10.68% and +10.3%, respectively, compared to state-of-the-art methods on ABC in unconditional generation. CMT also improves +4.01 Chamfer on image conditioned CAD generation on mmABC. The dataset, code and pretrained network shall be released.
GaussTrap: Stealthy Poisoning Attacks on 3D Gaussian Splatting for Targeted Scene Confusion
As 3D Gaussian Splatting (3DGS) emerges as a breakthrough in scene representation and novel view synthesis, its rapid adoption in safety-critical domains (e.g., autonomous systems, AR/VR) urgently demands scrutiny of potential security vulnerabilities. This paper presents the first systematic study of backdoor threats in 3DGS pipelines. We identify that adversaries may implant backdoor views to induce malicious scene confusion during inference, potentially leading to environmental misperception in autonomous navigation or spatial distortion in immersive environments. To uncover this risk, we propose GuassTrap, a novel poisoning attack method targeting 3DGS models. GuassTrap injects malicious views at specific attack viewpoints while preserving high-quality rendering in non-target views, ensuring minimal detectability and maximizing potential harm. Specifically, the proposed method consists of a three-stage pipeline (attack, stabilization, and normal training) to implant stealthy, viewpoint-consistent poisoned renderings in 3DGS, jointly optimizing attack efficacy and perceptual realism to expose security risks in 3D rendering. Extensive experiments on both synthetic and real-world datasets demonstrate that GuassTrap can effectively embed imperceptible yet harmful backdoor views while maintaining high-quality rendering in normal views, validating its robustness, adaptability, and practical applicability.
Adept: Annotation-Denoising Auxiliary Tasks with Discrete Cosine Transform Map and Keypoint for Human-Centric Pretraining
Human-centric perception is the core of diverse computer vision tasks and has been a long-standing research focus. However, previous research studied these human-centric tasks individually, whose performance is largely limited to the size of the public task-specific datasets. Recent human-centric methods leverage the additional modalities, e.g., depth, to learn fine-grained semantic information, which limits the benefit of pretraining models due to their sensitivity to camera views and the scarcity of RGB-D data on the Internet. This paper improves the data scalability of human-centric pretraining methods by discarding depth information and exploring semantic information of RGB images in the frequency space by Discrete Cosine Transform (DCT). We further propose new annotation denoising auxiliary tasks with keypoints and DCT maps to enforce the RGB image extractor to learn fine-grained semantic information of human bodies. Our extensive experiments show that when pretrained on large-scale datasets (COCO and AIC datasets) without depth annotation, our model achieves better performance than state-of-the-art methods by +0.5 mAP on COCO, +1.4 PCKh on MPII and -0.51 EPE on Human3.6M for pose estimation, by +4.50 mIoU on Human3.6M for human parsing, by -3.14 MAE on SHA and -0.07 MAE on SHB for crowd counting, by +1.1 F1 score on SHA and +0.8 F1 score on SHA for crowd localization, and by +0.1 mAP on Market1501 and +0.8 mAP on MSMT for person ReID. We also validate the effectiveness of our method on MPII+NTURGBD datasets
A Survey on Event-based Optical Marker Systems
The advent of event-based cameras, with their low latency, high dynamic range, and reduced power consumption, marked a significant change in robotic vision and machine perception. In particular, the combination of these neuromorphic sensors with widely-available passive or active optical markers (e.g. AprilTags, arrays of blinking LEDs), has recently opened up a wide field of possibilities. This survey paper provides a comprehensive review on Event-Based Optical Marker Systems (EBOMS). We analyze the basic principles and technologies on which these systems are based, with a special focus on their asynchronous operation and robustness against adverse lighting conditions. We also describe the most relevant applications of EBOMS, including object detection and tracking, pose estimation, and optical communication. The article concludes with a discussion of possible future research directions in this rapidly-emerging and multidisciplinary field.
comment: 10 pages, 6 figures, 1 table
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
Learning a General Model: Folding Clothing with Topological Dynamics
The high degrees of freedom and complex structure of garments present significant challenges for clothing manipulation. In this paper, we propose a general topological dynamics model to fold complex clothing. By utilizing the visible folding structure as the topological skeleton, we design a novel topological graph to represent the clothing state. This topological graph is low-dimensional and applied for complex clothing in various folding states. It indicates the constraints of clothing and enables predictions regarding clothing movement. To extract graphs from self-occlusion, we apply semantic segmentation to analyze the occlusion relationships and decompose the clothing structure. The decomposed structure is then combined with keypoint detection to generate the topological graph. To analyze the behavior of the topological graph, we employ an improved Graph Neural Network (GNN) to learn the general dynamics. The GNN model can predict the deformation of clothing and is employed to calculate the deformation Jacobi matrix for control. Experiments using jackets validate the algorithm's effectiveness to recognize and fold complex clothing with self-occlusion.
In-Context Edit: Enabling Instructional Image Editing with In-Context Generation in Large Scale Diffusion Transformer
Instruction-based image editing enables robust image modification via natural language prompts, yet current methods face a precision-efficiency tradeoff. Fine-tuning methods demand significant computational resources and large datasets, while training-free techniques struggle with instruction comprehension and edit quality. We resolve this dilemma by leveraging large-scale Diffusion Transformer (DiT)' enhanced generation capacity and native contextual awareness. Our solution introduces three contributions: (1) an in-context editing framework for zero-shot instruction compliance using in-context prompting, avoiding structural changes; (2) a LoRA-MoE hybrid tuning strategy that enhances flexibility with efficient adaptation and dynamic expert routing, without extensive retraining; and (3) an early filter inference-time scaling method using vision-language models (VLMs) to select better initial noise early, improving edit quality. Extensive evaluations demonstrate our method's superiority: it outperforms state-of-the-art approaches while requiring only 0.5% training data and 1% trainable parameters compared to conventional baselines. This work establishes a new paradigm that enables high-precision yet efficient instruction-guided editing. Codes and demos can be found in https://river-zhang.github.io/ICEdit-gh-pages/.
comment: Project Page: https://river-zhang.github.io/ICEdit-gh-pages/
Efficient Listener: Dyadic Facial Motion Synthesis via Action Diffusion
Generating realistic listener facial motions in dyadic conversations remains challenging due to the high-dimensional action space and temporal dependency requirements. Existing approaches usually consider extracting 3D Morphable Model (3DMM) coefficients and modeling in the 3DMM space. However, this makes the computational speed of the 3DMM a bottleneck, making it difficult to achieve real-time interactive responses. To tackle this problem, we propose Facial Action Diffusion (FAD), which introduces the diffusion methods from the field of image generation to achieve efficient facial action generation. We further build the Efficient Listener Network (ELNet) specially designed to accommodate both the visual and audio information of the speaker as input. Considering of FAD and ELNet, the proposed method learns effective listener facial motion representations and leads to improvements of performance over the state-of-the-art methods while reducing 99% computational time.
OG-HFYOLO :Orientation gradient guidance and heterogeneous feature fusion for deformation table cell instance segmentation
Table structure recognition is a key task in document analysis. However, the geometric deformation in deformed tables causes a weak correlation between content information and structure, resulting in downstream tasks not being able to obtain accurate content information. To obtain fine-grained spatial coordinates of cells, we propose the OG-HFYOLO model, which enhances the edge response by Gradient Orientation-aware Extractor, combines a Heterogeneous Kernel Cross Fusion module and a scale-aware loss function to adapt to multi-scale objective features, and introduces mask-driven non-maximal suppression in the post-processing, which replaces the traditional bounding box suppression mechanism. Furthermore, we also propose a data generator, filling the gap in the dataset for fine-grained deformation table cell spatial coordinate localization, and derive a large-scale dataset named Deformation Wired Table (DWTAL). Experiments show that our proposed model demonstrates excellent segmentation accuracy on all mainstream instance segmentation models. The dataset and the source code are open source: https://github.com/justliulong/OGHFYOLO.
Occlusion-aware Driver Monitoring System using the Driver Monitoring Dataset SC
This paper presents a robust, occlusion-aware driver monitoring system (DMS) utilizing the Driver Monitoring Dataset (DMD). The system performs driver identification, gaze estimation by regions, and face occlusion detection under varying lighting conditions, including challenging low-light scenarios. Aligned with EuroNCAP recommendations, the inclusion of occlusion detection enhances situational awareness and system trustworthiness by indicating when the system's performance may be degraded. The system employs separate algorithms trained on RGB and infrared (IR) images to ensure reliable functioning. We detail the development and integration of these algorithms into a cohesive pipeline, addressing the challenges of working with different sensors and real-car implementation. Evaluation on the DMD and in real-world scenarios demonstrates the effectiveness of the proposed system, highlighting the superior performance of RGB-based models and the pioneering contribution of robust occlusion detection in DMS.
comment: Submitted for review to the IEEE International Conference on Intelligent Transportation Systems (ITSC) 2025
FBRT-YOLO: Faster and Better for Real-Time Aerial Image Detection AAAI 2025
Embedded flight devices with visual capabilities have become essential for a wide range of applications. In aerial image detection, while many existing methods have partially addressed the issue of small target detection, challenges remain in optimizing small target detection and balancing detection accuracy with efficiency. These issues are key obstacles to the advancement of real-time aerial image detection. In this paper, we propose a new family of real-time detectors for aerial image detection, named FBRT-YOLO, to address the imbalance between detection accuracy and efficiency. Our method comprises two lightweight modules: Feature Complementary Mapping Module (FCM) and Multi-Kernel Perception Unit(MKP), designed to enhance object perception for small targets in aerial images. FCM focuses on alleviating the problem of information imbalance caused by the loss of small target information in deep networks. It aims to integrate spatial positional information of targets more deeply into the network,better aligning with semantic information in the deeper layers to improve the localization of small targets. We introduce MKP, which leverages convolutions with kernels of different sizes to enhance the relationships between targets of various scales and improve the perception of targets at different scales. Extensive experimental results on three major aerial image datasets, including Visdrone, UAVDT, and AI-TOD,demonstrate that FBRT-YOLO outperforms various real-time detectors in terms of performance and speed.
comment: AAAI 2025
Advance Fake Video Detection via Vision Transformers
Recent advancements in AI-based multimedia generation have enabled the creation of hyper-realistic images and videos, raising concerns about their potential use in spreading misinformation. The widespread accessibility of generative techniques, which allow for the production of fake multimedia from prompts or existing media, along with their continuous refinement, underscores the urgent need for highly accurate and generalizable AI-generated media detection methods, underlined also by new regulations like the European Digital AI Act. In this paper, we draw inspiration from Vision Transformer (ViT)-based fake image detection and extend this idea to video. We propose an {original} %innovative framework that effectively integrates ViT embeddings over time to enhance detection performance. Our method shows promising accuracy, generalization, and few-shot learning capabilities across a new, large and diverse dataset of videos generated using five open source generative techniques from the state-of-the-art, as well as a separate dataset containing videos produced by proprietary generative methods.
TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks
AI-generated synthetic media are increasingly used in real-world scenarios, often with the purpose of spreading misinformation and propaganda through social media platforms, where compression and other processing can degrade fake detection cues. Currently, many forensic tools fail to account for these in-the-wild challenges. In this work, we introduce TrueFake, a large-scale benchmarking dataset of 600,000 images including top notch generative techniques and sharing via three different social networks. This dataset allows for rigorous evaluation of state-of-the-art fake image detectors under very realistic and challenging conditions. Through extensive experimentation, we analyze how social media sharing impacts detection performance, and identify current most effective detection and training strategies. Our findings highlight the need for evaluating forensic models in conditions that mirror real-world use.
Image deidentification in the XNAT ecosystem: use cases and solutions
XNAT is a server-based data management platform widely used in academia for curating large databases of DICOM images for research projects. We describe in detail a deidentification workflow for DICOM data using facilities in XNAT, together with independent tools in the XNAT "ecosystem". We list different contexts in which deidentification might be needed, based on our prior experience. The starting point for participation in the Medical Image De-Identification Benchmark (MIDI-B) challenge was a set of pre-existing local methodologies, which were adapted during the validation phase of the challenge. Our result in the test phase was 97.91\%, considerably lower than our peers, due largely to an arcane technical incompatibility of our methodology with the challenge's Synapse platform, which prevented us receiving feedback during the validation phase. Post-submission, additional discrepancy reports from the organisers and via the MIDI-B Continuous Benchmarking facility, enabled us to improve this score significantly to 99.61\%. An entirely rule-based approach was shown to be capable of removing all name-related information in the test corpus, but exhibited failures in dealing fully with address data. Initial experiments using published machine-learning models to remove addresses were partially successful but showed the models to be "over-aggressive" on other types of free-text data, leading to a slight overall degradation in performance to 99.54\%. Future development will therefore focus on improving address-recognition capabilities, but also on better removal of identifiable data burned into the image pixels. Several technical aspects relating to the "answer key" are still under discussion with the challenge organisers, but we estimate that our percentage of genuine deidentification failures on the MIDI-B test corpus currently stands at 0.19\%. (Abridged from original for arXiv submission)
comment: For submission to MELBA (Machine Learning for Biomedical Imaging) special issue on the MIDI-B deidentification challenge (https://www.synapse.org/Synapse:syn53065760). 11 pages, 1 fig, 2 tables; 1 supplementary data file (supplementary_tables_S1_S2_S3.xlsx) containing three spreadsheet tabs
SpaRE: Enhancing Spatial Reasoning in Vision-Language Models with Synthetic Data
Vision-language models (VLMs) work well in tasks ranging from image captioning to visual question answering (VQA), yet they struggle with spatial reasoning, a key skill for understanding our physical world that humans excel at. We find that spatial relations are generally rare in widely used VL datasets, with only a few being well represented, while most form a long tail of underrepresented relations. This gap leaves VLMs ill-equipped to handle diverse spatial relationships. To bridge it, we construct a synthetic VQA dataset focused on spatial reasoning generated from hyper-detailed image descriptions in Localized Narratives, DOCCI, and PixMo-Cap. Our dataset consists of 455k samples containing 3.4 million QA pairs. Trained on this dataset, our Spatial-Reasoning Enhanced (SpaRE) VLMs show strong improvements on spatial reasoning benchmarks, achieving up to a 49% performance gain on the What's Up benchmark, while maintaining strong results on general tasks. Our work narrows the gap between human and VLM spatial reasoning and makes VLMs more capable in real-world tasks such as robotics and navigation.
LDPoly: Latent Diffusion for Polygonal Road Outline Extraction in Large-Scale Topographic Mapping
Polygonal road outline extraction from high-resolution aerial images is an important task in large-scale topographic mapping, where roads are represented as vectorized polygons, capturing essential geometric features with minimal vertex redundancy. Despite its importance, no existing method has been explicitly designed for this task. While polygonal building outline extraction has been extensively studied, the unique characteristics of roads, such as branching structures and topological connectivity, pose challenges to these methods. To address this gap, we introduce LDPoly, the first dedicated framework for extracting polygonal road outlines from high-resolution aerial images. Our method leverages a novel Dual-Latent Diffusion Model with a Channel-Embedded Fusion Module, enabling the model to simultaneously generate road masks and vertex heatmaps. A tailored polygonization method is then applied to obtain accurate vectorized road polygons with minimal vertex redundancy. We evaluate LDPoly on a new benchmark dataset, Map2ImLas, which contains detailed polygonal annotations for various topographic objects in several Dutch regions. Our experiments include both in-region and cross-region evaluations, with the latter designed to assess the model's generalization performance on unseen regions. Quantitative and qualitative results demonstrate that LDPoly outperforms state-of-the-art polygon extraction methods across various metrics, including pixel-level coverage, vertex efficiency, polygon regularity, and road connectivity. We also design two new metrics to assess polygon simplicity and boundary smoothness. Moreover, this work represents the first application of diffusion models for extracting precise vectorized object outlines without redundant vertices from remote-sensing imagery, paving the way for future advancements in this field.
AlignDiT: Multimodal Aligned Diffusion Transformer for Synchronized Speech Generation
In this paper, we address the task of multimodal-to-speech generation, which aims to synthesize high-quality speech from multiple input modalities: text, video, and reference audio. This task has gained increasing attention due to its wide range of applications, such as film production, dubbing, and virtual avatars. Despite recent progress, existing methods still suffer from limitations in speech intelligibility, audio-video synchronization, speech naturalness, and voice similarity to the reference speaker. To address these challenges, we propose AlignDiT, a multimodal Aligned Diffusion Transformer that generates accurate, synchronized, and natural-sounding speech from aligned multimodal inputs. Built upon the in-context learning capability of the DiT architecture, AlignDiT explores three effective strategies to align multimodal representations. Furthermore, we introduce a novel multimodal classifier-free guidance mechanism that allows the model to adaptively balance information from each modality during speech synthesis. Extensive experiments demonstrate that AlignDiT significantly outperforms existing methods across multiple benchmarks in terms of quality, synchronization, and speaker similarity. Moreover, AlignDiT exhibits strong generalization capability across various multimodal tasks, such as video-to-speech synthesis and visual forced alignment, consistently achieving state-of-the-art performance. The demo page is available at https://mm.kaist.ac.kr/projects/AlignDiT .
EfficientHuman: Efficient Training and Reconstruction of Moving Human using Articulated 2D Gaussian
3D Gaussian Splatting (3DGS) has been recognized as a pioneering technique in scene reconstruction and novel view synthesis. Recent work on reconstructing the 3D human body using 3DGS attempts to leverage prior information on human pose to enhance rendering quality and improve training speed. However, it struggles to effectively fit dynamic surface planes due to multi-view inconsistency and redundant Gaussians. This inconsistency arises because Gaussian ellipsoids cannot accurately represent the surfaces of dynamic objects, which hinders the rapid reconstruction of the dynamic human body. Meanwhile, the prevalence of redundant Gaussians means that the training time of these works is still not ideal for quickly fitting a dynamic human body. To address these, we propose EfficientHuman, a model that quickly accomplishes the dynamic reconstruction of the human body using Articulated 2D Gaussian while ensuring high rendering quality. The key innovation involves encoding Gaussian splats as Articulated 2D Gaussian surfels in canonical space and then transforming them to pose space via Linear Blend Skinning (LBS) to achieve efficient pose transformations. Unlike 3D Gaussians, Articulated 2D Gaussian surfels can quickly conform to the dynamic human body while ensuring view-consistent geometries. Additionally, we introduce a pose calibration module and an LBS optimization module to achieve precise fitting of dynamic human poses, enhancing the model's performance. Extensive experiments on the ZJU-MoCap dataset demonstrate that EfficientHuman achieves rapid 3D dynamic human reconstruction in less than a minute on average, which is 20 seconds faster than the current state-of-the-art method, while also reducing the number of redundant Gaussians.
comment: 11 pages, 3 figures
Purifying, Labeling, and Utilizing: A High-Quality Pipeline for Small Object Detection
Small object detection is a broadly investigated research task and is commonly conceptualized as a "pipeline-style" engineering process. In the upstream, images serve as raw materials for processing in the detection pipeline, where pre-trained models are employed to generate initial feature maps. In the midstream, an assigner selects training positive and negative samples. Subsequently, these samples and features are fed into the downstream for classification and regression. Previous small object detection methods often focused on improving isolated stages of the pipeline, thereby neglecting holistic optimization and consequently constraining overall performance gains. To address this issue, we have optimized three key aspects, namely Purifying, Labeling, and Utilizing, in this pipeline, proposing a high-quality Small object detection framework termed PLUSNet. Specifically, PLUSNet comprises three sequential components: the Hierarchical Feature Purifier (HFP) for purifying upstream features, the Multiple Criteria Label Assignment (MCLA) for improving the quality of midstream training samples, and the Frequency Decoupled Head (FDHead) for more effectively exploiting information to accomplish downstream tasks. The proposed PLUS modules are readily integrable into various object detectors, thus enhancing their detection capabilities in multi-scale scenarios. Extensive experiments demonstrate the proposed PLUSNet consistently achieves significant and consistent improvements across multiple datasets for small object detection.
PartHOI: Part-based Hand-Object Interaction Transfer via Generalized Cylinders
Learning-based methods to understand and model hand-object interactions (HOI) require a large amount of high-quality HOI data. One way to create HOI data is to transfer hand poses from a source object to another based on the objects' geometry. However, current methods for transferring hand poses between objects rely on shape matching, limiting the ability to transfer poses across different categories due to differences in their shapes and sizes. We observe that HOI often involves specific semantic parts of objects, which often have more consistent shapes across categories. In addition, constructing size-invariant correspondences between these parts is important for cross-category transfer. Based on these insights, we introduce a novel method PartHOI for part-based HOI transfer. Using a generalized cylinder representation to parameterize an object parts' geometry, PartHOI establishes a robust geometric correspondence between object parts, and enables the transfer of contact points. Given the transferred points, we optimize a hand pose to fit the target object well. Qualitative and quantitative results demonstrate that our method can generalize HOI transfers well even for cross-category objects, and produce high-fidelity results that are superior to the existing methods.
comment: 14 pages, 12 figures, this paper has been accepted by Computational Visual Media Journal (CVMJ) but has not been published yet
Hydra: Marker-Free RGB-D Hand-Eye Calibration
This work presents an RGB-D imaging-based approach to marker-free hand-eye calibration using a novel implementation of the iterative closest point (ICP) algorithm with a robust point-to-plane (PTP) objective formulated on a Lie algebra. Its applicability is demonstrated through comprehensive experiments using three well known serial manipulators and two RGB-D cameras. With only three randomly chosen robot configurations, our approach achieves approximately 90% successful calibrations, demonstrating 2-3x higher convergence rates to the global optimum compared to both marker-based and marker-free baselines. We also report 2 orders of magnitude faster convergence time (0.8 +/- 0.4 s) for 9 robot configurations over other marker-free methods. Our method exhibits significantly improved accuracy (5 mm in task space) over classical approaches (7 mm in task space) whilst being marker-free. The benchmarking dataset and code are open sourced under Apache 2.0 License, and a ROS 2 integration with robot abstraction is provided to facilitate deployment.
Autoencoder Models for Point Cloud Environmental Synthesis from WiFi Channel State Information: A Preliminary Study
This paper introduces a deep learning framework for generating point clouds from WiFi Channel State Information data. We employ a two-stage autoencoder approach: a PointNet autoencoder with convolutional layers for point cloud generation, and a Convolutional Neural Network autoencoder to map CSI data to a matching latent space. By aligning these latent spaces, our method enables accurate environmental point cloud reconstruction from WiFi data. Experimental results validate the effectiveness of our approach, highlighting its potential for wireless sensing and environmental mapping applications.
Beyond the Horizon: Decoupling UAVs Multi-View Action Recognition via Partial Order Transfer
Action recognition in unmanned aerial vehicles (UAVs) poses unique challenges due to significant view variations along the vertical spatial axis. Unlike traditional ground-based settings, UAVs capture actions from a wide range of altitudes, resulting in considerable appearance discrepancies. We introduce a multi-view formulation tailored to varying UAV altitudes and empirically observe a partial order among views, where recognition accuracy consistently decreases as the altitude increases. This motivates a novel approach that explicitly models the hierarchical structure of UAV views to improve recognition performance across altitudes. To this end, we propose the Partial Order Guided Multi-View Network (POG-MVNet), designed to address drastic view variations by effectively leveraging view-dependent information across different altitude levels. The framework comprises three key components: a View Partition (VP) module, which uses the head-to-body ratio to group views by altitude; an Order-aware Feature Decoupling (OFD) module, which disentangles action-relevant and view-specific features under partial order guidance; and an Action Partial Order Guide (APOG), which leverages the partial order to transfer informative knowledge from easier views to support learning in more challenging ones. We conduct experiments on Drone-Action, MOD20, and UAV datasets, demonstrating that POG-MVNet significantly outperforms competing methods. For example, POG-MVNet achieves a 4.7% improvement on Drone-Action dataset and a 3.5% improvement on UAV dataset compared to state-of-the-art methods ASAT and FAR. The code for POG-MVNet will be made available soon.
comment: 11 pages
Geometry-aware Temporal Aggregation Network for Monocular 3D Lane Detection
Monocular 3D lane detection aims to estimate 3D position of lanes from frontal-view (FV) images. However, current monocular 3D lane detection methods suffer from two limitations, including inaccurate geometric information of the predicted 3D lanes and difficulties in maintaining lane integrity. To address these issues, we seek to fully exploit the potential of multiple input frames. First, we aim at enhancing the ability to perceive the geometry of scenes by leveraging temporal geometric consistency. Second, we strive to improve the integrity of lanes by revealing more instance information from temporal sequences. Therefore, we propose a novel Geometry-aware Temporal Aggregation Network (GTA-Net) for monocular 3D lane detection. On one hand, we develop the Temporal Geometry Enhancement Module (TGEM), which exploits geometric consistency across successive frames, facilitating effective geometry perception. On the other hand, we present the Temporal Instance-aware Query Generation (TIQG), which strategically incorporates temporal cues into query generation, thereby enabling the exploration of comprehensive instance information. Experiments demonstrate that our GTA-Net achieves SoTA results, surpassing existing monocular 3D lane detection solutions.
Dynamic Attention Analysis for Backdoor Detection in Text-to-Image Diffusion Models
Recent studies have revealed that text-to-image diffusion models are vulnerable to backdoor attacks, where attackers implant stealthy textual triggers to manipulate model outputs. Previous backdoor detection methods primarily focus on the static features of backdoor samples. However, a vital property of diffusion models is their inherent dynamism. This study introduces a novel backdoor detection perspective named Dynamic Attention Analysis (DAA), showing that these dynamic characteristics serve as better indicators for backdoor detection. Specifically, by examining the dynamic evolution of cross-attention maps, we observe that backdoor samples exhibit distinct feature evolution patterns at the $<$EOS$>$ token compared to benign samples. To quantify these dynamic anomalies, we first introduce DAA-I, which treats the tokens' attention maps as spatially independent and measures dynamic feature using the Frobenius norm. Furthermore, to better capture the interactions between attention maps and refine the feature, we propose a dynamical system-based approach, referred to as DAA-S. This model formulates the spatial correlations among attention maps using a graph-based state equation and we theoretically analyze the global asymptotic stability of this method. Extensive experiments across five representative backdoor attack scenarios demonstrate that our approach significantly surpasses existing detection methods, achieving an average F1 Score of 79.49% and an AUC of 87.67%. The code is available at https://github.com/Robin-WZQ/DAA.
SteelBlastQC: Shot-blasted Steel Surface Dataset with Interpretable Detection of Surface Defects IJCNN 2025
Automating the quality control of shot-blasted steel surfaces is crucial for improving manufacturing efficiency and consistency. This study presents a dataset of 1654 labeled RGB images (512x512) of steel surfaces, classified as either "ready for paint" or "needs shot-blasting." The dataset captures real-world surface defects, including discoloration, welding lines, scratches and corrosion, making it well-suited for training computer vision models. Additionally, three classification approaches were evaluated: Compact Convolutional Transformers (CCT), Support Vector Machines (SVM) with ResNet-50 feature extraction, and a Convolutional Autoencoder (CAE). The supervised methods (CCT and SVM) achieve 95% classification accuracy on the test set, with CCT leveraging transformer-based attention mechanisms and SVM offering a computationally efficient alternative. The CAE approach, while less effective, establishes a baseline for unsupervised quality control. We present interpretable decision-making by all three neural networks, allowing industry users to visually pinpoint problematic regions and understand the model's rationale. By releasing the dataset and baseline codes, this work aims to support further research in defect detection, advance the development of interpretable computer vision models for quality control, and encourage the adoption of automated inspection systems in industrial applications.
comment: Accepted by IJCNN 2025
MambaMoE: Mixture-of-Spectral-Spatial-Experts State Space Model for Hyperspectral Image Classification
The Mamba model has recently demonstrated strong potential in hyperspectral image (HSI) classification, owing to its ability to perform context modeling with linear computational complexity. However, existing Mamba-based methods usually neglect the spectral and spatial directional characteristics related to heterogeneous objects in hyperspectral scenes, leading to limited classification performance. To address these issues, we propose MambaMoE, a novel spectral-spatial mixture-of-experts framework, representing the first MoE-based approach in the HSI classification community. Specifically, we design a Mixture of Mamba Expert Block (MoMEB) that leverages sparse expert activation to enable adaptive spectral-spatial modeling. Furthermore, we introduce an uncertainty-guided corrective learning (UGCL) strategy to encourage the model's attention toward complex regions prone to prediction ambiguity. Extensive experiments on multiple public HSI benchmarks demonstrate that MambaMoE achieves state-of-the-art performance in both accuracy and efficiency compared to existing advanced approaches, especially for Mamba-based methods. Code will be released.
SAM-Guided Robust Representation Learning for One-Shot 3D Medical Image Segmentation
One-shot medical image segmentation (MIS) is crucial for medical analysis due to the burden of medical experts on manual annotation. The recent emergence of the segment anything model (SAM) has demonstrated remarkable adaptation in MIS but cannot be directly applied to one-shot medical image segmentation (MIS) due to its reliance on labor-intensive user interactions and the high computational cost. To cope with these limitations, we propose a novel SAM-guided robust representation learning framework, named RRL-MedSAM, to adapt SAM to one-shot 3D MIS, which exploits the strong generalization capabilities of the SAM encoder to learn better feature representation. We devise a dual-stage knowledge distillation (DSKD) strategy to distill general knowledge between natural and medical images from the foundation model to train a lightweight encoder, and then adopt a mutual exponential moving average (mutual-EMA) to update the weights of the general lightweight encoder and medical-specific encoder. Specifically, pseudo labels from the registration network are used to perform mutual supervision for such two encoders. Moreover, we introduce an auto-prompting (AP) segmentation decoder which adopts the mask generated from the general lightweight model as a prompt to assist the medical-specific model in boosting the final segmentation performance. Extensive experiments conducted on three public datasets, i.e., OASIS, CT-lung demonstrate that the proposed RRL-MedSAM outperforms state-of-the-art one-shot MIS methods for both segmentation and registration tasks. Especially, our lightweight encoder uses only 3\% of the parameters compared to the encoder of SAM-Base.
Style-Adaptive Detection Transformer for Single-Source Domain Generalized Object Detection
Single-source Domain Generalization (SDG) in object detection aims to develop a detector using only data from a source domain that can exhibit strong generalization capability when applied to unseen target domains. Existing methods are built upon CNN-based detectors and primarily improve robustness by employing carefully designed data augmentation strategies integrated with feature alignment techniques. However, data augmentation methods have inherent drawbacks; they are only effective when the augmented sample distribution approximates or covers the unseen scenarios, thus failing to enhance generalization across all unseen domains. Furthermore, while the recent Detection Transformer (DETR) has demonstrated superior generalization capability in domain adaptation tasks due to its efficient global information extraction, its potential in SDG tasks remains unexplored. To this end, we introduce a strong DETR-based detector named the Style-Adaptive Detection Transformer (SA-DETR) for SDG in object detection. Specifically, we present a domain style adapter that projects the style representation of the unseen target domain into the training domain, enabling dynamic style adaptation. Then, we propose an object-aware contrastive learning module to guide the detector in extracting domain-invariant features through contrastive learning. By using object-aware gating masks to constrain feature aggregation in both spatial and semantic dimensions, this module achieves cross-domain contrast of instance-level features, thereby enhancing generalization. Extensive experiments demonstrate the superior performance and generalization capability of SA-DETR across five different weather scenarios. Code is released at https://github.com/h751410234/SA-DETR.
comment: Manuscript submitted to IEEE Transactions on Multimedia
Large-scale visual SLAM for in-the-wild videos
Accurate and robust 3D scene reconstruction from casual, in-the-wild videos can significantly simplify robot deployment to new environments. However, reliable camera pose estimation and scene reconstruction from such unconstrained videos remains an open challenge. Existing visual-only SLAM methods perform well on benchmark datasets but struggle with real-world footage which often exhibits uncontrolled motion including rapid rotations and pure forward movements, textureless regions, and dynamic objects. We analyze the limitations of current methods and introduce a robust pipeline designed to improve 3D reconstruction from casual videos. We build upon recent deep visual odometry methods but increase robustness in several ways. Camera intrinsics are automatically recovered from the first few frames using structure-from-motion. Dynamic objects and less-constrained areas are masked with a predictive model. Additionally, we leverage monocular depth estimates to regularize bundle adjustment, mitigating errors in low-parallax situations. Finally, we integrate place recognition and loop closure to reduce long-term drift and refine both intrinsics and pose estimates through global bundle adjustment. We demonstrate large-scale contiguous 3D models from several online videos in various environments. In contrast, baseline methods typically produce locally inconsistent results at several points, producing separate segments or distorted maps. In lieu of ground-truth pose data, we evaluate map consistency, execution time and visual accuracy of re-rendered NeRF models. Our proposed system establishes a new baseline for visual reconstruction from casual uncontrolled videos found online, demonstrating more consistent reconstructions over longer sequences of in-the-wild videos than previously achieved.
comment: fix the overview figure
Antidote: A Unified Framework for Mitigating LVLM Hallucinations in Counterfactual Presupposition and Object Perception CVPR 2025
Large Vision-Language Models (LVLMs) have achieved impressive results across various cross-modal tasks. However, hallucinations, i.e., the models generating counterfactual responses, remain a challenge. Though recent studies have attempted to alleviate object perception hallucinations, they focus on the models' response generation, and overlooking the task question itself. This paper discusses the vulnerability of LVLMs in solving counterfactual presupposition questions (CPQs), where the models are prone to accept the presuppositions of counterfactual objects and produce severe hallucinatory responses. To this end, we introduce "Antidote", a unified, synthetic data-driven post-training framework for mitigating both types of hallucination above. It leverages synthetic data to incorporate factual priors into questions to achieve self-correction, and decouple the mitigation process into a preference optimization problem. Furthermore, we construct "CP-Bench", a novel benchmark to evaluate LVLMs' ability to correctly handle CPQs and produce factual responses. Applied to the LLaVA series, Antidote can simultaneously enhance performance on CP-Bench by over 50%, POPE by 1.8-3.3%, and CHAIR & SHR by 30-50%, all without relying on external supervision from stronger LVLMs or human feedback and introducing noticeable catastrophic forgetting issues.
comment: Accepted to CVPR 2025
LMM4Gen3DHF: Benchmarking and Evaluating Multimodal 3D Human Face Generation with LMMs
The rapid advancement in generative artificial intelligence have enabled the creation of 3D human faces (HFs) for applications including media production, virtual reality, security, healthcare, and game development, etc. However, assessing the quality and realism of these AI-generated 3D human faces remains a significant challenge due to the subjective nature of human perception and innate perceptual sensitivity to facial features. To this end, we conduct a comprehensive study on the quality assessment of AI-generated 3D human faces. We first introduce Gen3DHF, a large-scale benchmark comprising 2,000 videos of AI-Generated 3D Human Faces along with 4,000 Mean Opinion Scores (MOS) collected across two dimensions, i.e., quality and authenticity, 2,000 distortion-aware saliency maps and distortion descriptions. Based on Gen3DHF, we propose LMME3DHF, a Large Multimodal Model (LMM)-based metric for Evaluating 3DHF capable of quality and authenticity score prediction, distortion-aware visual question answering, and distortion-aware saliency prediction. Experimental results show that LMME3DHF achieves state-of-the-art performance, surpassing existing methods in both accurately predicting quality scores for AI-generated 3D human faces and effectively identifying distortion-aware salient regions and distortion types, while maintaining strong alignment with human perceptual judgments. Both the Gen3DHF database and the LMME3DHF will be released upon the publication.
LymphAtlas- A Unified Multimodal Lymphoma Imaging Repository Delivering AI-Enhanced Diagnostic Insight
This study integrates PET metabolic information with CT anatomical structures to establish a 3D multimodal segmentation dataset for lymphoma based on whole-body FDG PET/CT examinations, which bridges the gap of the lack of standardised multimodal segmentation datasets in the field of haematological malignancies. We retrospectively collected 483 examination datasets acquired between March 2011 and May 2024, involving 220 patients (106 non-Hodgkin lymphoma, 42 Hodgkin lymphoma); all data underwent ethical review and were rigorously de-identified. Complete 3D structural information was preserved during data acquisition, preprocessing and annotation, and a high-quality dataset was constructed based on the nnUNet format. By systematic technical validation and evaluation of the preprocessing process, annotation quality and automatic segmentation algorithm, the deep learning model trained based on this dataset is verified to achieve accurate segmentation of lymphoma lesions in PET/CT images with high accuracy, good robustness and reproducibility, which proves the applicability and stability of this dataset in accurate segmentation and quantitative analysis. The deep fusion of PET/CT images achieved with this dataset not only significantly improves the accurate portrayal of the morphology, location and metabolic features of tumour lesions, but also provides solid data support for early diagnosis, clinical staging and personalized treatment, and promotes the development of automated image segmentation and precision medicine based on deep learning. The dataset and related resources are available at https://github.com/SuperD0122/LymphAtlas-.
comment: 17pages,4 figures
PixelHacker: Image Inpainting with Structural and Semantic Consistency
Image inpainting is a fundamental research area between image editing and image generation. Recent state-of-the-art (SOTA) methods have explored novel attention mechanisms, lightweight architectures, and context-aware modeling, demonstrating impressive performance. However, they often struggle with complex structure (e.g., texture, shape, spatial relations) and semantics (e.g., color consistency, object restoration, and logical correctness), leading to artifacts and inappropriate generation. To address this challenge, we design a simple yet effective inpainting paradigm called latent categories guidance, and further propose a diffusion-based model named PixelHacker. Specifically, we first construct a large dataset containing 14 million image-mask pairs by annotating foreground and background (potential 116 and 21 categories, respectively). Then, we encode potential foreground and background representations separately through two fixed-size embeddings, and intermittently inject these features into the denoising process via linear attention. Finally, by pre-training on our dataset and fine-tuning on open-source benchmarks, we obtain PixelHacker. Extensive experiments show that PixelHacker comprehensively outperforms the SOTA on a wide range of datasets (Places2, CelebA-HQ, and FFHQ) and exhibits remarkable consistency in both structure and semantics. Project page at https://hustvl.github.io/projects/PixelHacker.
AI Assisted Cervical Cancer Screening for Cytology Samples in Developing Countries
Cervical cancer remains a significant health challenge, with high incidence and mortality rates, particularly in transitioning countries. Conventional Liquid-Based Cytology(LBC) is a labor-intensive process, requires expert pathologists and is highly prone to errors, highlighting the need for more efficient screening methods. This paper introduces an innovative approach that integrates low-cost biological microscopes with our simple and efficient AI algorithms for automated whole-slide analysis. Our system uses a motorized microscope to capture cytology images, which are then processed through an AI pipeline involving image stitching, cell segmentation, and classification. We utilize the lightweight UNet-based model involving human-in-the-loop approach to train our segmentation model with minimal ROIs. CvT-based classification model, trained on the SIPaKMeD dataset, accurately categorizes five cell types. Our framework offers enhanced accuracy and efficiency in cervical cancer screening compared to various state-of-art methods, as demonstrated by different evaluation metrics.
Plant Disease Detection through Multimodal Large Language Models and Convolutional Neural Networks
Automation in agriculture plays a vital role in addressing challenges related to crop monitoring and disease management, particularly through early detection systems. This study investigates the effectiveness of combining multimodal Large Language Models (LLMs), specifically GPT-4o, with Convolutional Neural Networks (CNNs) for automated plant disease classification using leaf imagery. Leveraging the PlantVillage dataset, we systematically evaluate model performance across zero-shot, few-shot, and progressive fine-tuning scenarios. A comparative analysis between GPT-4o and the widely used ResNet-50 model was conducted across three resolutions (100, 150, and 256 pixels) and two plant species (apple and corn). Results indicate that fine-tuned GPT-4o models achieved slightly better performance compared to the performance of ResNet-50, achieving up to 98.12% classification accuracy on apple leaf images, compared to 96.88% achieved by ResNet-50, with improved generalization and near-zero training loss. However, zero-shot performance of GPT-4o was significantly lower, underscoring the need for minimal training. Additional evaluations on cross-resolution and cross-plant generalization revealed the models' adaptability and limitations when applied to new domains. The findings highlight the promise of integrating multimodal LLMs into automated disease detection pipelines, enhancing the scalability and intelligence of precision agriculture systems while reducing the dependence on large, labeled datasets and high-resolution sensor infrastructure. Large Language Models, Vision Language Models, LLMs and CNNs, Disease Detection with Vision Language Models, VLMs
GarmentX: Autoregressive Parametric Representations for High-Fidelity 3D Garment Generation
This work presents GarmentX, a novel framework for generating diverse, high-fidelity, and wearable 3D garments from a single input image. Traditional garment reconstruction methods directly predict 2D pattern edges and their connectivity, an overly unconstrained approach that often leads to severe self-intersections and physically implausible garment structures. In contrast, GarmentX introduces a structured and editable parametric representation compatible with GarmentCode, ensuring that the decoded sewing patterns always form valid, simulation-ready 3D garments while allowing for intuitive modifications of garment shape and style. To achieve this, we employ a masked autoregressive model that sequentially predicts garment parameters, leveraging autoregressive modeling for structured generation while mitigating inconsistencies in direct pattern prediction. Additionally, we introduce GarmentX dataset, a large-scale dataset of 378,682 garment parameter-image pairs, constructed through an automatic data generation pipeline that synthesizes diverse and high-quality garment images conditioned on parametric garment representations. Through integrating our method with GarmentX dataset, we achieve state-of-the-art performance in geometric fidelity and input image alignment, significantly outperforming prior approaches. We will release GarmentX dataset upon publication.
SCOPE-MRI: Bankart Lesion Detection as a Case Study in Data Curation and Deep Learning for Challenging Diagnoses
While deep learning has shown strong performance in musculoskeletal imaging, existing work has largely focused on pathologies where diagnosis is not a clinical challenge, leaving more difficult problems underexplored, such as detecting Bankart lesions (anterior-inferior glenoid labral tears) on standard MRIs. Diagnosing these lesions is challenging due to their subtle imaging features, often leading to reliance on invasive MRI arthrograms (MRAs). This study introduces ScopeMRI, the first publicly available, expert-annotated dataset for shoulder pathologies, and presents a deep learning (DL) framework for detecting Bankart lesions on both standard MRIs and MRAs. ScopeMRI includes 586 shoulder MRIs (335 standard, 251 MRAs) from 558 patients who underwent arthroscopy. Ground truth labels were derived from intraoperative findings, the gold standard for diagnosis. Separate DL models for MRAs and standard MRIs were trained using a combination of CNNs and transformers. Predictions from sagittal, axial, and coronal views were ensembled to optimize performance. The models were evaluated on a 20% hold-out test set (117 MRIs: 46 MRAs, 71 standard MRIs). The models achieved an AUC of 0.91 and 0.93, sensitivity of 83% and 94%, and specificity of 91% and 86% for standard MRIs and MRAs, respectively. Notably, model performance on non-invasive standard MRIs matched or surpassed radiologists interpreting MRAs. External validation demonstrated initial generalizability across imaging protocols. This study demonstrates that DL models can achieve radiologist-level diagnostic performance on standard MRIs, reducing the need for invasive MRAs. By releasing ScopeMRI and a modular codebase for training and evaluating deep learning models on 3D medical imaging data, we aim to accelerate research in musculoskeletal imaging and support the development of new datasets for clinically challenging diagnostic tasks.
Creating Your Editable 3D Photorealistic Avatar with Tetrahedron-constrained Gaussian Splatting
Personalized 3D avatar editing holds significant promise due to its user-friendliness and availability to applications such as AR/VR and virtual try-ons. Previous studies have explored the feasibility of 3D editing, but often struggle to generate visually pleasing results, possibly due to the unstable representation learning under mixed optimization of geometry and texture in complicated reconstructed scenarios. In this paper, we aim to provide an accessible solution for ordinary users to create their editable 3D avatars with precise region localization, geometric adaptability, and photorealistic renderings. To tackle this challenge, we introduce a meticulously designed framework that decouples the editing process into local spatial adaptation and realistic appearance learning, utilizing a hybrid Tetrahedron-constrained Gaussian Splatting (TetGS) as the underlying representation. TetGS combines the controllable explicit structure of tetrahedral grids with the high-precision rendering capabilities of 3D Gaussian Splatting and is optimized in a progressive manner comprising three stages: 3D avatar instantiation from real-world monocular videos to provide accurate priors for TetGS initialization; localized spatial adaptation with explicitly partitioned tetrahedrons to guide the redistribution of Gaussian kernels; and geometry-based appearance generation with a coarse-to-fine activation strategy. Both qualitative and quantitative experiments demonstrate the effectiveness and superiority of our approach in generating photorealistic 3D editable avatars.
FiLA-Video: Spatio-Temporal Compression for Fine-Grained Long Video Understanding
Recent advancements in video understanding within visual large language models (VLLMs) have led to notable progress. However, the complexity of video data and contextual processing limitations still hinder long-video comprehension. A common approach is video feature compression to reduce token input to large language models, yet many methods either fail to prioritize essential features, leading to redundant inter-frame information, or introduce computationally expensive modules.To address these issues, we propose FiLA(Fine-grained Vision Language Model)-Video, a novel framework that leverages a lightweight dynamic-weight multi-frame fusion strategy, which adaptively integrates multiple frames into a single representation while preserving key video information and reducing computational costs. To enhance frame selection for fusion, we introduce a keyframe selection strategy, effectively identifying informative frames from a larger pool for improved summarization. Additionally, we present a simple yet effective long-video training data generation strategy, boosting model performance without extensive manual annotation. Experimental results demonstrate that FiLA-Video achieves superior efficiency and accuracy in long-video comprehension compared to existing methods.
comment: 8 pages, 6 figures
Neural Stereo Video Compression with Hybrid Disparity Compensation
Disparity compensation represents the primary strategy in stereo video compression (SVC) for exploiting cross-view redundancy. These mechanisms can be broadly categorized into two types: one that employs explicit horizontal shifting, and another that utilizes an implicit cross-attention mechanism to reduce cross-view disparity redundancy. In this work, we propose a hybrid disparity compensation (HDC) strategy that leverages explicit pixel displacement as a robust prior feature to simplify optimization and perform implicit cross-attention mechanisms for subsequent warping operations, thereby capturing a broader range of disparity information. Specifically, HDC first computes a similarity map by fusing the horizontally shifted cross-view features to capture pixel displacement information. This similarity map is then normalized into an "explicit pixel-wise attention score" to perform the cross-attention mechanism, implicitly aligning features from one view to another. Building upon HDC, we introduce a novel end-to-end optimized neural stereo video compression framework, which integrates HDC-based modules into key coding operations, including cross-view feature extraction and reconstruction (HDC-FER) and cross-view entropy modeling (HDC-EM). Extensive experiments on SVC benchmarks, including KITTI 2012, KITTI 2015, and Nagoya, which cover both autonomous driving and general scenes, demonstrate that our framework outperforms both neural and traditional SVC methodologies.
GSFeatLoc: Visual Localization Using Feature Correspondence on 3D Gaussian Splatting
In this paper, we present a method for localizing a query image with respect to a precomputed 3D Gaussian Splatting (3DGS) scene representation. First, the method uses 3DGS to render a synthetic RGBD image at some initial pose estimate. Second, it establishes 2D-2D correspondences between the query image and this synthetic image. Third, it uses the depth map to lift the 2D-2D correspondences to 2D-3D correspondences and solves a perspective-n-point (PnP) problem to produce a final pose estimate. Results from evaluation across three existing datasets with 38 scenes and over 2,700 test images show that our method significantly reduces both inference time (by over two orders of magnitude, from more than 10 seconds to as fast as 0.1 seconds) and estimation error compared to baseline methods that use photometric loss minimization. Results also show that our method tolerates large errors in the initial pose estimate of up to 55{\deg} in rotation and 1.1 units in translation (normalized by scene scale), achieving final pose errors of less than 5{\deg} in rotation and 0.05 units in translation on 90% of images from the Synthetic NeRF and Mip-NeRF360 datasets and on 42% of images from the more challenging Tanks and Temples dataset.
Sparse2DGS: Geometry-Prioritized Gaussian Splatting for Surface Reconstruction from Sparse Views CVPR 2025
We present a Gaussian Splatting method for surface reconstruction using sparse input views. Previous methods relying on dense views struggle with extremely sparse Structure-from-Motion points for initialization. While learning-based Multi-view Stereo (MVS) provides dense 3D points, directly combining it with Gaussian Splatting leads to suboptimal results due to the ill-posed nature of sparse-view geometric optimization. We propose Sparse2DGS, an MVS-initialized Gaussian Splatting pipeline for complete and accurate reconstruction. Our key insight is to incorporate the geometric-prioritized enhancement schemes, allowing for direct and robust geometric learning under ill-posed conditions. Sparse2DGS outperforms existing methods by notable margins while being ${2}\times$ faster than the NeRF-based fine-tuning approach.
comment: CVPR 2025
Inception: Jailbreak the Memory Mechanism of Text-to-Image Generation Systems
Currently, the memory mechanism has been widely and successfully exploited in online text-to-image (T2I) generation systems ($e.g.$, DALL$\cdot$E 3) for alleviating the growing tokenization burden and capturing key information in multi-turn interactions. Despite its practicality, its security analyses have fallen far behind. In this paper, we reveal that this mechanism exacerbates the risk of jailbreak attacks. Different from previous attacks that fuse the unsafe target prompt into one ultimate adversarial prompt, which can be easily detected or may generate non-unsafe images due to under- or over-optimization, we propose Inception, the first multi-turn jailbreak attack against the memory mechanism in real-world text-to-image generation systems. Inception embeds the malice at the inception of the chat session turn by turn, leveraging the mechanism that T2I generation systems retrieve key information in their memory. Specifically, Inception mainly consists of two modules. It first segments the unsafe prompt into chunks, which are subsequently fed to the system in multiple turns, serving as pseudo-gradients for directive optimization. Specifically, we develop a series of segmentation policies that ensure the images generated are semantically consistent with the target prompt. Secondly, after segmentation, to overcome the challenge of the inseparability of minimum unsafe words, we propose recursion, a strategy that makes minimum unsafe words subdivisible. Collectively, segmentation and recursion ensure that all the request prompts are benign but can lead to malicious outcomes. We conduct experiments on the real-world text-to-image generation system ($i.e.$, DALL$\cdot$E 3) to validate the effectiveness of Inception. The results indicate that Inception surpasses the state-of-the-art by a 14\% margin in attack success rate.
comment: 17 pages, 8 figures
TTTFusion: A Test-Time Training-Based Strategy for Multimodal Medical Image Fusion in Surgical Robots
With the increasing use of surgical robots in clinical practice, enhancing their ability to process multimodal medical images has become a key research challenge. Although traditional medical image fusion methods have made progress in improving fusion accuracy, they still face significant challenges in real-time performance, fine-grained feature extraction, and edge preservation.In this paper, we introduce TTTFusion, a Test-Time Training (TTT)-based image fusion strategy that dynamically adjusts model parameters during inference to efficiently fuse multimodal medical images. By adapting the model during the test phase, our method optimizes the parameters based on the input image data, leading to improved accuracy and better detail preservation in the fusion results.Experimental results demonstrate that TTTFusion significantly enhances the fusion quality of multimodal images compared to traditional fusion methods, particularly in fine-grained feature extraction and edge preservation. This approach not only improves image fusion accuracy but also offers a novel technical solution for real-time image processing in surgical robots.
MicarVLMoE: A Modern Gated Cross-Aligned Vision-Language Mixture of Experts Model for Medical Image Captioning and Report Generation IJCNN 2025
Medical image reporting (MIR) aims to generate structured clinical descriptions from radiological images. Existing methods struggle with fine-grained feature extraction, multimodal alignment, and generalization across diverse imaging types, often relying on vanilla transformers and focusing primarily on chest X-rays. We propose MicarVLMoE, a vision-language mixture-of-experts model with gated cross-aligned fusion, designed to address these limitations. Our architecture includes: (i) a multiscale vision encoder (MSVE) for capturing anatomical details at varying resolutions, (ii) a multihead dual-branch latent attention (MDLA) module for vision-language alignment through latent bottleneck representations, and (iii) a modulated mixture-of-experts (MoE) decoder for adaptive expert specialization. We extend MIR to CT scans, retinal imaging, MRI scans, and gross pathology images, reporting state-of-the-art results on COVCTR, MMR, PGROSS, and ROCO datasets. Extensive experiments and ablations confirm improved clinical accuracy, cross-modal alignment, and model interpretability. Code is available at https://github.com/AI-14/micar-vl-moe.
comment: Accepted by IJCNN 2025, 8 pages, 8 figures, 3 tables
A Picture is Worth a Thousand Prompts? Efficacy of Iterative Human-Driven Prompt Refinement in Image Regeneration Tasks
With AI-generated content becoming ubiquitous across the web, social media, and other digital platforms, it is vital to examine how such content are inspired and generated. The creation of AI-generated images often involves refining the input prompt iteratively to achieve desired visual outcomes. This study focuses on the relatively underexplored concept of image regeneration using AI, in which a human operator attempts to closely recreate a specific target image by iteratively refining their prompt. Image regeneration is distinct from normal image generation, which lacks any predefined visual reference. A separate challenge lies in determining whether existing image similarity metrics (ISMs) can provide reliable, objective feedback in iterative workflows, given that we do not fully understand if subjective human judgments of similarity align with these metrics. Consequently, we must first validate their alignment with human perception before assessing their potential as a feedback mechanism in the iterative prompt refinement process. To address these research gaps, we present a structured user study evaluating how iterative prompt refinement affects the similarity of regenerated images relative to their targets, while also examining whether ISMs capture the same improvements perceived by human observers. Our findings suggest that incremental prompt adjustments substantially improve alignment, verified through both subjective evaluations and quantitative measures, underscoring the broader potential of iterative workflows to enhance generative AI content creation across various application domains.
DRO: Doppler-Aware Direct Radar Odometry
A renaissance in radar-based sensing for mobile robotic applications is underway. Compared to cameras or lidars, millimetre-wave radars have the ability to `see' through thin walls, vegetation, and adversarial weather conditions such as heavy rain, fog, snow, and dust. In this paper, we propose a novel SE(2) odometry approach for spinning frequency-modulated continuous-wave radars. Our method performs scan-to-local-map registration of the incoming radar data in a direct manner using all the radar intensity information without the need for feature or point cloud extraction. The method performs locally continuous trajectory estimation and accounts for both motion and Doppler distortion of the radar scans. If the radar possesses a specific frequency modulation pattern that makes radial Doppler velocities observable, an additional Doppler-based constraint is formulated to improve the velocity estimate and enable odometry in geometrically feature-deprived scenarios (e.g., featureless tunnels). Our method has been validated on over 250km of on-road data sourced from public datasets (Boreas and MulRan) and collected using our automotive platform. With the aid of a gyroscope, it outperforms state-of-the-art methods and achieves an average relative translation error of 0.26% on the Boreas leaderboard. When using data with the appropriate Doppler-enabling frequency modulation pattern, the translation error is reduced to 0.18% in similar environments. We also benchmarked our algorithm using 1.5 hours of data collected with a mobile robot in off-road environments with various levels of structure to demonstrate its versatility. Our real-time implementation is publicly available: https://github.com/utiasASRL/dro.
comment: Accepted for presentation at RSS 2025
Fine Grain Classification: Connecting Meta using Cross-Contrastive pre-training
Fine-grained visual classification aims to recognize objects belonging to multiple subordinate categories within a super-category. However, this remains a challenging problem, as appearance information alone is often insufficient to accurately differentiate between fine-grained visual categories. To address this, we propose a novel and unified framework that leverages meta-information to assist fine-grained identification. We tackle the joint learning of visual and meta-information through cross-contrastive pre-training. In the first stage, we employ three encoders for images, text, and meta-information, aligning their projected embeddings to achieve better representations. We then fine-tune the image and meta-information encoders for the classification task. Experiments on the NABirds dataset demonstrate that our framework effectively utilizes meta-information to enhance fine-grained recognition performance. With the addition of meta-information, our framework surpasses the current baseline on NABirds by 7.83%. Furthermore, it achieves an accuracy of 84.44% on the NABirds dataset, outperforming many existing state-of-the-art approaches that utilize meta-information.
comment: 9 pages, 4 figures. Submitted to arXiv
T2ID-CAS: Diffusion Model and Class Aware Sampling to Mitigate Class Imbalance in Neck Ultrasound Anatomical Landmark Detection
Neck ultrasound (US) plays a vital role in airway management by providing non-invasive, real-time imaging that enables rapid and precise interventions. Deep learning-based anatomical landmark detection in neck US can further facilitate procedural efficiency. However, class imbalance within datasets, where key structures like tracheal rings and vocal folds are underrepresented, presents significant challenges for object detection models. To address this, we propose T2ID-CAS, a hybrid approach that combines a text-to-image latent diffusion model with class-aware sampling to generate high-quality synthetic samples for underrepresented classes. This approach, rarely explored in the ultrasound domain, improves the representation of minority classes. Experimental results using YOLOv9 for anatomical landmark detection in neck US demonstrated that T2ID-CAS achieved a mean Average Precision of 88.2, significantly surpassing the baseline of 66. This highlights its potential as a computationally efficient and scalable solution for mitigating class imbalance in AI-assisted ultrasound-guided interventions.
comment: submitted to IEEE EMBC 2025
Gradient Attention Map Based Verification of Deep Convolutional Neural Networks with Application to X-ray Image Datasets
Deep learning models have great potential in medical imaging, including orthodontics and skeletal maturity assessment. However, applying a model to data different from its training set can lead to unreliable predictions that may impact patient care. To address this, we propose a comprehensive verification framework that evaluates model suitability through multiple complementary strategies. First, we introduce a Gradient Attention Map (GAM)-based approach that analyzes attention patterns using Grad-CAM and compares them via similarity metrics such as IoU, Dice Similarity, SSIM, Cosine Similarity, Pearson Correlation, KL Divergence, and Wasserstein Distance. Second, we extend verification to early convolutional feature maps, capturing structural mis-alignments missed by attention alone. Finally, we incorporate an additional garbage class into the classification model to explicitly reject out-of-distribution inputs. Experimental results demonstrate that these combined methods effectively identify unsuitable models and inputs, promoting safer and more reliable deployment of deep learning in medical imaging.
comment: 13 pages, 7 figures, accepted at IEEE VLSI Test Symposium (VTS) 2025
MemeBLIP2: A novel lightweight multimodal system to detect harmful memes
Memes often merge visuals with brief text to share humor or opinions, yet some memes contain harmful messages such as hate speech. In this paper, we introduces MemeBLIP2, a light weight multimodal system that detects harmful memes by combining image and text features effectively. We build on previous studies by adding modules that align image and text representations into a shared space and fuse them for better classification. Using BLIP-2 as the core vision-language model, our system is evaluated on the PrideMM datasets. The results show that MemeBLIP2 can capture subtle cues in both modalities, even in cases with ironic or culturally specific content, thereby improving the detection of harmful material.
comment: 11pages,2 figures, manucripts in preparation
Geolocating Earth Imagery from ISS: Integrating Machine Learning with Astronaut Photography for Enhanced Geographic Mapping
This paper presents a novel approach to geolocating images captured from the International Space Station (ISS) using advanced machine learning algorithms. Despite having precise ISS coordinates, the specific Earth locations depicted in astronaut-taken photographs often remain unidentified. Our research addresses this gap by employing three distinct image processing pipelines: a Neural Network based approach, a SIFT based method, and GPT-4 model. Each pipeline is tailored to process high-resolution ISS imagery, identifying both natural and man-made geographical features. Through extensive evaluation on a diverse dataset of over 140 ISS images, our methods demonstrate significant promise in automated geolocation with varied levels of success. The NN approach showed a high success rate in accurately matching geographical features, while the SIFT pipeline excelled in processing zoomed-in images. GPT-4 model provided enriched geographical descriptions alongside location predictions. This research contributes to the fields of remote sensing and Earth observation by enhancing the accuracy and efficiency of geolocating space-based imagery, thereby aiding environmental monitoring and global mapping efforts.
Light Weight CNN for classification of Brain Tumors from MRI Images
This study presents a convolutional neural network (CNN)-based approach for the multi-class classification of brain tumors using magnetic resonance imaging (MRI) scans. We utilize a publicly available dataset containing MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor. Our primary objective is to build a light weight deep learning model that can automatically classify brain tumor types with high accuracy. To achieve this goal, we incorporate image preprocessing steps, including normalization, data augmentation, and a cropping technique designed to reduce background noise and emphasize relevant regions. The CNN architecture is optimized through hyperparameter tuning using Keras Tuner, enabling systematic exploration of network parameters. To ensure reliable evaluation, we apply 5-fold cross-validation, where each hyperparameter configuration is evaluated across multiple data splits to mitigate overfitting. Experimental results demonstrate that the proposed model achieves a classification accuracy of 98.78%, indicating its potential as a diagnostic aid in clinical settings. The proposed method offers a low-complexity yet effective solution for assisting in early brain tumor diagnosis.
comment: 6 pages
Dance Style Recognition Using Laban Movement Analysis
The growing interest in automated movement analysis has presented new challenges in recognition of complex human activities including dance. This study focuses on dance style recognition using features extracted using Laban Movement Analysis. Previous studies for dance style recognition often focus on cross-frame movement analysis, which limits the ability to capture temporal context and dynamic transitions between movements. This gap highlights the need for a method that can add temporal context to LMA features. For this, we introduce a novel pipeline which combines 3D pose estimation, 3D human mesh reconstruction, and floor aware body modeling to effectively extract LMA features. To address the temporal limitation, we propose a sliding window approach that captures movement evolution across time in features. These features are then used to train various machine learning methods for classification, and their explainability explainable AI methods to evaluate the contribution of each feature to classification performance. Our proposed method achieves a highest classification accuracy of 99.18\% which shows that the addition of temporal context significantly improves dance style recognition performance.
Emotion Recognition in Contemporary Dance Performances Using Laban Movement Analysis
This paper presents a novel framework for emotion recognition in contemporary dance by improving existing Laban Movement Analysis (LMA) feature descriptors and introducing robust, novel descriptors that capture both quantitative and qualitative aspects of the movement. Our approach extracts expressive characteristics from 3D keypoints data of professional dancers performing contemporary dance under various emotional states, and trains multiple classifiers, including Random Forests and Support Vector Machines. Additionally, we provide in-depth explanation of features and their impact on model predictions using explainable machine learning methods. Overall, our study improves emotion recognition in contemporary dance and offers promising applications in performance analysis, dance training, and human--computer interaction, with a highest accuracy of 96.85\%.
Legilimens: Performant Video Analytics on the System-on-Chip Edge
Continually retraining models has emerged as a primary technique to enable high-accuracy video analytics on edge devices. Yet, existing systems employ such adaptation by relying on the spare compute resources that traditional (memory-constrained) edge servers afford. In contrast, mobile edge devices such as drones and dashcams offer a fundamentally different resource profile: weak(er) compute with abundant unified memory pools. We present Legilimens, a continuous learning system for the mobile edge's System-on-Chip GPUs. Our driving insight is that visually distinct scenes that require retraining exhibit substantial overlap in model embeddings; if captured into a base model on device memory, specializing to each new scene can become lightweight, requiring very few samples. To practically realize this approach, Legilimens presents new, compute-efficient techniques to (1) select high-utility data samples for retraining specialized models, (2) update the base model without complete retraining, and (3) time-share compute resources between retraining and live inference for maximal accuracy. Across diverse workloads, Legilimens lowers retraining costs by 2.8-10x compared to existing systems, resulting in 18-45% higher accuracies.
WILD: a new in-the-Wild Image Linkage Dataset for synthetic image attribution
Synthetic image source attribution is an open challenge, with an increasing number of image generators being released yearly. The complexity and the sheer number of available generative techniques, as well as the scarcity of high-quality open source datasets of diverse nature for this task, make training and benchmarking synthetic image source attribution models very challenging. WILD is a new in-the-Wild Image Linkage Dataset designed to provide a powerful training and benchmarking tool for synthetic image attribution models. The dataset is built out of a closed set of 10 popular commercial generators, which constitutes the training base of attribution models, and an open set of 10 additional generators, simulating a real-world in-the-wild scenario. Each generator is represented by 1,000 images, for a total of 10,000 images in the closed set and 10,000 images in the open set. Half of the images are post-processed with a wide range of operators. WILD allows benchmarking attribution models in a wide range of tasks, including closed and open set identification and verification, and robust attribution with respect to post-processing and adversarial attacks. Models trained on WILD are expected to benefit from the challenging scenario represented by the dataset itself. Moreover, an assessment of seven baseline methodologies on closed and open set attribution is presented, including robustness tests with respect to post-processing.
NoPain: No-box Point Cloud Attack via Optimal Transport Singular Boundary
Adversarial attacks exploit the vulnerability of deep models against adversarial samples. Existing point cloud attackers are tailored to specific models, iteratively optimizing perturbations based on gradients in either a white-box or black-box setting. Despite their promising attack performance, they often struggle to produce transferable adversarial samples due to overfitting the specific parameters of surrogate models. To overcome this issue, we shift our focus to the data distribution itself and introduce a novel approach named NoPain, which employs optimal transport (OT) to identify the inherent singular boundaries of the data manifold for cross-network point cloud attacks. Specifically, we first calculate the OT mapping from noise to the target feature space, then identify singular boundaries by locating non-differentiable positions. Finally, we sample along singular boundaries to generate adversarial point clouds. Once the singular boundaries are determined, NoPain can efficiently produce adversarial samples without the need of iterative updates or guidance from the surrogate classifiers. Extensive experiments demonstrate that the proposed end-to-end method outperforms baseline approaches in terms of both transferability and efficiency, while also maintaining notable advantages even against defense strategies. Code and model are available at https://github.com/cognaclee/nopain
Omni-IML: Towards Unified Image Manipulation Localization
Existing Image Manipulation Localization (IML) methods mostly rely heavily on task-specific designs, making them perform well only on the target IML task, while joint training on multiple IML tasks causes significant performance degradation, hindering real applications. To this end, we propose Omni-IML, the first generalist model designed to unify IML across diverse tasks. Specifically, Omni-IML achieves generalization through three key components: (1) a Modal Gate Encoder, which adaptively selects the optimal encoding modality per sample, (2) a Dynamic Weight Decoder, which dynamically adjusts decoder filters to the task at hand, and (3) an Anomaly Enhancement module that leverages box supervision to highlight the tampered regions and facilitate the learning of task-agnostic features. Beyond localization, to support interpretation of the tampered images, we construct Omni-273k, a large high-quality dataset that includes natural language descriptions of tampered artifact. It is annotated through our automatic, chain-of-thoughts annotation technique. We also design a simple-yet-effective interpretation module to better utilize these descriptive annotations. Our extensive experiments show that our single Omni-IML model achieves state-of-the-art performance across all four major IML tasks, providing a valuable solution for practical deployment and a promising direction of generalist models in image forensics. Our code and dataset will be publicly available.
Video-Bench: Human-Aligned Video Generation Benchmark CVPR'25
Video generation assessment is essential for ensuring that generative models produce visually realistic, high-quality videos while aligning with human expectations. Current video generation benchmarks fall into two main categories: traditional benchmarks, which use metrics and embeddings to evaluate generated video quality across multiple dimensions but often lack alignment with human judgments; and large language model (LLM)-based benchmarks, though capable of human-like reasoning, are constrained by a limited understanding of video quality metrics and cross-modal consistency. To address these challenges and establish a benchmark that better aligns with human preferences, this paper introduces Video-Bench, a comprehensive benchmark featuring a rich prompt suite and extensive evaluation dimensions. This benchmark represents the first attempt to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, Video-Bench provides a structured, scalable approach to generated video evaluation. Experiments on advanced models including Sora demonstrate that Video-Bench achieves superior alignment with human preferences across all dimensions. Moreover, in instances where our framework's assessments diverge from human evaluations, it consistently offers more objective and accurate insights, suggesting an even greater potential advantage over traditional human judgment.
comment: Accepted by CVPR'25
EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
This paper addresses the task of learning an agent model behaving like humans, which can jointly perceive, predict, and act in egocentric worlds. Previous methods usually train separate models for these three abilities, which prevents them from learning from each other. In this paper, we propose a joint predictive agent model, named EgoAgent, that simultaneously learns to represent the world, predict future states, and take reasonable actions within a single transformer. EgoAgent introduces two innovations to learn from the causal and temporally intertwined nature of these abilities: (1) Interleaved sequential modeling of states and actions with the causal attention mechanism, and (2) A joint embedding-action-prediction architecture featuring temporal asymmetric predictor-observer branches. Integrating these designs based on JEPA, EgoAgent unifies these capabilities in a cohesive learning framework. Comprehensive evaluations of EgoAgent on representative tasks such as image classification, egocentric future state prediction, and 3D human motion prediction tasks demonstrate the superiority of our method. The code and trained model will be released for reproducibility.
Many-Worlds Inverse Rendering
Discontinuous visibility changes remain a major bottleneck when optimizing surfaces within a physically-based inverse renderer. Many previous works have proposed sophisticated algorithms and data structures to sample visibility silhouettes more efficiently. Our work presents another solution: instead of differentiating a tentative surface locally, we differentiate a volumetric perturbation of a surface. We refer this as a many-worlds representation because it models a non-interacting superposition of conflicting explanations (worlds) of the input dataset. Each world is optically isolated from others, leading to a new transport law that distinguishes our method from prior work based on exponential random media. The resulting Monte Carlo algorithm is simpler and more efficient than prior methods. We demonstrate that our method promotes rapid convergence, both in terms of the total iteration count and the cost per iteration.
Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs' outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
3D ReX: Causal Explanations in 3D Neuroimaging Classification AAAI-25
Explainability remains a significant problem for AI models in medical imaging, making it challenging for clinicians to trust AI-driven predictions. We introduce 3D ReX, the first causality-based post-hoc explainability tool for 3D models. 3D ReX uses the theory of actual causality to generate responsibility maps which highlight the regions most crucial to the model's decision. We test 3D ReX on a stroke detection model, providing insight into the spatial distribution of features relevant to stroke.
comment: Presented in the 2nd Workshop on Imageomics (Imageomics-AAAI-25), Discovering Biological Knowledge from Images using AI, held as part of AAAI-2025
ForesightNav: Learning Scene Imagination for Efficient Exploration
Understanding how humans leverage prior knowledge to navigate unseen environments while making exploratory decisions is essential for developing autonomous robots with similar abilities. In this work, we propose ForesightNav, a novel exploration strategy inspired by human imagination and reasoning. Our approach equips robotic agents with the capability to predict contextual information, such as occupancy and semantic details, for unexplored regions. These predictions enable the robot to efficiently select meaningful long-term navigation goals, significantly enhancing exploration in unseen environments. We validate our imagination-based approach using the Structured3D dataset, demonstrating accurate occupancy prediction and superior performance in anticipating unseen scene geometry. Our experiments show that the imagination module improves exploration efficiency in unseen environments, achieving a 100% completion rate for PointNav and an SPL of 67% for ObjectNav on the Structured3D Validation split. These contributions demonstrate the power of imagination-driven reasoning for autonomous systems to enhance generalizable and efficient exploration.
Radiance Surfaces: Optimizing Surface Representations with a 5D Radiance Field Loss
We present a fast and simple technique to convert images into a radiance surface-based scene representation. Building on existing radiance volume reconstruction algorithms, we introduce a subtle yet impactful modification of the loss function requiring changes to only a few lines of code: instead of integrating the radiance field along rays and supervising the resulting images, we project the training images into the scene to directly supervise the spatio-directional radiance field. The primary outcome of this change is the complete removal of alpha blending and ray marching from the image formation model, instead moving these steps into the loss computation. In addition to promoting convergence to surfaces, this formulation assigns explicit semantic meaning to 2D subsets of the radiance field, turning them into well-defined radiance surfaces. We finally extract a level set from this representation, which results in a high-quality radiance surface model. Our method retains much of the speed and quality of the baseline algorithm. For instance, a suitably modified variant of Instant NGP maintains comparable computational efficiency, while achieving an average PSNR that is only 0.1 dB lower. Most importantly, our method generates explicit surfaces in place of an exponential volume, doing so with a level of simplicity not seen in prior work.
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Multimodal representation learning, exemplified by multimodal contrastive learning (MMCL) using image-text pairs, aims to learn powerful representations by aligning cues across modalities. This approach relies on the core assumption that the exemplar image-text pairs constitute two representations of an identical concept. However, recent research has revealed that real-world datasets often exhibit misalignment. There are two distinct viewpoints on how to address this issue: one suggests mitigating the misalignment, and the other leveraging it. We seek here to reconcile these seemingly opposing perspectives, and to provide a practical guide for practitioners. Using latent variable models we thus formalize misalignment by introducing two specific mechanisms: selection bias, where some semantic variables are missing, and perturbation bias, where semantic variables are distorted -- both affecting latent variables shared across modalities. Our theoretical analysis demonstrates that, under mild assumptions, the representations learned by MMCL capture exactly the information related to the subset of the semantic variables invariant to selection and perturbation biases. This provides a unified perspective for understanding misalignment. Based on this, we further offer actionable insights into how misalignment should inform the design of real-world ML systems. We validate our theoretical findings through extensive empirical studies on both synthetic data and real image-text datasets, shedding light on the nuanced impact of misalignment on multimodal representation learning.
4D mmWave Radar for Sensing Enhancement in Adverse Environments: Advances and Challenges
Intelligent transportation systems require accurate and reliable sensing. However, adverse environments, such as rain, snow, and fog, can significantly degrade the performance of LiDAR and cameras. In contrast, 4D mmWave radar not only provides 3D point clouds and velocity measurements but also maintains robustness in challenging conditions. Recently, research on 4D mmWave radar under adverse environments has been growing, but a comprehensive review is still lacking. To bridge this gap, this work reviews the current research on 4D mmWave radar under adverse environments. First, we present an overview of existing 4D mmWave radar datasets encompassing diverse weather and lighting scenarios. Subsequently, we analyze existing learning-based methods leveraging 4D mmWave radar to enhance performance according to different adverse conditions. Finally, the challenges and potential future directions are discussed for advancing 4D mmWave radar applications in harsh environments. To the best of our knowledge, this is the first review specifically concentrating on 4D mmWave radar in adverse environments. The related studies are listed at: https://github.com/XiangyPeng/4D-mmWave-Radar-in-Adverse-Environments.
comment: 8 pages
Practical solutions to the relative pose of three calibrated cameras CVPR 2025
We study the challenging problem of estimating the relative pose of three calibrated cameras from four point correspondences. We propose novel efficient solutions to this problem that are based on the simple idea of using four correspondences to estimate an approximate geometry of the first two views. We model this geometry either as an affine or a fully perspective geometry estimated using one additional approximate correspondence. We generate such an approximate correspondence using a very simple and efficient strategy, where the new point is the mean point of three corresponding input points. The new solvers are efficient and easy to implement, since they are based on existing efficient minimal solvers, i.e., the 4-point affine fundamental matrix, the well-known 5-point relative pose solver, and the P3P solver. Extensive experiments on real data show that the proposed solvers, when properly coupled with local optimization, achieve state-of-the-art results, with the novel solver based on approximate mean-point correspondences being more robust and accurate than the affine-based solver.
comment: Paper accepted at CVPR 2025
SemEval-2025 Task 1: AdMIRe -- Advancing Multimodal Idiomaticity Representation SemEval-2025
Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.
comment: Author accepted version; SemEval-2025 proceedings to appear at ACL 2025
Instruct-ReID: A Multi-purpose Person Re-identification Task with Instructions
Human intelligence can retrieve any person according to both visual and language descriptions. However, the current computer vision community studies specific person re-identification (ReID) tasks in different scenarios separately, which limits the applications in the real world. This paper strives to resolve this problem by proposing a new instruct-ReID task that requires the model to retrieve images according to the given image or language instructions. Our instruct-ReID is a more general ReID setting, where existing 6 ReID tasks can be viewed as special cases by designing different instructions. We propose a large-scale OmniReID benchmark and an adaptive triplet loss as a baseline method to facilitate research in this new setting. Experimental results show that the proposed multi-purpose ReID model, trained on our OmniReID benchmark without fine-tuning, can improve +0.5%, +0.6%, +7.7% mAP on Market1501, MSMT17, CUHK03 for traditional ReID, +6.4%, +7.1%, +11.2% mAP on PRCC, VC-Clothes, LTCC for clothes-changing ReID, +11.7% mAP on COCAS+ real2 for clothes template based clothes-changing ReID when using only RGB images, +24.9% mAP on COCAS+ real2 for our newly defined language-instructed ReID, +4.3% on LLCM for visible-infrared ReID, +2.6% on CUHK-PEDES for text-to-image ReID. The datasets, the model, and code will be available at https://github.com/hwz-zju/Instruct-ReID.
Exploring AI-based System Design for Pixel-level Protected Health Information Detection in Medical Images
De-identification of medical images is a critical step to ensure privacy during data sharing in research and clinical settings. The initial step in this process involves detecting Protected Health Information (PHI), which can be found in image metadata or imprinted within image pixels. Despite the importance of such systems, there has been limited evaluation of existing AI-based solutions, creating barriers to the development of reliable and robust tools. In this study, we present an AI-based pipeline for PHI detection, comprising three key components: text detection, text extraction, and text analysis. We benchmark three models, YOLOv11, EasyOCR, and GPT-4o, across different setups corresponding to these components, evaluating the performance based on precision, recall, F1 score, and accuracy. All setups demonstrate excellent PHI detection, with all metrics exceeding 0.9. The combination of YOLOv11 for text localization and GPT-4o for extraction and analysis yields the best results. However, this setup incurs higher costs due to GPT-4o's token generation. Conversely, an end-to-end pipeline that relies solely on GPT-4o shows lower performance but highlights the potential of multimodal models for complex tasks. We recommend fine-tuning a dedicated object detection model and utilizing built-in OCR tools to achieve optimal performance and cost-effectiveness. Additionally, leveraging language models such as GPT-4o can facilitate thorough and flexible analysis of text content.
comment: In progress
HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
comment: Under review process
Two-stage deep learning framework for the restoration of incomplete-ring PET images
Positron Emission Tomography (PET) is an important molecular imaging tool widely used in medicine. Traditional PET systems rely on complete detector rings for full angular coverage and reliable data collection. However, incomplete-ring PET scanners have emerged due to hardware failures, cost constraints, or specific clinical needs. Standard reconstruction algorithms often suffer from performance degradation with these systems because of reduced data completeness and geometric inconsistencies. We present a two-stage deep-learning framework that, without incorporating any time-of-flight (TOF) information, restores high-quality images from data with about 50% missing coincidences - double the loss levels previously addressed by CNN-based methods. The pipeline operates in two stages: a projection-domain Attention U-Net first predicts the missing sections of the sinogram by leveraging spatial context from neighbouring slices, after which the completed data are reconstructed with OSEM algorithm and passed to a U-Net-diffusion module that removes residual artefacts while reinstating high-frequency detail. Using 206 brain volumes from a public dataset, the result shows that our model successfully preserves most anatomical structures and tracer distribution features with PSNR of 30.92 dB and SSIM of 0.9708. We also achieve higher inference speed, thus providing an effective solution for incomplete-ring PET imaging.
comment: 20 pages, 8 figures
Instruct-ReID++: Towards Universal Purpose Instruction-Guided Person Re-identification
Human intelligence can retrieve any person according to both visual and language descriptions. However, the current computer vision community studies specific person re-identification (ReID) tasks in different scenarios separately, which limits the applications in the real world. This paper strives to resolve this problem by proposing a novel instruct-ReID task that requires the model to retrieve images according to the given image or language instructions. Instruct-ReID is the first exploration of a general ReID setting, where existing 6 ReID tasks can be viewed as special cases by assigning different instructions. To facilitate research in this new instruct-ReID task, we propose a large-scale OmniReID++ benchmark equipped with diverse data and comprehensive evaluation methods e.g., task specific and task-free evaluation settings. In the task-specific evaluation setting, gallery sets are categorized according to specific ReID tasks. We propose a novel baseline model, IRM, with an adaptive triplet loss to handle various retrieval tasks within a unified framework. For task-free evaluation setting, where target person images are retrieved from task-agnostic gallery sets, we further propose a new method called IRM++ with novel memory bank-assisted learning. Extensive evaluations of IRM and IRM++ on OmniReID++ benchmark demonstrate the superiority of our proposed methods, achieving state-of-the-art performance on 10 test sets. The datasets, the model, and the code will be available at https://github.com/hwz-zju/Instruct-ReID
comment: arXiv admin note: substantial text overlap with arXiv:2306.07520
Predicate Debiasing in Vision-Language Models Integration for Scene Graph Generation Enhancement
Scene Graph Generation (SGG) provides basic language representation of visual scenes, requiring models to grasp complex and diverse semantics between objects. This complexity and diversity in SGG leads to underrepresentation, where parts of triplet labels are rare or even unseen during training, resulting in imprecise predictions. To tackle this, we propose integrating the pretrained Vision-language Models to enhance representation. However, due to the gap between pretraining and SGG, direct inference of pretrained VLMs on SGG leads to severe bias, which stems from the imbalanced predicates distribution in the pretraining language set. To alleviate the bias, we introduce a novel LM Estimation to approximate the unattainable predicates distribution. Finally, we ensemble the debiased VLMs with SGG models to enhance the representation, where we design a certainty-aware indicator to score each sample and dynamically adjust the ensemble weights. Our training-free method effectively addresses the predicates bias in pretrained VLMs, enhances SGG's representation, and significantly improve the performance.
The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Kling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
comment: Our code is available at https://github.com/LanDiff/LanDiff
Deep Learning-Based Approach for Identification of Potato Leaf Diseases Using Wrapper Feature Selection and Feature Concatenation
The potato is a widely grown crop in many regions of the world. In recent decades, potato farming has gained incredible traction in the world. Potatoes are susceptible to several illnesses that stunt their development. This plant seems to have significant leaf disease. Early Blight and Late Blight are two prevalent leaf diseases that affect potato plants. The early detection of these diseases would be beneficial for enhancing the yield of this crop. The ideal solution is to use image processing to identify and analyze these disorders. Here, we present an autonomous method based on image processing and machine learning to detect late blight disease affecting potato leaves. The proposed method comprises four different phases: (1) Histogram Equalization is used to improve the quality of the input image; (2) feature extraction is performed using a Deep CNN model, then these extracted features are concatenated; (3) feature selection is performed using wrapper-based feature selection; (4) classification is performed using an SVM classifier and its variants. This proposed method achieves the highest accuracy of 99% using SVM by selecting 550 features.
Generic Objects as Pose Probes for Few-shot View Synthesis
Radiance fields including NeRFs and 3D Gaussians demonstrate great potential in high-fidelity rendering and scene reconstruction, while they require a substantial number of posed images as inputs. COLMAP is frequently employed for preprocessing to estimate poses, while it necessitates a large number of feature matches to operate effectively, and it struggles with scenes characterized by sparse features, large baselines between images, or a limited number of input images. We aim to tackle few-view NeRF reconstruction using only 3 to 6 unposed scene images. Traditional methods often use calibration boards but they are not common in images. We propose a novel idea of utilizing everyday objects, commonly found in both images and real life, as "pose probes". The probe object is automatically segmented by SAM, whose shape is initialized from a cube. We apply a dual-branch volume rendering optimization (object NeRF and scene NeRF) to constrain the pose optimization and jointly refine the geometry. Specifically, object poses of two views are first estimated by PnP matching in an SDF representation, which serves as initial poses. PnP matching, requiring only a few features, is suitable for feature-sparse scenes. Additional views are incrementally incorporated to refine poses from preceding views. In experiments, PoseProbe achieves state-of-the-art performance in both pose estimation and novel view synthesis across multiple datasets. We demonstrate its effectiveness, particularly in few-view and large-baseline scenes where COLMAP struggles. In ablations, using different objects in a scene yields comparable performance. Our project page is available at: \href{https://zhirui-gao.github.io/PoseProbe.github.io/}{this https URL}
comment: Accepted by IEEE TCSVT 2025 Project page: https://zhirui-gao.github.io/PoseProbe.github.io/
IM-Portrait: Learning 3D-aware Video Diffusion for Photorealistic Talking Heads from Monocular Videos CVPR2025
We propose a novel 3D-aware diffusion-based method for generating photorealistic talking head videos directly from a single identity image and explicit control signals (e.g., expressions). Our method generates Multiplane Images (MPIs) that ensure geometric consistency, making them ideal for immersive viewing experiences like binocular videos for VR headsets. Unlike existing methods that often require a separate stage or joint optimization to reconstruct a 3D representation (such as NeRF or 3D Gaussians), our approach directly generates the final output through a single denoising process, eliminating the need for post-processing steps to render novel views efficiently. To effectively learn from monocular videos, we introduce a training mechanism that reconstructs the output MPI randomly in either the target or the reference camera space. This approach enables the model to simultaneously learn sharp image details and underlying 3D information. Extensive experiments demonstrate the effectiveness of our method, which achieves competitive avatar quality and novel-view rendering capabilities, even without explicit 3D reconstruction or high-quality multi-view training data.
comment: CVPR2025; project page: https://y-u-a-n-l-i.github.io/projects/IM-Portrait/
Pose-Based Sign Language Appearance Transfer
We introduce a method for transferring the signer's appearance in sign language skeletal poses while preserving the sign content. Using estimated poses, we transfer the appearance of one signer to another, maintaining natural movements and transitions. This approach improves pose-based rendering and sign stitching while obfuscating identity. Our experiments show that while the method reduces signer identification accuracy, it slightly harms sign recognition performance, highlighting a tradeoff between privacy and utility. Our code is available at https://github.com/sign-language-processing/pose-anonymization.
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild
Our work aims to reconstruct hand-object interactions from a single-view image, which is a fundamental but ill-posed task. Unlike methods that reconstruct from videos, multi-view images, or predefined 3D templates, single-view reconstruction faces significant challenges due to inherent ambiguities and occlusions. These challenges are further amplified by the diverse nature of hand poses and the vast variety of object shapes and sizes. Our key insight is that current foundational models for segmentation, inpainting, and 3D reconstruction robustly generalize to in-the-wild images, which could provide strong visual and geometric priors for reconstructing hand-object interactions. Specifically, given a single image, we first design a novel pipeline to estimate the underlying hand pose and object shape using off-the-shelf large models. Furthermore, with the initial reconstruction, we employ a prior-guided optimization scheme, which optimizes hand pose to comply with 3D physical constraints and the 2D input image content. We perform experiments across several datasets and show that our method consistently outperforms baselines and faithfully reconstructs a diverse set of hand-object interactions. Here is the link of our project page: https://lym29.github.io/EasyHOI-page/
comment: Project page: https://lym29.github.io/EasyHOI-page/
Kaleidoscope: In-language Exams for Massively Multilingual Vision Evaluation
The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.
comment: v2: corrected the author list
Detecting Children with Autism Spectrum Disorder based on Script-Centric Behavior Understanding with Emotional Enhancement
The early diagnosis of autism spectrum disorder (ASD) is critically dependent on systematic observation and analysis of children's social behaviors. While current methodologies predominantly utilize supervised learning approaches, their clinical adoption faces two principal limitations: insufficient ASD diagnostic samples and inadequate interpretability of the detection outcomes. This paper presents a novel zero-shot ASD detection framework based on script-centric behavioral understanding with emotional enhancement, which is designed to overcome the aforementioned clinical constraints. The proposed pipeline automatically converts audio-visual data into structured behavioral text scripts through computer vision techniques, subsequently capitalizing on the generalization capabilities of large language models (LLMs) for zero-shot/few-shot ASD detection. Three core technical contributions are introduced: (1) A multimodal script transcription module transforming behavioral cues into structured textual representations. (2) An emotion textualization module encoding emotional dynamics as the contextual features to augment behavioral understanding. (3) A domain-specific prompt engineering strategy enables the injection of clinical knowledge into LLMs. Our method achieves an F1-score of 95.24\% in diagnosing ASD in children with an average age of two years while generating interpretable detection rationales. This work opens up new avenues for leveraging the power of LLMs in analyzing and understanding ASD-related human behavior, thereby enhancing the accuracy of assisted autism diagnosis.
comment: 15 pages, 12 figures, sumbitted to IEEE transactions on affective computing
Confidence Aware Learning for Reliable Face Anti-spoofing
Current Face Anti-spoofing (FAS) models tend to make overly confident predictions even when encountering unfamiliar scenarios or unknown presentation attacks, which leads to serious potential risks. To solve this problem, we propose a Confidence Aware Face Anti-spoofing (CA-FAS) model, which is aware of its capability boundary, thus achieving reliable liveness detection within this boundary. To enable the CA-FAS to "know what it doesn't know", we propose to estimate its confidence during the prediction of each sample. Specifically, we build Gaussian distributions for both the live faces and the known attacks. The prediction confidence for each sample is subsequently assessed using the Mahalanobis distance between the sample and the Gaussians for the "known data". We further introduce the Mahalanobis distance-based triplet mining to optimize the parameters of both the model and the constructed Gaussians as a whole. Extensive experiments show that the proposed CA-FAS can effectively recognize samples with low prediction confidence and thus achieve much more reliable performance than other FAS models by filtering out samples that are beyond its reliable range.
comment: 11 pages
Temporal Separation with Entropy Regularization for Knowledge Distillation in Spiking Neural Networks CVPR 2025
Spiking Neural Networks (SNNs), inspired by the human brain, offer significant computational efficiency through discrete spike-based information transfer. Despite their potential to reduce inference energy consumption, a performance gap persists between SNNs and Artificial Neural Networks (ANNs), primarily due to current training methods and inherent model limitations. While recent research has aimed to enhance SNN learning by employing knowledge distillation (KD) from ANN teacher networks, traditional distillation techniques often overlook the distinctive spatiotemporal properties of SNNs, thus failing to fully leverage their advantages. To overcome these challenge, we propose a novel logit distillation method characterized by temporal separation and entropy regularization. This approach improves existing SNN distillation techniques by performing distillation learning on logits across different time steps, rather than merely on aggregated output features. Furthermore, the integration of entropy regularization stabilizes model optimization and further boosts the performance. Extensive experimental results indicate that our method surpasses prior SNN distillation strategies, whether based on logit distillation, feature distillation, or a combination of both. The code will be available on GitHub.
comment: Accepted by CVPR 2025
Rethinking the Role of Infrastructure in Collaborative Perception ECCV 2024
Collaborative Perception (CP) is a process in which an ego agent receives and fuses sensor information from surrounding vehicles and infrastructure to enhance its perception capability. To evaluate the need for infrastructure equipped with sensors, extensive and quantitative analysis of the role of infrastructure data in CP is crucial, yet remains underexplored. To address this gap, we first quantitatively assess the importance of infrastructure data in existing vehicle-centric CP, where the ego agent is a vehicle. Furthermore, we compare vehicle-centric CP with infra-centric CP, where the ego agent is now the infrastructure, to evaluate the effectiveness of each approach. Our results demonstrate that incorporating infrastructure data improves 3D detection accuracy by up to 10.30%, and infra-centric CP shows enhanced noise robustness and increases accuracy by up to 46.47% compared with vehicle-centric CP.
comment: Accepted by ECCV 2024 Workshop MAAS, 14 pages
Owls are wise and foxes are unfaithful: Uncovering animal stereotypes in vision-language models
Animal stereotypes are deeply embedded in human culture and language. They often shape our perceptions and expectations of various species. Our study investigates how animal stereotypes manifest in vision-language models during the task of image generation. Through targeted prompts, we explore whether DALL-E perpetuates stereotypical representations of animals, such as "owls as wise," "foxes as unfaithful," etc. Our findings reveal significant stereotyped instances where the model consistently generates images aligned with cultural biases. The current work is the first of its kind to examine animal stereotyping in vision-language models systematically and to highlight a critical yet underexplored dimension of bias in AI-generated visual content.
STAA-SNN: Spatial-Temporal Attention Aggregator for Spiking Neural Networks CVPR 2025
Spiking Neural Networks (SNNs) have gained significant attention due to their biological plausibility and energy efficiency, making them promising alternatives to Artificial Neural Networks (ANNs). However, the performance gap between SNNs and ANNs remains a substantial challenge hindering the widespread adoption of SNNs. In this paper, we propose a Spatial-Temporal Attention Aggregator SNN (STAA-SNN) framework, which dynamically focuses on and captures both spatial and temporal dependencies. First, we introduce a spike-driven self-attention mechanism specifically designed for SNNs. Additionally, we pioneeringly incorporate position encoding to integrate latent temporal relationships into the incoming features. For spatial-temporal information aggregation, we employ step attention to selectively amplify relevant features at different steps. Finally, we implement a time-step random dropout strategy to avoid local optima. As a result, STAA-SNN effectively captures both spatial and temporal dependencies, enabling the model to analyze complex patterns and make accurate predictions. The framework demonstrates exceptional performance across diverse datasets and exhibits strong generalization capabilities. Notably, STAA-SNN achieves state-of-the-art results on neuromorphic datasets CIFAR10-DVS, with remarkable performances of 97.14%, 82.05% and 70.40% on the static datasets CIFAR-10, CIFAR-100 and ImageNet, respectively. Furthermore, our model exhibits improved performance ranging from 0.33\% to 2.80\% with fewer time steps. The code for the model is available on GitHub.
comment: Accepted by CVPR 2025
Efficient Depth Estimation for Unstable Stereo Camera Systems on AR Glasses CVPR 2024
Stereo depth estimation is a fundamental component in augmented reality (AR), which requires low latency for real-time processing. However, preprocessing such as rectification and non-ML computations such as cost volume require significant amount of latency exceeding that of an ML model itself, which hinders the real-time processing required by AR. Therefore, we develop alternative approaches to the rectification and cost volume that consider ML acceleration (GPU and NPUs) in recent hardware. For pre-processing, we eliminate it by introducing homography matrix prediction network with a rectification positional encoding (RPE), which delivers both low latency and robustness to unrectified images. For cost volume, we replace it with a group-pointwise convolution-based operator and approximation of cosine similarity based on layernorm and dot product. Based on our approaches, we develop MultiHeadDepth (replacing cost volume) and HomoDepth (MultiHeadDepth + removing pre-processing) models. MultiHeadDepth provides 11.8-30.3% improvements in accuracy and 22.9-25.2% reduction in latency compared to a state-of-the-art depth estimation model for AR glasses from industry. HomoDepth, which can directly process unrectified images, reduces the end-to-end latency by 44.5%. We also introduce a multi-task learning method to handle misaligned stereo inputs on HomoDepth, which reduces the AbsRel error by 10.0-24.3%. The overall results demonstrate the efficacy of our approaches, which not only reduce the inference latency but also improve the model performance. Our code is available at https://github.com/UCI-ISA-Lab/MultiHeadDepth-HomoDepth
comment: 12 pages, 11 figures. Accepted to CVPR 2024
Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency
Recent advancements in Large Vision-Language Models (LVLMs) have significantly enhanced their ability to integrate visual and linguistic information, achieving near-human proficiency in tasks like object recognition, captioning, and visual question answering. However, current benchmarks typically focus on knowledge-centric evaluations that assess domain-specific expertise, often neglecting the core ability to reason about fundamental mathematical elements and visual concepts. We identify a gap in evaluating elementary-level math problems, which rely on explicit visual dependencies-requiring models to discern, integrate, and reason across multiple images while incorporating commonsense knowledge, all of which are crucial for advancing toward broader AGI capabilities. To address this gap, we introduce VCBENCH, a comprehensive benchmark for multimodal mathematical reasoning with explicit visual dependencies. VCBENCH includes 1,720 problems across six cognitive domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing substantial performance disparities, with even the top models unable to exceed 50% accuracy. Our findings highlight the ongoing challenges in visual-mathematical integration and suggest avenues for future LVLM advancements.
comment: Home page: https://alibaba-damo-academy.github.io/VCBench/
UniVST: A Unified Framework for Training-free Localized Video Style Transfer
This paper presents UniVST, a unified framework for localized video style transfer based on diffusion models. It operates without the need for training, offering a distinct advantage over existing diffusion methods that transfer style across entire videos. The endeavors of this paper comprise: (1) A point-matching mask propagation strategy that leverages the feature maps from the DDIM inversion. This streamlines the model's architecture by obviating the need for tracking models. (2) A training-free AdaIN-guided localized video stylization mechanism that operates at both the latent and attention levels. This balances content fidelity and style richness, mitigating the loss of localized details commonly associated with direct video stylization. (3) A sliding-window consistent smoothing scheme that harnesses optical flow within the pixel representation and refines predicted noise to update the latent space. This significantly enhances temporal consistency and diminishes artifacts in stylized video. Our proposed UniVST has been validated to be superior to existing methods in quantitative and qualitative metrics. It adeptly addresses the challenges of preserving the primary object's style while ensuring temporal consistency and detail preservation. Our code is available at https://github.com/QuanjianSong/UniVST.
comment: 14 pages including reference
Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 10pages, 8 figures
Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation CVPR 2025
The performance of anomaly inspection in industrial manufacturing is constrained by the scarcity of anomaly data. To overcome this challenge, researchers have started employing anomaly generation approaches to augment the anomaly dataset. However, existing anomaly generation methods suffer from limited diversity in the generated anomalies and struggle to achieve a seamless blending of this anomaly with the original image. Moreover, the generated mask is usually not aligned with the generated anomaly. In this paper, we overcome these challenges from a new perspective, simultaneously generating a pair of the overall image and the corresponding anomaly part. We propose DualAnoDiff, a novel diffusion-based few-shot anomaly image generation model, which can generate diverse and realistic anomaly images by using a dual-interrelated diffusion model, where one of them is employed to generate the whole image while the other one generates the anomaly part. Moreover, we extract background and shape information to mitigate the distortion and blurriness phenomenon in few-shot image generation. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods in terms of diversity, realism and the accuracy of mask. Overall, our approach significantly improves the performance of downstream anomaly inspection tasks, including anomaly detection, anomaly localization, and anomaly classification tasks.
comment: Accepted to CVPR 2025
3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement
Despite advances in neural rendering, due to the scarcity of high-quality 3D datasets and the inherent limitations of multi-view diffusion models, view synthesis and 3D model generation are restricted to low resolutions with suboptimal multi-view consistency. In this study, we present a novel 3D enhancement pipeline, dubbed 3DEnhancer, which employs a multi-view latent diffusion model to enhance coarse 3D inputs while preserving multi-view consistency. Our method includes a pose-aware encoder and a diffusion-based denoiser to refine low-quality multi-view images, along with data augmentation and a multi-view attention module with epipolar aggregation to maintain consistent, high-quality 3D outputs across views. Unlike existing video-based approaches, our model supports seamless multi-view enhancement with improved coherence across diverse viewing angles. Extensive evaluations show that 3DEnhancer significantly outperforms existing methods, boosting both multi-view enhancement and per-instance 3D optimization tasks.
comment: Project page: https://yihangluo.com/projects/3DEnhancer
RGB-Thermal Infrared Fusion for Robust Depth Estimation in Complex Environments
Depth estimation in complex real-world scenarios is a challenging task, especially when relying solely on a single modality such as visible light or thermal infrared (THR) imagery. This paper proposes a novel multimodal depth estimation model, RTFusion, which enhances depth estimation accuracy and robustness by integrating the complementary strengths of RGB and THR data. The RGB modality provides rich texture and color information, while the THR modality captures thermal patterns, ensuring stability under adverse lighting conditions such as extreme illumination. The model incorporates a unique fusion mechanism, EGFusion, consisting of the Mutual Complementary Attention (MCA) module for cross-modal feature alignment and the Edge Saliency Enhancement Module (ESEM) to improve edge detail preservation. Comprehensive experiments on the MS2 and ViViD++ datasets demonstrate that the proposed model consistently produces high-quality depth maps across various challenging environments, including nighttime, rainy, and high-glare conditions. The experimental results highlight the potential of the proposed method in applications requiring reliable depth estimation, such as autonomous driving, robotics, and augmented reality.
comment: 7 pages, 2 figures
Prophet: Prompting Large Language Models with Complementary Answer Heuristics for Knowledge-based Visual Question Answering CVPR 2023
Knowledge-based visual question answering (VQA) requires external knowledge beyond the image to answer the question. Early studies retrieve required knowledge from explicit knowledge bases (KBs), which often introduces irrelevant information to the question, hence restricting the performance of their models. Recent works have resorted to using a powerful large language model (LLM) as an implicit knowledge engine to acquire the necessary knowledge for answering. Despite the encouraging results achieved by these methods, we argue that they have not fully activated the capacity of the \emph{blind} LLM as the provided textual input is insufficient to depict the required visual information to answer the question. In this paper, we present Prophet -- a conceptually simple, flexible, and general framework designed to prompt LLM with answer heuristics for knowledge-based VQA. Specifically, we first train a vanilla VQA model on a specific knowledge-based VQA dataset without external knowledge. After that, we extract two types of complementary answer heuristics from the VQA model: answer candidates and answer-aware examples. The two types of answer heuristics are jointly encoded into a formatted prompt to facilitate the LLM's understanding of both the image and question, thus generating a more accurate answer. By incorporating the state-of-the-art LLM GPT-3, Prophet significantly outperforms existing state-of-the-art methods on four challenging knowledge-based VQA datasets. Prophet is general that can be instantiated with the combinations of different VQA models (i.e., both discriminative and generative ones) and different LLMs (i.e., both commercial and open-source ones). Moreover, Prophet can also be integrated with modern large multimodal models in different stages, which is named Prophet++, to further improve the capabilities on knowledge-based VQA tasks.
comment: An extended journal version of our CVPR 2023 paper, which has been accepted at IEEE T-PAMI 2025. The original conference version can be referred to as the v1 version
TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
Task-Oriented Communications for Visual Navigation with Edge-Aerial Collaboration in Low Altitude Economy
To support the Low Altitude Economy (LAE), precise unmanned aerial vehicles (UAVs) localization in urban areas where global positioning system (GPS) signals are unavailable. Vision-based methods offer a viable alternative but face severe bandwidth, memory and processing constraints on lightweight UAVs. Inspired by mammalian spatial cognition, we propose a task-oriented communication framework, where UAVs equipped with multi-camera systems extract compact multi-view features and offload localization tasks to edge servers. We introduce the Orthogonally-constrained Variational Information Bottleneck encoder (O-VIB), which incorporates automatic relevance determination (ARD) to prune non-informative features while enforcing orthogonality to minimize redundancy. This enables efficient and accurate localization with minimal transmission cost. Extensive evaluation on a dedicated LAE UAV dataset shows that O-VIB achieves high-precision localization under stringent bandwidth budgets. Code and dataset will be made publicly available: github.com/fangzr/TOC-Edge-Aerial.
comment: Code and dataset will be made publicly available: https://github.com/fangzr/TOC-Edge-Aerial
NTIRE 2025 Challenge on Image Super-Resolution ($\times$4): Methods and Results
This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
comment: NTIRE 2025 webpage: https://www.cvlai.net/ntire/2025. Code: https://github.com/zhengchen1999/NTIRE2025_ImageSR_x4
REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations CVPR 2025
Existing image editing models struggle to meet real-world demands. Despite excelling in academic benchmarks, they have yet to be widely adopted for real user needs. Datasets that power these models use artificial edits, lacking the scale and ecological validity necessary to address the true diversity of user requests. We introduce REALEDIT, a large-scale image editing dataset with authentic user requests and human-made edits sourced from Reddit. REALEDIT includes a test set of 9300 examples to evaluate models on real user requests. Our results show that existing models fall short on these tasks, highlighting the need for realistic training data. To address this, we introduce 48K training examples and train our REALEDIT model, achieving substantial gains - outperforming competitors by up to 165 Elo points in human judgment and 92 percent relative improvement on the automated VIEScore metric. We deploy our model on Reddit, testing it on new requests, and receive positive feedback. Beyond image editing, we explore REALEDIT's potential in detecting edited images by partnering with a deepfake detection non-profit. Finetuning their model on REALEDIT data improves its F1-score by 14 percentage points, underscoring the dataset's value for broad applications.
comment: Published at CVPR 2025
Not Just Text: Uncovering Vision Modality Typographic Threats in Image Generation Models CVPR2025
Current image generation models can effortlessly produce high-quality, highly realistic images, but this also increases the risk of misuse. In various Text-to-Image or Image-to-Image tasks, attackers can generate a series of images containing inappropriate content by simply editing the language modality input. To mitigate this security concern, numerous guarding or defensive strategies have been proposed, with a particular emphasis on safeguarding language modality. However, in practical applications, threats in the vision modality, particularly in tasks involving the editing of real-world images, present heightened security risks as they can easily infringe upon the rights of the image owner. Therefore, this paper employs a method named typographic attack to reveal that various image generation models are also susceptible to threats within the vision modality. Furthermore, we also evaluate the defense performance of various existing methods when facing threats in the vision modality and uncover their ineffectiveness. Finally, we propose the Vision Modal Threats in Image Generation Models (VMT-IGMs) dataset, which would serve as a baseline for evaluating the vision modality vulnerability of various image generation models.
comment: This paper is accept by CVPR2025 (https://cvpr.thecvf.com/virtual/2025/poster/34964)
WideRange4D: Enabling High-Quality 4D Reconstruction with Wide-Range Movements and Scenes
With the rapid development of 3D reconstruction technology, research in 4D reconstruction is also advancing, existing 4D reconstruction methods can generate high-quality 4D scenes. However, due to the challenges in acquiring multi-view video data, the current 4D reconstruction benchmarks mainly display actions performed in place, such as dancing, within limited scenarios. In practical scenarios, many scenes involve wide-range spatial movements, highlighting the limitations of existing 4D reconstruction datasets. Additionally, existing 4D reconstruction methods rely on deformation fields to estimate the dynamics of 3D objects, but deformation fields struggle with wide-range spatial movements, which limits the ability to achieve high-quality 4D scene reconstruction with wide-range spatial movements. In this paper, we focus on 4D scene reconstruction with significant object spatial movements and propose a novel 4D reconstruction benchmark, WideRange4D. This benchmark includes rich 4D scene data with large spatial variations, allowing for a more comprehensive evaluation of the generation capabilities of 4D generation methods. Furthermore, we introduce a new 4D reconstruction method, Progress4D, which generates stable and high-quality 4D results across various complex 4D scene reconstruction tasks. We conduct both quantitative and qualitative comparison experiments on WideRange4D, showing that our Progress4D outperforms existing state-of-the-art 4D reconstruction methods. Project: https://github.com/Gen-Verse/WideRange4D
comment: Project: https://github.com/Gen-Verse/WideRange4D
A Hybrid Deep Learning and Model-Checking Framework for Accurate Brain Tumor Detection and Validation
Model checking, a formal verification technique, ensures systems meet predefined requirements, playing a crucial role in minimizing errors and enhancing quality during development. This paper introduces a novel hybrid framework integrating model checking with deep learning for brain tumor detection and validation in medical imaging. By combining model-checking principles with CNN-based feature extraction and K-FCM clustering for segmentation, the proposed approach enhances the reliability of tumor detection and segmentation. Experimental results highlight the framework's effectiveness, achieving 98\% accuracy, 96.15\% precision, and 100\% recall, demonstrating its potential as a robust tool for advanced medical image analysis.
comment: 22 pages, 8 figures
Measuring Train Driver Performance as Key to Approval of Driverless Trains
Points 2.1.4(b), 2.4.2(b) and 2.4.3(b) in Annex I of Implementing Regulation (EU) No. 402/2013 allow a simplified approach for the safety approval of computer vision systems for driverless trains, if they have 'similar' functions and interfaces as the replaced human driver. The human driver is not replaced one-to-one by a technical system - only a limited set of cognitive functions are replaced. However, performance in the most challenging function, obstacle detection, is difficult to quantify due to the deficiency of published measurement results. This article summarizes the data published so far. This article also goes a long way to remedy this situation by providing a new public and anonymized dataset of 711 train driver performance measurements from controlled experiments. The measurements are made for different speeds, obstacle sizes, train protection systems and obstacle color contrasts respectively. The measured values are reaction time and distance to the obstacle. The goal of this paper is an unbiased and exhaustive description of the presented dataset for research, standardization and regulation. The dataset with supplementing information and literature is published on https://data.fid-move.de/de/dataset/atosensedata
comment: 6 pages, 3 figures, abstract accepted by IAVVC 2025, full paper to be submitted to IAVVC 2025
Neural Redshift: Random Networks are not Random Functions
Our understanding of the generalization capabilities of neural networks (NNs) is still incomplete. Prevailing explanations are based on implicit biases of gradient descent (GD) but they cannot account for the capabilities of models from gradient-free methods nor the simplicity bias recently observed in untrained networks. This paper seeks other sources of generalization in NNs. Findings. To understand the inductive biases provided by architectures independently from GD, we examine untrained, random-weight networks. Even simple MLPs show strong inductive biases: uniform sampling in weight space yields a very biased distribution of functions in terms of complexity. But unlike common wisdom, NNs do not have an inherent "simplicity bias". This property depends on components such as ReLUs, residual connections, and layer normalizations. Alternative architectures can be built with a bias for any level of complexity. Transformers also inherit all these properties from their building blocks. Implications. We provide a fresh explanation for the success of deep learning independent from gradient-based training. It points at promising avenues for controlling the solutions implemented by trained models.
Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers
Recovering natural language prompts for image generation models, solely based on the generated images is a difficult discrete optimization problem. In this work, we present the first head-to-head comparison of recent discrete optimization techniques for the problem of prompt inversion. We evaluate Greedy Coordinate Gradients (GCG), PEZ , Random Search, AutoDAN and BLIP2's image captioner across various evaluation metrics related to the quality of inverted prompts and the quality of the images generated by the inverted prompts. We find that focusing on the CLIP similarity between the inverted prompts and the ground truth image acts as a poor proxy for the similarity between ground truth image and the image generated by the inverted prompts. While the discrete optimizers effectively minimize their objectives, simply using responses from a well-trained captioner often leads to generated images that more closely resemble those produced by the original prompts.
comment: 11 Pages, 3 Figures
A Contrast-Agnostic Method for Ultra-High Resolution Claustrum Segmentation
The claustrum is a band-like gray matter structure located between putamen and insula whose exact functions are still actively researched. Its sheet-like structure makes it barely visible in in vivo Magnetic Resonance Imaging (MRI) scans at typical resolutions and neuroimaging tools for its study, including methods for automatic segmentation, are currently very limited. In this paper, we propose a contrast- and resolution-agnostic method for claustrum segmentation at ultra-high resolution (0.35 mm isotropic); the method is based on the SynthSeg segmentation framework (Billot et al., 2023), which leverages the use of synthetic training intensity images to achieve excellent generalization. In particular, SynthSeg requires only label maps to be trained, since corresponding intensity images are synthesized on the fly with random contrast and resolution. We trained a deep learning network for automatic claustrum segmentation, using claustrum manual labels obtained from 18 ultra-high resolution MRI scans (mostly ex vivo). We demonstrated the method to work on these 18 high resolution cases (Dice score = 0.632, mean surface distance = 0.458 mm, and volumetric similarity = 0.867 using 6-fold Cross Validation (CV)), and also on in vivo T1-weighted MRI scans at typical resolutions (~1 mm isotropic). We also demonstrated that the method is robust in a test-retest setting and when applied to multimodal imaging (T2-weighted, Proton Density and quantitative T1 scans). To the best of our knowledge this is the first accurate method for automatic ultra-high resolution claustrum segmentation, which is robust against changes in contrast and resolution. The method is released at https://github.com/chiara-mauri/claustrum_segmentation and as part of the neuroimaging package Freesurfer (Fischl, 2012).
comment: 20 pages, 15 figures, 3 tables
Naturally Computed Scale Invariance in the Residual Stream of ResNet18
An important capacity in visual object recognition is invariance to image-altering variables which leave the identity of objects unchanged, such as lighting, rotation, and scale. How do neural networks achieve this? Prior mechanistic interpretability research has illuminated some invariance-building circuitry in InceptionV1, but the results are limited and networks with different architectures have remained largely unexplored. This work investigates ResNet18 with a particular focus on its residual stream, an architectural component which InceptionV1 lacks. We observe that many convolutional channels in intermediate blocks exhibit scale invariant properties, computed by the element-wise residual summation of scale equivariant representations: the block input's smaller-scale copy with the block pre-sum output's larger-scale copy. Through subsequent ablation experiments, we attempt to causally link these neural properties with scale-robust object recognition behavior. Our tentative findings suggest how the residual stream computes scale invariance and its possible role in behavior. Code is available at: https://github.com/cest-andre/residual-stream-interp
comment: Fixed broken reference
Image and Video Processing
Imaging on the Edge: Mapping Object Corners and Edges with Stereo X-ray Tomography
X-ray computed tomography is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. Collecting the required number of low noise projection images is however time-consuming and so the technique is not currently applicable when spatial information needs to be collected with high temporal resolution, such as in the study of dynamic processes. In our previous work, inspired by stereo vision, we developed stereo X-ray imaging methods that operate with only two X-ray projection images. Previously we have shown how this allowed us to map point and line fiducial markers into 3D space at significantly faster temporal resolutions. In this paper, we make two further contributions. Firstly, instead of utilising internal fiducial markers, we demonstrate the applicability of the method to the 3D mapping of sharp object corners, a problem of interest in measuring the deformation of manufactured components under different loads. Furthermore, we demonstrate how the approach can be applied to real stereo X-ray data, even in settings where we do not have the annotated real training data that was required for the training of our previous Machine Learning approach. This is achieved by substituting the real data with a relatively simple synthetic training dataset designed to mimic key aspects of the real data.
Quality-factor inspired deep neural network solver for solving inverse scattering problems
Deep neural networks have been applied to address electromagnetic inverse scattering problems (ISPs) and shown superior imaging performances, which can be affected by the training dataset, the network architecture and the applied loss function. Here, the quality of data samples is cared and valued by the defined quality factor. Based on the quality factor, the composition of the training dataset is optimized. The network architecture is integrated with the residual connections and channel attention mechanism to improve feature extraction. A loss function that incorporates data-fitting error, physical-information constraints and the desired feature of the solution is designed and analyzed to suppress the background artifacts and improve the reconstruction accuracy. Various numerical analysis are performed to demonstrate the superiority of the proposed quality-factor inspired deep neural network (QuaDNN) solver and the imaging performance is finally verified by experimental imaging test.
SAM-Guided Robust Representation Learning for One-Shot 3D Medical Image Segmentation
One-shot medical image segmentation (MIS) is crucial for medical analysis due to the burden of medical experts on manual annotation. The recent emergence of the segment anything model (SAM) has demonstrated remarkable adaptation in MIS but cannot be directly applied to one-shot medical image segmentation (MIS) due to its reliance on labor-intensive user interactions and the high computational cost. To cope with these limitations, we propose a novel SAM-guided robust representation learning framework, named RRL-MedSAM, to adapt SAM to one-shot 3D MIS, which exploits the strong generalization capabilities of the SAM encoder to learn better feature representation. We devise a dual-stage knowledge distillation (DSKD) strategy to distill general knowledge between natural and medical images from the foundation model to train a lightweight encoder, and then adopt a mutual exponential moving average (mutual-EMA) to update the weights of the general lightweight encoder and medical-specific encoder. Specifically, pseudo labels from the registration network are used to perform mutual supervision for such two encoders. Moreover, we introduce an auto-prompting (AP) segmentation decoder which adopts the mask generated from the general lightweight model as a prompt to assist the medical-specific model in boosting the final segmentation performance. Extensive experiments conducted on three public datasets, i.e., OASIS, CT-lung demonstrate that the proposed RRL-MedSAM outperforms state-of-the-art one-shot MIS methods for both segmentation and registration tasks. Especially, our lightweight encoder uses only 3\% of the parameters compared to the encoder of SAM-Base.
Full-field surrogate modeling of cardiac function encoding geometric variability
Combining physics-based modeling with data-driven methods is critical to enabling the translation of computational methods to clinical use in cardiology. The use of rigorous differential equations combined with machine learning tools allows for model personalization with uncertainty quantification in time frames compatible with clinical practice. However, accurate and efficient surrogate models of cardiac function, built from physics-based numerical simulation, are still mostly geometry-specific and require retraining for different patients and pathological conditions. We propose a novel computational pipeline to embed cardiac anatomies into full-field surrogate models. We generate a dataset of electrophysiology simulations using a complex multi-scale mathematical model coupling partial and ordinary differential equations. We adopt Branched Latent Neural Maps (BLNMs) as an effective scientific machine learning method to encode activation maps extracted from physics-based numerical simulations into a neural network. Leveraging large deformation diffeomorphic metric mappings, we build a biventricular anatomical atlas and parametrize the anatomical variability of a small and challenging cohort of 13 pediatric patients affected by Tetralogy of Fallot. We propose a novel statistical shape modeling based z-score sampling approach to generate a new synthetic cohort of 52 biventricular geometries that are compatible with the original geometrical variability. This synthetic cohort acts as the training set for BLNMs. Our surrogate model demonstrates robustness and great generalization across the complex original patient cohort, achieving an average adimensional mean squared error of 0.0034. The Python implementation of our BLNM model is publicly available under MIT License at https://github.com/StanfordCBCL/BLNM.
comment: 34 pages, 19 figures
LymphAtlas- A Unified Multimodal Lymphoma Imaging Repository Delivering AI-Enhanced Diagnostic Insight
This study integrates PET metabolic information with CT anatomical structures to establish a 3D multimodal segmentation dataset for lymphoma based on whole-body FDG PET/CT examinations, which bridges the gap of the lack of standardised multimodal segmentation datasets in the field of haematological malignancies. We retrospectively collected 483 examination datasets acquired between March 2011 and May 2024, involving 220 patients (106 non-Hodgkin lymphoma, 42 Hodgkin lymphoma); all data underwent ethical review and were rigorously de-identified. Complete 3D structural information was preserved during data acquisition, preprocessing and annotation, and a high-quality dataset was constructed based on the nnUNet format. By systematic technical validation and evaluation of the preprocessing process, annotation quality and automatic segmentation algorithm, the deep learning model trained based on this dataset is verified to achieve accurate segmentation of lymphoma lesions in PET/CT images with high accuracy, good robustness and reproducibility, which proves the applicability and stability of this dataset in accurate segmentation and quantitative analysis. The deep fusion of PET/CT images achieved with this dataset not only significantly improves the accurate portrayal of the morphology, location and metabolic features of tumour lesions, but also provides solid data support for early diagnosis, clinical staging and personalized treatment, and promotes the development of automated image segmentation and precision medicine based on deep learning. The dataset and related resources are available at https://github.com/SuperD0122/LymphAtlas-.
comment: 17pages,4 figures
SCOPE-MRI: Bankart Lesion Detection as a Case Study in Data Curation and Deep Learning for Challenging Diagnoses
While deep learning has shown strong performance in musculoskeletal imaging, existing work has largely focused on pathologies where diagnosis is not a clinical challenge, leaving more difficult problems underexplored, such as detecting Bankart lesions (anterior-inferior glenoid labral tears) on standard MRIs. Diagnosing these lesions is challenging due to their subtle imaging features, often leading to reliance on invasive MRI arthrograms (MRAs). This study introduces ScopeMRI, the first publicly available, expert-annotated dataset for shoulder pathologies, and presents a deep learning (DL) framework for detecting Bankart lesions on both standard MRIs and MRAs. ScopeMRI includes 586 shoulder MRIs (335 standard, 251 MRAs) from 558 patients who underwent arthroscopy. Ground truth labels were derived from intraoperative findings, the gold standard for diagnosis. Separate DL models for MRAs and standard MRIs were trained using a combination of CNNs and transformers. Predictions from sagittal, axial, and coronal views were ensembled to optimize performance. The models were evaluated on a 20% hold-out test set (117 MRIs: 46 MRAs, 71 standard MRIs). The models achieved an AUC of 0.91 and 0.93, sensitivity of 83% and 94%, and specificity of 91% and 86% for standard MRIs and MRAs, respectively. Notably, model performance on non-invasive standard MRIs matched or surpassed radiologists interpreting MRAs. External validation demonstrated initial generalizability across imaging protocols. This study demonstrates that DL models can achieve radiologist-level diagnostic performance on standard MRIs, reducing the need for invasive MRAs. By releasing ScopeMRI and a modular codebase for training and evaluating deep learning models on 3D medical imaging data, we aim to accelerate research in musculoskeletal imaging and support the development of new datasets for clinically challenging diagnostic tasks.
Neural Stereo Video Compression with Hybrid Disparity Compensation
Disparity compensation represents the primary strategy in stereo video compression (SVC) for exploiting cross-view redundancy. These mechanisms can be broadly categorized into two types: one that employs explicit horizontal shifting, and another that utilizes an implicit cross-attention mechanism to reduce cross-view disparity redundancy. In this work, we propose a hybrid disparity compensation (HDC) strategy that leverages explicit pixel displacement as a robust prior feature to simplify optimization and perform implicit cross-attention mechanisms for subsequent warping operations, thereby capturing a broader range of disparity information. Specifically, HDC first computes a similarity map by fusing the horizontally shifted cross-view features to capture pixel displacement information. This similarity map is then normalized into an "explicit pixel-wise attention score" to perform the cross-attention mechanism, implicitly aligning features from one view to another. Building upon HDC, we introduce a novel end-to-end optimized neural stereo video compression framework, which integrates HDC-based modules into key coding operations, including cross-view feature extraction and reconstruction (HDC-FER) and cross-view entropy modeling (HDC-EM). Extensive experiments on SVC benchmarks, including KITTI 2012, KITTI 2015, and Nagoya, which cover both autonomous driving and general scenes, demonstrate that our framework outperforms both neural and traditional SVC methodologies.
Gradient Attention Map Based Verification of Deep Convolutional Neural Networks with Application to X-ray Image Datasets
Deep learning models have great potential in medical imaging, including orthodontics and skeletal maturity assessment. However, applying a model to data different from its training set can lead to unreliable predictions that may impact patient care. To address this, we propose a comprehensive verification framework that evaluates model suitability through multiple complementary strategies. First, we introduce a Gradient Attention Map (GAM)-based approach that analyzes attention patterns using Grad-CAM and compares them via similarity metrics such as IoU, Dice Similarity, SSIM, Cosine Similarity, Pearson Correlation, KL Divergence, and Wasserstein Distance. Second, we extend verification to early convolutional feature maps, capturing structural mis-alignments missed by attention alone. Finally, we incorporate an additional garbage class into the classification model to explicitly reject out-of-distribution inputs. Experimental results demonstrate that these combined methods effectively identify unsuitable models and inputs, promoting safer and more reliable deployment of deep learning in medical imaging.
comment: 13 pages, 7 figures, accepted at IEEE VLSI Test Symposium (VTS) 2025
Light Weight CNN for classification of Brain Tumors from MRI Images
This study presents a convolutional neural network (CNN)-based approach for the multi-class classification of brain tumors using magnetic resonance imaging (MRI) scans. We utilize a publicly available dataset containing MRI images categorized into four classes: glioma, meningioma, pituitary tumor, and no tumor. Our primary objective is to build a light weight deep learning model that can automatically classify brain tumor types with high accuracy. To achieve this goal, we incorporate image preprocessing steps, including normalization, data augmentation, and a cropping technique designed to reduce background noise and emphasize relevant regions. The CNN architecture is optimized through hyperparameter tuning using Keras Tuner, enabling systematic exploration of network parameters. To ensure reliable evaluation, we apply 5-fold cross-validation, where each hyperparameter configuration is evaluated across multiple data splits to mitigate overfitting. Experimental results demonstrate that the proposed model achieves a classification accuracy of 98.78%, indicating its potential as a diagnostic aid in clinical settings. The proposed method offers a low-complexity yet effective solution for assisting in early brain tumor diagnosis.
comment: 6 pages
Leveraging Depth and Attention Mechanisms for Improved RGB Image Inpainting
Existing deep learning-based image inpainting methods typically rely on convolutional networks with RGB images to reconstruct images. However, relying exclusively on RGB images may neglect important depth information, which plays a critical role in understanding the spatial and structural context of a scene. Just as human vision leverages stereo cues to perceive depth, incorporating depth maps into the inpainting process can enhance the model's ability to reconstruct images with greater accuracy and contextual awareness. In this paper, we propose a novel approach that incorporates both RGB and depth images for enhanced image inpainting. Our models employ a dual encoder architecture, where one encoder processes the RGB image and the other handles the depth image. The encoded features from both encoders are then fused in the decoder using an attention mechanism, effectively integrating the RGB and depth representations. We use two different masking strategies, line and square, to test the robustness of the model under different types of occlusions. To further analyze the effectiveness of our approach, we use Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations to examine the regions of interest the model focuses on during inpainting. We show that incorporating depth information alongside the RGB image significantly improves the reconstruction quality. Through both qualitative and quantitative comparisons, we demonstrate that the depth-integrated model outperforms the baseline, with attention mechanisms further enhancing inpainting performance, as evidenced by multiple evaluation metrics and visualization.
Unconstrained Large-scale 3D Reconstruction and Rendering across Altitudes
Production of photorealistic, navigable 3D site models requires a large volume of carefully collected images that are often unavailable to first responders for disaster relief or law enforcement. Real-world challenges include limited numbers of images, heterogeneous unposed cameras, inconsistent lighting, and extreme viewpoint differences for images collected from varying altitudes. To promote research aimed at addressing these challenges, we have developed the first public benchmark dataset for 3D reconstruction and novel view synthesis based on multiple calibrated ground-level, security-level, and airborne cameras. We present datasets that pose real-world challenges, independently evaluate calibration of unposed cameras and quality of novel rendered views, demonstrate baseline performance using recent state-of-practice methods, and identify challenges for further research.
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
Ring deconvolution microscopy: exploiting symmetry for efficient spatially varying aberration correction
The most ubiquitous form of computational aberration correction for microscopy is deconvolution. However, deconvolution relies on the assumption that the point spread function is the same across the entire field-of-view. This assumption is often inadequate, but space-variant deblurring techniques generally require impractical amounts of calibration and computation. We present a new imaging pipeline that leverages symmetry to provide simple and fast spatially-varying aberration correction. Our ring deconvolution microscopy (RDM) method leverages the rotational symmetry of most microscopes and cameras, and naturally extends to sheet deconvolution in the case of lateral symmetry. We formally derive theory and algorithms for image recovery and additionally propose a neural network based on Seidel coefficients as a fast alternative, as well as extension of RDM to blind deconvolution. We demonstrate significant improvements in speed and image quality as compared to standard deconvolution and existing spatially-varying deconvolution across a diverse range of microscope modalities, including miniature microscopy, multicolor fluorescence microscopy, point-scanning multimode fiber micro-endoscopy, and light-sheet fluorescence microscopy. Our approach enables near-isotropic, subcellular resolution in each of these applications.
comment: 32 pages, 14 figures. The Version of Record of this article is published in Nature Methods, and is available online at https://doi.org/10.1038/s41592-025-02684-5
3D ReX: Causal Explanations in 3D Neuroimaging Classification AAAI-25
Explainability remains a significant problem for AI models in medical imaging, making it challenging for clinicians to trust AI-driven predictions. We introduce 3D ReX, the first causality-based post-hoc explainability tool for 3D models. 3D ReX uses the theory of actual causality to generate responsibility maps which highlight the regions most crucial to the model's decision. We test 3D ReX on a stroke detection model, providing insight into the spatial distribution of features relevant to stroke.
comment: Presented in the 2nd Workshop on Imageomics (Imageomics-AAAI-25), Discovering Biological Knowledge from Images using AI, held as part of AAAI-2025
RGB-Thermal Infrared Fusion for Robust Depth Estimation in Complex Environments
Depth estimation in complex real-world scenarios is a challenging task, especially when relying solely on a single modality such as visible light or thermal infrared (THR) imagery. This paper proposes a novel multimodal depth estimation model, RTFusion, which enhances depth estimation accuracy and robustness by integrating the complementary strengths of RGB and THR data. The RGB modality provides rich texture and color information, while the THR modality captures thermal patterns, ensuring stability under adverse lighting conditions such as extreme illumination. The model incorporates a unique fusion mechanism, EGFusion, consisting of the Mutual Complementary Attention (MCA) module for cross-modal feature alignment and the Edge Saliency Enhancement Module (ESEM) to improve edge detail preservation. Comprehensive experiments on the MS2 and ViViD++ datasets demonstrate that the proposed model consistently produces high-quality depth maps across various challenging environments, including nighttime, rainy, and high-glare conditions. The experimental results highlight the potential of the proposed method in applications requiring reliable depth estimation, such as autonomous driving, robotics, and augmented reality.
comment: 7 pages, 2 figures
SmoothSegNet: A Global-Local Framework for Liver Tumor Segmentation with Clinical KnowledgeInformed Label Smoothing
Liver cancer is a leading cause of mortality worldwide, and accurate Computed Tomography (CT)-based tumor segmentation is essential for diagnosis and treatment. Manual delineation is time-intensive, prone to variability, and highlights the need for reliable automation. While deep learning has shown promise for automated liver segmentation, precise liver tumor segmentation remains challenging due to the heterogeneous nature of tumors, imprecise tumor margins, and limited labeled data. We present SmoothSegNet, a novel deep learning framework that addresses these challenges with the three key designs: (1) A novel knowledge-informed label smoothing technique that distills knowledge from clinical data to generate smooth labels, which are used to regularize model training, reducing the overfitting risk and enhancing model performance; (2) A global and local segmentation framework that breaks down the main task into two simpler sub-tasks, allowing optimized preprocessing and training for each; and (3) Pre- and post-processing pipelines customized to the challenges of each subtask aimed to enhance tumor visibility and refines tumor boundaries. We apply the proposed model on a challenging HCC-TACE-Seg dataset and show that SmoothSegNet outperformed various benchmarks in segmentation performance, particularly at smaller tumors (<10cm). Our ablation studies show that the three design components complementarily contribute to the model improved performance. Code for the proposed method are available at https://github.com/lingchm/medassist-liver-cancer.
A Contrast-Agnostic Method for Ultra-High Resolution Claustrum Segmentation
The claustrum is a band-like gray matter structure located between putamen and insula whose exact functions are still actively researched. Its sheet-like structure makes it barely visible in in vivo Magnetic Resonance Imaging (MRI) scans at typical resolutions and neuroimaging tools for its study, including methods for automatic segmentation, are currently very limited. In this paper, we propose a contrast- and resolution-agnostic method for claustrum segmentation at ultra-high resolution (0.35 mm isotropic); the method is based on the SynthSeg segmentation framework (Billot et al., 2023), which leverages the use of synthetic training intensity images to achieve excellent generalization. In particular, SynthSeg requires only label maps to be trained, since corresponding intensity images are synthesized on the fly with random contrast and resolution. We trained a deep learning network for automatic claustrum segmentation, using claustrum manual labels obtained from 18 ultra-high resolution MRI scans (mostly ex vivo). We demonstrated the method to work on these 18 high resolution cases (Dice score = 0.632, mean surface distance = 0.458 mm, and volumetric similarity = 0.867 using 6-fold Cross Validation (CV)), and also on in vivo T1-weighted MRI scans at typical resolutions (~1 mm isotropic). We also demonstrated that the method is robust in a test-retest setting and when applied to multimodal imaging (T2-weighted, Proton Density and quantitative T1 scans). To the best of our knowledge this is the first accurate method for automatic ultra-high resolution claustrum segmentation, which is robust against changes in contrast and resolution. The method is released at https://github.com/chiara-mauri/claustrum_segmentation and as part of the neuroimaging package Freesurfer (Fischl, 2012).
comment: 20 pages, 15 figures, 3 tables
Multimedia
Advance Fake Video Detection via Vision Transformers
Recent advancements in AI-based multimedia generation have enabled the creation of hyper-realistic images and videos, raising concerns about their potential use in spreading misinformation. The widespread accessibility of generative techniques, which allow for the production of fake multimedia from prompts or existing media, along with their continuous refinement, underscores the urgent need for highly accurate and generalizable AI-generated media detection methods, underlined also by new regulations like the European Digital AI Act. In this paper, we draw inspiration from Vision Transformer (ViT)-based fake image detection and extend this idea to video. We propose an {original} %innovative framework that effectively integrates ViT embeddings over time to enhance detection performance. Our method shows promising accuracy, generalization, and few-shot learning capabilities across a new, large and diverse dataset of videos generated using five open source generative techniques from the state-of-the-art, as well as a separate dataset containing videos produced by proprietary generative methods.
TrueFake: A Real World Case Dataset of Last Generation Fake Images also Shared on Social Networks
AI-generated synthetic media are increasingly used in real-world scenarios, often with the purpose of spreading misinformation and propaganda through social media platforms, where compression and other processing can degrade fake detection cues. Currently, many forensic tools fail to account for these in-the-wild challenges. In this work, we introduce TrueFake, a large-scale benchmarking dataset of 600,000 images including top notch generative techniques and sharing via three different social networks. This dataset allows for rigorous evaluation of state-of-the-art fake image detectors under very realistic and challenging conditions. Through extensive experimentation, we analyze how social media sharing impacts detection performance, and identify current most effective detection and training strategies. Our findings highlight the need for evaluating forensic models in conditions that mirror real-world use.
ISDrama: Immersive Spatial Drama Generation through Multimodal Prompting
Multimodal immersive spatial drama generation focuses on creating continuous multi-speaker binaural speech with dramatic prosody based on multimodal prompts, with potential applications in AR, VR, and others. This task requires simultaneous modeling of spatial information and dramatic prosody based on multimodal inputs, with high data collection costs. To the best of our knowledge, our work is the first attempt to address these challenges. We construct MRSDrama, the first multimodal recorded spatial drama dataset, containing binaural drama audios, scripts, videos, geometric poses, and textual prompts. Then, we propose ISDrama, the first immersive spatial drama generation model through multimodal prompting. ISDrama comprises these primary components: 1) Multimodal Pose Encoder, based on contrastive learning, considering the Doppler effect caused by moving speakers to extract unified pose information from multimodal prompts. 2) Immersive Drama Transformer, a flow-based mamba-transformer model that generates high-quality drama, incorporating Drama-MOE to select proper experts for enhanced prosody and pose control. We also design a context-consistent classifier-free guidance strategy to coherently generate complete drama. Experimental results show that ISDrama outperforms baseline models on objective and subjective metrics. The demos and dataset are available at https://aaronz345.github.io/ISDramaDemo.
AlignDiT: Multimodal Aligned Diffusion Transformer for Synchronized Speech Generation
In this paper, we address the task of multimodal-to-speech generation, which aims to synthesize high-quality speech from multiple input modalities: text, video, and reference audio. This task has gained increasing attention due to its wide range of applications, such as film production, dubbing, and virtual avatars. Despite recent progress, existing methods still suffer from limitations in speech intelligibility, audio-video synchronization, speech naturalness, and voice similarity to the reference speaker. To address these challenges, we propose AlignDiT, a multimodal Aligned Diffusion Transformer that generates accurate, synchronized, and natural-sounding speech from aligned multimodal inputs. Built upon the in-context learning capability of the DiT architecture, AlignDiT explores three effective strategies to align multimodal representations. Furthermore, we introduce a novel multimodal classifier-free guidance mechanism that allows the model to adaptively balance information from each modality during speech synthesis. Extensive experiments demonstrate that AlignDiT significantly outperforms existing methods across multiple benchmarks in terms of quality, synchronization, and speaker similarity. Moreover, AlignDiT exhibits strong generalization capability across various multimodal tasks, such as video-to-speech synthesis and visual forced alignment, consistently achieving state-of-the-art performance. The demo page is available at https://mm.kaist.ac.kr/projects/AlignDiT .
TriniMark: A Robust Generative Speech Watermarking Method for Trinity-Level Attribution
The emergence of diffusion models has facilitated the generation of speech with reinforced fidelity and naturalness. While deepfake detection technologies have manifested the ability to identify AI-generated content, their efficacy decreases as generative models become increasingly sophisticated. Furthermore, current research in the field has not adequately addressed the necessity for robust watermarking to safeguard the intellectual property rights associated with synthetic speech and generative models. To remedy this deficiency, we propose a \textbf{ro}bust generative \textbf{s}peech wat\textbf{e}rmarking method (TriniMark) for authenticating the generated content and safeguarding the copyrights by enabling the traceability of the diffusion model. We first design a structure-lightweight watermark encoder that embeds watermarks into the time-domain features of speech and reconstructs the waveform directly. A temporal-aware gated convolutional network is meticulously designed in the watermark decoder for bit-wise watermark recovery. Subsequently, the waveform-guided fine-tuning strategy is proposed for fine-tuning the diffusion model, which leverages the transferability of watermarks and enables the diffusion model to incorporate watermark knowledge effectively. When an attacker trains a surrogate model using the outputs of the target model, the embedded watermark can still be learned by the surrogate model and correctly extracted. Comparative experiments with state-of-the-art methods demonstrate the superior robustness of our method, particularly in countering compound attacks.
ABO: Abandon Bayer Filter for Adaptive Edge Offloading in Responsive Augmented Reality WWW 2025
Bayer-patterned color filter array (CFA) has been the go-to solution for color image sensors. In augmented reality (AR), although color interpolation (i.e., demosaicing) of pre-demosaic RAW images facilitates a user-friendly rendering, it creates no benefits in offloaded DNN analytics but increases the image channels by 3 times inducing higher transmission overheads. The potential optimization in frame preprocessing of DNN offloading is yet to be investigated. To that end, we propose ABO, an adaptive RAW frame offloading framework that parallelizes demosaicing with DNN computation. Its contributions are three-fold: First, we design a configurable tile-wise RAW image neural codec to compress frame sizes while sustaining downstream DNN accuracy under bandwidth constraints. Second, based on content-aware tiles-in-frame selection and runtime bandwidth estimation, a dynamic transmission controller adaptively calibrates codec configurations to maximize the DNN accuracy. Third, we further optimize the system pipelining to achieve lower end-to-end frame processing latency and higher throughput. Through extensive evaluations on a prototype platform, ABO consistently achieves 40% more frame processing throughput and 30% less end-to-end latency while improving the DNN accuracy by up to 15% than SOTA baselines. It also exhibits improved robustness against dim lighting and motion blur situations.
comment: WWW 2025 final version
Multimodal Large Language Models for Medicine: A Comprehensive Survey
MLLMs have recently become a focal point in the field of artificial intelligence research. Building on the strong capabilities of LLMs, MLLMs are adept at addressing complex multi-modal tasks. With the release of GPT-4, MLLMs have gained substantial attention from different domains. Researchers have begun to explore the potential of MLLMs in the medical and healthcare domain. In this paper, we first introduce the background and fundamental concepts related to LLMs and MLLMs, while emphasizing the working principles of MLLMs. Subsequently, we summarize three main directions of application within healthcare: medical reporting, medical diagnosis, and medical treatment. Our findings are based on a comprehensive review of 330 recent papers in this area. We illustrate the remarkable capabilities of MLLMs in these domains by providing specific examples. For data, we present six mainstream modes of data along with their corresponding evaluation benchmarks. At the end of the survey, we discuss the challenges faced by MLLMs in the medical and healthcare domain and propose feasible methods to mitigate or overcome these issues.
WILD: a new in-the-Wild Image Linkage Dataset for synthetic image attribution
Synthetic image source attribution is an open challenge, with an increasing number of image generators being released yearly. The complexity and the sheer number of available generative techniques, as well as the scarcity of high-quality open source datasets of diverse nature for this task, make training and benchmarking synthetic image source attribution models very challenging. WILD is a new in-the-Wild Image Linkage Dataset designed to provide a powerful training and benchmarking tool for synthetic image attribution models. The dataset is built out of a closed set of 10 popular commercial generators, which constitutes the training base of attribution models, and an open set of 10 additional generators, simulating a real-world in-the-wild scenario. Each generator is represented by 1,000 images, for a total of 10,000 images in the closed set and 10,000 images in the open set. Half of the images are post-processed with a wide range of operators. WILD allows benchmarking attribution models in a wide range of tasks, including closed and open set identification and verification, and robust attribution with respect to post-processing and adversarial attacks. Models trained on WILD are expected to benefit from the challenging scenario represented by the dataset itself. Moreover, an assessment of seven baseline methodologies on closed and open set attribution is presented, including robustness tests with respect to post-processing.
Mitigating Modality Bias in Multi-modal Entity Alignment from a Causal Perspective SIGIR 2025
Multi-Modal Entity Alignment (MMEA) aims to retrieve equivalent entities from different Multi-Modal Knowledge Graphs (MMKGs), a critical information retrieval task. Existing studies have explored various fusion paradigms and consistency constraints to improve the alignment of equivalent entities, while overlooking that the visual modality may not always contribute positively. Empirically, entities with low-similarity images usually generate unsatisfactory performance, highlighting the limitation of overly relying on visual features. We believe the model can be biased toward the visual modality, leading to a shortcut image-matching task. To address this, we propose a counterfactual debiasing framework for MMEA, termed CDMEA, which investigates visual modality bias from a causal perspective. Our approach aims to leverage both visual and graph modalities to enhance MMEA while suppressing the direct causal effect of the visual modality on model predictions. By estimating the Total Effect (TE) of both modalities and excluding the Natural Direct Effect (NDE) of the visual modality, we ensure that the model predicts based on the Total Indirect Effect (TIE), effectively utilizing both modalities and reducing visual modality bias. Extensive experiments on 9 benchmark datasets show that CDMEA outperforms 14 state-of-the-art methods, especially in low-similarity, high-noise, and low-resource data scenarios.
comment: Accepted by SIGIR 2025, 11 pages, 10 figures, 4 tables,
Computation and Language
SetKE: Knowledge Editing for Knowledge Elements Overlap
Large Language Models (LLMs) excel in tasks such as retrieval and question answering but require updates to incorporate new knowledge and reduce inaccuracies and hallucinations. Traditional updating methods, like fine-tuning and incremental learning, face challenges such as overfitting and high computational costs. Knowledge Editing (KE) provides a promising alternative but often overlooks the Knowledge Element Overlap (KEO) phenomenon, where multiple triplets share common elements, leading to editing conflicts. We identify the prevalence of KEO in existing KE datasets and show its significant impact on current KE methods, causing performance degradation in handling such triplets. To address this, we propose a new formulation, Knowledge Set Editing (KSE), and introduce SetKE, a method that edits sets of triplets simultaneously. Experimental results demonstrate that SetKE outperforms existing methods in KEO scenarios on mainstream LLMs. Additionally, we introduce EditSet, a dataset containing KEO triplets, providing a comprehensive benchmark.
comment: The CR version will be updated subsequently
OSVBench: Benchmarking LLMs on Specification Generation Tasks for Operating System Verification
We introduce OSVBench, a new benchmark for evaluating Large Language Models (LLMs) in generating complete specification code pertaining to operating system kernel verification tasks. The benchmark first defines the specification generation problem into a program synthesis problem within a confined scope of syntax and semantics by providing LLMs with the programming model. The LLMs are required to understand the provided verification assumption and the potential syntax and semantics space to search for, then generate the complete specification for the potentially buggy operating system code implementation under the guidance of the high-level functional description of the operating system. This benchmark is built upon a real-world operating system kernel, Hyperkernel, and consists of 245 complex specification generation tasks in total, each is a long context task of about 20k-30k tokens. Our comprehensive evaluation of 12 LLMs exhibits the limited performance of the current LLMs on the specification generation tasks for operating system verification. Significant disparities in their performance on the benchmark highlight differences in their ability to handle long-context code generation tasks. The evaluation toolkit and benchmark are available at https://github.com/lishangyu-hkust/OSVBench.
Information Gravity: A Field-Theoretic Model for Token Selection in Large Language Models
We propose a theoretical model called "information gravity" to describe the text generation process in large language models (LLMs). The model uses physical apparatus from field theory and spacetime geometry to formalize the interaction between user queries and the probability distribution of generated tokens. A query is viewed as an object with "information mass" that curves the semantic space of the model, creating gravitational potential wells that "attract" tokens during generation. This model offers a mechanism to explain several observed phenomena in LLM behavior, including hallucinations (emerging from low-density semantic voids), sensitivity to query formulation (due to semantic field curvature changes), and the influence of sampling temperature on output diversity.
comment: 12 pages, 1 figure
Trace-of-Thought: Enhanced Arithmetic Problem Solving via Reasoning Distillation From Large to Small Language Models
As Large Language Models (LLMs) continue to be leveraged for daily tasks, prompt engineering remains an active field of contribution within computational linguistics, particularly in domains requiring specialized knowledge such as arithmetic reasoning. While these LLMs are optimized for a variety of tasks, their exhaustive employment may become computationally or financially cumbersome for small teams. Additionally, complete reliance on proprietary, closed-source models often limits customization and adaptability, posing significant challenges in research and application scalability. Instead, by leveraging open-source models at or below 7 billion parameters, we can optimize our resource usage while still observing remarkable gains over standard prompting approaches. To cultivate this notion, we introduce Trace-of-Thought Prompting, a simple, zero-shot prompt engineering method that instructs LLMs to create observable subproblems using critical problem-solving, specifically designed to enhance arithmetic reasoning capabilities. When applied to open-source models in tandem with GPT-4, we observe that Trace-of-Thought not only allows novel insight into the problem-solving process but also introduces performance gains as large as 125% on language models at or below 7 billion parameters. This approach underscores the potential of open-source initiatives in democratizing AI research and improving the accessibility of high-quality computational linguistics applications.
Towards Understanding the Nature of Attention with Low-Rank Sparse Decomposition
We propose Low-Rank Sparse Attention (Lorsa), a sparse replacement model of Transformer attention layers to disentangle original Multi Head Self Attention (MHSA) into individually comprehensible components. Lorsa is designed to address the challenge of attention superposition to understand attention-mediated interaction between features in different token positions. We show that Lorsa heads find cleaner and finer-grained versions of previously discovered MHSA behaviors like induction heads, successor heads and attention sink behavior (i.e., heavily attending to the first token). Lorsa and Sparse Autoencoder (SAE) are both sparse dictionary learning methods applied to different Transformer components, and lead to consistent findings in many ways. For instance, we discover a comprehensive family of arithmetic-specific Lorsa heads, each corresponding to an atomic operation in Llama-3.1-8B. Automated interpretability analysis indicates that Lorsa achieves parity with SAE in interpretability while Lorsa exhibits superior circuit discovery properties, especially for features computed collectively by multiple MHSA heads. We also conduct extensive experiments on architectural design ablation, Lorsa scaling law and error analysis.
ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification
Recent advances in reasoning-enhanced large language models (LLMs) and multimodal LLMs (MLLMs) have significantly improved performance in complex tasks, yet medical AI models often overlook the structured reasoning processes inherent in clinical practice. In this work, we present ChestX-Reasoner, a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports, reflecting the step-by-step reasoning followed by radiologists. We construct a large dataset by extracting and refining reasoning chains from routine radiology reports. Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards. We introduce RadRBench-CXR, a comprehensive benchmark featuring 59K visual question answering samples with 301K clinically validated reasoning steps, and propose RadRScore, a metric evaluating reasoning factuality, completeness, and effectiveness. ChestX-Reasoner outperforms existing medical and general-domain MLLMs in both diagnostic accuracy and reasoning ability, achieving 16%, 5.9%, and 18% improvements in reasoning ability compared to the best medical MLLM, the best general MLLM, and its base model, respectively, as well as 3.3%, 24%, and 27% improvements in outcome accuracy. All resources are open-sourced to facilitate further research in medical reasoning MLLMs.
DYNAMAX: Dynamic computing for Transformers and Mamba based architectures IJCNN 2025
Early exits (EEs) offer a promising approach to reducing computational costs and latency by dynamically terminating inference once a satisfactory prediction confidence on a data sample is achieved. Although many works integrate EEs into encoder-only Transformers, their application to decoder-only architectures and, more importantly, Mamba models, a novel family of state-space architectures in the LLM realm, remains insufficiently explored. This work introduces DYNAMAX, the first framework to exploit the unique properties of Mamba architectures for early exit mechanisms. We not only integrate EEs into Mamba but also repurpose Mamba as an efficient EE classifier for both Mamba-based and transformer-based LLMs, showcasing its versatility. Our experiments employ the Mistral 7B transformer compared to the Codestral 7B Mamba model, using data sets such as TruthfulQA, CoQA, and TriviaQA to evaluate computational savings, accuracy, and consistency. The results highlight the adaptability of Mamba as a powerful EE classifier and its efficiency in balancing computational cost and performance quality across NLP tasks. By leveraging Mamba's inherent design for dynamic processing, we open pathways for scalable and efficient inference in embedded applications and resource-constrained environments. This study underscores the transformative potential of Mamba in redefining dynamic computing paradigms for LLMs.
comment: Accepted to IJCNN 2025
The Leaderboard Illusion
Measuring progress is fundamental to the advancement of any scientific field. As benchmarks play an increasingly central role, they also grow more susceptible to distortion. Chatbot Arena has emerged as the go-to leaderboard for ranking the most capable AI systems. Yet, in this work we identify systematic issues that have resulted in a distorted playing field. We find that undisclosed private testing practices benefit a handful of providers who are able to test multiple variants before public release and retract scores if desired. We establish that the ability of these providers to choose the best score leads to biased Arena scores due to selective disclosure of performance results. At an extreme, we identify 27 private LLM variants tested by Meta in the lead-up to the Llama-4 release. We also establish that proprietary closed models are sampled at higher rates (number of battles) and have fewer models removed from the arena than open-weight and open-source alternatives. Both these policies lead to large data access asymmetries over time. Providers like Google and OpenAI have received an estimated 19.2% and 20.4% of all data on the arena, respectively. In contrast, a combined 83 open-weight models have only received an estimated 29.7% of the total data. We show that access to Chatbot Arena data yields substantial benefits; even limited additional data can result in relative performance gains of up to 112% on the arena distribution, based on our conservative estimates. Together, these dynamics result in overfitting to Arena-specific dynamics rather than general model quality. The Arena builds on the substantial efforts of both the organizers and an open community that maintains this valuable evaluation platform. We offer actionable recommendations to reform the Chatbot Arena's evaluation framework and promote fairer, more transparent benchmarking for the field
comment: 68 pages, 18 figures, 9 tables
X-Cross: Dynamic Integration of Language Models for Cross-Domain Sequential Recommendation SIGIR '25
As new products are emerging daily, recommendation systems are required to quickly adapt to possible new domains without needing extensive retraining. This work presents ``X-Cross'' -- a novel cross-domain sequential-recommendation model that recommends products in new domains by integrating several domain-specific language models; each model is fine-tuned with low-rank adapters (LoRA). Given a recommendation prompt, operating layer by layer, X-Cross dynamically refines the representation of each source language model by integrating knowledge from all other models. These refined representations are propagated from one layer to the next, leveraging the activations from each domain adapter to ensure domain-specific nuances are preserved while enabling adaptability across domains. Using Amazon datasets for sequential recommendation, X-Cross achieves performance comparable to a model that is fine-tuned with LoRA, while using only 25% of the additional parameters. In cross-domain tasks, such as adapting from Toys domain to Tools, Electronics or Sports, X-Cross demonstrates robust performance, while requiring about 50%-75% less fine-tuning data than LoRA to make fine-tuning effective. Furthermore, X-Cross achieves significant improvement in accuracy over alternative cross-domain baselines. Overall, X-Cross enables scalable and adaptive cross-domain recommendations, reducing computational overhead and providing an efficient solution for data-constrained environments.
comment: Accepted for publication in SIGIR '25
JaccDiv: A Metric and Benchmark for Quantifying Diversity of Generated Marketing Text in the Music Industry
Online platforms are increasingly interested in using Data-to-Text technologies to generate content and help their users. Unfortunately, traditional generative methods often fall into repetitive patterns, resulting in monotonous galleries of texts after only a few iterations. In this paper, we investigate LLM-based data-to-text approaches to automatically generate marketing texts that are of sufficient quality and diverse enough for broad adoption. We leverage Language Models such as T5, GPT-3.5, GPT-4, and LLaMa2 in conjunction with fine-tuning, few-shot, and zero-shot approaches to set a baseline for diverse marketing texts. We also introduce a metric JaccDiv to evaluate the diversity of a set of texts. This research extends its relevance beyond the music industry, proving beneficial in various fields where repetitive automated content generation is prevalent.
Universal language model with the intervention of quantum theory
This paper examines language modeling based on the theory of quantum mechanics. It focuses on the introduction of quantum mechanics into the symbol-meaning pairs of language in order to build a representation model of natural language. At the same time, it is realized that word embedding, which is widely used as a basic technique for statistical language modeling, can be explained and improved by the mathematical framework of quantum mechanics. On this basis, this paper continues to try to use quantum statistics and other related theories to study the mathematical representation, natural evolution and statistical properties of natural language. It is also assumed that the source of such quantum properties is the physicality of information. The feasibility of using quantum theory to model natural language is pointed out through the construction of a experimental code. The paper discusses, in terms of applications, the possible help of the theory in constructing generative models that are popular nowadays. A preliminary discussion of future applications of the theory to quantum computers is also presented.
Turing Machine Evaluation for Large Language Model
With the rapid development and widespread application of Large Language Models (LLMs), rigorous evaluation has become particularly crucial. This research adopts a novel perspective, focusing on evaluating the core computational reasoning ability of LLMs, defined as the capacity of model to accurately understand rules, and execute logically computing operations. This capability assesses the reliability of LLMs as precise executors, and is critical to advanced tasks such as complex code generation and multi-step problem-solving. We propose an evaluation framework based on Universal Turing Machine (UTM) simulation. This framework requires LLMs to strictly follow instructions and track dynamic states, such as tape content and read/write head position, during multi-step computations. To enable standardized evaluation, we developed TMBench, a benchmark for systematically studying the computational reasoning capabilities of LLMs. TMBench provides several key advantages, including knowledge-agnostic evaluation, adjustable difficulty, foundational coverage through Turing machine encoding, and unlimited capacity for instance generation, ensuring scalability as models continue to evolve. We find that model performance on TMBench correlates strongly with performance on other recognized reasoning benchmarks (Pearson correlation coefficient is 0.73), clearly demonstrating that computational reasoning is a significant dimension for measuring the deep capabilities of LLMs. Code and data are available at https://github.com/HaitaoWuTJU/Turing-Machine-Bench.
Chain-of-Defensive-Thought: Structured Reasoning Elicits Robustness in Large Language Models against Reference Corruption
Chain-of-thought prompting has demonstrated great success in facilitating the reasoning abilities of large language models. In this work, we explore how these enhanced reasoning abilities can be exploited to improve the robustness of large language models in tasks that are not necessarily reasoning-focused. In particular, we show how a wide range of large language models exhibit significantly improved robustness against reference corruption using a simple method called chain-of-defensive-thought, where only a few exemplars with structured and defensive reasoning are provided as demonstrations. Empirically, the improvements can be astounding, especially given the simplicity and applicability of the method. For example, in the Natural Questions task, the accuracy of GPT-4o degrades from 60% to as low as 3% with standard prompting when 1 out of 10 references provided is corrupted with prompt injection attacks. In contrast, GPT-4o using chain-of-defensive-thought prompting maintains an accuracy of 50%.
Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers
Transformers have achieved great success in numerous NLP tasks but continue to exhibit notable gaps in multi-step factual reasoning, especially when real-world knowledge is sparse. Recent advances in grokking have demonstrated that neural networks can transition from memorizing to perfectly generalizing once they detect underlying logical patterns - yet these studies have primarily used small, synthetic tasks. In this paper, for the first time, we extend grokking to real-world factual data and address the challenge of dataset sparsity by augmenting existing knowledge graphs with carefully designed synthetic data to raise the ratio $\phi_r$ of inferred facts to atomic facts above the threshold required for grokking. Surprisingly, we find that even factually incorrect synthetic data can strengthen emergent reasoning circuits rather than degrade accuracy, as it forces the model to rely on relational structure rather than memorization. When evaluated on multi-hop reasoning benchmarks, our approach achieves up to 95-100% accuracy on 2WikiMultiHopQA - substantially improving over strong baselines and matching or exceeding current state-of-the-art results. We further provide an in-depth analysis of how increasing $\phi_r$ drives the formation of generalizing circuits inside Transformers. Our findings suggest that grokking-based data augmentation can unlock implicit multi-hop reasoning capabilities, opening the door to more robust and interpretable factual reasoning in large-scale language models.
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
Retrieval-Augmented Generation (RAG) has shown substantial promise in improving factual accuracy by grounding model responses with external knowledge relevant to queries. However, most existing RAG approaches are limited to a text-only corpus, and while recent efforts have extended RAG to other modalities such as images and videos, they typically operate over a single modality-specific corpus. In contrast, real-world queries vary widely in the type of knowledge they require, which a single type of knowledge source cannot address. To address this, we introduce UniversalRAG, a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities. Specifically, motivated by the observation that forcing all modalities into a unified representation space derived from a single combined corpus causes a modality gap, where the retrieval tends to favor items from the same modality as the query, we propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it. Also, beyond modality, we organize each modality into multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity and scope of the query. We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
comment: Project page : https://universalrag.github.io
Beyond the Last Answer: Your Reasoning Trace Uncovers More than You Think
Large Language Models (LLMs) leverage step-by-step reasoning to solve complex problems. Standard evaluation practice involves generating a complete reasoning trace and assessing the correctness of the final answer presented at its conclusion. In this paper, we challenge the reliance on the final answer by posing the following two questions: Does the final answer reliably represent the model's optimal conclusion? Can alternative reasoning paths yield different results? To answer these questions, we analyze intermediate reasoning steps, termed subthoughts, and propose a method based on our findings. Our approach involves segmenting a reasoning trace into sequential subthoughts based on linguistic cues. We start by prompting the model to generate continuations from the end-point of each intermediate subthought. We extract a potential answer from every completed continuation originating from different subthoughts. We find that aggregating these answers by selecting the most frequent one (the mode) often yields significantly higher accuracy compared to relying solely on the answer derived from the original complete trace. Analyzing the consistency among the answers derived from different subthoughts reveals characteristics that correlate with the model's confidence and correctness, suggesting potential for identifying less reliable answers. Our experiments across various LLMs and challenging mathematical reasoning datasets (AIME2024 and AIME2025) show consistent accuracy improvements, with gains reaching up to 13\% and 10\% respectively. Implementation is available at: https://github.com/hammoudhasan/SubthoughtReasoner.
comment: Preprint
BrightCookies at SemEval-2025 Task 9: Exploring Data Augmentation for Food Hazard Classification
This paper presents our system developed for the SemEval-2025 Task 9: The Food Hazard Detection Challenge. The shared task's objective is to evaluate explainable classification systems for classifying hazards and products in two levels of granularity from food recall incident reports. In this work, we propose text augmentation techniques as a way to improve poor performance on minority classes and compare their effect for each category on various transformer and machine learning models. We explore three word-level data augmentation techniques, namely synonym replacement, random word swapping, and contextual word insertion. The results show that transformer models tend to have a better overall performance. None of the three augmentation techniques consistently improved overall performance for classifying hazards and products. We observed a statistically significant improvement (P < 0.05) in the fine-grained categories when using the BERT model to compare the baseline with each augmented model. Compared to the baseline, the contextual words insertion augmentation improved the accuracy of predictions for the minority hazard classes by 6%. This suggests that targeted augmentation of minority classes can improve the performance of transformer models.
Can LLMs Detect Intrinsic Hallucinations in Paraphrasing and Machine Translation?
A frequently observed problem with LLMs is their tendency to generate output that is nonsensical, illogical, or factually incorrect, often referred to broadly as hallucination. Building on the recently proposed HalluciGen task for hallucination detection and generation, we evaluate a suite of open-access LLMs on their ability to detect intrinsic hallucinations in two conditional generation tasks: translation and paraphrasing. We study how model performance varies across tasks and language and we investigate the impact of model size, instruction tuning, and prompt choice. We find that performance varies across models but is consistent across prompts. Finally, we find that NLI models perform comparably well, suggesting that LLM-based detectors are not the only viable option for this specific task.
Are Information Retrieval Approaches Good at Harmonising Longitudinal Survey Questions in Social Science?
Automated detection of semantically equivalent questions in longitudinal social science surveys is crucial for long-term studies informing empirical research in the social, economic, and health sciences. Retrieving equivalent questions faces dual challenges: inconsistent representation of theoretical constructs (i.e. concept/sub-concept) across studies as well as between question and response options, and the evolution of vocabulary and structure in longitudinal text. To address these challenges, our multi-disciplinary collaboration of computer scientists and survey specialists presents a new information retrieval (IR) task of identifying concept (e.g. Housing, Job, etc.) equivalence across question and response options to harmonise longitudinal population studies. This paper investigates multiple unsupervised approaches on a survey dataset spanning 1946-2020, including probabilistic models, linear probing of language models, and pre-trained neural networks specialised for IR. We show that IR-specialised neural models achieve the highest overall performance with other approaches performing comparably. Additionally, the re-ranking of the probabilistic model's results with neural models only introduces modest improvements of 0.07 at most in F1-score. Qualitative post-hoc evaluation by survey specialists shows that models generally have a low sensitivity to questions with high lexical overlap, particularly in cases where sub-concepts are mismatched. Altogether, our analysis serves to further research on harmonising longitudinal studies in social science.
Non-native Children's Automatic Speech Assessment Challenge (NOCASA)
This paper presents the "Non-native Children's Automatic Speech Assessment" (NOCASA) - a data competition part of the IEEE MLSP 2025 conference. NOCASA challenges participants to develop new systems that can assess single-word pronunciations of young second language (L2) learners as part of a gamified pronunciation training app. To achieve this, several issues must be addressed, most notably the limited nature of available training data and the highly unbalanced distribution among the pronunciation level categories. To expedite the development, we provide a pseudo-anonymized training data (TeflonNorL2), containing 10,334 recordings from 44 speakers attempting to pronounce 205 distinct Norwegian words, human-rated on a 1 to 5 scale (number of stars that should be given in the game). In addition to the data, two already trained systems are released as official baselines: an SVM classifier trained on the ComParE_16 acoustic feature set and a multi-task wav2vec 2.0 model. The latter achieves the best performance on the challenge test set, with an unweighted average recall (UAR) of 36.37%.
comment: First draft of the baseline paper for the NOCASA competition (https://teflon.aalto.fi/nocasa-2025/), 5 pages
A Generative-AI-Driven Claim Retrieval System Capable of Detecting and Retrieving Claims from Social Media Platforms in Multiple Languages
Online disinformation poses a global challenge, placing significant demands on fact-checkers who must verify claims efficiently to prevent the spread of false information. A major issue in this process is the redundant verification of already fact-checked claims, which increases workload and delays responses to newly emerging claims. This research introduces an approach that retrieves previously fact-checked claims, evaluates their relevance to a given input, and provides supplementary information to support fact-checkers. Our method employs large language models (LLMs) to filter irrelevant fact-checks and generate concise summaries and explanations, enabling fact-checkers to faster assess whether a claim has been verified before. In addition, we evaluate our approach through both automatic and human assessments, where humans interact with the developed tool to review its effectiveness. Our results demonstrate that LLMs are able to filter out many irrelevant fact-checks and, therefore, reduce effort and streamline the fact-checking process.
Cooking Up Creativity: A Cognitively-Inspired Approach for Enhancing LLM Creativity through Structured Representations
Large Language Models (LLMs) excel at countless tasks, yet struggle with creativity. In this paper, we introduce a novel approach that couples LLMs with structured representations and cognitively inspired manipulations to generate more creative and diverse ideas. Our notion of creativity goes beyond superficial token-level variations; rather, we explicitly recombine structured representations of existing ideas, allowing our algorithm to effectively explore the more abstract landscape of ideas. We demonstrate our approach in the culinary domain with DishCOVER, a model that generates creative recipes. Experiments comparing our model's results to those of GPT-4o show greater diversity. Domain expert evaluations reveal that our outputs, which are mostly coherent and feasible culinary creations, significantly surpass GPT-4o in terms of novelty, thus outperforming it in creative generation. We hope our work inspires further research into structured creativity in AI.
comment: 10 pages, 8 figures
WenyanGPT: A Large Language Model for Classical Chinese Tasks
Classical Chinese, as the core carrier of Chinese culture, plays a crucial role in the inheritance and study of ancient literature. However, existing natural language processing models primarily optimize for Modern Chinese, resulting in inadequate performance on Classical Chinese. This paper presents a comprehensive solution for Classical Chinese language processing. By continuing pre-training and instruction fine-tuning on the LLaMA3-8B-Chinese model, we construct a large language model, WenyanGPT, which is specifically designed for Classical Chinese tasks. Additionally, we develop an evaluation benchmark dataset, WenyanBENCH. Experimental results on WenyanBENCH demonstrate that WenyanGPT significantly outperforms current advanced LLMs in various Classical Chinese tasks. We make the model's training data, instruction fine-tuning data\footnote, and evaluation benchmark dataset publicly available to promote further research and development in the field of Classical Chinese processing.
TF1-EN-3M: Three Million Synthetic Moral Fables for Training Small, Open Language Models
Moral stories are a time-tested vehicle for transmitting values, yet modern NLP lacks a large, structured corpus that couples coherent narratives with explicit ethical lessons. We close this gap with TF1-EN-3M, the first open dataset of three million English-language fables generated exclusively by instruction-tuned models no larger than 8B parameters. Each story follows a six-slot scaffold (character -> trait -> setting -> conflict -> resolution -> moral), produced through a combinatorial prompt engine that guarantees genre fidelity while covering a broad thematic space. A hybrid evaluation pipeline blends (i) a GPT-based critic that scores grammar, creativity, moral clarity, and template adherence with (ii) reference-free diversity and readability metrics. Among ten open-weight candidates, an 8B-parameter Llama-3 variant delivers the best quality-speed trade-off, producing high-scoring fables on a single consumer GPU (<24 GB VRAM) at approximately 13.5 cents per 1,000 fables. We release the dataset, generation code, evaluation scripts, and full metadata under a permissive license, enabling exact reproducibility and cost benchmarking. TF1-EN-3M opens avenues for research in instruction following, narrative intelligence, value alignment, and child-friendly educational AI, demonstrating that large-scale moral storytelling no longer requires proprietary giant models.
ReasonIR: Training Retrievers for Reasoning Tasks
We present ReasonIR-8B, the first retriever specifically trained for general reasoning tasks. Existing retrievers have shown limited gains on reasoning tasks, in part because existing training datasets focus on short factual queries tied to documents that straightforwardly answer them. We develop a synthetic data generation pipeline that, for each document, our pipeline creates a challenging and relevant query, along with a plausibly related but ultimately unhelpful hard negative. By training on a mixture of our synthetic data and existing public data, ReasonIR-8B achieves a new state-of-the-art of 29.9 nDCG@10 without reranker and 36.9 nDCG@10 with reranker on BRIGHT, a widely-used reasoning-intensive information retrieval (IR) benchmark. When applied to RAG tasks, ReasonIR-8B improves MMLU and GPQA performance by 6.4% and 22.6% respectively, relative to the closed-book baseline, outperforming other retrievers and search engines. In addition, ReasonIR-8B uses test-time compute more effectively: on BRIGHT, its performance consistently increases with longer and more information-rich rewritten queries; it continues to outperform other retrievers when combined with an LLM reranker. Our training recipe is general and can be easily extended to future LLMs; to this end, we open-source our code, data, and model.
comment: Our code is released at \url{https://github.com/facebookresearch/ReasonIR}
ClonEval: An Open Voice Cloning Benchmark
We present a novel benchmark for voice cloning text-to-speech models. The benchmark consists of an evaluation protocol, an open-source library for assessing the performance of voice cloning models, and an accompanying leaderboard. The paper discusses design considerations and presents a detailed description of the evaluation procedure. The usage of the software library is explained, along with the organization of results on the leaderboard.
Reinforcement Learning for Reasoning in Large Language Models with One Training Example
We show that reinforcement learning with verifiable reward using one training example (1-shot RLVR) is effective in incentivizing the math reasoning capabilities of large language models (LLMs). Applying RLVR to the base model Qwen2.5-Math-1.5B, we identify a single example that elevates model performance on MATH500 from 36.0% to 73.6%, and improves the average performance across six common mathematical reasoning benchmarks from 17.6% to 35.7%. This result matches the performance obtained using the 1.2k DeepScaleR subset (MATH500: 73.6%, average: 35.9%), which includes the aforementioned example. Similar substantial improvements are observed across various models (Qwen2.5-Math-7B, Llama3.2-3B-Instruct, DeepSeek-R1-Distill-Qwen-1.5B), RL algorithms (GRPO and PPO), and different math examples (many of which yield approximately 30% or greater improvement on MATH500 when employed as a single training example). In addition, we identify some interesting phenomena during 1-shot RLVR, including cross-domain generalization, increased frequency of self-reflection, and sustained test performance improvement even after the training accuracy has saturated, a phenomenon we term post-saturation generalization. Moreover, we verify that the effectiveness of 1-shot RLVR primarily arises from the policy gradient loss, distinguishing it from the "grokking" phenomenon. We also show the critical role of promoting exploration (e.g., by adding entropy loss with an appropriate coefficient) in 1-shot RLVR training. As a bonus, we observe that applying entropy loss alone, without any outcome reward, significantly enhances Qwen2.5-Math-1.5B's performance on MATH500 by 27.4%. These findings can inspire future work on RLVR data efficiency and encourage a re-examination of both recent progress and the underlying mechanisms in RLVR. Our code, model, and data are open source at https://github.com/ypwang61/One-Shot-RLVR
comment: 28 pages, 12 figures, link: https://github.com/ypwang61/One-Shot-RLVR
BrAIcht, a theatrical agent that speaks like Bertolt Brecht's characters
This project introduces BrAIcht, an AI conversational agent that creates dialogues in the distinctive style of the famous German playwright Bertolt Brecht. BrAIcht is fine-tuned using German LeoLM, a large language model with 7 billion parameters and a modified version of the base Llama2 suitable for German language tasks. For fine-tuning, 29 plays of Bertolt Brecht and 907 of other German plays that are stylistically similar to Bertolt Brecht are used to form a more di-erse dataset. Due to the limited memory capacity, a parameterefficient fine-tuning technique called QLoRA is implemented to train the large language model. The results, based on BLEU score and perplexity, show very promising performance of BrAIcht in generating dialogues in the style of Bertolt Brecht.
Revisiting the MIMIC-IV Benchmark: Experiments Using Language Models for Electronic Health Records
The lack of standardized evaluation benchmarks in the medical domain for text inputs can be a barrier to widely adopting and leveraging the potential of natural language models for health-related downstream tasks. This paper revisited an openly available MIMIC-IV benchmark for electronic health records (EHRs) to address this issue. First, we integrate the MIMIC-IV data within the Hugging Face datasets library to allow an easy share and use of this collection. Second, we investigate the application of templates to convert EHR tabular data to text. Experiments using fine-tuned and zero-shot LLMs on the mortality of patients task show that fine-tuned text-based models are competitive against robust tabular classifiers. In contrast, zero-shot LLMs struggle to leverage EHR representations. This study underlines the potential of text-based approaches in the medical field and highlights areas for further improvement.
UniDetox: Universal Detoxification of Large Language Models via Dataset Distillation ICLR 2025
We present UniDetox, a universally applicable method designed to mitigate toxicity across various large language models (LLMs). Previous detoxification methods are typically model-specific, addressing only individual models or model families, and require careful hyperparameter tuning due to the trade-off between detoxification efficacy and language modeling performance. In contrast, UniDetox provides a detoxification technique that can be universally applied to a wide range of LLMs without the need for separate model-specific tuning. Specifically, we propose a novel and efficient dataset distillation technique for detoxification using contrastive decoding. This approach distills detoxifying representations in the form of synthetic text data, enabling universal detoxification of any LLM through fine-tuning with the distilled text. Our experiments demonstrate that the detoxifying text distilled from GPT-2 can effectively detoxify larger models, including OPT, Falcon, and LLaMA-2. Furthermore, UniDetox eliminates the need for separate hyperparameter tuning for each model, as a single hyperparameter configuration can be seamlessly applied across different models. Additionally, analysis of the detoxifying text reveals a reduction in politically biased content, providing insights into the attributes necessary for effective detoxification of LLMs.
comment: Accepted at ICLR 2025 (poster)
Enhancing LLM Language Adaption through Cross-lingual In-Context Pre-training
Large language models (LLMs) exhibit remarkable multilingual capabilities despite English-dominated pre-training, attributed to cross-lingual mechanisms during pre-training. Existing methods for enhancing cross-lingual transfer remain constrained by parallel resources, suffering from limited linguistic and domain coverage. We propose Cross-lingual In-context Pre-training (CrossIC-PT), a simple and scalable approach that enhances cross-lingual transfer by leveraging semantically related bilingual texts via simple next-word prediction. We construct CrossIC-PT samples by interleaving semantic-related bilingual Wikipedia documents into a single context window. To access window size constraints, we implement a systematic segmentation policy to split long bilingual document pairs into chunks while adjusting the sliding window mechanism to preserve contextual coherence. We further extend data availability through a semantic retrieval framework to construct CrossIC-PT samples from web-crawled corpus. Experimental results demonstrate that CrossIC-PT improves multilingual performance on three models (Llama-3.1-8B, Qwen2.5-7B, and Qwen2.5-1.5B) across six target languages, yielding performance gains of 3.79%, 3.99%, and 1.95%, respectively, with additional improvements after data augmentation.
comment: 12 pages, 6 figures, Under Review
Fane at SemEval-2025 Task 10: Zero-Shot Entity Framing with Large Language Models
Understanding how news narratives frame entities is crucial for studying media's impact on societal perceptions of events. In this paper, we evaluate the zero-shot capabilities of large language models (LLMs) in classifying framing roles. Through systematic experimentation, we assess the effects of input context, prompting strategies, and task decomposition. Our findings show that a hierarchical approach of first identifying broad roles and then fine-grained roles, outperforms single-step classification. We also demonstrate that optimal input contexts and prompts vary across task levels, highlighting the need for subtask-specific strategies. We achieve a Main Role Accuracy of 89.4% and an Exact Match Ratio of 34.5%, demonstrating the effectiveness of our approach. Our findings emphasize the importance of tailored prompt design and input context optimization for improving LLM performance in entity framing.
comment: Accepted to The 19th International Workshop on Semantic Evaluation (Semeval 2025)
Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User SIGIR 2025
Conversational recommendation systems (CRSs) use multi-turn interaction to capture user preferences and provide personalized recommendations. A fundamental challenge in CRSs lies in effectively understanding user preferences from conversations. User preferences can be multifaceted and complex, posing significant challenges for accurate recommendations even with access to abundant external knowledge. While interaction with users can clarify their true preferences, frequent user involvement can lead to a degraded user experience. To address this problem, we propose a generative reward model based simulated user, named GRSU, for automatic interaction with CRSs. The simulated user provides feedback to the items recommended by CRSs, enabling them to better capture intricate user preferences through multi-turn interaction. Inspired by generative reward models, we design two types of feedback actions for the simulated user: i.e., generative item scoring, which offers coarse-grained feedback, and attribute-based item critique, which provides fine-grained feedback. To ensure seamless integration, these feedback actions are unified into an instruction-based format, allowing the development of a unified simulated user via instruction tuning on synthesized data. With this simulated user, automatic multi-turn interaction with CRSs can be effectively conducted. Furthermore, to strike a balance between effectiveness and efficiency, we draw inspiration from the paradigm of reward-guided search in complex reasoning tasks and employ beam search for the interaction process. On top of this, we propose an efficient candidate ranking method to improve the recommendation results derived from interaction. Extensive experiments on public datasets demonstrate the effectiveness, efficiency, and transferability of our approach.
comment: Accepted by SIGIR 2025
Reviving Any-Subset Autoregressive Models with Principled Parallel Sampling and Speculative Decoding
In arbitrary-order language models, it is an open question how to sample tokens in parallel from the correct joint distribution. With discrete diffusion models, the more tokens they generate in parallel, the less their predicted distributions adhere to the originally learned data distribution, as they rely on a conditional independence assumption that only works with infinitesimally small timesteps. We find that a different class of models, any-subset autoregressive models (AS-ARMs), holds the solution. As implied by the name, AS-ARMs can generate tokens in any order, and in parallel. Moreover, AS-ARMs support parallelized joint probability density estimation, allowing them to correct their own parallel-generated token distributions, via our Any-Subset Speculative Decoding (ASSD) algorithm. ASSD provably enables generation of tokens from the correct joint distribution, with the number of neural network calls upper bounded by the number of tokens predicted. We empirically verify that ASSD speeds up language generation, without sacrificing quality. Furthermore, we provide a mathematically justified scheme for training AS-ARMs for generation, and show that AS-ARMs achieve state-of-the-art performance among sub-200M parameter models on infilling benchmark tasks, and nearly match the performance of models 50X larger on code generation. Our theoretical and empirical results indicate that the once-forgotten AS-ARMs are a promising direction of language modeling.
Team ACK at SemEval-2025 Task 2: Beyond Word-for-Word Machine Translation for English-Korean Pairs SemEval-2025
Translating knowledge-intensive and entity-rich text between English and Korean requires transcreation to preserve language-specific and cultural nuances beyond literal, phonetic or word-for-word conversion. We evaluate 13 models (LLMs and MT models) using automatic metrics and human assessment by bilingual annotators. Our findings show LLMs outperform traditional MT systems but struggle with entity translation requiring cultural adaptation. By constructing an error taxonomy, we identify incorrect responses and entity name errors as key issues, with performance varying by entity type and popularity level. This work exposes gaps in automatic evaluation metrics and hope to enable future work in completing culturally-nuanced machine translation.
comment: Accepted at SemEval-2025 Workshop (ACL 2025)
On Psychology of AI -- Does Primacy Effect Affect ChatGPT and Other LLMs?
We study the primacy effect in three commercial LLMs: ChatGPT, Gemini and Claude. We do this by repurposing the famous experiment Asch (1946) conducted using human subjects. The experiment is simple, given two candidates with equal descriptions which one is preferred if one description has positive adjectives first before negative ones and another description has negative adjectives followed by positive ones. We test this in two experiments. In one experiment, LLMs are given both candidates simultaneously in the same prompt, and in another experiment, LLMs are given both candidates separately. We test all the models with 200 candidate pairs. We found that, in the first experiment, ChatGPT preferred the candidate with positive adjectives listed first, while Gemini preferred both equally often. Claude refused to make a choice. In the second experiment, ChatGPT and Claude were most likely to rank both candidates equally. In the case where they did not give an equal rating, both showed a clear preference to a candidate that had negative adjectives listed first. Gemini was most likely to prefer a candidate with negative adjectives listed first.
DMDTEval: An Evaluation and Analysis of LLMs on Disambiguation in Multi-domain Translation
Currently, Large Language Models (LLMs) have achieved remarkable results in machine translation. However, their performance in multi-domain translation (MDT) is less satisfactory; the meanings of words can vary across different domains, highlighting the significant ambiguity inherent in MDT. Therefore, evaluating the disambiguation ability of LLMs in MDT remains an open problem. To this end, we present an evaluation and analysis of LLMs on disambiguation in multi-domain translation (DMDTEval), our systematic evaluation framework consisting of three critical aspects: (1) we construct a translation test set with multi-domain ambiguous word annotation, (2) we curate a diverse set of disambiguation prompting templates, and (3) we design precise disambiguation metrics, and study the efficacy of various prompting strategies on multiple state-of-the-art LLMs. Our extensive experiments reveal a number of crucial findings that we believe will pave the way and also facilitate further research in the critical area of improving the disambiguation of LLMs.
What Causes Knowledge Loss in Multilingual Language Models?
Cross-lingual transfer in natural language processing (NLP) models enhances multilingual performance by leveraging shared linguistic knowledge. However, traditional methods that process all data simultaneously often fail to mimic real-world scenarios, leading to challenges like catastrophic forgetting, where fine-tuning on new tasks degrades performance on previously learned ones. Our study explores this issue in multilingual contexts, focusing on linguistic differences affecting representational learning rather than just model parameters. We experiment with 52 languages using LoRA adapters of varying ranks to evaluate non-shared, partially shared, and fully shared parameters. Our aim is to see if parameter sharing through adapters can mitigate forgetting while preserving prior knowledge. We find that languages using non-Latin scripts are more susceptible to catastrophic forgetting, whereas those written in Latin script facilitate more effective cross-lingual transfer.
Local Prompt Optimization NAACL 2025
In recent years, the use of prompts to guide the output of Large Language Models have increased dramatically. However, even the best of experts struggle to choose the correct words to stitch up a prompt for the desired task. To solve this, LLM driven prompt optimization emerged as an important problem. Existing prompt optimization methods optimize a prompt globally, where in all the prompt tokens have to be optimized over a large vocabulary while solving a complex task. The large optimization space (tokens) leads to insufficient guidance for a better prompt. In this work, we introduce Local Prompt Optimization (LPO) that integrates with any general automatic prompt engineering method. We identify the optimization tokens in a prompt and nudge the LLM to focus only on those tokens in its optimization step. We observe remarkable performance improvements on Math Reasoning (GSM8k and MultiArith) and BIG-bench Hard benchmarks across various automatic prompt engineering methods. Further, we show that LPO converges to the optimal prompt faster than global methods.
comment: Accepted as Oral at NAACL 2025 (Main Conference)
Labeling Case Similarity based on Co-Citation of Legal Articles in Judgment Documents with Empirical Dispute-Based Evaluation
This report addresses the challenge of limited labeled datasets for developing legal recommender systems, particularly in specialized domains like labor disputes. We propose a new approach leveraging the co-citation of legal articles within cases to establish similarity and enable algorithmic annotation. This method draws a parallel to the concept of case co-citation, utilizing cited precedents as indicators of shared legal issues. To evaluate the labeled results, we employ a system that recommends similar cases based on plaintiffs' accusations, defendants' rebuttals, and points of disputes. The evaluation demonstrates that the recommender, with finetuned text embedding models and a reasonable BiLSTM module can recommend labor cases whose similarity was measured by the co-citation of the legal articles. This research contributes to the development of automated annotation techniques for legal documents, particularly in areas with limited access to comprehensive legal databases.
comment: 16 pages, 9 figures, 2 tables, the Nineteenth International Workshop on Juris-Informatics (JURISIN 2025), associated with the Seventeenth JSAI International Symposium on AI (JSAI-isAI 2025)
Pretraining Large Brain Language Model for Active BCI: Silent Speech
This paper explores silent speech decoding in active brain-computer interface (BCI) systems, which offer more natural and flexible communication than traditional BCI applications. We collected a new silent speech dataset of over 120 hours of electroencephalogram (EEG) recordings from 12 subjects, capturing 24 commonly used English words for language model pretraining and decoding. Following the recent success of pretraining large models with self-supervised paradigms to enhance EEG classification performance, we propose Large Brain Language Model (LBLM) pretrained to decode silent speech for active BCI. To pretrain LBLM, we propose Future Spectro-Temporal Prediction (FSTP) pretraining paradigm to learn effective representations from unlabeled EEG data. Unlike existing EEG pretraining methods that mainly follow a masked-reconstruction paradigm, our proposed FSTP method employs autoregressive modeling in temporal and frequency domains to capture both temporal and spectral dependencies from EEG signals. After pretraining, we finetune our LBLM on downstream tasks, including word-level and semantic-level classification. Extensive experiments demonstrate significant performance gains of the LBLM over fully-supervised and pretrained baseline models. For instance, in the difficult cross-session setting, our model achieves 47.0\% accuracy on semantic-level classification and 39.6\% in word-level classification, outperforming baseline methods by 5.4\% and 7.3\%, respectively. Our research advances silent speech decoding in active BCI systems, offering an innovative solution for EEG language model pretraining and a new dataset for fundamental research.
Automatic Legal Writing Evaluation of LLMs
Despite the recent advances in Large Language Models, benchmarks for evaluating legal writing remain scarce due to the inherent complexity of assessing open-ended responses in this domain. One of the key challenges in evaluating language models on domain-specific tasks is finding test datasets that are public, frequently updated, and contain comprehensive evaluation guidelines. The Brazilian Bar Examination meets these requirements. We introduce oab-bench, a benchmark comprising 105 questions across seven areas of law from recent editions of the exam. The benchmark includes comprehensive evaluation guidelines and reference materials used by human examiners to ensure consistent grading. We evaluate the performance of four LLMs on oab-bench, finding that Claude-3.5 Sonnet achieves the best results with an average score of 7.93 out of 10, passing all 21 exams. We also investigated whether LLMs can serve as reliable automated judges for evaluating legal writing. Our experiments show that frontier models like OpenAI's o1 achieve a strong correlation with human scores when evaluating approved exams, suggesting their potential as reliable automated evaluators despite the inherently subjective nature of legal writing assessment. The source code and the benchmark -- containing questions, evaluation guidelines, model-generated responses, and their respective automated evaluations -- are publicly available.
Small or Large? Zero-Shot or Finetuned? Guiding Language Model Choice for Specialized Applications in Healthcare
This study aims to guide language model selection by investigating: 1) the necessity of finetuning versus zero-shot usage, 2) the benefits of domain-adjacent versus generic pretrained models, 3) the value of further domain-specific pretraining, and 4) the continued relevance of Small Language Models (SLMs) compared to Large Language Models (LLMs) for specific tasks. Using electronic pathology reports from the British Columbia Cancer Registry (BCCR), three classification scenarios with varying difficulty and data size are evaluated. Models include various SLMs and an LLM. SLMs are evaluated both zero-shot and finetuned; the LLM is evaluated zero-shot only. Finetuning significantly improved SLM performance across all scenarios compared to their zero-shot results. The zero-shot LLM outperformed zero-shot SLMs but was consistently outperformed by finetuned SLMs. Domain-adjacent SLMs generally performed better than the generic SLM after finetuning, especially on harder tasks. Further domain-specific pretraining yielded modest gains on easier tasks but significant improvements on the complex, data-scarce task. The results highlight the critical role of finetuning for SLMs in specialized domains, enabling them to surpass zero-shot LLM performance on targeted classification tasks. Pretraining on domain-adjacent or domain-specific data provides further advantages, particularly for complex problems or limited finetuning data. While LLMs offer strong zero-shot capabilities, their performance on these specific tasks did not match that of appropriately finetuned SLMs. In the era of LLMs, SLMs remain relevant and effective, offering a potentially superior performance-resource trade-off compared to LLMs.
Detecting Manipulated Contents Using Knowledge-Grounded Inference
The detection of manipulated content, a prevalent form of fake news, has been widely studied in recent years. While existing solutions have been proven effective in fact-checking and analyzing fake news based on historical events, the reliance on either intrinsic knowledge obtained during training or manually curated context hinders them from tackling zero-day manipulated content, which can only be recognized with real-time contextual information. In this work, we propose Manicod, a tool designed for detecting zero-day manipulated content. Manicod first sources contextual information about the input claim from mainstream search engines, and subsequently vectorizes the context for the large language model (LLM) through retrieval-augmented generation (RAG). The LLM-based inference can produce a "truthful" or "manipulated" decision and offer a textual explanation for the decision. To validate the effectiveness of Manicod, we also propose a dataset comprising 4270 pieces of manipulated fake news derived from 2500 recent real-world news headlines. Manicod achieves an overall F1 score of 0.856 on this dataset and outperforms existing methods by up to 1.9x in F1 score on their benchmarks on fact-checking and claim verification.
comment: 16 pages
LLM Enhancer: Merged Approach using Vector Embedding for Reducing Large Language Model Hallucinations with External Knowledge
Large Language Models (LLMs), such as ChatGPT, have demonstrated the capability to generate human like, natural responses across a range of tasks, including task oriented dialogue and question answering. However, their application in real world, critical scenarios is often hindered by a tendency to produce inaccurate information and a limited ability to leverage external knowledge sources. This paper introduces the LLM ENHANCER system, designed to integrate multiple online sources such as Google, Wikipedia, and DuckDuckGo to enhance data accuracy. The LLMs employed within this system are open source. The data acquisition process for the LLM ENHANCER system operates in parallel, utilizing custom agent tools to manage the flow of information. Vector embeddings are used to identify the most pertinent information, which is subsequently supplied to the LLM for user interaction. The LLM ENHANCER system mitigates hallucinations in chat based LLMs while preserving response naturalness and accuracy.
Beyond One-Size-Fits-All: Inversion Learning for Highly Effective NLG Evaluation Prompts
Evaluating natural language generation (NLG) systems is challenging due to the diversity of valid outputs. While human evaluation is the gold standard, it suffers from inconsistencies, lack of standardisation, and demographic biases, limiting reproducibility. LLM-based evaluation offers a scalable alternative but is highly sensitive to prompt design, where small variations can lead to significant discrepancies. In this work, we propose an inversion learning method that learns effective reverse mappings from model outputs back to their input instructions, enabling the automatic generation of highly effective, model-specific evaluation prompts. Our method requires only a single evaluation sample and eliminates the need for time-consuming manual prompt engineering, thereby improving both efficiency and robustness. Our work contributes toward a new direction for more robust and efficient LLM-based evaluation.
comment: 10 pages
Multimodal Large Language Models for Medicine: A Comprehensive Survey
MLLMs have recently become a focal point in the field of artificial intelligence research. Building on the strong capabilities of LLMs, MLLMs are adept at addressing complex multi-modal tasks. With the release of GPT-4, MLLMs have gained substantial attention from different domains. Researchers have begun to explore the potential of MLLMs in the medical and healthcare domain. In this paper, we first introduce the background and fundamental concepts related to LLMs and MLLMs, while emphasizing the working principles of MLLMs. Subsequently, we summarize three main directions of application within healthcare: medical reporting, medical diagnosis, and medical treatment. Our findings are based on a comprehensive review of 330 recent papers in this area. We illustrate the remarkable capabilities of MLLMs in these domains by providing specific examples. For data, we present six mainstream modes of data along with their corresponding evaluation benchmarks. At the end of the survey, we discuss the challenges faced by MLLMs in the medical and healthcare domain and propose feasible methods to mitigate or overcome these issues.
LLM-Generated Fake News Induces Truth Decay in News Ecosystem: A Case Study on Neural News Recommendation SIGIR 2025
Online fake news moderation now faces a new challenge brought by the malicious use of large language models (LLMs) in fake news production. Though existing works have shown LLM-generated fake news is hard to detect from an individual aspect, it remains underexplored how its large-scale release will impact the news ecosystem. In this study, we develop a simulation pipeline and a dataset with ~56k generated news of diverse types to investigate the effects of LLM-generated fake news within neural news recommendation systems. Our findings expose a truth decay phenomenon, where real news is gradually losing its advantageous position in news ranking against fake news as LLM-generated news is involved in news recommendation. We further provide an explanation about why truth decay occurs from a familiarity perspective and show the positive correlation between perplexity and news ranking. Finally, we discuss the threats of LLM-generated fake news and provide possible countermeasures. We urge stakeholders to address this emerging challenge to preserve the integrity of news ecosystems.
comment: ACM SIGIR 2025 Full Paper
Mitigating Modality Bias in Multi-modal Entity Alignment from a Causal Perspective SIGIR 2025
Multi-Modal Entity Alignment (MMEA) aims to retrieve equivalent entities from different Multi-Modal Knowledge Graphs (MMKGs), a critical information retrieval task. Existing studies have explored various fusion paradigms and consistency constraints to improve the alignment of equivalent entities, while overlooking that the visual modality may not always contribute positively. Empirically, entities with low-similarity images usually generate unsatisfactory performance, highlighting the limitation of overly relying on visual features. We believe the model can be biased toward the visual modality, leading to a shortcut image-matching task. To address this, we propose a counterfactual debiasing framework for MMEA, termed CDMEA, which investigates visual modality bias from a causal perspective. Our approach aims to leverage both visual and graph modalities to enhance MMEA while suppressing the direct causal effect of the visual modality on model predictions. By estimating the Total Effect (TE) of both modalities and excluding the Natural Direct Effect (NDE) of the visual modality, we ensure that the model predicts based on the Total Indirect Effect (TIE), effectively utilizing both modalities and reducing visual modality bias. Extensive experiments on 9 benchmark datasets show that CDMEA outperforms 14 state-of-the-art methods, especially in low-similarity, high-noise, and low-resource data scenarios.
comment: Accepted by SIGIR 2025, 11 pages, 10 figures, 4 tables,
Context Selection and Rewriting for Video-based Educational Question Generation
Educational question generation (EQG) is a crucial component of intelligent educational systems, significantly aiding self-assessment, active learning, and personalized education. While EQG systems have emerged, existing datasets typically rely on predefined, carefully edited texts, failing to represent real-world classroom content, including lecture speech with a set of complementary slides. To bridge this gap, we collect a dataset of educational questions based on lectures from real-world classrooms. On this realistic dataset, we find that current methods for EQG struggle with accurately generating questions from educational videos, particularly in aligning with specific timestamps and target answers. Common challenges include selecting informative contexts from extensive transcripts and ensuring generated questions meaningfully incorporate the target answer. To address the challenges, we introduce a novel framework utilizing large language models for dynamically selecting and rewriting contexts based on target timestamps and answers. First, our framework selects contexts from both lecture transcripts and video keyframes based on answer relevance and temporal proximity. Then, we integrate the contexts selected from both modalities and rewrite them into answer-containing knowledge statements, to enhance the logical connection between the contexts and the desired answer. This approach significantly improves the quality and relevance of the generated questions. Our dataset and code are released in https://github.com/mengxiayu/COSER.
Unified Multi-Task Learning & Model Fusion for Efficient Language Model Guardrailing
The trend towards large language models (LLMs) for guardrailing against undesired behaviors is increasing and has shown promise for censoring user inputs. However, increased latency, memory consumption, hosting expenses and non-structured outputs can make their use prohibitive. In this work, we show that task-specific data generation can lead to fine-tuned classifiers that significantly outperform current state of the art (SoTA) while being orders of magnitude smaller. Secondly, we show that using a single model, \texttt{MultiTaskGuard}, that is pretrained on a large synthetically generated dataset with unique task instructions further improves generalization. Thirdly, our most performant models, \texttt{UniGuard}, are found using our proposed search-based model merging approach that finds an optimal set of parameters to combine single-policy models and multi-policy guardrail models. % On 7 public datasets and 4 guardrail benchmarks we created, our efficient guardrail classifiers improve over the best performing SoTA publicly available LLMs and 3$^{\text{rd}}$ party guardrail APIs in detecting unsafe and safe behaviors by an average F1 score improvement of \textbf{29.92} points over Aegis-LlamaGuard and \textbf{21.62} over \texttt{gpt-4o}, respectively. Lastly, our guardrail synthetic data generation process that uses custom task-specific guardrail poli
SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning
Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.
Versatile Framework for Song Generation with Prompt-based Control
Song generation focuses on producing controllable high-quality songs based on various prompts. However, existing methods struggle to generate vocals and accompaniments with prompt-based control and proper alignment. Additionally, they fall short in supporting various tasks. To address these challenges, we introduce VersBand, a multi-task song generation framework for synthesizing high-quality, aligned songs with prompt-based control. VersBand comprises these primary models: 1) VocalBand, a decoupled model, leverages the flow-matching method for generating singing styles, pitches, and mel-spectrograms, allowing fast, high-quality vocal generation with style control. 2) AccompBand, a flow-based transformer model, incorporates the Band-MOE, selecting suitable experts for enhanced quality, alignment, and control. This model allows for generating controllable, high-quality accompaniments aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for melodies, contribute to the comprehensive multi-task song generation system, allowing for extensive control based on multiple prompts. Experimental results demonstrate that VersBand performs better over baseline models across multiple song generation tasks using objective and subjective metrics. Audio samples are available at https://aaronz345.github.io/VersBandDemo.
Wanda++: Pruning Large Language Models via Regional Gradients
Large Language Models (LLMs) pruning seeks to remove unimportant weights for inference speedup with minimal performance impact. However, existing methods often suffer from performance loss without full-model sparsity-aware fine-tuning. This paper presents Wanda++, a novel pruning framework that outperforms the state-of-the-art methods by utilizing decoder-block-level \textbf{regional} gradients. Specifically, Wanda++ improves the pruning score with regional gradients for the first time and proposes an efficient regional optimization method to minimize pruning-induced output discrepancies between the dense and sparse decoder output. Notably, Wanda++ improves perplexity by up to 32\% over Wanda in the language modeling task and generalizes effectively to downstream tasks. Further experiments indicate our proposed method is orthogonal to sparsity-aware fine-tuning, where Wanda++ can be combined with LoRA fine-tuning to achieve a similar perplexity improvement as the Wanda method. The proposed method is lightweight, pruning a 7B LLaMA model in under 10 minutes on a single NVIDIA H100 GPU.
Inaccuracy of an E-Dictionary and Its Influence on Chinese Language Users
Electronic dictionaries have largely replaced paper dictionaries and become central tools for L2 learners seeking to expand their vocabulary. Users often assume these resources are reliable and rarely question the validity of the definitions provided. The accuracy of major E-dictionaries is seldom scrutinized, and little attention has been paid to how their corpora are constructed. Research on dictionary use, particularly the limitations of electronic dictionaries, remains scarce. This study adopts a combined method of experimentation, user survey, and dictionary critique to examine Youdao, one of the most widely used E-dictionaries in China. The experiment involved a translation task paired with retrospective reflection. Participants were asked to translate sentences containing words that are insufficiently or inaccurately defined in Youdao. Their consultation behavior was recorded to analyze how faulty definitions influenced comprehension. Results show that incomplete or misleading definitions can cause serious misunderstandings. Additionally, students exhibited problematic consultation habits. The study further explores how such flawed definitions originate, highlighting issues in data processing and the integration of AI and machine learning technologies in dictionary construction. The findings suggest a need for better training in dictionary literacy for users, as well as improvements in the underlying AI models used to build E-dictionaries.
comment: The scope of the work has evolved significantly since initial submission, and we are preparing a revised version that better reflects the current direction of the research
An LLM-Powered Agent for Physiological Data Analysis: A Case Study on PPG-based Heart Rate Estimation
Large language models (LLMs) are revolutionizing healthcare by improving diagnosis, patient care, and decision support through interactive communication. More recently, they have been applied to analyzing physiological time-series like wearable data for health insight extraction. Existing methods embed raw numerical sequences directly into prompts, which exceeds token limits and increases computational costs. Additionally, some studies integrated features extracted from time-series in textual prompts or applied multimodal approaches. However, these methods often produce generic and unreliable outputs due to LLMs' limited analytical rigor and inefficiency in interpreting continuous waveforms. In this paper, we develop an LLM-powered agent for physiological time-series analysis aimed to bridge the gap in integrating LLMs with well-established analytical tools. Built on the OpenCHA, an open-source LLM-powered framework, our agent powered by OpenAI's GPT-3.5-turbo model features an orchestrator that integrates user interaction, data sources, and analytical tools to generate accurate health insights. To evaluate its effectiveness, we implement a case study on heart rate (HR) estimation from Photoplethysmogram (PPG) signals using a dataset of PPG and Electrocardiogram (ECG) recordings in a remote health monitoring study. The agent's performance is benchmarked against OpenAI GPT-4o-mini and GPT-4o, with ECG serving as the gold standard for HR estimation. Results demonstrate that our agent significantly outperforms benchmark models by achieving lower error rates and more reliable HR estimations. The agent implementation is publicly available on GitHub.
HRScene: How Far Are VLMs from Effective High-Resolution Image Understanding?
High-resolution image (HRI) understanding aims to process images with a large number of pixels, such as pathological images and agricultural aerial images, both of which can exceed 1 million pixels. Vision Large Language Models (VLMs) can allegedly handle HRIs, however, there is a lack of a comprehensive benchmark for VLMs to evaluate HRI understanding. To address this gap, we introduce HRScene, a novel unified benchmark for HRI understanding with rich scenes. HRScene incorporates 25 real-world datasets and 2 synthetic diagnostic datasets with resolutions ranging from 1,024 $\times$ 1,024 to 35,503 $\times$ 26,627. HRScene is collected and re-annotated by 10 graduate-level annotators, covering 25 scenarios, ranging from microscopic to radiology images, street views, long-range pictures, and telescope images. It includes HRIs of real-world objects, scanned documents, and composite multi-image. The two diagnostic evaluation datasets are synthesized by combining the target image with the gold answer and distracting images in different orders, assessing how well models utilize regions in HRI. We conduct extensive experiments involving 28 VLMs, including Gemini 2.0 Flash and GPT-4o. Experiments on HRScene show that current VLMs achieve an average accuracy of around 50% on real-world tasks, revealing significant gaps in HRI understanding. Results on synthetic datasets reveal that VLMs struggle to effectively utilize HRI regions, showing significant Regional Divergence and lost-in-middle, shedding light on future research.
comment: 22 pages, 8 figures
Constraint Back-translation Improves Complex Instruction Following of Large Language Models
Large language models (LLMs) struggle to follow instructions with complex constraints in format, length, etc. Following the conventional instruction-tuning practice, previous works conduct post-training on complex instruction-response pairs generated by feeding complex instructions to advanced LLMs. However, even advanced LLMs cannot follow complex instructions well, thus limiting the quality of generated data. In this work, we find that existing datasets inherently contain implicit complex constraints and propose a novel data generation technique, constraint back-translation. Specifically, we take the high-quality instruction-response pairs in existing datasets and only adopt advanced LLMs to add complex constraints already met by the responses to the instructions, which naturally reduces costs and data noise. In the experiments, we adopt Llama3-70B-Instruct to back-translate constraints and create a high-quality complex instruction-response dataset, named CRAB. We present that post-training on CRAB improves multiple backbone LLMs' complex instruction-following ability, evaluated on extensive instruction-following benchmarks. We further find that constraint back-translation also serves as a useful auxiliary training objective in post-training. Our code, data, and models will be released to facilitate future research.
comment: 14 pages, 6 figures
A Bayesian Optimization Approach to Machine Translation Reranking NAACL 2025
Reranking a list of candidates from a machine translation system with an external scoring model and returning the highest-scoring candidate remains a simple and effective method for improving the overall output quality. Translation scoring models continue to grow in size, with the best models being comparable to generation models. Thus, reranking can add substantial computational cost to the translation pipeline. In this work, we pose reranking as a Bayesian optimization (BayesOpt) problem. By strategically selecting candidates to score based on a balance of exploration and exploitation, we show that it is possible to find top-scoring candidates when scoring only a fraction of the candidate list. For instance, our method achieves the same CometKiwi score using only 70 scoring evaluations compared a baseline system using 180. We present a multi-fidelity setting for BayesOpt, where the candidates are first scored with a cheaper but noisier proxy scoring model, which further improves the cost-performance tradeoff when using smaller but well-trained distilled proxy scorers.
comment: NAACL 2025 camera ready
Agentic AI: The Era of Semantic Decoding
Recent work demonstrated great promise in the idea of orchestrating collaborations between LLMs, human input, and various tools to address the inherent limitations of LLMs. We propose a novel perspective called semantic decoding, which frames these collaborative processes as optimization procedures in semantic space. Specifically, we conceptualize LLMs as semantic processors that manipulate meaningful pieces of information that we call semantic tokens (known thoughts). LLMs are among a large pool of other semantic processors, including humans and tools, such as search engines or code executors. Collectively, semantic processors engage in dynamic exchanges of semantic tokens to progressively construct high-utility outputs. We refer to these orchestrated interactions among semantic processors, optimizing and searching in semantic space, as semantic decoding algorithms. This concept draws a direct parallel to the well-studied problem of syntactic decoding, which involves crafting algorithms to best exploit auto-regressive language models for extracting high-utility sequences of syntactic tokens. By focusing on the semantic level and disregarding syntactic details, we gain a fresh perspective on the engineering of AI systems, enabling us to imagine systems with much greater complexity and capabilities. In this position paper, we formalize the transition from syntactic to semantic tokens as well as the analogy between syntactic and semantic decoding. Subsequently, we explore the possibilities of optimizing within the space of semantic tokens via semantic decoding algorithms. We conclude with a list of research opportunities and questions arising from this fresh perspective. The semantic decoding perspective offers a powerful abstraction for search and optimization directly in the space of meaningful concepts, with semantic tokens as the fundamental units of a new type of computation.
comment: 25 pages, 3 figures
Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs' outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
LocAgent: Graph-Guided LLM Agents for Code Localization
Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.
Seed1.5-Thinking: Advancing Superb Reasoning Models with Reinforcement Learning
We introduce Seed1.5-Thinking, capable of reasoning through thinking before responding, resulting in improved performance on a wide range of benchmarks. Seed1.5-Thinking achieves 86.7 on AIME 2024, 55.0 on Codeforces and 77.3 on GPQA, demonstrating excellent reasoning abilities in STEM and coding. Beyond reasoning tasks, the method demonstrates notable generalization across diverse domains. For instance, it surpasses DeepSeek R1 by 8% in win rate on non-reasoning tasks, indicating its broader applicability. Compared to other state-of-the-art reasoning models, Seed1.5-Thinking is a Mixture-of-Experts (MoE) model with a relatively small size, featuring 20B activated and 200B total parameters. As part of our effort to assess generalized reasoning, we develop two internal benchmarks, BeyondAIME and Codeforces, both of which will be publicly released to support future research. Model trial link: https://www.volcengine.com/experience/ark.
Beyond the Safety Bundle: Auditing the Helpful and Harmless Dataset
In an effort to mitigate the harms of large language models (LLMs), learning from human feedback (LHF) has been used to steer LLMs towards outputs that are intended to be both less harmful and more helpful. Despite the widespread adoption of LHF in practice, the quality of this feedback and its effectiveness as a safety mitigation technique remain unclear. This study addresses these issues by auditing the widely-used Helpful and Harmless (HH) dataset by Anthropic. Our work includes: (1) a thorough investigation of the dataset's content through both manual and automated evaluation; (2) experiments demonstrating the dataset's impact on models' safety; and (3) an analysis of the 100 most influential papers citing this dataset. Through our audit, we showcase how conceptualization failures and quality issues identified in the HH dataset can create additional harms by leading to disparate safety behaviors across demographic groups. Our findings highlight the need for more nuanced, context-sensitive approaches to safety mitigation in LLMs.
comment: Prepared for conference submission
SemEval-2025 Task 1: AdMIRe -- Advancing Multimodal Idiomaticity Representation SemEval-2025
Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.
comment: Author accepted version; SemEval-2025 proceedings to appear at ACL 2025
DP-2Stage: Adapting Language Models as Differentially Private Tabular Data Generators
Generating tabular data under differential privacy (DP) protection ensures theoretical privacy guarantees but poses challenges for training machine learning models, primarily due to the need to capture complex structures under noisy supervision signals. Recently, pre-trained Large Language Models (LLMs) -- even those at the scale of GPT-2 -- have demonstrated great potential in synthesizing tabular data. However, their applications under DP constraints remain largely unexplored. In this work, we address this gap by applying DP techniques to the generation of synthetic tabular data. Our findings shows that LLMs face difficulties in generating coherent text when fine-tuned with DP, as privacy budgets are inefficiently allocated to non-private elements like table structures. To overcome this, we propose DP-2Stage, a two-stage fine-tuning framework for differentially private tabular data generation. The first stage involves non-private fine-tuning on a pseudo dataset, followed by DP fine-tuning on a private dataset. Our empirical results show that this approach improves performance across various settings and metrics compared to directly fine-tuned LLMs in DP contexts. We release our code and setup at https://github.com/tejuafonja/DP-2Stage.
The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Kling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
comment: Our code is available at https://github.com/LanDiff/LanDiff
Pose-Based Sign Language Appearance Transfer
We introduce a method for transferring the signer's appearance in sign language skeletal poses while preserving the sign content. Using estimated poses, we transfer the appearance of one signer to another, maintaining natural movements and transitions. This approach improves pose-based rendering and sign stitching while obfuscating identity. Our experiments show that while the method reduces signer identification accuracy, it slightly harms sign recognition performance, highlighting a tradeoff between privacy and utility. Our code is available at https://github.com/sign-language-processing/pose-anonymization.
Kaleidoscope: In-language Exams for Massively Multilingual Vision Evaluation
The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.
comment: v2: corrected the author list
MEMERAG: A Multilingual End-to-End Meta-Evaluation Benchmark for Retrieval Augmented Generation
Automatic evaluation of retrieval augmented generation (RAG) systems relies on fine-grained dimensions like faithfulness and relevance, as judged by expert human annotators. Meta-evaluation benchmarks support the development of automatic evaluators that correlate well with human judgement. However, existing benchmarks predominantly focus on English or use translated data, which fails to capture cultural nuances. A native approach provides a better representation of the end user experience. In this work, we develop a Multilingual End-to-end Meta-Evaluation RAG benchmark (MEMERAG). Our benchmark builds on the popular MIRACL dataset, using native-language questions and generating responses with diverse large language models (LLMs), which are then assessed by expert annotators for faithfulness and relevance. We describe our annotation process and show that it achieves high inter-annotator agreement. We then analyse the performance of the answer-generating LLMs across languages as per the human evaluators. Finally we apply the dataset to our main use-case which is to benchmark multilingual automatic evaluators (LLM-as-a-judge). We show that our benchmark can reliably identify improvements offered by advanced prompting techniques and LLMs. Our dataset is available at https://github.com/amazon-science/MEMERAG
Racing Thoughts: Explaining Contextualization Errors in Large Language Models
The profound success of transformer-based language models can largely be attributed to their ability to integrate relevant contextual information from an input sequence in order to generate a response or complete a task. However, we know very little about the algorithms that a model employs to implement this capability, nor do we understand their failure modes. For example, given the prompt "John is going fishing, so he walks over to the bank. Can he make an ATM transaction?", a model may incorrectly respond "Yes" if it has not properly contextualized "bank" as a geographical feature, rather than a financial institution. We propose the LLM Race Conditions Hypothesis as an explanation of contextualization errors of this form. This hypothesis identifies dependencies between tokens (e.g., "bank" must be properly contextualized before the final token, "?", integrates information from "bank"), and claims that contextualization errors are a result of violating these dependencies. Using a variety of techniques from mechanistic intepretability, we provide correlational and causal evidence in support of the hypothesis, and suggest inference-time interventions to address it.
From tools to thieves: Measuring and understanding public perceptions of AI through crowdsourced metaphors
How has the public responded to the increasing prevalence of artificial intelligence (AI)-based technologies? We investigate public perceptions of AI by collecting over 12,000 responses over 12 months from a nationally representative U.S. sample. Participants provided open-ended metaphors reflecting their mental models of AI, a methodology that overcomes the limitations of traditional self-reported measures by capturing more nuance. Using a mixed-methods approach combining quantitative clustering and qualitative coding, we identify 20 dominant metaphors shaping public understanding of AI. To analyze these metaphors systematically, we present a scalable framework integrating language modeling (LM)-based techniques to measure key dimensions of public perception: anthropomorphism (attribution of human-like qualities), warmth, and competence. We find that Americans generally view AI as warm and competent, and that over the past year, perceptions of AI's human-likeness and warmth have significantly increased ($+34\%, r = 0.80, p < 0.01; +41\%, r = 0.62, p < 0.05$). These implicit perceptions, along with the identified dominant metaphors, strongly predict trust in and willingness to adopt AI ($r^2 = 0.21, 0.18, p < 0.001$). Moreover, we uncover systematic demographic differences in metaphors and implicit perceptions, such as the higher propensity of women, older individuals, and people of color to anthropomorphize AI, which shed light on demographic disparities in trust and adoption. In addition to our dataset and framework for tracking evolving public attitudes, we provide actionable insights on using metaphors for inclusive and responsible AI development.
comment: To appear at the ACM Conference on Fairness, Accountability, and Transparency 2025
Evaluating the Symbol Binding Ability of Large Language Models for Multiple-Choice Questions in Vietnamese General Education
In this paper, we evaluate the ability of large language models (LLMs) to perform multiple choice symbol binding (MCSB) for multiple choice question answering (MCQA) tasks in zero-shot, one-shot, and few-shot settings. We focus on Vietnamese, with fewer challenging MCQA datasets than in English. The two existing datasets, ViMMRC 1.0 and ViMMRC 2.0, focus on literature. Recent research in Vietnamese natural language processing (NLP) has focused on the Vietnamese National High School Graduation Examination (VNHSGE) from 2019 to 2023 to evaluate ChatGPT. However, these studies have mainly focused on how ChatGPT solves the VNHSGE step by step. We aim to create a novel and high-quality dataset by providing structured guidelines for typing LaTeX formulas for mathematics, physics, chemistry, and biology. This dataset can be used to evaluate the MCSB ability of LLMs and smaller language models (LMs) because it is typed in a strict LaTeX style. We focus on predicting the character (A, B, C, or D) that is the most likely answer to a question, given the context of the question. Our evaluation of six well-known LLMs, namely BLOOMZ-7.1B-MT, LLaMA-2-7B, LLaMA-2-70B, GPT-3, GPT-3.5, and GPT-4.0, on the ViMMRC 1.0 and ViMMRC 2.0 benchmarks and our proposed dataset shows promising results on the MCSB ability of LLMs for Vietnamese. The dataset is available for research purposes only.
comment: Accepted at SoICT 2023
Owls are wise and foxes are unfaithful: Uncovering animal stereotypes in vision-language models
Animal stereotypes are deeply embedded in human culture and language. They often shape our perceptions and expectations of various species. Our study investigates how animal stereotypes manifest in vision-language models during the task of image generation. Through targeted prompts, we explore whether DALL-E perpetuates stereotypical representations of animals, such as "owls as wise," "foxes as unfaithful," etc. Our findings reveal significant stereotyped instances where the model consistently generates images aligned with cultural biases. The current work is the first of its kind to examine animal stereotyping in vision-language models systematically and to highlight a critical yet underexplored dimension of bias in AI-generated visual content.
Benchmarking LLMs' Judgments with No Gold Standard ICLR 2025
We introduce the GEM (Generative Estimator for Mutual Information), an evaluation metric for assessing language generation by Large Language Models (LLMs), particularly in generating informative judgments, without the need for a gold standard reference. GEM broadens the scenarios where we can benchmark LLM generation performance-from traditional ones, like machine translation and summarization, where gold standard references are readily available, to subjective tasks without clear gold standards, such as academic peer review. GEM uses a generative model to estimate mutual information between candidate and reference responses, without requiring the reference to be a gold standard. In experiments on a human-annotated dataset, GEM demonstrates competitive correlations with human scores compared to the state-of-the-art GPT-4o Examiner, and outperforms all other baselines. Additionally, GEM is more robust against strategic manipulations, such as rephrasing or elongation, which can artificially inflate scores under a GPT-4o Examiner. We also present GRE-bench (Generating Review Evaluation Benchmark) which evaluates LLMs based on how well they can generate high-quality peer reviews for academic research papers. Because GRE-bench is based upon GEM, it inherits its robustness properties. Additionally, GRE-bench circumvents data contamination problems (or data leakage) by using the continuous influx of new open-access research papers and peer reviews each year. We show GRE-bench results of various popular LLMs on their peer review capabilities using the ICLR2023 dataset.
comment: The Thirteenth International Conference on Learning Representations (ICLR 2025)
CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation
Large language models (LLMs) have revolutionized natural language processing (NLP), particularly through Retrieval-Augmented Generation (RAG), which enhances LLM capabilities by integrating external knowledge. However, traditional RAG systems face critical limitations, including disrupted contextual integrity due to text chunking, and over-reliance on semantic similarity for retrieval. To address these issues, we propose CausalRAG, a novel framework that incorporates causal graphs into the retrieval process. By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision, leading to more accurate and interpretable responses. We evaluate CausalRAG against regular RAG and graph-based RAG approaches, demonstrating its superiority across several metrics. Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
LLM-based Automated Grading with Human-in-the-Loop
The rise of artificial intelligence (AI) technologies, particularly large language models (LLMs), has brought significant advancements to the field of education. Among various applications, automatic short answer grading (ASAG), which focuses on evaluating open-ended textual responses, has seen remarkable progress with the introduction of LLMs. These models not only enhance grading performance compared to traditional ASAG approaches but also move beyond simple comparisons with predefined "golden" answers, enabling more sophisticated grading scenarios, such as rubric-based evaluation. However, existing LLM-powered methods still face challenges in achieving human-level grading performance in rubric-based assessments due to their reliance on fully automated approaches. In this work, we explore the potential of LLMs in ASAG tasks by leveraging their interactive capabilities through a human-in-the-loop (HITL) approach. Our proposed framework, GradeHITL, utilizes the generative properties of LLMs to pose questions to human experts, incorporating their insights to refine grading rubrics dynamically. This adaptive process significantly improves grading accuracy, outperforming existing methods and bringing ASAG closer to human-level evaluation.
Semantic Consistency for Assuring Reliability of Large Language Models
Large Language Models (LLMs) exhibit remarkable fluency and competence across various natural language tasks. However, recent research has highlighted their sensitivity to variations in input prompts. To deploy LLMs in a safe and reliable manner, it is crucial for their outputs to be consistent when prompted with expressions that carry the same meaning or intent. While some existing work has explored how state-of-the-art LLMs address this issue, their evaluations have been confined to assessing lexical equality of single- or multi-word answers, overlooking the consistency of generative text sequences. For a more comprehensive understanding of the consistency of LLMs in open-ended text generation scenarios, we introduce a general measure of semantic consistency, and formulate multiple versions of this metric to evaluate the performance of various LLMs. Our proposal demonstrates significantly higher consistency and stronger correlation with human evaluations of output consistency than traditional metrics based on lexical consistency. Finally, we propose a novel prompting strategy, called Ask-to-Choose (A2C), to enhance semantic consistency. When evaluated for closed-book question answering based on answer variations from the TruthfulQA benchmark, A2C increases accuracy metrics for pretrained and finetuned LLMs by up to 47%, and semantic consistency metrics for instruction-tuned models by up to 7-fold.
comment: An updated version of this preprint is available at arXiv:2502.15924, and has been accepted at the Transactions on Machine Learning Research
Prophet: Prompting Large Language Models with Complementary Answer Heuristics for Knowledge-based Visual Question Answering CVPR 2023
Knowledge-based visual question answering (VQA) requires external knowledge beyond the image to answer the question. Early studies retrieve required knowledge from explicit knowledge bases (KBs), which often introduces irrelevant information to the question, hence restricting the performance of their models. Recent works have resorted to using a powerful large language model (LLM) as an implicit knowledge engine to acquire the necessary knowledge for answering. Despite the encouraging results achieved by these methods, we argue that they have not fully activated the capacity of the \emph{blind} LLM as the provided textual input is insufficient to depict the required visual information to answer the question. In this paper, we present Prophet -- a conceptually simple, flexible, and general framework designed to prompt LLM with answer heuristics for knowledge-based VQA. Specifically, we first train a vanilla VQA model on a specific knowledge-based VQA dataset without external knowledge. After that, we extract two types of complementary answer heuristics from the VQA model: answer candidates and answer-aware examples. The two types of answer heuristics are jointly encoded into a formatted prompt to facilitate the LLM's understanding of both the image and question, thus generating a more accurate answer. By incorporating the state-of-the-art LLM GPT-3, Prophet significantly outperforms existing state-of-the-art methods on four challenging knowledge-based VQA datasets. Prophet is general that can be instantiated with the combinations of different VQA models (i.e., both discriminative and generative ones) and different LLMs (i.e., both commercial and open-source ones). Moreover, Prophet can also be integrated with modern large multimodal models in different stages, which is named Prophet++, to further improve the capabilities on knowledge-based VQA tasks.
comment: An extended journal version of our CVPR 2023 paper, which has been accepted at IEEE T-PAMI 2025. The original conference version can be referred to as the v1 version
TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
Correcting Negative Bias in Large Language Models through Negative Attention Score Alignment NAACL 2025
A binary decision task, like yes-no questions or answer verification, reflects a significant real-world scenario such as where users look for confirmation about the correctness of their decisions on specific issues. In this work, we observe that language models exhibit a negative bias in the binary decisions of complex reasoning tasks. Based on our observations and the rationale about attention-based model dynamics, we propose a negative attention score (NAS) to systematically and quantitatively formulate negative bias. Based on NAS, we identify attention heads that attend to negative tokens provided in the instructions as answer candidate of binary decisions, regardless of the question in the prompt, and validate their association with the negative bias. Additionally, we propose the negative attention score alignment (NASA) method, which is a parameter-efficient fine-tuning technique to address the extracted negatively biased attention heads. Experimental results from various domains of reasoning tasks and large model search space demonstrate that NASA significantly reduces the gap between precision and recall caused by negative bias while preserving their generalization abilities.
comment: NAACL 2025 Oral
Unleashing Multi-Hop Reasoning Potential in Large Language Models through Repetition of Misordered Context NAACL 2025
Multi-hop reasoning, which requires multi-step reasoning based on the supporting documents within a given context, remains challenging for large language models (LLMs). LLMs often struggle to filter out irrelevant documents within the context, and their performance is sensitive to the absolute position of supporting documents within that context. In this paper, we identify an additional challenge: LLMs' performance is also sensitive to the order, relative position, in which the supporting documents are presented. We refer to this as the misordered context problem. To address this issue, based on the theoretical approach, we propose a simple yet effective method called context repetition (CoRe), which involves prompting the model by repeatedly presenting the context. This ensures that certain contiguous reasoning segments within supporting documents are presented in the optimal order, effectively guiding the model's reasoning in the appropriate direction. Applying CoRe, we improve the F1 score by up to 30%p on multi-hop QA tasks and increase accuracy by up to 70%p on a synthetic task. Additionally, CoRe helps mitigate the well-known "lost-in-the-middle" problem in LLMs and can be effectively combined with retrieval-based approaches utilizing Chain-of-Thought (CoT) reasoning.
comment: NAACL 2025 Findings
REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations CVPR 2025
Existing image editing models struggle to meet real-world demands. Despite excelling in academic benchmarks, they have yet to be widely adopted for real user needs. Datasets that power these models use artificial edits, lacking the scale and ecological validity necessary to address the true diversity of user requests. We introduce REALEDIT, a large-scale image editing dataset with authentic user requests and human-made edits sourced from Reddit. REALEDIT includes a test set of 9300 examples to evaluate models on real user requests. Our results show that existing models fall short on these tasks, highlighting the need for realistic training data. To address this, we introduce 48K training examples and train our REALEDIT model, achieving substantial gains - outperforming competitors by up to 165 Elo points in human judgment and 92 percent relative improvement on the automated VIEScore metric. We deploy our model on Reddit, testing it on new requests, and receive positive feedback. Beyond image editing, we explore REALEDIT's potential in detecting edited images by partnering with a deepfake detection non-profit. Finetuning their model on REALEDIT data improves its F1-score by 14 percentage points, underscoring the dataset's value for broad applications.
comment: Published at CVPR 2025
SynLexLM: Scaling Legal LLMs with Synthetic Data and Curriculum Learning
Large Language Models (LLMs) are powerful but often require extensive fine-tuning and large datasets for specialized domains like law. General-purpose pre-training may not capture legal nuances, and acquiring sufficient legal data is challenging. We introduce SynLexLM, a novel approach to efficiently pre-train a legal LLM. Our method employs curriculum learning, progressing from simple to complex legal texts and queries, combined with synthetic data augmentation using models like Gemini Pro to address data scarcity. We aim to achieve improved performance on legal benchmarks (BigLaw-Bench, EUR-Lex-Sum) compared to traditional models and fine-tuned versions. Preliminary work involves generating synthetic QA pairs reflecting legal reasoning. This work aims to enhance legal document analysis and research tools, potentially democratizing access to advanced legal AI.
comment: 9 pages, 4 figures, 4 tables
Does Generative AI speak Nigerian-Pidgin?: Issues about Representativeness and Bias for Multilingualism in LLMs NAACL 2025
Nigeria is a multilingual country with 500+ languages. Naija is a Nigerian Pidgin spoken by approximately 120M speakers and it is a mixed language (e.g., English, Portuguese, Yoruba, Hausa and Igbo). Although it has mainly been a spoken language until recently, there are some online platforms (e.g., Wikipedia), publishing in written Naija as well. West African Pidgin English (WAPE) is also spoken in Nigeria and it is used by BBC to broadcast news on the internet to a wider audience not only in Nigeria but also in other West African countries (e.g., Cameroon and Ghana). Through statistical analyses and Machine Translation experiments, our paper shows that these two pidgin varieties do not represent each other (i.e., there are linguistic differences in word order and vocabulary) and Generative AI operates only based on WAPE. In other words, Naija is underrepresented in Generative AI, and it is hard to teach LLMs with few examples. In addition to the statistical analyses, we also provide historical information on both pidgins as well as insights from the interviews conducted with volunteer Wikipedia contributors in Naija.
comment: Accepted to NAACL 2025 (findings), please cite ACL anthology reference on https://aclanthology.org/2025.findings-naacl.85/
EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
Learning Code-Edit Embedding to Model Student Debugging Behavior
Providing effective feedback for programming assignments in computer science education can be challenging: students solve problems by iteratively submitting code, executing it, and using limited feedback from the compiler or the auto-grader to debug. Analyzing student debugging behavior in this process may reveal important insights into their knowledge and inform better personalized support tools. In this work, we propose an encoder-decoder-based model that learns meaningful code-edit embeddings between consecutive student code submissions, to capture their debugging behavior. Our model leverages information on whether a student code submission passes each test case to fine-tune large language models (LLMs) to learn code editing representations. It enables personalized next-step code suggestions that maintain the student's coding style while improving test case correctness. Our model also enables us to analyze student code-editing patterns to uncover common student errors and debugging behaviors, using clustering techniques. Experimental results on a real-world student code submission dataset demonstrate that our model excels at code reconstruction and personalized code suggestion while revealing interesting patterns in student debugging behavior.
comment: Published on the 26th International Conference on Artificial Intelligence in Education (AIED 2025)
Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures Updated Appendix with example model responses
Agentic AI Systems Applied to tasks in Financial Services: Modeling and model risk management crews
The advent of large language models has ushered in a new era of agentic systems, where artificial intelligence programs exhibit remarkable autonomous decision-making capabilities across diverse domains. This paper explores agentic system workflows in the financial services industry. In particular, we build agentic crews with human-in-the-loop module that can effectively collaborate to perform complex modeling and model risk management (MRM) tasks. The modeling crew consists of a judge agent and multiple agents who perform specific tasks such as exploratory data analysis, feature engineering, model selection/hyperparameter tuning, model training, model evaluation, and writing documentation. The MRM crew consists of a judge agent along with specialized agents who perform tasks such as checking compliance of modeling documentation, model replication, conceptual soundness, analysis of outcomes, and writing documentation. We demonstrate the effectiveness and robustness of modeling and MRM crews by presenting a series of numerical examples applied to credit card fraud detection, credit card approval, and portfolio credit risk modeling datasets.
Leveraging Conditional Mutual Information to Improve Large Language Model Fine-Tuning For Classification
Although large language models (LLMs) have demonstrated remarkable capabilities in recent years, the potential of information theory (IT) to enhance LLM development remains underexplored. This paper introduces the information theoretic principle of Conditional Mutual Information (CMI) to LLM fine-tuning for classification tasks, exploring its promise in two main ways: minimizing CMI to improve a model's standalone performance and maximizing CMI to enhance knowledge distillation (KD) for more capable student models. To apply CMI in LLM fine-tuning, we adapt the recently proposed CMI-constrained deep learning framework, which was initially developed for image classification, with some modification. By minimizing CMI during LLM fine-tuning, we achieve superior performance gains on 6 of 8 GLUE classification tasks compared to BERT. Additionally, maximizing CMI during the KD process results in significant performance improvements in 6 of 8 GLUE classification tasks compared to DistilBERT. These findings demonstrate CMI's adaptability for optimizing both standalone LLMs and student models, showcasing its potential as a robust framework for advancing LLM fine-tuning. Our work bridges the gap between information theory and LLM development, offering new insights for building high-performing language models.
comment: 6 pages, 2 figures, Published to IEEE ISIT 2025
Mastering Board Games by External and Internal Planning with Language Models
Advancing planning and reasoning capabilities of Large Language Models (LLMs) is one of the key prerequisites towards unlocking their potential for performing reliably in complex and impactful domains. In this paper, we aim to demonstrate this across board games (Chess, Fischer Random / Chess960, Connect Four, and Hex), and we show that search-based planning can yield significant improvements in LLM game-playing strength. We introduce, compare and contrast two major approaches: In external search, the model guides Monte Carlo Tree Search (MCTS) rollouts and evaluations without calls to an external game engine, and in internal search, the model is trained to generate in-context a linearized tree of search and a resulting final choice. Both build on a language model pre-trained on relevant domain knowledge, reliably capturing the transition and value functions in the respective environments, with minimal hallucinations. We evaluate our LLM search implementations against game-specific state-of-the-art engines, showcasing substantial improvements in strength over the base model, and reaching Grandmaster-level performance in chess while operating closer to the human search budget. Our proposed approach, combining search with domain knowledge, is not specific to board games, hinting at more general future applications.
comment: 70 pages, 10 figures
Human-Computer Interaction
Real-Time Wayfinding Assistant for Blind and Low-Vision Users
Navigating unfamiliar places continues to be one of the most persistent and essential everyday obstacles for those who are blind or have limited vision (BLV). Existing assistive technologies, such as GPS-based navigation systems, AI-powered smart glasses, and sonar-equipped canes, often face limitations in real-time obstacle avoidance, precise localization, and adaptability to dynamic surroundings. To investigate potential solutions, we introduced PathFinder, a novel map-less navigation system that explores different models for understanding 2D images, including Vision Language Models (VLMs), Large Language Models (LLMs), and employs monocular depth estimation for free-path detection. Our approach integrates a Depth-First Search (DFS) algorithm on depth images to determine the longest obstacle-free path, ensuring optimal route selection while maintaining computational efficiency. We conducted comparative evaluations against existing AI-powered navigation methods and performed a usability study with BLV participants. The results demonstrate that PathFinder achieves a favorable balance between accuracy, computational efficiency, and real-time responsiveness. Notably, it reduces mean absolute error (MAE) and improves decision-making speed in outdoor navigation compared to AI-based alternatives. Participant feedback emphasizes the system's usability and effectiveness in outside situations, but also identifies issues in complicated indoor locations and low-light conditions. Usability testing revealed that 73% of participants understood how to use the app in about a minute, and 80% praised its balance of accuracy, quick response, and overall convenience.
When Testing AI Tests Us: Safeguarding Mental Health on the Digital Frontlines
Red-teaming is a core part of the infrastructure that ensures that AI models do not produce harmful content. Unlike past technologies, the black box nature of generative AI systems necessitates a uniquely interactional mode of testing, one in which individuals on red teams actively interact with the system, leveraging natural language to simulate malicious actors and solicit harmful outputs. This interactional labor done by red teams can result in mental health harms that are uniquely tied to the adversarial engagement strategies necessary to effectively red team. The importance of ensuring that generative AI models do not propagate societal or individual harm is widely recognized -- one less visible foundation of end-to-end AI safety is also the protection of the mental health and wellbeing of those who work to keep model outputs safe. In this paper, we argue that the unmet mental health needs of AI red-teamers is a critical workplace safety concern. Through analyzing the unique mental health impacts associated with the labor done by red teams, we propose potential individual and organizational strategies that could be used to meet these needs, and safeguard the mental health of red-teamers. We develop our proposed strategies through drawing parallels between common red-teaming practices and interactional labor common to other professions (including actors, mental health professionals, conflict photographers, and content moderators), describing how individuals and organizations within these professional spaces safeguard their mental health given similar psychological demands. Drawing on these protective practices, we describe how safeguards could be adapted for the distinct mental health challenges experienced by red teaming organizations as they mitigate emerging technological risks on the new digital frontlines.
comment: Accepted to ACM Conference on Fairness, Accountability, and Transparency (FAccT 2025)
Modeling AI-Human Collaboration as a Multi-Agent Adaptation
We develop an agent-based simulation to formalize AI-human collaboration as a function of task structure, advancing a generalizable framework for strategic decision-making in organizations. Distinguishing between heuristic-based human adaptation and rule-based AI search, we model interactions across modular (parallel) and sequenced (interdependent) tasks using an NK model. Our results reveal that in modular tasks, AI often substitutes for humans - delivering higher payoffs unless human expertise is very high, and the AI search space is either narrowly focused or extremely broad. In sequenced tasks, interesting complementarities emerge. When an expert human initiates the search and AI subsequently refines it, aggregate performance is maximized. Conversely, when AI leads, excessive heuristic refinement by the human can reduce payoffs. We also show that even "hallucinatory" AI - lacking memory or structure - can improve outcomes when augmenting low-capability humans by helping escape local optima. These results yield a robust implication: the effectiveness of AI-human collaboration depends less on context or industry, and more on the underlying task structure. By elevating task decomposition as the central unit of analysis, our model provides a transferable lens for strategic decision-making involving humans and an agentic AI across diverse organizational settings.
comment: Manuscript under review for the Special Issue: 'Can AI Do Strategy?' at Strategy Science (May 1, 2025)
Mapping a Movement: Exploring a Proposed Police Training Facility in Atlanta and the Stop Cop City Movement through Online Maps
In 2021, the City of Atlanta and Atlanta Police Foundation launched plans to build a large police training facility in the South River Forest in unincorporated DeKalb County, GA. Residents of Atlanta and DeKalb County, environmental activists, police and prison abolitionists, and other activists and concerned individuals formed the movement in opposition to the facility, known as the Stop Cop City / Defend the Atlanta Forest movement. Social media and digital maps became common tools for communicating information about the facility and the movement. Here, we examine online maps about the facility and the opposition movement, originating from grassroots organizations, the City of Atlanta, news media outlets, the Atlanta Police Foundation, and individuals. We gather and examine 32 publicly available maps collected through the Google Search API, Twitter (now X), Instagram and reddit. Using a framework of critical cartography, we conduct a content analysis of these maps to identify the mapping technologies and techniques (data, cartographic elements, styles) used by different stakeholders and roles that maps and mapping technologies can play in social movements. We examine the extent to which these maps provide data to confirm or contradict concerns raised by grassroots organizations and local residents about the facility. We find that stakeholders and mapmakers use geospatial tools in different ways and likely have varied access to mapping technologies. We argue that documenting the use of maps to communicate information about a contentious project can help enumerate community positions and perspectives, and we advocate for accessible mapmaking tools. We conclude by discussing the implications of accessibility of mapping technology and posting maps to social media, and share example map images that extend the geographic information systems (GIS) techniques seen in the retrieved maps.
comment: Supplementary material available at https://doi.org/10.7910/DVN/PCQ294
Effect of Avatar Head Movement on Communication Behaviour, Experience of Presence and Conversation Success in Triadic Conversations
Interactive communication in virtual reality can be used in experimental paradigms to increase the ecological validity of hearing device evaluations. This requires the virtual environment to elicit natural communication behaviour in listeners. This study evaluates the effect of virtual animated characters' head movements on participants' communication behaviour and experience. Triadic conversations were conducted between a test participant and two confederates. To facilitate the manipulation of head movements, the conversation was conducted in telepresence using a system that transmitted audio, head movement data and video with low delay. The confederates were represented by virtual animated characters (avatars) with different levels of animation: Static heads, automated head movement animations based on speech level onsets, and animated head movements based on the transmitted head movements of the interlocutors. A condition was also included in which the videos of the interlocutors' heads were embedded in the visual scene. The results show significant effects of animation level on the participants' speech and head movement behaviour as recorded by physical sensors, as well as on the subjective sense of presence and the success of the conversation. The largest effects were found for the range of head orientation during speech and the perceived realism of avatars. Participants reported that they were spoken to in a more helpful way when the avatars showed head movements transmitted from the interlocutors than when the avatars' heads were static. We therefore conclude that the representation of interlocutors must include sufficiently realistic head movements in order to elicit natural communication behaviour.
RecGaze: The First Eye Tracking and User Interaction Dataset for Carousel Interfaces SIGIR '25
Carousel interfaces are widely used in e-commerce and streaming services, but little research has been devoted to them. Previous studies of interfaces for presenting search and recommendation results have focused on single ranked lists, but it appears their results cannot be extrapolated to carousels due to the added complexity. Eye tracking is a highly informative approach to understanding how users click, yet there are no eye tracking studies concerning carousels. There are very few interaction datasets on recommenders with carousel interfaces and none that contain gaze data. We introduce the RecGaze dataset: the first comprehensive feedback dataset on carousels that includes eye tracking results, clicks, cursor movements, and selection explanations. The dataset comprises of interactions from 3 movie selection tasks with 40 different carousel interfaces per user. In total, 87 users and 3,477 interactions are logged. In addition to the dataset, its description and possible use cases, we provide results of a survey on carousel design and the first analysis of gaze data on carousels, which reveals a golden triangle or F-pattern browsing behavior. Our work seeks to advance the field of carousel interfaces by providing the first dataset with eye tracking results on carousels. In this manner, we provide and encourage an empirical understanding of interactions with carousel interfaces, for building better recommender systems through gaze information, and also encourage the development of gaze-based recommenders.
comment: Accepted to Resource & Reproducibility Track SIGIR '25
Integrating Human Feedback into a Reinforcement Learning-Based Framework for Adaptive User Interfaces
Adaptive User Interfaces (AUI) play a crucial role in modern software applications by dynamically adjusting interface elements to accommodate users' diverse and evolving needs. However, existing adaptation strategies often lack real-time responsiveness. Reinforcement Learning (RL) has emerged as a promising approach for addressing complex, sequential adaptation challenges, enabling adaptive systems to learn optimal policies based on previous adaptation experiences. Although RL has been applied to AUIs,integrating RL agents effectively within user interactions remains a challenge. In this paper, we enhance a RL-based Adaptive User Interface adaption framework by incorporating personalized human feedback directly into the leaning process. Unlike prior approaches that rely on a single pre-trained RL model, our approach trains a unique RL agent for each user, allowing individuals to actively shape their personal RL agent's policy, potentially leading to more personalized and responsive UI adaptations. To evaluate this approach, we conducted an empirical study to assess the impact of integrating human feedback into the RL-based Adaptive User Interface adaption framework and its effect on User Experience (UX). The study involved 33 participants interacting with AUIs incorporating human feedback and non-adaptive user interfaces in two domains: an e-learning platform and a trip-planning application. The results suggest that incorporating human feedback into RL-driven adaptations significantly enhances UX, offering promising directions for advancing adaptive capabilities and user-centered design in AUIs.
comment: Accepted for publication at the 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025)
Confidence-based Intent Prediction for Teleoperation in Bimanual Robotic Suturing
Robotic-assisted procedures offer enhanced precision, but while fully autonomous systems are limited in task knowledge, difficulties in modeling unstructured environments, and generalisation abilities, fully manual teleoperated systems also face challenges such as delay, stability, and reduced sensory information. To address these, we developed an interactive control strategy that assists the human operator by predicting their motion plan at both high and low levels. At the high level, a surgeme recognition system is employed through a Transformer-based real-time gesture classification model to dynamically adapt to the operator's actions, while at the low level, a Confidence-based Intention Assimilation Controller adjusts robot actions based on user intent and shared control paradigms. The system is built around a robotic suturing task, supported by sensors that capture the kinematics of the robot and task dynamics. Experiments across users with varying skill levels demonstrated the effectiveness of the proposed approach, showing statistically significant improvements in task completion time and user satisfaction compared to traditional teleoperation.
In defence of post-hoc explanations in medical AI
Since the early days of the Explainable AI movement, post-hoc explanations have been praised for their potential to improve user understanding, promote trust, and reduce patient safety risks in black box medical AI systems. Recently, however, critics have argued that the benefits of post-hoc explanations are greatly exaggerated since they merely approximate, rather than replicate, the actual reasoning processes that black box systems take to arrive at their outputs. In this article, we aim to defend the value of post-hoc explanations against this recent critique. We argue that even if post-hoc explanations do not replicate the exact reasoning processes of black box systems, they can still improve users' functional understanding of black box systems, increase the accuracy of clinician-AI teams, and assist clinicians in justifying their AI-informed decisions. While post-hoc explanations are not a "silver bullet" solution to the black box problem in medical AI, we conclude that they remain a useful strategy for addressing the black box problem in medical AI.
Efficient Listener: Dyadic Facial Motion Synthesis via Action Diffusion
Generating realistic listener facial motions in dyadic conversations remains challenging due to the high-dimensional action space and temporal dependency requirements. Existing approaches usually consider extracting 3D Morphable Model (3DMM) coefficients and modeling in the 3DMM space. However, this makes the computational speed of the 3DMM a bottleneck, making it difficult to achieve real-time interactive responses. To tackle this problem, we propose Facial Action Diffusion (FAD), which introduces the diffusion methods from the field of image generation to achieve efficient facial action generation. We further build the Efficient Listener Network (ELNet) specially designed to accommodate both the visual and audio information of the speaker as input. Considering of FAD and ELNet, the proposed method learns effective listener facial motion representations and leads to improvements of performance over the state-of-the-art methods while reducing 99% computational time.
Federated learning, ethics, and the double black box problem in medical AI
Federated learning (FL) is a machine learning approach that allows multiple devices or institutions to collaboratively train a model without sharing their local data with a third-party. FL is considered a promising way to address patient privacy concerns in medical artificial intelligence. The ethical risks of medical FL systems themselves, however, have thus far been underexamined. This paper aims to address this gap. We argue that medical FL presents a new variety of opacity -- federation opacity -- that, in turn, generates a distinctive double black box problem in healthcare AI. We highlight several instances in which the anticipated benefits of medical FL may be exaggerated, and conclude by highlighting key challenges that must be overcome to make FL ethically feasible in medicine.
Explanation format does not matter; but explanations do -- An Eggsbert study on explaining Bayesian Optimisation tasks
Bayesian Optimisation (BO) is a family of methods for finding optimal parameters when the underlying function to be optimised is unknown. BO is used, for example, for hyperparameter tuning in machine learning and as an expert support tool for tuning cyberphysical systems. For settings where humans are involved in the tuning task, methods have been developed to explain BO (Explainable Bayesian Optimization, XBO). However, there is little guidance on how to present XBO results to humans so that they can tune the system effectively and efficiently. In this paper, we investigate how the XBO explanation format affects users' task performance, task load, understanding and trust in XBO. We chose a task that is accessible to a wide range of users. Specifically, we set up an egg cooking scenario with 6 parameters that participants had to adjust to achieve a perfect soft-boiled egg. We compared three different explanation formats: a bar chart, a list of rules and a textual explanation in a between-subjects online study with 213 participants. Our results show that adding any type of explanation increases task success, reduces the number of trials needed to achieve success, and improves comprehension and confidence. While explanations add more information for participants to process, we found no increase in user task load. We also found that the aforementioned results were independent of the explanation format; all formats had a similar effect.This is an interesting finding for practical applications, as it suggests that explanations can be added to BO tuning tasks without the burden of designing or selecting specific explanation formats. In the future, it would be interesting to investigate scenarios of prolonged use of the explanation formats and whether they have different effects on users' mental models of the underlying system.
Conversations with AI Chatbots Increase Short-Term Vaccine Intentions But Do Not Outperform Standard Public Health Messaging
Large language model (LLM) based chatbots show promise in persuasive communication, but existing studies often rely on weak controls or focus on belief change rather than behavioral intentions or outcomes. This pre-registered multi-country (US, Canada, UK) randomized controlled trial involving 930 vaccine-hesitant parents evaluated brief (three-minute) multi-turn conversations with LLM-based chatbots against standard public health messaging approaches for increasing human papillomavirus (HPV) vaccine intentions for their children. Participants were randomly assigned to: (1) a weak control (no message), (2) a strong control reflecting the standard of care (reading official public health materials), or (3 and 4) one of two chatbot conditions. One chatbot was prompted to deliver short, conversational responses, while the other used the model's default output style (longer with bullet points). While chatbot interactions significantly increased self-reported vaccination intent (by 7.1-10.3 points on a 100-point scale) compared to no message, they did not outperform standard public health materials, with the conversational chatbot performing significantly worse. Additionally, while the short-term effects of chatbot interactions faded during a 15-day follow-up, the effects of public health material persisted relative to no message. These findings suggest that while LLMs can effectively shift vaccination intentions in the short-term, their incremental value over existing public health communications is questionable, offering a more tempered view of their persuasive capabilities and highlighting the importance of integrating AI-driven tools alongside, rather than replacing, current public health strategies.
Multidimensional precipitation index prediction based on CNN-LSTM hybrid framework
With the intensification of global climate change, accurate prediction of weather indicators is of great significance in disaster prevention and mitigation, agricultural production, and transportation. Precipitation, as one of the key meteorological indicators, plays a crucial role in water resource management, agricultural production, and urban flood control. This study proposes a multidimensional precipitation index prediction model based on a CNN- LSTM hybrid framework, aiming to improve the accuracy of precipitation forecasts. The dataset is sourced from Pune, Maharashtra, India, covering monthly mean precipitation data from 1972 to 2002. This dataset includes nearly 31 years (1972-2002) of monthly average precipitation, reflecting the long-term fluctuations and seasonal variations of precipitation in the region. By analyzing these time series data, the CNN-LSTM model effectively captures local features and long-term dependencies. Experimental results show that the model achieves a root mean square error (RMSE) of 6.752, which demonstrates a significant advantage over traditional time series prediction methods in terms of prediction accuracy and generalization ability. Furthermore, this study provides new research ideas for precipitation prediction. However, the model requires high computational resources when dealing with large-scale datasets, and its predictive ability for multidimensional precipitation data still needs improvement. Future research could extend the model to support and predict multidimensional precipitation data, thereby promoting the development of more accurate and efficient meteorological prediction technologies.
Perception-aware Sampling for Scatterplot Visualizations
Visualizing data is often a crucial first step in data analytics workflows, but growing data sizes pose challenges due to computational and visual perception limitations. As a result, data analysts commonly down-sample their data and work with subsets. Deriving representative samples, however, remains a challenge. This paper focuses on scatterplots, a widely-used visualization type, and introduces a novel sampling objective -- perception-awareness -- aiming to improve sample efficacy by targeting humans' perception of a visualization. We make the following contributions: (1) We propose perception-augmented databases and design PAwS: a novel perception-aware sampling method for scatterplots that leverages saliency maps -- a computer vision tool for predicting areas of attention focus in visualizations -- and models perception-awareness via saliency, density, and coverage objectives. (2) We design ApproPAwS: a fast, perception-aware method for approximate visualizations, which exploits the fact that small visual perturbations are often imperceptible to humans. (3) We introduce the concept of perceptual similarity as a metric for sample quality, and present a novel method that compares saliency maps to measure it. (4) Our extensive experimental evaluation shows that our methods consistently outperform prior art in producing samples with high perceptual similarity, while ApproPAwS achieves up to 100x speed-ups with minimal loss in visual fidelity. Our user study shows that PAwS is often preferred by humans, validating our quantitative findings.
Thoughtful, Confused, or Untrustworthy: How Text Presentation Influences Perceptions of AI Writing Tools
AI writing tools have been shown to dramatically change the way people write, yet the effects of AI text presentation are not well understood nor always intentionally designed. Although text presentation in existing large language model interfaces is linked to the speed of the underlying model, text presentation speed can impact perceptions of AI systems, potentially influencing whether AI suggestions are accepted or rejected. In this paper, we analyze the effects of varying text generation speed in creative and professional writing scenarios on an online platform (n=297). We find that speed is correlated with perceived humanness and trustworthiness of the AI tool, as well as the perceived quality of the generated text. We discuss its implications on creative and writing processes, along with future steps in the intentional design of AI writing tool interfaces.
comment: 17 pages, 3 figures, ACM Creativity and Cognition 2025
Narrative-Centered Emotional Reflection: Scaffolding Autonomous Emotional Literacy with AI
Reflexion is an AI-powered platform designed to enable structured emotional self-reflection at scale. By integrating real-time emotion detection, layered reflective prompting, and metaphorical storytelling generation, Reflexion empowers users to engage in autonomous emotional exploration beyond basic sentiment categorization. Grounded in theories of expressive writing, cognitive restructuring, self-determination, and critical consciousness development, the system scaffolds a progressive journey from surface-level emotional recognition toward value-aligned action planning. Initial pilot studies with diverse participants demonstrate positive outcomes in emotional articulation, cognitive reframing, and perceived psychological resilience. Reflexion represents a promising direction for scalable, theory-informed affective computing interventions aimed at fostering emotional literacy and psychological growth across educational, therapeutic, and public health contexts.
comment: 10 pages, 5 figures, preliminary results, early-stage work intended for future conference submission
A Picture is Worth a Thousand Prompts? Efficacy of Iterative Human-Driven Prompt Refinement in Image Regeneration Tasks
With AI-generated content becoming ubiquitous across the web, social media, and other digital platforms, it is vital to examine how such content are inspired and generated. The creation of AI-generated images often involves refining the input prompt iteratively to achieve desired visual outcomes. This study focuses on the relatively underexplored concept of image regeneration using AI, in which a human operator attempts to closely recreate a specific target image by iteratively refining their prompt. Image regeneration is distinct from normal image generation, which lacks any predefined visual reference. A separate challenge lies in determining whether existing image similarity metrics (ISMs) can provide reliable, objective feedback in iterative workflows, given that we do not fully understand if subjective human judgments of similarity align with these metrics. Consequently, we must first validate their alignment with human perception before assessing their potential as a feedback mechanism in the iterative prompt refinement process. To address these research gaps, we present a structured user study evaluating how iterative prompt refinement affects the similarity of regenerated images relative to their targets, while also examining whether ISMs capture the same improvements perceived by human observers. Our findings suggest that incremental prompt adjustments substantially improve alignment, verified through both subjective evaluations and quantitative measures, underscoring the broader potential of iterative workflows to enhance generative AI content creation across various application domains.
AI in Software Engineering: Perceived Roles and Their Impact on Adoption
This paper investigates how developers conceptualize AI-powered Development Tools and how these role attributions influence technology acceptance. Through qualitative analysis of 38 interviews and a quantitative survey with 102 participants, we identify two primary Mental Models: AI as an inanimate tool and AI as a human-like teammate. Factor analysis further groups AI roles into Support Roles (e.g., assistant, reference guide) and Expert Roles (e.g., advisor, problem solver). We find that assigning multiple roles to AI correlates positively with Perceived Usefulness and Perceived Ease of Use, indicating that diverse conceptualizations enhance AI adoption. These insights suggest that AI4SE tools should accommodate varying user expectations through adaptive design strategies that align with different Mental Models.
comment: Accepted at 33rd ACM International Conference on the Foundations of Software Engineering (FSE Companion '25), June 23-28, 2025, Trondheim, Norway
"I've talked to ChatGPT about my issues last night.": Examining Mental Health Conversations with Large Language Models through Reddit Analysis SC
We investigate the role of large language models (LLMs) in supporting mental health by analyzing Reddit posts and comments about mental health conversations with ChatGPT. Our findings reveal that users value ChatGPT as a safe, non-judgmental space, often favoring it over human support due to its accessibility, availability, and knowledgeable responses. ChatGPT provides a range of support, including actionable advice, emotional support, and validation, while helping users better understand their mental states. Additionally, we found that ChatGPT offers innovative support for individuals facing mental health challenges, such as assistance in navigating difficult conversations, preparing for therapy sessions, and exploring therapeutic interventions. However, users also voiced potential risks, including the spread of incorrect health advice, ChatGPT's overly validating nature, and privacy concerns. We discuss the implications of LLMs as tools for mental health support in both everyday health and clinical therapy settings and suggest strategies to mitigate risks in LLM-powered interactions.
comment: Forthcoming at the 28th ACM SIGCHI Conference on Computer-Supported Cooperative Work and Social Computing (CSCW '25) on October 18-22, 2025
Cam-2-Cam: Exploring the Design Space of Dual-Camera Interactions for Smartphone-based Augmented Reality
Off-the-shelf smartphone-based AR systems typically use a single front-facing or rear-facing camera, which restricts user interactions to a narrow field of view and small screen size, thus reducing their practicality. We present Cam-2-Cam, an interaction concept implemented in three smartphone-based AR applications with interactions that span both cameras. Results from our qualitative analysis conducted on 30 participants presented two major design lessons that explore the interaction space of smartphone AR while maintaining critical AR interface attributes like embodiment and immersion: (1) Balancing Contextual Relevance and Feedback Quality serves to outline a delicate balance between implementing familiar interactions people do in the real world and the quality of multimodal AR responses and (2) Preventing Disorientation using Simultaneous Capture and Alternating Cameras which details how to prevent disorientation during AR interactions using the two distinct camera techniques we implemented in the paper. Additionally, we consider observed user assumptions or natural tendencies to inform future implementations of dual-camera setups for smartphone-based AR. We envision our design lessons as an initial pioneering step toward expanding the interaction space of smartphone-based AR, potentially driving broader adoption and overcoming limitations of single-camera AR.
MER 2025: When Affective Computing Meets Large Language Models
MER2025 is the third year of our MER series of challenges, aiming to bring together researchers in the affective computing community to explore emerging trends and future directions in the field. Previously, MER2023 focused on multi-label learning, noise robustness, and semi-supervised learning, while MER2024 introduced a new track dedicated to open-vocabulary emotion recognition. This year, MER2025 centers on the theme "When Affective Computing Meets Large Language Models (LLMs)".We aim to shift the paradigm from traditional categorical frameworks reliant on predefined emotion taxonomies to LLM-driven generative methods, offering innovative solutions for more accurate and reliable emotion understanding. The challenge features four tracks: MER-SEMI focuses on fixed categorical emotion recognition enhanced by semi-supervised learning; MER-FG explores fine-grained emotions, expanding recognition from basic to nuanced emotional states; MER-DES incorporates multimodal cues (beyond emotion words) into predictions to enhance model interpretability; MER-PR investigates whether emotion prediction results can improve personality recognition performance. For the first three tracks, baseline code is available at MERTools, and datasets can be accessed via Hugging Face. For the last track, the dataset and baseline code are available on GitHub.
Inaccuracy of an E-Dictionary and Its Influence on Chinese Language Users
Electronic dictionaries have largely replaced paper dictionaries and become central tools for L2 learners seeking to expand their vocabulary. Users often assume these resources are reliable and rarely question the validity of the definitions provided. The accuracy of major E-dictionaries is seldom scrutinized, and little attention has been paid to how their corpora are constructed. Research on dictionary use, particularly the limitations of electronic dictionaries, remains scarce. This study adopts a combined method of experimentation, user survey, and dictionary critique to examine Youdao, one of the most widely used E-dictionaries in China. The experiment involved a translation task paired with retrospective reflection. Participants were asked to translate sentences containing words that are insufficiently or inaccurately defined in Youdao. Their consultation behavior was recorded to analyze how faulty definitions influenced comprehension. Results show that incomplete or misleading definitions can cause serious misunderstandings. Additionally, students exhibited problematic consultation habits. The study further explores how such flawed definitions originate, highlighting issues in data processing and the integration of AI and machine learning technologies in dictionary construction. The findings suggest a need for better training in dictionary literacy for users, as well as improvements in the underlying AI models used to build E-dictionaries.
comment: The scope of the work has evolved significantly since initial submission, and we are preparing a revised version that better reflects the current direction of the research
Agentic AI: The Era of Semantic Decoding
Recent work demonstrated great promise in the idea of orchestrating collaborations between LLMs, human input, and various tools to address the inherent limitations of LLMs. We propose a novel perspective called semantic decoding, which frames these collaborative processes as optimization procedures in semantic space. Specifically, we conceptualize LLMs as semantic processors that manipulate meaningful pieces of information that we call semantic tokens (known thoughts). LLMs are among a large pool of other semantic processors, including humans and tools, such as search engines or code executors. Collectively, semantic processors engage in dynamic exchanges of semantic tokens to progressively construct high-utility outputs. We refer to these orchestrated interactions among semantic processors, optimizing and searching in semantic space, as semantic decoding algorithms. This concept draws a direct parallel to the well-studied problem of syntactic decoding, which involves crafting algorithms to best exploit auto-regressive language models for extracting high-utility sequences of syntactic tokens. By focusing on the semantic level and disregarding syntactic details, we gain a fresh perspective on the engineering of AI systems, enabling us to imagine systems with much greater complexity and capabilities. In this position paper, we formalize the transition from syntactic to semantic tokens as well as the analogy between syntactic and semantic decoding. Subsequently, we explore the possibilities of optimizing within the space of semantic tokens via semantic decoding algorithms. We conclude with a list of research opportunities and questions arising from this fresh perspective. The semantic decoding perspective offers a powerful abstraction for search and optimization directly in the space of meaningful concepts, with semantic tokens as the fundamental units of a new type of computation.
comment: 25 pages, 3 figures
Problem Solving Through Human-AI Preference-Based Cooperation
While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including difficulty to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAICo2, a novel human-AI co-construction framework. We take first steps towards a formalization of HAICo2 and discuss the difficult open research problems that it faces.
comment: 20 pages
Perception in Pixels: Effects of Avatar Representation in Video-Mediated Collaborative Interactions
Interactive collaborative video is now a common part of remote work. Despite its prevalence, traditional video conferencing can be challenging, sometimes causing social discomforts that undermine process and outcomes. Avatars on 2D displays offer a promising alternative for enhancing self-representation, bridging the gap between virtual reality (VR) and traditional non-immersive video. However, the use of such avatars in activity-oriented group settings remains underexplored. To address this gap, we conducted a mixed-methods, within-subject study investigating the impacts of avatar-mediated versus traditional video representations on collaboration satisfaction and self-esteem. 32 participants (8 groups of 4 with pre-established relationships) engaged in goal-directed activities, followed by group interviews. Results indicate that avatars significantly enhance self-esteem and collaboration satisfaction, while qualitative insights reveal the dynamic perceptions and experiences of avatars, including benefits, challenges, and factors influencing adoption likelihood. Our study contributes to understanding and implications of avatars as a camera-driven representation in video-mediated collaborative interactions.
comment: 16 pages, 5 figures, 2 tables
From tools to thieves: Measuring and understanding public perceptions of AI through crowdsourced metaphors
How has the public responded to the increasing prevalence of artificial intelligence (AI)-based technologies? We investigate public perceptions of AI by collecting over 12,000 responses over 12 months from a nationally representative U.S. sample. Participants provided open-ended metaphors reflecting their mental models of AI, a methodology that overcomes the limitations of traditional self-reported measures by capturing more nuance. Using a mixed-methods approach combining quantitative clustering and qualitative coding, we identify 20 dominant metaphors shaping public understanding of AI. To analyze these metaphors systematically, we present a scalable framework integrating language modeling (LM)-based techniques to measure key dimensions of public perception: anthropomorphism (attribution of human-like qualities), warmth, and competence. We find that Americans generally view AI as warm and competent, and that over the past year, perceptions of AI's human-likeness and warmth have significantly increased ($+34\%, r = 0.80, p < 0.01; +41\%, r = 0.62, p < 0.05$). These implicit perceptions, along with the identified dominant metaphors, strongly predict trust in and willingness to adopt AI ($r^2 = 0.21, 0.18, p < 0.001$). Moreover, we uncover systematic demographic differences in metaphors and implicit perceptions, such as the higher propensity of women, older individuals, and people of color to anthropomorphize AI, which shed light on demographic disparities in trust and adoption. In addition to our dataset and framework for tracking evolving public attitudes, we provide actionable insights on using metaphors for inclusive and responsible AI development.
comment: To appear at the ACM Conference on Fairness, Accountability, and Transparency 2025
GaitGuard: Towards Private Gait in Mixed Reality
Augmented/Mixed Reality (AR/MR) technologies usher in a new era of immersive, collective experiences, differentiating them from traditional mobile systems. As these technologies evolve, prioritizing privacy and security is critical. This paper focuses on gait privacy, where gait, the way a person walks, can reveal sensitive information such as age, ethnicity, or disorders. We present GaitGuard, a real-time system that protects gait privacy against video-based gait extraction attacks in MR environments. GaitGuard leverages a multi-threaded framework to efficiently process video frames, incorporating dedicated modules for stream capture, body detection and tracking, and privacy leak mitigation. We compare and combine multiple mitigation techniques, offering guidance to navigate the privacy-utility tradeoff. Through extensive experiments covering 248 settings across mitigation regions, types, and tunable parameters, we assess the impact of these techniques on privacy, video quality, and system performance. GaitGuard reduces the confidence of video-based gait extraction attacks by introducing a substantial distribution shift (Jensen-Shannon Divergence of 0.63, indicating highly altered gait features) and a decrease in identification risks by up to 68%, while maintaining 29 FPS and preserving video clarity. GaitGuard provides a practical real-time solution for privacy-preserving MR applications without affecting the MR user experience based on 20 subjective user surveys.
comment: 22 pages, 12 figures, added scalability experiment
Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination
The scientific ideation process often involves blending salient aspects of existing papers to create new ideas, and facet-based ideation is an established framework for idea generation. To see how large language models (LLMs) might assist in this process, we contribute a novel mixed-initiative ideation tool called Scideator. Starting from a user-provided set of scientific papers, Scideator extracts key facets -- purposes, mechanisms, and evaluations -- from these and related papers, allowing users to explore the idea space by interactively recombining facets to synthesize inventive ideas. Scideator also helps users gauge idea originality by searching the literature for overlaps, assessing idea novelty and providing explanations. To support these tasks, Scideator introduces three LLM-powered retrieval-augmented generation (RAG) modules: Analogous Paper Facet Finder, Faceted Idea Generator, and Idea Novelty Checker. In a within-subjects user study (N=22) with computer-science researchers comparing Scideator to a strong baseline, our tool provided significantly more creativity support, particularly with respect to exploration, which participants considered the most important factor for idea generation.
comment: Updated with new and improved user study
WeAudit: Scaffolding User Auditors and AI Practitioners in Auditing Generative AI
There has been growing interest from both practitioners and researchers in engaging end users in AI auditing, to draw upon users' unique knowledge and lived experiences. However, we know little about how to effectively scaffold end users in auditing in ways that can generate actionable insights for AI practitioners. Through formative studies with both users and AI practitioners, we first identified a set of design goals to support user-engaged AI auditing. We then developed WeAudit, a workflow and system that supports end users in auditing AI both individually and collectively. We evaluated WeAudit through a three-week user study with user auditors and interviews with industry Generative AI practitioners. Our findings offer insights into how WeAudit supports users in noticing and reflecting upon potential AI harms and in articulating their findings in ways that industry practitioners can act upon. Based on our observations and feedback from both users and practitioners, we identify several opportunities to better support user engagement in AI auditing processes. We discuss implications for future research to support effective and responsible user engagement in AI auditing and red-teaming.
'SSL?! What on earth is that?': Towards Designing Age-Inclusive Secure Smartphone Browsing
Owing to the increase in 'certified' phishing websites, there is a steady increase in the number of phishing cases and general susceptibility to phishing. Trust mechanisms (e.g., HTTPS Lock Indicators, SSL Certificates) that help differentiate genuine and phishing websites should therefore be evaluated for their effectiveness in preventing vulnerable users from accessing phishing websites. In this article, we present a study involving 18 adults (male-6; female-12) and 12 older adults (male-4; female-8) to understand the usability of current trust mechanisms and preferred modalities in a conceptualized mechanism. In the first part of the study, using Chrome browser on Android, we asked the participants to browse a banking website and a government website for digital particulars. We asked them to identify which one of the two was a phishing website, rate the usability of both websites and provide qualitative feedback on the trust mechanisms. In the second part, we conceptualized an alternative trust mechanism, which allows seeking social, community and AI-based support to make website trust-related decisions. Herein, we asked the participants as to which modality (social, community or AI) they prefer to seek support from and why it is preferred. Using the current trust mechanisms, none of the participants were able to identify the phishing website. As the participants rated the current mechanisms poorly in terms of usability, they expressed various difficulties that largely did not differ between adults and older adults. In the conceptualized mechanism, we observed a notable difference in the preferred modalities, in that, older adults primarily preferred social support. In addition to these overall findings, specific observations suggest that future trust mechanisms should not only consider age-specific needs but also incorporate substantial improvement in terms of usability.
comment: This version was last submitted to EuroUSEC 2023 - European Symposium on Usable Security. It was later invited for poster submission at the same conference
EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures Updated Appendix with example model responses
Conformalized Interactive Imitation Learning: Handling Expert Shift and Intermittent Feedback
In interactive imitation learning (IL), uncertainty quantification offers a way for the learner (i.e. robot) to contend with distribution shifts encountered during deployment by actively seeking additional feedback from an expert (i.e. human) online. Prior works use mechanisms like ensemble disagreement or Monte Carlo dropout to quantify when black-box IL policies are uncertain; however, these approaches can lead to overconfident estimates when faced with deployment-time distribution shifts. Instead, we contend that we need uncertainty quantification algorithms that can leverage the expert human feedback received during deployment time to adapt the robot's uncertainty online. To tackle this, we draw upon online conformal prediction, a distribution-free method for constructing prediction intervals online given a stream of ground-truth labels. Human labels, however, are intermittent in the interactive IL setting. Thus, from the conformal prediction side, we introduce a novel uncertainty quantification algorithm called intermittent quantile tracking (IQT) that leverages a probabilistic model of intermittent labels, maintains asymptotic coverage guarantees, and empirically achieves desired coverage levels. From the interactive IL side, we develop ConformalDAgger, a new approach wherein the robot uses prediction intervals calibrated by IQT as a reliable measure of deployment-time uncertainty to actively query for more expert feedback. We compare ConformalDAgger to prior uncertainty-aware DAgger methods in scenarios where the distribution shift is (and isn't) present because of changes in the expert's policy. We find that in simulated and hardware deployments on a 7DOF robotic manipulator, ConformalDAgger detects high uncertainty when the expert shifts and increases the number of interventions compared to baselines, allowing the robot to more quickly learn the new behavior.
Computer Vision and Pattern Recognition
CompleteMe: Reference-based Human Image Completion
Recent methods for human image completion can reconstruct plausible body shapes but often fail to preserve unique details, such as specific clothing patterns or distinctive accessories, without explicit reference images. Even state-of-the-art reference-based inpainting approaches struggle to accurately capture and integrate fine-grained details from reference images. To address this limitation, we propose CompleteMe, a novel reference-based human image completion framework. CompleteMe employs a dual U-Net architecture combined with a Region-focused Attention (RFA) Block, which explicitly guides the model's attention toward relevant regions in reference images. This approach effectively captures fine details and ensures accurate semantic correspondence, significantly improving the fidelity and consistency of completed images. Additionally, we introduce a challenging benchmark specifically designed for evaluating reference-based human image completion tasks. Extensive experiments demonstrate that our proposed method achieves superior visual quality and semantic consistency compared to existing techniques. Project page: https://liagm.github.io/CompleteMe/
comment: Project page: https://liagm.github.io/CompleteMe/
Learning Streaming Video Representation via Multitask Training
Understanding continuous video streams plays a fundamental role in real-time applications including embodied AI and autonomous driving. Unlike offline video understanding, streaming video understanding requires the ability to process video streams frame by frame, preserve historical information, and make low-latency decisions.To address these challenges, our main contributions are three-fold. (i) We develop a novel streaming video backbone, termed as StreamFormer, by incorporating causal temporal attention into a pre-trained vision transformer. This enables efficient streaming video processing while maintaining image representation capability.(ii) To train StreamFormer, we propose to unify diverse spatial-temporal video understanding tasks within a multitask visual-language alignment framework. Hence, StreamFormer learns global semantics, temporal dynamics, and fine-grained spatial relationships simultaneously. (iii) We conduct extensive experiments on online action detection, online video instance segmentation, and video question answering. StreamFormer achieves competitive results while maintaining efficiency, demonstrating its potential for real-time applications.
comment: Technical Report. Project Page: https://go2heart.github.io/streamformer
MP-SfM: Monocular Surface Priors for Robust Structure-from-Motion CVPR 2025
While Structure-from-Motion (SfM) has seen much progress over the years, state-of-the-art systems are prone to failure when facing extreme viewpoint changes in low-overlap, low-parallax or high-symmetry scenarios. Because capturing images that avoid these pitfalls is challenging, this severely limits the wider use of SfM, especially by non-expert users. We overcome these limitations by augmenting the classical SfM paradigm with monocular depth and normal priors inferred by deep neural networks. Thanks to a tight integration of monocular and multi-view constraints, our approach significantly outperforms existing ones under extreme viewpoint changes, while maintaining strong performance in standard conditions. We also show that monocular priors can help reject faulty associations due to symmetries, which is a long-standing problem for SfM. This makes our approach the first capable of reliably reconstructing challenging indoor environments from few images. Through principled uncertainty propagation, it is robust to errors in the priors, can handle priors inferred by different models with little tuning, and will thus easily benefit from future progress in monocular depth and normal estimation. Our code is publicly available at https://github.com/cvg/mpsfm.
comment: CVPR 2025
Mitigating Catastrophic Forgetting in the Incremental Learning of Medical Images
This paper proposes an Incremental Learning (IL) approach to enhance the accuracy and efficiency of deep learning models in analyzing T2-weighted (T2w) MRI medical images prostate cancer detection using the PI-CAI dataset. We used multiple health centers' artificial intelligence and radiology data, focused on different tasks that looked at prostate cancer detection using MRI (PI-CAI). We utilized Knowledge Distillation (KD), as it employs generated images from past tasks to guide the training of models for subsequent tasks. The approach yielded improved performance and faster convergence of the models. To demonstrate the versatility and robustness of our approach, we evaluated it on the PI-CAI dataset, a diverse set of medical imaging modalities including OCT and PathMNIST, and the benchmark continual learning dataset CIFAR-10. Our results indicate that KD can be a promising technique for IL in medical image analysis in which data is sourced from individual health centers and the storage of large datasets is not feasible. By using generated images from prior tasks, our method enables the model to retain and apply previously acquired knowledge without direct access to the original data.
comment: 15 Pages, 3 Figures, 3 Tables, 1 Algorithm, This paper will be updated
More Clear, More Flexible, More Precise: A Comprehensive Oriented Object Detection benchmark for UAV
Applications of unmanned aerial vehicle (UAV) in logistics, agricultural automation, urban management, and emergency response are highly dependent on oriented object detection (OOD) to enhance visual perception. Although existing datasets for OOD in UAV provide valuable resources, they are often designed for specific downstream tasks.Consequently, they exhibit limited generalization performance in real flight scenarios and fail to thoroughly demonstrate algorithm effectiveness in practical environments. To bridge this critical gap, we introduce CODrone, a comprehensive oriented object detection dataset for UAVs that accurately reflects real-world conditions. It also serves as a new benchmark designed to align with downstream task requirements, ensuring greater applicability and robustness in UAV-based OOD.Based on application requirements, we identify four key limitations in current UAV OOD datasets-low image resolution, limited object categories, single-view imaging, and restricted flight altitudes-and propose corresponding improvements to enhance their applicability and robustness.Furthermore, CODrone contains a broad spectrum of annotated images collected from multiple cities under various lighting conditions, enhancing the realism of the benchmark. To rigorously evaluate CODrone as a new benchmark and gain deeper insights into the novel challenges it presents, we conduct a series of experiments based on 22 classical or SOTA methods.Our evaluation not only assesses the effectiveness of CODrone in real-world scenarios but also highlights key bottlenecks and opportunities to advance OOD in UAV applications.Overall, CODrone fills the data gap in OOD from UAV perspective and provides a benchmark with enhanced generalization capability, better aligning with practical applications and future algorithm development.
LIRM: Large Inverse Rendering Model for Progressive Reconstruction of Shape, Materials and View-dependent Radiance Fields CVPR 2025
We present Large Inverse Rendering Model (LIRM), a transformer architecture that jointly reconstructs high-quality shape, materials, and radiance fields with view-dependent effects in less than a second. Our model builds upon the recent Large Reconstruction Models (LRMs) that achieve state-of-the-art sparse-view reconstruction quality. However, existing LRMs struggle to reconstruct unseen parts accurately and cannot recover glossy appearance or generate relightable 3D contents that can be consumed by standard Graphics engines. To address these limitations, we make three key technical contributions to build a more practical multi-view 3D reconstruction framework. First, we introduce an update model that allows us to progressively add more input views to improve our reconstruction. Second, we propose a hexa-plane neural SDF representation to better recover detailed textures, geometry and material parameters. Third, we develop a novel neural directional-embedding mechanism to handle view-dependent effects. Trained on a large-scale shape and material dataset with a tailored coarse-to-fine training scheme, our model achieves compelling results. It compares favorably to optimization-based dense-view inverse rendering methods in terms of geometry and relighting accuracy, while requiring only a fraction of the inference time.
comment: Accepted by CVPR 2025
SpatialReasoner: Towards Explicit and Generalizable 3D Spatial Reasoning
Recent studies in 3D spatial reasoning explore data-driven approaches and achieve enhanced spatial reasoning performance with reinforcement learning (RL). However, these methods typically perform spatial reasoning in an implicit manner, and it remains underexplored whether the acquired 3D knowledge generalizes to unseen question types at any stage of the training. In this work we introduce SpatialReasoner, a novel large vision-language model (LVLM) that address 3D spatial reasoning with explicit 3D representations shared between stages -- 3D perception, computation, and reasoning. Explicit 3D representations provide a coherent interface that supports advanced 3D spatial reasoning and enable us to study the factual errors made by LVLMs. Results show that our SpatialReasoner achieve improved performance on a variety of spatial reasoning benchmarks and generalizes better when evaluating on novel 3D spatial reasoning questions. Our study bridges the 3D parsing capabilities of prior visual foundation models with the powerful reasoning abilities of large language models, opening new directions for 3D spatial reasoning.
comment: Project page: https://spatial-reasoner.github.io
Towards AI-Driven Policing: Interdisciplinary Knowledge Discovery from Police Body-Worn Camera Footage
This paper proposes a novel interdisciplinary framework for analyzing police body-worn camera (BWC) footage from the Rochester Police Department (RPD) using advanced artificial intelligence (AI) and statistical machine learning (ML) techniques. Our goal is to detect, classify, and analyze patterns of interaction between police officers and civilians to identify key behavioral dynamics, such as respect, disrespect, escalation, and de-escalation. We apply multimodal data analysis by integrating video, audio, and natural language processing (NLP) techniques to extract meaningful insights from BWC footage. We present our methodology, computational techniques, and findings, outlining a practical approach for law enforcement while advancing the frontiers of knowledge discovery from police BWC data.
comment: 6 pages, 2 figures, and 1 table
Monitoring digestate application on agricultural crops using Sentinel-2 Satellite imagery
The widespread use of Exogenous Organic Matter in agriculture necessitates monitoring to assess its effects on soil and crop health. This study evaluates optical Sentinel-2 satellite imagery for detecting digestate application, a practice that enhances soil fertility but poses environmental risks like microplastic contamination and nitrogen losses. In the first instance, Sentinel-2 satellite image time series (SITS) analysis of specific indices (EOMI, NDVI, EVI) was used to characterize EOM's spectral behavior after application on the soils of four different crop types in Thessaly, Greece. Furthermore, Machine Learning (ML) models (namely Random Forest, k-NN, Gradient Boosting and a Feed-Forward Neural Network), were used to investigate digestate presence detection, achieving F1-scores up to 0.85. The findings highlight the potential of combining remote sensing and ML for scalable and cost-effective monitoring of EOM applications, supporting precision agriculture and sustainability.
Mapping of Weed Management Methods in Orchards using Sentinel-2 and PlanetScope Data
Effective weed management is crucial for improving agricultural productivity, as weeds compete with crops for vital resources like nutrients and water. Accurate maps of weed management methods are essential for policymakers to assess farmer practices, evaluate impacts on vegetation health, biodiversity, and climate, as well as ensure compliance with policies and subsidies. However, monitoring weed management methods is challenging as commonly rely on on-ground field surveys, which are often costly, time-consuming and subject to delays. In order to tackle this problem, we leverage Earth Observation (EO) data and Machine Learning (ML). Specifically, we developed an ML approach for mapping four distinct weed management methods (Mowing, Tillage, Chemical-spraying, and No practice) in orchards using satellite image time series (SITS) data from two different sources: Sentinel-2 (S2) and PlanetScope (PS). The findings demonstrate the potential of ML-driven remote sensing to enhance the efficiency and accuracy of weed management mapping in orchards.
Shopformer: Transformer-Based Framework for Detecting Shoplifting via Human Pose
Shoplifting remains a costly issue for the retail sector, but traditional surveillance systems, which are mostly based on human monitoring, are still largely ineffective, with only about 2% of shoplifters being arrested. Existing AI-based approaches rely on pixel-level video analysis which raises privacy concerns, is sensitive to environmental variations, and demands significant computational resources. To address these limitations, we introduce Shopformer, a novel transformer-based model that detects shoplifting by analyzing pose sequences rather than raw video. We propose a custom tokenization strategy that converts pose sequences into compact embeddings for efficient transformer processing. To the best of our knowledge, this is the first pose-sequence-based transformer model for shoplifting detection. Evaluated on real-world pose data, our method outperforms state-of-the-art anomaly detection models, offering a privacy-preserving, and scalable solution for real-time retail surveillance. The code base for this work is available at https://github.com/TeCSAR-UNCC/Shopformer.
Mesh-Learner: Texturing Mesh with Spherical Harmonics
In this paper, we present a 3D reconstruction and rendering framework termed Mesh-Learner that is natively compatible with traditional rasterization pipelines. It integrates mesh and spherical harmonic (SH) texture (i.e., texture filled with SH coefficients) into the learning process to learn each mesh s view-dependent radiance end-to-end. Images are rendered by interpolating surrounding SH Texels at each pixel s sampling point using a novel interpolation method. Conversely, gradients from each pixel are back-propagated to the related SH Texels in SH textures. Mesh-Learner exploits graphic features of rasterization pipeline (texture sampling, deferred rendering) to render, which makes Mesh-Learner naturally compatible with tools (e.g., Blender) and tasks (e.g., 3D reconstruction, scene rendering, reinforcement learning for robotics) that are based on rasterization pipelines. Our system can train vast, unlimited scenes because we transfer only the SH textures within the frustum to the GPU for training. At other times, the SH textures are stored in CPU RAM, which results in moderate GPU memory usage. The rendering results on interpolation and extrapolation sequences in the Replica and FAST-LIVO2 datasets achieve state-of-the-art performance compared to existing state-of-the-art methods (e.g., 3D Gaussian Splatting and M2-Mapping). To benefit the society, the code will be available at https://github.com/hku-mars/Mesh-Learner.
Enhancing Quality for VVC Compressed Videos with Omniscient Quality Enhancement Model
The latest video coding standard H.266/VVC has shown its great improvement in terms of compression performance when compared to its predecessor HEVC standard. Though VVC was implemented with many advanced techniques, it still met the same challenges as its predecessor due to the need for even higher perceptual quality demand at the decoder side as well as the compression performance at the encoder side. The advancement of Artificial Intelligence (AI) technology, notably the deep learning-based video quality enhancement methods, was shown to be a promising approach to improving the perceptual quality experience. In this paper, we propose a novel Omniscient video quality enhancement Network for VVC compressed Videos. The Omniscient Network for compressed video quality enhancement was originally designed for HEVC compressed videos in which not only the spatial-temporal features but also cross-frequencies information were employed to augment the visual quality. Inspired by this work, we propose a modification of the OVQE model and integrate it into the lasted STD-VVC (Standard Versatile Video Coding) decoder architecture. As assessed in a rich set of test conditions, the proposed OVQE-VVC solution is able to achieve significant PSNR improvement, notably around 0.74 dB and up to 1.2 dB with respect to the original STD-VVC codec. This also corresponds to around 19.6% of bitrate saving while keeping a similar quality observation.
Accelerated 3D-3D rigid registration of echocardiographic images obtained from apical window using particle filter
The perfect alignment of 3D echocardiographic images captured from various angles has improved image quality and broadened the field of view. This study proposes an accelerated sequential Monte Carlo (SMC) algorithm for 3D-3D rigid registration of transthoracic echocardiographic images with significant and limited overlap taken from apical window that is robust to the noise and intensity variation in ultrasound images. The algorithm estimates the translational and rotational components of the rigid transform through an iterative process and requires an initial approximation of the rotation and translation limits. We perform registration in two ways: the image-based registration computes the transform to align the end-diastolic frame of the apical nonstandard image to the apical standard image and applies the same transform to all frames of the cardiac cycle, whereas the mask-based registration approach uses the binary masks of the left ventricle in the same way. The SMC and exhaustive search (EX) algorithms were evaluated for 4D temporal sequences recorded from 7 volunteers who participated in a study conducted at the Mazankowski Alberta Heart Institute. The evaluations demonstrate that the mask-based approach of the accelerated SMC yielded a Dice score value of 0.819 +/- 0.045 for the left ventricle and gained 16.7x speedup compared to the CPU version of the SMC algorithm.
Enhancing Surgical Documentation through Multimodal Visual-Temporal Transformers and Generative AI
The automatic summarization of surgical videos is essential for enhancing procedural documentation, supporting surgical training, and facilitating post-operative analysis. This paper presents a novel method at the intersection of artificial intelligence and medicine, aiming to develop machine learning models with direct real-world applications in surgical contexts. We propose a multi-modal framework that leverages recent advancements in computer vision and large language models to generate comprehensive video summaries. % The approach is structured in three key stages. First, surgical videos are divided into clips, and visual features are extracted at the frame level using visual transformers. This step focuses on detecting tools, tissues, organs, and surgical actions. Second, the extracted features are transformed into frame-level captions via large language models. These are then combined with temporal features, captured using a ViViT-based encoder, to produce clip-level summaries that reflect the broader context of each video segment. Finally, the clip-level descriptions are aggregated into a full surgical report using a dedicated LLM tailored for the summarization task. % We evaluate our method on the CholecT50 dataset, using instrument and action annotations from 50 laparoscopic videos. The results show strong performance, achieving 96\% precision in tool detection and a BERT score of 0.74 for temporal context summarization. This work contributes to the advancement of AI-assisted tools for surgical reporting, offering a step toward more intelligent and reliable clinical documentation.
Breast Cancer Detection from Multi-View Screening Mammograms with Visual Prompt Tuning
Accurate detection of breast cancer from high-resolution mammograms is crucial for early diagnosis and effective treatment planning. Previous studies have shown the potential of using single-view mammograms for breast cancer detection. However, incorporating multi-view data can provide more comprehensive insights. Multi-view classification, especially in medical imaging, presents unique challenges, particularly when dealing with large-scale, high-resolution data. In this work, we propose a novel Multi-view Visual Prompt Tuning Network (MVPT-NET) for analyzing multiple screening mammograms. We first pretrain a robust single-view classification model on high-resolution mammograms and then innovatively adapt multi-view feature learning into a task-specific prompt tuning process. This technique selectively tunes a minimal set of trainable parameters (7\%) while retaining the robustness of the pre-trained single-view model, enabling efficient integration of multi-view data without the need for aggressive downsampling. Our approach offers an efficient alternative to traditional feature fusion methods, providing a more robust, scalable, and efficient solution for high-resolution mammogram analysis. Experimental results on a large multi-institution dataset demonstrate that our method outperforms conventional approaches while maintaining detection efficiency, achieving an AUROC of 0.852 for distinguishing between Benign, DCIS, and Invasive classes. This work highlights the potential of MVPT-NET for medical imaging tasks and provides a scalable solution for integrating multi-view data in breast cancer detection.
CineVerse: Consistent Keyframe Synthesis for Cinematic Scene Composition
We present CineVerse, a novel framework for the task of cinematic scene composition. Similar to traditional multi-shot generation, our task emphasizes the need for consistency and continuity across frames. However, our task also focuses on addressing challenges inherent to filmmaking, such as multiple characters, complex interactions, and visual cinematic effects. In order to learn to generate such content, we first create the CineVerse dataset. We use this dataset to train our proposed two-stage approach. First, we prompt a large language model (LLM) with task-specific instructions to take in a high-level scene description and generate a detailed plan for the overall setting and characters, as well as the individual shots. Then, we fine-tune a text-to-image generation model to synthesize high-quality visual keyframes. Experimental results demonstrate that CineVerse yields promising improvements in generating visually coherent and contextually rich movie scenes, paving the way for further exploration in cinematic video synthesis.
comment: link website: https://cinevers.github.io/
Enhancing breast cancer detection on screening mammogram using self-supervised learning and a hybrid deep model of Swin Transformer and Convolutional Neural Network
Purpose: The scarcity of high-quality curated labeled medical training data remains one of the major limitations in applying artificial intelligence (AI) systems to breast cancer diagnosis. Deep models for mammogram analysis and mass (or micro-calcification) detection require training with a large volume of labeled images, which are often expensive and time-consuming to collect. To reduce this challenge, we proposed a novel method that leverages self-supervised learning (SSL) and a deep hybrid model, named \textbf{HybMNet}, which combines local self-attention and fine-grained feature extraction to enhance breast cancer detection on screening mammograms. Approach: Our method employs a two-stage learning process: (1) SSL Pretraining: We utilize EsViT, a SSL technique, to pretrain a Swin Transformer (Swin-T) using a limited set of mammograms. The pretrained Swin-T then serves as the backbone for the downstream task. (2) Downstream Training: The proposed HybMNet combines the Swin-T backbone with a CNN-based network and a novel fusion strategy. The Swin-T employs local self-attention to identify informative patch regions from the high-resolution mammogram, while the CNN-based network extracts fine-grained local features from the selected patches. A fusion module then integrates global and local information from both networks to generate robust predictions. The HybMNet is trained end-to-end, with the loss function combining the outputs of the Swin-T and CNN modules to optimize feature extraction and classification performance. Results: The proposed method was evaluated for its ability to detect breast cancer by distinguishing between benign (normal) and malignant mammograms. Leveraging SSL pretraining and the HybMNet model, it achieved AUC of 0.864 (95% CI: 0.852, 0.875) on the CMMD dataset and 0.889 (95% CI: 0.875, 0.903) on the INbreast dataset, highlighting its effectiveness.
Federated Out-of-Distribution Generalization: A Causal Augmentation View IJCNN 2025
Federated learning aims to collaboratively model by integrating multi-source information to obtain a model that can generalize across all client data. Existing methods often leverage knowledge distillation or data augmentation to mitigate the negative impact of data bias across clients. However, the limited performance of teacher models on out-of-distribution samples and the inherent quality gap between augmented and original data hinder their effectiveness and they typically fail to leverage the advantages of incorporating rich contextual information. To address these limitations, this paper proposes a Federated Causal Augmentation method, termed FedCAug, which employs causality-inspired data augmentation to break the spurious correlation between attributes and categories. Specifically, it designs a causal region localization module to accurately identify and decouple the background and objects in the image, providing rich contextual information for causal data augmentation. Additionally, it designs a causality-inspired data augmentation module that integrates causal features and within-client context to generate counterfactual samples. This significantly enhances data diversity, and the entire process does not require any information sharing between clients, thereby contributing to the protection of data privacy. Extensive experiments conducted on three datasets reveal that FedCAug markedly reduces the model's reliance on background to predict sample labels, achieving superior performance compared to state-of-the-art methods.
comment: IJCNN 2025 Accepted
Using Fixed and Mobile Eye Tracking to Understand How Visitors View Art in a Museum: A Study at the Bowes Museum, County Durham, UK
The following paper describes a collaborative project involving researchers at Durham University, and professionals at the Bowes Museum, Barnard Castle, County Durham, UK, during which we used fixed and mobile eye tracking to understand how visitors view art. Our study took place during summer 2024 and builds on work presented at DH2017 (Bailey-Ross et al., 2017). Our interdisciplinary team included researchers from digital humanities, psychology, art history and computer science, working in collaboration with professionals from the museum. We used fixed and mobile eye tracking to understand how museum visitors view art in a physical gallery setting. This research will enable us to make recommendations about how the Museum's collections could be more effectively displayed, encouraging visitors to engage with them more fully.
DeeCLIP: A Robust and Generalizable Transformer-Based Framework for Detecting AI-Generated Images
This paper introduces DeeCLIP, a novel framework for detecting AI-generated images using CLIP-ViT and fusion learning. Despite significant advancements in generative models capable of creating highly photorealistic images, existing detection methods often struggle to generalize across different models and are highly sensitive to minor perturbations. To address these challenges, DeeCLIP incorporates DeeFuser, a fusion module that combines high-level and low-level features, improving robustness against degradations such as compression and blurring. Additionally, we apply triplet loss to refine the embedding space, enhancing the model's ability to distinguish between real and synthetic content. To further enable lightweight adaptation while preserving pre-trained knowledge, we adopt parameter-efficient fine-tuning using low-rank adaptation (LoRA) within the CLIP-ViT backbone. This approach supports effective zero-shot learning without sacrificing generalization. Trained exclusively on 4-class ProGAN data, DeeCLIP achieves an average accuracy of 89.00% on 19 test subsets composed of generative adversarial network (GAN) and diffusion models. Despite having fewer trainable parameters, DeeCLIP outperforms existing methods, demonstrating superior robustness against various generative models and real-world distortions. The code is publicly available at https://github.com/Mamadou-Keita/DeeCLIP for research purposes.
Towards Ball Spin and Trajectory Analysis in Table Tennis Broadcast Videos via Physically Grounded Synthetic-to-Real Transfer CVPR
Analyzing a player's technique in table tennis requires knowledge of the ball's 3D trajectory and spin. While, the spin is not directly observable in standard broadcasting videos, we show that it can be inferred from the ball's trajectory in the video. We present a novel method to infer the initial spin and 3D trajectory from the corresponding 2D trajectory in a video. Without ground truth labels for broadcast videos, we train a neural network solely on synthetic data. Due to the choice of our input data representation, physically correct synthetic training data, and using targeted augmentations, the network naturally generalizes to real data. Notably, these simple techniques are sufficient to achieve generalization. No real data at all is required for training. To the best of our knowledge, we are the first to present a method for spin and trajectory prediction in simple monocular broadcast videos, achieving an accuracy of 92.0% in spin classification and a 2D reprojection error of 0.19% of the image diagonal.
comment: To be published in 2025 IEEE/CVF International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
CoherenDream: Boosting Holistic Text Coherence in 3D Generation via Multimodal Large Language Models Feedback
Score Distillation Sampling (SDS) has achieved remarkable success in text-to-3D content generation. However, SDS-based methods struggle to maintain semantic fidelity for user prompts, particularly when involving multiple objects with intricate interactions. While existing approaches often address 3D consistency through multiview diffusion model fine-tuning on 3D datasets, this strategy inadvertently exacerbates text-3D alignment degradation. The limitation stems from SDS's inherent accumulation of view-independent biases during optimization, which progressively diverges from the ideal text alignment direction. To alleviate this limitation, we propose a novel SDS objective, dubbed as Textual Coherent Score Distillation (TCSD), which integrates alignment feedback from multimodal large language models (MLLMs). Our TCSD leverages cross-modal understanding capabilities of MLLMs to assess and guide the text-3D correspondence during the optimization. We further develop 3DLLaVA-CRITIC - a fine-tuned MLLM specialized for evaluating multiview text alignment in 3D generations. Additionally, we introduce an LLM-layout initialization that significantly accelerates optimization convergence through semantic-aware spatial configuration. Comprehensive evaluations demonstrate that our framework, CoherenDream, establishes state-of-the-art performance in text-aligned 3D generation across multiple benchmarks, including T$^3$Bench and TIFA subset. Qualitative results showcase the superior performance of CoherenDream in preserving textual consistency and semantic interactions. As the first study to incorporate MLLMs into SDS optimization, we also conduct extensive ablation studies to explore optimal MLLM adaptations for 3D generation tasks.
NORA: A Small Open-Sourced Generalist Vision Language Action Model for Embodied Tasks
Existing Visual-Language-Action (VLA) models have shown promising performance in zero-shot scenarios, demonstrating impressive task execution and reasoning capabilities. However, a significant challenge arises from the limitations of visual encoding, which can result in failures during tasks such as object grasping. Moreover, these models typically suffer from high computational overhead due to their large sizes, often exceeding 7B parameters. While these models excel in reasoning and task planning, the substantial computational overhead they incur makes them impractical for real-time robotic environments, where speed and efficiency are paramount. To address the limitations of existing VLA models, we propose NORA, a 3B-parameter model designed to reduce computational overhead while maintaining strong task performance. NORA adopts the Qwen-2.5-VL-3B multimodal model as its backbone, leveraging its superior visual-semantic understanding to enhance visual reasoning and action grounding. Additionally, our \model{} is trained on 970k real-world robot demonstrations and equipped with the FAST+ tokenizer for efficient action sequence generation. Experimental results demonstrate that NORA outperforms existing large-scale VLA models, achieving better task performance with significantly reduced computational overhead, making it a more practical solution for real-time robotic autonomy.
Foundation Model-Driven Framework for Human-Object Interaction Prediction with Segmentation Mask Integration
In this work, we introduce Segmentation to Human-Object Interaction (\textit{\textbf{Seg2HOI}}) approach, a novel framework that integrates segmentation-based vision foundation models with the human-object interaction task, distinguished from traditional detection-based Human-Object Interaction (HOI) methods. Our approach enhances HOI detection by not only predicting the standard triplets but also introducing quadruplets, which extend HOI triplets by including segmentation masks for human-object pairs. More specifically, Seg2HOI inherits the properties of the vision foundation model (e.g., promptable and interactive mechanisms) and incorporates a decoder that applies these attributes to HOI task. Despite training only for HOI, without additional training mechanisms for these properties, the framework demonstrates that such features still operate efficiently. Extensive experiments on two public benchmark datasets demonstrate that Seg2HOI achieves performance comparable to state-of-the-art methods, even in zero-shot scenarios. Lastly, we propose that Seg2HOI can generate HOI quadruplets and interactive HOI segmentation from novel text and visual prompts that were not used during training, making it versatile for a wide range of applications by leveraging this flexibility.
SRMF: A Data Augmentation and Multimodal Fusion Approach for Long-Tail UHR Satellite Image Segmentation
The long-tail problem presents a significant challenge to the advancement of semantic segmentation in ultra-high-resolution (UHR) satellite imagery. While previous efforts in UHR semantic segmentation have largely focused on multi-branch network architectures that emphasize multi-scale feature extraction and fusion, they have often overlooked the importance of addressing the long-tail issue. In contrast to prior UHR methods that focused on independent feature extraction, we emphasize data augmentation and multimodal feature fusion to alleviate the long-tail problem. In this paper, we introduce SRMF, a novel framework for semantic segmentation in UHR satellite imagery. Our approach addresses the long-tail class distribution by incorporating a multi-scale cropping technique alongside a data augmentation strategy based on semantic reordering and resampling. To further enhance model performance, we propose a multimodal fusion-based general representation knowledge injection method, which, for the first time, fuses text and visual features without the need for individual region text descriptions, extracting more robust features. Extensive experiments on the URUR, GID, and FBP datasets demonstrate that our method improves mIoU by 3.33\%, 0.66\%, and 0.98\%, respectively, achieving state-of-the-art performance. Code is available at: https://github.com/BinSpa/SRMF.git.
comment: None
AnimateAnywhere: Rouse the Background in Human Image Animation
Human image animation aims to generate human videos of given characters and backgrounds that adhere to the desired pose sequence. However, existing methods focus more on human actions while neglecting the generation of background, which typically leads to static results or inharmonious movements. The community has explored camera pose-guided animation tasks, yet preparing the camera trajectory is impractical for most entertainment applications and ordinary users. As a remedy, we present an AnimateAnywhere framework, rousing the background in human image animation without requirements on camera trajectories. In particular, based on our key insight that the movement of the human body often reflects the motion of the background, we introduce a background motion learner (BML) to learn background motions from human pose sequences. To encourage the model to learn more accurate cross-frame correspondences, we further deploy an epipolar constraint on the 3D attention map. Specifically, the mask used to suppress geometrically unreasonable attention is carefully constructed by combining an epipolar mask and the current 3D attention map. Extensive experiments demonstrate that our AnimateAnywhere effectively learns the background motion from human pose sequences, achieving state-of-the-art performance in generating human animation results with vivid and realistic backgrounds. The source code and model will be available at https://github.com/liuxiaoyu1104/AnimateAnywhere.
HOIGaze: Gaze Estimation During Hand-Object Interactions in Extended Reality Exploiting Eye-Hand-Head Coordination SIGGRAPH 2025
We present HOIGaze - a novel learning-based approach for gaze estimation during hand-object interactions (HOI) in extended reality (XR). HOIGaze addresses the challenging HOI setting by building on one key insight: The eye, hand, and head movements are closely coordinated during HOIs and this coordination can be exploited to identify samples that are most useful for gaze estimator training - as such, effectively denoising the training data. This denoising approach is in stark contrast to previous gaze estimation methods that treated all training samples as equal. Specifically, we propose: 1) a novel hierarchical framework that first recognises the hand currently visually attended to and then estimates gaze direction based on the attended hand; 2) a new gaze estimator that uses cross-modal Transformers to fuse head and hand-object features extracted using a convolutional neural network and a spatio-temporal graph convolutional network; and 3) a novel eye-head coordination loss that upgrades training samples belonging to the coordinated eye-head movements. We evaluate HOIGaze on the HOT3D and Aria digital twin (ADT) datasets and show that it significantly outperforms state-of-the-art methods, achieving an average improvement of 15.6% on HOT3D and 6.0% on ADT in mean angular error. To demonstrate the potential of our method, we further report significant performance improvements for the sample downstream task of eye-based activity recognition on ADT. Taken together, our results underline the significant information content available in eye-hand-head coordination and, as such, open up an exciting new direction for learning-based gaze estimation.
comment: Accepted at SIGGRAPH 2025, link: https://zhiminghu.net/hu25_hoigaze.html
Taming the Randomness: Towards Label-Preserving Cropping in Contrastive Learning
Contrastive learning (CL) approaches have gained great recognition as a very successful subset of self-supervised learning (SSL) methods. SSL enables learning from unlabeled data, a crucial step in the advancement of deep learning, particularly in computer vision (CV), given the plethora of unlabeled image data. CL works by comparing different random augmentations (e.g., different crops) of the same image, thus achieving self-labeling. Nevertheless, randomly augmenting images and especially random cropping can result in an image that is semantically very distant from the original and therefore leads to false labeling, hence undermining the efficacy of the methods. In this research, two novel parameterized cropping methods are introduced that increase the robustness of self-labeling and consequently increase the efficacy. The results show that the use of these methods significantly improves the accuracy of the model by between 2.7\% and 12.4\% on the downstream task of classifying CIFAR-10, depending on the crop size compared to that of the non-parameterized random cropping method.
Mjölnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
Recent advances in AI-based weather forecasting models, such as FourCastNet, Pangu-Weather, and GraphCast, have demonstrated the remarkable ability of deep learning to emulate complex atmospheric dynamics. Building on this momentum, we propose Mj\"olnir, a novel deep learning-based framework for global lightning flash density parameterization. Trained on ERA5 atmospheric predictors and World Wide Lightning Location Network (WWLLN) observations at a daily temporal resolution and 1 degree spatial resolution, Mj\"olnir captures the nonlinear mapping between large-scale environmental conditions and lightning activity. The model architecture is based on the InceptionNeXt backbone with SENet, and a multi-task learning strategy to simultaneously predict lightning occurrence and magnitude. Extensive evaluations yield that Mollnir accurately reproduces the global distribution, seasonal variability, and regional characteristics of lightning activity, achieving a global Pearson correlation coefficient of 0.96 for annual mean fields. These results suggest that Mj\"olnir serves not only as an effective data-driven global lightning parameterization but also as a promising AI-based scheme for next-generation Earth system models (AI-ESMs).
Joint Optimization of Neural Radiance Fields and Continuous Camera Motion from a Monocular Video
Neural Radiance Fields (NeRF) has demonstrated its superior capability to represent 3D geometry but require accurately precomputed camera poses during training. To mitigate this requirement, existing methods jointly optimize camera poses and NeRF often relying on good pose initialisation or depth priors. However, these approaches struggle in challenging scenarios, such as large rotations, as they map each camera to a world coordinate system. We propose a novel method that eliminates prior dependencies by modeling continuous camera motions as time-dependent angular velocity and velocity. Relative motions between cameras are learned first via velocity integration, while camera poses can be obtained by aggregating such relative motions up to a world coordinate system defined at a single time step within the video. Specifically, accurate continuous camera movements are learned through a time-dependent NeRF, which captures local scene geometry and motion by training from neighboring frames for each time step. The learned motions enable fine-tuning the NeRF to represent the full scene geometry. Experiments on Co3D and Scannet show our approach achieves superior camera pose and depth estimation and comparable novel-view synthesis performance compared to state-of-the-art methods. Our code is available at https://github.com/HoangChuongNguyen/cope-nerf.
Learning Brenier Potentials with Convex Generative Adversarial Neural Networks
Brenier proved that under certain conditions on a source and a target probability measure there exists a strictly convex function such that its gradient is a transport map from the source to the target distribution. This function is called the Brenier potential. Furthermore, detailed information on the H\"older regularity of the Brenier potential is available. In this work we develop the statistical learning theory of generative adversarial neural networks that learn the Brenier potential. As by the transformation of densities formula, the density of the generated measure depends on the second derivative of the Brenier potential, we develop the universal approximation theory of ReCU networks with cubic activation $\mathtt{ReCU}(x)=\max\{0,x\}^3$ that combines the favorable approximation properties of H\"older functions with a Lipschitz continuous density. In order to assure the convexity of such general networks, we introduce an adversarial training procedure for a potential function represented by the ReCU networks that combines the classical discriminator cross entropy loss with a penalty term that enforces (strict) convexity. We give a detailed decomposition of learning errors and show that for a suitable high penalty parameter all networks chosen in the adversarial min-max optimization problem are strictly convex. This is further exploited to prove the consistency of the learning procedure for (slowly) expanding network capacity. We also implement the described learning algorithm and apply it to a number of standard test cases from Gaussian mixture to image data as target distributions. As predicted in theory, we observe that the convexity loss becomes inactive during the training process and the potentials represented by the neural networks have learned convexity.
Hybrid Approach Combining Ultrasound and Blood Test Analysis with a Voting Classifier for Accurate Liver Fibrosis and Cirrhosis Assessment
Liver cirrhosis is an insidious condition involving the substitution of normal liver tissue with fibrous scar tissue and causing major health complications. The conventional method of diagnosis using liver biopsy is invasive and, therefore, inconvenient for use in regular screening. In this paper,we present a hybrid model that combines machine learning techniques with clinical data and ultrasoundscans to improve liver fibrosis and cirrhosis detection accuracy is presented. The model integrates fixed blood test probabilities with deep learning model predictions (DenseNet-201) for ultrasonic images. The combined hybrid model achieved an accuracy of 92.5%. The findings establish the viability of the combined model in enhancing diagnosis accuracy and supporting early intervention in liver disease care.
STCOcc: Sparse Spatial-Temporal Cascade Renovation for 3D Occupancy and Scene Flow Prediction
3D occupancy and scene flow offer a detailed and dynamic representation of 3D scene. Recognizing the sparsity and complexity of 3D space, previous vision-centric methods have employed implicit learning-based approaches to model spatial and temporal information. However, these approaches struggle to capture local details and diminish the model's spatial discriminative ability. To address these challenges, we propose a novel explicit state-based modeling method designed to leverage the occupied state to renovate the 3D features. Specifically, we propose a sparse occlusion-aware attention mechanism, integrated with a cascade refinement strategy, which accurately renovates 3D features with the guidance of occupied state information. Additionally, we introduce a novel method for modeling long-term dynamic interactions, which reduces computational costs and preserves spatial information. Compared to the previous state-of-the-art methods, our efficient explicit renovation strategy not only delivers superior performance in terms of RayIoU and mAVE for occupancy and scene flow prediction but also markedly reduces GPU memory usage during training, bringing it down to 8.7GB. Our code is available on https://github.com/lzzzzzm/STCOcc
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observations and Wikipedia CVPR
The presence of species provides key insights into the ecological properties of a location such as land cover, climatic conditions or even soil properties. We propose a method to predict such ecological properties directly from remote sensing (RS) images by aligning them with species habitat descriptions. We introduce the EcoWikiRS dataset, consisting of high-resolution aerial images, the corresponding geolocated species observations, and, for each species, the textual descriptions of their habitat from Wikipedia. EcoWikiRS offers a scalable way of supervision for RS vision language models (RS-VLMs) for ecology. This is a setting with weak and noisy supervision, where, for instance, some text may describe properties that are specific only to part of the species' niche or is irrelevant to a specific image. We tackle this by proposing WINCEL, a weighted version of the InfoNCE loss. We evaluate our model on the task of ecosystem zero-shot classification by following the habitat definitions from the European Nature Information System (EUNIS). Our results show that our approach helps in understanding RS images in a more ecologically meaningful manner. The code and the dataset are available at https://github.com/eceo-epfl/EcoWikiRS.
comment: Accepted at EarthVision 2025 (CVPRW 2025)
Contrastive Language-Image Learning with Augmented Textual Prompts for 3D/4D FER Using Vision-Language Model
In this paper, we introduce AffectVLM, a vision-language model designed to integrate multiviews for a semantically rich and visually comprehensive understanding of facial emotions from 3D/4D data. To effectively capture visual features, we propose a joint representation learning framework paired with a novel gradient-friendly loss function that accelerates model convergence towards optimal feature representation. Additionally, we introduce augmented textual prompts to enhance the model's linguistic capabilities and employ mixed view augmentation to expand the visual dataset. We also develop a Streamlit app for a real-time interactive inference and enable the model for distributed learning. Extensive experiments validate the superior performance of AffectVLM across multiple benchmarks.
CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis CVPR 2025
Global variations in terrain appearance raise a major challenge for satellite image analysis, leading to poor model performance when training on locations that differ from those encountered at test time. This remains true even with recent large global datasets. To address this challenge, we propose a novel domain-generalization framework for satellite images. Instead of trying to learn a single generalizable model, we train one expert model per training domain, while learning experts' similarity and encouraging similar experts to be consistent. A model selection module then identifies the most suitable experts for a given test sample and aggregates their predictions. Experiments on four datasets (DynamicEarthNet, MUDS, OSCD, and FMoW) demonstrate consistent gains over existing domain generalization and adaptation methods. Our code is publicly available at https://github.com/Abhishek19009/CoDEx.
comment: CVPR 2025 EarthVision Workshop
Measuring Train Driver Performance as Key to Approval of Driverless Trains
Points 2.1.4(b), 2.4.2(b) and 2.4.3(b) in Annex I of Implementing Regulation (EU) No. 402/2013 allow a simplified approach for the safety approval of computer vision systems for driverless trains, if they have 'similar' functions and interfaces as the replaced human driver. The human driver is not replaced one-to-one by a technical system - only a limited set of cognitive functions are replaced. However, performance in the most challenging function, obstacle detection, is difficult to quantify due to the deficiency of published measurement results. This article summarizes the data published so far. This article also goes a long way to remedy this situation by providing a new public and anonymized dataset of 711 train driver performance measurements from controlled experiments. The measurements are made for different speeds, obstacle sizes, train protection systems and obstacle color contrasts respectively. The measured values are reaction time and distance to the obstacle. The goal of this paper is an unbiased and exhaustive description of the presented dataset for research, standardization and regulation. Further project related information including the dataset and source code is available at https://atosense-02371c.usercontent.opencode.de/
comment: 6 pages, 3 figures, abstract accepted by IAVVC 2025, full paper to be submitted to IAVVC 2025
RepText: Rendering Visual Text via Replicating
Although contemporary text-to-image generation models have achieved remarkable breakthroughs in producing visually appealing images, their capacity to generate precise and flexible typographic elements, especially non-Latin alphabets, remains constrained. To address these limitations, we start from an naive assumption that text understanding is only a sufficient condition for text rendering, but not a necessary condition. Based on this, we present RepText, which aims to empower pre-trained monolingual text-to-image generation models with the ability to accurately render, or more precisely, replicate, multilingual visual text in user-specified fonts, without the need to really understand them. Specifically, we adopt the setting from ControlNet and additionally integrate language agnostic glyph and position of rendered text to enable generating harmonized visual text, allowing users to customize text content, font and position on their needs. To improve accuracy, a text perceptual loss is employed along with the diffusion loss. Furthermore, to stabilize rendering process, at the inference phase, we directly initialize with noisy glyph latent instead of random initialization, and adopt region masks to restrict the feature injection to only the text region to avoid distortion of the background. We conducted extensive experiments to verify the effectiveness of our RepText relative to existing works, our approach outperforms existing open-source methods and achieves comparable results to native multi-language closed-source models. To be more fair, we also exhaustively discuss its limitations in the end.
comment: Technical Report. https://reptext.github.io/
The ATLAS of Traffic Lights: A Reliable Perception Framework for Autonomous Driving
Traffic light perception is an essential component of the camera-based perception system for autonomous vehicles, enabling accurate detection and interpretation of traffic lights to ensure safe navigation through complex urban environments. In this work, we propose a modularized perception framework that integrates state-of-the-art detection models with a novel real-time association and decision framework, enabling seamless deployment into an autonomous driving stack. To address the limitations of existing public datasets, we introduce the ATLAS dataset, which provides comprehensive annotations of traffic light states and pictograms across diverse environmental conditions and camera setups. This dataset is publicly available at https://url.fzi.de/ATLAS. We train and evaluate several state-of-the-art traffic light detection architectures on ATLAS, demonstrating significant performance improvements in both accuracy and robustness. Finally, we evaluate the framework in real-world scenarios by deploying it in an autonomous vehicle to make decisions at traffic light-controlled intersections, highlighting its reliability and effectiveness for real-time operation.
comment: Accepted at IEEE Intelligent Vehicles Symposium (IV 2025). Dataset link: https://url.fzi.de/ATLAS
A computer vision method to estimate ventilation rate of Atlantic salmon in sea fish farms
The increasing demand for aquaculture production necessitates the development of innovative, intelligent tools to effectively monitor and manage fish health and welfare. While non-invasive video monitoring has become a common practice in finfish aquaculture, existing intelligent monitoring methods predominantly focus on assessing body condition or fish swimming patterns and are often developed and evaluated in controlled tank environments, without demonstrating their applicability to real-world aquaculture settings in open sea farms. This underscores the necessity for methods that can monitor physiological traits directly within the production environment of sea fish farms. To this end, we have developed a computer vision method for monitoring ventilation rates of Atlantic salmon (Salmo salar), which was specifically designed for videos recorded in the production environment of commercial sea fish farms using the existing infrastructure. Our approach uses a fish head detection model, which classifies the mouth state as either open or closed using a convolutional neural network. This is followed with multiple object tracking to create temporal sequences of fish swimming across the field of view of the underwater video camera to estimate ventilation rates. The method demonstrated high efficiency, achieving a Pearson correlation coefficient of 0.82 between ground truth and predicted ventilation rates in a test set of 100 fish collected independently of the training data. By accurately identifying pens where fish exhibit signs of respiratory distress, our method offers broad applicability and the potential to transform fish health and welfare monitoring in finfish aquaculture.
Pixels2Points: Fusing 2D and 3D Features for Facial Skin Segmentation
Face registration deforms a template mesh to closely fit a 3D face scan, the quality of which commonly degrades in non-skin regions (e.g., hair, beard, accessories), because the optimized template-to-scan distance pulls the template mesh towards the noisy scan surface. Improving registration quality requires a clean separation of skin and non-skin regions on the scan mesh. Existing image-based (2D) or scan-based (3D) segmentation methods however perform poorly. Image-based segmentation outputs multi-view inconsistent masks, and they cannot account for scan inaccuracies or scan-image misalignment, while scan-based methods suffer from lower spatial resolution compared to images. In this work, we introduce a novel method that accurately separates skin from non-skin geometry on 3D human head scans. For this, our method extracts features from multi-view images using a frozen image foundation model and aggregates these features in 3D. These lifted 2D features are then fused with 3D geometric features extracted from the scan mesh, to then predict a segmentation mask directly on the scan mesh. We show that our segmentations improve the registration accuracy over pure 2D or 3D segmentation methods by 8.89% and 14.3%, respectively. Although trained only on synthetic data, our model generalizes well to real data.
comment: 4 pages, 4 figures, to be published in Eurographics 2025 as a short paper
Open-set Anomaly Segmentation in Complex Scenarios
Precise segmentation of out-of-distribution (OoD) objects, herein referred to as anomalies, is crucial for the reliable deployment of semantic segmentation models in open-set, safety-critical applications, such as autonomous driving. Current anomalous segmentation benchmarks predominantly focus on favorable weather conditions, resulting in untrustworthy evaluations that overlook the risks posed by diverse meteorological conditions in open-set environments, such as low illumination, dense fog, and heavy rain. To bridge this gap, this paper introduces the ComsAmy, a challenging benchmark specifically designed for open-set anomaly segmentation in complex scenarios. ComsAmy encompasses a wide spectrum of adverse weather conditions, dynamic driving environments, and diverse anomaly types to comprehensively evaluate the model performance in realistic open-world scenarios. Our extensive evaluation of several state-of-the-art anomalous segmentation models reveals that existing methods demonstrate significant deficiencies in such challenging scenarios, highlighting their serious safety risks for real-world deployment. To solve that, we propose a novel energy-entropy learning (EEL) strategy that integrates the complementary information from energy and entropy to bolster the robustness of anomaly segmentation under complex open-world environments. Additionally, a diffusion-based anomalous training data synthesizer is proposed to generate diverse and high-quality anomalous images to enhance the existing copy-paste training data synthesizer. Extensive experimental results on both public and ComsAmy benchmarks demonstrate that our proposed diffusion-based synthesizer with energy and entropy learning (DiffEEL) serves as an effective and generalizable plug-and-play method to enhance existing models, yielding an average improvement of around 4.96% in $\rm{AUPRC}$ and 9.87% in $\rm{FPR}_{95}$.
SubGrapher: Visual Fingerprinting of Chemical Structures
Automatic extraction of chemical structures from scientific literature plays a crucial role in accelerating research across fields ranging from drug discovery to materials science. Patent documents, in particular, contain molecular information in visual form, which is often inaccessible through traditional text-based searches. In this work, we introduce SubGrapher, a method for the visual fingerprinting of chemical structure images. Unlike conventional Optical Chemical Structure Recognition (OCSR) models that attempt to reconstruct full molecular graphs, SubGrapher focuses on extracting molecular fingerprints directly from chemical structure images. Using learning-based instance segmentation, SubGrapher identifies functional groups and carbon backbones, constructing a substructure-based fingerprint that enables chemical structure retrieval. Our approach is evaluated against state-of-the-art OCSR and fingerprinting methods, demonstrating superior retrieval performance and robustness across diverse molecular depictions. The dataset, models, and code will be made publicly available.
Prompt Guiding Multi-Scale Adaptive Sparse Representation-driven Network for Low-Dose CT MAR
Low-dose CT (LDCT) is capable of reducing X-ray radiation exposure, but it will potentially degrade image quality, even yields metal artifacts at the case of metallic implants. For simultaneous LDCT reconstruction and metal artifact reduction (LDMAR), existing deep learning-based efforts face two main limitations: i) the network design neglects multi-scale and within-scale information; ii) training a distinct model for each dose necessitates significant storage space for multiple doses. To fill these gaps, we propose a prompt guiding multi-scale adaptive sparse representation-driven network, abbreviated as PMSRNet, for LDMAR task. Specifically, we construct PMSRNet inspired from multi-scale sparsifying frames, and it can simultaneously employ within-scale characteristics and cross-scale complementarity owing to an elaborated prompt guiding scale-adaptive threshold generator (PSATG) and a built multi-scale coefficient fusion module (MSFuM). The PSATG can adaptively capture multiple contextual information to generate more faithful thresholds, achieved by fusing features from local, regional, and global levels. Furthermore, we elaborate a model interpretable dual domain LDMAR framework called PDuMSRNet, and train single model with a prompt guiding strategy for multiple dose levels. We build a prompt guiding module, whose input contains dose level, metal mask and input instance, to provide various guiding information, allowing a single model to accommodate various CT dose settings. Extensive experiments at various dose levels demonstrate that the proposed methods outperform the state-of-the-art LDMAR methods.
ClearVision: Leveraging CycleGAN and SigLIP-2 for Robust All-Weather Classification in Traffic Camera Imagery
Accurate weather classification from low-quality traffic camera imagery remains a challenging task, particularly under adverse nighttime conditions. In this study, we propose a scalable framework that combines generative domain adaptation with efficient contrastive learning to enhance classification performance. Using CycleGAN-based domain translation, we improve the quality of nighttime images, enabling better feature extraction by downstream models. While the baseline EVA-02 model employing CLIP-based contrastive loss achieves an overall accuracy of 96.55\%, it exhibits a significant performance gap between daytime (97.21\%) and nighttime conditions (63.40\%). Replacing CLIP with the lightweight SigLIP-2 (Sigmoid contrastive loss) achieves a competitive overall accuracy of 94.00\%, with substantial improvements in nighttime performance (85.90\% accuracy). The combination of Vision-SigLIP-2, Text-SigLIP-2, CycleGAN, and contrastive training achieves the best nighttime accuracy (85.90\%) among all models tested, while EVA-02 with CycleGAN maintains the highest overall accuracy (97.01\%) and per-class accuracies. These findings demonstrate the potential of combining domain adaptation and efficient contrastive learning to build practical, resource-efficient weather classification systems for intelligent transportation infrastructure.
Explaining Vision GNNs: A Semantic and Visual Analysis of Graph-based Image Classification
Graph Neural Networks (GNNs) have emerged as an efficient alternative to convolutional approaches for vision tasks such as image classification, leveraging patch-based representations instead of raw pixels. These methods construct graphs where image patches serve as nodes, and edges are established based on patch similarity or classification relevance. Despite their efficiency, the explainability of GNN-based vision models remains underexplored, even though graphs are naturally interpretable. In this work, we analyze the semantic consistency of the graphs formed at different layers of GNN-based image classifiers, focusing on how well they preserve object structures and meaningful relationships. A comprehensive analysis is presented by quantifying the extent to which inter-layer graph connections reflect semantic similarity and spatial coherence. Explanations from standard and adversarial settings are also compared to assess whether they reflect the classifiers' robustness. Additionally, we visualize the flow of information across layers through heatmap-based visualization techniques, thereby highlighting the models' explainability. Our findings demonstrate that the decision-making processes of these models can be effectively explained, while also revealing that their reasoning does not necessarily align with human perception, especially in deeper layers.
comment: 13 pages, 3 figures, accepted for presentation at xAI-World-Conference 2025, code is available at https://github.com/nickhaidos/Vision-GNNs-Explainer
xEdgeFace: Efficient Cross-Spectral Face Recognition for Edge Devices
Heterogeneous Face Recognition (HFR) addresses the challenge of matching face images across different sensing modalities, such as thermal to visible or near-infrared to visible, expanding the applicability of face recognition systems in real-world, unconstrained environments. While recent HFR methods have shown promising results, many rely on computation-intensive architectures, limiting their practicality for deployment on resource-constrained edge devices. In this work, we present a lightweight yet effective HFR framework by adapting a hybrid CNN-Transformer architecture originally designed for face recognition. Our approach enables efficient end-to-end training with minimal paired heterogeneous data while preserving strong performance on standard RGB face recognition tasks. This makes it a compelling solution for both homogeneous and heterogeneous scenarios. Extensive experiments across multiple challenging HFR and face recognition benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches while maintaining a low computational overhead.
comment: 11 pages
BARIS: Boundary-Aware Refinement with Environmental Degradation Priors for Robust Underwater Instance Segmentation
Underwater instance segmentation is challenging due to adverse visual conditions such as light attenuation, scattering, and color distortion, which degrade model performance. In this work, we propose BARIS-Decoder (Boundary-Aware Refinement Decoder for Instance Segmentation), a framework that enhances segmentation accuracy through feature refinement. To address underwater degradations, we introduce the Environmental Robust Adapter (ERA), which efficiently models underwater degradation patterns while reducing trainable parameters by over 90\% compared to full fine-tuning. The integration of BARIS-Decoder with ERA-tuning, referred to as BARIS-ERA, achieves state-of-the-art performance, surpassing Mask R-CNN by 3.4 mAP with a Swin-B backbone and 3.8 mAP with ConvNeXt V2. Our findings demonstrate the effectiveness of BARIS-ERA in advancing underwater instance segmentation, providing a robust and efficient solution.
comment: 15 pages, 9 figures, and 11 tables
Exploiting Inter-Sample Correlation and Intra-Sample Redundancy for Partially Relevant Video Retrieval
Partially Relevant Video Retrieval (PRVR) aims to retrieve the target video that is partially relevant to the text query. The primary challenge in PRVR arises from the semantic asymmetry between textual and visual modalities, as videos often contain substantial content irrelevant to the query. Existing methods coarsely align paired videos and text queries to construct the semantic space, neglecting the critical cross-modal dual nature inherent in this task: inter-sample correlation and intra-sample redundancy. To this end, we propose a novel PRVR framework to systematically exploit these two characteristics. Our framework consists of three core modules. First, the Inter Correlation Enhancement (ICE) module captures inter-sample correlation by identifying semantically similar yet unpaired text queries and video moments, combining them to form pseudo-positive pairs for more robust semantic space construction. Second, the Intra Redundancy Mining (IRM) module mitigates intra-sample redundancy by mining redundant video moment features and treating them as hard negative samples, thereby encouraging the model to learn more discriminative representations. Finally, to reinforce these modules, we introduce the Temporal Coherence Prediction (TCP) module, which enhances feature discrimination by training the model to predict the original temporal order of randomly shuffled video frames and moments. Extensive experiments on three datasets demonstrate the superiority of our approach compared to previous methods, achieving state-of-the-art results.
NSegment : Noisy Segment Improves Remote Sensing Image Segmentation
Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to high image acquisition and labeling costs complicates training noise-robust models. While sophisticated mechanisms such as label selection or noise correction might address this issue, they tend to increase training time and add implementation complexity. In this letter, we propose NSegment-a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. Experimental results demonstrate that our approach improves the performance of RS image segmentation on various state-of-the-art models.
comment: Preprint
VCM: Vision Concept Modeling Based on Implicit Contrastive Learning with Vision-Language Instruction Fine-Tuning
Large Vision-Language Models (LVLMs) are pivotal for real-world AI tasks like embodied intelligence due to their strong vision-language reasoning abilities. However, current LVLMs process entire images at the token level, which is inefficient compared to humans who analyze information and generate content at the conceptual level, extracting relevant visual concepts with minimal effort. This inefficiency, stemming from the lack of a visual concept model, limits LVLMs' usability in real-world applications. To address this, we propose VCM, an end-to-end self-supervised visual concept modeling framework. VCM leverages implicit contrastive learning across multiple sampled instances and vision-language fine-tuning to construct a visual concept model without requiring costly concept-level annotations. Our results show that VCM significantly reduces computational costs (e.g., 85\% fewer FLOPs for LLaVA-1.5-7B) while maintaining strong performance across diverse image understanding tasks. Moreover, VCM enhances visual encoders' capabilities in classic visual concept perception tasks. Extensive quantitative and qualitative experiments validate the effectiveness and efficiency of VCM.
comment: VCM
DiVE: Efficient Multi-View Driving Scenes Generation Based on Video Diffusion Transformer
Collecting multi-view driving scenario videos to enhance the performance of 3D visual perception tasks presents significant challenges and incurs substantial costs, making generative models for realistic data an appealing alternative. Yet, the videos generated by recent works suffer from poor quality and spatiotemporal consistency, undermining their utility in advancing perception tasks under driving scenarios. To address this gap, we propose DiVE, a diffusion transformer-based generative framework meticulously engineered to produce high-fidelity, temporally coherent, and cross-view consistent multi-view videos, aligning seamlessly with bird's-eye view layouts and textual descriptions. DiVE leverages a unified cross-attention and a SketchFormer to exert precise control over multimodal data, while incorporating a view-inflated attention mechanism that adds no extra parameters, thereby guaranteeing consistency across views. Despite these advancements, synthesizing high-resolution videos under multimodal constraints introduces dual challenges: investigating the optimal classifier-free guidance coniguration under intricate multi-condition inputs and mitigating excessive computational latency in high-resolution rendering--both of which remain underexplored in prior researches. To resolve these limitations, we introduce two innovations: Multi-Control Auxiliary Branch Distillation, which streamlines multi-condition CFG selection while circumventing high computational overhead, and Resolution Progressive Sampling, a training-free acceleration strategy that staggers resolution scaling to reduce high latency due to high resolution. These innovations collectively achieve a 2.62x speedup with minimal quality degradation. Evaluated on the nuScenes dataset, DiVE achieves SOTA performance in multi-view video generation, yielding photorealistic outputs with exceptional temporal and cross-view coherence.
Image Generation Method Based on Heat Diffusion Models
Denoising Diffusion Probabilistic Models (DDPMs) achieve high-quality image generation without adversarial training, but they process images as a whole. Since adjacent pixels are highly likely to belong to the same object, we propose the Heat Diffusion Model (HDM) to further preserve image details and generate more realistic images. HDM is a model that incorporates pixel-level operations while maintaining the same training process as DDPM. In HDM, the discrete form of the two-dimensional heat equation is integrated into the diffusion and generation formulas of DDPM, enabling the model to compute relationships between neighboring pixels during image processing. Our experiments demonstrate that HDM can generate higher-quality samples compared to models such as DDPM, Consistency Diffusion Models (CDM), Latent Diffusion Models (LDM), and Vector Quantized Generative Adversarial Networks (VQGAN).
Lightweight Adapter Learning for More Generalized Remote Sensing Change Detection
Deep learning methods have shown promising performances in remote sensing image change detection (CD). However, existing methods usually train a dataset-specific deep network for each dataset. Due to the significant differences in the data distribution and labeling between various datasets, the trained dataset-specific deep network has poor generalization performances on other datasets. To solve this problem, this paper proposes a change adapter network (CANet) for a more universal and generalized CD. CANet contains dataset-shared and dataset-specific learning modules. The former explores the discriminative features of images, and the latter designs a lightweight adapter model, to deal with the characteristics of different datasets in data distribution and labeling. The lightweight adapter can quickly generalize the deep network for new CD tasks with a small computation cost. Specifically, this paper proposes an interesting change region mask (ICM) in the adapter, which can adaptively focus on interested change objects and decrease the influence of labeling differences in various datasets. Moreover, CANet adopts a unique batch normalization layer for each dataset to deal with data distribution differences. Compared with existing deep learning methods, CANet can achieve satisfactory CD performances on various datasets simultaneously. Experimental results on several public datasets have verified the effectiveness and advantages of the proposed CANet on CD. CANet has a stronger generalization ability, smaller training costs (merely updating 4.1%-7.7% parameters), and better performances under limited training datasets than other deep learning methods, which also can be flexibly inserted with existing deep models.
WILD: a new in-the-Wild Image Linkage Dataset for synthetic image attribution
Synthetic image source attribution is an open challenge, with an increasing number of image generators being released yearly. The complexity and the sheer number of available generative techniques, as well as the scarcity of high-quality open source datasets of diverse nature for this task, make training and benchmarking synthetic image source attribution models very challenging. WILD is a new in-the-Wild Image Linkage Dataset designed to provide a powerful training and benchmarking tool for synthetic image attribution models. The dataset is built out of a closed set of 10 popular commercial generators, which constitutes the training base of attribution models, and an open set of 10 additional generators, simulating a real-world in-the-wild scenario. Each generator is represented by 1,000 images, for a total of 10,000 images in the closed set and 10,000 images in the open set. Half of the images are post-processed with a wide range of operators. WILD allows benchmarking attribution models in a wide range of tasks, including closed and open set identification and verification, and robust attribution with respect to post-processing and adversarial attacks. Models trained on WILD are expected to benefit from the challenging scenario represented by the dataset itself. Moreover, an assessment of seven baseline methodologies on closed and open set attribution is presented, including robustness tests with respect to post-processing.
Neural network task specialization via domain constraining
This paper introduces a concept of neural network specialization via task-specific domain constraining, aimed at enhancing network performance on data subspace in which the network operates. The study presents experiments on training specialists for image classification and object detection tasks. The results demonstrate that specialization can enhance a generalist's accuracy even without additional data or changing training regimes: solely by constraining class label space in which the network performs. Theoretical and experimental analyses indicate that effective specialization requires modifying traditional fine-tuning methods and constraining data space to semantically coherent subsets. The specialist extraction phase before tuning the network is proposed for maximal performance gains. We also provide analysis of the evolution of the feature space during specialization. This study paves way to future research for developing more advanced dynamically configurable image analysis systems, where computations depend on the specific input. Additionally, the proposed methods can help improve system performance in scenarios where certain data domains should be excluded from consideration of the generalist network.
Magnifier: A Multi-grained Neural Network-based Architecture for Burned Area Delineation
In crisis management and remote sensing, image segmentation plays a crucial role, enabling tasks like disaster response and emergency planning by analyzing visual data. Neural networks are able to analyze satellite acquisitions and determine which areas were affected by a catastrophic event. The problem in their development in this context is the data scarcity and the lack of extensive benchmark datasets, limiting the capabilities of training large neural network models. In this paper, we propose a novel methodology, namely Magnifier, to improve segmentation performance with limited data availability. The Magnifier methodology is applicable to any existing encoder-decoder architecture, as it extends a model by merging information at different contextual levels through a dual-encoder approach: a local and global encoder. Magnifier analyzes the input data twice using the dual-encoder approach. In particular, the local and global encoders extract information from the same input at different granularities. This allows Magnifier to extract more information than the other approaches given the same set of input images. Magnifier improves the quality of the results of +2.65% on average IoU while leading to a restrained increase in terms of the number of trainable parameters compared to the original model. We evaluated our proposed approach with state-of-the-art burned area segmentation models, demonstrating, on average, comparable or better performances in less than half of the GFLOPs.
comment: Accepted in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ShowMak3r: Compositional TV Show Reconstruction
Reconstructing dynamic radiance fields from video clips is challenging, especially when entertainment videos like TV shows are given. Many challenges make the reconstruction difficult due to (1) actors occluding with each other and having diverse facial expressions, (2) cluttered stages, and (3) small baseline views or sudden shot changes. To address these issues, we present ShowMak3r, a comprehensive reconstruction pipeline that allows the editing of scenes like how video clips are made in a production control room. In ShowMak3r, a 3DLocator module locates recovered actors on the stage using depth prior and estimates unseen human poses via interpolation. The proposed ShotMatcher module then tracks the actors under shot changes. Furthermore, ShowMak3r introduces a face-fitting network that dynamically recovers the actors' expressions. Experiments on Sitcoms3D dataset show that our pipeline can reassemble TV show scenes with new cameras at different timestamps. We also demonstrate that ShowMak3r enables interesting applications such as synthetic shot-making, actor relocation, insertion, deletion, and pose manipulation. Project page : https://nstar1125.github.io/showmak3r
comment: Project page : https://nstar1125.github.io/showmak3r
SAMBLE: Shape-Specific Point Cloud Sampling for an Optimal Trade-Off Between Local Detail and Global Uniformity
Driven by the increasing demand for accurate and efficient representation of 3D data in various domains, point cloud sampling has emerged as a pivotal research topic in 3D computer vision. Recently, learning-to-sample methods have garnered growing interest from the community, particularly for their ability to be jointly trained with downstream tasks. However, previous learning-based sampling methods either lead to unrecognizable sampling patterns by generating a new point cloud or biased sampled results by focusing excessively on sharp edge details. Moreover, they all overlook the natural variations in point distribution across different shapes, applying a similar sampling strategy to all point clouds. In this paper, we propose a Sparse Attention Map and Bin-based Learning method (termed SAMBLE) to learn shape-specific sampling strategies for point cloud shapes. SAMBLE effectively achieves an improved balance between sampling edge points for local details and preserving uniformity in the global shape, resulting in superior performance across multiple common point cloud downstream tasks, even in scenarios with few-point sampling.
DG-DETR: Toward Domain Generalized Detection Transformer
End-to-end Transformer-based detectors (DETRs) have demonstrated strong detection performance. However, domain generalization (DG) research has primarily focused on convolutional neural network (CNN)-based detectors, while paying little attention to enhancing the robustness of DETRs. In this letter, we introduce a Domain Generalized DEtection TRansformer (DG-DETR), a simple, effective, and plug-and-play method that improves out-of-distribution (OOD) robustness for DETRs. Specifically, we propose a novel domain-agnostic query selection strategy that removes domain-induced biases from object queries via orthogonal projection onto the instance-specific style space. Additionally, we leverage a wavelet decomposition to disentangle features into domain-invariant and domain-specific components, enabling synthesis of diverse latent styles while preserving the semantic features of objects. Experimental results validate the effectiveness of DG-DETR. Our code is available at https://github.com/sminhwang/DG-DETR.
comment: Under Review
Category-Level and Open-Set Object Pose Estimation for Robotics
Object pose estimation enables a variety of tasks in computer vision and robotics, including scene understanding and robotic grasping. The complexity of a pose estimation task depends on the unknown variables related to the target object. While instance-level methods already excel for opaque and Lambertian objects, category-level and open-set methods, where texture, shape, and size are partially or entirely unknown, still struggle with these basic material properties. Since texture is unknown in these scenarios, it cannot be used for disambiguating object symmetries, another core challenge of 6D object pose estimation. The complexity of estimating 6D poses with such a manifold of unknowns led to various datasets, accuracy metrics, and algorithmic solutions. This paper compares datasets, accuracy metrics, and algorithms for solving 6D pose estimation on the category-level. Based on this comparison, we analyze how to bridge category-level and open-set object pose estimation to reach generalization and provide actionable recommendations.
comment: Accepted at Austrian Robotics Workshop 2025
CE-NPBG: Connectivity Enhanced Neural Point-Based Graphics for Novel View Synthesis in Autonomous Driving Scenes CVPR
Current point-based approaches encounter limitations in scalability and rendering quality when using large 3D point cloud maps because using them directly for novel view synthesis (NVS) leads to degraded visualizations. We identify the primary issue behind these low-quality renderings as a visibility mismatch between geometry and appearance, stemming from using these two modalities together. To address this problem, we present CE-NPBG, a new approach for novel view synthesis (NVS) in large-scale autonomous driving scenes. Our method is a neural point-based technique that leverages two modalities: posed images (cameras) and synchronized raw 3D point clouds (LiDAR). We first employ a connectivity relationship graph between appearance and geometry, which retrieves points from a large 3D point cloud map observed from the current camera perspective and uses them for rendering. By leveraging this connectivity, our method significantly improves rendering quality and enhances run-time and scalability by using only a small subset of points from the large 3D point cloud map. Our approach associates neural descriptors with the points and uses them to synthesize views. To enhance the encoding of these descriptors and elevate rendering quality, we propose a joint adversarial and point rasterization training. During training, we pair an image-synthesizer network with a multi-resolution discriminator. At inference, we decouple them and use the image-synthesizer to generate novel views. We also integrate our proposal into the recent 3D Gaussian Splatting work to highlight its benefits for improved rendering and scalability.
comment: Accepted in 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
DEEMO: De-identity Multimodal Emotion Recognition and Reasoning
Emotion understanding is a critical yet challenging task. Most existing approaches rely heavily on identity-sensitive information, such as facial expressions and speech, which raises concerns about personal privacy. To address this, we introduce the De-identity Multimodal Emotion Recognition and Reasoning (DEEMO), a novel task designed to enable emotion understanding using de-identified video and audio inputs. The DEEMO dataset consists of two subsets: DEEMO-NFBL, which includes rich annotations of Non-Facial Body Language (NFBL), and DEEMO-MER, an instruction dataset for Multimodal Emotion Recognition and Reasoning using identity-free cues. This design supports emotion understanding without compromising identity privacy. In addition, we propose DEEMO-LLaMA, a Multimodal Large Language Model (MLLM) that integrates de-identified audio, video, and textual information to enhance both emotion recognition and reasoning. Extensive experiments show that DEEMO-LLaMA achieves state-of-the-art performance on both tasks, outperforming existing MLLMs by a significant margin, achieving 74.49% accuracy and 74.45% F1-score in de-identity emotion recognition, and 6.20 clue overlap and 7.66 label overlap in de-identity emotion reasoning. Our work contributes to ethical AI by advancing privacy-preserving emotion understanding and promoting responsible affective computing.
Crowd Detection Using Very-Fine-Resolution Satellite Imagery
Accurate crowd detection (CD) is critical for public safety and historical pattern analysis, yet existing methods relying on ground and aerial imagery suffer from limited spatio-temporal coverage. The development of very-fine-resolution (VFR) satellite sensor imagery (e.g., ~0.3 m spatial resolution) provides unprecedented opportunities for large-scale crowd activity analysis, but it has never been considered for this task. To address this gap, we proposed CrowdSat-Net, a novel point-based convolutional neural network, which features two innovative components: Dual-Context Progressive Attention Network (DCPAN) to improve feature representation of individuals by aggregating scene context and local individual characteristics, and High-Frequency Guided Deformable Upsampler (HFGDU) that recovers high-frequency information during upsampling through frequency-domain guided deformable convolutions. To validate the effectiveness of CrowdSat-Net, we developed CrowdSat, the first VFR satellite imagery dataset designed specifically for CD tasks, comprising over 120k manually labeled individuals from multi-source satellite platforms (Beijing-3N, Jilin-1 Gaofen-04A and Google Earth) across China. In the experiments, CrowdSat-Net was compared with five state-of-the-art point-based CD methods (originally designed for ground or aerial imagery) using CrowdSat and achieved the largest F1-score of 66.12% and Precision of 73.23%, surpassing the second-best method by 1.71% and 2.42%, respectively. Moreover, extensive ablation experiments validated the importance of the DCPAN and HFGDU modules. Furthermore, cross-regional evaluation further demonstrated the spatial generalizability of CrowdSat-Net. This research advances CD capability by providing both a newly developed network architecture for CD and a pioneering benchmark dataset to facilitate future CD development.
comment: 17 pages, 12 figures, 5 tables
Point2Quad: Generating Quad Meshes from Point Clouds via Face Prediction
Quad meshes are essential in geometric modeling and computational mechanics. Although learning-based methods for triangle mesh demonstrate considerable advancements, quad mesh generation remains less explored due to the challenge of ensuring coplanarity, convexity, and quad-only meshes. In this paper, we present Point2Quad, the first learning-based method for quad-only mesh generation from point clouds. The key idea is learning to identify quad mesh with fused pointwise and facewise features. Specifically, Point2Quad begins with a k-NN-based candidate generation considering the coplanarity and squareness. Then, two encoders are followed to extract geometric and topological features that address the challenge of quad-related constraints, especially by combining in-depth quadrilaterals-specific characteristics. Subsequently, the extracted features are fused to train the classifier with a designed compound loss. The final results are derived after the refinement by a quad-specific post-processing. Extensive experiments on both clear and noise data demonstrate the effectiveness and superiority of Point2Quad, compared to baseline methods under comprehensive metrics.
Adversarial Shallow Watermarking
Recent advances in digital watermarking make use of deep neural networks for message embedding and extraction. They typically follow the ``encoder-noise layer-decoder''-based architecture. By deliberately establishing a differentiable noise layer to simulate the distortion of the watermarked signal, they jointly train the deep encoder and decoder to fit the noise layer to guarantee robustness. As a result, they are usually weak against unknown distortions that are not used in their training pipeline. In this paper, we propose a novel watermarking framework to resist unknown distortions, namely Adversarial Shallow Watermarking (ASW). ASW utilizes only a shallow decoder that is randomly parameterized and designed to be insensitive to distortions for watermarking extraction. During the watermark embedding, ASW freezes the shallow decoder and adversarially optimizes a host image until its updated version (i.e., the watermarked image) stably triggers the shallow decoder to output the watermark message. During the watermark extraction, it accurately recovers the message from the watermarked image by leveraging the insensitive nature of the shallow decoder against arbitrary distortions. Our ASW is training-free, encoder-free, and noise layer-free. Experiments indicate that the watermarked images created by ASW have strong robustness against various unknown distortions. Compared to the existing ``encoder-noise layer-decoder'' approaches, ASW achieves comparable results on known distortions and better robustness on unknown distortions.
comment: 10 pages, 12 figures
LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects. Traditional methods such as feature embedding and reconstruction-based approaches require large datasets and struggle with scalability. Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations, leading to high implementation costs and false positives. Additionally, industrial datasets like MVTec-AD and VisA suffer from severe class imbalance, with defect samples constituting only 23.8% and 11.1% of total data respectively. To address these challenges, we propose a reward function that dynamically prioritizes rare defect patterns during training to handle class imbalance. We also introduce a mask-free reasoning framework using Chain of Thought (CoT) and Group Relative Policy Optimization (GRPO) mechanisms, enabling anomaly detection directly from raw images without annotated masks. This approach generates interpretable step-by-step explanations for defect localization. Our method achieves state-of-the-art performance, outperforming prior approaches by 36% in accuracy on MVTec-AD and 16% on VisA. By eliminating mask dependency and reducing costs while providing explainable outputs, this work advances industrial anomaly detection and supports scalable quality control in manufacturing. Code to reproduce the experiment is available at https://github.com/LilaKen/LR-IAD.
comment: 10 pages
FSBench: A Figure Skating Benchmark for Advancing Artistic Sports Understanding
Figure skating, known as the "Art on Ice," is among the most artistic sports, challenging to understand due to its blend of technical elements (like jumps and spins) and overall artistic expression. Existing figure skating datasets mainly focus on single tasks, such as action recognition or scoring, lacking comprehensive annotations for both technical and artistic evaluation. Current sports research is largely centered on ball games, with limited relevance to artistic sports like figure skating. To address this, we introduce FSAnno, a large-scale dataset advancing artistic sports understanding through figure skating. FSAnno includes an open-access training and test dataset, alongside a benchmark dataset, FSBench, for fair model evaluation. FSBench consists of FSBench-Text, with multiple-choice questions and explanations, and FSBench-Motion, containing multimodal data and Question and Answer (QA) pairs, supporting tasks from technical analysis to performance commentary. Initial tests on FSBench reveal significant limitations in existing models' understanding of artistic sports. We hope FSBench will become a key tool for evaluating and enhancing model comprehension of figure skating.
SynergyAmodal: Deocclude Anything with Text Control
Image deocclusion (or amodal completion) aims to recover the invisible regions (\ie, shape and appearance) of occluded instances in images. Despite recent advances, the scarcity of high-quality data that balances diversity, plausibility, and fidelity remains a major obstacle. To address this challenge, we identify three critical elements: leveraging in-the-wild image data for diversity, incorporating human expertise for plausibility, and utilizing generative priors for fidelity. We propose SynergyAmodal, a novel framework for co-synthesizing in-the-wild amodal datasets with comprehensive shape and appearance annotations, which integrates these elements through a tripartite data-human-model collaboration. First, we design an occlusion-grounded self-supervised learning algorithm to harness the diversity of in-the-wild image data, fine-tuning an inpainting diffusion model into a partial completion diffusion model. Second, we establish a co-synthesis pipeline to iteratively filter, refine, select, and annotate the initial deocclusion results of the partial completion diffusion model, ensuring plausibility and fidelity through human expert guidance and prior model constraints. This pipeline generates a high-quality paired amodal dataset with extensive category and scale diversity, comprising approximately 16K pairs. Finally, we train a full completion diffusion model on the synthesized dataset, incorporating text prompts as conditioning signals. Extensive experiments demonstrate the effectiveness of our framework in achieving zero-shot generalization and textual controllability. Our code, dataset, and models will be made publicly available at https://github.com/imlixinyang/SynergyAmodal.
comment: 17 pages
Masked Point-Entity Contrast for Open-Vocabulary 3D Scene Understanding CVPR 2025
Open-vocabulary 3D scene understanding is pivotal for enhancing physical intelligence, as it enables embodied agents to interpret and interact dynamically within real-world environments. This paper introduces MPEC, a novel Masked Point-Entity Contrastive learning method for open-vocabulary 3D semantic segmentation that leverages both 3D entity-language alignment and point-entity consistency across different point cloud views to foster entity-specific feature representations. Our method improves semantic discrimination and enhances the differentiation of unique instances, achieving state-of-the-art results on ScanNet for open-vocabulary 3D semantic segmentation and demonstrating superior zero-shot scene understanding capabilities. Extensive fine-tuning experiments on 8 datasets, spanning from low-level perception to high-level reasoning tasks, showcase the potential of learned 3D features, driving consistent performance gains across varied 3D scene understanding tasks. Project website: https://mpec-3d.github.io/
comment: CVPR 2025
CasaGPT: Cuboid Arrangement and Scene Assembly for Interior Design
We present a novel approach for indoor scene synthesis, which learns to arrange decomposed cuboid primitives to represent 3D objects within a scene. Unlike conventional methods that use bounding boxes to determine the placement and scale of 3D objects, our approach leverages cuboids as a straightforward yet highly effective alternative for modeling objects. This allows for compact scene generation while minimizing object intersections. Our approach, coined CasaGPT for Cuboid Arrangement and Scene Assembly, employs an autoregressive model to sequentially arrange cuboids, producing physically plausible scenes. By applying rejection sampling during the fine-tuning stage to filter out scenes with object collisions, our model further reduces intersections and enhances scene quality. Additionally, we introduce a refined dataset, 3DFRONT-NC, which eliminates significant noise presented in the original dataset, 3D-FRONT. Extensive experiments on the 3D-FRONT dataset as well as our dataset demonstrate that our approach consistently outperforms the state-of-the-art methods, enhancing the realism of generated scenes, and providing a promising direction for 3D scene synthesis.
Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video CVPR
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.
comment: 4 pages, 3 figures, 9 tables. Oral and Tutorial at the CVPR Mechanistic Interpretability for Vision (MIV) Workshop
Masked Language Prompting for Generative Data Augmentation in Few-shot Fashion Style Recognition
Constructing dataset for fashion style recognition is challenging due to the inherent subjectivity and ambiguity of style concepts. Recent advances in text-to-image models have facilitated generative data augmentation by synthesizing images from labeled data, yet existing methods based solely on class names or reference captions often fail to balance visual diversity and style consistency. In this work, we propose \textbf{Masked Language Prompting (MLP)}, a novel prompting strategy that masks selected words in a reference caption and leverages large language models to generate diverse yet semantically coherent completions. This approach preserves the structural semantics of the original caption while introducing attribute-level variations aligned with the intended style, enabling style-consistent and diverse image generation without fine-tuning. Experimental results on the FashionStyle14 dataset demonstrate that our MLP-based augmentation consistently outperforms class-name and caption-based baselines, validating its effectiveness for fashion style recognition under limited supervision.
CLIP-KOA: Enhancing Knee Osteoarthritis Diagnosis with Multi-Modal Learning and Symmetry-Aware Loss Functions
Knee osteoarthritis (KOA) is a universal chronic musculoskeletal disorders worldwide, making early diagnosis crucial. Currently, the Kellgren and Lawrence (KL) grading system is widely used to assess KOA severity. However, its high inter-observer variability and subjectivity hinder diagnostic consistency. To address these limitations, automated diagnostic techniques using deep learning have been actively explored in recent years. In this study, we propose a CLIP-based framework (CLIP-KOA) to enhance the consistency and reliability of KOA grade prediction. To achieve this, we introduce a learning approach that integrates image and text information and incorporate Symmetry Loss and Consistency Loss to ensure prediction consistency between the original and flipped images. CLIP-KOA achieves state-of-the-art accuracy of 71.86\% on KOA severity prediction task, and ablation studies show that CLIP-KOA has 2.36\% improvement in accuracy over the standard CLIP model due to our contribution. This study shows a novel direction for data-driven medical prediction not only to improve reliability of fine-grained diagnosis and but also to explore multimodal methods for medical image analysis. Our code is available at https://github.com/anonymized-link.
comment: 10 pages, 2 figures
Dual Attention Driven Lumbar Magnetic Resonance Image Feature Enhancement and Automatic Diagnosis of Herniation
Lumbar disc herniation (LDH) is a common musculoskeletal disease that requires magnetic resonance imaging (MRI) for effective clinical management. However, the interpretation of MRI images heavily relies on the expertise of radiologists, leading to delayed diagnosis and high costs for training physicians. Therefore, this paper proposes an innovative automated LDH classification framework. To address these key issues, the framework utilizes T1-weighted and T2-weighted MRI images from 205 people. The framework extracts clinically actionable LDH features and generates standardized diagnostic outputs by leveraging data augmentation and channel and spatial attention mechanisms. These outputs can help physicians make confident and time-effective care decisions when needed. The proposed framework achieves an area under the receiver operating characteristic curve (AUC-ROC) of 0.969 and an accuracy of 0.9486 for LDH detection. The experimental results demonstrate the performance of the proposed framework. Our framework only requires a small number of datasets for training to demonstrate high diagnostic accuracy. This is expected to be a solution to enhance the LDH detection capabilities of primary hospitals.
comment: 9 pages, 7 figures
EarthMapper: Visual Autoregressive Models for Controllable Bidirectional Satellite-Map Translation
Satellite imagery and maps, as two fundamental data modalities in remote sensing, offer direct observations of the Earth's surface and human-interpretable geographic abstractions, respectively. The task of bidirectional translation between satellite images and maps (BSMT) holds significant potential for applications in urban planning and disaster response. However, this task presents two major challenges: first, the absence of precise pixel-wise alignment between the two modalities substantially complicates the translation process; second, it requires achieving both high-level abstraction of geographic features and high-quality visual synthesis, which further elevates the technical complexity. To address these limitations, we introduce EarthMapper, a novel autoregressive framework for controllable bidirectional satellite-map translation. EarthMapper employs geographic coordinate embeddings to anchor generation, ensuring region-specific adaptability, and leverages multi-scale feature alignment within a geo-conditioned joint scale autoregression (GJSA) process to unify bidirectional translation in a single training cycle. A semantic infusion (SI) mechanism is introduced to enhance feature-level consistency, while a key point adaptive guidance (KPAG) mechanism is proposed to dynamically balance diversity and precision during inference. We further contribute CNSatMap, a large-scale dataset comprising 302,132 precisely aligned satellite-map pairs across 38 Chinese cities, enabling robust benchmarking. Extensive experiments on CNSatMap and the New York dataset demonstrate EarthMapper's superior performance, achieving significant improvements in visual realism, semantic consistency, and structural fidelity over state-of-the-art methods. Additionally, EarthMapper excels in zero-shot tasks like in-painting, out-painting and coordinate-conditional generation, underscoring its versatility.
A Real-Time Event-Based Normal Flow Estimator
This paper presents a real-time, asynchronous, event-based normal flow estimator. It follows the same algorithm as Learning Normal Flow Directly From Event Neighborhoods, but with a more optimized implementation. The original method treats event slices as 3D point clouds, encodes each event's local geometry into a fixed-length vector, and uses a multi-layer perceptron to predict normal flow. It constructs representations by multiplying an adjacency matrix with a feature matrix, resulting in quadratic time complexity with respect to the number of events. In contrast, we leverage the fact that event coordinates are integers and reformulate the representation step as a pooling operation. This achieves the same effect as the adjacency matrix but with much lower computational cost. As a result, our method supports real-time normal flow prediction on event cameras. Our estimator uses 1 GB of CUDA memory and runs at 4 million normal flows per second on an RTX 3070, or 6 million per second on an RTX A5000. We release the CUDA implementation along with a Python interface at https://github.com/dhyuan99/VecKM_flow_cpp.
GMAR: Gradient-Driven Multi-Head Attention Rollout for Vision Transformer Interpretability
The Vision Transformer (ViT) has made significant advancements in computer vision, utilizing self-attention mechanisms to achieve state-of-the-art performance across various tasks, including image classification, object detection, and segmentation. Its architectural flexibility and capabilities have made it a preferred choice among researchers and practitioners. However, the intricate multi-head attention mechanism of ViT presents significant challenges to interpretability, as the underlying prediction process remains opaque. A critical limitation arises from an observation commonly noted in transformer architectures: "Not all attention heads are equally meaningful." Overlooking the relative importance of specific heads highlights the limitations of existing interpretability methods. To address these challenges, we introduce Gradient-Driven Multi-Head Attention Rollout (GMAR), a novel method that quantifies the importance of each attention head using gradient-based scores. These scores are normalized to derive a weighted aggregate attention score, effectively capturing the relative contributions of individual heads. GMAR clarifies the role of each head in the prediction process, enabling more precise interpretability at the head level. Experimental results demonstrate that GMAR consistently outperforms traditional attention rollout techniques. This work provides a practical contribution to transformer-based architectures, establishing a robust framework for enhancing the interpretability of Vision Transformer models.
UNet with Axial Transformer : A Neural Weather Model for Precipitation Nowcasting
Making accurate weather predictions can be particularly challenging for localized storms or events that evolve on hourly timescales, such as thunderstorms. Hence, our goal for the project was to model Weather Nowcasting for making highly localized and accurate predictions that apply to the immediate future replacing the current numerical weather models and data assimilation systems with Deep Learning approaches. A significant advantage of machine learning is that inference is computationally cheap given an already-trained model, allowing forecasts that are nearly instantaneous and in the native high resolution of the input data. In this work we developed a novel method that employs Transformer-based machine learning models to forecast precipitation. This approach works by leveraging axial attention mechanisms to learn complex patterns and dynamics from time series frames. Moreover, it is a generic framework and can be applied to univariate and multivariate time series data, as well as time series embeddings data. This paper represents an initial research on the dataset used in the domain of next frame prediciton, and hence, we demonstrate state-of-the-art results in terms of metrices (PSNR = 47.67, SSIM = 0.9943) used for the given dataset using UNet with Axial Transformer.
Boosting 3D Liver Shape Datasets with Diffusion Models and Implicit Neural Representations
While the availability of open 3D medical shape datasets is increasing, offering substantial benefits to the research community, we have found that many of these datasets are, unfortunately, disorganized and contain artifacts. These issues limit the development and training of robust models, particularly for accurate 3D reconstruction tasks. In this paper, we examine the current state of available 3D liver shape datasets and propose a solution using diffusion models combined with implicit neural representations (INRs) to augment and expand existing datasets. Our approach utilizes the generative capabilities of diffusion models to create realistic, diverse 3D liver shapes, capturing a wide range of anatomical variations and addressing the problem of data scarcity. Experimental results indicate that our method enhances dataset diversity, providing a scalable solution to improve the accuracy and reliability of 3D liver reconstruction and generation in medical applications. Finally, we suggest that diffusion models can also be applied to other downstream tasks in 3D medical imaging.
Innovative Integration of 4D Cardiovascular Reconstruction and Hologram: A New Visualization Tool for Coronary Artery Bypass Grafting Planning
Background: Coronary artery bypass grafting (CABG) planning requires advanced spatial visualization and consideration of coronary artery depth, calcification, and pericardial adhesions. Objective: To develop and evaluate a dynamic cardiovascular holographic visualization tool for preoperative CABG planning. Methods: Using 4D cardiac computed tomography angiography data from 14 CABG candidates, we developed a semi-automated workflow for time-resolved segmentation of cardiac structures, epicardial adipose tissue (EAT), and coronary arteries with calcium scoring. The workflow incorporated methods for cardiac segmentation, coronary calcification quantification, visualization of coronary depth within EAT, and pericardial adhesion assessment through motion analysis. Dynamic cardiovascular holograms were displayed using the Looking Glass platform. Thirteen cardiac surgeons evaluated the tool using a Likert scale. Additionally, pericardial adhesion scores from holograms of 21 patients (including seven undergoing secondary cardiac surgeries) were compared with intraoperative findings. Results: Surgeons rated the visualization tool highly for preoperative planning utility (mean Likert score: 4.57/5.0). Hologram-based pericardial adhesion scoring strongly correlated with intraoperative findings (r=0.786, P<0.001). Conclusion: This study establishes a visualization framework for CABG planning that produces clinically relevant dynamic holograms from patient-specific data, with clinical feedback confirming its effectiveness for preoperative planning.
comment: 35 pages, 9 figures
Dynamic Arthroscopic Navigation System for Anterior Cruciate Ligament Reconstruction Based on Multi-level Memory Architecture
This paper presents a dynamic arthroscopic navigation system based on multi-level memory architecture for anterior cruciate ligament (ACL) reconstruction surgery. The system extends our previously proposed markerless navigation method from static image matching to dynamic video sequence tracking. By integrating the Atkinson-Shiffrin memory model's three-level architecture (sensory memory, working memory, and long-term memory), our system maintains continuous tracking of the femoral condyle throughout the surgical procedure, providing stable navigation support even in complex situations involving viewpoint changes, instrument occlusion, and tissue deformation. Unlike existing methods, our system operates in real-time on standard arthroscopic equipment without requiring additional tracking hardware, achieving 25.3 FPS with a latency of only 39.5 ms, representing a 3.5-fold improvement over our previous static system. For extended sequences (1000 frames), the dynamic system maintained an error of 5.3 plus-minus 1.5 pixels, compared to the static system's 12.6 plus-minus 3.7 pixels - an improvement of approximately 45 percent. For medium-length sequences (500 frames) and short sequences (100 frames), the system achieved approximately 35 percent and 19 percent accuracy improvements, respectively. Experimental results demonstrate the system overcomes limitations of traditional static matching methods, providing new technical support for improving surgical precision in ACL reconstruction.
comment: 28 pages, 13 figures
Dynamic Contextual Attention Network: Transforming Spatial Representations into Adaptive Insights for Endoscopic Polyp Diagnosis
Colorectal polyps are key indicators for early detection of colorectal cancer. However, traditional endoscopic imaging often struggles with accurate polyp localization and lacks comprehensive contextual awareness, which can limit the explainability of diagnoses. To address these issues, we propose the Dynamic Contextual Attention Network (DCAN). This novel approach transforms spatial representations into adaptive contextual insights, using an attention mechanism that enhances focus on critical polyp regions without explicit localization modules. By integrating contextual awareness into the classification process, DCAN improves decision interpretability and overall diagnostic performance. This advancement in imaging could lead to more reliable colorectal cancer detection, enabling better patient outcomes.
comment: Accepted at 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2025
DeepAndes: A Self-Supervised Vision Foundation Model for Multi-Spectral Remote Sensing Imagery of the Andes
By mapping sites at large scales using remotely sensed data, archaeologists can generate unique insights into long-term demographic trends, inter-regional social networks, and past adaptations to climate change. Remote sensing surveys complement field-based approaches, and their reach can be especially great when combined with deep learning and computer vision techniques. However, conventional supervised deep learning methods face challenges in annotating fine-grained archaeological features at scale. While recent vision foundation models have shown remarkable success in learning large-scale remote sensing data with minimal annotations, most off-the-shelf solutions are designed for RGB images rather than multi-spectral satellite imagery, such as the 8-band data used in our study. In this paper, we introduce DeepAndes, a transformer-based vision foundation model trained on three million multi-spectral satellite images, specifically tailored for Andean archaeology. DeepAndes incorporates a customized DINOv2 self-supervised learning algorithm optimized for 8-band multi-spectral imagery, marking the first foundation model designed explicitly for the Andes region. We evaluate its image understanding performance through imbalanced image classification, image instance retrieval, and pixel-level semantic segmentation tasks. Our experiments show that DeepAndes achieves superior F1 scores, mean average precision, and Dice scores in few-shot learning scenarios, significantly outperforming models trained from scratch or pre-trained on smaller datasets. This underscores the effectiveness of large-scale self-supervised pre-training in archaeological remote sensing. Codes will be available on https://github.com/geopacha/DeepAndes.
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Diffusion models excel in content generation by implicitly learning the data manifold, yet they lack a practical method to leverage this manifold - unlike other deep generative models equipped with latent spaces. This paper introduces a novel framework that treats the data space of pre-trained diffusion models as a Riemannian manifold, with a metric derived from the score function. Experiments with MNIST and Stable Diffusion show that this geometry-aware approach yields image interpolations that are more realistic, less noisy, and more faithful to prompts than existing methods, demonstrating its potential for improved content generation and editing.
Physics-Informed Diffusion Models for SAR Ship Wake Generation from Text Prompts
Detecting ship presence via wake signatures in SAR imagery is attracting considerable research interest, but limited annotated data availability poses significant challenges for supervised learning. Physics-based simulations are commonly used to address this data scarcity, although they are slow and constrain end-to-end learning. In this work, we explore a new direction for more efficient and end-to-end SAR ship wake simulation using a diffusion model trained on data generated by a physics-based simulator. The training dataset is built by pairing images produced by the simulator with text prompts derived from simulation parameters. Experimental result show that the model generates realistic Kelvin wake patterns and achieves significantly faster inference than the physics-based simulator. These results highlight the potential of diffusion models for fast and controllable wake image generation, opening new possibilities for end-to-end downstream tasks in maritime SAR analysis.
comment: 4 pages; Submitted Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS) - 2025
Improving trajectory continuity in drone-based crowd monitoring using a set of minimal-cost techniques and deep discriminative correlation filters
Drone-based crowd monitoring is the key technology for applications in surveillance, public safety, and event management. However, maintaining tracking continuity and consistency remains a significant challenge. Traditional detection-assignment tracking methods struggle with false positives, false negatives, and frequent identity switches, leading to degraded counting accuracy and making in-depth analysis impossible. This paper introduces a point-oriented online tracking algorithm that improves trajectory continuity and counting reliability in drone-based crowd monitoring. Our method builds on the Simple Online and Real-time Tracking (SORT) framework, replacing the original bounding-box assignment with a point-distance metric. The algorithm is enhanced with three cost-effective techniques: camera motion compensation, altitude-aware assignment, and classification-based trajectory validation. Further, Deep Discriminative Correlation Filters (DDCF) that re-use spatial feature maps from localisation algorithms for increased computational efficiency through neural network resource sharing are integrated to refine object tracking by reducing noise and handling missed detections. The proposed method is evaluated on the DroneCrowd and newly shared UP-COUNT-TRACK datasets, demonstrating substantial improvements in tracking metrics, reducing counting errors to 23% and 15%, respectively. The results also indicate a significant reduction of identity switches while maintaining high tracking accuracy, outperforming baseline online trackers and even an offline greedy optimisation method.
comment: Preprint submitted to the Expert Systems with Applications journal
FreBIS: Frequency-Based Stratification for Neural Implicit Surface Representations CVPR 2025
Neural implicit surface representation techniques are in high demand for advancing technologies in augmented reality/virtual reality, digital twins, autonomous navigation, and many other fields. With their ability to model object surfaces in a scene as a continuous function, such techniques have made remarkable strides recently, especially over classical 3D surface reconstruction methods, such as those that use voxels or point clouds. However, these methods struggle with scenes that have varied and complex surfaces principally because they model any given scene with a single encoder network that is tasked to capture all of low through high-surface frequency information in the scene simultaneously. In this work, we propose a novel, neural implicit surface representation approach called FreBIS to overcome this challenge. FreBIS works by stratifying the scene based on the frequency of surfaces into multiple frequency levels, with each level (or a group of levels) encoded by a dedicated encoder. Moreover, FreBIS encourages these encoders to capture complementary information by promoting mutual dissimilarity of the encoded features via a novel, redundancy-aware weighting module. Empirical evaluations on the challenging BlendedMVS dataset indicate that replacing the standard encoder in an off-the-shelf neural surface reconstruction method with our frequency-stratified encoders yields significant improvements. These enhancements are evident both in the quality of the reconstructed 3D surfaces and in the fidelity of their renderings from any viewpoint.
comment: Accepted to CVPR 2025 CV4Metaverse Workshop
A Multimodal Pipeline for Clinical Data Extraction: Applying Vision-Language Models to Scans of Transfusion Reaction Reports
Despite the growing adoption of electronic health records, many processes still rely on paper documents, reflecting the heterogeneous real-world conditions in which healthcare is delivered. The manual transcription process is time-consuming and prone to errors when transferring paper-based data to digital formats. To streamline this workflow, this study presents an open-source pipeline that extracts and categorizes checkbox data from scanned documents. Demonstrated on transfusion reaction reports, the design supports adaptation to other checkbox-rich document types. The proposed method integrates checkbox detection, multilingual optical character recognition (OCR) and multilingual vision-language models (VLMs). The pipeline achieves high precision and recall compared against annually compiled gold-standards from 2017 to 2024. The result is a reduction in administrative workload and accurate regulatory reporting. The open-source availability of this pipeline encourages self-hosted parsing of checkbox forms.
Remote Sensing Imagery for Flood Detection: Exploration of Augmentation Strategies
Floods cause serious problems around the world. Responding quickly and effectively requires accurate and timely information about the affected areas. The effective use of Remote Sensing images for accurate flood detection requires specific detection methods. Typically, Deep Neural Networks are employed, which are trained on specific datasets. For the purpose of river flood detection in RGB imagery, we use the BlessemFlood21 dataset. We here explore the use of different augmentation strategies, ranging from basic approaches to more complex techniques, including optical distortion. By identifying effective strategies, we aim to refine the training process of state-of-the-art Deep Learning segmentation networks.
Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains
Vision-language models (VLMs) achieve remarkable success in single-image tasks. However, real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline as models struggle to disentangle critical information scattered across complex visual features. In this work, we propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs'perception, comprehension, and reasoning abilities in multi-image scenarios. To facilitate this paradigm, we propose Focus-Centric Data Synthesis, a scalable bottom-up approach for synthesizing high-quality data with elaborate reasoning paths. Through this approach, We construct VISC-150K, a large-scale dataset with reasoning data in the form of Focus-Centric Visual Chain, specifically designed for multi-image tasks. Experimental results on seven multi-image benchmarks demonstrate that our method achieves average performance gains of 3.16% and 2.24% across two distinct model architectures, without compromising the general vision-language capabilities. our study represents a significant step toward more robust and capable vision-language systems that can handle complex visual scenarios.
Integration Flow Models
Ordinary differential equation (ODE) based generative models have emerged as a powerful approach for producing high-quality samples in many applications. However, the ODE-based methods either suffer the discretization error of numerical solvers of ODE, which restricts the quality of samples when only a few NFEs are used, or struggle with training instability. In this paper, we proposed Integration Flow, which directly learns the integral of ODE-based trajectory paths without solving the ODE functions. Moreover, Integration Flow explicitly incorporates the target state $\mathbf{x}_0$ as the anchor state in guiding the reverse-time dynamics. We have theoretically proven this can contribute to both stability and accuracy. To the best of our knowledge, Integration Flow is the first model with a unified structure to estimate ODE-based generative models and the first to show the exact straightness of 1-Rectified Flow without reflow. Through theoretical analysis and empirical evaluations, we show that Integration Flows achieve improved performance when it is applied to existing ODE-based models, such as diffusion models, Rectified Flows, and PFGM++. Specifically, Integration Flow achieves one-step generation on CIFAR10 with FIDs of 2.86 for the Variance Exploding (VE) diffusion model, 3.36 for rectified flow without reflow, and 2.91 for PFGM++; and on ImageNet with FIDs of 4.09 for VE diffusion model, 4.35 for rectified flow without reflow and 4.15 for PFGM++.
A Transformer-based Multimodal Fusion Model for Efficient Crowd Counting Using Visual and Wireless Signals
Current crowd-counting models often rely on single-modal inputs, such as visual images or wireless signal data, which can result in significant information loss and suboptimal recognition performance. To address these shortcomings, we propose TransFusion, a novel multimodal fusion-based crowd-counting model that integrates Channel State Information (CSI) with image data. By leveraging the powerful capabilities of Transformer networks, TransFusion effectively combines these two distinct data modalities, enabling the capture of comprehensive global contextual information that is critical for accurate crowd estimation. However, while transformers are well capable of capturing global features, they potentially fail to identify finer-grained, local details essential for precise crowd counting. To mitigate this, we incorporate Convolutional Neural Networks (CNNs) into the model architecture, enhancing its ability to extract detailed local features that complement the global context provided by the Transformer. Extensive experimental evaluations demonstrate that TransFusion achieves high accuracy with minimal counting errors while maintaining superior efficiency.
comment: This paper was accepted at IEEE WCNC 2025
Hybrid Video Anomaly Detection for Anomalous Scenarios in Autonomous Driving BMVC 2024
In autonomous driving, the most challenging scenarios can only be detected within their temporal context. Most video anomaly detection approaches focus either on surveillance or traffic accidents, which are only a subfield of autonomous driving. We present HF$^2$-VAD$_{AD}$, a variation of the HF$^2$-VAD surveillance video anomaly detection method for autonomous driving. We learn a representation of normality from a vehicle's ego perspective and evaluate pixel-wise anomaly detections in rare and critical scenarios.
comment: Daniel Bogdoll and Jan Imhof contributed equally. Accepted for publication at BMVC 2024 RROW workshop. Won Best Paper Award
From Brainwaves to Brain Scans: A Robust Neural Network for EEG-to-fMRI Synthesis
While functional magnetic resonance imaging (fMRI) offers valuable insights into brain activity, it is limited by high operational costs and significant infrastructural demands. In contrast, electroencephalography (EEG) provides millisecond-level precision in capturing electrical activity but lacks the spatial fidelity necessary for precise neural localization. To bridge these gaps, we propose E2fNet, a simple yet effective deep learning model for synthesizing fMRI images from low-cost EEG data. E2fNet is an encoder-decoder network specifically designed to capture and translate meaningful multi-scale features from EEG across electrode channels into accurate fMRI representations. Extensive evaluations across three public datasets demonstrate that E2fNet consistently outperforms existing CNN- and transformer-based methods, achieving state-of-the-art results in terms of the structural similarity index measure (SSIM). These results demonstrate that E2fNet is a promising, cost-effective solution for enhancing neuroimaging capabilities. The code is available at https://github.com/kgr20/E2fNet.
Conditional Electrocardiogram Generation Using Hierarchical Variational Autoencoders
Cardiovascular diseases (CVDs) are disorders impacting the heart and circulatory system. These disorders are the foremost and continuously escalating cause of mortality worldwide. One of the main tasks when working with CVDs is analyzing and identifying pathologies on a 12-lead electrocardiogram (ECG) with a standard 10-second duration. Using machine learning (ML) in automatic ECG analysis increases CVD diagnostics' availability, speed, and accuracy. However, the most significant difficulty in developing ML models is obtaining a sufficient training dataset. Due to the limitations of medical data usage, such as expensiveness, errors, the ambiguity of labels, imbalance of classes, and privacy issues, utilizing synthetic samples depending on specific pathologies bypasses these restrictions and improves algorithm quality. Existing solutions for the conditional generation of ECG signals are mainly built on Generative Adversarial Networks (GANs), and only a few papers consider the architectures based on Variational Autoencoders (VAEs), showing comparable results in recent works. This paper proposes the publicly available conditional Nouveau VAE model for ECG signal generation (cNVAE-ECG), which produces high-resolution ECGs with multiple pathologies. We provide an extensive comparison of the proposed model on various practical downstream tasks, including transfer learning scenarios showing an area under the receiver operating characteristic (AUROC) increase up to 2% surpassing GAN-like competitors.
comment: 10 pages, 6 figures, 7 tables
Better artificial intelligence does not mean better models of biology
Deep neural networks (DNNs) once showed increasing alignment with primate perception and neural responses as they improved on vision benchmarks, raising hopes that advances in AI would yield better models of biological vision. However, we show across three benchmarks that this alignment is now plateauing - and in some cases worsening - as DNNs scale to human or superhuman accuracy. This divergence may reflect the adoption of visual strategies that differ from those used by primates. These findings challenge the view that progress in artificial intelligence will naturally translate to neuroscience. We argue that vision science must chart its own course, developing algorithms grounded in biological visual systems rather than optimizing for benchmarks based on internet-scale datasets.
Estimating the Number of HTTP/3 Responses in QUIC Using Deep Learning
QUIC, a new and increasingly used transport protocol, enhances TCP by offering improved security, performance, and stream multiplexing. These features, however, also impose challenges for network middle-boxes that need to monitor and analyze web traffic. This paper proposes a novel method to estimate the number of HTTP/3 responses in a given QUIC connection by an observer. This estimation reveals server behavior, client-server interactions, and data transmission efficiency, which is crucial for various applications such as designing a load balancing solution and detecting HTTP/3 flood attacks. The proposed scheme transforms QUIC connection traces into image sequences and uses machine learning (ML) models, guided by a tailored loss function, to predict response counts. Evaluations on more than seven million images-derived from 100,000 traces collected across 44,000 websites over four months-achieve up to 97% accuracy in both known and unknown server settings and 92% accuracy on previously unseen complete QUIC traces.
Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation CVPR
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO), demonstrating strong transferability across diverse remote sensing tasks. While prior work has focused on network architectures and training strategies, the role of dataset curation, especially in balancing and diversifying pre-training datasets, remains underexplored. In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery, which can lead to biased representations and inefficient training. In this work, we propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance. Our method iteratively refines the training set without requiring a pre-existing feature extractor, making it well-suited for domains where curated datasets are limited or unavailable. We demonstrate our approach on the Sentinel-1 Wave Mode (WV) Synthetic Aperture Radar (SAR) archive, a challenging dataset dominated by ocean observations. We train models from scratch on the entire Sentinel-1 WV archive spanning 10 years. Across three downstream tasks, our results show that dynamic pruning improves both computational efficiency and representation quality, leading to stronger transferability. We also release the weights of OceanSAR-1, the first model in the OceanSAR family, a series of foundation models for ocean observation and analysis using SAR imagery, at github.com/galeio-research/OceanSAR-models/.
comment: Accepted at CVPR Workshop : The First Workshop on Foundation and Large Vision Models in Remote Sensing
Interpretable Dynamic Graph Neural Networks for Small Occluded Object Detection and Tracking
The detection and tracking of small, occluded objects such as pedestrians, cyclists, and motorbikes pose significant challenges for traffic surveillance systems because of their erratic movement, frequent occlusion, and poor visibility in dynamic urban environments. Traditional methods like YOLO11, while proficient in spatial feature extraction for precise detection, often struggle with these small and dynamically moving objects, particularly in handling real-time data updates and resource efficiency. This paper introduces DGNN-YOLO, a novel framework that integrates dynamic graph neural networks (DGNNs) with YOLO11 to address these limitations. Unlike standard GNNs, DGNNs are chosen for their superior ability to dynamically update graph structures in real-time, which enables adaptive and robust tracking of objects in highly variable urban traffic scenarios. This framework constructs and regularly updates its graph representations, capturing objects as nodes and their interactions as edges, thus effectively responding to rapidly changing conditions. Additionally, DGNN-YOLO incorporates Grad-CAM, Grad-CAM++, and Eigen-CAM visualization techniques to enhance interpretability and foster trust, offering insights into the model's decision-making process. Extensive experiments validate the framework's performance, achieving a precision of 0.8382, recall of 0.6875, and mAP@0.5:0.95 of 0.6476, significantly outperforming existing methods. This study offers a scalable and interpretable solution for real-time traffic surveillance and significantly advances intelligent transportation systems' capabilities by addressing the critical challenge of detecting and tracking small, occluded objects.
Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation WACV 2025
Prototypical part learning is emerging as a promising approach for making semantic segmentation interpretable. The model selects real patches seen during training as prototypes and constructs the dense prediction map based on the similarity between parts of the test image and the prototypes. This improves interpretability since the user can inspect the link between the predicted output and the patterns learned by the model in terms of prototypical information. In this paper, we propose a method for interpretable semantic segmentation that leverages multi-scale image representation for prototypical part learning. First, we introduce a prototype layer that explicitly learns diverse prototypical parts at several scales, leading to multi-scale representations in the prototype activation output. Then, we propose a sparse grouping mechanism that produces multi-scale sparse groups of these scale-specific prototypical parts. This provides a deeper understanding of the interactions between multi-scale object representations while enhancing the interpretability of the segmentation model. The experiments conducted on Pascal VOC, Cityscapes, and ADE20K demonstrate that the proposed method increases model sparsity, improves interpretability over existing prototype-based methods, and narrows the performance gap with the non-interpretable counterpart models. Code is available at github.com/eceo-epfl/ScaleProtoSeg.
comment: Accepted at WACV 2025
DD-rPPGNet: De-interfering and Descriptive Feature Learning for Unsupervised rPPG Estimation
Remote Photoplethysmography (rPPG) aims to measure physiological signals and Heart Rate (HR) from facial videos. Recent unsupervised rPPG estimation methods have shown promising potential in estimating rPPG signals from facial regions without relying on ground truth rPPG signals. However, these methods seem oblivious to interference existing in rPPG signals and still result in unsatisfactory performance. In this paper, we propose a novel De-interfered and Descriptive rPPG Estimation Network (DD-rPPGNet) to eliminate the interference within rPPG features for learning genuine rPPG signals. First, we investigate the characteristics of local spatial-temporal similarities of interference and design a novel unsupervised model to estimate the interference. Next, we propose an unsupervised de-interfered method to learn genuine rPPG signals with two stages. In the first stage, we estimate the initial rPPG signals by contrastive learning from both the training data and their augmented counterparts. In the second stage, we use the estimated interference features to derive de-interfered rPPG features and encourage the rPPG signals to be distinct from the interference. In addition, we propose an effective descriptive rPPG feature learning by developing a strong 3D Learnable Descriptive Convolution (3DLDC) to capture the subtle chrominance changes for enhancing rPPG estimation. Extensive experiments conducted on five rPPG benchmark datasets demonstrate that the proposed DD-rPPGNet outperforms previous unsupervised rPPG estimation methods and achieves competitive performances with state-of-the-art supervised rPPG methods. The code is available at: https://github.com/Pei-KaiHuang/TIFS2025-DD-rPPGNet
OmniEdit: Building Image Editing Generalist Models Through Specialist Supervision
Instruction-guided image editing methods have demonstrated significant potential by training diffusion models on automatically synthesized or manually annotated image editing pairs. However, these methods remain far from practical, real-life applications. We identify three primary challenges contributing to this gap. Firstly, existing models have limited editing skills due to the biased synthesis process. Secondly, these methods are trained with datasets with a high volume of noise and artifacts. This is due to the application of simple filtering methods like CLIP-score. Thirdly, all these datasets are restricted to a single low resolution and fixed aspect ratio, limiting the versatility to handle real-world use cases. In this paper, we present \omniedit, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) \omniedit is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new editing architecture called EditNet to greatly boost the editing success rate, (4) we provide images with different aspect ratios to ensure that our model can handle any image in the wild. We have curated a test set containing images of different aspect ratios, accompanied by diverse instructions to cover different tasks. Both automatic evaluation and human evaluations demonstrate that \omniedit can significantly outperform all the existing models. Our code, dataset and model will be available at https://tiger-ai-lab.github.io/OmniEdit/
comment: 21 pages
A prototype-based model for set classification
Classification of sets of inputs (e.g., images and texts) is an active area of research within both computer vision (CV) and natural language processing (NLP). A common way to represent a set of vectors is to model them as linear subspaces. In this contribution, we present a prototype-based approach for learning on the manifold formed from such linear subspaces, the Grassmann manifold. Our proposed method learns a set of subspace prototypes capturing the representative characteristics of classes and a set of relevance factors automating the selection of the dimensionality of the subspaces. This leads to a transparent classifier model which presents the computed impact of each input vector on its decision. Through experiments on benchmark image and text datasets, we have demonstrated the efficiency of our proposed classifier, compared to the transformer-based models in terms of not only performance and explainability but also computational resource requirements.
Unsupervised Tomato Split Anomaly Detection using Hyperspectral Imaging and Variational Autoencoders
Tomato anomalies/damages pose a significant challenge in greenhouse farming. While this method of cultivation benefits from efficient resource utilization, anomalies can significantly degrade the quality of farm produce. A common anomaly associated with tomatoes is splitting, characterized by the development of cracks on the tomato skin, which degrades its quality. Detecting this type of anomaly is challenging due to dynamic variations in appearance and sizes, compounded by dataset scarcity. We address this problem in an unsupervised manner by utilizing a tailored variational autoencoder (VAE) with hyperspectral input. Preliminary analysis of the dataset enabled us to select the optimal range of wavelengths for detecting this anomaly. Our findings indicate that the 530nm - 550nm range is suitable for identifying tomato dry splits. The proposed VAE model achieved a 97% detection accuracy for tomato split anomalies in the test data. The analysis on reconstruction loss allow us to not only detect the anomalies but also to some degree estimate the anomalous regions.
comment: CVPPA Workshop
An $\ell^1$-Plug-and-Play Approach for MPI Using a Zero Shot Denoiser with Evaluation on the 3D Open MPI Dataset
Objective: Magnetic particle imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field. From the electric signal measured in receive coils, the particle concentration has to be reconstructed. Due to the ill-posedness of the reconstruction problem, various regularization methods have been proposed for reconstruction ranging from early stopping methods, via classical Tikhonov regularization and iterative methods to modern machine learning approaches. In this work, we contribute to the latter class: we propose a plug-and-play approach based on a generic zero-shot denoiser with an $\ell^1$-prior. Approach: We validate the reconstruction parameters of the method on a hybrid dataset and compare it with the baseline Tikhonov, DIP and the previous PP-MPI, which is a plug-and-play method with denoiser trained on MPI-friendly data. Main results: We offer a quantitative and qualitative evaluation of the zero-shot plug-and-play approach on the 3D Open MPI dataset. Moreover, we show the quality of the approach with different levels of preprocessing of the data. Significance: The proposed method employs a zero-shot denoiser which has not been trained for the MPI task and therefore saves the cost for training. Moreover, it offers a method that can be potentially applied in future MPI contexts.
comment: 24 pages, 7 figures, additional supplementary material (78 pages total)
Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
comment: code: https://github.com/stepfun-ai/Step1X-Edit
3D Gaussian Inpainting with Depth-Guided Cross-View Consistency CVPR 2025
When performing 3D inpainting using novel-view rendering methods like Neural Radiance Field (NeRF) or 3D Gaussian Splatting (3DGS), how to achieve texture and geometry consistency across camera views has been a challenge. In this paper, we propose a framework of 3D Gaussian Inpainting with Depth-Guided Cross-View Consistency (3DGIC) for cross-view consistent 3D inpainting. Guided by the rendered depth information from each training view, our 3DGIC exploits background pixels visible across different views for updating the inpainting mask, allowing us to refine the 3DGS for inpainting purposes.Through extensive experiments on benchmark datasets, we confirm that our 3DGIC outperforms current state-of-the-art 3D inpainting methods quantitatively and qualitatively.
comment: Accepted to CVPR 2025. For project page, see https://peterjohnsonhuang.github.io/3dgic-pages
Remote sensing colour image semantic segmentation of trails created by large herbivorous Mammals
Identifying spatial regions where biodiversity is threatened is crucial for effective ecosystem conservation and monitoring. In this stydy, we assessed varios machine learning methods to detect grazing trails automatically. We tested five semantic segmentation models combined with 14 different encoder networks. The best combination was UNet with MambaOut encoder. The solution proposed could be used as the basis for tools aiming at mapping and tracking changes in grazing trails on a continuous temporal basis.
comment: 24 pages, 6 figures. Submitted to Computers and Geosciences
RGS-DR: Reflective Gaussian Surfels with Deferred Rendering for Shiny Objects
We introduce RGS-DR, a novel inverse rendering method for reconstructing and rendering glossy and reflective objects with support for flexible relighting and scene editing. Unlike existing methods (e.g., NeRF and 3D Gaussian Splatting), which struggle with view-dependent effects, RGS-DR utilizes a 2D Gaussian surfel representation to accurately estimate geometry and surface normals, an essential property for high-quality inverse rendering. Our approach explicitly models geometric and material properties through learnable primitives rasterized into a deferred shading pipeline, effectively reducing rendering artifacts and preserving sharp reflections. By employing a multi-level cube mipmap, RGS-DR accurately approximates environment lighting integrals, facilitating high-quality reconstruction and relighting. A residual pass with spherical-mipmap-based directional encoding further refines the appearance modeling. Experiments demonstrate that RGS-DR achieves high-quality reconstruction and rendering quality for shiny objects, often outperforming reconstruction-exclusive state-of-the-art methods incapable of relighting.
GranQ: Granular Zero-Shot Quantization with Unified Layer-Channel Awareness
Zero-shot quantization (ZSQ) enables neural network compression without training data, which is crucial in restricted data access environments. However, existing ZSQ methods suffer from significant activation loss in low-bit environments owing to their coarse-grained scaling strategy. To address this issue, we propose GranQ, a novel ZSQ approach that leverages layer-channel awareness to minimize the quantization error. Unlike conventional layer- or channel-wise quantization, GranQ dynamically adjusts quantization granularity by considering both layer- and channel-level activation distributions. This enables fine-grained quantization while minimizing activation distortion. Additionally, we introduce vectorized activation quantization, which enables efficient parallel computation and reduces computational overhead while preserving accuracy. GranQ achieves superior performance compared with those of state-of-the-art ZSQ methods that employ quantization-aware training. With these findings, we anticipate that GranQ will inspire novel research directions beyond conventional ZSQ approaches focused on data generation and model training.
Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success
Recent vision-language-action models (VLAs) build upon pretrained vision-language models and leverage diverse robot datasets to demonstrate strong task execution, language following ability, and semantic generalization. Despite these successes, VLAs struggle with novel robot setups and require fine-tuning to achieve good performance, yet how to most effectively fine-tune them is unclear given many possible strategies. In this work, we study key VLA adaptation design choices such as different action decoding schemes, action representations, and learning objectives for fine-tuning, using OpenVLA as our representative base model. Our empirical analysis informs an Optimized Fine-Tuning (OFT) recipe that integrates parallel decoding, action chunking, a continuous action representation, and a simple L1 regression-based learning objective to altogether improve inference efficiency, policy performance, and flexibility in the model's input-output specifications. We propose OpenVLA-OFT, an instantiation of this recipe, which sets a new state of the art on the LIBERO simulation benchmark, significantly boosting OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$\times$. In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot and outperform other VLAs ($\pi_0$ and RDT-1B) fine-tuned using their default recipes, as well as strong imitation learning policies trained from scratch (Diffusion Policy and ACT) by up to 15% (absolute) in average success rate. We release code for OFT and pretrained model checkpoints at https://openvla-oft.github.io/.
comment: Accepted to Robotics: Science and Systems (RSS) 2025. Project website: https://openvla-oft.github.io/
Infusion: internal diffusion for inpainting of dynamic textures and complex motion
Video inpainting is the task of filling a region in a video in a visually convincing manner. It is very challenging due to the high dimensionality of the data and the temporal consistency required for obtaining convincing results. Recently, diffusion models have shown impressive results in modeling complex data distributions, including images and videos. Such models remain nonetheless very expensive to train and to perform inference with, which strongly reduce their applicability to videos, and yields unreasonable computational loads. We show that in the case of video inpainting, thanks to the highly auto-similar nature of videos, the training data of a diffusion model can be restricted to the input video and still produce very satisfying results. With this internal learning approach, where the training data is limited to a single video, our lightweight models perform very well with only half a million parameters, in contrast to the very large networks with billions of parameters typically found in the literature. We also introduce a new method for efficient training and inference of diffusion models in the context of internal learning, by splitting the diffusion process into different learning intervals corresponding to different noise levels of the diffusion process. We show qualitative and quantitative results, demonstrating that our method reaches or exceeds state of the art performance in the case of dynamic textures and complex dynamic backgrounds
comment: 14 pages, 11 figures. Published in Eurographics 2025
Free-DyGS: Camera-Pose-Free Scene Reconstruction for Dynamic Surgical Videos with Gaussian Splatting
High-fidelity reconstruction of surgical scene is a fundamentally crucial task to support many applications, such as intra-operative navigation and surgical education. However, most existing methods assume the ideal surgical scenarios - either focus on dynamic reconstruction with deforming tissue yet assuming a given fixed camera pose, or allow endoscope movement yet reconstructing the static scenes. In this paper, we target at a more realistic yet challenging setup - free-pose reconstruction with a moving camera for highly dynamic surgical scenes. Meanwhile, we take the first step to introduce Gaussian Splitting (GS) technique to tackle this challenging setting and propose a novel GS-based framework for fast reconstruction, termed \textit{Free-DyGS}. Concretely, our model embraces a novel scene initialization in which a pre-trained Sparse Gaussian Regressor (SGR) can efficiently parameterize the initial attributes. For each subsequent frame, we propose to jointly optimize the deformation model and 6D camera poses in a frame-by-frame manner, easing training given the limited deformation differences between consecutive frames. A Scene Expansion scheme is followed to expand the GS model for the unseen regions introduced by the moving camera. Moreover, the framework is equipped with a novel Retrospective Deformation Recapitulation (RDR) strategy to preserve the entire-clip deformations throughout the frame-by-frame training scheme. The efficacy of the proposed Free-DyGS is substantiated through extensive experiments on two datasets: StereoMIS and Hamlyn datasets. The experimental outcomes underscore that Free-DyGS surpasses other advanced methods in both rendering accuracy and efficiency. Code will be available.
Explicit Motion Handling and Interactive Prompting for Video Camouflaged Object Detection
Camouflage poses challenges in distinguishing a static target, whereas any movement of the target can break this disguise. Existing video camouflaged object detection (VCOD) approaches take noisy motion estimation as input or model motion implicitly, restricting detection performance in complex dynamic scenes. In this paper, we propose a novel Explicit Motion handling and Interactive Prompting framework for VCOD, dubbed EMIP, which handles motion cues explicitly using a frozen pre-trained optical flow fundamental model. EMIP is characterized by a two-stream architecture for simultaneously conducting camouflaged segmentation and optical flow estimation. Interactions across the dual streams are realized in an interactive prompting way that is inspired by emerging visual prompt learning. Two learnable modules, i.e., the camouflaged feeder and motion collector, are designed to incorporate segmentation-to-motion and motion-to-segmentation prompts, respectively, and enhance outputs of the both streams. The prompt fed to the motion stream is learned by supervising optical flow in a self-supervised manner. Furthermore, we show that long-term historical information can also be incorporated as a prompt into EMIP and achieve more robust results with temporal consistency. Experimental results demonstrate that our EMIP achieves new state-of-the-art records on popular VCOD benchmarks. Our code is made publicly available at https://github.com/zhangxin06/EMIP.
comment: Accepted to TIP; Corresponding author: Keren Fu (fkrsuper@scu.edu.cn). Code: https://github.com/zhangxin06/EMIP
Learning Modality-Aware Representations: Adaptive Group-wise Interaction Network for Multimodal MRI Synthesis
Multimodal MR image synthesis aims to generate missing modality images by effectively fusing and mapping from a subset of available MRI modalities. Most existing methods adopt an image-to-image translation paradigm, treating multiple modalities as input channels. However, these approaches often yield sub-optimal results due to the inherent difficulty in achieving precise feature- or semantic-level alignment across modalities. To address these challenges, we propose an Adaptive Group-wise Interaction Network (AGI-Net) that explicitly models both inter-modality and intra-modality relationships for multimodal MR image synthesis. Specifically, feature channels are first partitioned into predefined groups, after which an adaptive rolling mechanism is applied to conventional convolutional kernels to better capture feature and semantic correspondences between different modalities. In parallel, a cross-group attention module is introduced to enable effective feature fusion across groups, thereby enhancing the network's representational capacity. We validate the proposed AGI-Net on the publicly available IXI and BraTS2023 datasets. Experimental results demonstrate that AGI-Net achieves state-of-the-art performance in multimodal MR image synthesis tasks, confirming the effectiveness of its modality-aware interaction design. We release the relevant code at: https://github.com/zunzhumu/Adaptive-Group-wise-Interaction-Network-for-Multimodal-MRI-Synthesis.git.
OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels CVPR 2025
Top-down attention plays a crucial role in the human vision system, wherein the brain initially obtains a rough overview of a scene to discover salient cues (i.e., overview first), followed by a more careful finer-grained examination (i.e., look closely next). However, modern ConvNets remain confined to a pyramid structure that successively downsamples the feature map for receptive field expansion, neglecting this crucial biomimetic principle. We present OverLoCK, the first pure ConvNet backbone architecture that explicitly incorporates a top-down attention mechanism. Unlike pyramid backbone networks, our design features a branched architecture with three synergistic sub-networks: 1) a Base-Net that encodes low/mid-level features; 2) a lightweight Overview-Net that generates dynamic top-down attention through coarse global context modeling (i.e., overview first); and 3) a robust Focus-Net that performs finer-grained perception guided by top-down attention (i.e., look closely next). To fully unleash the power of top-down attention, we further propose a novel context-mixing dynamic convolution (ContMix) that effectively models long-range dependencies while preserving inherent local inductive biases even when the input resolution increases, addressing critical limitations in existing convolutions. Our OverLoCK exhibits a notable performance improvement over existing methods. For instance, OverLoCK-T achieves a Top-1 accuracy of 84.2%, significantly surpassing ConvNeXt-B while using only around one-third of the FLOPs/parameters. On object detection, our OverLoCK-S clearly surpasses MogaNet-B by 1% in AP^b. On semantic segmentation, our OverLoCK-T remarkably improves UniRepLKNet-T by 1.7% in mIoU. Code is publicly available at https://github.com/LMMMEng/OverLoCK.
comment: Accepted by CVPR 2025 (Oral)
Physics-Driven Neural Compensation For Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) provides a non-invasive, portable imaging modality with significant potential in medical and industrial applications. Despite its advantages, EIT encounters two primary challenges: the ill-posed nature of its inverse problem and the spatially variable, location-dependent sensitivity distribution. Traditional model-based methods mitigate ill-posedness through regularization but overlook sensitivity variability, while supervised deep learning approaches require extensive training data and lack generalization. Recent developments in neural fields have introduced implicit regularization techniques for image reconstruction, but these methods typically neglect the physical principles underlying EIT, thus limiting their effectiveness. In this study, we propose PhyNC (Physics-driven Neural Compensation), an unsupervised deep learning framework that incorporates the physical principles of EIT. PhyNC addresses both the ill-posed inverse problem and the sensitivity distribution by dynamically allocating neural representational capacity to regions with lower sensitivity, ensuring accurate and balanced conductivity reconstructions. Extensive evaluations on both simulated and experimental data demonstrate that PhyNC outperforms existing methods in terms of detail preservation and artifact resistance, particularly in low-sensitivity regions. Our approach enhances the robustness of EIT reconstructions and provides a flexible framework that can be adapted to other imaging modalities with similar challenges.
Lifting Motion to the 3D World via 2D Diffusion CVPR 2025
Estimating 3D motion from 2D observations is a long-standing research challenge. Prior work typically requires training on datasets containing ground truth 3D motions, limiting their applicability to activities well-represented in existing motion capture data. This dependency particularly hinders generalization to out-of-distribution scenarios or subjects where collecting 3D ground truth is challenging, such as complex athletic movements or animal motion. We introduce MVLift, a novel approach to predict global 3D motion -- including both joint rotations and root trajectories in the world coordinate system -- using only 2D pose sequences for training. Our multi-stage framework leverages 2D motion diffusion models to progressively generate consistent 2D pose sequences across multiple views, a key step in recovering accurate global 3D motion. MVLift generalizes across various domains, including human poses, human-object interactions, and animal poses. Despite not requiring 3D supervision, it outperforms prior work on five datasets, including those methods that require 3D supervision.
comment: CVPR 2025 (Highlight), project page: https://lijiaman.github.io/projects/mvlift/
MASR: Self-Reflective Reasoning through Multimodal Hierarchical Attention Focusing for Agent-based Video Understanding
Even in the era of rapid advances in large models, video understanding remains a highly challenging task. Compared to texts or images, videos commonly contain more information with redundancy, requiring large models to properly allocate attention at a global level for comprehensive and accurate understanding. To address this, we propose a Multimodal hierarchical Attention focusing Self-reflective Reasoning (MASR) framework for agent-based video understanding. The key innovation lies in its ability to detect and prioritize segments of videos that are highly relevant to the query. Firstly, MASR realizes Multimodal Coarse-to-fine Relevance Sensing (MCRS) which enhances the correlation between the acquired contextual information and the query. Secondly, MASR employs Dilated Temporal Expansion (DTE) to mitigate the risk of missing crucial details when extracting semantic information from the focused frames selected through MCRS. By iteratively applying MCRS and DTE in the self-reflective reasoning process, MASR is able to adaptively adjust the attention to extract highly query-relevant context and therefore improve the response accuracy. In the EgoSchema dataset, MASR achieves a remarkable 5% performance gain over previous leading approaches. In the Next-QA and IntentQA datasets, it outperforms the state-of-the-art standards by 0.2% and 0.3% respectively. In the Video-MME dataset that contains long-term videos, MASR also performs better than other agent-based methods.
Memory Regulation and Alignment toward Generalizer RGB-Infrared Person
The domain shift, coming from unneglectable modality gap and non-overlapped identity classes between training and test sets, is a major issue of RGB-Infrared person re-identification. A key to tackle the inherent issue -- domain shift -- is to enforce the data distributions of the two domains to be similar. However, RGB-IR ReID always demands discriminative features, leading to over-rely feature sensitivity of seen classes, \textit{e.g.}, via attention-based feature alignment or metric learning. Therefore, predicting the unseen query category from predefined training classes may not be accurate and leads to a sub-optimal adversarial gradient. In this paper, we uncover it in a more explainable way and propose a novel multi-granularity memory regulation and alignment module (MG-MRA) to solve this issue. By explicitly incorporating a latent variable attribute, from fine-grained to coarse semantic granularity, into intermediate features, our method could alleviate the over-confidence of the model about discriminative features of seen classes. Moreover, instead of matching discriminative features by traversing nearest neighbor, sparse attributes, \textit{i.e.}, global structural pattern, are recollected with respect to features and assigned to measure pair-wise image similarity in hashing. Extensive experiments on RegDB \cite{RegDB} and SYSU-MM01 \cite{SYSU} show the superiority of the proposed method that outperforms existing state-of-the-art methods. Our code is available in https://github.com/Chenfeng1271/MGMRA.
comment: This paper is withdrawn due to an internal decision among the authors to discontinue its publication
GS-ROR$^2$: Bidirectional-guided 3DGS and SDF for Reflective Object Relighting and Reconstruction
3D Gaussian Splatting (3DGS) has shown a powerful capability for novel view synthesis due to its detailed expressive ability and highly efficient rendering speed. Unfortunately, creating relightable 3D assets and reconstructing faithful geometry with 3DGS is still problematic, particularly for reflective objects, as its discontinuous representation raises difficulties in constraining geometries. Volumetric signed distance field (SDF) methods provide robust geometry reconstruction, while the expensive ray marching hinders its real-time application and slows the training. Besides, these methods struggle to capture sharp geometric details. To this end, we propose to guide 3DGS and SDF bidirectionally in a complementary manner, including an SDF-aided Gaussian splatting for efficient optimization of the relighting model and a GS-guided SDF enhancement for high-quality geometry reconstruction. At the core of our SDF-aided Gaussian splatting is the mutual supervision of the depth and normal between blended Gaussians and SDF, which avoids the expensive volume rendering of SDF. Thanks to this mutual supervision, the learned blended Gaussians are well-constrained with a minimal time cost. As the Gaussians are rendered in a deferred shading mode, the alpha-blended Gaussians are smooth, while individual Gaussians may still be outliers, yielding floater artifacts. Therefore, we introduce an SDF-aware pruning strategy to remove Gaussian outliers located distant from the surface defined by SDF, avoiding floater issue. This way, our GS framework provides reasonable normal and achieves realistic relighting, while the mesh from depth is still problematic. Therefore, we design a GS-guided SDF refinement, which utilizes the blended normal from Gaussians to finetune SDF. With this enhancement, our method can further provide high-quality meshes for reflective objects at the cost of 17% extra training time.
Shape-centered Representation Learning for Visible-Infrared Person Re-identification
Visible-Infrared Person Re-Identification (VI-ReID) plays a critical role in all-day surveillance systems. However, existing methods primarily focus on learning appearance features while overlooking body shape features, which not only complement appearance features but also exhibit inherent robustness to modality variations. Despite their potential, effectively integrating shape and appearance features remains challenging. Appearance features are highly susceptible to modality variations and background noise, while shape features often suffer from inaccurate infrared shape estimation due to the limitations of auxiliary models. To address these challenges, we propose the Shape-centered Representation Learning (ScRL) framework, which enhances VI-ReID performance by innovatively integrating shape and appearance features. Specifically, we introduce Infrared Shape Restoration (ISR) to restore inaccuracies in infrared body shape representations at the feature level by leveraging infrared appearance features. In addition, we propose Shape Feature Propagation (SFP), which enables the direct extraction of shape features from original images during inference with minimal computational complexity. Furthermore, we design Appearance Feature Enhancement (AFE), which utilizes shape features to emphasize shape-related appearance features while effectively suppressing identity-unrelated noise. Benefiting from the effective integration of shape and appearance features, ScRL demonstrates superior performance through extensive experiments. On the SYSU-MM01, HITSZ-VCM, and RegDB datasets, it achieves Rank-1 (mAP) accuracies of 76.1% (72.6%), 71.2% (52.9%), and 92.4% (86.7%), respectively, surpassing existing state-of-the-art methods.
comment: Accepted for Pattern Recognition. Code: https://github.com/Visuang/ScRL
CrossView-GS: Cross-view Gaussian Splatting For Large-scale Scene Reconstruction
3D Gaussian Splatting (3DGS) leverages densely distributed Gaussian primitives for high-quality scene representation and reconstruction. While existing 3DGS methods perform well in scenes with minor view variation, large view changes from cross-view data pose optimization challenges for these methods. To address these issues, we propose a novel cross-view Gaussian Splatting method for large-scale scene reconstruction based on multi-branch construction and fusion. Our method independently reconstructs models from different sets of views as multiple independent branches to establish the baselines of Gaussian distribution, providing reliable priors for cross-view reconstruction during initialization and densification. Specifically, a gradient-aware regularization strategy is introduced to mitigate smoothing issues caused by significant view disparities. Additionally, a unique Gaussian supplementation strategy is utilized to incorporate complementary information of multi-branch into the cross-view model. Extensive experiments on benchmark datasets demonstrate that our method achieves superior performance in novel view synthesis compared to state-of-the-art methods.
NCL-CIR: Noise-aware Contrastive Learning for Composed Image Retrieval ICASSP2025
Composed Image Retrieval (CIR) seeks to find a target image using a multi-modal query, which combines an image with modification text to pinpoint the target. While recent CIR methods have shown promise, they mainly focus on exploring relationships between the query pairs (image and text) through data augmentation or model design. These methods often assume perfect alignment between queries and target images, an idealized scenario rarely encountered in practice. In reality, pairs are often partially or completely mismatched due to issues like inaccurate modification texts, low-quality target images, and annotation errors. Ignoring these mismatches leads to numerous False Positive Pair (FFPs) denoted as noise pairs in the dataset, causing the model to overfit and ultimately reducing its performance. To address this problem, we propose the Noise-aware Contrastive Learning for CIR (NCL-CIR), comprising two key components: the Weight Compensation Block (WCB) and the Noise-pair Filter Block (NFB). The WCB coupled with diverse weight maps can ensure more stable token representations of multi-modal queries and target images. Meanwhile, the NFB, in conjunction with the Gaussian Mixture Model (GMM) predicts noise pairs by evaluating loss distributions, and generates soft labels correspondingly, allowing for the design of the soft-label based Noise Contrastive Estimation (NCE) loss function. Consequently, the overall architecture helps to mitigate the influence of mismatched and partially matched samples, with experimental results demonstrating that NCL-CIR achieves exceptional performance on the benchmark datasets.
comment: Has been accepted by ICASSP2025
Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation
Prompt engineering is an effective but labor-intensive way to control text-to-image (T2I) generative models. Its time-intensive nature and complexity have spurred the development of algorithms for automated prompt generation. However, these methods often struggle with transferability across T2I models, require white-box access to the underlying model, or produce non-intuitive prompts. In this work, we introduce PRISM, an algorithm that automatically produces human-interpretable and transferable prompts that can effectively generate desired concepts given only black-box access to T2I models. Inspired by large language model (LLM) jailbreaking, PRISM leverages the in-context learning ability of LLMs to iteratively refine the candidate prompt distribution built upon the reference images. Our experiments demonstrate the versatility and effectiveness of PRISM in generating accurate prompts for objects, styles, and images across multiple T2I models, including Stable Diffusion, DALL-E, and Midjourney.
Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis CVPR 2025
This paper proposes a general solution to enable point cloud recognition models to handle distribution shifts at test time. Unlike prior methods, which rely heavily on training data (often inaccessible during online inference) and are limited to recognizing a fixed set of point cloud classes predefined during training, we explore a more practical and challenging scenario: adapting the model solely based on online test data to recognize both previously seen classes and novel, unseen classes at test time. To this end, we develop \textbf{Point-Cache}, a hierarchical cache model that captures essential clues of online test samples, particularly focusing on the global structure of point clouds and their local-part details. Point-Cache, which serves as a rich 3D knowledge base, is dynamically managed to prioritize the inclusion of high-quality samples. Designed as a plug-and-play module, our method can be flexibly integrated into large multimodal 3D models to support open-vocabulary point cloud recognition. Notably, our solution operates with efficiency comparable to zero-shot inference, as it is entirely training-free. Point-Cache demonstrates substantial gains across 8 challenging benchmarks and 4 representative large 3D models, highlighting its effectiveness. Code is available at https://github.com/auniquesun/Point-Cache.
comment: Accepted by CVPR 2025; 24 pages, 14 figures, 18 tables
Self-Consistent Nested Diffusion Bridge for Accelerated MRI Reconstruction
Accelerated MRI reconstruction plays a vital role in reducing scan time while preserving image quality. While most existing methods rely on complex-valued image-space or k-space data, these formats are often inaccessible in clinical practice due to proprietary reconstruction pipelines, leaving only magnitude images stored in DICOM files. To address this gap, we focus on the underexplored task of magnitude-image-based MRI reconstruction. Recent advancements in diffusion models, particularly denoising diffusion probabilistic models (DDPMs), have demonstrated strong capabilities in modeling image priors. However, their task-agnostic denoising nature limits performance in source-to-target image translation tasks, such as MRI reconstruction. In this work, we propose a novel Self-Consistent Nested Diffusion Bridge (SC-NDB) framework that models accelerated MRI reconstruction as a bi-directional image translation process between under-sampled and fully-sampled magnitude MRI images. SC-NDB introduces a nested diffusion architecture with a self-consistency constraint and reverse bridge diffusion pathways to improve intermediate prediction fidelity and better capture the explicit priors of source images. Furthermore, we incorporate a Contour Decomposition Embedding Module (CDEM) to inject structural and textural knowledge by leveraging Laplacian pyramids and directional filter banks. Extensive experiments on the fastMRI and IXI datasets demonstrate that our method achieves state-of-the-art performance compared to both magnitude-based and non-magnitude-based diffusion models, confirming the effectiveness and clinical relevance of SC-NDB.
LaneCorrect: Self-supervised Lane Detection
Lane detection has evolved highly functional autonomous driving system to understand driving scenes even under complex environments. In this paper, we work towards developing a generalized computer vision system able to detect lanes without using any annotation. We make the following contributions: (i) We illustrate how to perform unsupervised 3D lane segmentation by leveraging the distinctive intensity of lanes on the LiDAR point cloud frames, and then obtain the noisy lane labels in the 2D plane by projecting the 3D points; (ii) We propose a novel self-supervised training scheme, dubbed LaneCorrect, that automatically corrects the lane label by learning geometric consistency and instance awareness from the adversarial augmentations; (iii) With the self-supervised pre-trained model, we distill to train a student network for arbitrary target lane (e.g., TuSimple) detection without any human labels; (iv) We thoroughly evaluate our self-supervised method on four major lane detection benchmarks (including TuSimple, CULane, CurveLanes and LLAMAS) and demonstrate excellent performance compared with existing supervised counterpart, whilst showing more effective results on alleviating the domain gap, i.e., training on CULane and test on TuSimple.
comment: IJCV 2025
VerteNet -- A Multi-Context Hybrid CNN Transformer for Accurate Vertebral Landmark Localization in Lateral Spine DXA Images
Lateral Spine Image (LSI) analysis is important for medical diagnosis, treatment planning, and detailed spinal health assessments. Although modalities like Computed Tomography and Digital X-ray Imaging are commonly used, Dual Energy X-ray Absorptiometry (DXA) is often preferred due to lower radiation exposure, seamless capture, and cost-effectiveness. Accurate Vertebral Landmark Localization (VLL) on LSIs is important to detect spinal conditions like kyphosis and lordosis, as well as assessing Abdominal Aortic Calcification (AAC) using Inter-Vertebral Guides (IVGs). Nonetheless, few automated VLL methodologies have concentrated on DXA LSIs. We present VerteNet, a hybrid CNN-Transformer model featuring a novel dual-resolution attention mechanism in self and cross-attention domains, referred to as Dual Resolution Self-Attention (DRSA) and Dual Resolution Cross-Attention (DRCA). These mechanisms capture the diverse frequencies in DXA images by operating at two different feature map resolutions. Additionally, we design a Multi-Context Feature Fusion Block (MCFB) that efficiently integrates the features using DRSA and DRCA. We train VerteNet on 620 DXA LSIs from various machines and achieve superior results compared to existing methods. We also design an algorithm that utilizes VerteNet's predictions in estimating the Region of Interest (ROI) to detect potential abdominal aorta cropping, where inadequate soft tissue hinders calcification assessment. Additionally, we present a small proof-of-concept study to show that IVGs generated from VLL information can improve inter-reader correlation in AAC scoring, addressing two key areas of disagreement in expert AAC-24 scoring: IVG placement and quality control for full abdominal aorta assessment. The code for this work can be found at https://github.com/zaidilyas89/VerteNet.
comment: 10 pages with 7 figures
Underwater Camouflaged Object Tracking Meets Vision-Language SAM2 CVPR 2025
Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale datasets. However, these datasets have primarily focused on open-air scenarios and have largely overlooked underwater animal tracking-especially the complex challenges posed by camouflaged marine animals. To bridge this gap, we take a step forward by proposing the first large-scale multi-modal underwater camouflaged object tracking dataset, namely UW-COT220. Based on the proposed dataset, this work first comprehensively evaluates current advanced visual object tracking methods, including SAM- and SAM2-based trackers, in challenging underwater environments, \eg, coral reefs. Our findings highlight the improvements of SAM2 over SAM, demonstrating its enhanced ability to handle the complexities of underwater camouflaged objects. Furthermore, we propose a novel vision-language tracking framework called VL-SAM2, based on the video foundation model SAM2. Experimental results demonstrate that our VL-SAM2 achieves state-of-the-art performance on the UW-COT220 dataset. The dataset and codes are available at~\href{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}{\color{magenta}{here}}.
comment: Accepted to CVPR 2025 Workshop on CV4Animals. https://github.com/983632847/Awesome-Multimodal-Object-Tracking
What's in a Latent? Leveraging Diffusion Latent Space for Domain Generalization
Domain Generalization aims to develop models that can generalize to novel and unseen data distributions. In this work, we study how model architectures and pre-training objectives impact feature richness and propose a method to effectively leverage them for domain generalization. Specifically, given a pre-trained feature space, we first discover latent domain structures, referred to as pseudo-domains, that capture domain-specific variations in an unsupervised manner. Next, we augment existing classifiers with these complementary pseudo-domain representations making them more amenable to diverse unseen test domains. We analyze how different pre-training feature spaces differ in the domain-specific variances they capture. Our empirical studies reveal that features from diffusion models excel at separating domains in the absence of explicit domain labels and capture nuanced domain-specific information. On 5 datasets, we show that our very simple framework improves generalization to unseen domains by a maximum test accuracy improvement of over 4% compared to the standard baseline Empirical Risk Minimization (ERM). Crucially, our method outperforms most algorithms that access domain labels during training.
HANDI: Hand-Centric Text-and-Image Conditioned Video Generation
Despite the recent strides in video generation, state-of-the-art methods still struggle with elements of visual detail. One particularly challenging case is the class of videos in which the intricate motion of the hand coupled with a mostly stable and otherwise distracting environment is necessary to convey the execution of some complex action and its effects. To address these challenges, we introduce a new method for video generation that focuses on hand-centric actions. Our diffusion-based method incorporates two distinct innovations. First, we propose an automatic method to generate the motion area -- the region in the video in which the detailed activities occur -- guided by both the visual context and the action text prompt, rather than assuming this region can be provided manually as is now commonplace. Second, we introduce a critical Hand Refinement Loss to guide the diffusion model to focus on smooth and consistent hand poses. We evaluate our method on challenging augmented datasets based on EpicKitchens and Ego4D, demonstrating significant improvements over state-of-the-art methods in terms of action clarity, especially of the hand motion in the target region, across diverse environments and actions. Video results can be found in https://zhicaoisexcited.github.io/project_page
comment: 16 pages, 7 figures and 4 tables
Mapping Global Floods with 10 Years of Satellite Radar Data
Floods cause extensive global damage annually, making effective monitoring essential. While satellite observations have proven invaluable for flood detection and tracking, comprehensive global flood datasets spanning extended time periods remain scarce. In this study, we introduce a novel deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery, enabling consistent flood extent mapping in through cloud cover and in both day and night conditions. By applying this model to 10 years of SAR data, we create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage, offering comprehensive and consistent insights into historically flood-prone areas over the past decade. We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya. Additionally, our longitudinal analysis reveals potential increasing trends in global flood extent over time, although further validation is required to explore links to climate change. To maximize impact, we provide public access to both our model predictions and a code repository, empowering researchers and practitioners worldwide to advance flood monitoring and enhance disaster response strategies.
comment: 20 pages, 8 figures, Accepted
A Survey on Class-Agnostic Counting: Advancements from Reference-Based to Open-World Text-Guided Approaches
Visual object counting has recently shifted towards class-agnostic counting (CAC), which addresses the challenge of counting objects across arbitrary categories -- a crucial capability for flexible and generalizable counting systems. Unlike humans, who effortlessly identify and count objects from diverse categories without prior knowledge, most existing counting methods are restricted to enumerating instances of known classes, requiring extensive labeled datasets for training and struggling in open-vocabulary settings. In contrast, CAC aims to count objects belonging to classes never seen during training, operating in a few-shot setting. In this paper, we present the first comprehensive review of CAC methodologies. We propose a taxonomy to categorize CAC approaches into three paradigms based on how target object classes can be specified: reference-based, reference-less, and open-world text-guided. Reference-based approaches achieve state-of-the-art performance by relying on exemplar-guided mechanisms. Reference-less methods eliminate exemplar dependency by leveraging inherent image patterns. Finally, open-world text-guided methods use vision-language models, enabling object class descriptions via textual prompts, offering a flexible and promising solution. Based on this taxonomy, we provide an overview of the architectures of 29 CAC approaches and report their results on gold-standard benchmarks. We compare their performance and discuss their strengths and limitations. Specifically, we present results on the FSC-147 dataset, setting a leaderboard using gold-standard metrics, and on the CARPK dataset to assess generalization capabilities. Finally, we offer a critical discussion of persistent challenges, such as annotation dependency and generalization, alongside future directions. We believe this survey will be a valuable resource, showcasing CAC advancements and guiding future research.
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets ICLR 2025
While one commonly trains large diffusion models by collecting datasets on target downstream tasks, it is often desired to align and finetune pretrained diffusion models with some reward functions that are either designed by experts or learned from small-scale datasets. Existing post-training methods for reward finetuning of diffusion models typically suffer from lack of diversity in generated samples, lack of prior preservation, and/or slow convergence in finetuning. In response to this challenge, we take inspiration from recent successes in generative flow networks (GFlowNets) and propose a reinforcement learning method for diffusion model finetuning, dubbed Nabla-GFlowNet (abbreviated as $\nabla$-GFlowNet), that leverages the rich signal in reward gradients for probabilistic diffusion finetuning. We show that our proposed method achieves fast yet diversity- and prior-preserving finetuning of Stable Diffusion, a large-scale text-conditioned image diffusion model, on different realistic reward functions.
comment: Technical Report (37 pages, 31 figures), Accepted at ICLR 2025
3DCoMPaT$^{++}$: An improved Large-scale 3D Vision Dataset for Compositional Recognition
In this work, we present 3DCoMPaT$^{++}$, a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT$^{++}$ covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet$^{++}$ model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.
comment: https://3dcompat-dataset.org/v2/
Efficient Frame Extraction: A Novel Approach Through Frame Similarity and Surgical Tool Tracking for Video Segmentation
The interest in leveraging Artificial Intelligence (AI) for surgical procedures to automate analysis has witnessed a significant surge in recent years. One of the primary tools for recording surgical procedures and conducting subsequent analyses, such as performance assessment, is through videos. However, these operative videos tend to be notably lengthy compared to other fields, spanning from thirty minutes to several hours, which poses a challenge for AI models to effectively learn from them. Despite this challenge, the foreseeable increase in the volume of such videos in the near future necessitates the development and implementation of innovative techniques to tackle this issue effectively. In this article, we propose a novel technique called Kinematics Adaptive Frame Recognition (KAFR) that can efficiently eliminate redundant frames to reduce dataset size and computation time while retaining useful frames to improve accuracy. Specifically, we compute the similarity between consecutive frames by tracking the movement of surgical tools. Our approach follows these steps: $i)$ Tracking phase: a YOLOv8 model is utilized to detect tools presented in the scene, $ii)$ Similarity phase: Similarities between consecutive frames are computed by estimating variation in the spatial positions and velocities of the tools, $iii$) Classification phase: An X3D CNN is trained to classify segmentation. We evaluate the effectiveness of our approach by analyzing datasets obtained through retrospective reviews of cases at two referral centers. The newly annotated Gastrojejunostomy (GJ) dataset covers procedures performed between 2017 and 2021, while the previously annotated Pancreaticojejunostomy (PJ) dataset spans from 2011 to 2022 at the same centers.
comment: 18
SOLAQUA: SINTEF Ocean Large Aquaculture Robotics Dataset
This paper presents a dataset gathered with an underwater robot in a sea-based aquaculture setting. Data was gathered from an operational fish farm and includes data from sensors such as the Waterlinked A50 DVL, the Nortek Nucleus 1000 DVL, Sonardyne Micro Ranger 2 USBL, Sonoptix Mulitbeam Sonar, mono and stereo cameras, and vehicle sensor data such as power usage, IMU, pressure, temperature, and more. Data acquisition is performed during both manual and autonomous traversal of the net pen structure. The collected vision data is of undamaged nets with some fish and marine growth presence, and it is expected that both the research community and the aquaculture industry will benefit greatly from the utilization of the proposed SOLAQUA dataset.
Mobile Robot Navigation Using Hand-Drawn Maps: A Vision Language Model Approach
Hand-drawn maps can be used to convey navigation instructions between humans and robots in a natural and efficient manner. However, these maps can often contain inaccuracies such as scale distortions and missing landmarks which present challenges for mobile robot navigation. This paper introduces a novel Hand-drawn Map Navigation (HAM-Nav) architecture that leverages pre-trained vision language models (VLMs) for robot navigation across diverse environments, hand-drawing styles, and robot embodiments, even in the presence of map inaccuracies. HAM-Nav integrates a unique Selective Visual Association Prompting approach for topological map-based position estimation and navigation planning as well as a Predictive Navigation Plan Parser to infer missing landmarks. Extensive experiments were conducted in photorealistic simulated environments, using both wheeled and legged robots, demonstrating the effectiveness of HAM-Nav in terms of navigation success rates and Success weighted by Path Length. Furthermore, a user study in real-world environments highlighted the practical utility of hand-drawn maps for robot navigation as well as successful navigation outcomes compared against a non-hand-drawn map approach.
comment: 8 pages, 8 figures
Perception Encoder: The best visual embeddings are not at the output of the network
We introduce Perception Encoder (PE), a state-of-the-art vision encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods: language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together, our PE family of models achieves best-in-class results on a wide variety of tasks, including (1) zero-shot image and video classification and retrieval, simultaneously obtaining 86.6 average zero-shot ImageNet robustness and 76.9 zero-shot Kinetics-400 video classification; (2) document, image, and video Q&A, enabling 94.6 DocVQA, 80.9 InfographicVQA, and 82.7 PerceptionTest with an 8B LLM; and (3) spatial tasks such as detection, tracking, and depth estimation, setting a new COCO state-of-the-art of 66.0 box mAP. To foster further research, we release our models, code, and novel dataset of synthetically and human-annotated videos: https://github.com/facebookresearch/perception_models
comment: Updated refs, fixed typos, and added new COCO SotA: 66.0 val mAP! Code, models, and data at https://github.com/facebookresearch/perception_models
Image and Video Processing
Accelerated 3D-3D rigid registration of echocardiographic images obtained from apical window using particle filter
The perfect alignment of 3D echocardiographic images captured from various angles has improved image quality and broadened the field of view. This study proposes an accelerated sequential Monte Carlo (SMC) algorithm for 3D-3D rigid registration of transthoracic echocardiographic images with significant and limited overlap taken from apical window that is robust to the noise and intensity variation in ultrasound images. The algorithm estimates the translational and rotational components of the rigid transform through an iterative process and requires an initial approximation of the rotation and translation limits. We perform registration in two ways: the image-based registration computes the transform to align the end-diastolic frame of the apical nonstandard image to the apical standard image and applies the same transform to all frames of the cardiac cycle, whereas the mask-based registration approach uses the binary masks of the left ventricle in the same way. The SMC and exhaustive search (EX) algorithms were evaluated for 4D temporal sequences recorded from 7 volunteers who participated in a study conducted at the Mazankowski Alberta Heart Institute. The evaluations demonstrate that the mask-based approach of the accelerated SMC yielded a Dice score value of 0.819 +/- 0.045 for the left ventricle and gained 16.7x speedup compared to the CPU version of the SMC algorithm.
AI Alignment in Medical Imaging: Unveiling Hidden Biases Through Counterfactual Analysis
Machine learning (ML) systems for medical imaging have demonstrated remarkable diagnostic capabilities, but their susceptibility to biases poses significant risks, since biases may negatively impact generalization performance. In this paper, we introduce a novel statistical framework to evaluate the dependency of medical imaging ML models on sensitive attributes, such as demographics. Our method leverages the concept of counterfactual invariance, measuring the extent to which a model's predictions remain unchanged under hypothetical changes to sensitive attributes. We present a practical algorithm that combines conditional latent diffusion models with statistical hypothesis testing to identify and quantify such biases without requiring direct access to counterfactual data. Through experiments on synthetic datasets and large-scale real-world medical imaging datasets, including \textsc{cheXpert} and MIMIC-CXR, we demonstrate that our approach aligns closely with counterfactual fairness principles and outperforms standard baselines. This work provides a robust tool to ensure that ML diagnostic systems generalize well, e.g., across demographic groups, offering a critical step towards AI safety in healthcare. Code: https://github.com/Neferpitou3871/AI-Alignment-Medical-Imaging.
Magnifier: A Multi-grained Neural Network-based Architecture for Burned Area Delineation
In crisis management and remote sensing, image segmentation plays a crucial role, enabling tasks like disaster response and emergency planning by analyzing visual data. Neural networks are able to analyze satellite acquisitions and determine which areas were affected by a catastrophic event. The problem in their development in this context is the data scarcity and the lack of extensive benchmark datasets, limiting the capabilities of training large neural network models. In this paper, we propose a novel methodology, namely Magnifier, to improve segmentation performance with limited data availability. The Magnifier methodology is applicable to any existing encoder-decoder architecture, as it extends a model by merging information at different contextual levels through a dual-encoder approach: a local and global encoder. Magnifier analyzes the input data twice using the dual-encoder approach. In particular, the local and global encoders extract information from the same input at different granularities. This allows Magnifier to extract more information than the other approaches given the same set of input images. Magnifier improves the quality of the results of +2.65% on average IoU while leading to a restrained increase in terms of the number of trainable parameters compared to the original model. We evaluated our proposed approach with state-of-the-art burned area segmentation models, demonstrating, on average, comparable or better performances in less than half of the GFLOPs.
comment: Accepted in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Dual Attention Driven Lumbar Magnetic Resonance Image Feature Enhancement and Automatic Diagnosis of Herniation
Lumbar disc herniation (LDH) is a common musculoskeletal disease that requires magnetic resonance imaging (MRI) for effective clinical management. However, the interpretation of MRI images heavily relies on the expertise of radiologists, leading to delayed diagnosis and high costs for training physicians. Therefore, this paper proposes an innovative automated LDH classification framework. To address these key issues, the framework utilizes T1-weighted and T2-weighted MRI images from 205 people. The framework extracts clinically actionable LDH features and generates standardized diagnostic outputs by leveraging data augmentation and channel and spatial attention mechanisms. These outputs can help physicians make confident and time-effective care decisions when needed. The proposed framework achieves an area under the receiver operating characteristic curve (AUC-ROC) of 0.969 and an accuracy of 0.9486 for LDH detection. The experimental results demonstrate the performance of the proposed framework. Our framework only requires a small number of datasets for training to demonstrate high diagnostic accuracy. This is expected to be a solution to enhance the LDH detection capabilities of primary hospitals.
comment: 9 pages, 7 figures
Innovative Integration of 4D Cardiovascular Reconstruction and Hologram: A New Visualization Tool for Coronary Artery Bypass Grafting Planning
Background: Coronary artery bypass grafting (CABG) planning requires advanced spatial visualization and consideration of coronary artery depth, calcification, and pericardial adhesions. Objective: To develop and evaluate a dynamic cardiovascular holographic visualization tool for preoperative CABG planning. Methods: Using 4D cardiac computed tomography angiography data from 14 CABG candidates, we developed a semi-automated workflow for time-resolved segmentation of cardiac structures, epicardial adipose tissue (EAT), and coronary arteries with calcium scoring. The workflow incorporated methods for cardiac segmentation, coronary calcification quantification, visualization of coronary depth within EAT, and pericardial adhesion assessment through motion analysis. Dynamic cardiovascular holograms were displayed using the Looking Glass platform. Thirteen cardiac surgeons evaluated the tool using a Likert scale. Additionally, pericardial adhesion scores from holograms of 21 patients (including seven undergoing secondary cardiac surgeries) were compared with intraoperative findings. Results: Surgeons rated the visualization tool highly for preoperative planning utility (mean Likert score: 4.57/5.0). Hologram-based pericardial adhesion scoring strongly correlated with intraoperative findings (r=0.786, P<0.001). Conclusion: This study establishes a visualization framework for CABG planning that produces clinically relevant dynamic holograms from patient-specific data, with clinical feedback confirming its effectiveness for preoperative planning.
comment: 35 pages, 9 figures
Remote Sensing Imagery for Flood Detection: Exploration of Augmentation Strategies
Floods cause serious problems around the world. Responding quickly and effectively requires accurate and timely information about the affected areas. The effective use of Remote Sensing images for accurate flood detection requires specific detection methods. Typically, Deep Neural Networks are employed, which are trained on specific datasets. For the purpose of river flood detection in RGB imagery, we use the BlessemFlood21 dataset. We here explore the use of different augmentation strategies, ranging from basic approaches to more complex techniques, including optical distortion. By identifying effective strategies, we aim to refine the training process of state-of-the-art Deep Learning segmentation networks.
Physical foundations for trustworthy medical imaging: a review for artificial intelligence researchers
Artificial intelligence in medical imaging has seen unprecedented growth in the last years, due to rapid advances in deep learning and computing resources. Applications cover the full range of existing medical imaging modalities, with unique characteristics driven by the physics of each technique. Yet, artificial intelligence professionals entering the field, and even experienced developers, often lack a comprehensive understanding of the physical principles underlying medical image acquisition, which hinders their ability to fully leverage its potential. The integration of physics knowledge into artificial intelligence algorithms enhances their trustworthiness and robustness in medical imaging, especially in scenarios with limited data availability. In this work, we review the fundamentals of physics in medical images and their impact on the latest advances in artificial intelligence, particularly, in generative models and reconstruction algorithms. Finally, we explore the integration of physics knowledge into physics-inspired machine learning models, which leverage physics-based constraints to enhance the learning of medical imaging features.
comment: 17 pages, 2 figures
An $\ell^1$-Plug-and-Play Approach for MPI Using a Zero Shot Denoiser with Evaluation on the 3D Open MPI Dataset
Objective: Magnetic particle imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field. From the electric signal measured in receive coils, the particle concentration has to be reconstructed. Due to the ill-posedness of the reconstruction problem, various regularization methods have been proposed for reconstruction ranging from early stopping methods, via classical Tikhonov regularization and iterative methods to modern machine learning approaches. In this work, we contribute to the latter class: we propose a plug-and-play approach based on a generic zero-shot denoiser with an $\ell^1$-prior. Approach: We validate the reconstruction parameters of the method on a hybrid dataset and compare it with the baseline Tikhonov, DIP and the previous PP-MPI, which is a plug-and-play method with denoiser trained on MPI-friendly data. Main results: We offer a quantitative and qualitative evaluation of the zero-shot plug-and-play approach on the 3D Open MPI dataset. Moreover, we show the quality of the approach with different levels of preprocessing of the data. Significance: The proposed method employs a zero-shot denoiser which has not been trained for the MPI task and therefore saves the cost for training. Moreover, it offers a method that can be potentially applied in future MPI contexts.
comment: 24 pages, 7 figures, additional supplementary material (78 pages total)
Learning Modality-Aware Representations: Adaptive Group-wise Interaction Network for Multimodal MRI Synthesis
Multimodal MR image synthesis aims to generate missing modality images by effectively fusing and mapping from a subset of available MRI modalities. Most existing methods adopt an image-to-image translation paradigm, treating multiple modalities as input channels. However, these approaches often yield sub-optimal results due to the inherent difficulty in achieving precise feature- or semantic-level alignment across modalities. To address these challenges, we propose an Adaptive Group-wise Interaction Network (AGI-Net) that explicitly models both inter-modality and intra-modality relationships for multimodal MR image synthesis. Specifically, feature channels are first partitioned into predefined groups, after which an adaptive rolling mechanism is applied to conventional convolutional kernels to better capture feature and semantic correspondences between different modalities. In parallel, a cross-group attention module is introduced to enable effective feature fusion across groups, thereby enhancing the network's representational capacity. We validate the proposed AGI-Net on the publicly available IXI and BraTS2023 datasets. Experimental results demonstrate that AGI-Net achieves state-of-the-art performance in multimodal MR image synthesis tasks, confirming the effectiveness of its modality-aware interaction design. We release the relevant code at: https://github.com/zunzhumu/Adaptive-Group-wise-Interaction-Network-for-Multimodal-MRI-Synthesis.git.
Physics-Driven Neural Compensation For Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) provides a non-invasive, portable imaging modality with significant potential in medical and industrial applications. Despite its advantages, EIT encounters two primary challenges: the ill-posed nature of its inverse problem and the spatially variable, location-dependent sensitivity distribution. Traditional model-based methods mitigate ill-posedness through regularization but overlook sensitivity variability, while supervised deep learning approaches require extensive training data and lack generalization. Recent developments in neural fields have introduced implicit regularization techniques for image reconstruction, but these methods typically neglect the physical principles underlying EIT, thus limiting their effectiveness. In this study, we propose PhyNC (Physics-driven Neural Compensation), an unsupervised deep learning framework that incorporates the physical principles of EIT. PhyNC addresses both the ill-posed inverse problem and the sensitivity distribution by dynamically allocating neural representational capacity to regions with lower sensitivity, ensuring accurate and balanced conductivity reconstructions. Extensive evaluations on both simulated and experimental data demonstrate that PhyNC outperforms existing methods in terms of detail preservation and artifact resistance, particularly in low-sensitivity regions. Our approach enhances the robustness of EIT reconstructions and provides a flexible framework that can be adapted to other imaging modalities with similar challenges.
Self-Consistent Nested Diffusion Bridge for Accelerated MRI Reconstruction
Accelerated MRI reconstruction plays a vital role in reducing scan time while preserving image quality. While most existing methods rely on complex-valued image-space or k-space data, these formats are often inaccessible in clinical practice due to proprietary reconstruction pipelines, leaving only magnitude images stored in DICOM files. To address this gap, we focus on the underexplored task of magnitude-image-based MRI reconstruction. Recent advancements in diffusion models, particularly denoising diffusion probabilistic models (DDPMs), have demonstrated strong capabilities in modeling image priors. However, their task-agnostic denoising nature limits performance in source-to-target image translation tasks, such as MRI reconstruction. In this work, we propose a novel Self-Consistent Nested Diffusion Bridge (SC-NDB) framework that models accelerated MRI reconstruction as a bi-directional image translation process between under-sampled and fully-sampled magnitude MRI images. SC-NDB introduces a nested diffusion architecture with a self-consistency constraint and reverse bridge diffusion pathways to improve intermediate prediction fidelity and better capture the explicit priors of source images. Furthermore, we incorporate a Contour Decomposition Embedding Module (CDEM) to inject structural and textural knowledge by leveraging Laplacian pyramids and directional filter banks. Extensive experiments on the fastMRI and IXI datasets demonstrate that our method achieves state-of-the-art performance compared to both magnitude-based and non-magnitude-based diffusion models, confirming the effectiveness and clinical relevance of SC-NDB.
Adaptive Weight Modified Riesz Mean Filter For High-Density Salt and Pepper Noise Removal
This paper introduces a novel filter, the Adaptive Weight Modified Riesz Mean Filter (AWMRmF), designed for the effective removal of high-density salt and pepper noise (SPN). AWMRmF integrates a pixel weight function and adaptivity condition inspired by the Different Adaptive Modified Riesz Mean Filter (DAMRmF). In my simulations, I evaluated the performance of AWMRmF against established filters such as Adaptive Frequency Median Filter (AFMF), Adaptive Weighted Mean Filter (AWMF), Adaptive Cesaro Mean Filter (ACmF), Adaptive Riesz Mean Filter (ARmF), and Improved Adaptive Weighted Mean Filter (IAWMF). The assessment was conducted on 26 typical test images, varying noise levels from 60% to 95%. The findings indicate that, in terms of both Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics, AWMRmF outperformed other state-of-the-art filters. Furthermore, AWMRmF demonstrated superior performance in mean PSNR and SSIM results as well.
comment: This is a preprint. Submitted to Journal of Electrical Systems and Information Technology (Springer)
Multimedia
Applying LLM-Powered Virtual Humans to Child Interviews in Child-Centered Design
In child-centered design, directly engaging children is crucial for deeply understanding their experiences. However, current research often prioritizes adult perspectives, as interviewing children involves unique challenges such as environmental sensitivities and the need for trust-building. AI-powered virtual humans (VHs) offer a promising approach to facilitate engaging and multimodal interactions with children. This study establishes key design guidelines for LLM-powered virtual humans tailored to child interviews, standardizing multimodal elements including color schemes, voice characteristics, facial features, expressions, head movements, and gestures. Using ChatGPT-based prompt engineering, we developed three distinct Human-AI workflows (LLM-Auto, LLM-Interview, and LLM-Analyze) and conducted a user study involving 15 children aged 6 to 12. The results indicated that the LLM-Analyze workflow outperformed the others by eliciting longer responses, achieving higher user experience ratings, and promoting more effective child engagement.
comment: This paper has been accepted as a Work-in-Progress (WiP) paper in the 24th annual ACM Interaction Design and Children (IDC) Conference
Memento: Augmenting Personalized Memory via Practical Multimodal Wearable Sensing in Visual Search and Wayfinding Navigation
Working memory involves the temporary retention of information over short periods. It is a critical cognitive function that enables humans to perform various online processing tasks, such as dialing a phone number, recalling misplaced items' locations, or navigating through a store. However, inherent limitations in an individual's capacity to retain information often result in forgetting important details during such tasks. Although previous research has successfully utilized wearable and assistive technologies to enhance long-term memory functions (e.g., episodic memory), their application to supporting short-term recall in daily activities remains underexplored. To address this gap, we present Memento, a framework that uses multimodal wearable sensor data to detect significant changes in cognitive state and provide intelligent in situ cues to enhance recall. Through two user studies involving 15 and 25 participants in visual search navigation tasks, we demonstrate that participants receiving visual cues from Memento achieved significantly better route recall, improving approximately 20-23% compared to free recall. Furthermore, Memento reduced cognitive load and review time by 46% while also substantially reducing computation time (3.86 seconds vs. 15.35 seconds), offering an average of 75% effectiveness compared to computer vision-based cue selection approaches.
comment: This work has been accepted to the Proceedings of the ACM UMAP 2025
WILD: a new in-the-Wild Image Linkage Dataset for synthetic image attribution
Synthetic image source attribution is an open challenge, with an increasing number of image generators being released yearly. The complexity and the sheer number of available generative techniques, as well as the scarcity of high-quality open source datasets of diverse nature for this task, make training and benchmarking synthetic image source attribution models very challenging. WILD is a new in-the-Wild Image Linkage Dataset designed to provide a powerful training and benchmarking tool for synthetic image attribution models. The dataset is built out of a closed set of 10 popular commercial generators, which constitutes the training base of attribution models, and an open set of 10 additional generators, simulating a real-world in-the-wild scenario. Each generator is represented by 1,000 images, for a total of 10,000 images in the closed set and 10,000 images in the open set. Half of the images are post-processed with a wide range of operators. WILD allows benchmarking attribution models in a wide range of tasks, including closed and open set identification and verification, and robust attribution with respect to post-processing and adversarial attacks. Models trained on WILD are expected to benefit from the challenging scenario represented by the dataset itself. Moreover, an assessment of seven baseline methodologies on closed and open set attribution is presented, including robustness tests with respect to post-processing.
Adversarial Shallow Watermarking
Recent advances in digital watermarking make use of deep neural networks for message embedding and extraction. They typically follow the ``encoder-noise layer-decoder''-based architecture. By deliberately establishing a differentiable noise layer to simulate the distortion of the watermarked signal, they jointly train the deep encoder and decoder to fit the noise layer to guarantee robustness. As a result, they are usually weak against unknown distortions that are not used in their training pipeline. In this paper, we propose a novel watermarking framework to resist unknown distortions, namely Adversarial Shallow Watermarking (ASW). ASW utilizes only a shallow decoder that is randomly parameterized and designed to be insensitive to distortions for watermarking extraction. During the watermark embedding, ASW freezes the shallow decoder and adversarially optimizes a host image until its updated version (i.e., the watermarked image) stably triggers the shallow decoder to output the watermark message. During the watermark extraction, it accurately recovers the message from the watermarked image by leveraging the insensitive nature of the shallow decoder against arbitrary distortions. Our ASW is training-free, encoder-free, and noise layer-free. Experiments indicate that the watermarked images created by ASW have strong robustness against various unknown distortions. Compared to the existing ``encoder-noise layer-decoder'' approaches, ASW achieves comparable results on known distortions and better robustness on unknown distortions.
comment: 10 pages, 12 figures
Mitigating Modality Bias in Multi-modal Entity Alignment from a Causal Perspective SIGIR 2025
Multi-Modal Entity Alignment (MMEA) aims to retrieve equivalent entities from different Multi-Modal Knowledge Graphs (MMKGs), a critical information retrieval task. Existing studies have explored various fusion paradigms and consistency constraints to improve the alignment of equivalent entities, while overlooking that the visual modality may not always contribute positively. Empirically, entities with low-similarity images usually generate unsatisfactory performance, highlighting the limitation of overly relying on visual features. We believe the model can be biased toward the visual modality, leading to a shortcut image-matching task. To address this, we propose a counterfactual debiasing framework for MMEA, termed CDMEA, which investigates visual modality bias from a causal perspective. Our approach aims to leverage both visual and graph modalities to enhance MMEA while suppressing the direct causal effect of the visual modality on model predictions. By estimating the Total Effect (TE) of both modalities and excluding the Natural Direct Effect (NDE) of the visual modality, we ensure that the model predicts based on the Total Indirect Effect (TIE), effectively utilizing both modalities and reducing visual modality bias. Extensive experiments on 9 benchmark datasets show that CDMEA outperforms 14 state-of-the-art methods, especially in low-similarity, high-noise, and low-resource data scenarios.
comment: Accepted by SIGIR 2025, 11 pages, 10 figures, 4 tables,
Computation and Language
AutoJudge: Judge Decoding Without Manual Annotation
We introduce AutoJudge, a framework that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the generated response, relaxing the guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft model should be corrected to preserve quality, and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We test our approach with Llama 3.2 1B (draft) and Llama 3.1 8B (target) models on zero-shot GSM8K reasoning, where it achieves up to 1.5x more accepted tokens per verification cycle with under 1% degradation in answer accuracy compared to standard speculative decoding and over 2x with small loss in accuracy. When applied to the LiveCodeBench benchmark, our approach automatically detects other, programming-specific important tokens and shows similar speedups, demonstrating its ability to generalize across tasks.
comment: Preprint, Work in progress
Better To Ask in English? Evaluating Factual Accuracy of Multilingual LLMs in English and Low-Resource Languages
Multilingual Large Language Models (LLMs) have demonstrated significant effectiveness across various languages, particularly in high-resource languages such as English. However, their performance in terms of factual accuracy across other low-resource languages, especially Indic languages, remains an area of investigation. In this study, we assess the factual accuracy of LLMs - GPT-4o, Gemma-2-9B, Gemma-2-2B, and Llama-3.1-8B - by comparing their performance in English and Indic languages using the IndicQuest dataset, which contains question-answer pairs in English and 19 Indic languages. By asking the same questions in English and their respective Indic translations, we analyze whether the models are more reliable for regional context questions in Indic languages or when operating in English. Our findings reveal that LLMs often perform better in English, even for questions rooted in Indic contexts. Notably, we observe a higher tendency for hallucination in responses generated in low-resource Indic languages, highlighting challenges in the multilingual understanding capabilities of current LLMs.
LLM-Generated Fake News Induces Truth Decay in News Ecosystem: A Case Study on Neural News Recommendation SIGIR 2025
Online fake news moderation now faces a new challenge brought by the malicious use of large language models (LLMs) in fake news production. Though existing works have shown LLM-generated fake news is hard to detect from an individual aspect, it remains underexplored how its large-scale release will impact the news ecosystem. In this study, we develop a simulation pipeline and a dataset with ~56k generated news of diverse types to investigate the effects of LLM-generated fake news within neural news recommendation systems. Our findings expose a truth decay phenomenon, where real news is gradually losing its advantageous position in news ranking against fake news as LLM-generated news is involved in news recommendation. We further provide an explanation about why truth decay occurs from a familiarity perspective and show the positive correlation between perplexity and news ranking. Finally, we discuss the threats of LLM-generated fake news and provide possible countermeasures. We urge stakeholders to address this emerging challenge to preserve the integrity of news ecosystems.
comment: ACM SIGIR 2025 Full Paper
Knowledge Distillation of Domain-adapted LLMs for Question-Answering in Telecom
Knowledge Distillation (KD) is one of the approaches to reduce the size of Large Language Models (LLMs). A LLM with smaller number of model parameters (student) is trained to mimic the performance of a LLM of a larger size (teacher model) on a specific task. For domain-specific tasks, it is not clear if teacher or student model, or both, must be considered for domain adaptation. In this work, we study this problem from perspective of telecom domain Question-Answering (QA) task. We systematically experiment with Supervised Fine-tuning (SFT) of teacher only, SFT of student only and SFT of both prior to KD. We design experiments to study the impact of vocabulary (same and different) and KD algorithms (vanilla KD and Dual Space KD, DSKD) on the distilled model. Multi-faceted evaluation of the distillation using 14 different metrics (N-gram, embedding and LLM-based metrics) is considered. Experimental results show that SFT of teacher improves performance of distilled model when both models have same vocabulary, irrespective of algorithm and metrics. Overall, SFT of both teacher and student results in better performance across all metrics, although the statistical significance of the same depends on the vocabulary of the teacher models.
comment: 10 pages, 4 figures, 3 tables
TD-EVAL: Revisiting Task-Oriented Dialogue Evaluation by Combining Turn-Level Precision with Dialogue-Level Comparisons
Task-oriented dialogue (TOD) systems are experiencing a revolution driven by Large Language Models (LLMs), yet the evaluation methodologies for these systems remain insufficient for their growing sophistication. While traditional automatic metrics effectively assessed earlier modular systems, they focus solely on the dialogue level and cannot detect critical intermediate errors that can arise during user-agent interactions. In this paper, we introduce TD-EVAL (Turn and Dialogue-level Evaluation), a two-step evaluation framework that unifies fine-grained turn-level analysis with holistic dialogue-level comparisons. At turn level, we evaluate each response along three TOD-specific dimensions: conversation cohesion, backend knowledge consistency, and policy compliance. Meanwhile, we design TOD Agent Arena that uses pairwise comparisons to provide a measure of dialogue-level quality. Through experiments on MultiWOZ 2.4 and {\tau}-Bench, we demonstrate that TD-EVAL effectively identifies the conversational errors that conventional metrics miss. Furthermore, TD-EVAL exhibits better alignment with human judgments than traditional and LLM-based metrics. These findings demonstrate that TD-EVAL introduces a new paradigm for TOD system evaluation, efficiently assessing both turn and system levels with a plug-and-play framework for future research.
GenCLS++: Pushing the Boundaries of Generative Classification in LLMs Through Comprehensive SFT and RL Studies Across Diverse Datasets
As a fundamental task in machine learning, text classification plays a crucial role in many areas. With the rapid scaling of Large Language Models (LLMs), particularly through reinforcement learning (RL), there is a growing need for more capable discriminators. Consequently, advances in classification are becoming increasingly vital for enhancing the overall capabilities of LLMs. Traditional discriminative methods map text to labels but overlook LLMs' intrinsic generative strengths. Generative classification addresses this by prompting the model to directly output labels. However, existing studies still rely on simple SFT alone, seldom probing the interplay between training and inference prompts, and no work has systematically leveraged RL for generative text classifiers and unified SFT, RL, and inference-time prompting in one framework. We bridge this gap with GenCLS++, a framework that jointly optimizes SFT and RL while systematically exploring five high-level strategy dimensions-in-context learning variants, category definitions, explicit uncertainty labels, semantically irrelevant numeric labels, and perplexity-based decoding-during both training and inference. After an SFT "policy warm-up," we apply RL with a simple rule-based reward, yielding sizable extra gains. Across seven datasets, GenCLS++ achieves an average accuracy improvement of 3.46% relative to the naive SFT baseline; on public datasets, this improvement rises to 4.00%. Notably, unlike reasoning-intensive tasks that benefit from explicit thinking processes, we find that classification tasks perform better without such reasoning steps. These insights into the role of explicit reasoning provide valuable guidance for future LLM applications.
semi-PD: Towards Efficient LLM Serving via Phase-Wise Disaggregated Computation and Unified Storage
Existing large language model (LLM) serving systems fall into two categories: 1) a unified system where prefill phase and decode phase are co-located on the same GPU, sharing the unified computational resource and storage, and 2) a disaggregated system where the two phases are disaggregated to different GPUs. The design of the disaggregated system addresses the latency interference and sophisticated scheduling issues in the unified system but leads to storage challenges including 1) replicated weights for both phases that prevent flexible deployment, 2) KV cache transfer overhead between the two phases, 3) storage imbalance that causes substantial wasted space of the GPU capacity, and 4) suboptimal resource adjustment arising from the difficulties in migrating KV cache. Such storage inefficiency delivers poor serving performance under high request rates. In this paper, we identify that the advantage of the disaggregated system lies in the disaggregated computation, i.e., partitioning the computational resource to enable the asynchronous computation of two phases. Thus, we propose a novel LLM serving system, semi-PD, characterized by disaggregated computation and unified storage. In semi-PD, we introduce a computation resource controller to achieve disaggregated computation at the streaming multi-processor (SM) level, and a unified memory manager to manage the asynchronous memory access from both phases. semi-PD has a low-overhead resource adjustment mechanism between the two phases, and a service-level objective (SLO) aware dynamic partitioning algorithm to optimize the SLO attainment. Compared to state-of-the-art systems, semi-PD maintains lower latency at higher request rates, reducing the average end-to-end latency per request by 1.27-2.58x on DeepSeek series models, and serves 1.55-1.72x more requests adhering to latency constraints on Llama series models.
comment: 18 pages, 16 figures
Efficient Domain-adaptive Continual Pretraining for the Process Industry in the German Language
Domain-adaptive continual pretraining (DAPT) is a state-of-the-art technique that further trains a language model (LM) on its pretraining task, e.g., language masking. Although popular, it requires a significant corpus of domain-related data, which is difficult to obtain for specific domains in languages other than English, such as the process industry in the German language. This paper introduces an efficient approach called ICL-augmented pretraining or ICL-APT that leverages in-context learning (ICL) and k-nearest neighbors (kNN) to augment target data with domain-related and in-domain texts, significantly reducing GPU time while maintaining strong model performance. Our results show that this approach performs better than traditional DAPT by 3.5 of the average IR metrics (e.g., mAP, MRR, and nDCG) and requires almost 4 times less computing time, providing a cost-effective solution for industries with limited computational capacity. The findings highlight the broader applicability of this framework to other low-resource industries, making NLP-based solutions more accessible and feasible in production environments.
To MT or not to MT: An eye-tracking study on the reception by Dutch readers of different translation and creativity levels
This article presents the results of a pilot study involving the reception of a fictional short story translated from English into Dutch under four conditions: machine translation (MT), post-editing (PE), human translation (HT) and original source text (ST). The aim is to understand how creativity and errors in different translation modalities affect readers, specifically regarding cognitive load. Eight participants filled in a questionnaire, read a story using an eye-tracker, and conducted a retrospective think-aloud (RTA) interview. The results show that units of creative potential (UCP) increase cognitive load and that this effect is highest for HT and lowest for MT; no effect of error was observed. Triangulating the data with RTAs leads us to hypothesize that the higher cognitive load in UCPs is linked to increases in reader enjoyment and immersion. The effect of translation creativity on cognitive load in different translation modalities at word-level is novel and opens up new avenues for further research. All the code and data are available at https://github.com/INCREC/Pilot_to_MT_or_not_to_MT
comment: This paper has been accepted to the MT Summit 2025 to be held in Geneva on June 23-27 2025
Can a Crow Hatch a Falcon? Lineage Matters in Predicting Large Language Model Performance
Accurately forecasting the performance of Large Language Models (LLMs) before extensive fine-tuning or merging can substantially reduce both computational expense and development time. Although prior approaches like scaling laws account for global factors such as parameter size or training tokens, they often overlook explicit lineage relationships - i.e., which models are derived or merged from which parents. In this work, we propose a novel Lineage-Regularized Matrix Factorization (LRMF) framework that encodes ancestral ties among LLMs via a graph Laplacian regularizer. By leveraging multi-hop parent-child connections, LRMF consistently outperforms conventional matrix factorization and collaborative filtering methods in both instance-level and benchmark-level performance prediction. Our large-scale study includes 2,934 publicly available Hugging Face models and 21,000+ instances across 6 major benchmarks, showing that lineage constraints yield up to 7-10 percentage points higher correlation with actual performance compared to baselines. Moreover, LRMF effectively addresses the cold-start problem, providing accurate estimates for newly derived or merged models even with minimal data. This lineage-guided strategy thus offers a resource-efficient way to inform hyperparameter tuning, data selection, and model combination in modern LLM development.
Moral Reasoning Across Languages: The Critical Role of Low-Resource Languages in LLMs
In this paper, we introduce the Multilingual Moral Reasoning Benchmark (MMRB) to evaluate the moral reasoning abilities of large language models (LLMs) across five typologically diverse languages and three levels of contextual complexity: sentence, paragraph, and document. Our results show moral reasoning performance degrades with increasing context complexity, particularly for low-resource languages such as Vietnamese. We further fine-tune the open-source LLaMA-3-8B model using curated monolingual data for alignment and poisoning. Surprisingly, low-resource languages have a stronger impact on multilingual reasoning than high-resource ones, highlighting their critical role in multilingual NLP.
comment: 5 pages, 2 figures
Reconstructing Context: Evaluating Advanced Chunking Strategies for Retrieval-Augmented Generation ECIR 2025
Retrieval-augmented generation (RAG) has become a transformative approach for enhancing large language models (LLMs) by grounding their outputs in external knowledge sources. Yet, a critical question persists: how can vast volumes of external knowledge be managed effectively within the input constraints of LLMs? Traditional methods address this by chunking external documents into smaller, fixed-size segments. While this approach alleviates input limitations, it often fragments context, resulting in incomplete retrieval and diminished coherence in generation. To overcome these shortcomings, two advanced techniques, late chunking and contextual retrieval, have been introduced, both aiming to preserve global context. Despite their potential, their comparative strengths and limitations remain unclear. This study presents a rigorous analysis of late chunking and contextual retrieval, evaluating their effectiveness and efficiency in optimizing RAG systems. Our results indicate that contextual retrieval preserves semantic coherence more effectively but requires greater computational resources. In contrast, late chunking offers higher efficiency but tends to sacrifice relevance and completeness.
comment: 13 pages, 2 figures, Second Workshop on Knowledge-Enhanced Information Retrieval, ECIR 2025
LLM-Assisted Automated Deductive Coding of Dialogue Data: Leveraging Dialogue-Specific Characteristics to Enhance Contextual Understanding
Dialogue data has been a key source for understanding learning processes, offering critical insights into how students engage in collaborative discussions and how these interactions shape their knowledge construction. The advent of Large Language Models (LLMs) has introduced promising opportunities for advancing qualitative research, particularly in the automated coding of dialogue data. However, the inherent contextual complexity of dialogue presents unique challenges for these models, especially in understanding and interpreting complex contextual information. This study addresses these challenges by developing a novel LLM-assisted automated coding approach for dialogue data. The novelty of our proposed framework is threefold: 1) We predict the code for an utterance based on dialogue-specific characteristics -- communicative acts and communicative events -- using separate prompts following the role prompts and chain-of-thoughts methods; 2) We engaged multiple LLMs including GPT-4-turbo, GPT-4o, DeepSeek in collaborative code prediction; 3) We leveraged the interrelation between events and acts to implement consistency checking using GPT-4o. In particular, our contextual consistency checking provided a substantial accuracy improvement. We also found the accuracy of act predictions was consistently higher than that of event predictions. This study contributes a new methodological framework for enhancing the precision of automated coding of dialogue data as well as offers a scalable solution for addressing the contextual challenges inherent in dialogue analysis.
Evaluate-and-Purify: Fortifying Code Language Models Against Adversarial Attacks Using LLM-as-a-Judge
The widespread adoption of code language models in software engineering tasks has exposed vulnerabilities to adversarial attacks, especially the identifier substitution attacks. Although existing identifier substitution attackers demonstrate high success rates, they often produce adversarial examples with unnatural code patterns. In this paper, we systematically assess the quality of adversarial examples using LLM-as-a-Judge. Our analysis reveals that over 80% of adversarial examples generated by state-of-the-art identifier substitution attackers (e.g., ALERT) are actually detectable. Based on this insight, we propose EP-Shield, a unified framework for evaluating and purifying identifier substitution attacks via naturalness-aware reasoning. Specifically, we first evaluate the naturalness of code and identify the perturbed adversarial code, then purify it so that the victim model can restore correct prediction. Extensive experiments demonstrate the superiority of EP-Shield over adversarial fine-tuning (up to 83.36% improvement) and its lightweight design 7B parameters) with GPT-4-level performance.
comment: 25 pages, 6 figures
Taming the Titans: A Survey of Efficient LLM Inference Serving
Large Language Models (LLMs) for Generative AI have achieved remarkable progress, evolving into sophisticated and versatile tools widely adopted across various domains and applications. However, the substantial memory overhead caused by their vast number of parameters, combined with the high computational demands of the attention mechanism, poses significant challenges in achieving low latency and high throughput for LLM inference services. Recent advancements, driven by groundbreaking research, have significantly accelerated progress in this field. This paper provides a comprehensive survey of these methods, covering fundamental instance-level approaches, in-depth cluster-level strategies, emerging scenario directions, and other miscellaneous but important areas. At the instance level, we review model placement, request scheduling, decoding length prediction, storage management, and the disaggregation paradigm. At the cluster level, we explore GPU cluster deployment, multi-instance load balancing, and cloud service solutions. For emerging scenarios, we organize the discussion around specific tasks, modules, and auxiliary methods. To ensure a holistic overview, we also highlight several niche yet critical areas. Finally, we outline potential research directions to further advance the field of LLM inference serving.
comment: work in progress;11 pages of main paper with 7 main figures, overall 20 pages
Annif at SemEval-2025 Task 5: Traditional XMTC augmented by LLMs SemEval-2025
This paper presents the Annif system in SemEval-2025 Task 5 (LLMs4Subjects), which focussed on subject indexing using large language models (LLMs). The task required creating subject predictions for bibliographic records from the bilingual TIBKAT database using the GND subject vocabulary. Our approach combines traditional natural language processing and machine learning techniques implemented in the Annif toolkit with innovative LLM-based methods for translation and synthetic data generation, and merging predictions from monolingual models. The system ranked first in the all-subjects category and second in the tib-core-subjects category in the quantitative evaluation, and fourth in qualitative evaluations. These findings demonstrate the potential of combining traditional XMTC algorithms with modern LLM techniques to improve the accuracy and efficiency of subject indexing in multilingual contexts.
comment: 6 pages, 4 figures, submitted to SemEval-2025 workshop Task 5: LLMs4Subjects
Multimodal Conditioned Diffusive Time Series Forecasting
Diffusion models achieve remarkable success in processing images and text, and have been extended to special domains such as time series forecasting (TSF). Existing diffusion-based approaches for TSF primarily focus on modeling single-modality numerical sequences, overlooking the rich multimodal information in time series data. To effectively leverage such information for prediction, we propose a multimodal conditioned diffusion model for TSF, namely, MCD-TSF, to jointly utilize timestamps and texts as extra guidance for time series modeling, especially for forecasting. Specifically, Timestamps are combined with time series to establish temporal and semantic correlations among different data points when aggregating information along the temporal dimension. Texts serve as supplementary descriptions of time series' history, and adaptively aligned with data points as well as dynamically controlled in a classifier-free manner. Extensive experiments on real-world benchmark datasets across eight domains demonstrate that the proposed MCD-TSF model achieves state-of-the-art performance.
A Comprehensive Part-of-Speech Tagging to Standardize Central-Kurdish Language: A Research Guide for Kurdish Natural Language Processing Tasks
- The field of natural language processing (NLP) has dramatically expanded within the last decade. Many human-being applications are conducted daily via NLP tasks, starting from machine translation, speech recognition, text generation and recommendations, Part-of-Speech tagging (POS), and Named-Entity Recognition (NER). However, low-resourced languages, such as the Central-Kurdish language (CKL), mainly remain unexamined due to shortage of necessary resources to support their development. The POS tagging task is the base of other NLP tasks; for example, the POS tag set has been used to standardized languages to provide the relationship between words among the sentences, followed by machine translation and text recommendation. Specifically, for the CKL, most of the utilized or provided POS tagsets are neither standardized nor comprehensive. To this end, this study presented an accurate and comprehensive POS tagset for the CKL to provide better performance of the Kurdish NLP tasks. The article also collected most of the POS tags from different studies as well as from Kurdish linguistic experts to standardized part-of-speech tags. The proposed POS tagset is designed to annotate a large CKL corpus and support Kurdish NLP tasks. The initial investigations of this study via comparison with the Universal Dependencies framework for standard languages, show that the proposed POS tagset can streamline or correct sentences more accurately for Kurdish NLP tasks.
comment: 25 pages, 4 figures, 2 tables
VCM: Vision Concept Modeling Based on Implicit Contrastive Learning with Vision-Language Instruction Fine-Tuning
Large Vision-Language Models (LVLMs) are pivotal for real-world AI tasks like embodied intelligence due to their strong vision-language reasoning abilities. However, current LVLMs process entire images at the token level, which is inefficient compared to humans who analyze information and generate content at the conceptual level, extracting relevant visual concepts with minimal effort. This inefficiency, stemming from the lack of a visual concept model, limits LVLMs' usability in real-world applications. To address this, we propose VCM, an end-to-end self-supervised visual concept modeling framework. VCM leverages implicit contrastive learning across multiple sampled instances and vision-language fine-tuning to construct a visual concept model without requiring costly concept-level annotations. Our results show that VCM significantly reduces computational costs (e.g., 85\% fewer FLOPs for LLaVA-1.5-7B) while maintaining strong performance across diverse image understanding tasks. Moreover, VCM enhances visual encoders' capabilities in classic visual concept perception tasks. Extensive quantitative and qualitative experiments validate the effectiveness and efficiency of VCM.
comment: VCM
Coreference Resolution for Vietnamese Narrative Texts ACL
Coreference resolution is a vital task in natural language processing (NLP) that involves identifying and linking different expressions in a text that refer to the same entity. This task is particularly challenging for Vietnamese, a low-resource language with limited annotated datasets. To address these challenges, we developed a comprehensive annotated dataset using narrative texts from VnExpress, a widely-read Vietnamese online news platform. We established detailed guidelines for annotating entities, focusing on ensuring consistency and accuracy. Additionally, we evaluated the performance of large language models (LLMs), specifically GPT-3.5-Turbo and GPT-4, on this dataset. Our results demonstrate that GPT-4 significantly outperforms GPT-3.5-Turbo in terms of both accuracy and response consistency, making it a more reliable tool for coreference resolution in Vietnamese.
comment: Accepted at PACLIC 2024
Arabic Metaphor Sentiment Classification Using Semantic Information
In this paper, I discuss the testing of the Arabic Metaphor Corpus (AMC) [1] using newly designed automatic tools for sentiment classification for AMC based on semantic tags. The tool incorporates semantic emotional tags for sentiment classification. I evaluate the tool using standard methods, which are F-score, recall, and precision. The method is to show the impact of Arabic online metaphors on sentiment through the newly designed tools. To the best of our knowledge, this is the first approach to conduct sentiment classification for Arabic metaphors using semantic tags to find the impact of the metaphor.
Graph-Based Spectral Decomposition for Parameter Coordination in Language Model Fine-Tuning
This paper proposes a parameter collaborative optimization algorithm for large language models, enhanced with graph spectral analysis. The goal is to improve both fine-tuning efficiency and structural awareness during training. In the proposed method, the parameters of a pre-trained language model are treated as nodes in a graph. A weighted graph is constructed, and Laplacian spectral decomposition is applied to enable frequency-domain modeling and structural representation of the parameter space. Based on this structure, a joint loss function is designed. It combines the task loss with a spectral regularization term to facilitate collaborative updates among parameters. In addition, a spectral filtering mechanism is introduced during the optimization phase. This mechanism adjusts gradients in a structure-aware manner, enhancing the model's training stability and convergence behavior. The method is evaluated on multiple tasks, including traditional fine-tuning comparisons, few-shot generalization tests, and convergence speed analysis. In all settings, the proposed approach demonstrates superior performance. The experimental results confirm that the spectral collaborative optimization framework effectively reduces parameter perturbations and improves fine-tuning quality while preserving overall model performance. This work contributes significantly to the field of artificial intelligence by advancing parameter-efficient training methodologies for large-scale models, reinforcing the importance of structural signal processing in deep learning optimization, and offering a robust, generalizable framework for enhancing language model adaptability and performance.
m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
The rapid progress of large language models (LLMs) in biomedical research has underscored the limitations of existing open-source annotated scientific corpora, which are often insufficient in quantity and quality. Addressing the challenge posed by the complex hierarchy of biomedical knowledge, we propose a knowledge-driven, multi-agent framework for scientific corpus distillation tailored for LLM training in the biomedical domain. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. These agents collectively generate and refine domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
comment: 22 pages, Large Language Model, Agentic AI, Dataset Distillation, Multi-agent Collaboration
Detecting Effects of AI-Mediated Communication on Language Complexity and Sentiment
Given the subtle human-like effects of large language models on linguistic patterns, this study examines shifts in language over time to detect the impact of AI-mediated communication (AI- MC) on social media. We compare a replicated dataset of 970,919 tweets from 2020 (pre-ChatGPT) with 20,000 tweets from the same period in 2024, all of which mention Donald Trump during election periods. Using a combination of Flesch-Kincaid readability and polarity scores, we analyze changes in text complexity and sentiment. Our findings reveal a significant increase in mean sentiment polarity (0.12 vs. 0.04) and a shift from predominantly neutral content (54.8% in 2020 to 39.8% in 2024) to more positive expressions (28.6% to 45.9%). These findings suggest not only an increasing presence of AI in social media communication but also its impact on language and emotional expression patterns.
comment: 5 pages, 3 figures, Companion Proceedings of the ACM Web Conference 2025
FlashOverlap: A Lightweight Design for Efficiently Overlapping Communication and Computation
Generative models have achieved remarkable success across various applications, driving the demand for multi-GPU computing. Inter-GPU communication becomes a bottleneck in multi-GPU computing systems, particularly on consumer-grade GPUs. By exploiting concurrent hardware execution, overlapping computation and communication latency is an effective technique for mitigating the communication overhead. We identify that an efficient and adaptable overlapping design should satisfy (1) tile-wise overlapping to maximize the overlapping opportunity, (2) interference-free computation to maintain the original computational performance, and (3) communication agnosticism to reduce the development burden against varying communication primitives. Nevertheless, current designs fail to simultaneously optimize for all of those features. To address the issue, we propose FlashOverlap, a lightweight design characterized by tile-wise overlapping, interference-free computation, and communication agnosticism. FlashOverlap utilizes a novel signaling mechanism to identify tile-wise data dependency without interrupting the computation process, and reorders data to contiguous addresses, enabling communication by simply calling NCCL APIs. Experiments show that such a lightweight design achieves up to 1.65x speedup, outperforming existing works in most cases.
comment: 17 pages, 11 figures, 4 tables
Masked Point-Entity Contrast for Open-Vocabulary 3D Scene Understanding CVPR 2025
Open-vocabulary 3D scene understanding is pivotal for enhancing physical intelligence, as it enables embodied agents to interpret and interact dynamically within real-world environments. This paper introduces MPEC, a novel Masked Point-Entity Contrastive learning method for open-vocabulary 3D semantic segmentation that leverages both 3D entity-language alignment and point-entity consistency across different point cloud views to foster entity-specific feature representations. Our method improves semantic discrimination and enhances the differentiation of unique instances, achieving state-of-the-art results on ScanNet for open-vocabulary 3D semantic segmentation and demonstrating superior zero-shot scene understanding capabilities. Extensive fine-tuning experiments on 8 datasets, spanning from low-level perception to high-level reasoning tasks, showcase the potential of learned 3D features, driving consistent performance gains across varied 3D scene understanding tasks. Project website: https://mpec-3d.github.io/
comment: CVPR 2025
Improving Reasoning Performance in Large Language Models via Representation Engineering ICLR 2025
Recent advancements in large language models (LLMs) have resulted in increasingly anthropomorphic language concerning the ability of LLMs to reason. Whether reasoning in LLMs should be understood to be inherently different is, however, widely debated. We propose utilizing a representation engineering approach wherein model activations are read from the residual stream of an LLM when processing a reasoning task. The activations are used to derive a control vector that is applied to the model as an inference-time intervention, modulating the representational space of the model, to improve performance on the specified task. We publish the code for deriving control vectors and analyzing model representations. The method allows us to improve performance on reasoning benchmarks and assess how control vectors influence the final logit distribution of a model via metrics such as KL divergence and entropy. We apply control vectors to Mistral-7B-Instruct and a range of Pythia models on an inductive, a deductive and mathematical reasoning task. We show that an LLM can, to a certain degree, be controlled to improve its perceived reasoning ability by modulating activations. The intervention is dependent upon the ability to reliably extract the model's typical state when correctly solving a task. Our results suggest that reasoning performance can be modulated in the same manner as other information-processing tasks performed by LLMs and demonstrate that we are capable of improving performance on specific tasks via a simple intervention on the residual stream with no additional training.
comment: Has been accepted at "The Thirteenth International Conference on Learning Representations (ICLR 2025)" Link to publication: https://openreview.net/forum?id=IssPhpUsKt
Conflicts in Texts: Data, Implications and Challenges
As NLP models become increasingly integrated into real-world applications, it becomes clear that there is a need to address the fact that models often rely on and generate conflicting information. Conflicts could reflect the complexity of situations, changes that need to be explained and dealt with, difficulties in data annotation, and mistakes in generated outputs. In all cases, disregarding the conflicts in data could result in undesired behaviors of models and undermine NLP models' reliability and trustworthiness. This survey categorizes these conflicts into three key areas: (1) natural texts on the web, where factual inconsistencies, subjective biases, and multiple perspectives introduce contradictions; (2) human-annotated data, where annotator disagreements, mistakes, and societal biases impact model training; and (3) model interactions, where hallucinations and knowledge conflicts emerge during deployment. While prior work has addressed some of these conflicts in isolation, we unify them under the broader concept of conflicting information, analyze their implications, and discuss mitigation strategies. We highlight key challenges and future directions for developing conflict-aware NLP systems that can reason over and reconcile conflicting information more effectively.
BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly, with new models being released at an accelerated pace. However, current evaluations of LLMs in clinical contexts remain limited. Most existing benchmarks rely on medical exam-style questions or PubMed-derived text, failing to capture the complexity of real-world electronic health record (EHR) data. Others focus narrowly on specific application scenarios, limiting their generalizability across broader clinical use. To address this gap, we present BRIDGE, a comprehensive multilingual benchmark comprising 87 tasks sourced from real-world clinical data sources across nine languages. We systematically evaluated 52 state-of-the-art LLMs (including DeepSeek-R1, GPT-4o, Gemini, and Llama 4) under various inference strategies. With a total of 13,572 experiments, our results reveal substantial performance variation across model sizes, languages, natural language processing tasks, and clinical specialties. Notably, we demonstrate that open-source LLMs can achieve performance comparable to proprietary models, while medically fine-tuned LLMs based on older architectures often underperform versus updated general-purpose models. The BRIDGE and its corresponding leaderboard serve as a foundational resource and a unique reference for the development and evaluation of new LLMs in real-world clinical text understanding.
Mitigating Modality Bias in Multi-modal Entity Alignment from a Causal Perspective SIGIR 2025
Multi-Modal Entity Alignment (MMEA) aims to retrieve equivalent entities from different Multi-Modal Knowledge Graphs (MMKGs), a critical information retrieval task. Existing studies have explored various fusion paradigms and consistency constraints to improve the alignment of equivalent entities, while overlooking that the visual modality may not always contribute positively. Empirically, entities with low-similarity images usually generate unsatisfactory performance, highlighting the limitation of overly relying on visual features. We believe the model can be biased toward the visual modality, leading to a shortcut image-matching task. To address this, we propose a counterfactual debiasing framework for MMEA, termed CDMEA, which investigates visual modality bias from a causal perspective. Our approach aims to leverage both visual and graph modalities to enhance MMEA while suppressing the direct causal effect of the visual modality on model predictions. By estimating the Total Effect (TE) of both modalities and excluding the Natural Direct Effect (NDE) of the visual modality, we ensure that the model predicts based on the Total Indirect Effect (TIE), effectively utilizing both modalities and reducing visual modality bias. Extensive experiments on 9 benchmark datasets show that CDMEA outperforms 14 state-of-the-art methods, especially in low-similarity, high-noise, and low-resource data scenarios.
comment: Accepted by SIGIR 2025, 11 pages, 10 figures, 4 tables,
Towards Long Context Hallucination Detection
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. However, they are prone to contextual hallucination, generating information that is either unsubstantiated or contradictory to the given context. Although many studies have investigated contextual hallucinations in LLMs, addressing them in long-context inputs remains an open problem. In this work, we take an initial step toward solving this problem by constructing a dataset specifically designed for long-context hallucination detection. Furthermore, we propose a novel architecture that enables pre-trained encoder models, such as BERT, to process long contexts and effectively detect contextual hallucinations through a decomposition and aggregation mechanism. Our experimental results show that the proposed architecture significantly outperforms previous models of similar size as well as LLM-based models across various metrics, while providing substantially faster inference.
Systematic Bias in Large Language Models: Discrepant Response Patterns in Binary vs. Continuous Judgment Tasks
Large Language Models (LLMs) are increasingly used in tasks such as psychological text analysis and decision-making in automated workflows. However, their reliability remains a concern due to potential biases inherited from their training process. In this study, we examine how different response format: binary versus continuous, may systematically influence LLMs' judgments. In a value statement judgments task and a text sentiment analysis task, we prompted LLMs to simulate human responses and tested both formats across several models, including both open-source and commercial models. Our findings revealed a consistent negative bias: LLMs were more likely to deliver "negative" judgments in binary formats compared to continuous ones. Control experiments further revealed that this pattern holds across both tasks. Our results highlight the importance of considering response format when applying LLMs to decision tasks, as small changes in task design can introduce systematic biases.
Large Language Models are Qualified Benchmark Builders: Rebuilding Pre-Training Datasets for Advancing Code Intelligence Tasks
Pre-trained code models rely heavily on high-quality pre-training data, particularly human-written reference comments that bridge code and natural language. However, these comments often become outdated as software evolves, degrading model performance. Large language models (LLMs) excel at generating high-quality code comments. We investigate whether replacing human-written comments with LLM-generated ones improves pre-training datasets. Since standard metrics cannot assess reference comment quality, we propose two novel reference-free evaluation tasks: code-comment inconsistency detection and semantic code search. Results show that LLM-generated comments are more semantically consistent with code than human-written ones, as confirmed by manual evaluation. Leveraging this finding, we rebuild the CodeSearchNet dataset with LLM-generated comments and re-pre-train CodeT5. Evaluations demonstrate that models trained on LLM-enhanced data outperform those using original human comments in code summarization, generation, and translation tasks. This work validates rebuilding pre-training datasets with LLMs to advance code intelligence, challenging the traditional reliance on human reference comments.
comment: Awarded the ACM SIGSOFT Distinguished Paper Award in ICPC 2025
Context-Guided Dynamic Retrieval for Improving Generation Quality in RAG Models
This paper focuses on the dynamic optimization of the Retrieval-Augmented Generation (RAG) architecture. It proposes a state-aware dynamic knowledge retrieval mechanism to enhance semantic understanding and knowledge scheduling efficiency in large language models for open-domain question answering and complex generation tasks. The method introduces a multi-level perceptive retrieval vector construction strategy and a differentiable document matching path. These components enable end-to-end joint training and collaborative optimization of the retrieval and generation modules. This effectively addresses the limitations of static RAG structures in context adaptation and knowledge access. Experiments are conducted on the Natural Questions dataset. The proposed structure is thoroughly evaluated across different large models, including GPT-4, GPT-4o, and DeepSeek. Comparative and ablation experiments from multiple perspectives confirm the significant improvements in BLEU and ROUGE-L scores. The approach also demonstrates stronger robustness and generation consistency in tasks involving semantic ambiguity and multi-document fusion. These results highlight its broad application potential and practical value in building high-quality language generation systems.
Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory
Large Language Models (LLMs) have demonstrated remarkable prowess in generating contextually coherent responses, yet their fixed context windows pose fundamental challenges for maintaining consistency over prolonged multi-session dialogues. We introduce Mem0, a scalable memory-centric architecture that addresses this issue by dynamically extracting, consolidating, and retrieving salient information from ongoing conversations. Building on this foundation, we further propose an enhanced variant that leverages graph-based memory representations to capture complex relational structures among conversational elements. Through comprehensive evaluations on LOCOMO benchmark, we systematically compare our approaches against six baseline categories: (i) established memory-augmented systems, (ii) retrieval-augmented generation (RAG) with varying chunk sizes and k-values, (iii) a full-context approach that processes the entire conversation history, (iv) an open-source memory solution, (v) a proprietary model system, and (vi) a dedicated memory management platform. Empirical results show that our methods consistently outperform all existing memory systems across four question categories: single-hop, temporal, multi-hop, and open-domain. Notably, Mem0 achieves 26% relative improvements in the LLM-as-a-Judge metric over OpenAI, while Mem0 with graph memory achieves around 2% higher overall score than the base configuration. Beyond accuracy gains, we also markedly reduce computational overhead compared to full-context method. In particular, Mem0 attains a 91% lower p95 latency and saves more than 90% token cost, offering a compelling balance between advanced reasoning capabilities and practical deployment constraints. Our findings highlight critical role of structured, persistent memory mechanisms for long-term conversational coherence, paving the way for more reliable and efficient LLM-driven AI agents.
Context Selection and Rewriting for Video-based EducationalQuestion Generation
Educational question generation (EQG) is a crucial component of intelligent educational systems, significantly aiding self-assessment, active learning, and personalized education. While EQG systems have emerged, existing datasets typically rely on predefined, carefully edited texts, failing to represent real-world classroom content, including lecture speech with a set of complementary slides. To bridge this gap, we collect a dataset of educational questions based on lectures from real-world classrooms. On this realistic dataset, we find that current methods for EQG struggle with accurately generating questions from educational videos, particularly in aligning with specific timestamps and target answers. Common challenges include selecting informative contexts from extensive transcripts and ensuring generated questions meaningfully incorporate the target answer. To address the challenges, we introduce a novel framework utilizing large language models for dynamically selecting and rewriting contexts based on target timestamps and answers. First, our framework selects contexts from both lecture transcripts and video keyframes based on answer relevance and temporal proximity. Then, we integrate the contexts selected from both modalities and rewrite them into answer-containing knowledge statements, to enhance the logical connection between the contexts and the desired answer. This approach significantly improves the quality and relevance of the generated questions. Our dataset and code are released in https://github.com/mengxiayu/COSER.
ICL CIPHERS: Quantifying "Learning'' in In-Context Learning via Substitution Ciphers
Recent works have suggested that In-Context Learning (ICL) operates in dual modes, i.e. task retrieval (remember learned patterns from pre-training) and task learning (inference-time ``learning'' from demonstrations). However, disentangling these the two modes remains a challenging goal. We introduce ICL CIPHERS, a class of task reformulations based on substitution ciphers borrowed from classic cryptography. In this approach, a subset of tokens in the in-context inputs are substituted with other (irrelevant) tokens, rendering English sentences less comprehensible to human eye. However, by design, there is a latent, fixed pattern to this substitution, making it reversible. This bijective (reversible) cipher ensures that the task remains a well-defined task in some abstract sense, despite the transformations. It is a curious question if LLMs can solve ICL CIPHERS with a BIJECTIVE mapping, which requires deciphering the latent cipher. We show that LLMs are better at solving ICL CIPHERS with BIJECTIVE mappings than the NON-BIJECTIVE (irreversible) baseline, providing a novel approach to quantify ``learning'' in ICL. While this gap is small, it is consistent across the board on four datasets and six models. Finally, we examine LLMs' internal representations and identify evidence in their ability to decode the ciphered inputs.
UD-English-CHILDES: A Collected Resource of Gold and Silver Universal Dependencies Trees for Child Language Interactions
CHILDES is a widely used resource of transcribed child and child-directed speech. This paper introduces UD-English-CHILDES, the first officially released Universal Dependencies (UD) treebank derived from previously dependency-annotated CHILDES data with consistent and unified annotation guidelines. Our corpus harmonizes annotations from 11 children and their caregivers, totaling over 48k sentences. We validate existing gold-standard annotations under the UD v2 framework and provide an additional 1M silver-standard sentences, offering a consistent resource for computational and linguistic research.
mrCAD: Multimodal Refinement of Computer-aided Designs
A key feature of human collaboration is the ability to iteratively refine the concepts we have communicated. In contrast, while generative AI excels at the \textit{generation} of content, it often struggles to make specific language-guided \textit{modifications} of its prior outputs. To bridge the gap between how humans and machines perform edits, we present mrCAD, a dataset of multimodal instructions in a communication game. In each game, players created computer aided designs (CADs) and refined them over several rounds to match specific target designs. Only one player, the Designer, could see the target, and they must instruct the other player, the Maker, using text, drawing, or a combination of modalities. mrCAD consists of 6,082 communication games, 15,163 instruction-execution rounds, played between 1,092 pairs of human players. We analyze the dataset and find that generation and refinement instructions differ in their composition of drawing and text. Using the mrCAD task as a benchmark, we find that state-of-the-art VLMs are better at following generation instructions than refinement instructions. These results lay a foundation for analyzing and modeling a multimodal language of refinement that is not represented in previous datasets.
comment: the first two authors contributed equally
Enhancing Systematic Reviews with Large Language Models: Using GPT-4 and Kimi
This research delved into GPT-4 and Kimi, two Large Language Models (LLMs), for systematic reviews. We evaluated their performance by comparing LLM-generated codes with human-generated codes from a peer-reviewed systematic review on assessment. Our findings suggested that the performance of LLMs fluctuates by data volume and question complexity for systematic reviews.
comment: 13 pages, Paper presented at the National Council on Measurement in Education (NCME) Conference, Denver, Colorado, in April 2025
A Platform for Generating Educational Activities to Teach English as a Second Language
We present a platform for the generation of educational activities oriented to teaching English as a foreign language. The different activities -- games and language practice exercises -- are strongly based on Natural Language Processing techniques. The platform offers the possibility of playing out-of-the-box games, generated from resources created semi-automatically and then manually curated. It can also generate games or exercises of greater complexity from texts entered by teachers, providing a stage of review and edition of the generated content before use. As a way of expanding the variety of activities in the platform, we are currently experimenting with image and text generation. In order to integrate them and improve the performance of other neural tools already integrated, we are working on migrating the platform to a more powerful server. In this paper we describe the development of our platform and its deployment for end users, discussing the challenges faced and how we overcame them, and also detail our future work plans.
comment: Unpublished report written in 2023
A Multimodal Pipeline for Clinical Data Extraction: Applying Vision-Language Models to Scans of Transfusion Reaction Reports
Despite the growing adoption of electronic health records, many processes still rely on paper documents, reflecting the heterogeneous real-world conditions in which healthcare is delivered. The manual transcription process is time-consuming and prone to errors when transferring paper-based data to digital formats. To streamline this workflow, this study presents an open-source pipeline that extracts and categorizes checkbox data from scanned documents. Demonstrated on transfusion reaction reports, the design supports adaptation to other checkbox-rich document types. The proposed method integrates checkbox detection, multilingual optical character recognition (OCR) and multilingual vision-language models (VLMs). The pipeline achieves high precision and recall compared against annually compiled gold-standards from 2017 to 2024. The result is a reduction in administrative workload and accurate regulatory reporting. The open-source availability of this pipeline encourages self-hosted parsing of checkbox forms.
Weaving Context Across Images: Improving Vision-Language Models through Focus-Centric Visual Chains
Vision-language models (VLMs) achieve remarkable success in single-image tasks. However, real-world scenarios often involve intricate multi-image inputs, leading to a notable performance decline as models struggle to disentangle critical information scattered across complex visual features. In this work, we propose Focus-Centric Visual Chain, a novel paradigm that enhances VLMs'perception, comprehension, and reasoning abilities in multi-image scenarios. To facilitate this paradigm, we propose Focus-Centric Data Synthesis, a scalable bottom-up approach for synthesizing high-quality data with elaborate reasoning paths. Through this approach, We construct VISC-150K, a large-scale dataset with reasoning data in the form of Focus-Centric Visual Chain, specifically designed for multi-image tasks. Experimental results on seven multi-image benchmarks demonstrate that our method achieves average performance gains of 3.16% and 2.24% across two distinct model architectures, without compromising the general vision-language capabilities. our study represents a significant step toward more robust and capable vision-language systems that can handle complex visual scenarios.
MICE for CATs: Model-Internal Confidence Estimation for Calibrating Agents with Tools NAACL 2025
Tool-using agents that act in the world need to be both useful and safe. Well-calibrated model confidences can be used to weigh the risk versus reward of potential actions, but prior work shows that many models are poorly calibrated. Inspired by interpretability literature exploring the internals of models, we propose a novel class of model-internal confidence estimators (MICE) to better assess confidence when calling tools. MICE first decodes from each intermediate layer of the language model using logitLens and then computes similarity scores between each layer's generation and the final output. These features are fed into a learned probabilistic classifier to assess confidence in the decoded output. On the simulated trial and error (STE) tool-calling dataset using Llama3 models, we find that MICE beats or matches the baselines on smoothed expected calibration error. Using MICE confidences to determine whether to call a tool significantly improves over strong baselines on a new metric, expected tool-calling utility. Further experiments show that MICE is sample-efficient, can generalize zero-shot to unseen APIs, and results in higher tool-calling utility in scenarios with varying risk levels. Our code is open source, available at https://github.com/microsoft/mice_for_cats.
comment: Accepted at NAACL 2025. Code: https://github.com/microsoft/mice_for_cats
Toward Evaluative Thinking: Meta Policy Optimization with Evolving Reward Models
Reward-based alignment methods for large language models (LLMs) face two key limitations: vulnerability to reward hacking, where models exploit flaws in the reward signal; and reliance on brittle, labor-intensive prompt engineering when LLMs are used as reward models. We introduce Meta Policy Optimization (MPO), a framework that addresses these challenges by integrating a meta-reward model that dynamically refines the reward model's prompt throughout training. In MPO, the meta-reward model monitors the evolving training context and continuously adjusts the reward model's prompt to maintain high alignment, providing an adaptive reward signal that resists exploitation by the policy. This meta-learning approach promotes a more stable policy optimization, and greatly reduces the need for manual reward prompt design. It yields performance on par with or better than models guided by extensively hand-crafted reward prompts. Furthermore, we show that MPO maintains its effectiveness across diverse tasks, such as question answering and mathematical reasoning, without requiring specialized reward designs. Beyond standard RLAIF, MPO's meta-learning formulation is readily extensible to higher-level alignment frameworks. Overall, this method addresses theoretical and practical challenges in reward-based RL alignment for LLMs, paving the way for more robust and adaptable alignment strategies. The code and models will be publicly shared.
Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Achieving both accuracy and diverse reasoning remains challenging for Large Language Models (LLMs) in complex domains like mathematics. A key bottleneck is evaluating intermediate reasoning steps to guide generation without costly human annotations. To address this, we first introduce a novel Process Reward Model (PRM) trained automatically using Monte Carlo Tree Search coupled with a similarity-based data augmentation technique, effectively capturing step-level reasoning quality. Leveraging this PRM, we then adapt Generative Flow Networks (GFlowNets) to operate at the reasoning step level. Unlike traditional reinforcement learning focused on maximizing a single reward, GFlowNets naturally sample diverse, high-quality solutions proportional to their rewards, as measured by our PRM. Empirical evaluation shows strong improvements in both accuracy and solution diversity on challenging mathematical benchmarks (e.g., +2.59% absolute accuracy on MATH Level 5 for Llama3.2-3B), with effective generalization to unseen datasets (+9.4% absolute on SAT MATH). Our work demonstrates the potential of PRM-guided, step-level GFlowNets for developing more robust and versatile mathematical reasoning in LLMs.
ResearchCodeAgent: An LLM Multi-Agent System for Automated Codification of Research Methodologies
In this paper we introduce ResearchCodeAgent, a novel multi-agent system leveraging large language models (LLMs) agents to automate the codification of research methodologies described in machine learning literature. The system bridges the gap between high-level research concepts and their practical implementation, allowing researchers auto-generating code of existing research papers for benchmarking or building on top-of existing methods specified in the literature with availability of partial or complete starter code. ResearchCodeAgent employs a flexible agent architecture with a comprehensive action suite, enabling context-aware interactions with the research environment. The system incorporates a dynamic planning mechanism, utilizing both short and long-term memory to adapt its approach iteratively. We evaluate ResearchCodeAgent on three distinct machine learning tasks with distinct task complexity and representing different parts of the ML pipeline: data augmentation, optimization, and data batching. Our results demonstrate the system's effectiveness and generalizability, with 46.9% of generated code being high-quality and error-free, and 25% showing performance improvements over baseline implementations. Empirical analysis shows an average reduction of 57.9% in coding time compared to manual implementation. We observe higher gains for more complex tasks. ResearchCodeAgent represents a significant step towards automating the research implementation process, potentially accelerating the pace of machine learning research.
Pula: Training Large Language Models for Setswana NAACL 2025
In this work we present Pula, a suite of bilingual language models proficient in both Setswana and English. Leveraging recent advancements in data availability and efficient fine-tuning, Pula 8B and Pula 14B outperform GPT-4o and Gemini 1.5 Pro on English-Setswana translation tasks and achieve state-of-the-art performance on Setswana reasoning tasks for their size. We release the weights for Pula 1B, 3B, 8B, and 14B as well as training logs and training and evaluation code. Alongside Pula, we release the largest-ever Setswana text corpus, Marothodi, and the first comprehensive Setswana instruction-tuning dataset, Medupi, consisting of reformatted datasets, translated corpora, and synthetic LLM-generated text. To accompany this data, we release the code used for dataset construction, formatting, filtering, and scraping. Last, we release two Setswana LLM-translated benchmarks, MMLU-tsn and GSM8K-tsn, to measure Setswana knowledge and reasoning capabilities.
comment: NAACL 2025. 10 pages, 5 tables, 1 figure
NoisyHate: Mining Online Human-Written Perturbations for Realistic Robustness Benchmarking of Content Moderation Models AAAI
Online texts with toxic content are a clear threat to the users on social media in particular and society in general. Although many platforms have adopted various measures (e.g., machine learning-based hate-speech detection systems) to diminish their effect, toxic content writers have also attempted to evade such measures by using cleverly modified toxic words, so-called human-written text perturbations. Therefore, to help build automatic detection tools to recognize those perturbations, prior methods have developed sophisticated techniques to generate diverse adversarial samples. However, we note that these ``algorithms"-generated perturbations do not necessarily capture all the traits of ``human"-written perturbations. Therefore, in this paper, we introduce a novel, high-quality dataset of human-written perturbations, named as NoisyHate, that was created from real-life perturbations that are both written and verified by human-in-the-loop. We show that perturbations in NoisyHate have different characteristics than prior algorithm-generated toxic datasets show, and thus can be in particular useful to help develop better toxic speech detection solutions. We thoroughly validate NoisyHate against state-of-the-art language models, such as BERT and RoBERTa, and black box APIs, such as Perspective API, on two tasks, such as perturbation normalization and understanding.
comment: Accepted to International AAAI Conference on Web and Social Media (ICWSM 2025)
Evaluation Framework for AI Systems in "the Wild"
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
comment: 35 pages
GraphEx: A Graph-based Extraction Method for Advertiser Keyphrase Recommendation
Online sellers and advertisers are recommended keyphrases for their listed products, which they bid on to enhance their sales. One popular paradigm that generates such recommendations is Extreme Multi-Label Classification (XMC), which involves tagging/mapping keyphrases to items. We outline the limitations of using traditional item-query based tagging or mapping techniques for keyphrase recommendations on E-Commerce platforms. We introduce GraphEx, an innovative graph-based approach that recommends keyphrases to sellers using extraction of token permutations from item titles. Additionally, we demonstrate that relying on traditional metrics such as precision/recall can be misleading in practical applications, thereby necessitating a combination of metrics to evaluate performance in real-world scenarios. These metrics are designed to assess the relevance of keyphrases to items and the potential for buyer outreach. GraphEx outperforms production models at eBay, achieving the objectives mentioned above. It supports near real-time inferencing in resource-constrained production environments and scales effectively for billions of items.
Investigating Length Issues in Document-level Machine Translation
Transformer architectures are increasingly effective at processing and generating very long chunks of texts, opening new perspectives for document-level machine translation (MT). In this work, we challenge the ability of MT systems to handle texts comprising up to several thousands of tokens. We design and implement a new approach designed to precisely measure the effect of length increments on MT outputs. Our experiments with two representative architectures unambiguously show that (a)~translation performance decreases with the length of the input text; (b)~the position of sentences within the document matters, and translation quality is higher for sentences occurring earlier in a document. We further show that manipulating the distribution of document lengths and of positional embeddings only marginally mitigates such problems. Our results suggest that even though document-level MT is computationally feasible, it does not yet match the performance of sentence-based MT.
comment: Accepted at the MT Summit 2025
Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
comment: v3: add the comparison to existing work part; fix some errors
The Paradox of Poetic Intent in Back-Translation: Evaluating the Quality of Large Language Models in Chinese Translation
The rapid advancement of large language models (LLMs) has reshaped the landscape of machine translation, yet challenges persist in preserving poetic intent, cultural heritage, and handling specialized terminology in Chinese-English translation. This study constructs a diverse corpus encompassing Chinese scientific terminology, historical translation paradoxes, and literary metaphors. Utilizing a back-translation and Friedman test-based evaluation system (BT-Fried), we evaluate BLEU, CHRF, TER, and semantic similarity metrics across six major LLMs (e.g., GPT-4.5, DeepSeek V3) and three traditional translation tools. Key findings include: (1) Scientific abstracts often benefit from back-translation, while traditional tools outperform LLMs in linguistically distinct texts; (2) LLMs struggle with cultural and literary retention, exemplifying the "paradox of poetic intent"; (3) Some models exhibit "verbatim back-translation", reflecting emergent memory behavior; (4) A novel BLEU variant using Jieba segmentation and n-gram weighting is proposed. The study contributes to the empirical evaluation of Chinese NLP performance and advances understanding of cultural fidelity in AI-mediated translation.
comment: 24 pages, 3 figures
Factual Knowledge in Language Models: Robustness and Anomalies under Simple Temporal Context Variations
This paper explores the robustness of language models (LMs) to variations in the temporal context within factual knowledge. It examines whether LMs can correctly associate a temporal context with a past fact valid over a defined period, by asking them to differentiate correct from incorrect contexts. The accuracy of LMs is analyzed along two dimensions: the distance of the incorrect context from the validity period and the granularity of the context. To this end, a dataset called TimeStress is introduced, enabling the evaluation of 18 diverse LMs. Results reveal that the best LM achieves perfect accuracy for only 6% of the studied facts, with critical errors that humans would not make. This work highlights the limitations of current LMs in temporal representation. We provide all data and code for further research.
comment: preprint v4
Data Processing for the OpenGPT-X Model Family
This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
An Attempt to Develop a Neural Parser based on Simplified Head-Driven Phrase Structure Grammar on Vietnamese
In this paper, we aimed to develop a neural parser for Vietnamese based on simplified Head-Driven Phrase Structure Grammar (HPSG). The existing corpora, VietTreebank and VnDT, had around 15% of constituency and dependency tree pairs that did not adhere to simplified HPSG rules. To attempt to address the issue of the corpora not adhering to simplified HPSG rules, we randomly permuted samples from the training and development sets to make them compliant with simplified HPSG. We then modified the first simplified HPSG Neural Parser for the Penn Treebank by replacing it with the PhoBERT or XLM-RoBERTa models, which can encode Vietnamese texts. We conducted experiments on our modified VietTreebank and VnDT corpora. Our extensive experiments showed that the simplified HPSG Neural Parser achieved a new state-of-the-art F-score of 82% for constituency parsing when using the same predicted part-of-speech (POS) tags as the self-attentive constituency parser. Additionally, it outperformed previous studies in dependency parsing with a higher Unlabeled Attachment Score (UAS). However, our parser obtained lower Labeled Attachment Score (LAS) scores likely due to our focus on arc permutation without changing the original labels, as we did not consult with a linguistic expert. Lastly, the research findings of this paper suggest that simplified HPSG should be given more attention to linguistic expert when developing treebanks for Vietnamese natural language processing.
comment: Accepted at SoICT 2024
WikiNER-fr-gold: A Gold-Standard NER Corpus
We address in this article the the quality of the WikiNER corpus, a multilingual Named Entity Recognition corpus, and provide a consolidated version of it. The annotation of WikiNER was produced in a semi-supervised manner i.e. no manual verification has been carried out a posteriori. Such corpus is called silver-standard. In this paper we propose WikiNER-fr-gold which is a revised version of the French proportion of WikiNER. Our corpus consists of randomly sampled 20% of the original French sub-corpus (26,818 sentences with 700k tokens). We start by summarizing the entity types included in each category in order to define an annotation guideline, and then we proceed to revise the corpus. Finally we present an analysis of errors and inconsistency observed in the WikiNER-fr corpus, and we discuss potential future work directions.
A Bayesian approach to modeling topic-metadata relationships
The objective of advanced topic modeling is not only to explore latent topical structures, but also to estimate relationships between the discovered topics and theoretically relevant metadata. Methods used to estimate such relationships must take into account that the topical structure is not directly observed, but instead being estimated itself in an unsupervised fashion, usually by common topic models. A frequently used procedure to achieve this is the method of composition, a Monte Carlo sampling technique performing multiple repeated linear regressions of sampled topic proportions on metadata covariates. In this paper, we propose two modifications of this approach: First, we substantially refine the existing implementation of the method of composition from the R package stm by replacing linear regression with the more appropriate Beta regression. Second, we provide a fundamental enhancement of the entire estimation framework by substituting the current blending of frequentist and Bayesian methods with a fully Bayesian approach. This allows for a more appropriate quantification of uncertainty. We illustrate our improved methodology by investigating relationships between Twitter posts by German parliamentarians and different metadata covariates related to their electoral districts, using the Structural Topic Model to estimate topic proportions.
comment: 13 pages, 1 table, 5 figures
Unveiling the Hidden: Movie Genre and User Bias in Spoiler Detection
Spoilers in movie reviews are important on platforms like IMDb and Rotten Tomatoes, offering benefits and drawbacks. They can guide some viewers' choices but also affect those who prefer no plot details in advance, making effective spoiler detection essential. Existing spoiler detection methods mainly analyze review text, often overlooking the impact of movie genres and user bias, limiting their effectiveness. To address this, we analyze movie review data, finding genre-specific variations in spoiler rates and identifying that certain users are more likely to post spoilers. Based on these findings, we introduce a new spoiler detection framework called GUSD (The code is available at https://github.com/AI-explorer-123/GUSD) (Genre-aware and User-specific Spoiler Detection), which incorporates genre-specific data and user behavior bias. User bias is calculated through dynamic graph modeling of review history. Additionally, the R2GFormer module combines RetGAT (Retentive Graph Attention Network) for graph information and GenreFormer for genre-specific aggregation. The GMoE (Genre-Aware Mixture of Experts) model further assigns reviews to specialized experts based on genre. Extensive testing on benchmark datasets shows that GUSD achieves state-of-the-art results. This approach advances spoiler detection by addressing genre and user-specific patterns, enhancing user experience on movie review platforms.
comment: 11 pages, 6 figures, under review
Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared Task on Hallucinations and Related Observable Overgeneration Mistakes SemEval-2025
We present the Mu-SHROOM shared task which is focused on detecting hallucinations and other overgeneration mistakes in the output of instruction-tuned large language models (LLMs). Mu-SHROOM addresses general-purpose LLMs in 14 languages, and frames the hallucination detection problem as a span-labeling task. We received 2,618 submissions from 43 participating teams employing diverse methodologies. The large number of submissions underscores the interest of the community in hallucination detection. We present the results of the participating systems and conduct an empirical analysis to identify key factors contributing to strong performance in this task. We also emphasize relevant current challenges, notably the varying degree of hallucinations across languages and the high annotator disagreement when labeling hallucination spans.
comment: Mu-SHROOM is part of SemEval-2025 (Task 3). TBP: Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
LiveIdeaBench: Evaluating LLMs' Divergent Thinking for Scientific Idea Generation with Minimal Context
While Large Language Models (LLMs) demonstrate remarkable capabilities in scientific tasks such as literature analysis and experimental design (e.g., accurately extracting key findings from papers or generating coherent experimental procedures), existing evaluation benchmarks primarily assess performance using rich contextual inputs. We introduce LiveIdeaBench, a comprehensive benchmark evaluating LLMs' scientific idea generation by assessing divergent thinking capabilities using single-keyword prompts. Drawing from Guilford's creativity theory, our benchmark employs a dynamic panel of state-of-the-art LLMs to assess generated ideas across five key dimensions: originality, feasibility, fluency, flexibility, and clarity. Through extensive experimentation with over 40 leading models across 1,180 keywords spanning 22 scientific domains, we reveal that the scientific idea generation capabilities measured by our benchmark, are poorly predicted by standard metrics of general intelligence. Our results demonstrate that models like QwQ-32B-preview achieve creative performance comparable to top-tier models such as claude-3.7-sonnet:thinking, despite significant gaps in their general intelligence scores. These findings highlight the need for specialized evaluation benchmarks for scientific idea generation and suggest that enhancing these idea generation capabilities in LLMs may require different training strategies than those used for improving general problem-solving abilities, potentially enabling a wider range of AI tools tailored for different stages of the scientific process.
comment: Updated manuscript and title
NutriGen: Personalized Meal Plan Generator Leveraging Large Language Models to Enhance Dietary and Nutritional Adherence
Maintaining a balanced diet is essential for overall health, yet many individuals struggle with meal planning due to nutritional complexity, time constraints, and lack of dietary knowledge. Personalized food recommendations can help address these challenges by tailoring meal plans to individual preferences, habits, and dietary restrictions. However, existing dietary recommendation systems often lack adaptability, fail to consider real-world constraints such as food ingredient availability, and require extensive user input, making them impractical for sustainable and scalable daily use. To address these limitations, we introduce NutriGen, a framework based on large language models (LLM) designed to generate personalized meal plans that align with user-defined dietary preferences and constraints. By building a personalized nutrition database and leveraging prompt engineering, our approach enables LLMs to incorporate reliable nutritional references like the USDA nutrition database while maintaining flexibility and ease-of-use. We demonstrate that LLMs have strong potential in generating accurate and user-friendly food recommendations, addressing key limitations in existing dietary recommendation systems by providing structured, practical, and scalable meal plans. Our evaluation shows that Llama 3.1 8B and GPT-3.5 Turbo achieve the lowest percentage errors of 1.55\% and 3.68\%, respectively, producing meal plans that closely align with user-defined caloric targets while minimizing deviation and improving precision. Additionally, we compared the performance of DeepSeek V3 against several established models to evaluate its potential in personalized nutrition planning.
Ragas: Automated Evaluation of Retrieval Augmented Generation
We introduce Ragas (Retrieval Augmented Generation Assessment), a framework for reference-free evaluation of Retrieval Augmented Generation (RAG) pipelines. RAG systems are composed of a retrieval and an LLM based generation module, and provide LLMs with knowledge from a reference textual database, which enables them to act as a natural language layer between a user and textual databases, reducing the risk of hallucinations. Evaluating RAG architectures is, however, challenging because there are several dimensions to consider: the ability of the retrieval system to identify relevant and focused context passages, the ability of the LLM to exploit such passages in a faithful way, or the quality of the generation itself. With Ragas, we put forward a suite of metrics which can be used to evaluate these different dimensions \textit{without having to rely on ground truth human annotations}. We posit that such a framework can crucially contribute to faster evaluation cycles of RAG architectures, which is especially important given the fast adoption of LLMs.
comment: Reference-free (not tied to having ground truth available) evaluation framework for retrieval agumented generation
AI-LieDar: Examine the Trade-off Between Utility and Truthfulness in LLM Agents
Truthfulness (adherence to factual accuracy) and utility (satisfying human needs and instructions) are both fundamental aspects of Large Language Models, yet these goals often conflict (e.g., sell a car with known flaws), which makes it challenging to achieve both in real-world deployments. We propose AI-LieDar, a framework to study how LLM-based agents navigate these scenarios in an multi-turn interactive setting. We design a set of real-world scenarios where language agents are instructed to achieve goals that are in conflict with being truthful during a multi-turn conversation with simulated human agents. To evaluate the truthfulness at large scale, we develop a truthfulness detector inspired by psychological literature to assess the agents' responses. Our experiment demonstrates that all models are truthful less than 50% of the time, though truthfulness and goal achievement (utility) rates vary across models. We further test the steerability of LLMs towards truthfulness, finding that models can be directed to be truthful or deceptive, and even truth-steered models still lie. These findings reveal the complex nature of truthfulness in LLMs and underscore the importance of further research to ensure the safe and reliable deployment of LLMs and LLM-based agents.
Knowledge-Augmented Multimodal Clinical Rationale Generation for Disease Diagnosis with Small Language Models
Interpretation is critical for disease diagnosis, but existing models struggle to balance predictive accuracy with human-understandable rationales. While large language models (LLMs) offer strong reasoning abilities, their clinical use is limited by high computational costs and restricted multimodal reasoning ability. Small language models (SLMs) are efficient but lack advanced reasoning for integrating multimodal medical data. In addition, both LLMs and SLMs lack of domain knowledge for trustworthy reasoning. Therefore, we propose ClinRaGen, enhancing SLMs by leveraging LLM-derived reasoning ability via rationale distillation and domain knowledge injection for trustworthy multimodal rationale generation. Key innovations include a sequential rationale distillation framework that equips SLMs with LLM-comparable mutlimodal reasoning abilities, and a knowledge-augmented attention mechanism that jointly unifies multimodal representation from time series and textual data in a same encoding space, enabling it naturally interpreted by SLMs while incorporating domain knowledge for reliable rationale generation. Experiments on real-world medical datasets show that ClinRaGen achieves state-of-the-art performance in disease diagnosis and rationale generation, demonstrating the effectiveness of combining LLM-driven reasoning with knowledge augmentation for improved interpretability.
comment: 13 pages. 7 figures
Open Domain Question Answering with Conflicting Contexts
Open domain question answering systems frequently rely on information retrieved from large collections of text (such as the Web) to answer questions. However, such collections of text often contain conflicting information, and indiscriminately depending on this information may result in untruthful and inaccurate answers. To understand the gravity of this problem, we collect a human-annotated dataset, Question Answering with Conflicting Contexts (QACC), and find that as much as 25% of unambiguous, open domain questions can lead to conflicting contexts when retrieved using Google Search. We evaluate and benchmark three powerful Large Language Models (LLMs) with our dataset QACC and demonstrate their limitations in effectively addressing questions with conflicting information. To explore how humans reason through conflicting contexts, we request our annotators to provide explanations for their selections of correct answers. We demonstrate that by finetuning LLMs to explain their answers, we can introduce richer information into their training that guide them through the process of reasoning with conflicting contexts.
Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation
Prompt engineering is an effective but labor-intensive way to control text-to-image (T2I) generative models. Its time-intensive nature and complexity have spurred the development of algorithms for automated prompt generation. However, these methods often struggle with transferability across T2I models, require white-box access to the underlying model, or produce non-intuitive prompts. In this work, we introduce PRISM, an algorithm that automatically produces human-interpretable and transferable prompts that can effectively generate desired concepts given only black-box access to T2I models. Inspired by large language model (LLM) jailbreaking, PRISM leverages the in-context learning ability of LLMs to iteratively refine the candidate prompt distribution built upon the reference images. Our experiments demonstrate the versatility and effectiveness of PRISM in generating accurate prompts for objects, styles, and images across multiple T2I models, including Stable Diffusion, DALL-E, and Midjourney.
Synthetic Data Generation & Multi-Step RL for Reasoning & Tool Use
Reinforcement learning has been shown to improve the performance of large language models. However, traditional approaches like RLHF or RLAIF treat the problem as single-step. As focus shifts toward more complex reasoning and agentic tasks, language models must take multiple steps of text generation, reasoning and environment interaction before generating a solution. We propose a synthetic data generation and RL methodology targeting multi-step optimization scenarios. This approach, called Step-Wise Reinforcement Learning (SWiRL), iteratively generates multi-step reasoning and tool use data, and then learns from that data. It employs a simple step-wise decomposition that breaks each multi-step trajectory into multiple sub-trajectories corresponding to each action by the original model. It then applies synthetic data filtering and RL optimization on these sub-trajectories. We evaluated SWiRL on a number of multi-step tool use, question answering, and mathematical reasoning tasks. Our experiments show that SWiRL outperforms baseline approaches by 21.5%, 12.3%, 14.8%, 11.1%, and 15.3% in relative accuracy on GSM8K, HotPotQA, CofCA, MuSiQue, and BeerQA, respectively. Excitingly, the approach exhibits generalization across tasks: for example, training only on HotPotQA (text question-answering) improves zero-shot performance on GSM8K (a math dataset) by a relative 16.9%.
Repurposing the scientific literature with vision-language models
Leading vision-language models (VLMs) are trained on general Internet content, overlooking scientific journals' rich, domain-specific knowledge. Training on specialty-specific literature could yield high-performance, task-specific tools, enabling generative AI to match generalist models in specialty publishing, educational, and clinical tasks. We created NeuroPubs, a multimodal dataset of 23,000 Neurosurgery Publications articles (134M words, 78K image-caption pairs). Using NeuroPubs, VLMs generated publication-ready graphical abstracts (70% of 100 abstracts) and board-style questions indistinguishable from human-written ones (54% of 89,587 questions). We used these questions to train CNS-Obsidian, a 34B-parameter VLM. In a blinded, randomized controlled trial, our model demonstrated non-inferiority to then state-of-the-art GPT-4o in neurosurgical differential diagnosis (clinical utility, 40.62% upvotes vs. 57.89%, p=0.1150; accuracy, 59.38% vs. 65.79%, p=0.3797). Our pilot study demonstrates how training generative AI models on specialty-specific journal content - without large-scale internet data - results in high-performance academic and clinical tools, enabling domain-tailored AI across diverse fields.
Data Contamination Quiz: A Tool to Detect and Estimate Contamination in Large Language Models ACL
We propose the Data Contamination Quiz (DCQ), a simple and effective approach to detect data contamination in large language models (LLMs) and estimate the amount of it. Specifically, we frame data contamination detection as a series of multiple-choice questions, devising a quiz format wherein three perturbed versions of each instance, subsampled from a specific dataset partition, are created. These changes only include word-level perturbations. The generated perturbations, along with the original dataset instance, form the options in the DCQ, with an extra option accommodating the selection of none of the provided options. Given that the only distinguishing signal among the options is the exact wording with respect to the original dataset instance, an LLM, when tasked with identifying the original dataset instance, gravitates towards selecting the original one if it has been exposed to it. While accounting for positional biases in LLMs, the quiz performance reveals the contamination level for the tested model with the dataset partition to which the quiz pertains. Applied to various datasets and LLMs, under controlled and uncontrolled contamination, our findings, while fully lacking access to training data and model parameters, suggest that DCQ achieves state-of-the-art results and uncovers greater contamination levels through memorization compared to existing methods. Also, it proficiently bypasses more safety filters, especially those set to avoid generating copyrighted content.
comment: Final version; accepted at TACL
SLA Management in Reconfigurable Multi-Agent RAG: A Systems Approach to Question Answering
Retrieval Augmented Generation (RAG) enables Large Language Models (LLMs) to generalize to new information by decoupling reasoning capabilities from static knowledge bases. Traditional RAG enhancements have explored vertical scaling-assigning subtasks to specialized modules-and horizontal scaling-replicating tasks across multiple agents-to improve performance. However, real-world applications impose diverse Service Level Agreements (SLAs) and Quality of Service (QoS) requirements, involving trade-offs among objectives such as reducing cost, ensuring answer quality, and adhering to specific operational constraints. In this work, we present a systems-oriented approach to multi-agent RAG tailored for real-world Question Answering (QA) applications. By integrating task-specific non-functional requirements-such as answer quality, cost, and latency-into the system, we enable dynamic reconfiguration to meet diverse SLAs. Our method maps these Service Level Objectives (SLOs) to system-level parameters, allowing the generation of optimal results within specified resource constraints. We conduct a case study in the QA domain, demonstrating how dynamic re-orchestration of a multi-agent RAG system can effectively manage the trade-off between answer quality and cost. By adjusting the system based on query intent and operational conditions, we systematically balance performance and resource utilization. This approach allows the system to meet SLOs for various query types, showcasing its practicality for real-world applications.
Can Large Language Models Address Open-Target Stance Detection?
Stance detection (SD) identifies the text position towards a target, typically labeled as favor, against, or none. We introduce Open-Target Stance Detection (OTSD), the most realistic task where targets are neither seen during training nor provided as input. We evaluate Large Language Models (LLMs) from GPT, Gemini, Llama, and Mistral families, comparing their performance to the only existing work, Target-Stance Extraction (TSE), which benefits from predefined targets. Unlike TSE, OTSD removes the dependency of a predefined list, making target generation and evaluation more challenging. We also provide a metric for evaluating target quality that correlates well with human judgment. Our experiments reveal that LLMs outperform TSE in target generation, both when the real target is explicitly and not explicitly mentioned in the text. Similarly, LLMs overall surpass TSE in stance detection for both explicit and non-explicit cases. However, LLMs struggle in both target generation and stance detection when the target is not explicit.
comment: 13 pages; currently under submission
MDCure: A Scalable Pipeline for Multi-Document Instruction-Following
Multi-document (MD) processing is crucial for LLMs to handle real-world tasks such as summarization and question-answering across large sets of documents. While LLMs have improved at processing long inputs, MD contexts still present unique difficulties, including management of inter-document dependencies, redundancy, and incoherent structures. To address this challenge, we introduce MDCure, a scalable and effective instruction data generation framework to enhance the MD capabilities of LLMs without the computational cost of pre-training or reliance on human-annotated data. MDCure generates high-quality synthetic MD instruction data over sets of articles via targeted prompts. We also introduce MDCureRM, a cost-effective, MD-specific reward model to score and filter generated data based on their training utility for MD settings. MDCure is compatible with open- and closed-source models in addition to policy optimization methods such as PPO, enabling even small open-source models to surpass proprietary LLMs as strong generators of high-quality MD instruction data without further data filtering. With MDCure, we fine-tune a wide variety of LLMs up to 70B parameters in size from the FlanT5, Qwen2, and LLAMA3.1 model families. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks and domains show MDCure consistently improves performance over pre-trained baselines and base models by up to 75.1%. Our code, datasets, and models are available at https://github.com/yale-nlp/MDCure.
LLM-Coordination: Evaluating and Analyzing Multi-agent Coordination Abilities in Large Language Models
Large Language Models (LLMs) have demonstrated emergent common-sense reasoning and Theory of Mind (ToM) capabilities, making them promising candidates for developing coordination agents. This study introduces the LLM-Coordination Benchmark, a novel benchmark for analyzing LLMs in the context of Pure Coordination Settings, where agents must cooperate to maximize gains. Our benchmark evaluates LLMs through two distinct tasks. The first is Agentic Coordination, where LLMs act as proactive participants in four pure coordination games. The second is Coordination Question Answering (CoordQA), which tests LLMs on 198 multiple-choice questions across these games to evaluate three key abilities: Environment Comprehension, ToM Reasoning, and Joint Planning. Results from Agentic Coordination experiments reveal that LLM-Agents excel in multi-agent coordination settings where decision-making primarily relies on environmental variables but face challenges in scenarios requiring active consideration of partners' beliefs and intentions. The CoordQA experiments further highlight significant room for improvement in LLMs' Theory of Mind reasoning and joint planning capabilities. Zero-Shot Coordination (ZSC) experiments in the Agentic Coordination setting demonstrate that LLM agents, unlike RL methods, exhibit robustness to unseen partners. These findings indicate the potential of LLMs as Agents in pure coordination setups and underscore areas for improvement. Code Available at https://github.com/eric-ai-lab/llm_coordination.
Computational Typology
Typology is a subfield of linguistics that focuses on the study and classification of languages based on their structural features. Unlike genealogical classification, which examines the historical relationships between languages, typology seeks to understand the diversity of human languages by identifying common properties and patterns, known as universals. In recent years, computational methods have played an increasingly important role in typological research, enabling the analysis of large-scale linguistic data and the testing of hypotheses about language structure and evolution. This article provides an illustration of the benefits of computational statistical modeling in typology.
comment: 19 pages, s5 figure
Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding
Large language models (LLMs) have achieved remarkable success in contextual knowledge understanding. In this paper, we show that these concentrated massive values consistently emerge in specific regions of attention queries (Q) and keys (K) while not having such patterns in values (V) in various modern transformer-based LLMs (Q, K, and V mean the representations output by the query, key, and value layers respectively). Through extensive experiments, we further demonstrate that these massive values play a critical role in interpreting contextual knowledge (knowledge obtained from the current context window) rather than in retrieving parametric knowledge stored within the model's parameters. Our further investigation of quantization strategies reveals that ignoring these massive values leads to a pronounced drop in performance on tasks requiring rich contextual understanding, aligning with our analysis. Finally, we trace the emergence of concentrated massive values and find that such concentration is caused by Rotary Positional Encoding (RoPE), which has appeared since the first layers. These findings shed new light on how Q and K operate in LLMs and offer practical insights for model design and optimization. The Code is Available at https://github.com/MingyuJ666/Rope_with_LLM.
AdaCAD: Adaptively Decoding to Balance Conflicts between Contextual and Parametric Knowledge NAACL 2025
Knowledge conflict arises from discrepancies between information in the context of a large language model (LLM) and the knowledge stored in its parameters. This can hurt performance when using standard decoding techniques, which tend to ignore the context. Existing test-time contrastive methods seek to address this by comparing the LLM's output distribution with and without the context and adjust the model according to the contrast between them. However, we find that these methods frequently misjudge the degree of conflict and struggle to handle instances that vary in their amount of conflict, with static methods over-adjusting when conflict is absent. We propose a fine-grained, instance-level approach called AdaCAD, which dynamically infers the weight of adjustment based on the degree of conflict, as measured by the Jensen-Shannon divergence between distributions representing contextual and parametric knowledge. Across four LLMs, six question-answering (QA) and three summarization datasets, we demonstrate that ADACAD consistently outperforms other decoding baselines with average QA accuracy gains of 14.21% (absolute) over a static contrastive baseline, and improves the factuality of summaries by 6.19 (AlignScore). Lastly, we show that while contrastive baselines hurt performance when conflict is absent, ADACAD mitigates these losses, making it more applicable to real-world datasets in which some examples have conflict and others do not.
comment: NAACL 2025 (main conference), Code: https://github.com/HanNight/AdaCAD
Human-Computer Interaction
Cam-2-Cam: Exploring the Design Space of Dual-Camera Interactions for Smartphone-based Augmented Reality
Off-the-shelf smartphone-based AR systems typically use a single front-facing or rear-facing camera, which restricts user interactions to a narrow field of view and small screen size, thus reducing their practicality. We present \textit{Cam-2-Cam}, an interaction concept implemented in three smartphone-based AR applications with interactions that span both cameras. Results from our qualitative analysis conducted on 30 participants presented two major design lessons that explore the interaction space of smartphone AR while maintaining critical AR interface attributes like embodiment and immersion: (1) \textit{Balancing Contextual Relevance and Feedback Quality} serves to outline a delicate balance between implementing familiar interactions people do in the real world and the quality of multimodal AR responses and (2) \textit{Preventing Disorientation using Simultaneous Capture and Alternating Cameras} which details how to prevent disorientation during AR interactions using the two distinct camera techniques we implemented in the paper. Additionally, we consider observed user assumptions or natural tendencies to inform future implementations of dual-camera setups for smartphone-based AR. We envision our design lessons as an initial pioneering step toward expanding the interaction space of smartphone-based AR, potentially driving broader adoption and overcoming limitations of single-camera AR.
Applying LLM-Powered Virtual Humans to Child Interviews in Child-Centered Design
In child-centered design, directly engaging children is crucial for deeply understanding their experiences. However, current research often prioritizes adult perspectives, as interviewing children involves unique challenges such as environmental sensitivities and the need for trust-building. AI-powered virtual humans (VHs) offer a promising approach to facilitate engaging and multimodal interactions with children. This study establishes key design guidelines for LLM-powered virtual humans tailored to child interviews, standardizing multimodal elements including color schemes, voice characteristics, facial features, expressions, head movements, and gestures. Using ChatGPT-based prompt engineering, we developed three distinct Human-AI workflows (LLM-Auto, LLM-Interview, and LLM-Analyze) and conducted a user study involving 15 children aged 6 to 12. The results indicated that the LLM-Analyze workflow outperformed the others by eliciting longer responses, achieving higher user experience ratings, and promoting more effective child engagement.
comment: This paper has been accepted as a Work-in-Progress (WiP) paper in the 24th annual ACM Interaction Design and Children (IDC) Conference
LLM-Powered GUI Agents in Phone Automation: Surveying Progress and Prospects
With the rapid rise of large language models (LLMs), phone automation has undergone transformative changes. This paper systematically reviews LLM-driven phone GUI agents, highlighting their evolution from script-based automation to intelligent, adaptive systems. We first contextualize key challenges, (i) limited generality, (ii) high maintenance overhead, and (iii) weak intent comprehension, and show how LLMs address these issues through advanced language understanding, multimodal perception, and robust decision-making. We then propose a taxonomy covering fundamental agent frameworks (single-agent, multi-agent, plan-then-act), modeling approaches (prompt engineering, training-based), and essential datasets and benchmarks. Furthermore, we detail task-specific architectures, supervised fine-tuning, and reinforcement learning strategies that bridge user intent and GUI operations. Finally, we discuss open challenges such as dataset diversity, on-device deployment efficiency, user-centric adaptation, and security concerns, offering forward-looking insights into this rapidly evolving field. By providing a structured overview and identifying pressing research gaps, this paper serves as a definitive reference for researchers and practitioners seeking to harness LLMs in designing scalable, user-friendly phone GUI agents.
comment: 37 pages, 10 figures, 7 tables, Project Homepage: https://github.com/PhoneLLM/Awesome-LLM-Powered-Phone-GUI-Agents
Memento: Augmenting Personalized Memory via Practical Multimodal Wearable Sensing in Visual Search and Wayfinding Navigation
Working memory involves the temporary retention of information over short periods. It is a critical cognitive function that enables humans to perform various online processing tasks, such as dialing a phone number, recalling misplaced items' locations, or navigating through a store. However, inherent limitations in an individual's capacity to retain information often result in forgetting important details during such tasks. Although previous research has successfully utilized wearable and assistive technologies to enhance long-term memory functions (e.g., episodic memory), their application to supporting short-term recall in daily activities remains underexplored. To address this gap, we present Memento, a framework that uses multimodal wearable sensor data to detect significant changes in cognitive state and provide intelligent in situ cues to enhance recall. Through two user studies involving 15 and 25 participants in visual search navigation tasks, we demonstrate that participants receiving visual cues from Memento achieved significantly better route recall, improving approximately 20-23% compared to free recall. Furthermore, Memento reduced cognitive load and review time by 46% while also substantially reducing computation time (3.86 seconds vs. 15.35 seconds), offering an average of 75% effectiveness compared to computer vision-based cue selection approaches.
comment: This work has been accepted to the Proceedings of the ACM UMAP 2025
Crafting a Personal Journaling Practice: Negotiating Ecosystems of Materials, Personal Context, and Community in Analog Journaling
Analog journaling has grown in popularity, with journaling on paper encompassing a range of motivations, styles, and practices including planning, habit-tracking, and reflecting. Journalers develop strong personal preferences around the tools they use, the ideas they capture, and the layout in which they represent their ideas and memories. Understanding how analog journaling practices are individually shaped and crafted over time is critical to supporting the varied benefits associated with journaling, including improved mental health and positive support for identity development. To understand this development, we qualitatively analyzed publicly-shared journaling content from YouTube and Instagram and interviewed 11 journalers. We report on our identification of the journaling ecosystem in which journaling practices are shaped by materials, personal context, and communities, sharing how this ecosystem plays a role in the practices and identities of journalers as they customize their journaling routine to best suit their personal goals. Using these insights, we discuss design opportunities for how future tools can better align with and reflect the rich affordances and practices of journaling on paper.
comment: Creativity and Cognition 2025
Hector UI: A Flexible Human-Robot User Interface for (Semi-)Autonomous Rescue and Inspection Robots
The remote human operator's user interface (UI) is an important link to make the robot an efficient extension of the operator's perception and action. In rescue applications, several studies have investigated the design of operator interfaces based on observations during major robotics competitions or field deployments. Based on this research, guidelines for good interface design were empirically identified. The investigations on the UIs of teams participating in competitions are often based on external observations during UI application, which may miss some relevant requirements for UI flexibility. In this work, we present an open-source and flexibly configurable user interface based on established guidelines and its exemplary use for wheeled, tracked, and walking robots. We explain the design decisions and cover the insights we have gained during its highly successful applications in multiple robotics competitions and evaluations. The presented UI can also be adapted for other robots with little effort and is available as open source.
Interactive Discovery and Exploration of Visual Bias in Generative Text-to-Image Models
Bias in generative Text-to-Image (T2I) models is a known issue, yet systematically analyzing such models' outputs to uncover it remains challenging. We introduce the Visual Bias Explorer (ViBEx) to interactively explore the output space of T2I models to support the discovery of visual bias. ViBEx introduces a novel flexible prompting tree interface in combination with zero-shot bias probing using CLIP for quick and approximate bias exploration. It additionally supports in-depth confirmatory bias analysis through visual inspection of forward, intersectional, and inverse bias queries. ViBEx is model-agnostic and publicly available. In four case study interviews, experts in AI and ethics were able to discover visual biases that have so far not been described in literature.
Scene2Hap: Combining LLMs and Physical Modeling for Automatically Generating Vibrotactile Signals for Full VR Scenes
Haptic feedback contributes to immersive virtual reality (VR) experiences. Designing such feedback at scale, for all objects within a VR scene and their respective arrangements, remains a time-consuming task. We present Scene2Hap, an LLM-centered system that automatically designs object-level vibrotactile feedback for entire VR scenes based on the objects' semantic attributes and physical context. Scene2Hap employs a multimodal large language model to estimate the semantics and physical context of each object, including its material properties and vibration behavior, from the multimodal information present in the VR scene. This semantic and physical context is then used to create plausible vibrotactile signals by generating or retrieving audio signals and converting them to vibrotactile signals. For the more realistic spatial rendering of haptics in VR, Scene2Hap estimates the propagation and attenuation of vibration signals from their source across objects in the scene, considering the estimated material properties and physical context, such as the distance and contact between virtual objects. Results from two user studies confirm that Scene2Hap successfully estimates the semantics and physical context of VR scenes, and the physical modeling of vibration propagation improves usability, perceived materiality, and spatial awareness.
Detecting Effects of AI-Mediated Communication on Language Complexity and Sentiment
Given the subtle human-like effects of large language models on linguistic patterns, this study examines shifts in language over time to detect the impact of AI-mediated communication (AI- MC) on social media. We compare a replicated dataset of 970,919 tweets from 2020 (pre-ChatGPT) with 20,000 tweets from the same period in 2024, all of which mention Donald Trump during election periods. Using a combination of Flesch-Kincaid readability and polarity scores, we analyze changes in text complexity and sentiment. Our findings reveal a significant increase in mean sentiment polarity (0.12 vs. 0.04) and a shift from predominantly neutral content (54.8% in 2020 to 39.8% in 2024) to more positive expressions (28.6% to 45.9%). These findings suggest not only an increasing presence of AI in social media communication but also its impact on language and emotional expression patterns.
comment: 5 pages, 3 figures, Companion Proceedings of the ACM Web Conference 2025
A Real-Time Gesture-Based Control Framework
We introduce a real-time, human-in-the-loop gesture control framework that can dynamically adapt audio and music based on human movement by analyzing live video input. By creating a responsive connection between visual and auditory stimuli, this system enables dancers and performers to not only respond to music but also influence it through their movements. Designed for live performances, interactive installations, and personal use, it offers an immersive experience where users can shape the music in real time. The framework integrates computer vision and machine learning techniques to track and interpret motion, allowing users to manipulate audio elements such as tempo, pitch, effects, and playback sequence. With ongoing training, it achieves user-independent functionality, requiring as few as 50 to 80 samples to label simple gestures. This framework combines gesture training, cue mapping, and audio manipulation to create a dynamic, interactive experience. Gestures are interpreted as input signals, mapped to sound control commands, and used to naturally adjust music elements, showcasing the seamless interplay between human interaction and machine response.
comment: 8 pages, 4 figures, 2025 International Computer Music Conference
MER 2025: When Affective Computing Meets Large Language Models
MER2025 is the third year of our MER series of challenges, aiming to bring together researchers in the affective computing community to explore emerging trends and future directions in the field. Previously, MER2023 focused on multi-label learning, noise robustness, and semi-supervised learning, while MER2024 introduced a new track dedicated to open-vocabulary emotion recognition. This year, MER2025 centers on the theme "When Affective Computing Meets Large Language Models (LLMs)".We aim to shift the paradigm from traditional categorical frameworks reliant on predefined emotion taxonomies to LLM-driven generative methods, offering innovative solutions for more accurate and reliable emotion understanding. The challenge features four tracks: MER-SEMI focuses on fixed categorical emotion recognition enhanced by semi-supervised learning; MER-FG explores fine-grained emotions, expanding recognition from basic to nuanced emotional states; MER-DES incorporates multimodal cues (beyond emotion words) into predictions to enhance model interpretability; MER-PR investigates whether emotion prediction results can improve personality recognition performance. For the first three tracks, baseline code is available at MERTools, and datasets can be accessed via Hugging Face. For the last track, the dataset and baseline code are available on GitHub.
Online Safety for All: Sociocultural Insights from a Systematic Review of Youth Online Safety in the Global South
Youth online safety research in HCI has historically centered on perspectives from the Global North, often overlooking the unique particularities and cultural contexts of regions in the Global South. This paper presents a systematic review of 66 youth online safety studies published between 2014 and 2024, specifically focusing on regions in the Global South. Our findings reveal a concentrated research focus in Asian countries and predominance of quantitative methods. We also found limited research on marginalized youth populations and a primary focus on risks related to cyberbullying. Our analysis underscores the critical role of cultural factors in shaping online safety, highlighting the need for educational approaches that integrate social dynamics and awareness. We propose methodological recommendations and a future research agenda that encourages the adoption of situated, culturally sensitive methodologies and youth-centered approaches to researching youth online safety regions in the Global South. This paper advocates for greater inclusivity in youth online safety research, emphasizing the importance of addressing varied sociocultural contexts to better understand and meet the online safety needs of youth in the Global South.
comment: 30 pages, 1 figure
mrCAD: Multimodal Refinement of Computer-aided Designs
A key feature of human collaboration is the ability to iteratively refine the concepts we have communicated. In contrast, while generative AI excels at the \textit{generation} of content, it often struggles to make specific language-guided \textit{modifications} of its prior outputs. To bridge the gap between how humans and machines perform edits, we present mrCAD, a dataset of multimodal instructions in a communication game. In each game, players created computer aided designs (CADs) and refined them over several rounds to match specific target designs. Only one player, the Designer, could see the target, and they must instruct the other player, the Maker, using text, drawing, or a combination of modalities. mrCAD consists of 6,082 communication games, 15,163 instruction-execution rounds, played between 1,092 pairs of human players. We analyze the dataset and find that generation and refinement instructions differ in their composition of drawing and text. Using the mrCAD task as a benchmark, we find that state-of-the-art VLMs are better at following generation instructions than refinement instructions. These results lay a foundation for analyzing and modeling a multimodal language of refinement that is not represented in previous datasets.
comment: the first two authors contributed equally
Exploring AI-powered Digital Innovations from A Transnational Governance Perspective: Implications for Market Acceptance and Digital Accountability Accountability
This study explores the application of the Technology Acceptance Model (TAM) to AI-powered digital innovations within a transnational governance framework. By integrating Latourian actor-network theory (ANT), this study examines how institutional motivations, regulatory compliance, and ethical and cultural acceptance drive organisations to develop and adopt AI innovations, enhancing their market acceptance and transnational accountability. We extend the TAM framework by incorporating regulatory, ethical, and socio-technical considerations as key social pressures shaping AI adoption. Recognizing that AI is embedded within complex actor-networks, we argue that accountability is co-constructed among organisations, regulators, and societal actors rather than being confined to individual developers or adopters. To address these challenges, we propose two key solutions: (1) internal resource reconfiguration, where organisations restructure their governance and compliance mechanisms to align with global standards; and (2) reshaping organisational boundaries through actor-network management, fostering engagement with external stakeholders, regulatory bodies, and transnational governance institutions. These approaches allow organisations to enhance AI accountability, foster ethical and regulatory alignment, and improve market acceptance on a global scale.
Prompting LLMs for Code Editing: Struggles and Remedies
Large Language Models (LLMs) are rapidly transforming software engineering, with coding assistants embedded in an IDE becoming increasingly prevalent. While research has focused on improving the tools and understanding developer perceptions, a critical gap exists in understanding how developers actually use these tools in their daily workflows, and, crucially, where they struggle. This paper addresses part of this gap through a multi-phased investigation of developer interactions with an LLM-powered code editing and transformation feature, Transform Code, in an IDE widely used at Google. First, we analyze telemetry logs of the feature usage, revealing that frequent re-prompting can be an indicator of developer struggles with using Transform Code. Second, we conduct a qualitative analysis of unsatisfactory requests, identifying five key categories of information often missing from developer prompts. Finally, based on these findings, we propose and evaluate a tool, AutoPrompter, for automatically improving prompts by inferring missing information from the surrounding code context, leading to a 27% improvement in edit correctness on our test set.
TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering
Retrieval-augmented generation (RAG) systems face significant challenges in multi-hop question answering (MHQA), where complex queries require synthesizing information across multiple document chunks. Existing approaches typically rely on iterative LLM-based query rewriting and routing, resulting in high computational costs due to repeated LLM invocations and multi-stage processes. To address these limitations, we propose TreeHop, an embedding-level framework without the need for LLMs in query refinement. TreeHop dynamically updates query embeddings by fusing semantic information from prior queries and retrieved documents, enabling iterative retrieval through embedding-space operations alone. This method replaces the traditional "Retrieve-Rewrite-Vectorize-Retrieve" cycle with a streamlined "Retrieve-Embed-Retrieve" loop, significantly reducing computational overhead. Moreover, a rule-based stop criterion is introduced to further prune redundant retrievals, balancing efficiency and recall rate. Experimental results show that TreeHop rivals advanced RAG methods across three open-domain MHQA datasets, achieving comparable performance with only 5\%-0.4\% of the model parameter size and reducing the query latency by approximately 99\% compared to concurrent approaches. This makes TreeHop a faster and more cost-effective solution for deployment in a range of knowledge-intensive applications. For reproducibility purposes, codes and data are available here: https://github.com/allen-li1231/TreeHop.
comment: 9 pages
What Should We Engineer in Prompts? Training Humans in Requirement-Driven LLM Use
Prompting LLMs for complex tasks (e.g., building a trip advisor chatbot) needs humans to clearly articulate customized requirements (e.g., "start the response with a tl;dr"). However, existing prompt engineering instructions often lack focused training on requirement articulation and instead tend to emphasize increasingly automatable strategies (e.g., tricks like adding role-plays and "think step-by-step"). To address the gap, we introduce Requirement-Oriented Prompt Engineering (ROPE), a paradigm that focuses human attention on generating clear, complete requirements during prompting. We implement ROPE through an assessment and training suite that provides deliberate practice with LLM-generated feedback. In a randomized controlled experiment with 30 novices, ROPE significantly outperforms conventional prompt engineering training (20% vs. 1% gains), a gap that automatic prompt optimization cannot close. Furthermore, we demonstrate a direct correlation between the quality of input requirements and LLM outputs. Our work paves the way to empower more end-users to build complex LLM applications.
comment: 15 pages; TOCHI 2025
Generative AI has lowered the barriers to computational social sciences
Generative artificial intelligence (AI) has revolutionized the field of computational social science (CSS), unleashing new possibilities for collecting and analyzing multimodal data, especially for scholars who may not have extensive programming expertise. This breakthrough carries profound implications for social scientists. First, generative AI can significantly enhance the productivity of social scientists by automating the generation, annotation, and debugging of code. Second, it empowers researchers to delve into sophisticated data analysis through the innovative use of prompt engineering. Last, the educational sphere of CSS stands to benefit immensely from these tools, given their exceptional ability to annotate and elucidate complex codes for learners, thereby simplifying the learning process and making the technology more accessible.
Promoting Real-Time Reflection in Synchronous Communication with Generative AI
Real-time reflection plays a vital role in synchronous communication. It enables users to adjust their communication strategies dynamically, thereby improving the effectiveness of their communication. Generative AI holds significant potential to enhance real-time reflection due to its ability to comprehensively understand the current context and generate personalized and nuanced content. However, it is challenging to design the way of interaction and information presentation to support the real-time workflow rather than disrupt it. In this position paper, we present a review of existing research on systems designed for reflection in different synchronous communication scenarios. Based on that, we discuss design implications on how to design human-AI interaction to support reflection in real time.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
AIJIM: A Scalable Model for Real-Time AI in Environmental Journalism
This paper introduces AIJIM, the Artificial Intelligence Journalism Integration Model -- a novel framework for integrating real-time AI into environmental journalism. AIJIM combines Vision Transformer-based hazard detection, crowdsourced validation with 252 validators, and automated reporting within a scalable, modular architecture. A dual-layer explainability approach ensures ethical transparency through fast CAM-based visual overlays and optional LIME-based box-level interpretations. Validated in a 2024 pilot on the island of Mallorca using the NamicGreen platform, AIJIM achieved 85.4\% detection accuracy and 89.7\% agreement with expert annotations, while reducing reporting latency by 40\%. Unlike conventional approaches such as Data-Driven Journalism or AI Fact-Checking, AIJIM provides a transferable model for participatory, community-driven environmental reporting, advancing journalism, artificial intelligence, and sustainability in alignment with the UN Sustainable Development Goals and the EU AI Act.
comment: 22 pages, 10 figures, 5 tables. Keywords: Artificial Intelligence, Environmental Journalism, Real-Time Reporting, Vision Transformers, Image Recognition, Crowdsourced Validation, GPT-4, Automated News Generation, GIS Integration, Data Privacy Compliance, Explainable AI (XAI), AI Ethics, Sustainable Development
HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit
Generalizable humanoid loco-manipulation poses significant challenges, requiring coordinated whole-body control and precise, contact-rich object manipulation. To address this, this paper introduces HOMIE, a semi-autonomous teleoperation system that combines a reinforcement learning policy for body control mapped to a pedal, an isomorphic exoskeleton arm for arm control, and motion-sensing gloves for hand control, forming a unified cockpit to freely operate humanoids and establish a data flywheel. The policy incorporates novel designs, including an upper-body pose curriculum, a height-tracking reward, and symmetry utilization. These features enable the system to perform walking and squatting to specific heights while seamlessly adapting to arbitrary upper-body poses. The exoskeleton, by eliminating the reliance on inverse dynamics, delivers faster and more precise arm control. The gloves utilize Hall sensors instead of servos, allowing even compact devices to achieve 15 or more degrees of freedom and freely adapt to any model of dexterous hands. Compared to previous teleoperation systems, HOMIE stands out for its exceptional efficiency, completing tasks in half the time; its expanded working range, allowing users to freely reach high and low areas as well as interact with any objects; and its affordability, with a price of just $500. The system is fully open-source, demos and code can be found in our https://homietele.github.io/.
Cutting Through the Clutter: The Potential of LLMs for Efficient Filtration in Systematic Literature Reviews
Systematic literature reviews (SLRs) are essential but labor-intensive due to high publication volumes and inefficient keyword-based filtering. To streamline this process, we evaluate Large Language Models (LLMs) for enhancing efficiency and accuracy in corpus filtration while minimizing manual effort. Our open-source tool LLMSurver presents a visual interface to utilize LLMs for literature filtration, evaluate the results, and refine queries in an interactive way. We assess the real-world performance of our approach in filtering over 8.3k articles during a recent survey construction, comparing results with human efforts. The findings show that recent LLM models can reduce filtering time from weeks to minutes. A consensus scheme ensures recall rates >98.8%, surpassing typical human error thresholds and improving selection accuracy. This work advances literature review methodologies and highlights the potential of responsible human-AI collaboration in academic research.
comment: 6 pages, 5 figures, 1 table
Desirable Unfamiliarity: Insights from Eye Movements on Engagement and Readability of Dictation Interfaces
Dictation interfaces support efficient text input, but the transcribed text can be hard to read. To understand how users read and review dictated text, we conducted a controlled eye-tracking experiment with 20 participants to compare five dictation interfaces: PLAIN (real-time transcription), AOC (periodic corrections), RAKE (keyword highlights), GP-TSM (grammar-preserving highlights), and SUMMARY (LLM-generated abstraction summary). The study analyzed participants' gaze patterns during their speech composition and reviewing processes. The findings show that during composition, participants spent only 7--11% of their time actively reading, and they favored real-time feedback and avoided distracting interface changes. During reviewing, although SUMMARY introduced unfamiliar words (requiring longer and more frequent fixation), they were easier to read (requiring fewer regressions). Participants preferred SUMMARY for the polished text that preserved fidelity to original meanings. RAKE guided the reading of self-produced text better than GP-TSM. RAKE guides the reading of self-produced text better than GP-TSM. These surprising findings suggest that dictation interfaces could consider showing summaries or key information to support recall instead of raw transcripts.
Learning from Elders: Making an LLM-powered Chatbot for Retirement Communities more Accessible through User-centered Design
Low technology and eHealth literacy among older adults in retirement communities hinder engagement with digital tools. To address this, we designed an LLM-powered chatbot prototype using a human-centered approach for a local retirement community. Through interviews and persona development, we prioritized accessibility and dual functionality: simplifying internal information retrieval and improving technology and eHealth literacy. A pilot trial with residents demonstrated high satisfaction and ease of use, but also identified areas for further improvement. Based on the feedback, we refined the chatbot using GPT-3.5 Turbo and Streamlit. The chatbot employs tailored prompt engineering to deliver concise responses. Accessible features like adjustable font size, interface theme and personalized follow-up responses were implemented. Future steps include enabling voice-to-text function and longitudinal intervention studies. Together, our results highlight the potential of LLM-driven chatbots to empower older adults through accessible, personalized interactions, bridging literacy gaps in retirement communities.
comment: Accepted as Research talk for Considering Cultural and Linguistic Diversity in AI Applications workshop at CALD-AI@ASIS&T 2025
Grid Labeling: Crowdsourcing Task-Specific Importance from Visualizations
Knowing where people look in visualizations is key to effective design. Yet, existing research primarily focuses on free-viewing-based saliency models - although visual attention is inherently task-dependent. Collecting task-relevant importance data remains a resource-intensive challenge. To address this, we introduce Grid Labeling - a novel annotation method for collecting task-specific importance data to enhance saliency prediction models. Grid Labeling dynamically segments visualizations into Adaptive Grids, enabling efficient, low-effort annotation while adapting to visualization structure. We conducted a human subject study comparing Grid Labeling with existing annotation methods, ImportAnnots, and BubbleView across multiple metrics. Results show that Grid Labeling produces the least noisy data and the highest inter-participant agreement with fewer participants while requiring less physical (e.g., clicks/mouse movements) and cognitive effort. An interactive demo is available at https://jangsus1.github.io/Grid-Labeling.
comment: 6 pages, 4 figures, Accepted to EuroVis 2025 (Short Paper Track)
Media Bias Detector: Designing and Implementing a Tool for Real-Time Selection and Framing Bias Analysis in News Coverage
Mainstream media, through their decisions on what to cover and how to frame the stories they cover, can mislead readers without using outright falsehoods. Therefore, it is crucial to have tools that expose these editorial choices underlying media bias. In this paper, we introduce the Media Bias Detector, a tool for researchers, journalists, and news consumers. By integrating large language models, we provide near real-time granular insights into the topics, tone, political lean, and facts of news articles aggregated to the publisher level. We assessed the tool's impact by interviewing 13 experts from journalism, communications, and political science, revealing key insights into usability and functionality, practical applications, and AI's role in powering media bias tools. We explored this in more depth with a follow-up survey of 150 news consumers. This work highlights opportunities for AI-driven tools that empower users to critically engage with media content, particularly in politically charged environments.
Augmenting Captions with Emotional Cues: An AR Interface for Real-Time Accessible Communication
This paper introduces an augmented reality (AR) captioning framework designed to support Deaf and Hard of Hearing (DHH) learners in STEM classrooms by integrating non-verbal emotional cues into live transcriptions. Unlike conventional captioning systems that offer only plain text, our system fuses real-time speech recognition with affective and visual signal interpretation, including facial movements, gestures, and vocal tone, to produce emotionally enriched captions. These enhanced captions are rendered in an AR interface developed with Unity and provide contextual annotations such as speaker tone markers (e.g., "concerned") and gesture indicators (e.g., "nods"). The system leverages live camera and microphone input, processed through AI models to detect multimodal cues. Findings from preliminary evaluations suggest that this AR-based captioning approach significantly enhances comprehension and reduces cognitive effort compared to standard captions. Our work emphasizes the potential of immersive environments for inclusive, emotion-aware educational accessibility.
comment: Minor correction to references for better citation matching
A Case Study of Scalable Content Annotation Using Multi-LLM Consensus and Human Review
Content annotation at scale remains challenging, requiring substantial human expertise and effort. This paper presents a case study in code documentation analysis, where we explore the balance between automation efficiency and annotation accuracy. We present MCHR (Multi-LLM Consensus with Human Review), a novel semi-automated framework that enhances annotation scalability through the systematic integration of multiple LLMs and targeted human review. Our framework introduces a structured consensus-building mechanism among LLMs and an adaptive review protocol that strategically engages human expertise. Through our case study, we demonstrate that MCHR reduces annotation time by 32% to 100% compared to manual annotation while maintaining high accuracy (85.5% to 98%) across different difficulty levels, from basic binary classification to challenging open-set scenarios.
comment: 7 pages, GenAICHI: CHI 2025 Workshop on Generative AI and HCI
Repurposing the scientific literature with vision-language models
Leading vision-language models (VLMs) are trained on general Internet content, overlooking scientific journals' rich, domain-specific knowledge. Training on specialty-specific literature could yield high-performance, task-specific tools, enabling generative AI to match generalist models in specialty publishing, educational, and clinical tasks. We created NeuroPubs, a multimodal dataset of 23,000 Neurosurgery Publications articles (134M words, 78K image-caption pairs). Using NeuroPubs, VLMs generated publication-ready graphical abstracts (70% of 100 abstracts) and board-style questions indistinguishable from human-written ones (54% of 89,587 questions). We used these questions to train CNS-Obsidian, a 34B-parameter VLM. In a blinded, randomized controlled trial, our model demonstrated non-inferiority to then state-of-the-art GPT-4o in neurosurgical differential diagnosis (clinical utility, 40.62% upvotes vs. 57.89%, p=0.1150; accuracy, 59.38% vs. 65.79%, p=0.3797). Our pilot study demonstrates how training generative AI models on specialty-specific journal content - without large-scale internet data - results in high-performance academic and clinical tools, enabling domain-tailored AI across diverse fields.
VIGMA: An Open-Access Framework for Visual Gait and Motion Analytics
Gait disorders are commonly observed in older adults, who frequently experience various issues related to walking. Additionally, researchers and clinicians extensively investigate mobility related to gait in typically and atypically developing children, athletes, and individuals with orthopedic and neurological disorders. Effective gait analysis enables the understanding of the causal mechanisms of mobility and balance control of patients, the development of tailored treatment plans to improve mobility, the reduction of fall risk, and the tracking of rehabilitation progress. However, analyzing gait data is a complex task due to the multivariate nature of the data, the large volume of information to be interpreted, and the technical skills required. Existing tools for gait analysis are often limited to specific patient groups (e.g., cerebral palsy), only handle a specific subset of tasks in the entire workflow, and are not openly accessible. To address these shortcomings, we conducted a requirements assessment with gait practitioners (e.g., researchers, clinicians) via surveys and identified key components of the workflow, including (1) data processing and (2) data analysis and visualization. Based on the findings, we designed VIGMA, an open-access visual analytics framework integrated with computational notebooks and a Python library, to meet the identified requirements. Notably, the framework supports analytical capabilities for assessing disease progression and for comparing multiple patient groups. We validated the framework through usage scenarios with experts specializing in gait and mobility rehabilitation. VIGMA is available at https://github.com/komar41/VIGMA.
comment: Accepted for publication in the IEEE Transactions on Visualization and Computer Graphics. VIGMA is available at https://github.com/komar41/VIGMA
Perfectly to a Tee: Understanding User Perceptions of Personalized LLM-Enhanced Narrative Interventions
Stories about overcoming personal struggles can effectively illustrate the application of psychological theories in real life, yet they may fail to resonate with individuals' experiences. In this work, we employ large language models (LLMs) to create tailored narratives that acknowledge and address unique challenging thoughts and situations faced by individuals. Our study, involving 346 young adults across two settings, demonstrates that personalized LLM-enhanced stories were perceived to be better than human-written ones in conveying key takeaways, promoting reflection, and reducing belief in negative thoughts. These stories were not only seen as more relatable but also similarly authentic to human-written ones, highlighting the potential of LLMs in helping young adults manage their struggles. The findings of this work provide crucial design considerations for future narrative-based digital mental health interventions, such as the need to maintain relatability without veering into implausibility and refining the wording and tone of AI-enhanced content.
Time2Lang: Bridging Time-Series Foundation Models and Large Language Models for Health Sensing Beyond Prompting
Large language models (LLMs) show promise for health applications when combined with behavioral sensing data. Traditional approaches convert sensor data into text prompts, but this process is prone to errors, computationally expensive, and requires domain expertise. These challenges are particularly acute when processing extended time series data. While time series foundation models (TFMs) have recently emerged as powerful tools for learning representations from temporal data, bridging TFMs and LLMs remains challenging. Here, we present Time2Lang, a framework that directly maps TFM outputs to LLM representations without intermediate text conversion. Our approach first trains on synthetic data using periodicity prediction as a pretext task, followed by evaluation on mental health classification tasks. We validate Time2Lang on two longitudinal wearable and mobile sensing datasets: daily depression prediction using step count data (17,251 days from 256 participants) and flourishing classification based on conversation duration (46 participants over 10 weeks). Time2Lang maintains near constant inference times regardless of input length, unlike traditional prompting methods. The generated embeddings preserve essential time-series characteristics such as auto-correlation. Our results demonstrate that TFMs and LLMs can be effectively integrated while minimizing information loss and enabling performance transfer across these distinct modeling paradigms. To our knowledge, we are the first to integrate a TFM and an LLM for health, thus establishing a foundation for future research combining general-purpose large models for complex healthcare tasks.
comment: Accepted to CHIL 2025. Code and models: https://github.com/arvind1609/time2lang
WearableMil: An End-to-End Framework for Military Activity Recognition and Performance Monitoring
Musculoskeletal injuries during military training significantly impact readiness, making prevention through activity monitoring crucial. While Human Activity Recognition (HAR) using wearable devices offers promising solutions, it faces challenges in processing continuous data streams and recognizing diverse activities without predefined sessions. This paper introduces an end-to-end framework for preprocessing, analyzing, and recognizing activities from wearable data in military training contexts. Using data from 135 soldiers wearing \textit{Garmin--55} smartwatches over six months with over 15 million minutes. We develop a hierarchical deep learning approach that achieves 93.8% accuracy in temporal splits and 83.8% in cross-user evaluation. Our framework addresses missing data through physiologically-informed methods, reducing unknown sleep states from 40.38% to 3.66%. We demonstrate that while longer time windows (45-60 minutes) improve basic state classification, they present trade-offs in detecting fine-grained activities. Additionally, we introduce an intuitive visualization system that enables real-time comparison of individual performance against group metrics across multiple physiological indicators. This approach to activity recognition and performance monitoring provides military trainers with actionable insights for optimizing training programs and preventing injuries.
Human-Computer Interaction
Beyond Physical Reach: Comparing Head- and Cane-Mounted Cameras for Last-Mile Navigation by Blind Users
Blind individuals face persistent challenges in last-mile navigation, including locating entrances, identifying obstacles, and navigating complex or cluttered spaces. Although wearable cameras are increasingly used in assistive systems, there has been no systematic, vantage-focused comparison to guide their design. This paper addresses that gap through a two-part investigation. First, we surveyed ten experienced blind cane users, uncovering navigation strategies, pain points, and technology preferences. Participants stressed the importance of multi-sensory integration, destination-focused travel, and assistive tools that complement (rather than replace) the cane's tactile utility. Second, we conducted controlled data collection with a blind participant navigating five real-world environments using synchronized head- and cane-mounted cameras, isolating vantage placement as the primary variable. To assess how each vantage supports spatial perception, we evaluated SLAM performance (for localization and mapping) and NeRF-based 3D reconstruction (for downstream scene understanding). Head-mounted sensors delivered superior localization accuracy, while cane-mounted views offered broader ground-level coverage and richer environmental reconstructions. A combined (head+cane) configuration consistently outperformed both. These results highlight the complementary strengths of different sensor placements and offer actionable guidance for developing hybrid navigation aids that are perceptive, robust, and user-aligned.
SnuggleSense: Empowering Online Harm Survivors Through a Structured Sensemaking Process
Online interpersonal harm, such as cyberbullying and sexual harassment, remains a pervasive issue on social media platforms. Traditional approaches, primarily content moderation, often overlook survivors' needs and agency. We introduce SnuggleSense, a system that empowers survivors through structured sensemaking. Inspired by restorative justice practices, SnuggleSense guides survivors through reflective questions, offers personalized recommendations from similar survivors, and visualizes plans using interactive sticky notes. A controlled experiment demonstrates that SnuggleSense significantly enhances sensemaking compared to an unstructured process of making sense of the harm. We argue that SnuggleSense fosters community awareness, cultivates a supportive survivor network, and promotes a restorative justice-oriented approach toward restoration and healing. We also discuss design insights, such as tailoring informational support and providing guidance while preserving survivors' agency.
Making Physical Objects with Generative AI and Robotic Assembly: Considering Fabrication Constraints, Sustainability, Time, Functionality, and Accessibility
3D generative AI enables rapid and accessible creation of 3D models from text or image inputs. However, translating these outputs into physical objects remains a challenge due to the constraints in the physical world. Recent studies have focused on improving the capabilities of 3D generative AI to produce fabricable outputs, with 3D printing as the main fabrication method. However, this workshop paper calls for a broader perspective by considering how fabrication methods align with the capabilities of 3D generative AI. As a case study, we present a novel system using discrete robotic assembly and 3D generative AI to make physical objects. Through this work, we identified five key aspects to consider in a physical making process based on the capabilities of 3D generative AI. 1) Fabrication Constraints: Current text-to-3D models can generate a wide range of 3D designs, requiring fabrication methods that can adapt to the variability of generative AI outputs. 2) Time: While generative AI can generate 3D models in seconds, fabricating physical objects can take hours or even days. Faster production could enable a closer iterative design loop between humans and AI in the making process. 3) Sustainability: Although text-to-3D models can generate thousands of models in the digital world, extending this capability to the real world would be resource-intensive, unsustainable and irresponsible. 4) Functionality: Unlike digital outputs from 3D generative AI models, the fabrication method plays a crucial role in the usability of physical objects. 5) Accessibility: While generative AI simplifies 3D model creation, the need for fabrication equipment can limit participation, making AI-assisted creation less inclusive. These five key aspects provide a framework for assessing how well a physical making process aligns with the capabilities of 3D generative AI and values in the world.
Beyond Levels of Driving Automation: A Triadic Framework of Human-AI Collaboration in On-Road Mobility
The goal of the current study is to introduce a triadic human-AI collaboration framework for the automated vehicle domain. Previous classifications (e.g., SAE Levels of Automation) focus on defining automation levels based on who controls the vehicle. However, it remains unclear how human users and AI should collaborate in real-time, especially in dynamic driving contexts, where roles can shift frequently. To fill the gap, this study proposes a triadic human-AI collaboration framework with three AI roles (i.e., Advisor, Co-Pilot, and Guardian) that dynamically adapt to human needs. Overall, the study lays a foundation for developing adaptive, role-based human-AI collaboration strategies in automated vehicles.
Hallucinations and Key Information Extraction in Medical Texts: A Comprehensive Assessment of Open-Source Large Language Models
Clinical summarization is crucial in healthcare as it distills complex medical data into digestible information, enhancing patient understanding and care management. Large language models (LLMs) have shown significant potential in automating and improving the accuracy of such summarizations due to their advanced natural language understanding capabilities. These models are particularly applicable in the context of summarizing medical/clinical texts, where precise and concise information transfer is essential. In this paper, we investigate the effectiveness of open-source LLMs in extracting key events from discharge reports, such as reasons for hospital admission, significant in-hospital events, and critical follow-up actions. In addition, we also assess the prevalence of various types of hallucinations in the summaries produced by these models. Detecting hallucinations is vital as it directly influences the reliability of the information, potentially affecting patient care and treatment outcomes. We conduct comprehensive numerical simulations to rigorously evaluate the performance of these models, further probing the accuracy and fidelity of the extracted content in clinical summarization.
PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
Evaluating Deep Human-in-the-Loop Optimization for Retinal Implants Using Sighted Participants
Human-in-the-loop optimization (HILO) is a promising approach for personalizing visual prostheses by iteratively refining stimulus parameters based on user feedback. Previous work demonstrated HILO's efficacy in simulation, but its performance with human participants remains untested. Here we evaluate HILO using sighted participants viewing simulated prosthetic vision to assess its ability to optimize stimulation strategies under realistic conditions. Participants selected between phosphenes generated by competing encoders to iteratively refine a deep stimulus encoder (DSE). We tested HILO in three conditions: standard optimization, threshold misspecifications, and out-of-distribution parameter sampling. Participants consistently preferred HILO-generated stimuli over both a naive encoder and the DSE alone, with log odds favoring HILO across all conditions. We also observed key differences between human and simulated decision-making, highlighting the importance of validating optimization strategies with human participants. These findings support HILO as a viable approach for adapting visual prostheses to individuals. Clinical relevance: Validating HILO with sighted participants viewing simulated prosthetic vision is an important step toward personalized calibration of future visual prostheses.
CoinFT: A Coin-Sized, Capacitive 6-Axis Force Torque Sensor for Robotic Applications
We introduce CoinFT, a capacitive 6-axis force/torque (F/T) sensor that is compact, light, low-cost, and robust with an average mean-squared error of 0.11N for force and 0.84mNm for moment when the input ranges from 0~10N and 0~4N in normal and shear directions, respectively. CoinFT is a stack of two rigid PCBs with comb-shaped electrodes connected by an array of silicone rubber pillars. The microcontroller interrogates the electrodes in different subsets in order to enhance sensitivity for measuring 6-axis F/T. The combination of desirable features of CoinFT enables various contact-rich robot interactions at a scale, across different embodiment domains including drones, robot end-effectors, and wearable haptic devices. We demonstrate the utility of CoinFT on drones by performing an attitude-based force control to perform tasks that require careful contact force modulation. The design, fabrication, and firmware of CoinFT are open-sourced at https://hojung-choi.github.io/coinft.github.io/.
Towards interactive evaluations for interaction harms in human-AI systems
Current AI evaluation paradigms that rely on static, model-only tests fail to capture harms that emerge through sustained human-AI interaction. As interactive AI systems, such as AI companions, proliferate in daily life, this mismatch between evaluation methods and real-world use becomes increasingly consequential. We argue for a paradigm shift toward evaluation centered on \textit{interactional ethics}, which addresses risks like inappropriate human-AI relationships, social manipulation, and cognitive overreliance that develop through repeated interaction rather than single outputs. Drawing on human-computer interaction, natural language processing, and the social sciences, we propose principles for evaluating generative models through interaction scenarios and human impact metrics. We conclude by examining implementation challenges and open research questions for researchers, practitioners, and regulators integrating these approaches into AI governance frameworks.
Perception-Guided EEG Analysis: A Deep Learning Approach Inspired by Level of Detail (LOD) Theory
Objective: This study explores a novel deep learning approach for EEG analysis and perceptual state guidance, inspired by Level of Detail (LOD) theory. The goal is to improve perceptual state identification accuracy and advance personalized psychological therapy. Methods: Portable EEG devices and music rhythm signals were used for data collection. LOD theory was applied to dynamically adjust EEG signal processing, extracting core perceptual features. A Unity-based software system integrated EEG data with audio materials. The deep learning model combined a CNN for feature extraction and classification, and a DQN for reinforcement learning to optimize rhythm adjustments. Results: The CNN achieved 94.05% accuracy in perceptual state classification. The DQN guided subjects to target states with a 92.45% success rate, averaging 13.2 rhythm cycles. However, only 50% of users reported psychological alignment with the target state, indicating room for improvement. Discussion: The results validate the potential of LOD-based EEG biofeedback. Limitations include dataset source, label subjectivity, and reward function optimization. Future work will expand to diverse subjects, incorporate varied musical elements, and refine reward functions for better generalization and personalization.
Computer Vision and Pattern Recognition
HumMorph: Generalized Dynamic Human Neural Fields from Few Views
We introduce HumMorph, a novel generalized approach to free-viewpoint rendering of dynamic human bodies with explicit pose control. HumMorph renders a human actor in any specified pose given a few observed views (starting from just one) in arbitrary poses. Our method enables fast inference as it relies only on feed-forward passes through the model. We first construct a coarse representation of the actor in the canonical T-pose, which combines visual features from individual partial observations and fills missing information using learned prior knowledge. The coarse representation is complemented by fine-grained pixel-aligned features extracted directly from the observed views, which provide high-resolution appearance information. We show that HumMorph is competitive with the state-of-the-art when only a single input view is available, however, we achieve results with significantly better visual quality given just 2 monocular observations. Moreover, previous generalized methods assume access to accurate body shape and pose parameters obtained using synchronized multi-camera setups. In contrast, we consider a more practical scenario where these body parameters are noisily estimated directly from the observed views. Our experimental results demonstrate that our architecture is more robust to errors in the noisy parameters and clearly outperforms the state of the art in this setting.
comment: Project page: https://jakubzadrozny.github.io/hummorph
Mitigating Bias in Facial Recognition Systems: Centroid Fairness Loss Optimization NeurIPS 2024
The urging societal demand for fair AI systems has put pressure on the research community to develop predictive models that are not only globally accurate but also meet new fairness criteria, reflecting the lack of disparate mistreatment with respect to sensitive attributes ($\textit{e.g.}$ gender, ethnicity, age). In particular, the variability of the errors made by certain Facial Recognition (FR) systems across specific segments of the population compromises the deployment of the latter, and was judged unacceptable by regulatory authorities. Designing fair FR systems is a very challenging problem, mainly due to the complex and functional nature of the performance measure used in this domain ($\textit{i.e.}$ ROC curves) and because of the huge heterogeneity of the face image datasets usually available for training. In this paper, we propose a novel post-processing approach to improve the fairness of pre-trained FR models by optimizing a regression loss which acts on centroid-based scores. Beyond the computational advantages of the method, we present numerical experiments providing strong empirical evidence of the gain in fairness and of the ability to preserve global accuracy.
comment: Accepted at both the AFME and RegML Workshops at NeurIPS 2024. A preliminary version has been accepted for publication by Springer Nature, in the context of the ICPR 2024 conference
Low-Rank Adaptive Structural Priors for Generalizable Diabetic Retinopathy Grading IJCNN 2025
Diabetic retinopathy (DR), a serious ocular complication of diabetes, is one of the primary causes of vision loss among retinal vascular diseases. Deep learning methods have been extensively applied in the grading of diabetic retinopathy (DR). However, their performance declines significantly when applied to data outside the training distribution due to domain shifts. Domain generalization (DG) has emerged as a solution to this challenge. However, most existing DG methods overlook lesion-specific features, resulting in insufficient accuracy. In this paper, we propose a novel approach that enhances existing DG methods by incorporating structural priors, inspired by the observation that DR grading is heavily dependent on vessel and lesion structures. We introduce Low-rank Adaptive Structural Priors (LoASP), a plug-and-play framework designed for seamless integration with existing DG models. LoASP improves generalization by learning adaptive structural representations that are finely tuned to the complexities of DR diagnosis. Extensive experiments on eight diverse datasets validate its effectiveness in both single-source and multi-source domain scenarios. Furthermore, visualizations reveal that the learned structural priors intuitively align with the intricate architecture of the vessels and lesions, providing compelling insights into their interpretability and diagnostic relevance.
comment: Accepted by IJCNN 2025
MERA: Multimodal and Multiscale Self-Explanatory Model with Considerably Reduced Annotation for Lung Nodule Diagnosis
Lung cancer, a leading cause of cancer-related deaths globally, emphasises the importance of early detection for better patient outcomes. Pulmonary nodules, often early indicators of lung cancer, necessitate accurate, timely diagnosis. Despite Explainable Artificial Intelligence (XAI) advances, many existing systems struggle providing clear, comprehensive explanations, especially with limited labelled data. This study introduces MERA, a Multimodal and Multiscale self-Explanatory model designed for lung nodule diagnosis with considerably Reduced Annotation requirements. MERA integrates unsupervised and weakly supervised learning strategies (self-supervised learning techniques and Vision Transformer architecture for unsupervised feature extraction) and a hierarchical prediction mechanism leveraging sparse annotations via semi-supervised active learning in the learned latent space. MERA explains its decisions on multiple levels: model-level global explanations via semantic latent space clustering, instance-level case-based explanations showing similar instances, local visual explanations via attention maps, and concept explanations using critical nodule attributes. Evaluations on the public LIDC dataset show MERA's superior diagnostic accuracy and self-explainability. With only 1% annotated samples, MERA achieves diagnostic accuracy comparable to or exceeding state-of-the-art methods requiring full annotation. The model's inherent design delivers comprehensive, robust, multilevel explanations aligned closely with clinical practice, enhancing trustworthiness and transparency. Demonstrated viability of unsupervised and weakly supervised learning lowers the barrier to deploying diagnostic AI in broader medical domains. Our complete code is open-source available: https://github.com/diku-dk/credanno.
Improving Small Drone Detection Through Multi-Scale Processing and Data Augmentation IJCNN
Detecting small drones, often indistinguishable from birds, is crucial for modern surveillance. This work introduces a drone detection methodology built upon the medium-sized YOLOv11 object detection model. To enhance its performance on small targets, we implemented a multi-scale approach in which the input image is processed both as a whole and in segmented parts, with subsequent prediction aggregation. We also utilized a copy-paste data augmentation technique to enrich the training dataset with diverse drone and bird examples. Finally, we implemented a post-processing technique that leverages frame-to-frame consistency to mitigate missed detections. The proposed approach attained a top-3 ranking in the 8th WOSDETC Drone-vsBird Detection Grand Challenge, held at the 2025 International Joint Conference on Neural Networks (IJCNN), showcasing its capability to detect drones in complex environments effectively.
comment: Accepted for presentation at the International Joint Conference on Neural Networks (IJCNN) 2025
Enhancing seeding efficiency using a computer vision system to monitor furrow quality in real-time
Effective seed sowing in precision agriculture is hindered by challenges such as residue accumulation, low soil temperatures, and hair pinning (crop residue pushed in the trench by furrow opener), which obstruct optimal trench formation. Row cleaners are employed to mitigate these issues, but there is a lack of quantitative methods to assess trench cleanliness. In this study, a novel computer vision-based method was developed to evaluate row cleaner performance. Multiple air seeders were equipped with a video acquisition system to capture trench conditions after row cleaner operation, enabling an effective comparison of the performance of each row cleaner. The captured data were used to develop a segmentation model that analyzed key elements such as soil, straw, and machinery. Using the results from the segmentation model, an objective method was developed to quantify row cleaner performance. The results demonstrated the potential of this method to improve row cleaner selection and enhance seeding efficiency in precision agriculture.
Platonic Grounding for Efficient Multimodal Language Models
The hyperscaling of data and parameter count in Transformer-based models is yielding diminishing performance improvement, especially when weighed against training costs. Such plateauing indicates the importance of methods for more efficient finetuning and inference, while retaining similar performance. This is especially relevant for multimodal learning paradigms, where inference costs of processing multimodal tokens can determine the model's practical viability. At the same time, research on representations and mechanistic interpretability has improved our understanding of the inner workings of Transformer-based models; one such line of work reveals an implicit alignment in the deeper layers of pretrained models, across modalities. Taking inspiration from this, we motivate and propose a simple modification to existing multimodal frameworks that rely on aligning pretrained models. We demonstrate that our approach maintains and, in some cases, even improves performance of baseline methods while achieving significant gains in both training and inference-time compute. Our work also has implications for combining pretrained models into larger systems efficiently.
Myocardial Region-guided Feature Aggregation Net for Automatic Coronary artery Segmentation and Stenosis Assessment using Coronary Computed Tomography Angiography
Coronary artery disease (CAD) remains a leading cause of mortality worldwide, requiring accurate segmentation and stenosis detection using Coronary Computed Tomography angiography (CCTA). Existing methods struggle with challenges such as low contrast, morphological variability and small vessel segmentation. To address these limitations, we propose the Myocardial Region-guided Feature Aggregation Net, a novel U-shaped dual-encoder architecture that integrates anatomical prior knowledge to enhance robustness in coronary artery segmentation. Our framework incorporates three key innovations: (1) a Myocardial Region-guided Module that directs attention to coronary regions via myocardial contour expansion and multi-scale feature fusion, (2) a Residual Feature Extraction Encoding Module that combines parallel spatial channel attention with residual blocks to enhance local-global feature discrimination, and (3) a Multi-scale Feature Fusion Module for adaptive aggregation of hierarchical vascular features. Additionally, Monte Carlo dropout f quantifies prediction uncertainty, supporting clinical interpretability. For stenosis detection, a morphology-based centerline extraction algorithm separates the vascular tree into anatomical branches, enabling cross-sectional area quantification and stenosis grading. The superiority of MGFA-Net was demonstrated by achieving an Dice score of 85.04%, an accuracy of 84.24%, an HD95 of 6.1294 mm, and an improvement of 5.46% in true positive rate for stenosis detection compared to3D U-Net. The integrated segmentation-to-stenosis pipeline provides automated, clinically interpretable CAD assessment, bridging deep learning with anatomical prior knowledge for precision medicine. Our code is publicly available at http://github.com/chenzhao2023/MGFA_CCTA
comment: 31 pages, 12 figures
FusionNet: Multi-model Linear Fusion Framework for Low-light Image Enhancement
The advent of Deep Neural Networks (DNNs) has driven remarkable progress in low-light image enhancement (LLIE), with diverse architectures (e.g., CNNs and Transformers) and color spaces (e.g., sRGB, HSV, HVI) yielding impressive results. Recent efforts have sought to leverage the complementary strengths of these paradigms, offering promising solutions to enhance performance across varying degradation scenarios. However, existing fusion strategies are hindered by challenges such as parameter explosion, optimization instability, and feature misalignment, limiting further improvements. To overcome these issues, we introduce FusionNet, a novel multi-model linear fusion framework that operates in parallel to effectively capture global and local features across diverse color spaces. By incorporating a linear fusion strategy underpinned by Hilbert space theoretical guarantees, FusionNet mitigates network collapse and reduces excessive training costs. Our method achieved 1st place in the CVPR2025 NTIRE Low Light Enhancement Challenge. Extensive experiments conducted on synthetic and real-world benchmark datasets demonstrate that the proposed method significantly outperforms state-of-the-art methods in terms of both quantitative and qualitative results, delivering robust enhancement under diverse low-light conditions.
Marine Snow Removal Using Internally Generated Pseudo Ground Truth
Underwater videos often suffer from degraded quality due to light absorption, scattering, and various noise sources. Among these, marine snow, which is suspended organic particles appearing as bright spots or noise, significantly impacts machine vision tasks, particularly those involving feature matching. Existing methods for removing marine snow are ineffective due to the lack of paired training data. To address this challenge, this paper proposes a novel enhancement framework that introduces a new approach for generating paired datasets from raw underwater videos. The resulting dataset consists of paired images of generated snowy and snow, free underwater videos, enabling supervised training for video enhancement. We describe the dataset creation process, highlight its key characteristics, and demonstrate its effectiveness in enhancing underwater image restoration in the absence of ground truth.
Optimal Hyperspectral Undersampling Strategy for Satellite Imaging
Hyperspectral image (HSI) classification presents significant challenges due to the high dimensionality, spectral redundancy, and limited labeled data typically available in real-world applications. To address these issues and optimize classification performance, we propose a novel band selection strategy known as Iterative Wavelet-based Gradient Sampling (IWGS). This method incrementally selects the most informative spectral bands by analyzing gradients within the wavelet-transformed domain, enabling efficient and targeted dimensionality reduction. Unlike traditional selection methods, IWGS leverages the multi-resolution properties of wavelets to better capture subtle spectral variations relevant for classification. The iterative nature of the approach ensures that redundant or noisy bands are systematically excluded while maximizing the retention of discriminative features. We conduct comprehensive experiments on two widely-used benchmark HSI datasets: Houston 2013 and Indian Pines. Results demonstrate that IWGS consistently outperforms state-of-the-art band selection and classification techniques in terms of both accuracy and computational efficiency. These improvements make our method especially suitable for deployment in edge devices or other resource-constrained environments, where memory and processing power are limited. In particular, IWGS achieved an overall accuracy up to 97.8% on Indian Pines for selected classes, confirming its effectiveness and generalizability across different HSI scenarios.
comment: 16 pages
Leveraging Multi-Modal Saliency and Fusion for Gaze Target Detection NeurIPS 2023
Gaze target detection (GTD) is the task of predicting where a person in an image is looking. This is a challenging task, as it requires the ability to understand the relationship between the person's head, body, and eyes, as well as the surrounding environment. In this paper, we propose a novel method for GTD that fuses multiple pieces of information extracted from an image. First, we project the 2D image into a 3D representation using monocular depth estimation. We then extract a depth-infused saliency module map, which highlights the most salient (\textit{attention-grabbing}) regions in image for the subject in consideration. We also extract face and depth modalities from the image, and finally fuse all the extracted modalities to identify the gaze target. We quantitatively evaluated our method, including the ablation analysis on three publicly available datasets, namely VideoAttentionTarget, GazeFollow and GOO-Real, and showed that it outperforms other state-of-the-art methods. This suggests that our method is a promising new approach for GTD.
comment: accepted at NeurIPS 2023 Gaze Meets ML Workshop
VI3NR: Variance Informed Initialization for Implicit Neural Representations CVPR 2025
Implicit Neural Representations (INRs) are a versatile and powerful tool for encoding various forms of data, including images, videos, sound, and 3D shapes. A critical factor in the success of INRs is the initialization of the network, which can significantly impact the convergence and accuracy of the learned model. Unfortunately, commonly used neural network initializations are not widely applicable for many activation functions, especially those used by INRs. In this paper, we improve upon previous initialization methods by deriving an initialization that has stable variance across layers, and applies to any activation function. We show that this generalizes many previous initialization methods, and has even better stability for well studied activations. We also show that our initialization leads to improved results with INR activation functions in multiple signal modalities. Our approach is particularly effective for Gaussian INRs, where we demonstrate that the theory of our initialization matches with task performance in multiple experiments, allowing us to achieve improvements in image, audio, and 3D surface reconstruction.
comment: Accepted to CVPR 2025
VIST-GPT: Ushering in the Era of Visual Storytelling with LLMs?
Visual storytelling is an interdisciplinary field combining computer vision and natural language processing to generate cohesive narratives from sequences of images. This paper presents a novel approach that leverages recent advancements in multimodal models, specifically adapting transformer-based architectures and large multimodal models, for the visual storytelling task. Leveraging the large-scale Visual Storytelling (VIST) dataset, our VIST-GPT model produces visually grounded, contextually appropriate narratives. We address the limitations of traditional evaluation metrics, such as BLEU, METEOR, ROUGE, and CIDEr, which are not suitable for this task. Instead, we utilize RoViST and GROOVIST, novel reference-free metrics designed to assess visual storytelling, focusing on visual grounding, coherence, and non-redundancy. These metrics provide a more nuanced evaluation of narrative quality, aligning closely with human judgment.
OpenFusion++: An Open-vocabulary Real-time Scene Understanding System
Real-time open-vocabulary scene understanding is essential for efficient 3D perception in applications such as vision-language navigation, embodied intelligence, and augmented reality. However, existing methods suffer from imprecise instance segmentation, static semantic updates, and limited handling of complex queries. To address these issues, we present OpenFusion++, a TSDF-based real-time 3D semantic-geometric reconstruction system. Our approach refines 3D point clouds by fusing confidence maps from foundational models, dynamically updates global semantic labels via an adaptive cache based on instance area, and employs a dual-path encoding framework that integrates object attributes with environmental context for precise query responses. Experiments on the ICL, Replica, ScanNet, and ScanNet++ datasets demonstrate that OpenFusion++ significantly outperforms the baseline in both semantic accuracy and query responsiveness.
comment: 8 pages, 9 figures
Rendering Anywhere You See: Renderability Field-guided Gaussian Splatting
Scene view synthesis, which generates novel views from limited perspectives, is increasingly vital for applications like virtual reality, augmented reality, and robotics. Unlike object-based tasks, such as generating 360{\deg} views of a car, scene view synthesis handles entire environments where non-uniform observations pose unique challenges for stable rendering quality. To address this issue, we propose a novel approach: renderability field-guided gaussian splatting (RF-GS). This method quantifies input inhomogeneity through a renderability field, guiding pseudo-view sampling to enhanced visual consistency. To ensure the quality of wide-baseline pseudo-views, we train an image restoration model to map point projections to visible-light styles. Additionally, our validated hybrid data optimization strategy effectively fuses information of pseudo-view angles and source view textures. Comparative experiments on simulated and real-world data show that our method outperforms existing approaches in rendering stability.
comment: 8 pages,8 figures
OPAL: Visibility-aware LiDAR-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion
LiDAR place recognition is a critical capability for autonomous navigation and cross-modal localization in large-scale outdoor environments. Existing approaches predominantly depend on pre-built 3D dense maps or aerial imagery, which impose significant storage overhead and lack real-time adaptability. In this paper, we propose OPAL, a novel network for LiDAR place recognition that leverages OpenStreetMap as a lightweight and up-to-date prior. Our key innovation lies in bridging the domain disparity between sparse LiDAR scans and structured OSM data through two carefully designed components: a cross-modal visibility mask that identifies maximal observable regions from both modalities to guide feature learning, and an adaptive radial fusion module that dynamically consolidates multiscale radial features into discriminative global descriptors. Extensive experiments on the augmented KITTI and KITTI-360 datasets demonstrate OPAL's superiority, achieving 15.98% higher recall at @1m threshold for top-1 retrieved matches while operating at 12x faster inference speeds compared to state-of-the-art approaches. Code and datasets are publicly available at: https://github.com/WHU-USI3DV/OPAL .
comment: Technical report. 15 pages, 9 figures
LM-MCVT: A Lightweight Multi-modal Multi-view Convolutional-Vision Transformer Approach for 3D Object Recognition
In human-centered environments such as restaurants, homes, and warehouses, robots often face challenges in accurately recognizing 3D objects. These challenges stem from the complexity and variability of these environments, including diverse object shapes. In this paper, we propose a novel Lightweight Multi-modal Multi-view Convolutional-Vision Transformer network (LM-MCVT) to enhance 3D object recognition in robotic applications. Our approach leverages the Globally Entropy-based Embeddings Fusion (GEEF) method to integrate multi-views efficiently. The LM-MCVT architecture incorporates pre- and mid-level convolutional encoders and local and global transformers to enhance feature extraction and recognition accuracy. We evaluate our method on the synthetic ModelNet40 dataset and achieve a recognition accuracy of 95.6% using a four-view setup, surpassing existing state-of-the-art methods. To further validate its effectiveness, we conduct 5-fold cross-validation on the real-world OmniObject3D dataset using the same configuration. Results consistently show superior performance, demonstrating the method's robustness in 3D object recognition across synthetic and real-world 3D data.
Quantitative evaluation of brain-inspired vision sensors in high-speed robotic perception
Perception systems in robotics encounter significant challenges in high-speed and dynamic conditions when relying on traditional cameras, where motion blur can compromise spatial feature integrity and task performance. Brain-inspired vision sensors (BVS) have recently gained attention as an alternative, offering high temporal resolution with reduced bandwidth and power requirements. Here, we present the first quantitative evaluation framework for two representative classes of BVSs in variable-speed robotic sensing, including event-based vision sensors (EVS) that detect asynchronous temporal contrasts, and the primitive-based sensor Tianmouc that employs a complementary mechanism to encode both spatiotemporal changes and intensity. A unified testing protocol is established, including crosssensor calibrations, standardized testing platforms, and quality metrics to address differences in data modality. From an imaging standpoint, we evaluate the effects of sensor non-idealities, such as motion-induced distortion, on the capture of structural information. For functional benchmarking, we examine task performance in corner detection and motion estimation under different rotational speeds. Results indicate that EVS performs well in highspeed, sparse scenarios and in modestly fast, complex scenes, but exhibits performance limitations in high-speed, cluttered settings due to pixel-level bandwidth variations and event rate saturation. In comparison, Tianmouc demonstrates consistent performance across sparse and complex scenarios at various speeds, supported by its global, precise, high-speed spatiotemporal gradient samplings. These findings offer valuable insights into the applicationdependent suitability of BVS technologies and support further advancement in this area.
comment: 8 pages, 8 figures, 1 table, conference
Evaluating Deep Human-in-the-Loop Optimization for Retinal Implants Using Sighted Participants
Human-in-the-loop optimization (HILO) is a promising approach for personalizing visual prostheses by iteratively refining stimulus parameters based on user feedback. Previous work demonstrated HILO's efficacy in simulation, but its performance with human participants remains untested. Here we evaluate HILO using sighted participants viewing simulated prosthetic vision to assess its ability to optimize stimulation strategies under realistic conditions. Participants selected between phosphenes generated by competing encoders to iteratively refine a deep stimulus encoder (DSE). We tested HILO in three conditions: standard optimization, threshold misspecifications, and out-of-distribution parameter sampling. Participants consistently preferred HILO-generated stimuli over both a naive encoder and the DSE alone, with log odds favoring HILO across all conditions. We also observed key differences between human and simulated decision-making, highlighting the importance of validating optimization strategies with human participants. These findings support HILO as a viable approach for adapting visual prostheses to individuals. Clinical relevance: Validating HILO with sighted participants viewing simulated prosthetic vision is an important step toward personalized calibration of future visual prostheses.
Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models
Autoregressive (AR) models, long dominant in language generation, are increasingly applied to image synthesis but are often considered less competitive than Diffusion-based models. A primary limitation is the substantial number of image tokens required for AR models, which constrains both training and inference efficiency, as well as image resolution. To address this, we present Token-Shuffle, a novel yet simple method that reduces the number of image tokens in Transformer. Our key insight is the dimensional redundancy of visual vocabularies in Multimodal Large Language Models (MLLMs), where low-dimensional visual codes from visual encoder are directly mapped to high-dimensional language vocabularies. Leveraging this, we consider two key operations: token-shuffle, which merges spatially local tokens along channel dimension to decrease the input token number, and token-unshuffle, which untangles the inferred tokens after Transformer blocks to restore the spatial arrangement for output. Jointly training with textual prompts, our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis in a unified next-token prediction way while maintaining efficient training and inference. For the first time, we push the boundary of AR text-to-image generation to a resolution of 2048x2048 with gratifying generation performance. In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15. Exhaustive large-scale human evaluations also demonstrate our prominent image generation ability in terms of text-alignment, visual flaw, and visual appearance. We hope that Token-Shuffle can serve as a foundational design for efficient high-resolution image generation within MLLMs.
comment: Project Page: https://ma-xu.github.io/token-shuffle/ Add related works
HiMo: High-Speed Objects Motion Compensation in Point Clouds
LiDAR point cloud is essential for autonomous vehicles, but motion distortions from dynamic objects degrade the data quality. While previous work has considered distortions caused by ego motion, distortions caused by other moving objects remain largely overlooked, leading to errors in object shape and position. This distortion is particularly pronounced in high-speed environments such as highways and in multi-LiDAR configurations, a common setup for heavy vehicles. To address this challenge, we introduce HiMo, a pipeline that repurposes scene flow estimation for non-ego motion compensation, correcting the representation of dynamic objects in point clouds. During the development of HiMo, we observed that existing self-supervised scene flow estimators often produce degenerate or inconsistent estimates under high-speed distortion. We further propose SeFlow++, a real-time scene flow estimator that achieves state-of-the-art performance on both scene flow and motion compensation. Since well-established motion distortion metrics are absent in the literature, we introduce two evaluation metrics: compensation accuracy at a point level and shape similarity of objects. We validate HiMo through extensive experiments on Argoverse 2, ZOD, and a newly collected real-world dataset featuring highway driving and multi-LiDAR-equipped heavy vehicles. Our findings show that HiMo improves the geometric consistency and visual fidelity of dynamic objects in LiDAR point clouds, benefiting downstream tasks such as semantic segmentation and 3D detection. See https://kin-zhang.github.io/HiMo for more details.
comment: 12 pages
A Comprehensive Survey on Machine Learning Driven Material Defect Detection
Material defects (MD) represent a primary challenge affecting product performance and giving rise to safety issues in related products. The rapid and accurate identification and localization of MD constitute crucial research endeavors in addressing contemporary challenges associated with MD. In recent years, propelled by the swift advancement of machine learning (ML) technologies, particularly exemplified by deep learning, ML has swiftly emerged as the core technology and a prominent research direction for material defect detection (MDD). Through a comprehensive review of the latest literature, we systematically survey the ML techniques applied in MDD into five categories: unsupervised learning, supervised learning, semi-supervised learning, reinforcement learning, and generative learning. We provide a detailed analysis of the main principles and techniques used, together with the advantages and potential challenges associated with these techniques. Furthermore, the survey focuses on the techniques for defect detection in composite materials, which are important types of materials enjoying increasingly wide application in various industries such as aerospace, automotive, construction, and renewable energy. Finally, the survey explores potential future directions in MDD utilizing ML technologies. This survey consolidates ML-based MDD literature and provides a foundation for future research and practice.
comment: Accepted to ACM Computing Surveys
Real-Time Image Segmentation via Hybrid Convolutional-Transformer Architecture Search
Image segmentation is one of the most fundamental problems in computer vision and has drawn a lot of attention due to its vast applications in image understanding and autonomous driving. However, designing effective and efficient segmentation neural architectures is a labor-intensive process that may require numerous trials by human experts. In this paper, we address the challenge of integrating multi-head self-attention into high-resolution representation CNNs efficiently by leveraging architecture search. Manually replacing convolution layers with multi-head self-attention is non-trivial due to the costly overhead in memory to maintain high resolution. By contrast, we develop a multi-target multi-branch supernet method, which not only fully utilizes the advantages of high-resolution features but also finds the proper location for placing the multi-head self-attention module. Our search algorithm is optimized towards multiple objectives (e.g., latency and mIoU) and is capable of finding architectures on the Pareto frontier with an arbitrary number of branches in a single search. We further present a series of models via the Hybrid Convolutional-Transformer Architecture Search (HyCTAS) method that searches for the best hybrid combination of light-weight convolution layers and memory-efficient self-attention layers between branches from different resolutions and fuses them to high resolution for both efficiency and effectiveness. Extensive experiments demonstrate that HyCTAS outperforms previous methods in both semantic segmentation and panoptic segmentation tasks. Code and models are available at https://github.com/MarvinYu1995/HyCTAS.
comment: 29 pages, 5 figures, submitted to Knowledge-Baed Systems
Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs.
comment: Code: https://github.com/AtsuMiyai/UPD. Update from v2: Correction to Figure 1
SimLTD: Simple Supervised and Semi-Supervised Long-Tailed Object Detection CVPR 2025
While modern visual recognition systems have made significant advancements, many continue to struggle with the open problem of learning from few exemplars. This paper focuses on the task of object detection in the setting where object classes follow a natural long-tailed distribution. Existing methods for long-tailed detection resort to external ImageNet labels to augment the low-shot training instances. However, such dependency on a large labeled database has limited utility in practical scenarios. We propose a versatile and scalable approach to leverage optional unlabeled images, which are easy to collect without the burden of human annotations. Our SimLTD framework is straightforward and intuitive, and consists of three simple steps: (1) pre-training on abundant head classes; (2) transfer learning on scarce tail classes; and (3) fine-tuning on a sampled set of both head and tail classes. Our approach can be viewed as an improved head-to-tail model transfer paradigm without the added complexities of meta-learning or knowledge distillation, as was required in past research. By harnessing supplementary unlabeled images, without extra image labels, SimLTD establishes new record results on the challenging LVIS v1 benchmark across both supervised and semi-supervised settings.
comment: CVPR 2025. The reference code is available at https://github.com/lexisnexis-risk-open-source/simltd
AD-Det: Boosting Object Detection in UAV Images with Focused Small Objects and Balanced Tail Classes
Object detection in Unmanned Aerial Vehicle (UAV) images poses significant challenges due to complex scale variations and class imbalance among objects. Existing methods often address these challenges separately, overlooking the intricate nature of UAV images and the potential synergy between them. In response, this paper proposes AD-Det, a novel framework employing a coherent coarse-to-fine strategy that seamlessly integrates two pivotal components: Adaptive Small Object Enhancement (ASOE) and Dynamic Class-balanced Copy-paste (DCC). ASOE utilizes a high-resolution feature map to identify and cluster regions containing small objects. These regions are subsequently enlarged and processed by a fine-grained detector. On the other hand, DCC conducts object-level resampling by dynamically pasting tail classes around the cluster centers obtained by ASOE, main-taining a dynamic memory bank for each tail class. This approach enables AD-Det to not only extract regions with small objects for precise detection but also dynamically perform reasonable resampling for tail-class objects. Consequently, AD-Det enhances the overall detection performance by addressing the challenges of scale variations and class imbalance in UAV images through a synergistic and adaptive framework. We extensively evaluate our approach on two public datasets, i.e., VisDrone and UAVDT, and demonstrate that AD-Det significantly outperforms existing competitive alternatives. Notably, AD-Det achieves a 37.5% Average Precision (AP) on the VisDrone dataset, surpassing its counterparts by at least 3.1%.
comment: Published in Remote Sensing
Permutation Learning with Only N Parameters: From SoftSort to Self-Organizing Gaussians
Sorting and permutation learning are key concepts in optimization and machine learning, especially when organizing high-dimensional data into meaningful spatial layouts. The Gumbel-Sinkhorn method, while effective, requires N*N parameters to determine a full permutation matrix, making it computationally expensive for large datasets. Low-rank matrix factorization approximations reduce memory requirements to 2NM (with M << N), but they still struggle with very large problems. SoftSort, by providing a continuous relaxation of the argsort operator, allows differentiable 1D sorting, but it faces challenges with multidimensional data and complex permutations. In this paper, we present a novel method for learning permutations using only N parameters, which dramatically reduces storage costs. Our method extends SoftSort by iteratively shuffling the N indices of the elements and applying a few SoftSort optimization steps per iteration. This modification significantly improves sorting quality, especially for multidimensional data and complex optimization criteria, and outperforms pure SoftSort. Our method offers improved memory efficiency and scalability compared to existing approaches, while maintaining high-quality permutation learning. Its dramatically reduced memory requirements make it particularly well-suited for large-scale optimization tasks, such as "Self-Organizing Gaussians", where efficient and scalable permutation learning is critical.
A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
Statistical Management of the False Discovery Rate in Medical Instance Segmentation Based on Conformal Risk Control ICIP
Instance segmentation plays a pivotal role in medical image analysis by enabling precise localization and delineation of lesions, tumors, and anatomical structures. Although deep learning models such as Mask R-CNN and BlendMask have achieved remarkable progress, their application in high-risk medical scenarios remains constrained by confidence calibration issues, which may lead to misdiagnosis. To address this challenge, we propose a robust quality control framework based on conformal prediction theory. This framework innovatively constructs a risk-aware dynamic threshold mechanism that adaptively adjusts segmentation decision boundaries according to clinical requirements.Specifically, we design a \textbf{calibration-aware loss function} that dynamically tunes the segmentation threshold based on a user-defined risk level $\alpha$. Utilizing exchangeable calibration data, this method ensures that the expected FNR or FDR on test data remains below $\alpha$ with high probability. The framework maintains compatibility with mainstream segmentation models (e.g., Mask R-CNN, BlendMask+ResNet-50-FPN) and datasets (PASCAL VOC format) without requiring architectural modifications. Empirical results demonstrate that we rigorously bound the FDR metric marginally over the test set via our developed calibration framework.
comment: Accepted by 2025 IEEE 3rd International Conference on Image Processing and Computer Applications (ICIPCA 2025)
Image and Video Processing
Low-Rank Adaptive Structural Priors for Generalizable Diabetic Retinopathy Grading IJCNN 2025
Diabetic retinopathy (DR), a serious ocular complication of diabetes, is one of the primary causes of vision loss among retinal vascular diseases. Deep learning methods have been extensively applied in the grading of diabetic retinopathy (DR). However, their performance declines significantly when applied to data outside the training distribution due to domain shifts. Domain generalization (DG) has emerged as a solution to this challenge. However, most existing DG methods overlook lesion-specific features, resulting in insufficient accuracy. In this paper, we propose a novel approach that enhances existing DG methods by incorporating structural priors, inspired by the observation that DR grading is heavily dependent on vessel and lesion structures. We introduce Low-rank Adaptive Structural Priors (LoASP), a plug-and-play framework designed for seamless integration with existing DG models. LoASP improves generalization by learning adaptive structural representations that are finely tuned to the complexities of DR diagnosis. Extensive experiments on eight diverse datasets validate its effectiveness in both single-source and multi-source domain scenarios. Furthermore, visualizations reveal that the learned structural priors intuitively align with the intricate architecture of the vessels and lesions, providing compelling insights into their interpretability and diagnostic relevance.
comment: Accepted by IJCNN 2025
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
Adaptive Dual-domain Learning for Underwater Image Enhancement AAAI 2025
Recently, learning-based Underwater Image Enhancement (UIE) methods have demonstrated promising performance. However, existing learning-based methods still face two challenges. 1) They rarely consider the inconsistent degradation levels in different spatial regions and spectral bands simultaneously. 2) They treat all regions equally, ignoring that the regions with high-frequency details are more difficult to reconstruct. To address these challenges, we propose a novel UIE method based on spatial-spectral dual-domain adaptive learning, termed SS-UIE. Specifically, we first introduce a spatial-wise Multi-scale Cycle Selective Scan (MCSS) module and a Spectral-Wise Self-Attention (SWSA) module, both with linear complexity, and combine them in parallel to form a basic Spatial-Spectral block (SS-block). Benefiting from the global receptive field of MCSS and SWSA, SS-block can effectively model the degradation levels of different spatial regions and spectral bands, thereby enabling degradation level-based dual-domain adaptive UIE. By stacking multiple SS-blocks, we build our SS-UIE network. Additionally, a Frequency-Wise Loss (FWL) is introduced to narrow the frequency-wise discrepancy and reinforce the model's attention on the regions with high-frequency details. Extensive experiments validate that the SS-UIE technique outperforms state-of-the-art UIE methods while requiring cheaper computational and memory costs.
comment: Accepted by AAAI 2025
PAD: Phase-Amplitude Decoupling Fusion for Multi-Modal Land Cover Classification
The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and the underutilization of spectral complementarity. Existing methods often fail to decouple shared structural features from modality-specific radiometric attributes, leading to feature conflicts and information loss. To address this issue, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-specific) components in the Fourier domain. Specifically, PAD consists of two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features through convolution-guided scaling to enhance geometric consistency, and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency details and low-frequency structures using frequency-adaptive multilayer perceptrons. This approach leverages SAR's sensitivity to morphological features and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.
comment: 13 pages, 8 figures
MLICv2: Enhanced Multi-Reference Entropy Modeling for Learned Image Compression
Recent advancements in learned image compression (LIC) have yielded impressive performance gains. Notably, the learned image compression models with multi-reference entropy models (MLIC series) have significantly outperformed existing traditional image codecs such as the Versatile Video Coding (VVC) Intra. In this paper, we present MLICv2 and MLICv2$^+$, enhanced versions of the MLIC series, featuring improved transform techniques, entropy modeling, and instance adaptability. For better transform, we introduce a simple token mixing transform block inspired by the meta transformer architecture, addressing the performance degradation at high bit-rates observed in previous MLIC series while maintaining computational efficiency. To enhance entropy modeling, we propose a hyperprior-guided global correlation prediction, enabling the capture of global contexts in the initial slice of the latent representation. We also develop a channel reweighting module to dynamically prioritize important channels within each context. Additionally, advanced positional embedding for context modeling and selective compression with guided optimization are investigated. To boost instance adaptability, we employ stochastic Gumbel annealing to iteratively refine the latent representation according to the rate-distortion optimization of a specific input image. This approach further enhances performance without impacting decoding speed. Experimental results demonstrate that our MLICv2 and MLICv2$^+$ achieve state-of-the-art performance, reducing Bjontegaard-Delta rate (BD-rate) by 16.54%, 21.61%, 16.05% and 20.46%, 24.35%, 19.14% respectively, compared to VTM-17.0 Intra on the Kodak, Tecnick, CLIC Pro Val dataset, respectively.
comment: Under Review
Swapped Logit Distillation via Bi-level Teacher Alignment
Knowledge distillation (KD) compresses the network capacity by transferring knowledge from a large (teacher) network to a smaller one (student). It has been mainstream that the teacher directly transfers knowledge to the student with its original distribution, which can possibly lead to incorrect predictions. In this article, we propose a logit-based distillation via swapped logit processing, namely Swapped Logit Distillation (SLD). SLD is proposed under two assumptions: (1) the wrong prediction occurs when the prediction label confidence is not the maximum; (2) the "natural" limit of probability remains uncertain as the best value addition to the target cannot be determined. To address these issues, we propose a swapped logit processing scheme. Through this approach, we find that the swap method can be effectively extended to teacher and student outputs, transforming into two teachers. We further introduce loss scheduling to boost the performance of two teachers' alignment. Extensive experiments on image classification tasks demonstrate that SLD consistently performs best among previous state-of-the-art methods.
comment: Accepted to Multimedia Systems 2025
A Comprehensive Survey on Machine Learning Driven Material Defect Detection
Material defects (MD) represent a primary challenge affecting product performance and giving rise to safety issues in related products. The rapid and accurate identification and localization of MD constitute crucial research endeavors in addressing contemporary challenges associated with MD. In recent years, propelled by the swift advancement of machine learning (ML) technologies, particularly exemplified by deep learning, ML has swiftly emerged as the core technology and a prominent research direction for material defect detection (MDD). Through a comprehensive review of the latest literature, we systematically survey the ML techniques applied in MDD into five categories: unsupervised learning, supervised learning, semi-supervised learning, reinforcement learning, and generative learning. We provide a detailed analysis of the main principles and techniques used, together with the advantages and potential challenges associated with these techniques. Furthermore, the survey focuses on the techniques for defect detection in composite materials, which are important types of materials enjoying increasingly wide application in various industries such as aerospace, automotive, construction, and renewable energy. Finally, the survey explores potential future directions in MDD utilizing ML technologies. This survey consolidates ML-based MDD literature and provides a foundation for future research and practice.
comment: Accepted to ACM Computing Surveys
Multimedia
DeepSPG: Exploring Deep Semantic Prior Guidance for Low-light Image Enhancement with Multimodal Learning ICMR 2025
There has long been a belief that high-level semantics learning can benefit various downstream computer vision tasks. However, in the low-light image enhancement (LLIE) community, existing methods learn a brutal mapping between low-light and normal-light domains without considering the semantic information of different regions, especially in those extremely dark regions that suffer from severe information loss. To address this issue, we propose a new deep semantic prior-guided framework (DeepSPG) based on Retinex image decomposition for LLIE to explore informative semantic knowledge via a pre-trained semantic segmentation model and multimodal learning. Notably, we incorporate both image-level semantic prior and text-level semantic prior and thus formulate a multimodal learning framework with combinatorial deep semantic prior guidance for LLIE. Specifically, we incorporate semantic knowledge to guide the enhancement process via three designs: an image-level semantic prior guidance by leveraging hierarchical semantic features from a pre-trained semantic segmentation model; a text-level semantic prior guidance by integrating natural language semantic constraints via a pre-trained vision-language model; a multi-scale semantic-aware structure that facilitates effective semantic feature incorporation. Eventually, our proposed DeepSPG demonstrates superior performance compared to state-of-the-art methods across five benchmark datasets. The implementation details and code are publicly available at https://github.com/Wenyuzhy/DeepSPG.
comment: Accepted by ICMR 2025 Main track. Code is available at https://github.com/Wenyuzhy/DeepSPG
Generative AI for Character Animation: A Comprehensive Survey of Techniques, Applications, and Future Directions
Generative AI is reshaping art, gaming, and most notably animation. Recent breakthroughs in foundation and diffusion models have reduced the time and cost of producing animated content. Characters are central animation components, involving motion, emotions, gestures, and facial expressions. The pace and breadth of advances in recent months make it difficult to maintain a coherent view of the field, motivating the need for an integrative review. Unlike earlier overviews that treat avatars, gestures, or facial animation in isolation, this survey offers a single, comprehensive perspective on all the main generative AI applications for character animation. We begin by examining the state-of-the-art in facial animation, expression rendering, image synthesis, avatar creation, gesture modeling, motion synthesis, object generation, and texture synthesis. We highlight leading research, practical deployments, commonly used datasets, and emerging trends for each area. To support newcomers, we also provide a comprehensive background section that introduces foundational models and evaluation metrics, equipping readers with the knowledge needed to enter the field. We discuss open challenges and map future research directions, providing a roadmap to advance AI-driven character-animation technologies. This survey is intended as a resource for researchers and developers entering the field of generative AI animation or adjacent fields. Resources are available at: https://github.com/llm-lab-org/Generative-AI-for-Character-Animation-Survey.
comment: 50 main pages, 30 pages appendix, 21 figures, 8 tables, GitHub Repository: https://github.com/llm-lab-org/Generative-AI-for-Character-Animation-Survey
Computation and Language
Explanatory Summarization with Discourse-Driven Planning ACL
Lay summaries for scientific documents typically include explanations to help readers grasp sophisticated concepts or arguments. However, current automatic summarization methods do not explicitly model explanations, which makes it difficult to align the proportion of explanatory content with human-written summaries. In this paper, we present a plan-based approach that leverages discourse frameworks to organize summary generation and guide explanatory sentences by prompting responses to the plan. Specifically, we propose two discourse-driven planning strategies, where the plan is conditioned as part of the input or part of the output prefix, respectively. Empirical experiments on three lay summarization datasets show that our approach outperforms existing state-of-the-art methods in terms of summary quality, and it enhances model robustness, controllability, and mitigates hallucination.
comment: Accepted by the Transactions of the Association for Computational Linguistics (TACL)
Unified Multi-Task Learning & Model Fusion for Efficient Language Model Guardrailing
The trend towards large language models (LLMs) for guardrailing against undesired behaviors is increasing and has shown promise for censoring user inputs. However, increased latency, memory consumption, hosting expenses and non-structured outputs can make their use prohibitive. In this work, we show that task-specific data generation can lead to fine-tuned classifiers that significantly outperform current state of the art (SoTA) while being orders of magnitude smaller. Secondly, we show that using a single model, \texttt{MultiTaskGuard}, that is pretrained on a large synthetically generated dataset with unique task instructions further improves generalization. Thirdly, our most performant models, \texttt{UniGuard}, are found using our proposed search-based model merging approach that finds an optimal set of parameters to combine single-policy models and multi-policy guardrail models. % On 7 public datasets and 4 guardrail benchmarks we created, our efficient guardrail classifiers improve over the best performing SoTA publicly available LLMs and 3$^{\text{rd}}$ party guardrail APIs in detecting unsafe and safe behaviors by an average F1 score improvement of \textbf{29.92} points over Aegis-LlamaGuard and \textbf{21.62} over \texttt{gpt-4o}, respectively. Lastly, our guardrail synthetic data generation process that uses custom task-specific guardrail poli
BrowseComp-ZH: Benchmarking Web Browsing Ability of Large Language Models in Chinese
As large language models (LLMs) evolve into tool-using agents, the ability to browse the web in real-time has become a critical yardstick for measuring their reasoning and retrieval competence. Existing benchmarks such as BrowseComp concentrate on English and overlook the linguistic, infrastructural, and censorship-related complexities of other major information ecosystems -- most notably Chinese. To address this gap, we introduce BrowseComp-ZH, a high-difficulty benchmark purpose-built to comprehensively evaluate LLM agents on the Chinese web. BrowseComp-ZH consists of 289 multi-hop questions spanning 11 diverse domains. Each question is reverse-engineered from a short, objective, and easily verifiable answer (e.g., a date, number, or proper noun). A two-stage quality control protocol is applied to strive for high question difficulty and answer uniqueness. We benchmark over 20 state-of-the-art language models and agentic search systems on our proposed BrowseComp-ZH. Despite their strong conversational and retrieval capabilities, most models struggle severely: a large number achieve accuracy rates below 10%, and only a handful exceed 20%. Even the best-performing system, OpenAI's DeepResearch, reaches just 42.9%. These results demonstrate the considerable difficulty of BrowseComp-ZH, where success demands not only effective retrieval strategies, but also sophisticated reasoning and information reconciliation -- capabilities that current models still struggle to master. Our dataset, construction guidelines, and benchmark results have been publicly released at https://github.com/PALIN2018/BrowseComp-ZH.
comment: Under Review
AndroidGen: Building an Android Language Agent under Data Scarcity
Large language models have opened up a world of possibilities for various NLP tasks, sparking optimism for the future. Despite their potential, LLMs have yet to be widely used as agents on real mobile devices. The main challenge is the need for high-quality data sources. Time constraints and labor intensity often hinder human annotation. On the other hand, existing LLMs exhibit inadequate completion rates and need a robust data filtration strategy. Given these challenges, we develop a framework called AndroidGen to enhance the capabilities of LLM-based agents under data scarcity. In addition, we leverage AndroidGen to collect trajectories given human tasks and train open-source LLMs on these trajectories to develop an open-source mobile agent without manually labeled trajectories. We extensively evaluate AndroidGen with AndroidWorld, AitW, and various popular applications, demonstrating its improvements and revealing potential areas for future improvement. Code, model, and data are available at https://github.com/THUDM/AndroidGen.
Anyprefer: An Agentic Framework for Preference Data Synthesis
High-quality preference data is essential for aligning foundation models with human values through preference learning. However, manual annotation of such data is often time-consuming and costly. Recent methods often adopt a self-rewarding approach, where the target model generates and annotates its own preference data, but this can lead to inaccuracies since the reward model shares weights with the target model, thereby amplifying inherent biases. To address these issues, we propose Anyprefer, a framework designed to synthesize high-quality preference data for aligning the target model. Anyprefer frames the data synthesis process as a cooperative two-player Markov Game, where the target model and the judge model collaborate together. Here, a series of external tools are introduced to assist the judge model in accurately rewarding the target model's responses, mitigating biases in the rewarding process. In addition, a feedback mechanism is introduced to optimize prompts for both models, enhancing collaboration and improving data quality. The synthesized data is compiled into a new preference dataset, Anyprefer-V1, consisting of 58K high-quality preference pairs. Extensive experiments show that Anyprefer significantly improves model alignment performance across four main applications, covering 21 datasets, achieving average improvements of 18.55% in five natural language generation datasets, 3.66% in nine vision-language understanding datasets, 30.05% in three medical image analysis datasets, and 16.00% in four visuo-motor control tasks.
VIST-GPT: Ushering in the Era of Visual Storytelling with LLMs?
Visual storytelling is an interdisciplinary field combining computer vision and natural language processing to generate cohesive narratives from sequences of images. This paper presents a novel approach that leverages recent advancements in multimodal models, specifically adapting transformer-based architectures and large multimodal models, for the visual storytelling task. Leveraging the large-scale Visual Storytelling (VIST) dataset, our VIST-GPT model produces visually grounded, contextually appropriate narratives. We address the limitations of traditional evaluation metrics, such as BLEU, METEOR, ROUGE, and CIDEr, which are not suitable for this task. Instead, we utilize RoViST and GROOVIST, novel reference-free metrics designed to assess visual storytelling, focusing on visual grounding, coherence, and non-redundancy. These metrics provide a more nuanced evaluation of narrative quality, aligning closely with human judgment.
Uncertainty Quantification for Language Models: A Suite of Black-Box, White-Box, LLM Judge, and Ensemble Scorers
Hallucinations are a persistent problem with Large Language Models (LLMs). As these models become increasingly used in high-stakes domains, such as healthcare and finance, the need for effective hallucination detection is crucial. To this end, we propose a versatile framework for zero-resource hallucination detection that practitioners can apply to real-world use cases. To achieve this, we adapt a variety of existing uncertainty quantification (UQ) techniques, including black-box UQ, white-box UQ, and LLM-as-a-Judge, transforming them as necessary into standardized response-level confidence scores ranging from 0 to 1. To enhance flexibility, we introduce a tunable ensemble approach that incorporates any combination of the individual confidence scores. This approach enables practitioners to optimize the ensemble for a specific use case for improved performance. To streamline implementation, the full suite of scorers is offered in this paper's companion Python toolkit, UQLM. To evaluate the performance of the various scorers, we conduct an extensive set of experiments using several LLM question-answering benchmarks. We find that our tunable ensemble typically surpasses its individual components and outperforms existing hallucination detection methods. Our results demonstrate the benefits of customized hallucination detection strategies for improving the accuracy and reliability of LLMs.
comment: UQLM repository: https://github.com/cvs-health/uqlm
Dynamic Embedded Topic Models: properties and recommendations based on diverse corpora
We measure the effects of several implementation choices for the Dynamic Embedded Topic Model, as applied to five distinct diachronic corpora, with the goal of isolating important decisions for its use and further development. We identify priorities that will maximize utility in applied scholarship, including the practical scalability of vocabulary size to best exploit the strengths of embedded representations, and more flexible modeling of intervals to accommodate the uneven temporal distributions of historical writing. Of similar importance, we find performance is not significantly or consistently affected by several aspects that otherwise limit the model's application or might consume the resources of a grid search.
comment: Under review
WuNeng: Hybrid State with Attention
The WuNeng architecture introduces a novel approach to enhancing the expressivity and power of large language models by integrating recurrent neural network (RNN)-based RWKV-7 with advanced attention mechanisms, prioritizing heightened contextual coherence over reducing KV cache size. Building upon the hybrid-head concept from Hymba, WuNeng augments standard multi-head attention with additional RWKV-7 state-driven heads, rather than replacing existing heads, to enrich the model's representational capacity. A cross-head interaction technique fosters dynamic synergy among standard, state-driven, and newly introduced middle heads, leveraging concatenation, additive modulation, and gated fusion for robust information integration. Furthermore, a multi-token state processing mechanism harnesses the continuous RWKV-7 state to capture intricate, sequence-wide dependencies, significantly boosting expressivity. Remarkably, these enhancements are achieved with minimal additional parameters, ensuring efficiency while empowering the model to excel in complex reasoning and sequence generation tasks. WuNeng sets a new standard for balancing expressivity and computational efficiency in modern neural architectures.
Hierarchical Attention Generates Better Proofs
Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce \textbf{Hierarchical Attention}, a regularization method that aligns LLMs' attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05\% on miniF2F and 1.69\% on ProofNet while reducing proof complexity by 23.81\% and 16.50\% respectively. The code is available at https://github.com/Car-pe/HAGBP.
comment: 15 pages with 3 figures
SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning SP
Evaluating the step-by-step reliability of large language model (LLM) reasoning, such as Chain-of-Thought, remains challenging due to the difficulty and cost of obtaining high-quality step-level supervision. In this paper, we introduce Self-Play Critic (SPC), a novel approach where a critic model evolves its ability to assess reasoning steps through adversarial self-play games, eliminating the need for manual step-level annotation. SPC involves fine-tuning two copies of a base model to play two roles, namely a "sneaky generator" that deliberately produces erroneous steps designed to be difficult to detect, and a "critic" that analyzes the correctness of reasoning steps. These two models engage in an adversarial game in which the generator aims to fool the critic, while the critic model seeks to identify the generator's errors. Using reinforcement learning based on the game outcomes, the models iteratively improve; the winner of each confrontation receives a positive reward and the loser receives a negative reward, driving continuous self-evolution. Experiments on three reasoning process benchmarks (ProcessBench, PRM800K, DeltaBench) demonstrate that our SPC progressively enhances its error detection capabilities (e.g., accuracy increases from 70.8% to 77.7% on ProcessBench) and surpasses strong baselines, including distilled R1 model. Furthermore, applying SPC to guide the test-time search of diverse LLMs significantly improves their mathematical reasoning performance on MATH500 and AIME2024, outperforming state-of-the-art process reward models.
comment: Project: https://chen-judge.github.io/SPC/
APE-Bench I: Towards File-level Automated Proof Engineering of Formal Math Libraries
Recent progress in large language models (LLMs) has shown promise in formal theorem proving, yet existing benchmarks remain limited to isolated, static proof tasks, failing to capture the iterative, engineering-intensive workflows of real-world formal mathematics libraries. Motivated by analogous advances in software engineering, we introduce the paradigm of Automated Proof Engineering (APE), which aims to automate proof engineering tasks such as feature addition, proof refactoring, and bug fixing using LLMs. To facilitate research in this direction, we present APE-Bench I, the first realistic benchmark built from real-world commit histories of Mathlib4, featuring diverse file-level tasks described in natural language and verified via a hybrid approach combining the Lean compiler and LLM-as-a-Judge. We further develop Eleanstic, a scalable parallel verification infrastructure optimized for proof checking across multiple versions of Mathlib. Empirical results on state-of-the-art LLMs demonstrate strong performance on localized edits but substantial degradation on handling complex proof engineering. This work lays the foundation for developing agentic workflows in proof engineering, with future benchmarks targeting multi-file coordination, project-scale verification, and autonomous agents capable of planning, editing, and repairing formal libraries.
Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution for enhancing the accuracy and credibility of Large Language Models (LLMs), particularly in Question & Answer tasks. This is achieved by incorporating proprietary and private data from integrated databases. However, private RAG systems face significant challenges due to the scarcity of private domain data and critical data privacy issues. These obstacles impede the deployment of private RAG systems, as developing privacy-preserving RAG systems requires a delicate balance between data security and data availability. To address these challenges, we regard federated learning (FL) as a highly promising technology for privacy-preserving RAG services. We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG). This framework facilitates collaborative training of client-side RAG retrieval models. The parameters of these models are aggregated and distributed on a central-server, ensuring data privacy without direct sharing of raw data. In FedE4RAG, knowledge distillation is employed for communication between the server and client models. This technique improves the generalization of local RAG retrievers during the federated learning process. Additionally, we apply homomorphic encryption within federated learning to safeguard model parameters and mitigate concerns related to data leakage. Extensive experiments conducted on the real-world dataset have validated the effectiveness of FedE4RAG. The results demonstrate that our proposed framework can markedly enhance the performance of private RAG systems while maintaining robust data privacy protection.
Efficient Reasoning for LLMs through Speculative Chain-of-Thought
Large reasoning language models such as OpenAI-o1 and Deepseek-R1 have recently attracted widespread attention due to their impressive task-solving abilities. However, the enormous model size and the generation of lengthy thought chains introduce significant reasoning costs and response latency. Existing methods for efficient reasoning mainly focus on reducing the number of model parameters or shortening the chain-of-thought length. In this paper, we introduce Speculative Chain-of-Thought (SCoT), which reduces reasoning latency from another perspective by accelerated average reasoning speed through large and small model collaboration. SCoT conducts thought-level drafting using a lightweight draft model. Then it selects the best CoT draft and corrects the error cases with the target model. The proposed thinking behavior alignment improves the efficiency of drafting and the draft selection strategy maintains the prediction accuracy for complex problems. Experimental results on GSM8K, MATH, GaoKao, CollegeMath and Olympiad datasets show that SCoT reduces reasoning latency by 48\%$\sim$66\% for Deepseek-R1-Distill-Qwen-32B while achieving near-target-model-level performance. Our code is available at https://github.com/Jikai0Wang/Speculative_CoT.
Sample-Efficient Language Model for Hinglish Conversational AI
This paper presents our process for developing a sample-efficient language model for a conversational Hinglish chatbot. Hinglish, a code-mixed language that combines Hindi and English, presents a unique computational challenge due to inconsistent spelling, lack of standardization, and limited quality of conversational data. This work evaluates multiple pre-trained cross-lingual language models, including Gemma3-4B and Qwen2.5-7B, and employs fine-tuning techniques to improve performance on Hinglish conversational tasks. The proposed approach integrates synthetically generated dialogues with insights from existing Hinglish datasets to address data scarcity. Experimental results demonstrate that models with fewer parameters, when appropriately fine-tuned on high-quality code-mixed data, can achieve competitive performance for Hinglish conversation generation while maintaining computational efficiency.
comment: 5 pages, 2 tables, 2 figures
ClimaEmpact: Domain-Aligned Small Language Models and Datasets for Extreme Weather Analytics
Accurate assessments of extreme weather events are vital for research and policy, yet localized and granular data remain scarce in many parts of the world. This data gap limits our ability to analyze potential outcomes and implications of extreme weather events, hindering effective decision-making. Large Language Models (LLMs) can process vast amounts of unstructured text data, extract meaningful insights, and generate detailed assessments by synthesizing information from multiple sources. Furthermore, LLMs can seamlessly transfer their general language understanding to smaller models, enabling these models to retain key knowledge while being fine-tuned for specific tasks. In this paper, we propose Extreme Weather Reasoning-Aware Alignment (EWRA), a method that enhances small language models (SLMs) by incorporating structured reasoning paths derived from LLMs, and ExtremeWeatherNews, a large dataset of extreme weather event-related news articles. EWRA and ExtremeWeatherNews together form the overall framework, ClimaEmpact, that focuses on addressing three critical extreme-weather tasks: categorization of tangible vulnerabilities/impacts, topic labeling, and emotion analysis. By aligning SLMs with advanced reasoning strategies on ExtremeWeatherNews (and its derived dataset ExtremeAlign used specifically for SLM alignment), EWRA improves the SLMs' ability to generate well-grounded and domain-specific responses for extreme weather analytics. Our results show that the approach proposed guides SLMs to output domain-aligned responses, surpassing the performance of task-specific models and offering enhanced real-world applicability for extreme weather analytics.
Versatile Framework for Song Generation with Prompt-based Control
Song generation focuses on producing controllable high-quality songs based on various prompts. However, existing methods struggle to generate vocals and accompaniments with prompt-based control and proper alignment. Additionally, they fall short in supporting various tasks. To address these challenges, we introduce VersBand, a multi-task song generation framework for synthesizing high-quality, aligned songs with prompt-based control. VersBand comprises these primary models: 1) VocalBand, a decoupled model, leverages the flow-matching method for generating singing styles, pitches, and mel-spectrograms, allowing fast, high-quality vocal generation with style control. 2) AccompBand, a flow-based transformer model, incorporates the Band-MOE, selecting suitable experts for enhanced quality, alignment, and control. This model allows for generating controllable, high-quality accompaniments aligned with vocals. 3) Two generation models, LyricBand for lyrics and MelodyBand for melodies, contribute to the comprehensive multi-task song generation system, allowing for extensive control based on multiple prompts. Experimental results demonstrate that VersBand performs better over baseline models across multiple song generation tasks using objective and subjective metrics. Audio samples are available at https://VersBand.github.io.
Hallucinations and Key Information Extraction in Medical Texts: A Comprehensive Assessment of Open-Source Large Language Models
Clinical summarization is crucial in healthcare as it distills complex medical data into digestible information, enhancing patient understanding and care management. Large language models (LLMs) have shown significant potential in automating and improving the accuracy of such summarizations due to their advanced natural language understanding capabilities. These models are particularly applicable in the context of summarizing medical/clinical texts, where precise and concise information transfer is essential. In this paper, we investigate the effectiveness of open-source LLMs in extracting key events from discharge reports, such as reasons for hospital admission, significant in-hospital events, and critical follow-up actions. In addition, we also assess the prevalence of various types of hallucinations in the summaries produced by these models. Detecting hallucinations is vital as it directly influences the reliability of the information, potentially affecting patient care and treatment outcomes. We conduct comprehensive numerical simulations to rigorously evaluate the performance of these models, further probing the accuracy and fidelity of the extracted content in clinical summarization.
Generative AI for Character Animation: A Comprehensive Survey of Techniques, Applications, and Future Directions
Generative AI is reshaping art, gaming, and most notably animation. Recent breakthroughs in foundation and diffusion models have reduced the time and cost of producing animated content. Characters are central animation components, involving motion, emotions, gestures, and facial expressions. The pace and breadth of advances in recent months make it difficult to maintain a coherent view of the field, motivating the need for an integrative review. Unlike earlier overviews that treat avatars, gestures, or facial animation in isolation, this survey offers a single, comprehensive perspective on all the main generative AI applications for character animation. We begin by examining the state-of-the-art in facial animation, expression rendering, image synthesis, avatar creation, gesture modeling, motion synthesis, object generation, and texture synthesis. We highlight leading research, practical deployments, commonly used datasets, and emerging trends for each area. To support newcomers, we also provide a comprehensive background section that introduces foundational models and evaluation metrics, equipping readers with the knowledge needed to enter the field. We discuss open challenges and map future research directions, providing a roadmap to advance AI-driven character-animation technologies. This survey is intended as a resource for researchers and developers entering the field of generative AI animation or adjacent fields. Resources are available at: https://github.com/llm-lab-org/Generative-AI-for-Character-Animation-Survey.
comment: 50 main pages, 30 pages appendix, 21 figures, 8 tables, GitHub Repository: https://github.com/llm-lab-org/Generative-AI-for-Character-Animation-Survey
Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling ICLR2025
Recent advances in knowledge distillation (KD) have enabled smaller student models to approach the performance of larger teacher models. However, popular methods such as supervised KD and on-policy KD, are adversely impacted by the knowledge gaps between teacher-student in practical scenarios. Supervised KD suffers from a distribution mismatch between training with a static dataset and inference over final student-generated outputs. Conversely, on-policy KD, which uses student-generated samples for training, can suffer from low-quality training examples with which teacher models are not familiar, resulting in inaccurate teacher feedback. To address these limitations, we introduce Speculative Knowledge Distillation (SKD), a novel approach that leverages cooperation between student and teacher models to generate high-quality training data on-the-fly while aligning with the student's inference-time distribution. In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution, transferring high-quality knowledge adaptively. We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following, and show that SKD consistently outperforms existing KD methods across different domains, data sizes, and model initialization strategies.
comment: ICLR2025
Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs.
comment: Code: https://github.com/AtsuMiyai/UPD. Update from v2: Correction to Figure 1
Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision NAACL 2025
Instruction-following LLMs have recently allowed systems to discover hidden concepts from a collection of unstructured documents based on a natural language description of the purpose of the discovery (i.e., goal). Still, the quality of the discovered concepts remains mixed, as it depends heavily on LLM's reasoning ability and drops when the data is noisy or beyond LLM's knowledge. We present Instruct-LF, a goal-oriented latent factor discovery system that integrates LLM's instruction-following ability with statistical models to handle large, noisy datasets where LLM reasoning alone falls short. Instruct-LF uses LLMs to propose fine-grained, goal-related properties from documents, estimates their presence across the dataset, and applies gradient-based optimization to uncover hidden factors, where each factor is represented by a cluster of co-occurring properties. We evaluate latent factors produced by Instruct-LF on movie recommendation, text-world navigation, and legal document categorization tasks. These interpretable representations improve downstream task performance by 5-52% than the best baselines and were preferred 1.8 times as often as the best alternative, on average, in human evaluation.
comment: NAACL 2025
Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization ICLR 2025
Direct Preference Optimization (DPO) and its variants are increasingly used for aligning language models with human preferences. Although these methods are designed to teach a model to generate preferred responses more frequently relative to dispreferred responses, prior work has observed that the likelihood of preferred responses often decreases during training. The current work sheds light on the causes and implications of this counter-intuitive phenomenon, which we term likelihood displacement. We demonstrate that likelihood displacement can be catastrophic, shifting probability mass from preferred responses to responses with an opposite meaning. As a simple example, training a model to prefer $\texttt{No}$ over $\texttt{Never}$ can sharply increase the probability of $\texttt{Yes}$. Moreover, when aligning the model to refuse unsafe prompts, we show that such displacement can unintentionally lead to unalignment, by shifting probability mass from preferred refusal responses to harmful responses (e.g., reducing the refusal rate of Llama-3-8B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood displacement is driven by preferences that induce similar embeddings, as measured by a centered hidden embedding similarity (CHES) score. Empirically, the CHES score enables identifying which training samples contribute most to likelihood displacement in a given dataset. Filtering out these samples effectively mitigated unintentional unalignment in our experiments. More broadly, our results highlight the importance of curating data with sufficiently distinct preferences, for which we believe the CHES score may prove valuable.
comment: Accepted to ICLR 2025; Code available at https://github.com/princeton-nlp/unintentional-unalignment
AdTEC: A Unified Benchmark for Evaluating Text Quality in Search Engine Advertising NAACL 2025
With the increase in the fluency of ad texts automatically created by natural language generation technology, there is high demand to verify the quality of these creatives in a real-world setting. We propose AdTEC (Ad Text Evaluation Benchmark by CyberAgent), the first public benchmark to evaluate ad texts from multiple perspectives within practical advertising operations. Our contributions are as follows: (i) Defining five tasks for evaluating the quality of ad texts, as well as building a Japanese dataset based on the practical operational experiences of building a Japanese dataset based on the practical operational experiences of advertising agencies, which are typically kept in-house. (ii) Validating the performance of existing pre-trained language models (PLMs) and human evaluators on the dataset. (iii) Analyzing the characteristics and providing challenges of the benchmark. The results show that while PLMs have already reached practical usage level in several tasks, humans still outperform in certain domains, implying that there is significant room for improvement in this area.
comment: Accepted to NAACL 2025
Protecting multimodal large language models against misleading visualizations
Visualizations play a pivotal role in daily communication in an increasingly data-driven world. Research on multimodal large language models (MLLMs) for automated chart understanding has accelerated massively, with steady improvements on standard benchmarks. However, for MLLMs to be reliable, they must be robust to misleading visualizations, charts that distort the underlying data, leading readers to draw inaccurate conclusions that may support disinformation. Here, we uncover an important vulnerability: MLLM question-answering accuracy on misleading visualizations drops on average to the level of a random baseline. To address this, we introduce the first inference-time methods to improve performance on misleading visualizations, without compromising accuracy on non-misleading ones. The most effective method extracts the underlying data table and uses a text-only LLM to answer the question based on the table. Our findings expose a critical blind spot in current research and establish benchmark results to guide future efforts in reliable MLLMs.
comment: Preprint. Code and data available at https://github.com/UKPLab/arxiv2025-misleading-visualizations
Gauging Overprecision in LLMs: An Empirical Study
Recently, overconfidence in large language models (LLMs) has garnered considerable attention due to its fundamental importance in quantifying the trustworthiness of LLM generation. However, existing approaches prompt the \textit{black box LLMs} to produce their confidence (\textit{verbalized confidence}), which can be subject to many biases and hallucinations. Inspired by a different aspect of overconfidence in cognitive science called \textit{overprecision}, we designed a framework for its study in black box LLMs. This framework contains three main phases: 1) generation, 2) refinement and 3) evaluation. In the generation phase we prompt the LLM to generate answers to numerical questions in the form of intervals with a certain level of confidence. This confidence level is imposed in the prompt and not required for the LLM to generate as in previous approaches. We use various prompting techniques and use the same prompt multiple times to gauge the effects of randomness in the generation process. In the refinement phase, answers from the previous phase are refined to generate better answers. The LLM answers are evaluated and studied in the evaluation phase to understand its internal workings. This study allowed us to gain various insights into LLM overprecision: 1) LLMs are highly uncalibrated for numerical tasks 2) there is no correlation between the length of the interval and the imposed confidence level, which can be symptomatic of a a) lack of understanding of the concept of confidence or b) inability to adjust self-confidence by following instructions, {3) LLM numerical precision differs depending on the task, scale of answer and prompting technique 4) Refinement of answers doesn't improve precision in most cases. We believe this study offers new perspectives on LLM overconfidence and serves as a strong baseline for overprecision in LLMs.
comment: 16 pages
OmniCaptioner: One Captioner to Rule Them All
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
comment: More visualizations on Homepage: https://alpha-innovator.github.io/OmniCaptioner-project-page and Official code: https://github.com/Alpha-Innovator/OmniCaptioner
PSCon: Product Search Through Conversations SIGIR 2025
Conversational Product Search ( CPS ) systems interact with users via natural language to offer personalized and context-aware product lists. However, most existing research on CPS is limited to simulated conversations, due to the lack of a real CPS dataset driven by human-like language. Moreover, existing conversational datasets for e-commerce are constructed for a particular market or a particular language and thus can not support cross-market and multi-lingual usage. In this paper, we propose a CPS data collection protocol and create a new CPS dataset, called PSCon, which assists product search through conversations with human-like language. The dataset is collected by a coached human-human data collection protocol and is available for dual markets and two languages. By formulating the task of CPS, the dataset allows for comprehensive and in-depth research on six subtasks: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Moreover, we present a concise analysis of the dataset and propose a benchmark model on the proposed CPS dataset. Our proposed dataset and model will be helpful for facilitating future research on CPS.
comment: 11 pages. Accepted by SIGIR 2025
SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning
Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.
Fake News Detection: It's All in the Data!
This comprehensive survey serves as an indispensable resource for researchers embarking on the journey of fake news detection. By highlighting the pivotal role of dataset quality and diversity, it underscores the significance of these elements in the effectiveness and robustness of detection models. The survey meticulously outlines the key features of datasets, various labeling systems employed, and prevalent biases that can impact model performance. Additionally, it addresses critical ethical issues and best practices, offering a thorough overview of the current state of available datasets. Our contribution to this field is further enriched by the provision of GitHub repository, which consolidates publicly accessible datasets into a single, user-friendly portal. This repository is designed to facilitate and stimulate further research and development efforts aimed at combating the pervasive issue of fake news.
Large language models for newspaper sentiment analysis during COVID-19: The Guardian
During the COVID-19 pandemic, the news media coverage encompassed a wide range of topics that includes viral transmission, allocation of medical resources, and government response measures. There have been studies on sentiment analysis of social media platforms during COVID-19 to understand the public response given the rise of cases and government strategies implemented to control the spread of the virus. Sentiment analysis can provide a better understanding of changes in societal opinions and emotional trends during the pandemic. Apart from social media, newspapers have played a vital role in the dissemination of information, including information from the government, experts, and also the public about various topics. A study of sentiment analysis of newspaper sources during COVID-19 for selected countries can give an overview of how the media covered the pandemic. In this study, we select The Guardian newspaper and provide a sentiment analysis during various stages of COVID-19 that includes initial transmission, lockdowns and vaccination. We employ novel large language models (LLMs) and refine them with expert-labelled sentiment analysis data. We also provide an analysis of sentiments experienced pre-pandemic for comparison. The results indicate that during the early pandemic stages, public sentiment prioritised urgent crisis response, later shifting focus to addressing the impact on health and the economy. In comparison with related studies about social media sentiment analyses, we found a discrepancy between The Guardian with dominance of negative sentiments (sad, annoyed, anxious and denial), suggesting that social media offers a more diversified emotional reflection. We found a grim narrative in The Guardian with overall dominance of negative sentiments, pre and during COVID-19 across news sections including Australia, UK, World News, and Opinion
Exploring LLM-based Student Simulation for Metacognitive Cultivation
Metacognitive education plays a crucial role in cultivating students' self-regulation and reflective thinking, providing essential support for those with learning difficulties through academic advising. Simulating students with insufficient learning capabilities using large language models offers a promising approach to refining pedagogical methods without ethical concerns. However, existing simulations often fail to authentically represent students' learning struggles and face challenges in evaluation due to the lack of reliable metrics and ethical constraints in data collection. To address these issues, we propose a pipeline for automatically generating and filtering high-quality simulated student agents. Our approach leverages a two-round automated scoring system validated by human experts and employs a score propagation module to obtain more consistent scores across the student graph. Experimental results demonstrate that our pipeline efficiently identifies high-quality student agents, and we discuss the traits that influence the simulation's effectiveness. By simulating students with varying degrees of learning difficulties, our work paves the way for broader applications in personalized learning and educational assessment.
comment: This work has been submitted to the IEEE for possible publication
LIFT: Improving Long Context Understanding of Large Language Models through Long Input Fine-Tuning
Long context understanding remains challenging for large language models due to their limited context windows. This paper presents Long Input Fine-Tuning (LIFT), a novel framework for long-context modeling that can improve the long-context performance of arbitrary (short-context) LLMs by dynamically adapting model parameters based on the long input. Importantly, LIFT, rather than endlessly extending the context window size to accommodate increasingly longer inputs in context, chooses to store and absorb the long input in parameter. By fine-tuning the long input into model parameters, LIFT allows short-context LLMs to answer questions even when the required information is not provided in the context during inference. Furthermore, to enhance LIFT performance while maintaining the original in-context learning (ICL) capabilities, we introduce Gated Memory, a specialized attention adapter that automatically balances long input memorization and ICL. We provide a comprehensive analysis of the strengths and limitations of LIFT on long context understanding, offering valuable directions for future research.
Understanding Dataset Difficulty with $\mathcal{V}$-Usable Information ICML 2022
Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty -- w.r.t. a model $\mathcal{V}$ -- as the lack of $\mathcal{V}$-$\textit{usable information}$ (Xu et al., 2019), where a lower value indicates a more difficult dataset for $\mathcal{V}$. We further introduce $\textit{pointwise $\mathcal{V}$-information}$ (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, $\mathcal{V}$-$\textit{usable information}$ and PVI also permit the converse: for a given model $\mathcal{V}$, we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.
comment: ICML 2022 (Outstanding Paper)
Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.
comment: Project page: https://danielchyeh.github.io/All-Angles-Bench/
Computation and Language
Calibrating Translation Decoding with Quality Estimation on LLMs
Neural machine translation (NMT) systems typically employ maximum a posteriori (MAP) decoding to select the highest-scoring translation from the distribution mass. However, recent evidence highlights the inadequacy of MAP decoding, often resulting in low-quality or even pathological hypotheses -- the decoding objective is not aligned with real-world translation quality. This paper proposes calibrating hypothesis likelihoods with translation quality from a distribution view by directly optimizing their Pearson correlation -- thereby enhancing the effectiveness of translation decoding. With our method, translation on large language models (LLMs) improves substantially after limited training (2K instances per direction). This improvement is orthogonal to those achieved through supervised fine-tuning, leading to substantial gains across a broad range of metrics and human evaluations -- even when applied to top-performing translation-specialized LLMs fine-tuned on high-quality translation data, such as Tower, or when compared to recent preference optimization methods, like CPO. Moreover, the calibrated translation likelihood can directly serve as a strong proxy for translation quality, closely approximating or even surpassing some state-of-the-art translation quality estimation models, like CometKiwi. Lastly, our in-depth analysis demonstrates that calibration enhances the effectiveness of MAP decoding, thereby enabling greater efficiency in real-world deployment. The resulting state-of-the-art translation model, which covers 10 languages, along with the accompanying code and human evaluation data, has been released to the community: https://github.com/moore3930/calibrating-llm-mt.
KETCHUP: K-Step Return Estimation for Sequential Knowledge Distillation
We propose a novel k-step return estimation method (called KETCHUP) for Reinforcement Learning(RL)-based knowledge distillation (KD) in text generation tasks. Our idea is to induce a K-step return by using the Bellman Optimality Equation for multiple steps. Theoretical analysis shows that this K-step formulation reduces the variance of the gradient estimates, thus leading to improved RL optimization especially when the student model size is large. Empirical evaluation on three text generation tasks demonstrates that our approach yields superior performance in both standard task metrics and large language model (LLM)-based evaluation. These results suggest that our K-step return induction offers a promising direction for enhancing RL-based KD in LLM research.
Advancing Scientific Text Classification: Fine-Tuned Models with Dataset Expansion and Hard-Voting
Efficient text classification is essential for handling the increasing volume of academic publications. This study explores the use of pre-trained language models (PLMs), including BERT, SciBERT, BioBERT, and BlueBERT, fine-tuned on the Web of Science (WoS-46985) dataset for scientific text classification. To enhance performance, we augment the dataset by executing seven targeted queries in the WoS database, retrieving 1,000 articles per category aligned with WoS-46985's main classes. PLMs predict labels for this unlabeled data, and a hard-voting strategy combines predictions for improved accuracy and confidence. Fine-tuning on the expanded dataset with dynamic learning rates and early stopping significantly boosts classification accuracy, especially in specialized domains. Domain-specific models like SciBERT and BioBERT consistently outperform general-purpose models such as BERT. These findings underscore the efficacy of dataset augmentation, inference-driven label prediction, hard-voting, and fine-tuning techniques in creating robust and scalable solutions for automated academic text classification.
comment: 6 pages, 1 figure, 8 tables
Graph of Attacks: Improved Black-Box and Interpretable Jailbreaks for LLMs
The challenge of ensuring Large Language Models (LLMs) align with societal standards is of increasing interest, as these models are still prone to adversarial jailbreaks that bypass their safety mechanisms. Identifying these vulnerabilities is crucial for enhancing the robustness of LLMs against such exploits. We propose Graph of ATtacks (GoAT), a method for generating adversarial prompts to test the robustness of LLM alignment using the Graph of Thoughts framework [Besta et al., 2024]. GoAT excels at generating highly effective jailbreak prompts with fewer queries to the victim model than state-of-the-art attacks, achieving up to five times better jailbreak success rate against robust models like Llama. Notably, GoAT creates high-quality, human-readable prompts without requiring access to the targeted model's parameters, making it a black-box attack. Unlike approaches constrained by tree-based reasoning, GoAT's reasoning is based on a more intricate graph structure. By making simultaneous attack paths aware of each other's progress, this dynamic framework allows a deeper integration and refinement of reasoning paths, significantly enhancing the collaborative exploration of adversarial vulnerabilities in LLMs. At a technical level, GoAT starts with a graph structure and iteratively refines it by combining and improving thoughts, enabling synergy between different thought paths. The code for our implementation can be found at: https://github.com/GoAT-pydev/Graph_of_Attacks.
comment: 19 pages, 1 figure, 6 tables
Dynamic Fisher-weighted Model Merging via Bayesian Optimization
The fine-tuning of pre-trained language models has resulted in the widespread availability of task-specific models. Model merging offers an efficient way to create multi-task models by combining these fine-tuned models at the parameter level, without the need for training data or joint training on multiple datasets. Existing merging approaches typically involve scaling the parameters model-wise or integrating parameter importance parameter-wise. Both approaches exhibit their own weaknesses, leading to a notable performance gap compared to multi-task fine-tuning. In this paper, we unify these seemingly distinct strategies into a more general merging framework, and introduce Dynamic Fisher-weighted Merging (DF-Merge). Specifically, candidate models are associated with a set of coefficients that linearly scale their fine-tuned parameters. Bayesian optimization is applied to dynamically adjust these coefficients, aiming to maximize overall performance on validation sets. Each iteration of this process integrates parameter importance based on the Fisher information conditioned by the coefficients. Experimental results show that DF-Merge outperforms strong baselines across models of different sizes and a variety of tasks. Our analysis shows that the effectiveness of DF-Merge arises from the unified view of merging and that near-optimal performance is achievable in a few iterations, even with minimal validation data.
LINC: Supporting Language Independent Communication and Comprehension to Enhance Contribution in Multilingual Collaborative Meetings
Collaborative research often includes contributors with varied perspectives from diverse linguistic backgrounds. However, English as a Second Language (ESL) researchers often struggle to communicate during meetings in English and comprehend discussions, leading to limited contribution. To investigate these challenges, we surveyed 64 ESL researchers who frequently collaborate in multilingual teams and identified four key design goals around participation, comprehension, documentation, and feedback. Guided by these design goals, we developed LINC, a multimodal Language INdependent Collaboration system with two components: a real-time module for multilingual communication during meetings and a post-meeting dashboard for discussion analysis. We evaluated the system through a two-phased study with six triads of multilingual teams. We found that using LINC, participants benefited from communicating in their preferred language, recalled and reviewed actionable insights, and prepared for upcoming meetings effectively. We discuss external factors that impact multilingual meeting participation beyond language preferences and the implications of multimodal systems in facilitating meetings in hybrid multilingual collaborative settings beyond research.
comment: 19 pages, 4 figures. Multimodal system design and evaluation study
LawFlow : Collecting and Simulating Lawyers' Thought Processes
Legal practitioners, particularly those early in their careers, face complex, high-stakes tasks that require adaptive, context-sensitive reasoning. While AI holds promise in supporting legal work, current datasets and models are narrowly focused on isolated subtasks and fail to capture the end-to-end decision-making required in real-world practice. To address this gap, we introduce LawFlow, a dataset of complete end-to-end legal workflows collected from trained law students, grounded in real-world business entity formation scenarios. Unlike prior datasets focused on input-output pairs or linear chains of thought, LawFlow captures dynamic, modular, and iterative reasoning processes that reflect the ambiguity, revision, and client-adaptive strategies of legal practice. Using LawFlow, we compare human and LLM-generated workflows, revealing systematic differences in structure, reasoning flexibility, and plan execution. Human workflows tend to be modular and adaptive, while LLM workflows are more sequential, exhaustive, and less sensitive to downstream implications. Our findings also suggest that legal professionals prefer AI to carry out supportive roles, such as brainstorming, identifying blind spots, and surfacing alternatives, rather than executing complex workflows end-to-end. Building on these findings, we propose a set of design suggestions, rooted in empirical observations, that align AI assistance with human goals of clarity, completeness, creativity, and efficiency, through hybrid planning, adaptive execution, and decision-point support. Our results highlight both the current limitations of LLMs in supporting complex legal workflows and opportunities for developing more collaborative, reasoning-aware legal AI systems. All data and code are available on our project page (https://minnesotanlp.github.io/LawFlow-website/).
comment: submitted to COLM 2025
MTCSC: Retrieval-Augmented Iterative Refinement for Chinese Spelling Correction
Chinese Spelling Correction (CSC) aims to detect and correct erroneous tokens in sentences. While Large Language Models (LLMs) have shown remarkable success in identifying and rectifying potential errors, they often struggle with maintaining consistent output lengths and adapting to domain-specific corrections. Furthermore, existing CSC task impose rigid constraints requiring input and output lengths to be identical, limiting their applicability. In this work, we extend traditional CSC to variable-length correction scenarios, including Chinese Splitting Error Correction (CSEC) and ASR N-best Error Correction. To address domain adaptation and length consistency, we propose MTCSC (Multi-Turn CSC) framework based on RAG enhanced with a length reflection mechanism. Our approach constructs a retrieval database from domain-specific training data and dictionaries, fine-tuning retrievers to optimize performance for error-containing inputs. Additionally, we introduce a multi-source combination strategy with iterative length reflection to ensure output length fidelity. Experiments across diverse domain datasets demonstrate that our method significantly outperforms current approaches in correction quality, particularly in handling domain-specific and variable-length error correction tasks.
comment: 12 pages, 2 figures
Clinical knowledge in LLMs does not translate to human interactions
Global healthcare providers are exploring use of large language models (LLMs) to provide medical advice to the public. LLMs now achieve nearly perfect scores on medical licensing exams, but this does not necessarily translate to accurate performance in real-world settings. We tested if LLMs can assist members of the public in identifying underlying conditions and choosing a course of action (disposition) in ten medical scenarios in a controlled study with 1,298 participants. Participants were randomly assigned to receive assistance from an LLM (GPT-4o, Llama 3, Command R+) or a source of their choice (control). Tested alone, LLMs complete the scenarios accurately, correctly identifying conditions in 94.9% of cases and disposition in 56.3% on average. However, participants using the same LLMs identified relevant conditions in less than 34.5% of cases and disposition in less than 44.2%, both no better than the control group. We identify user interactions as a challenge to the deployment of LLMs for medical advice. Standard benchmarks for medical knowledge and simulated patient interactions do not predict the failures we find with human participants. Moving forward, we recommend systematic human user testing to evaluate interactive capabilities prior to public deployments in healthcare.
comment: 52 pages, 4 figures
A Simple Ensemble Strategy for LLM Inference: Towards More Stable Text Classification
With the advance of large language models (LLMs), LLMs have been utilized for the various tasks. However, the issues of variability and reproducibility of results from each trial of LLMs have been largely overlooked in existing literature while actual human annotation uses majority voting to resolve disagreements among annotators. Therefore, this study introduces the straightforward ensemble strategy to a sentiment analysis using LLMs. As the results, we demonstrate that the ensemble of multiple inference using medium-sized LLMs produces more robust and accurate results than using a large model with a single attempt with reducing RMSE by 18.6%.
comment: This manuscript has been accepted for the 30th International Conference on Natural Language & Information Systems (NLDB 2025). The final version will appear in the Springer LNCS proceedings. arXiv admin note: text overlap with arXiv:2407.13069
Latent Adversarial Training Improves the Representation of Refusal
Recent work has shown that language models' refusal behavior is primarily encoded in a single direction in their latent space, making it vulnerable to targeted attacks. Although Latent Adversarial Training (LAT) attempts to improve robustness by introducing noise during training, a key question remains: How does this noise-based training affect the underlying representation of refusal behavior? Understanding this encoding is crucial for evaluating LAT's effectiveness and limitations, just as the discovery of linear refusal directions revealed vulnerabilities in traditional supervised safety fine-tuning (SSFT). Through the analysis of Llama 2 7B, we examine how LAT reorganizes the refusal behavior in the model's latent space compared to SSFT and embedding space adversarial training (AT). By computing activation differences between harmful and harmless instruction pairs and applying Singular Value Decomposition (SVD), we find that LAT significantly alters the refusal representation, concentrating it in the first two SVD components which explain approximately 75 percent of the activation differences variance - significantly higher than in reference models. This concentrated representation leads to more effective and transferable refusal vectors for ablation attacks: LAT models show improved robustness when attacked with vectors from reference models but become more vulnerable to self-generated vectors compared to SSFT and AT. Our findings suggest that LAT's training perturbations enable a more comprehensive representation of refusal behavior, highlighting both its potential strengths and vulnerabilities for improving model safety.
Effective Length Extrapolation via Dimension-Wise Positional Embeddings Manipulation
Large Language Models (LLMs) often struggle to process and generate coherent context when the number of input tokens exceeds the pre-trained length. Recent advancements in long-context extension have significantly expanded the context window of LLMs but require expensive overhead to train the large-scale models with longer context. In this work, we propose Dimension-Wise Positional Embeddings Manipulation (DPE), a training-free framework to extrapolate the context window of LLMs by diving into RoPE's different hidden dimensions. Instead of manipulating all dimensions equally, DPE detects the effective length for every dimension and finds the key dimensions for context extension. We reuse the original position indices with their embeddings from the pre-trained model and manipulate the key dimensions' position indices to their most effective lengths. In this way, DPE adjusts the pre-trained models with minimal modifications while ensuring that each dimension reaches its optimal state for extrapolation. DPE significantly surpasses well-known baselines such as YaRN and Self-Extend. DPE enables Llama3-8k 8B to support context windows of 128k tokens without continual training and integrates seamlessly with Flash Attention 2. In addition to its impressive extrapolation capability, DPE also dramatically improves the models' performance within training length, such as Llama3.1 70B, by over 18 points on popular long-context benchmarks RULER. When compared with commercial models, Llama 3.1 70B with DPE even achieves better performance than GPT-4-128K.
When2Call: When (not) to Call Tools NAACL 2025
Leveraging external tools is a key feature for modern Language Models (LMs) to expand their capabilities and integrate them into existing systems. However, existing benchmarks primarily focus on the accuracy of tool calling -- whether the correct tool is called with the correct parameters -- and less on evaluating when LMs should (not) call tools. We develop a new benchmark, When2Call, which evaluates tool-calling decision-making: when to generate a tool call, when to ask follow-up questions and when to admit the question can't be answered with the tools provided. We find that state-of-the-art tool-calling LMs show significant room for improvement on When2Call, indicating the importance of this benchmark. We also develop a training set for When2Call and leverage the multiple-choice nature of the benchmark to develop a preference optimization training regime, which shows considerably more improvement than traditional fine-tuning. We release the benchmark and training data as well as evaluation scripts at https://github.com/NVIDIA/When2Call.
comment: NAACL 2025
Towards Robust Dialogue Breakdown Detection: Addressing Disruptors in Large Language Models with Self-Guided Reasoning
Large language models (LLMs) are rapidly changing various domains. However, their capabilities in handling conversational breakdowns still require an in-depth exploration. This paper addresses the challenge of detecting and mitigating dialogue breakdowns within LLM-driven conversational systems. While powerful models from OpenAI and Anthropic excel in many dialogue tasks, they can still produce incoherent or contradictory responses, commonly referred to as breakdowns, which undermine user trust. To tackle this, we propose an approach that combines specialized fine-tuning with advanced prompting strategies, including few-shot learning, chain-of-thought reasoning, and analogical prompting. In particular, we fine-tune a small 8B model and demonstrate its robust classification and calibration capabilities in English and Japanese dialogue. We also validate its generalization on the BETOLD dataset, achieving a 7\% accuracy improvement over its base model. Furthermore, we introduce a real-time deployment architecture that selectively escalates suspicious responses to more resource-intensive frontier models only when breakdowns are detected, significantly cutting operational expenses and energy consumption. Experimental results show our method surpasses prior state-of-the-art specialized classifiers while also narrowing performance gaps between smaller open-source models and large proprietary ones. Our approach offers a scalable solution for robust conversational AI in high-impact domains by combining efficiency, interpretability, and reliability.
Toward Generalizable Evaluation in the LLM Era: A Survey Beyond Benchmarks
Large Language Models (LLMs) are advancing at an amazing speed and have become indispensable across academia, industry, and daily applications. To keep pace with the status quo, this survey probes the core challenges that the rise of LLMs poses for evaluation. We identify and analyze two pivotal transitions: (i) from task-specific to capability-based evaluation, which reorganizes benchmarks around core competencies such as knowledge, reasoning, instruction following, multi-modal understanding, and safety; and (ii) from manual to automated evaluation, encompassing dynamic dataset curation and "LLM-as-a-judge" scoring. Yet, even with these transitions, a crucial obstacle persists: the evaluation generalization issue. Bounded test sets cannot scale alongside models whose abilities grow seemingly without limit. We will dissect this issue, along with the core challenges of the above two transitions, from the perspectives of methods, datasets, evaluators, and metrics. Due to the fast evolving of this field, we will maintain a living GitHub repository (links are in each section) to crowd-source updates and corrections, and warmly invite contributors and collaborators.
Stealing Creator's Workflow: A Creator-Inspired Agentic Framework with Iterative Feedback Loop for Improved Scientific Short-form Generation
Generating engaging, accurate short-form videos from scientific papers is challenging due to content complexity and the gap between expert authors and readers. Existing end-to-end methods often suffer from factual inaccuracies and visual artifacts, limiting their utility for scientific dissemination. To address these issues, we propose SciTalk, a novel multi-LLM agentic framework, grounding videos in various sources, such as text, figures, visual styles, and avatars. Inspired by content creators' workflows, SciTalk uses specialized agents for content summarization, visual scene planning, and text and layout editing, and incorporates an iterative feedback mechanism where video agents simulate user roles to give feedback on generated videos from previous iterations and refine generation prompts. Experimental evaluations show that SciTalk outperforms simple prompting methods in generating scientifically accurate and engaging content over the refined loop of video generation. Although preliminary results are still not yet matching human creators' quality, our framework provides valuable insights into the challenges and benefits of feedback-driven video generation. Our code, data, and generated videos will be publicly available.
comment: Project page: https://minnesotanlp.github.io/scitalk-project-page/
SynLexLM: Scaling Legal LLMs with Synthetic Data and Curriculum Learning
Large Language Models (LLMs) are powerful but often require extensive fine-tuning and large datasets for specialized domains like law. General-purpose pre-training may not capture legal nuances, and acquiring sufficient legal data is challenging. We introduce SynLexLM, a novel approach to efficiently pre-train a legal LLM. Our method employs curriculum learning, progressing from simple to complex legal texts and queries, combined with synthetic data augmentation using models like Gemini Pro to address data scarcity. We aim to achieve improved performance on legal benchmarks (BigLaw-Bench, EUR-Lex-Sum) compared to traditional models and fine-tuned versions. Preliminary work involves generating synthetic QA pairs reflecting legal reasoning. This work aims to enhance legal document analysis and research tools, potentially democratizing access to advanced legal AI.
comment: 9 pages, 4 figures, 4 tables
Generative Product Recommendations for Implicit Superlative Queries
In Recommender Systems, users often seek the best products through indirect, vague, or under-specified queries, such as "best shoes for trail running". Such queries, also referred to as implicit superlative queries, pose a significant challenge for standard retrieval and ranking systems as they lack an explicit mention of attributes and require identifying and reasoning over complex factors. We investigate how Large Language Models (LLMs) can generate implicit attributes for ranking as well as reason over them to improve product recommendations for such queries. As a first step, we propose a novel four-point schema for annotating the best product candidates for superlative queries called SUPERB, paired with LLM-based product annotations. We then empirically evaluate several existing retrieval and ranking approaches on our new dataset, providing insights and discussing their integration into real-world e-commerce production systems.
LaMsS: When Large Language Models Meet Self-Skepticism ICLR 2025
Hallucination is a major challenge for large language models (LLMs), preventing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hallucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, representing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accuracy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures, ICLR 2025 Workshop SSI-FM,
Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning
Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins. Code is available at: https://github.com/going-doer/Paper2Code.
Steering the CensorShip: Uncovering Representation Vectors for LLM "Thought" Control
Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector. Our code is publicly available at: https://github.com/hannahxchen/llm-censorship-steering
Cognitive and Cultural Topology of Linguistic Categories:A Semantic-Pragmatic Metric Approach
In recent years, the field of NLP has seen growing interest in modeling both semantic and pragmatic dimensions. Despite this progress, two key challenges persist: firstly, the complex task of mapping and analyzing the interactions between semantic and pragmatic features; secondly, the insufficient incorporation of relevant insights from related disciplines outside NLP. Addressing these issues, this study introduces a novel geometric metric that utilizes word co-occurrence patterns. This metric maps two fundamental properties - semantic typicality (cognitive) and pragmatic salience (socio-cultural) - for basic-level categories within a two-dimensional hyperbolic space. Our evaluations reveal that this semantic-pragmatic metric produces mappings for basic-level categories that not only surpass traditional cognitive semantics benchmarks but also demonstrate significant socio-cultural relevance. This finding proposes that basic-level categories, traditionally viewed as semantics-driven cognitive constructs, should be examined through the lens of both semantic and pragmatic dimensions, highlighting their role as a cognitive-cultural interface. The broad contribution of this paper lies in the development of medium-sized, interpretable, and human-centric language embedding models, which can effectively blend semantic and pragmatic dimensions to elucidate both the cognitive and socio-cultural significance of linguistic categories.
comment: 12 Pages; 3 figures
A Guide to Misinformation Detection Data and Evaluation
Misinformation is a complex societal issue, and mitigating solutions are difficult to create due to data deficiencies. To address this, we have curated the largest collection of (mis)information datasets in the literature, totaling 75. From these, we evaluated the quality of 36 datasets that consist of statements or claims, as well as the 9 datasets that consist of data in purely paragraph form. We assess these datasets to identify those with solid foundations for empirical work and those with flaws that could result in misleading and non-generalizable results, such as spurious correlations, or examples that are ambiguous or otherwise impossible to assess for veracity. We find the latter issue is particularly severe and affects most datasets in the literature. We further provide state-of-the-art baselines on all these datasets, but show that regardless of label quality, categorical labels may no longer give an accurate evaluation of detection model performance. Finally, we propose and highlight Evaluation Quality Assurance (EQA) as a tool to guide the field toward systemic solutions rather than inadvertently propagating issues in evaluation. Overall, this guide aims to provide a roadmap for higher quality data and better grounded evaluations, ultimately improving research in misinformation detection. All datasets and other artifacts are available at misinfo-datasets.complexdatalab.com.
Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) aims to augment the capabilities of Large Language Models (LLMs) by retrieving and incorporate external documents or chunks prior to generation. However, even improved retriever relevance can brings erroneous or contextually distracting information, undermining the effectiveness of RAG in downstream tasks. We introduce a compact, efficient, and pluggable module designed to refine retrieved chunks before using them for generation. The module aims to extract and reorganize the most relevant and supportive information into a concise, query-specific format. Through a three-stage training paradigm - comprising supervised fine - tuning, contrastive multi-task learning, and reinforcement learning-based alignment - it prioritizes critical knowledge and aligns it with the generator's preferences. This approach enables LLMs to produce outputs that are more accurate, reliable, and contextually appropriate.
comment: 16 pages
CREAM: Consistency Regularized Self-Rewarding Language Models ICLR 2025
Recent self-rewarding large language models (LLM) have successfully applied LLM-as-a-Judge to iteratively improve the alignment performance without the need of human annotations for preference data. These methods commonly utilize the same LLM to act as both the policy model (which generates responses) and the reward model (which scores and ranks those responses). The ranked responses are then used as preference pairs to train the LLM via direct alignment technologies (e.g. DPO). However, it is noteworthy that throughout this process, there is no guarantee of accuracy in the rewarding and ranking, which is critical for ensuring accurate rewards and high-quality preference data. Empirical results from relatively small LLMs (e.g., 7B parameters) also indicate that improvements from self-rewarding may diminish after several iterations in certain situations, which we hypothesize is due to accumulated bias in the reward system. This bias can lead to unreliable preference data for training the LLM. To address this issue, we first formulate and analyze the generalized iterative preference fine-tuning framework for self-rewarding language model. We then introduce the regularization to this generalized framework to mitigate the overconfident preference labeling in the self-rewarding process. Based on this theoretical insight, we propose a Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that leverages the consistency of rewards across different iterations to regularize the self-rewarding training, helping the model to learn from more reliable preference data. With this explicit regularization, our empirical results demonstrate the superiority of CREAM in improving both reward consistency and alignment performance. The code is publicly available at https://github.com/Raibows/CREAM.
comment: To appear at ICLR 2025
Evaluating the Quality of Benchmark Datasets for Low-Resource Languages: A Case Study on Turkish
The reliance on translated or adapted datasets from English or multilingual resources introduces challenges regarding linguistic and cultural suitability. This study addresses the need for robust and culturally appropriate benchmarks by evaluating the quality of 17 commonly used Turkish benchmark datasets. Using a comprehensive framework that assesses six criteria, both human and LLM-judge annotators provide detailed evaluations to identify dataset strengths and shortcomings. Our results reveal that 70% of the benchmark datasets fail to meet our heuristic quality standards. The correctness of the usage of technical terms is the strongest criterion, but 85% of the criteria are not satisfied in the examined datasets. Although LLM judges demonstrate potential, they are less effective than human annotators, particularly in understanding cultural common sense knowledge and interpreting fluent, unambiguous text. GPT-4o has stronger labeling capabilities for grammatical and technical tasks, while Llama3.3-70B excels at correctness and cultural knowledge evaluation. Our findings emphasize the urgent need for more rigorous quality control in creating and adapting datasets for low-resource languages.
Generative Meta-Learning for Zero-Shot Relation Triplet Extraction
Zero-shot Relation Triplet Extraction (ZeroRTE) aims to extract relation triplets from texts containing unseen relation types. This capability benefits various downstream information retrieval (IR) tasks. The primary challenge lies in enabling models to generalize effectively to unseen relation categories. Existing approaches typically leverage the knowledge embedded in pre-trained language models to accomplish the generalization process. However, these methods focus solely on fitting the training data during training, without specifically improving the model's generalization performance, resulting in limited generalization capability. For this reason, we explore the integration of bi-level optimization (BLO) with pre-trained language models for learning generalized knowledge directly from the training data, and propose a generative meta-learning framework which exploits the `learning-to-learn' ability of meta-learning to boost the generalization capability of generative models. Specifically, we introduce a BLO approach that simultaneously addresses data fitting and generalization. This is achieved by constructing an upper-level loss to focus on generalization and a lower-level loss to ensure accurate data fitting. Building on this, we subsequently develop three generative meta-learning methods, each tailored to a distinct category of meta-learning. Extensive experimental results demonstrate that our framework performs well on the ZeroRTE task. Our code is available at https://github.com/leeworry/TGM-MetaLearning.
Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
An Explainable Biomedical Foundation Model via Large-Scale Concept-Enhanced Vision-Language Pre-training
The clinical adoption of artificial intelligence (AI) in medical imaging requires models that are both diagnostically accurate and interpretable to clinicians. While current multimodal biomedical foundation models prioritize performance, their black-box nature hinders explaining the decision-making process in clinically meaningful concepts. Here, we present ConceptCLIP, the first explainable biomedical foundation model that achieves state-of-the-art diagnostic accuracy while delivering human-interpretable explanations across diverse imaging modalities. We curate MedConcept-23M, the largest pre-training dataset comprising 23 million image-text-concept triplets across diverse medical modalities, where clinical concepts are derived from the Unified Medical Language System. Leveraging this dataset, we develop ConceptCLIP through a novel dual-alignment approach that simultaneously learns global image-text representations and fine-grained region-concept associations for precise and interpretable medical image analysis. We curate the most extensive evaluation benchmark for multimodal biomedical foundation models, covering 52 clinical tasks spanning 10 imaging modalities. Extensive experiments demonstrate that ConceptCLIP outperforms existing state-of-the-art multimodal biomedical foundation models. Importantly, ConceptCLIP demonstrates superior diagnostic performance while providing human-understandable explanations validated by clinical experts. As the first precise and interpretable biomedical foundation model, ConceptCLIP represents a critical milestone toward the widespread clinical adoption of AI, thereby advancing trustworthy AI in medicine.
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models ICLR 2025
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling with a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model which give a worse training signal. We tackle the fundamental challenge in this regime: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we test, online DPO is found to be most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. We verify the scalability of asynchronous RLHF by training a general-purpose chatbot from LLaMA 3.1 8B on an instruction-following task ~40% faster than a synchronous run while matching final performance. Finally, we extend our results to math and reasoning to demonstrate asynchronous RL can finetune Rho 1B on GSM8k ~70% faster while matching synchronous accuracy.
comment: accepted at ICLR 2025, code at https://github.com/mnoukhov/async_rlhf, integrated into the open-instruct library https://github.com/allenai/open-instruct
From Single to Multi: How LLMs Hallucinate in Multi-Document Summarization NAACL 2025
Although many studies have investigated and reduced hallucinations in large language models (LLMs) for single-document tasks, research on hallucination in multi-document summarization (MDS) tasks remains largely unexplored. Specifically, it is unclear how the challenges arising from handling multiple documents (e.g., repetition and diversity of information) affect models outputs. In this work, we investigate how hallucinations manifest in LLMs when summarizing topic-specific information from multiple documents. Since no benchmarks exist for investigating hallucinations in MDS, we use existing news and conversation datasets, annotated with topic-specific insights, to create two novel multi-document benchmarks. When evaluating 5 LLMs on our benchmarks, we observe that on average, up to 75% of the content in LLM-generated summary is hallucinated, with hallucinations more likely to occur towards the end of the summaries. Moreover, when summarizing non-existent topic-related information, gpt-3.5-turbo and GPT-4o still generate summaries about 79.35% and 44% of the time, raising concerns about their tendency to fabricate content. To understand the characteristics of these hallucinations, we manually evaluate 700+ insights and find that most errors stem from either failing to follow instructions or producing overly generic insights. Motivated by these observations, we investigate the efficacy of simple post-hoc baselines in mitigating hallucinations but find them only moderately effective. Our results underscore the need for more effective approaches to systematically mitigate hallucinations in MDS. We release our dataset and code at github.com/megagonlabs/Hallucination_MDS.
comment: NAACL 2025 - Findings
Compositional Subspace Representation Fine-tuning for Adaptive Large Language Models ICLR 2025
Adapting large language models to multiple tasks can cause cross-skill interference, where improvements for one skill degrade another. While methods such as LoRA impose orthogonality constraints at the weight level, they do not fully address interference in hidden-state representations. We propose Compositional Subspace Representation Fine-tuning (CS-ReFT), a novel representation-based approach that learns multiple orthonormal subspace transformations, each specializing in a distinct skill, and composes them via a lightweight router. By isolating these subspace edits in the hidden state, rather than weight matrices, CS-ReFT prevents cross-task conflicts more effectively. On the AlpacaEval benchmark, applying CS-ReFT to Llama-2-7B achieves a 93.94% win rate, surpassing GPT-3.5 Turbo (86.30%) while requiring only 0.0098% of model parameters. These findings show that specialized representation edits, composed via a simple router, significantly enhance multi-task instruction following with minimal overhead.
comment: Accepted to ICLR 2025 SCOPE
Siege: Autonomous Multi-Turn Jailbreaking of Large Language Models with Tree Search ICLR 2025
We introduce Siege, a multi-turn adversarial framework that models the gradual erosion of Large Language Model (LLM) safety through a tree search perspective. Unlike single-turn jailbreaks that rely on one meticulously engineered prompt, Siege expands the conversation at each turn in a breadth-first fashion, branching out multiple adversarial prompts that exploit partial compliance from previous responses. By tracking these incremental policy leaks and re-injecting them into subsequent queries, Siege reveals how minor concessions can accumulate into fully disallowed outputs. Evaluations on the JailbreakBench dataset show that Siege achieves a 100% success rate on GPT-3.5-turbo and 97% on GPT-4 in a single multi-turn run, using fewer queries than baselines such as Crescendo or GOAT. This tree search methodology offers an in-depth view of how model safeguards degrade over successive dialogue turns, underscoring the urgency of robust multi-turn testing procedures for language models.
comment: Accepted to ICLR 2025 Trustworthy LLM
QuaDMix: Quality-Diversity Balanced Data Selection for Efficient LLM Pretraining
Quality and diversity are two critical metrics for the training data of large language models (LLMs), positively impacting performance. Existing studies often optimize these metrics separately, typically by first applying quality filtering and then adjusting data proportions. However, these approaches overlook the inherent trade-off between quality and diversity, necessitating their joint consideration. Given a fixed training quota, it is essential to evaluate both the quality of each data point and its complementary effect on the overall dataset. In this paper, we introduce a unified data selection framework called QuaDMix, which automatically optimizes the data distribution for LLM pretraining while balancing both quality and diversity. Specifically, we first propose multiple criteria to measure data quality and employ domain classification to distinguish data points, thereby measuring overall diversity. QuaDMix then employs a unified parameterized data sampling function that determines the sampling probability of each data point based on these quality and diversity related labels. To accelerate the search for the optimal parameters involved in the QuaDMix framework, we conduct simulated experiments on smaller models and use LightGBM for parameters searching, inspired by the RegMix method. Our experiments across diverse models and datasets demonstrate that QuaDMix achieves an average performance improvement of 7.2% across multiple benchmarks. These results outperform the independent strategies for quality and diversity, highlighting the necessity and ability to balance data quality and diversity.
Image and Video Processing
Surgeons vs. Computer Vision: A comparative analysis on surgical phase recognition capabilities
Purpose: Automated Surgical Phase Recognition (SPR) uses Artificial Intelligence (AI) to segment the surgical workflow into its key events, functioning as a building block for efficient video review, surgical education as well as skill assessment. Previous research has focused on short and linear surgical procedures and has not explored if temporal context influences experts' ability to better classify surgical phases. This research addresses these gaps, focusing on Robot-Assisted Partial Nephrectomy (RAPN) as a highly non-linear procedure. Methods: Urologists of varying expertise were grouped and tasked to indicate the surgical phase for RAPN on both single frames and video snippets using a custom-made web platform. Participants reported their confidence levels and the visual landmarks used in their decision-making. AI architectures without and with temporal context as trained and benchmarked on the Cholec80 dataset were subsequently trained on this RAPN dataset. Results: Video snippets and presence of specific visual landmarks improved phase classification accuracy across all groups. Surgeons displayed high confidence in their classifications and outperformed novices, who struggled discriminating phases. The performance of the AI models is comparable to the surgeons in the survey, with improvements when temporal context was incorporated in both cases. Conclusion: SPR is an inherently complex task for expert surgeons and computer vision, where both perform equally well when given the same context. Performance increases when temporal information is provided. Surgical tools and organs form the key landmarks for human interpretation and are expected to shape the future of automated SPR.
WLTCL: Wide Field-of-View 3-D LiDAR Truck Compartment Automatic Localization System
As an essential component of logistics automation, the automated loading system is becoming a critical technology for enhancing operational efficiency and safety. Precise automatic positioning of the truck compartment, which serves as the loading area, is the primary step in automated loading. However, existing methods have difficulty adapting to truck compartments of various sizes, do not establish a unified coordinate system for LiDAR and mobile manipulators, and often exhibit reliability issues in cluttered environments. To address these limitations, our study focuses on achieving precise automatic positioning of key points in large, medium, and small fence-style truck compartments in cluttered scenarios. We propose an innovative wide field-of-view 3-D LiDAR vehicle compartment automatic localization system. For vehicles of various sizes, this system leverages the LiDAR to generate high-density point clouds within an extensive field-of-view range. By incorporating parking area constraints, our vehicle point cloud segmentation method more effectively segments vehicle point clouds within the scene. Our compartment key point positioning algorithm utilizes the geometric features of the compartments to accurately locate the corner points, providing stackable spatial regions. Extensive experiments on our collected data and public datasets demonstrate that this system offers reliable positioning accuracy and reduced computational resource consumption, leading to its application and promotion in relevant fields.
comment: To appear in IEEE TIM
Theoretical Framework for Tempered Fractional Gradient Descent: Application to Breast Cancer Classification
This paper introduces Tempered Fractional Gradient Descent (TFGD), a novel optimization framework that synergizes fractional calculus with exponential tempering to enhance gradient-based learning. Traditional gradient descent methods often suffer from oscillatory updates and slow convergence in high-dimensional, noisy landscapes. TFGD addresses these limitations by incorporating a tempered memory mechanism, where historical gradients are weighted by fractional coefficients $|w_j| = \binom{\alpha}{j}$ and exponentially decayed via a tempering parameter $\lambda$. Theoretical analysis establishes TFGD's convergence guarantees: in convex settings, it achieves an $\mathcal{O}(1/K)$ rate with alignment coefficient $d_{\alpha,\lambda} = (1 - e^{-\lambda})^{-\alpha}$, while stochastic variants attain $\mathcal{O}(1/k^\alpha)$ error decay. The algorithm maintains $\mathcal{O}(n)$ time complexity equivalent to SGD, with memory overhead scaling as $\mathcal{O}(d/\lambda)$ for parameter dimension $d$. Empirical validation on the Breast Cancer Wisconsin dataset demonstrates TFGD's superiority, achieving 98.25\% test accuracy (vs. 92.11\% for SGD) and 2$\times$ faster convergence. The tempered memory mechanism proves particularly effective in medical classification tasks, where feature correlations benefit from stable gradient averaging. These results position TFGD as a robust alternative to conventional optimizers in both theoretical and applied machine learning.
Reservoir-enhanced Segment Anything Model for Subsurface Diagnosis
Urban roads and infrastructure, vital to city operations, face growing threats from subsurface anomalies like cracks and cavities. Ground Penetrating Radar (GPR) effectively visualizes underground conditions employing electromagnetic (EM) waves; however, accurate anomaly detection via GPR remains challenging due to limited labeled data, varying subsurface conditions, and indistinct target boundaries. Although visually image-like, GPR data fundamentally represent EM waves, with variations within and between waves critical for identifying anomalies. Addressing these, we propose the Reservoir-enhanced Segment Anything Model (Res-SAM), an innovative framework exploiting both visual discernibility and wave-changing properties of GPR data. Res-SAM initially identifies apparent candidate anomaly regions given minimal prompts, and further refines them by analyzing anomaly-induced changing information within and between EM waves in local GPR data, enabling precise and complete anomaly region extraction and category determination. Real-world experiments demonstrate that Res-SAM achieves high detection accuracy (>85%) and outperforms state-of-the-art. Notably, Res-SAM requires only minimal accessible non-target data, avoids intensive training, and incorporates simple human interaction to enhance reliability. Our research provides a scalable, resource-efficient solution for rapid subsurface anomaly detection across diverse environments, improving urban safety monitoring while reducing manual effort and computational cost.
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Neuroimaging provides a critical framework for characterizing brain activity by quantifying connectivity patterns and functional architecture across modalities. While modern machine learning has significantly advanced our understanding of neural processing mechanisms through these datasets, decoding task-specific signatures must contend with inherent neuroimaging constraints, for example, low signal-to-noise ratios in raw electrophysiological recordings, cross-session non-stationarity, and limited sample sizes. This review focuses on machine learning approaches for covariance-based neuroimaging data, where often symmetric positive definite (SPD) matrices under full-rank conditions encode inter-channel relationships. By equipping the space of SPD matrices with Riemannian metrics (e.g., affine-invariant or log-Euclidean), their space forms a Riemannian manifold enabling geometric analysis. We unify methodologies operating on this manifold under the SPD learning framework, which systematically leverages the SPD manifold's geometry to process covariance features, thereby advancing brain imaging analytics.
comment: 20 pages, 3 figures, 2 tables; This paper has been submitted for possible publication, and currently under review
Hierarchical Attention Diffusion Networks with Object Priors for Video Change Detection
We present a unified change detection pipeline that combines instance level masking, multi\-scale attention within a denoising diffusion model, and per pixel semantic classification, all refined via SSIM to match human perception. By first isolating only temporally novel objects with Mask R\-CNN, then guiding diffusion updates through hierarchical cross attention to object and global contexts, and finally categorizing each pixel into one of C change types, our method delivers detailed, interpretable multi\-class maps. It outperforms traditional differencing, Siamese CNNs, and GAN\-based detectors by 10\-25 points in F1 and IoU on both synthetic and real world benchmarks, marking a new state of the art in remote sensing change detection.
FineVQ: Fine-Grained User Generated Content Video Quality Assessment
The rapid growth of user-generated content (UGC) videos has produced an urgent need for effective video quality assessment (VQA) algorithms to monitor video quality and guide optimization and recommendation procedures. However, current VQA models generally only give an overall rating for a UGC video, which lacks fine-grained labels for serving video processing and recommendation applications. To address the challenges and promote the development of UGC videos, we establish the first large-scale Fine-grained Video quality assessment Database, termed FineVD, which comprises 6104 UGC videos with fine-grained quality scores and descriptions across multiple dimensions. Based on this database, we propose a Fine-grained Video Quality assessment (FineVQ) model to learn the fine-grained quality of UGC videos, with the capabilities of quality rating, quality scoring, and quality attribution. Extensive experimental results demonstrate that our proposed FineVQ can produce fine-grained video-quality results and achieve state-of-the-art performance on FineVD and other commonly used UGC-VQA datasets.
Investigating the Feasibility of Patch-based Inference for Generalized Diffusion Priors in Inverse Problems for Medical Images
Plug-and-play approaches to solving inverse problems such as restoration and super-resolution have recently benefited from Diffusion-based generative priors for natural as well as medical images. However, solutions often use the standard albeit computationally intensive route of training and inferring with the whole image on the diffusion prior. While patch-based approaches to evaluating diffusion priors in plug-and-play methods have received some interest, they remain an open area of study. In this work, we explore the feasibility of the usage of patches for training and inference of a diffusion prior on MRI images. We explore the minor adaptation necessary for artifact avoidance, the performance and the efficiency of memory usage of patch-based methods as well as the adaptability of whole image training to patch-based evaluation - evaluating across multiple plug-and-play methods, tasks and datasets.
comment: Accepted at IEEE International Symposium for Biomedical Imaging (ISBI) 2025
Devil is in Details: Locality-Aware 3D Abdominal CT Volume Generation for Self-Supervised Organ Segmentation ACM MM 2024
In the realm of medical image analysis, self-supervised learning (SSL) techniques have emerged to alleviate labeling demands, while still facing the challenge of training data scarcity owing to escalating resource requirements and privacy constraints. Numerous efforts employ generative models to generate high-fidelity, unlabeled 3D volumes across diverse modalities and anatomical regions. However, the intricate and indistinguishable anatomical structures within the abdomen pose a unique challenge to abdominal CT volume generation compared to other anatomical regions. To address the overlooked challenge, we introduce the Locality-Aware Diffusion (Lad), a novel method tailored for exquisite 3D abdominal CT volume generation. We design a locality loss to refine crucial anatomical regions and devise a condition extractor to integrate abdominal priori into generation, thereby enabling the generation of large quantities of high-quality abdominal CT volumes essential for SSL tasks without the need for additional data such as labels or radiology reports. Volumes generated through our method demonstrate remarkable fidelity in reproducing abdominal structures, achieving a decrease in FID score from 0.0034 to 0.0002 on AbdomenCT-1K dataset, closely mirroring authentic data and surpassing current methods. Extensive experiments demonstrate the effectiveness of our method in self-supervised organ segmentation tasks, resulting in an improvement in mean Dice scores on two abdominal datasets effectively. These results underscore the potential of synthetic data to advance self-supervised learning in medical image analysis.
comment: ACM MM 2024. Code is available at https://github.com/Ryann-Ran/Lad
ComFace: Facial Representation Learning with Synthetic Data for Comparing Faces WACV
Daily monitoring of intra-personal facial changes associated with health and emotional conditions has great potential to be useful for medical, healthcare, and emotion recognition fields. However, the approach for capturing intra-personal facial changes is relatively unexplored due to the difficulty of collecting temporally changing face images. In this paper, we propose a facial representation learning method using synthetic images for comparing faces, called ComFace, which is designed to capture intra-personal facial changes. For effective representation learning, ComFace aims to acquire two feature representations, i.e., inter-personal facial differences and intra-personal facial changes. The key point of our method is the use of synthetic face images to overcome the limitations of collecting real intra-personal face images. Facial representations learned by ComFace are transferred to three extensive downstream tasks for comparing faces: estimating facial expression changes, weight changes, and age changes from two face images of the same individual. Our ComFace, trained using only synthetic data, achieves comparable to or better transfer performance than general pre-training and state-of-the-art representation learning methods trained using real images.
comment: Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025
Multimedia
A Survey on Multimodal Music Emotion Recognition
Multimodal music emotion recognition (MMER) is an emerging discipline in music information retrieval that has experienced a surge in interest in recent years. This survey provides a comprehensive overview of the current state-of-the-art in MMER. Discussing the different approaches and techniques used in this field, the paper introduces a four-stage MMER framework, including multimodal data selection, feature extraction, feature processing, and final emotion prediction. The survey further reveals significant advancements in deep learning methods and the increasing importance of feature fusion techniques. Despite these advancements, challenges such as the need for large annotated datasets, datasets with more modalities, and real-time processing capabilities remain. This paper also contributes to the field by identifying critical gaps in current research and suggesting potential directions for future research. The gaps underscore the importance of developing robust, scalable, a interpretable models for MMER, with implications for applications in music recommendation systems, therapeutic tools, and entertainment.
CAMeL: Cross-modality Adaptive Meta-Learning for Text-based Person Retrieval
Text-based person retrieval aims to identify specific individuals within an image database using textual descriptions. Due to the high cost of annotation and privacy protection, researchers resort to synthesized data for the paradigm of pretraining and fine-tuning. However, these generated data often exhibit domain biases in both images and textual annotations, which largely compromise the scalability of the pre-trained model. Therefore, we introduce a domain-agnostic pretraining framework based on Cross-modality Adaptive Meta-Learning (CAMeL) to enhance the model generalization capability during pretraining to facilitate the subsequent downstream tasks. In particular, we develop a series of tasks that reflect the diversity and complexity of real-world scenarios, and introduce a dynamic error sample memory unit to memorize the history for errors encountered within multiple tasks. To further ensure multi-task adaptation, we also adopt an adaptive dual-speed update strategy, balancing fast adaptation to new tasks and slow weight updates for historical tasks. Albeit simple, our proposed model not only surpasses existing state-of-the-art methods on real-world benchmarks, including CUHK-PEDES, ICFG-PEDES, and RSTPReid, but also showcases robustness and scalability in handling biased synthetic images and noisy text annotations. Our code is available at https://github.com/Jahawn-Wen/CAMeL-reID.
FineVQ: Fine-Grained User Generated Content Video Quality Assessment
The rapid growth of user-generated content (UGC) videos has produced an urgent need for effective video quality assessment (VQA) algorithms to monitor video quality and guide optimization and recommendation procedures. However, current VQA models generally only give an overall rating for a UGC video, which lacks fine-grained labels for serving video processing and recommendation applications. To address the challenges and promote the development of UGC videos, we establish the first large-scale Fine-grained Video quality assessment Database, termed FineVD, which comprises 6104 UGC videos with fine-grained quality scores and descriptions across multiple dimensions. Based on this database, we propose a Fine-grained Video Quality assessment (FineVQ) model to learn the fine-grained quality of UGC videos, with the capabilities of quality rating, quality scoring, and quality attribution. Extensive experimental results demonstrate that our proposed FineVQ can produce fine-grained video-quality results and achieve state-of-the-art performance on FineVD and other commonly used UGC-VQA datasets.
Human-Computer Interaction
AI Recommendations and Non-instrumental Image Concerns
There is growing enthusiasm about the potential for humans and AI to collaborate by leveraging their respective strengths. Yet in practice, this promise often falls short. This paper uses an online experiment to identify non-instrumental image concerns as a key reason individuals underutilize AI recommendations. I show that concerns about how one is perceived, even when those perceptions carry no monetary consequences, lead participants to disregard AI advice and reduce task performance.
Generative AI Literacy: A Comprehensive Framework for Literacy and Responsible Use
After the release of several AI literacy guidelines, the rapid rise and widespread adoption of generative AI, such as ChatGPT, Dall E, and Deepseek, have transformed our lives. Unlike traditional AI algorithms (e.g., convolutional neural networks, semantic networks, classifiers) captured in existing AI literacy frameworks, generative AI exhibits distinct and more nuanced characteristics. However, a lack of robust generative AI literacy is hindering individuals ability to evaluate critically and use these models effectively and responsibly. To address this gap, we propose a set of guidelines with 12 items for generative AI literacy, organized into four key aspects: (1) Guidelines for Generative AI Tool Selection and Prompting, (2) Guidelines for Understanding Interaction with Generative AI, (3) Guidelines for Understanding Interaction with Generative AI, and (4) Guidelines for High Level Understanding of Generative AI. These guidelines aim to support schools, companies, educators, and organizations in developing frameworks that empower their members, such as students, employees, and stakeholders, to use generative AI in an efficient, ethical, and informed way.
comment: 14 pages
"I Would Have Written My Code Differently'': Beginners Struggle to Understand LLM-Generated Code
Large language models (LLMs) are being increasingly adopted for programming work. Prior work shows that while LLMs accelerate task completion for professional programmers, beginning programmers struggle to prompt models effectively. However, prompting is just half of the code generation process -- when code is generated, it must be read, evaluated, and integrated (or rejected). How accessible are these tasks for beginning programmers? This paper measures how well beginners comprehend LLM-generated code and explores the challenges students face in judging code correctness. We compare how well students understand natural language descriptions of functions and LLM-generated implementations, studying 32 CS1 students on 160 task instances. Our results show a low per-task success rate of 32.5\%, with indiscriminate struggles across demographic populations. Key challenges include barriers for non-native English speakers, unfamiliarity with Python syntax, and automation bias. Our findings highlight the barrier that code comprehension presents to beginning programmers seeking to write code with LLMs.
comment: To appear in 33rd ACM International Conference on the Foundations of Software Engineering (FSE Companion '25), June 23-28, 2025, Trondheim, Norway
Investigating the Prominence and Severity of Bugs and Glitches Within Games and Their Effects on Player Experience
Different errors that occur in video games are often referred to as glitches or bugs. The goal of this exploratory research is to understand how these glitches and bugs within video games affect a players experience. To do this, I reviewed relevant literature and performed observations of these different errors in different games via Twitch livestreams. I then performed thematic analysis with the observation data and generated themes that tie back into to the relevant literature. Most of the current literature focuses on the what and how behind bugs in games, but very little on the implications of these bugs on the overall experience for the players, and what patterns of behavior may emerge because of them.
comment: 7 pages, 2 figures
LINC: Supporting Language Independent Communication and Comprehension to Enhance Contribution in Multilingual Collaborative Meetings
Collaborative research often includes contributors with varied perspectives from diverse linguistic backgrounds. However, English as a Second Language (ESL) researchers often struggle to communicate during meetings in English and comprehend discussions, leading to limited contribution. To investigate these challenges, we surveyed 64 ESL researchers who frequently collaborate in multilingual teams and identified four key design goals around participation, comprehension, documentation, and feedback. Guided by these design goals, we developed LINC, a multimodal Language INdependent Collaboration system with two components: a real-time module for multilingual communication during meetings and a post-meeting dashboard for discussion analysis. We evaluated the system through a two-phased study with six triads of multilingual teams. We found that using LINC, participants benefited from communicating in their preferred language, recalled and reviewed actionable insights, and prepared for upcoming meetings effectively. We discuss external factors that impact multilingual meeting participation beyond language preferences and the implications of multimodal systems in facilitating meetings in hybrid multilingual collaborative settings beyond research.
comment: 19 pages, 4 figures. Multimodal system design and evaluation study
Advancing Face-to-Face Emotion Communication: A Multimodal Dataset (AFFEC)
Emotion recognition has the potential to play a pivotal role in enhancing human-computer interaction by enabling systems to accurately interpret and respond to human affect. Yet, capturing emotions in face-to-face contexts remains challenging due to subtle nonverbal cues, variations in personal traits, and the real-time dynamics of genuine interactions. Existing emotion recognition datasets often rely on limited modalities or controlled conditions, thereby missing the richness and variability found in real-world scenarios. In this work, we introduce Advancing Face-to-Face Emotion Communication (AFFEC), a multimodal dataset designed to address these gaps. AFFEC encompasses 84 simulated emotional dialogues across six distinct emotions, recorded from 73 participants over more than 5,000 trials and annotated with more than 20,000 labels. It integrates electroencephalography (EEG), eye-tracking, galvanic skin response (GSR), facial videos, and Big Five personality assessments. Crucially, AFFEC explicitly distinguishes between felt emotions (the participant's internal affect) and perceived emotions (the observer's interpretation of the stimulus). Baseline analyses spanning unimodal features and straightforward multimodal fusion demonstrate that even minimal processing yields classification performance significantly above chance, especially for arousal. Incorporating personality traits further improves predictions of felt emotions, highlighting the importance of individual differences. By bridging controlled experimentation with more realistic face-to-face stimuli, AFFEC offers a unique resource for researchers aiming to develop context-sensitive, adaptive, and personalized emotion recognition models.
AI Chatbots for Mental Health: Values and Harms from Lived Experiences of Depression
Recent advancements in LLMs enable chatbots to interact with individuals on a range of queries, including sensitive mental health contexts. Despite uncertainties about their effectiveness and reliability, the development of LLMs in these areas is growing, potentially leading to harms. To better identify and mitigate these harms, it is critical to understand how the values of people with lived experiences relate to the harms. In this study, we developed a technology probe, a GPT-4o based chatbot called Zenny, enabling participants to engage with depression self-management scenarios informed by previous research. We used Zenny to interview 17 individuals with lived experiences of depression. Our thematic analysis revealed key values: informational support, emotional support, personalization, privacy, and crisis management. This work explores the relationship between lived experience values, potential harms, and design recommendations for mental health AI chatbots, aiming to enhance self-management support while minimizing risks.
Clinical knowledge in LLMs does not translate to human interactions
Global healthcare providers are exploring use of large language models (LLMs) to provide medical advice to the public. LLMs now achieve nearly perfect scores on medical licensing exams, but this does not necessarily translate to accurate performance in real-world settings. We tested if LLMs can assist members of the public in identifying underlying conditions and choosing a course of action (disposition) in ten medical scenarios in a controlled study with 1,298 participants. Participants were randomly assigned to receive assistance from an LLM (GPT-4o, Llama 3, Command R+) or a source of their choice (control). Tested alone, LLMs complete the scenarios accurately, correctly identifying conditions in 94.9% of cases and disposition in 56.3% on average. However, participants using the same LLMs identified relevant conditions in less than 34.5% of cases and disposition in less than 44.2%, both no better than the control group. We identify user interactions as a challenge to the deployment of LLMs for medical advice. Standard benchmarks for medical knowledge and simulated patient interactions do not predict the failures we find with human participants. Moving forward, we recommend systematic human user testing to evaluate interactive capabilities prior to public deployments in healthcare.
comment: 52 pages, 4 figures
Understanding Decentralized Social Feed Curation on Mastodon SC
As centralized social media platforms face growing concerns, more users are seeking greater control over their social feeds and turning to decentralized alternatives such as Mastodon. The decentralized nature of Mastodon creates unique opportunities for customizing feeds, yet user perceptions and curation strategies on these platforms remain unknown. This paper presents findings from a two-part interview study with 21 Mastodon users, exploring how they perceive, interact with, and manage their current feeds, and how we can better empower users to personalize their feeds on Mastodon. We use the qualitative findings of the first part of the study to guide the creation of Braids, a web-based prototype for feed curation. Results from the second part of our study, using Braids, highlighted opportunities and challenges for future research, particularly in using seamful design to enhance people's acceptance of algorithmic curation and nuanced trade-offs between machine learning-based and rule-based curation algorithms. To optimize user experience, we also discuss the tension between creating new apps and building add-ons in the decentralized social media realm.
comment: Accepted at CSCW 2025
Clones in the Machine: A Feminist Critique of Agency in Digital Cloning
This paper critiques digital cloning in academic research, highlighting how it exemplifies AI solutionism. Digital clones, which replicate user data to simulate behavior, are often seen as scalable tools for behavioral insights. However, this framing obscures ethical concerns around consent, agency, and representation. Drawing on feminist theories of agency, the paper argues that digital cloning oversimplifies human complexity and risks perpetuating systemic biases. To address these issues, it proposes decentralized data repositories and dynamic consent models, promoting ethical, context-aware AI practices that challenge the reductionist logic of AI solutionism
comment: ACM CHI Conference on Human Factors in Computing Systems 2025
Beyond Isolation: Towards an Interactionist Perspective on Human Cognitive Bias and AI Bias
Isolated perspectives have often paved the way for great scientific discoveries. However, many breakthroughs only emerged when moving away from singular views towards interactions. Discussions on Artificial Intelligence (AI) typically treat human and AI bias as distinct challenges, leaving their dynamic interplay and compounding potential largely unexplored. Recent research suggests that biased AI can amplify human cognitive biases, while well-calibrated systems might help mitigate them. In this position paper, I advocate for transcending beyond separate treatment of human and AI biases and instead focus on their interaction effects. I argue that a comprehensive framework, one that maps (compound human-AI) biases to mitigation strategies, is essential for understanding and protecting human cognition, and I outline concrete steps for its development.
comment: Is published at the CHI 2025 Workshop "Tools for Thought: Research and Design for Understanding, Protecting, and Augmenting Human Cognition with Generative AI"
MATCHA: Can Multi-Agent Collaboration Build a Trustworthy Conversational Recommender?
In this paper, we propose a multi-agent collaboration framework called MATCHA for conversational recommendation system, leveraging large language models (LLMs) to enhance personalization and user engagement. Users can request recommendations via free-form text and receive curated lists aligned with their interests, preferences, and constraints. Our system introduces specialized agents for intent analysis, candidate generation, ranking, re-ranking, explainability, and safeguards. These agents collaboratively improve recommendations accuracy, diversity, and safety. On eight metrics, our model achieves superior or comparable performance to the current state-of-the-art. Through comparisons with six baseline models, our approach addresses key challenges in conversational recommendation systems for game recommendations, including: (1) handling complex, user-specific requests, (2) enhancing personalization through multi-agent collaboration, (3) empirical evaluation and deployment, and (4) ensuring safe and trustworthy interactions.
Accessible, At-Home Detection of Parkinson's Disease via Multi-task Video Analysis
Limited accessibility to neurological care leads to underdiagnosed Parkinson's Disease (PD), preventing early intervention. Existing AI-based PD detection methods primarily focus on unimodal analysis of motor or speech tasks, overlooking the multifaceted nature of the disease. To address this, we introduce a large-scale, multi-task video dataset consisting of 1102 sessions (each containing videos of finger tapping, facial expression, and speech tasks captured via webcam) from 845 participants (272 with PD). We propose a novel Uncertainty-calibrated Fusion Network (UFNet) that leverages this multimodal data to enhance diagnostic accuracy. UFNet employs independent task-specific networks, trained with Monte Carlo Dropout for uncertainty quantification, followed by self-attended fusion of features, with attention weights dynamically adjusted based on task-specific uncertainties. To ensure patient-centered evaluation, the participants were randomly split into three sets: 60% for training, 20% for model selection, and 20% for final performance evaluation. UFNet significantly outperformed single-task models in terms of accuracy, area under the ROC curve (AUROC), and sensitivity while maintaining non-inferior specificity. Withholding uncertain predictions further boosted the performance, achieving 88.0+-0.3%$ accuracy, 93.0+-0.2% AUROC, 79.3+-0.9% sensitivity, and 92.6+-0.3% specificity, at the expense of not being able to predict for 2.3+-0.3% data (+- denotes 95% confidence interval). Further analysis suggests that the trained model does not exhibit any detectable bias across sex and ethnic subgroups and is most effective for individuals aged between 50 and 80. Requiring only a webcam and microphone, our approach facilitates accessible home-based PD screening, especially in regions with limited healthcare resources.
A Multi-Layered Research Framework for Human-Centered AI: Defining the Path to Explainability and Trust
The integration of Artificial Intelligence (AI) into high-stakes domains such as healthcare, finance, and autonomous systems is often constrained by concerns over transparency, interpretability, and trust. While Human-Centered AI (HCAI) emphasizes alignment with human values, Explainable AI (XAI) enhances transparency by making AI decisions more understandable. However, the lack of a unified approach limits AI's effectiveness in critical decision-making scenarios. This paper presents a novel three-layered framework that bridges HCAI and XAI to establish a structured explainability paradigm. The framework comprises (1) a foundational AI model with built-in explainability mechanisms, (2) a human-centered explanation layer that tailors explanations based on cognitive load and user expertise, and (3) a dynamic feedback loop that refines explanations through real-time user interaction. The framework is evaluated across healthcare, finance, and software development, demonstrating its potential to enhance decision-making, regulatory compliance, and public trust. Our findings advance Human-Centered Explainable AI (HCXAI), fostering AI systems that are transparent, adaptable, and ethically aligned.
comment: I am requesting this withdrawal because I believe the current version requires significant revisions and restructuring to better reflect the intended research contributions. I plan to substantially improve the work and may resubmit a revised version in the future. Thank you for your understanding and support
Interruption Handling for Conversational Robots
Interruptions, a fundamental component of human communication, can enhance the dynamism and effectiveness of conversations, but only when effectively managed by all parties involved. Despite advancements in robotic systems, state-of-the-art systems still have limited capabilities in handling user-initiated interruptions in real-time. Prior research has primarily focused on post hoc analysis of interruptions. To address this gap, we present a system that detects user-initiated interruptions and manages them in real-time based on the interrupter's intent (i.e., cooperative agreement, cooperative assistance, cooperative clarification, or disruptive interruption). The system was designed based on interaction patterns identified from human-human interaction data. We integrated our system into an LLM-powered social robot and validated its effectiveness through a timed decision-making task and a contentious discussion task with 21 participants. Our system successfully handled 93.69% (n=104/111) of user-initiated interruptions. We discuss our learnings and their implications for designing interruption-handling behaviors in conversational robots.
Computer Vision and Pattern Recognition
Augmenting Perceptual Super-Resolution via Image Quality Predictors
Super-resolution (SR), a classical inverse problem in computer vision, is inherently ill-posed, inducing a distribution of plausible solutions for every input. However, the desired result is not simply the expectation of this distribution, which is the blurry image obtained by minimizing pixelwise error, but rather the sample with the highest image quality. A variety of techniques, from perceptual metrics to adversarial losses, are employed to this end. In this work, we explore an alternative: utilizing powerful non-reference image quality assessment (NR-IQA) models in the SR context. We begin with a comprehensive analysis of NR-IQA metrics on human-derived SR data, identifying both the accuracy (human alignment) and complementarity of different metrics. Then, we explore two methods of applying NR-IQA models to SR learning: (i) altering data sampling, by building on an existing multi-ground-truth SR framework, and (ii) directly optimizing a differentiable quality score. Our results demonstrate a more human-centric perception-distortion tradeoff, focusing less on non-perceptual pixel-wise distortion, instead improving the balance between perceptual fidelity and human-tuned NR-IQA measures.
E-VLC: A Real-World Dataset for Event-based Visible Light Communication And Localization CVPR
Optical communication using modulated LEDs (e.g., visible light communication) is an emerging application for event cameras, thanks to their high spatio-temporal resolutions. Event cameras can be used simply to decode the LED signals and also to localize the camera relative to the LED marker positions. However, there is no public dataset to benchmark the decoding and localization in various real-world settings. We present, to the best of our knowledge, the first public dataset that consists of an event camera, a frame camera, and ground-truth poses that are precisely synchronized with hardware triggers. It provides various camera motions with various sensitivities in different scene brightness settings, both indoor and outdoor. Furthermore, we propose a novel method of localization that leverages the Contrast Maximization framework for motion estimation and compensation. The detailed analysis and experimental results demonstrate the advantages of LED-based localization with events over the conventional AR-marker--based one with frames, as well as the efficacy of the proposed method in localization. We hope that the proposed dataset serves as a future benchmark for both motion-related classical computer vision tasks and LED marker decoding tasks simultaneously, paving the way to broadening applications of event cameras on mobile devices. https://woven-visionai.github.io/evlc-dataset
comment: 10 pages, 9 figures, 5 tables, CVPRW on EventVision 2025
RSFR: A Coarse-to-Fine Reconstruction Framework for Diffusion Tensor Cardiac MRI with Semantic-Aware Refinement
Cardiac diffusion tensor imaging (DTI) offers unique insights into cardiomyocyte arrangements, bridging the gap between microscopic and macroscopic cardiac function. However, its clinical utility is limited by technical challenges, including a low signal-to-noise ratio, aliasing artefacts, and the need for accurate quantitative fidelity. To address these limitations, we introduce RSFR (Reconstruction, Segmentation, Fusion & Refinement), a novel framework for cardiac diffusion-weighted image reconstruction. RSFR employs a coarse-to-fine strategy, leveraging zero-shot semantic priors via the Segment Anything Model and a robust Vision Mamba-based reconstruction backbone. Our framework integrates semantic features effectively to mitigate artefacts and enhance fidelity, achieving state-of-the-art reconstruction quality and accurate DT parameter estimation under high undersampling rates. Extensive experiments and ablation studies demonstrate the superior performance of RSFR compared to existing methods, highlighting its robustness, scalability, and potential for clinical translation in quantitative cardiac DTI.
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models
Deep neural networks (DNNs) have proven to be successful in various computer vision applications such that models even infer in safety-critical situations. Therefore, vision models have to behave in a robust way to disturbances such as noise or blur. While seminal benchmarks exist to evaluate model robustness to diverse corruptions, blur is often approximated in an overly simplistic way to model defocus, while ignoring the different blur kernel shapes that result from optical systems. To study model robustness against realistic optical blur effects, this paper proposes two datasets of blur corruptions, which we denote OpticsBench and LensCorruptions. OpticsBench examines primary aberrations such as coma, defocus, and astigmatism, i.e. aberrations that can be represented by varying a single parameter of Zernike polynomials. To go beyond the principled but synthetic setting of primary aberrations, LensCorruptions samples linear combinations in the vector space spanned by Zernike polynomials, corresponding to 100 real lenses. Evaluations for image classification and object detection on ImageNet and MSCOCO show that for a variety of different pre-trained models, the performance on OpticsBench and LensCorruptions varies significantly, indicating the need to consider realistic image corruptions to evaluate a model's robustness against blur.
comment: v1.0
Eval3D: Interpretable and Fine-grained Evaluation for 3D Generation CVPR 2025
Despite the unprecedented progress in the field of 3D generation, current systems still often fail to produce high-quality 3D assets that are visually appealing and geometrically and semantically consistent across multiple viewpoints. To effectively assess the quality of the generated 3D data, there is a need for a reliable 3D evaluation tool. Unfortunately, existing 3D evaluation metrics often overlook the geometric quality of generated assets or merely rely on black-box multimodal large language models for coarse assessment. In this paper, we introduce Eval3D, a fine-grained, interpretable evaluation tool that can faithfully evaluate the quality of generated 3D assets based on various distinct yet complementary criteria. Our key observation is that many desired properties of 3D generation, such as semantic and geometric consistency, can be effectively captured by measuring the consistency among various foundation models and tools. We thus leverage a diverse set of models and tools as probes to evaluate the inconsistency of generated 3D assets across different aspects. Compared to prior work, Eval3D provides pixel-wise measurement, enables accurate 3D spatial feedback, and aligns more closely with human judgments. We comprehensively evaluate existing 3D generation models using Eval3D and highlight the limitations and challenges of current models.
comment: CVPR 2025. Project page and codes: https://eval3d.github.io/
An Improved ResNet50 Model for Predicting Pavement Condition Index (PCI) Directly from Pavement Images
Accurately predicting the Pavement Condition Index (PCI), a measure of roadway conditions, from pavement images is crucial for infrastructure maintenance. This study proposes an enhanced version of the Residual Network (ResNet50) architecture, integrated with a Convolutional Block Attention Module (CBAM), to predict PCI directly from pavement images without additional annotations. By incorporating CBAM, the model autonomously prioritizes critical features within the images, improving prediction accuracy. Compared to the original baseline ResNet50 and DenseNet161 architectures, the enhanced ResNet50-CBAM model achieved a significantly lower mean absolute percentage error (MAPE) of 58.16%, compared to the baseline models that achieved 70.76% and 65.48% respectively. These results highlight the potential of using attention mechanisms to refine feature extraction, ultimately enabling more accurate and efficient assessments of pavement conditions. This study emphasizes the importance of targeted feature refinement in advancing automated pavement analysis through attention mechanisms.
RGS-DR: Reflective Gaussian Surfels with Deferred Rendering for Shiny Objects
We introduce RGS-DR, a novel inverse rendering method for reconstructing and rendering glossy and reflective objects with support for flexible relighting and scene editing. Unlike existing methods (e.g., NeRF and 3D Gaussian Splatting), which struggle with view-dependent effects, RGS-DR utilizes a 2D Gaussian surfel representation to accurately estimate geometry and surface normals, an essential property for high-quality inverse rendering. Our approach explicitly models geometric and material properties through learnable primitives rasterized into a deferred shading pipeline, effectively reducing rendering artifacts and preserving sharp reflections. By employing a multi-level cube mipmap, RGS-DR accurately approximates environment lighting integrals, facilitating high-quality reconstruction and relighting. A residual pass with spherical-mipmap-based directional encoding further refines the appearance modeling. Experiments demonstrate that RGS-DR achieves high-quality reconstruction and rendering quality for shiny objects, often outperforming reconstruction-exclusive state-of-the-art methods incapable of relighting.
Fast-Slow Thinking for Large Vision-Language Model Reasoning
Recent advances in large vision-language models (LVLMs) have revealed an \textit{overthinking} phenomenon, where models generate verbose reasoning across all tasks regardless of questions. To address this issue, we present \textbf{FAST}, a novel \textbf{Fa}st-\textbf{S}low \textbf{T}hinking framework that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. We develop FAST-GRPO with three components: model-based metrics for question characterization, an adaptive thinking reward mechanism, and difficulty-aware KL regularization. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
comment: 16 pages, 5 figures, and 12 tables
NoiseController: Towards Consistent Multi-view Video Generation via Noise Decomposition and Collaboration
High-quality video generation is crucial for many fields, including the film industry and autonomous driving. However, generating videos with spatiotemporal consistencies remains challenging. Current methods typically utilize attention mechanisms or modify noise to achieve consistent videos, neglecting global spatiotemporal information that could help ensure spatial and temporal consistency during video generation. In this paper, we propose the NoiseController, consisting of Multi-Level Noise Decomposition, Multi-Frame Noise Collaboration, and Joint Denoising, to enhance spatiotemporal consistencies in video generation. In multi-level noise decomposition, we first decompose initial noises into scene-level foreground/background noises, capturing distinct motion properties to model multi-view foreground/background variations. Furthermore, each scene-level noise is further decomposed into individual-level shared and residual components. The shared noise preserves consistency, while the residual component maintains diversity. In multi-frame noise collaboration, we introduce an inter-view spatiotemporal collaboration matrix and an intra-view impact collaboration matrix , which captures mutual cross-view effects and historical cross-frame impacts to enhance video quality. The joint denoising contains two parallel denoising U-Nets to remove each scene-level noise, mutually enhancing video generation. We evaluate our NoiseController on public datasets focusing on video generation and downstream tasks, demonstrating its state-of-the-art performance.
Iterative Event-based Motion Segmentation by Variational Contrast Maximization CVPR
Event cameras provide rich signals that are suitable for motion estimation since they respond to changes in the scene. As any visual changes in the scene produce event data, it is paramount to classify the data into different motions (i.e., motion segmentation), which is useful for various tasks such as object detection and visual servoing. We propose an iterative motion segmentation method, by classifying events into background (e.g., dominant motion hypothesis) and foreground (independent motion residuals), thus extending the Contrast Maximization framework. Experimental results demonstrate that the proposed method successfully classifies event clusters both for public and self-recorded datasets, producing sharp, motion-compensated edge-like images. The proposed method achieves state-of-the-art accuracy on moving object detection benchmarks with an improvement of over 30%, and demonstrates its possibility of applying to more complex and noisy real-world scenes. We hope this work broadens the sensitivity of Contrast Maximization with respect to both motion parameters and input events, thus contributing to theoretical advancements in event-based motion segmentation estimation. https://github.com/aoki-media-lab/event_based_segmentation_vcmax
comment: 11 pages, 9 figures, 3 tables, CVPR Workshop 2025
Nearly isotropic segmentation for medial temporal lobe subregions in multi-modality MRI
Morphometry of medial temporal lobe (MTL) subregions in brain MRI is sensitive biomarker to Alzheimers Disease and other related conditions. While T2-weighted (T2w) MRI with high in-plane resolution is widely used to segment hippocampal subfields due to its higher contrast in hippocampus, its lower out-of-plane resolution reduces the accuracy of subregion thickness measurements. To address this issue, we developed a nearly isotropic segmentation pipeline that incorporates image and label upsampling and high-resolution segmentation in T2w MRI. First, a high-resolution atlas was created based on an existing anisotropic atlas derived from 29 individuals. Both T1-weighted and T2w images in the atlas were upsampled from their original resolution to a nearly isotropic resolution 0.4x0.4x0.52mm3 using a non-local means approach. Manual segmentations within the atlas were also upsampled to match this resolution using a UNet-based neural network, which was trained on a cohort consisting of both high-resolution ex vivo and low-resolution anisotropic in vivo MRI with manual segmentations. Second, a multi-modality deep learning-based segmentation model was trained within this nearly isotropic atlas. Finally, experiments showed the nearly isotropic subregion segmentation improved the accuracy of cortical thickness as an imaging biomarker for neurodegeneration in T2w MRI.
LaRI: Layered Ray Intersections for Single-view 3D Geometric Reasoning
We present layered ray intersections (LaRI), a new method for unseen geometry reasoning from a single image. Unlike conventional depth estimation that is limited to the visible surface, LaRI models multiple surfaces intersected by the camera rays using layered point maps. Benefiting from the compact and layered representation, LaRI enables complete, efficient, and view-aligned geometric reasoning to unify object- and scene-level tasks. We further propose to predict the ray stopping index, which identifies valid intersecting pixels and layers from LaRI's output. We build a complete training data generation pipeline for synthetic and real-world data, including 3D objects and scenes, with necessary data cleaning steps and coordination between rendering engines. As a generic method, LaRI's performance is validated in two scenarios: It yields comparable object-level results to the recent large generative model using 4% of its training data and 17% of its parameters. Meanwhile, it achieves scene-level occluded geometry reasoning in only one feed-forward.
comment: Project page: https://ruili3.github.io/lari
A Multimodal Hybrid Late-Cascade Fusion Network for Enhanced 3D Object Detection
We present a new way to detect 3D objects from multimodal inputs, leveraging both LiDAR and RGB cameras in a hybrid late-cascade scheme, that combines an RGB detection network and a 3D LiDAR detector. We exploit late fusion principles to reduce LiDAR False Positives, matching LiDAR detections with RGB ones by projecting the LiDAR bounding boxes on the image. We rely on cascade fusion principles to recover LiDAR False Negatives leveraging epipolar constraints and frustums generated by RGB detections of separate views. Our solution can be plugged on top of any underlying single-modal detectors, enabling a flexible training process that can take advantage of pre-trained LiDAR and RGB detectors, or train the two branches separately. We evaluate our results on the KITTI object detection benchmark, showing significant performance improvements, especially for the detection of Pedestrians and Cyclists.
HepatoGEN: Generating Hepatobiliary Phase MRI with Perceptual and Adversarial Models
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a crucial role in the detection and characterization of focal liver lesions, with the hepatobiliary phase (HBP) providing essential diagnostic information. However, acquiring HBP images requires prolonged scan times, which may compromise patient comfort and scanner throughput. In this study, we propose a deep learning based approach for synthesizing HBP images from earlier contrast phases (precontrast and transitional) and compare three generative models: a perceptual U-Net, a perceptual GAN (pGAN), and a denoising diffusion probabilistic model (DDPM). We curated a multi-site DCE-MRI dataset from diverse clinical settings and introduced a contrast evolution score (CES) to assess training data quality, enhancing model performance. Quantitative evaluation using pixel-wise and perceptual metrics, combined with qualitative assessment through blinded radiologist reviews, showed that pGAN achieved the best quantitative performance but introduced heterogeneous contrast in out-of-distribution cases. In contrast, the U-Net produced consistent liver enhancement with fewer artifacts, while DDPM underperformed due to limited preservation of fine structural details. These findings demonstrate the feasibility of synthetic HBP image generation as a means to reduce scan time without compromising diagnostic utility, highlighting the clinical potential of deep learning for dynamic contrast enhancement in liver MRI. A project demo is available at: https://jhooge.github.io/hepatogen
A Multimodal Deep Learning Approach for White Matter Shape Prediction in Diffusion MRI Tractography
Shape measures have emerged as promising descriptors of white matter tractography, offering complementary insights into anatomical variability and associations with cognitive and clinical phenotypes. However, conventional methods for computing shape measures are computationally expensive and time-consuming for large-scale datasets due to reliance on voxel-based representations. We propose Tract2Shape, a novel multimodal deep learning framework that leverages geometric (point cloud) and scalar (tabular) features to predict ten white matter tractography shape measures. To enhance model efficiency, we utilize a dimensionality reduction algorithm for the model to predict five primary shape components. The model is trained and evaluated on two independently acquired datasets, the HCP-YA dataset, and the PPMI dataset. We evaluate the performance of Tract2Shape by training and testing it on the HCP-YA dataset and comparing the results with state-of-the-art models. To further assess its robustness and generalization ability, we also test Tract2Shape on the unseen PPMI dataset. Tract2Shape outperforms SOTA deep learning models across all ten shape measures, achieving the highest average Pearson's r and the lowest nMSE on the HCP-YA dataset. The ablation study shows that both multimodal input and PCA contribute to performance gains. On the unseen testing PPMI dataset, Tract2Shape maintains a high Pearson's r and low nMSE, demonstrating strong generalizability in cross-dataset evaluation. Tract2Shape enables fast, accurate, and generalizable prediction of white matter shape measures from tractography data, supporting scalable analysis across datasets. This framework lays a promising foundation for future large-scale white matter shape analysis.
comment: 21 pages, 3 figures, 6 tables
Partition Map-Based Fast Block Partitioning for VVC Inter Coding
Among the new techniques of Versatile Video Coding (VVC), the quadtree with nested multi-type tree (QT+MTT) block structure yields significant coding gains by providing more flexible block partitioning patterns. However, the recursive partition search in the VVC encoder increases the encoder complexity substantially. To address this issue, we propose a partition map-based algorithm to pursue fast block partitioning in inter coding. Based on our previous work on partition map-based methods for intra coding, we analyze the characteristics of VVC inter coding, and thus improve the partition map by incorporating an MTT mask for early termination. Next, we develop a neural network that uses both spatial and temporal features to predict the partition map. It consists of several special designs including stacked top-down and bottom-up processing, quantization parameter modulation layers, and partitioning-adaptive warping. Furthermore, we present a dual-threshold decision scheme to achieve a fine-grained trade-off between complexity reduction and rate-distortion (RD) performance loss. The experimental results demonstrate that the proposed method achieves an average 51.30% encoding time saving with a 2.12% Bjontegaard Delta Bit Rate (BDBR) under the random access configuration.
comment: 23 pages, 26 figures. Project page: https://github.com/ustc-ivclab/IPM
Unsupervised Visual Chain-of-Thought Reasoning via Preference Optimization
Chain-of-thought (CoT) reasoning greatly improves the interpretability and problem-solving abilities of multimodal large language models (MLLMs). However, existing approaches are focused on text CoT, limiting their ability to leverage visual cues. Visual CoT remains underexplored, and the only work is based on supervised fine-tuning (SFT) that relies on extensive labeled bounding-box data and is hard to generalize to unseen cases. In this paper, we introduce Unsupervised Visual CoT (UV-CoT), a novel framework for image-level CoT reasoning via preference optimization. UV-CoT performs preference comparisons between model-generated bounding boxes (one is preferred and the other is dis-preferred), eliminating the need for bounding-box annotations. We get such preference data by introducing an automatic data generation pipeline. Given an image, our target MLLM (e.g., LLaVA-1.5-7B) generates seed bounding boxes using a template prompt and then answers the question using each bounded region as input. An evaluator MLLM (e.g., OmniLLM-12B) ranks the responses, and these rankings serve as supervision to train the target MLLM with UV-CoT by minimizing negative log-likelihood losses. By emulating human perception--identifying key regions and reasoning based on them--UV-CoT can improve visual comprehension, particularly in spatial reasoning tasks where textual descriptions alone fall short. Our experiments on six datasets demonstrate the superiority of UV-CoT, compared to the state-of-the-art textual and visual CoT methods. Our zero-shot testing on four unseen datasets shows the strong generalization of UV-CoT. The code is available in https://github.com/kesenzhao/UV-CoT.
COCO-Inpaint: A Benchmark for Image Inpainting Detection and Manipulation Localization
Recent advancements in image manipulation have achieved unprecedented progress in generating photorealistic content, but also simultaneously eliminating barriers to arbitrary manipulation and editing, raising concerns about multimedia authenticity and cybersecurity. However, existing Image Manipulation Detection and Localization (IMDL) methodologies predominantly focus on splicing or copy-move forgeries, lacking dedicated benchmarks for inpainting-based manipulations. To bridge this gap, we present COCOInpaint, a comprehensive benchmark specifically designed for inpainting detection, with three key contributions: 1) High-quality inpainting samples generated by six state-of-the-art inpainting models, 2) Diverse generation scenarios enabled by four mask generation strategies with optional text guidance, and 3) Large-scale coverage with 258,266 inpainted images with rich semantic diversity. Our benchmark is constructed to emphasize intrinsic inconsistencies between inpainted and authentic regions, rather than superficial semantic artifacts such as object shapes. We establish a rigorous evaluation protocol using three standard metrics to assess existing IMDL approaches. The dataset will be made publicly available to facilitate future research in this area.
comment: 10 pages, 3 figures
Interpretable Affordance Detection on 3D Point Clouds with Probabilistic Prototypes
Robotic agents need to understand how to interact with objects in their environment, both autonomously and during human-robot interactions. Affordance detection on 3D point clouds, which identifies object regions that allow specific interactions, has traditionally relied on deep learning models like PointNet++, DGCNN, or PointTransformerV3. However, these models operate as black boxes, offering no insight into their decision-making processes. Prototypical Learning methods, such as ProtoPNet, provide an interpretable alternative to black-box models by employing a "this looks like that" case-based reasoning approach. However, they have been primarily applied to image-based tasks. In this work, we apply prototypical learning to models for affordance detection on 3D point clouds. Experiments on the 3D-AffordanceNet benchmark dataset show that prototypical models achieve competitive performance with state-of-the-art black-box models and offer inherent interpretability. This makes prototypical models a promising candidate for human-robot interaction scenarios that require increased trust and safety.
Revisiting Data Auditing in Large Vision-Language Models
With the surge of large language models (LLMs), Large Vision-Language Models (VLMs)--which integrate vision encoders with LLMs for accurate visual grounding--have shown great potential in tasks like generalist agents and robotic control. However, VLMs are typically trained on massive web-scraped images, raising concerns over copyright infringement and privacy violations, and making data auditing increasingly urgent. Membership inference (MI), which determines whether a sample was used in training, has emerged as a key auditing technique, with promising results on open-source VLMs like LLaVA (AUC > 80%). In this work, we revisit these advances and uncover a critical issue: current MI benchmarks suffer from distribution shifts between member and non-member images, introducing shortcut cues that inflate MI performance. We further analyze the nature of these shifts and propose a principled metric based on optimal transport to quantify the distribution discrepancy. To evaluate MI in realistic settings, we construct new benchmarks with i.i.d. member and non-member images. Existing MI methods fail under these unbiased conditions, performing only marginally better than chance. Further, we explore the theoretical upper bound of MI by probing the Bayes Optimality within the VLM's embedding space and find the irreducible error rate remains high. Despite this pessimistic outlook, we analyze why MI for VLMs is particularly challenging and identify three practical scenarios--fine-tuning, access to ground-truth texts, and set-based inference--where auditing becomes feasible. Our study presents a systematic view of the limits and opportunities of MI for VLMs, providing guidance for future efforts in trustworthy data auditing.
TSCL:Multi-party loss Balancing scheme for deep learning Image steganography based on Curriculum learning
For deep learning-based image steganography frameworks, in order to ensure the invisibility and recoverability of the information embedding, the loss function usually contains several losses such as embedding loss, recovery loss and steganalysis loss. In previous research works, fixed loss weights are usually chosen for training optimization, and this setting is not linked to the importance of the steganography task itself and the training process. In this paper, we propose a Two-stage Curriculum Learning loss scheduler (TSCL) for balancing multinomial losses in deep learning image steganography algorithms. TSCL consists of two phases: a priori curriculum control and loss dynamics control. The first phase firstly focuses the model on learning the information embedding of the original image by controlling the loss weights in the multi-party adversarial training; secondly, it makes the model shift its learning focus to improving the decoding accuracy; and finally, it makes the model learn to generate a steganographic image that is resistant to steganalysis. In the second stage, the learning speed of each training task is evaluated by calculating the loss drop of the before and after iteration rounds to balance the learning of each task. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed TSCL strategy improves the quality of steganography, decoding accuracy and security.
NUDF: Neural Unsigned Distance Fields for high resolution 3D medical image segmentation
Medical image segmentation is often considered as the task of labelling each pixel or voxel as being inside or outside a given anatomy. Processing the images at their original size and resolution often result in insuperable memory requirements, but downsampling the images leads to a loss of important details. Instead of aiming to represent a smooth and continuous surface in a binary voxel-grid, we propose to learn a Neural Unsigned Distance Field (NUDF) directly from the image. The small memory requirements of NUDF allow for high resolution processing, while the continuous nature of the distance field allows us to create high resolution 3D mesh models of shapes of any topology (i.e. open surfaces). We evaluate our method on the task of left atrial appendage (LAA) segmentation from Computed Tomography (CT) images. The LAA is a complex and highly variable shape, being thus difficult to represent with traditional segmentation methods using discrete labelmaps. With our proposed method, we are able to predict 3D mesh models that capture the details of the LAA and achieve accuracy in the order of the voxel spacing in the CT images.
SSD-Poser: Avatar Pose Estimation with State Space Duality from Sparse Observations ICMR 2025
The growing applications of AR/VR increase the demand for real-time full-body pose estimation from Head-Mounted Displays (HMDs). Although HMDs provide joint signals from the head and hands, reconstructing a full-body pose remains challenging due to the unconstrained lower body. Recent advancements often rely on conventional neural networks and generative models to improve performance in this task, such as Transformers and diffusion models. However, these approaches struggle to strike a balance between achieving precise pose reconstruction and maintaining fast inference speed. To overcome these challenges, a lightweight and efficient model, SSD-Poser, is designed for robust full-body motion estimation from sparse observations. SSD-Poser incorporates a well-designed hybrid encoder, State Space Attention Encoders, to adapt the state space duality to complex motion poses and enable real-time realistic pose reconstruction. Moreover, a Frequency-Aware Decoder is introduced to mitigate jitter caused by variable-frequency motion signals, remarkably enhancing the motion smoothness. Comprehensive experiments on the AMASS dataset demonstrate that SSD-Poser achieves exceptional accuracy and computational efficiency, showing outstanding inference efficiency compared to state-of-the-art methods.
comment: 9 pages, 6 figures, conference ICMR 2025
Depth3DLane: Monocular 3D Lane Detection via Depth Prior Distillation ICCV2025
Monocular 3D lane detection is challenging due to the difficulty in capturing depth information from single-camera images. A common strategy involves transforming front-view (FV) images into bird's-eye-view (BEV) space through inverse perspective mapping (IPM), facilitating lane detection using BEV features. However, IPM's flat-ground assumption and loss of contextual information lead to inaccuracies in reconstructing 3D information, especially height. In this paper, we introduce a BEV-based framework to address these limitations and improve 3D lane detection accuracy. Our approach incorporates a Hierarchical Depth-Aware Head that provides multi-scale depth features, mitigating the flat-ground assumption by enhancing spatial awareness across varying depths. Additionally, we leverage Depth Prior Distillation to transfer semantic depth knowledge from a teacher model, capturing richer structural and contextual information for complex lane structures. To further refine lane continuity and ensure smooth lane reconstruction, we introduce a Conditional Random Field module that enforces spatial coherence in lane predictions. Extensive experiments validate that our method achieves state-of-the-art performance in terms of z-axis error and outperforms other methods in the field in overall performance. The code is released at: https://anonymous.4open.science/r/Depth3DLane-DCDD.
comment: Submitting to ICCV2025
Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation
Tensor Robust Principal Component Analysis (TRPCA) is a fundamental technique for decomposing multi-dimensional data into a low-rank tensor and an outlier tensor, yet existing methods relying on sparse outlier assumptions often fail under structured corruptions. In this paper, we propose a self-guided data augmentation approach that employs adaptive weighting to suppress outlier influence, reformulating the original TRPCA problem into a standard Tensor Principal Component Analysis (TPCA) problem. The proposed model involves an optimization-driven weighting scheme that dynamically identifies and downweights outlier contributions during tensor augmentation. We develop an efficient proximal block coordinate descent algorithm with closed-form updates to solve the resulting optimization problem, ensuring computational efficiency. Theoretical convergence is guaranteed through a framework combining block coordinate descent with majorization-minimization principles. Numerical experiments on synthetic and real-world datasets, including face recovery, background subtraction, and hyperspectral denoising, demonstrate that our method effectively handles various corruption patterns. The results show the improvements in both accuracy and computational efficiency compared to state-of-the-art methods.
comment: 12 pages, 6 figures, 3 tables
STP4D: Spatio-Temporal-Prompt Consistent Modeling for Text-to-4D Gaussian Splatting
Text-to-4D generation is rapidly developing and widely applied in various scenarios. However, existing methods often fail to incorporate adequate spatio-temporal modeling and prompt alignment within a unified framework, resulting in temporal inconsistencies, geometric distortions, or low-quality 4D content that deviates from the provided texts. Therefore, we propose STP4D, a novel approach that aims to integrate comprehensive spatio-temporal-prompt consistency modeling for high-quality text-to-4D generation. Specifically, STP4D employs three carefully designed modules: Time-varying Prompt Embedding, Geometric Information Enhancement, and Temporal Extension Deformation, which collaborate to accomplish this goal. Furthermore, STP4D is among the first methods to exploit the Diffusion model to generate 4D Gaussians, combining the fine-grained modeling capabilities and the real-time rendering process of 4DGS with the rapid inference speed of the Diffusion model. Extensive experiments demonstrate that STP4D excels in generating high-fidelity 4D content with exceptional efficiency (approximately 4.6s per asset), surpassing existing methods in both quality and speed.
Task-Oriented Communications for Visual Navigation with Edge-Aerial Collaboration in Low Altitude Economy
To support the Low Altitude Economy (LAE), precise unmanned aerial vehicles (UAVs) localization in urban areas where global positioning system (GPS) signals are unavailable. Vision-based methods offer a viable alternative but face severe bandwidth, memory and processing constraints on lightweight UAVs. Inspired by mammalian spatial cognition, we propose a task-oriented communication framework, where UAVs equipped with multi-camera systems extract compact multi-view features and offload localization tasks to edge servers. We introduce the Orthogonally-constrained Variational Information Bottleneck encoder (O-VIB), which incorporates automatic relevance determination (ARD) to prune non-informative features while enforcing orthogonality to minimize redundancy. This enables efficient and accurate localization with minimal transmission cost. Extensive evaluation on a dedicated LAE UAV dataset shows that O-VIB achieves high-precision localization under stringent bandwidth budgets. Code and dataset will be made publicly available: github.com/fangzr/TOC-Edge-Aerial.
comment: Code and dataset will be made publicly available: https://github.com/fangzr/TOC-Edge-Aerial
Enhancing Long-Term Re-Identification Robustness Using Synthetic Data: A Comparative Analysis ICML
This contribution explores the impact of synthetic training data usage and the prediction of material wear and aging in the context of re-identification. Different experimental setups and gallery set expanding strategies are tested, analyzing their impact on performance over time for aging re-identification subjects. Using a continuously updating gallery, we were able to increase our mean Rank-1 accuracy by 24%, as material aging was taken into account step by step. In addition, using models trained with 10% artificial training data, Rank-1 accuracy could be increased by up to 13%, in comparison to a model trained on only real-world data, significantly boosting generalized performance on hold-out data. Finally, this work introduces a novel, open-source re-identification dataset, pallet-block-2696. This dataset contains 2,696 images of Euro pallets, taken over a period of 4 months. During this time, natural aging processes occurred and some of the pallets were damaged during their usage. These wear and tear processes significantly changed the appearance of the pallets, providing a dataset that can be used to generate synthetically aged pallets or other wooden materials.
comment: Published in: 2024 International Conference on Machine Learning and Applications (ICMLA), IEEE. 6 pages, 3 figures
Seeing Soundscapes: Audio-Visual Generation and Separation from Soundscapes Using Audio-Visual Separator CVPR 2025
Recent audio-visual generative models have made substantial progress in generating images from audio. However, existing approaches focus on generating images from single-class audio and fail to generate images from mixed audio. To address this, we propose an Audio-Visual Generation and Separation model (AV-GAS) for generating images from soundscapes (mixed audio containing multiple classes). Our contribution is threefold: First, we propose a new challenge in the audio-visual generation task, which is to generate an image given a multi-class audio input, and we propose a method that solves this task using an audio-visual separator. Second, we introduce a new audio-visual separation task, which involves generating separate images for each class present in a mixed audio input. Lastly, we propose new evaluation metrics for the audio-visual generation task: Class Representation Score (CRS) and a modified R@K. Our model is trained and evaluated on the VGGSound dataset. We show that our method outperforms the state-of-the-art, achieving 7% higher CRS and 4% higher R@2* in generating plausible images with mixed audio.
comment: Originally submitted to CVPR 2025 on 2024-11-15 with paper ID 15808
TextTIGER: Text-based Intelligent Generation with Entity Prompt Refinement for Text-to-Image Generation
Generating images from prompts containing specific entities requires models to retain as much entity-specific knowledge as possible. However, fully memorizing such knowledge is impractical due to the vast number of entities and their continuous emergence. To address this, we propose Text-based Intelligent Generation with Entity prompt Refinement (TextTIGER), which augments knowledge on entities included in the prompts and then summarizes the augmented descriptions using Large Language Models (LLMs) to mitigate performance degradation from longer inputs. To evaluate our method, we introduce WiT-Cub (WiT with Captions and Uncomplicated Background-explanations), a dataset comprising captions, images, and an entity list. Experiments on four image generation models and five LLMs show that TextTIGER improves image generation performance in standard metrics (IS, FID, and CLIPScore) compared to caption-only prompts. Additionally, multiple annotators' evaluation confirms that the summarized descriptions are more informative, validating LLMs' ability to generate concise yet rich descriptions. These findings demonstrate that refining prompts with augmented and summarized entity-related descriptions enhances image generation capabilities. The code and dataset will be available upon acceptance.
comment: Under review
Towards a deep learning approach for classifying treatment response in glioblastomas
Glioblastomas are the most aggressive type of glioma, having a 5-year survival rate of 6.9%. Treatment typically involves surgery, followed by radiotherapy and chemotherapy, and frequent magnetic resonance imaging (MRI) scans to monitor disease progression. To assess treatment response, radiologists use the Response Assessment in Neuro-Oncology (RANO) criteria to categorize the tumor into one of four labels based on imaging and clinical features: complete response, partial response, stable disease, and progressive disease. This assessment is very complex and time-consuming. Since deep learning (DL) has been widely used to tackle classification problems, this work aimed to implement the first DL pipeline for the classification of RANO criteria based on two consecutive MRI acquisitions. The models were trained and tested on the open dataset LUMIERE. Five approaches were tested: 1) subtraction of input images, 2) different combinations of modalities, 3) different model architectures, 4) different pretraining tasks, and 5) adding clinical data. The pipeline that achieved the best performance used a Densenet264 considering only T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) images as input without any pretraining. A median Balanced Accuracy of 50.96% was achieved. Additionally, explainability methods were applied. Using Saliency Maps, the tumor region was often successfully highlighted. In contrast, Grad-CAM typically failed to highlight the tumor region, with some exceptions observed in the Complete Response and Progressive Disease classes, where it effectively identified the tumor region. These results set a benchmark for future studies on glioblastoma treatment response assessment based on the RANO criteria while emphasizing the heterogeneity of factors that might play a role when assessing the tumor's response to treatment.
SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology CVPR 2025
With the exacerbation of the biodiversity and climate crises, macroecological pursuits such as global biodiversity mapping become more urgent. Remote sensing offers a wealth of Earth observation data for ecological studies, but the scarcity of labeled datasets remains a major challenge. Recently, self-supervised learning has enabled learning representations from unlabeled data, triggering the development of pretrained geospatial models with generalizable features. However, these models are often trained on datasets biased toward areas of high human activity, leaving entire ecological regions underrepresented. Additionally, while some datasets attempt to address seasonality through multi-date imagery, they typically follow calendar seasons rather than local phenological cycles. To better capture vegetation seasonality at a global scale, we propose a simple phenology-informed sampling strategy and introduce corresponding SSL4Eco, a multi-date Sentinel-2 dataset, on which we train an existing model with a season-contrastive objective. We compare representations learned from SSL4Eco against other datasets on diverse ecological downstream tasks and demonstrate that our straightforward sampling method consistently improves representation quality, highlighting the importance of dataset construction. The model pretrained on SSL4Eco reaches state of the art performance on 7 out of 8 downstream tasks spanning (multi-label) classification and regression. We release our code, data, and model weights to support macroecological and computer vision research at https://github.com/PlekhanovaElena/ssl4eco.
comment: CVPR 2025, EarthVision workshop
Event-Based Eye Tracking. 2025 Event-based Vision Workshop
This survey serves as a review for the 2025 Event-Based Eye Tracking Challenge organized as part of the 2025 CVPR event-based vision workshop. This challenge focuses on the task of predicting the pupil center by processing event camera recorded eye movement. We review and summarize the innovative methods from teams rank the top in the challenge to advance future event-based eye tracking research. In each method, accuracy, model size, and number of operations are reported. In this survey, we also discuss event-based eye tracking from the perspective of hardware design.
BiasBench: A reproducible benchmark for tuning the biases of event cameras CVPR 2025
Event-based cameras are bio-inspired sensors that detect light changes asynchronously for each pixel. They are increasingly used in fields like computer vision and robotics because of several advantages over traditional frame-based cameras, such as high temporal resolution, low latency, and high dynamic range. As with any camera, the output's quality depends on how well the camera's settings, called biases for event-based cameras, are configured. While frame-based cameras have advanced automatic configuration algorithms, there are very few such tools for tuning these biases. A systematic testing framework would require observing the same scene with different biases, which is tricky since event cameras only generate events when there is movement. Event simulators exist, but since biases heavily depend on the electrical circuit and the pixel design, available simulators are not well suited for bias tuning. To allow reproducibility, we present BiasBench, a novel event dataset containing multiple scenes with settings sampled in a grid-like pattern. We present three different scenes, each with a quality metric of the downstream application. Additionally, we present a novel, RL-based method to facilitate online bias adjustments.
comment: Accepted to CVPR 2025 Workshop on Event-based Vision
Dense Geometry Supervision for Underwater Depth Estimation
The field of monocular depth estimation is continually evolving with the advent of numerous innovative models and extensions. However, research on monocular depth estimation methods specifically for underwater scenes remains limited, compounded by a scarcity of relevant data and methodological support. This paper proposes a novel approach to address the existing challenges in current monocular depth estimation methods for underwater environments. We construct an economically efficient dataset suitable for underwater scenarios by employing multi-view depth estimation to generate supervisory signals and corresponding enhanced underwater images. we introduces a texture-depth fusion module, designed according to the underwater optical imaging principles, which aims to effectively exploit and integrate depth information from texture cues. Experimental results on the FLSea dataset demonstrate that our approach significantly improves the accuracy and adaptability of models in underwater settings. This work offers a cost-effective solution for monocular underwater depth estimation and holds considerable promise for practical applications.
Unify3D: An Augmented Holistic End-to-end Monocular 3D Human Reconstruction via Anatomy Shaping and Twins Negotiating
Monocular 3D clothed human reconstruction aims to create a complete 3D avatar from a single image. To tackle the human geometry lacking in one RGB image, current methods typically resort to a preceding model for an explicit geometric representation. For the reconstruction itself, focus is on modeling both it and the input image. This routine is constrained by the preceding model, and overlooks the integrity of the reconstruction task. To address this, this paper introduces a novel paradigm that treats human reconstruction as a holistic process, utilizing an end-to-end network for direct prediction from 2D image to 3D avatar, eliminating any explicit intermediate geometry display. Based on this, we further propose a novel reconstruction framework consisting of two core components: the Anatomy Shaping Extraction module, which captures implicit shape features taking into account the specialty of human anatomy, and the Twins Negotiating Reconstruction U-Net, which enhances reconstruction through feature interaction between two U-Nets of different modalities. Moreover, we propose a Comic Data Augmentation strategy and construct 15k+ 3D human scans to bolster model performance in more complex case input. Extensive experiments on two test sets and many in-the-wild cases show the superiority of our method over SOTA methods. Our demos can be found in : https://e2e3dgsrecon.github.io/e2e3dgsrecon/.
A Data-Centric Approach to 3D Semantic Segmentation of Railway Scenes
LiDAR-based semantic segmentation is critical for autonomous trains, requiring accurate predictions across varying distances. This paper introduces two targeted data augmentation methods designed to improve segmentation performance on the railway-specific OSDaR23 dataset. The person instance pasting method enhances segmentation of pedestrians at distant ranges by injecting realistic variations into the dataset. The track sparsification method redistributes point density in LiDAR scans, improving track segmentation at far distances with minimal impact on close-range accuracy. Both methods are evaluated using a state-of-the-art 3D semantic segmentation network, demonstrating significant improvements in distant-range performance while maintaining robustness in close-range predictions. We establish the first 3D semantic segmentation benchmark for OSDaR23, demonstrating the potential of data-centric approaches to address railway-specific challenges in autonomous train perception.
comment: Accepted at the 28th Computer Vision Winter Workshop 2025
Gradient Descent as a Shrinkage Operator for Spectral Bias
We generalize the connection between activation function and spline regression/smoothing and characterize how this choice may influence spectral bias within a 1D shallow network. We then demonstrate how gradient descent (GD) can be reinterpreted as a shrinkage operator that masks the singular values of a neural network's Jacobian. Viewed this way, GD implicitly selects the number of frequency components to retain, thereby controlling the spectral bias. An explicit relationship is proposed between the choice of GD hyperparameters (learning rate & number of iterations) and bandwidth (the number of active components). GD regularization is shown to be effective only with monotonic activation functions. Finally, we highlight the utility of non-monotonic activation functions (sinc, Gaussian) as iteration-efficient surrogates for spectral bias.
Optimizing Multi-Round Enhanced Training in Diffusion Models for Improved Preference Understanding
Generative AI has significantly changed industries by enabling text-driven image generation, yet challenges remain in achieving high-resolution outputs that align with fine-grained user preferences. Consequently, multi-round interactions are necessary to ensure the generated images meet expectations. Previous methods enhanced prompts via reward feedback but did not optimize over a multi-round dialogue dataset. In this work, we present a Visual Co-Adaptation (VCA) framework incorporating human-in-the-loop feedback, leveraging a well-trained reward model aligned with human preferences. Using a diverse multi-turn dialogue dataset, our framework applies multiple reward functions, such as diversity, consistency, and preference feedback, while fine-tuning the diffusion model through LoRA, thus optimizing image generation based on user input. We also construct multi-round dialogue datasets of prompts and image pairs aligned with user intent. Experiments demonstrate that our method outperforms state-of-the-art baselines, significantly improving image consistency and alignment with user intent. Our approach consistently surpasses competing models in user satisfaction, especially in multi-turn dialogue scenarios.
comment: arXiv admin note: substantial text overlap with arXiv:2503.17660
LiDAR-Guided Monocular 3D Object Detection for Long-Range Railway Monitoring
Railway systems, particularly in Germany, require high levels of automation to address legacy infrastructure challenges and increase train traffic safely. A key component of automation is robust long-range perception, essential for early hazard detection, such as obstacles at level crossings or pedestrians on tracks. Unlike automotive systems with braking distances of ~70 meters, trains require perception ranges exceeding 1 km. This paper presents an deep-learning-based approach for long-range 3D object detection tailored for autonomous trains. The method relies solely on monocular images, inspired by the Faraway-Frustum approach, and incorporates LiDAR data during training to improve depth estimation. The proposed pipeline consists of four key modules: (1) a modified YOLOv9 for 2.5D object detection, (2) a depth estimation network, and (3-4) dedicated short- and long-range 3D detection heads. Evaluations on the OSDaR23 dataset demonstrate the effectiveness of the approach in detecting objects up to 250 meters. Results highlight its potential for railway automation and outline areas for future improvement.
comment: Accepted for the Data-Driven Learning for Intelligent Vehicle Applications Workshop at the 36th IEEE Intelligent Vehicles Symposium (IV) 2025
Multi-Grained Compositional Visual Clue Learning for Image Intent Recognition
In an era where social media platforms abound, individuals frequently share images that offer insights into their intents and interests, impacting individual life quality and societal stability. Traditional computer vision tasks, such as object detection and semantic segmentation, focus on concrete visual representations, while intent recognition relies more on implicit visual clues. This poses challenges due to the wide variation and subjectivity of such clues, compounded by the problem of intra-class variety in conveying abstract concepts, e.g. "enjoy life". Existing methods seek to solve the problem by manually designing representative features or building prototypes for each class from global features. However, these methods still struggle to deal with the large visual diversity of each intent category. In this paper, we introduce a novel approach named Multi-grained Compositional visual Clue Learning (MCCL) to address these challenges for image intent recognition. Our method leverages the systematic compositionality of human cognition by breaking down intent recognition into visual clue composition and integrating multi-grained features. We adopt class-specific prototypes to alleviate data imbalance. We treat intent recognition as a multi-label classification problem, using a graph convolutional network to infuse prior knowledge through label embedding correlations. Demonstrated by a state-of-the-art performance on the Intentonomy and MDID datasets, our approach advances the accuracy of existing methods while also possessing good interpretability. Our work provides an attempt for future explorations in understanding complex and miscellaneous forms of human expression.
What is the Added Value of UDA in the VFM Era?
Unsupervised Domain Adaptation (UDA) can improve a perception model's generalization to an unlabeled target domain starting from a labeled source domain. UDA using Vision Foundation Models (VFMs) with synthetic source data can achieve generalization performance comparable to fully-supervised learning with real target data. However, because VFMs have strong generalization from their pre-training, more straightforward, source-only fine-tuning can also perform well on the target. As data scenarios used in academic research are not necessarily representative for real-world applications, it is currently unclear (a) how UDA behaves with more representative and diverse data and (b) if source-only fine-tuning of VFMs can perform equally well in these scenarios. Our research aims to close these gaps and, similar to previous studies, we focus on semantic segmentation as a representative perception task. We assess UDA for synth-to-real and real-to-real use cases with different source and target data combinations. We also investigate the effect of using a small amount of labeled target data in UDA. We clarify that while these scenarios are more realistic, they are not necessarily more challenging. Our results show that, when using stronger synthetic source data, UDA's improvement over source-only fine-tuning of VFMs reduces from +8 mIoU to +2 mIoU, and when using more diverse real source data, UDA has no added value. However, UDA generalization is always higher in all synthetic data scenarios than source-only fine-tuning and, when including only 1/16 of Cityscapes labels, synthetic UDA obtains the same state-of-the-art segmentation quality of 85 mIoU as a fully-supervised model using all labels. Considering the mixed results, we discuss how UDA can best support robust autonomous driving at scale.
Label-independent hyperparameter-free self-supervised single-view deep subspace clustering
Deep subspace clustering (DSC) algorithms face several challenges that hinder their widespread adoption across variois application domains. First, clustering quality is typically assessed using only the encoder's output layer, disregarding valuable information present in the intermediate layers. Second, most DSC approaches treat representation learning and subspace clustering as independent tasks, limiting their effectiveness. Third, they assume the availability of a held-out dataset for hyperparameter tuning, which is often impractical in real-world scenarios. Fourth, learning termination is commonly based on clustering error monitoring, requiring external labels. Finally, their performance often depends on post-processing techniques that rely on labeled data. To address this limitations, we introduce a novel single-view DSC approach that: (i) minimizes a layer-wise self expression loss using a joint representation matrix; (ii) optimizes a subspace-structured norm to enhance clustering quality; (iii) employs a multi-stage sequential learning framework, consisting of pre-training and fine-tuning, enabling the use of multiple regularization terms without hyperparameter tuning; (iv) incorporates a relative error-based self-stopping mechanism to terminate training without labels; and (v) retains a fixed number of leading coefficients in the learned representation matrix based on prior knowledge. We evaluate the proposed method on six datasets representing faces, digits, and objects. The results show that our method outperforms most linear SC algorithms with careffulyl tuned hyperparameters while maintaining competitive performance with the best performing linear appoaches.
comment: 35 pages; 1 figure; 10 Tables
PerfCam: Digital Twinning for Production Lines Using 3D Gaussian Splatting and Vision Models
We introduce PerfCam, an open source Proof-of-Concept (PoC) digital twinning framework that combines camera and sensory data with 3D Gaussian Splatting and computer vision models for digital twinning, object tracking, and Key Performance Indicators (KPIs) extraction in industrial production lines. By utilizing 3D reconstruction and Convolutional Neural Networks (CNNs), PerfCam offers a semi-automated approach to object tracking and spatial mapping, enabling digital twins that capture real-time KPIs such as availability, performance, Overall Equipment Effectiveness (OEE), and rate of conveyor belts in the production line. We validate the effectiveness of PerfCam through a practical deployment within realistic test production lines in the pharmaceutical industry and contribute an openly published dataset to support further research and development in the field. The results demonstrate PerfCam's ability to deliver actionable insights through its precise digital twin capabilities, underscoring its value as an effective tool for developing usable digital twins in smart manufacturing environments and extracting operational analytics.
E-InMeMo: Enhanced Prompting for Visual In-Context Learning
Large-scale models trained on extensive datasets have become the standard due to their strong generalizability across diverse tasks. In-context learning (ICL), widely used in natural language processing, leverages these models by providing task-specific prompts without modifying their parameters. This paradigm is increasingly being adapted for computer vision, where models receive an input-output image pair, known as an in-context pair, alongside a query image to illustrate the desired output. However, the success of visual ICL largely hinges on the quality of these prompts. To address this, we propose Enhanced Instruct Me More (E-InMeMo), a novel approach that incorporates learnable perturbations into in-context pairs to optimize prompting. Through extensive experiments on standard vision tasks, E-InMeMo demonstrates superior performance over existing state-of-the-art methods. Notably, it improves mIoU scores by 7.99 for foreground segmentation and by 17.04 for single object detection when compared to the baseline without learnable prompts. These results highlight E-InMeMo as a lightweight yet effective strategy for enhancing visual ICL. Code is publicly available at: https://github.com/Jackieam/E-InMeMo
comment: Preprint
ActionArt: Advancing Multimodal Large Models for Fine-Grained Human-Centric Video Understanding
Fine-grained understanding of human actions and poses in videos is essential for human-centric AI applications. In this work, we introduce ActionArt, a fine-grained video-caption dataset designed to advance research in human-centric multimodal understanding. Our dataset comprises thousands of videos capturing a broad spectrum of human actions, human-object interactions, and diverse scenarios, each accompanied by detailed annotations that meticulously label every limb movement. We develop eight sub-tasks to evaluate the fine-grained understanding capabilities of existing large multimodal models across different dimensions. Experimental results indicate that, while current large multimodal models perform commendably on various tasks, they often fall short in achieving fine-grained understanding. We attribute this limitation to the scarcity of meticulously annotated data, which is both costly and difficult to scale manually. Since manual annotations are costly and hard to scale, we propose proxy tasks to enhance the model perception ability in both spatial and temporal dimensions. These proxy tasks are carefully crafted to be driven by data automatically generated from existing MLLMs, thereby reducing the reliance on costly manual labels. Experimental results show that the proposed proxy tasks significantly narrow the gap toward the performance achieved with manually annotated fine-grained data.
MASF-YOLO: An Improved YOLOv11 Network for Small Object Detection on Drone View
With the rapid advancement of Unmanned Aerial Vehicle (UAV) and computer vision technologies, object detection from UAV perspectives has emerged as a prominent research area. However, challenges for detection brought by the extremely small proportion of target pixels, significant scale variations of objects, and complex background information in UAV images have greatly limited the practical applications of UAV. To address these challenges, we propose a novel object detection network Multi-scale Context Aggregation and Scale-adaptive Fusion YOLO (MASF-YOLO), which is developed based on YOLOv11. Firstly, to tackle the difficulty of detecting small objects in UAV images, we design a Multi-scale Feature Aggregation Module (MFAM), which significantly improves the detection accuracy of small objects through parallel multi-scale convolutions and feature fusion. Secondly, to mitigate the interference of background noise, we propose an Improved Efficient Multi-scale Attention Module (IEMA), which enhances the focus on target regions through feature grouping, parallel sub-networks, and cross-spatial learning. Thirdly, we introduce a Dimension-Aware Selective Integration Module (DASI), which further enhances multi-scale feature fusion capabilities by adaptively weighting and fusing low-dimensional features and high-dimensional features. Finally, we conducted extensive performance evaluations of our proposed method on the VisDrone2019 dataset. Compared to YOLOv11-s, MASFYOLO-s achieves improvements of 4.6% in mAP@0.5 and 3.5% in mAP@0.5:0.95 on the VisDrone2019 validation set. Remarkably, MASF-YOLO-s outperforms YOLOv11-m while requiring only approximately 60% of its parameters and 65% of its computational cost. Furthermore, comparative experiments with state-of-the-art detectors confirm that MASF-YOLO-s maintains a clear competitive advantage in both detection accuracy and model efficiency.
Salient Region-Guided Spacecraft Image Arbitrary-Scale Super-Resolution Network
Spacecraft image super-resolution seeks to enhance low-resolution spacecraft images into high-resolution ones. Although existing arbitrary-scale super-resolution methods perform well on general images, they tend to overlook the difference in features between the spacecraft core region and the large black space background, introducing irrelevant noise. In this paper, we propose a salient region-guided spacecraft image arbitrary-scale super-resolution network (SGSASR), which uses features from the spacecraft core salient regions to guide latent modulation and achieve arbitrary-scale super-resolution. Specifically, we design a spacecraft core region recognition block (SCRRB) that identifies the core salient regions in spacecraft images using a pre-trained saliency detection model. Furthermore, we present an adaptive-weighted feature fusion enhancement mechanism (AFFEM) to selectively aggregate the spacecraft core region features with general image features by dynamic weight parameter to enhance the response of the core salient regions. Experimental results demonstrate that the proposed SGSASR outperforms state-of-the-art approaches.
Study on Real-Time Road Surface Reconstruction Using Stereo Vision
Road surface reconstruction plays a crucial role in autonomous driving, providing essential information for safe and smooth navigation. This paper enhances the RoadBEV [1] framework for real-time inference on edge devices by optimizing both efficiency and accuracy. To achieve this, we proposed to apply Isomorphic Global Structured Pruning to the stereo feature extraction backbone, reducing network complexity while maintaining performance. Additionally, the head network is redesigned with an optimized hourglass structure, dynamic attention heads, reduced feature channels, mixed precision inference, and efficient probability volume computation. Our approach improves inference speed while achieving lower reconstruction error, making it well-suited for real-time road surface reconstruction in autonomous driving.
comment: Stereo Vision, Efficient CNN, Pruning, Optimization. 2025 Intelligent Information and Control Conference (IICC 2025), Jeonju, Korea
Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation
Recent advances in Talking Head Generation (THG) have achieved impressive lip synchronization and visual quality through diffusion models; yet existing methods struggle to generate emotionally expressive portraits while preserving speaker identity. We identify three critical limitations in current emotional talking head generation: insufficient utilization of audio's inherent emotional cues, identity leakage in emotion representations, and isolated learning of emotion correlations. To address these challenges, we propose a novel framework dubbed as DICE-Talk, following the idea of disentangling identity with emotion, and then cooperating emotions with similar characteristics. First, we develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention, representing emotions as identity-agnostic Gaussian distributions. Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks that explicitly capture inter-emotion relationships through vector quantization and attention-based feature aggregation. Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process through latent-space classification. Extensive experiments on MEAD and HDTF datasets demonstrate our method's superiority, outperforming state-of-the-art approaches in emotion accuracy while maintaining competitive lip-sync performance. Qualitative results and user studies further confirm our method's ability to generate identity-preserving portraits with rich, correlated emotional expressions that naturally adapt to unseen identities.
comment: arXiv admin note: text overlap with arXiv:2409.03270
S3MOT: Monocular 3D Object Tracking with Selective State Space Model
Accurate and reliable multi-object tracking (MOT) in 3D space is essential for advancing robotics and computer vision applications. However, it remains a significant challenge in monocular setups due to the difficulty of mining 3D spatiotemporal associations from 2D video streams. In this work, we present three innovative techniques to enhance the fusion and exploitation of heterogeneous cues for monocular 3D MOT: (1) we introduce the Hungarian State Space Model (HSSM), a novel data association mechanism that compresses contextual tracking cues across multiple paths, enabling efficient and comprehensive assignment decisions with linear complexity. HSSM features a global receptive field and dynamic weights, in contrast to traditional linear assignment algorithms that rely on hand-crafted association costs. (2) We propose Fully Convolutional One-stage Embedding (FCOE), which eliminates ROI pooling by directly using dense feature maps for contrastive learning, thus improving object re-identification accuracy under challenging conditions such as varying viewpoints and lighting. (3) We enhance 6-DoF pose estimation through VeloSSM, an encoder-decoder architecture that models temporal dependencies in velocity to capture motion dynamics, overcoming the limitations of frame-based 3D inference. Experiments on the KITTI public test benchmark demonstrate the effectiveness of our method, achieving a new state-of-the-art performance of 76.86~HOTA at 31~FPS. Our approach outperforms the previous best by significant margins of +2.63~HOTA and +3.62~AssA, showcasing its robustness and efficiency for monocular 3D MOT tasks. The code and models are available at https://github.com/bytepioneerX/s3mot.
Physics-Driven Neural Compensation For Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) provides a non-invasive, portable imaging modality with significant potential in medical and industrial applications. Despite its advantages, EIT encounters two primary challenges: the ill-posed nature of its inverse problem and the spatially variable, location-dependent sensitivity distribution. Traditional model-based methods mitigate ill-posedness through regularization but overlook sensitivity variability, while supervised deep learning approaches require extensive training data and lack generalization. Recent developments in neural fields have introduced implicit regularization techniques for image reconstruction, but these methods typically neglect the physical principles underlying EIT, thus limiting their effectiveness. In this study, we propose PhyNC (Physics-driven Neural Compensation), an unsupervised deep learning framework that incorporates the physical principles of EIT. PhyNC addresses both the ill-posed inverse problem and the sensitivity distribution by dynamically allocating neural representational capacity to regions with lower sensitivity, ensuring accurate and balanced conductivity reconstructions. Extensive evaluations on both simulated and experimental data demonstrate that PhyNC outperforms existing methods in terms of detail preservation and artifact resistance, particularly in low-sensitivity regions. Our approach enhances the robustness of EIT reconstructions and provides a flexible framework that can be adapted to other imaging modalities with similar challenges.
POET: Prompt Offset Tuning for Continual Human Action Adaptation ECCV 2024
As extended reality (XR) is redefining how users interact with computing devices, research in human action recognition is gaining prominence. Typically, models deployed on immersive computing devices are static and limited to their default set of classes. The goal of our research is to provide users and developers with the capability to personalize their experience by adding new action classes to their device models continually. Importantly, a user should be able to add new classes in a low-shot and efficient manner, while this process should not require storing or replaying any of user's sensitive training data. We formalize this problem as privacy-aware few-shot continual action recognition. Towards this end, we propose POET: Prompt-Offset Tuning. While existing prompt tuning approaches have shown great promise for continual learning of image, text, and video modalities; they demand access to extensively pretrained transformers. Breaking away from this assumption, POET demonstrates the efficacy of prompt tuning a significantly lightweight backbone, pretrained exclusively on the base class data. We propose a novel spatio-temporal learnable prompt offset tuning approach, and are the first to apply such prompt tuning to Graph Neural Networks. We contribute two new benchmarks for our new problem setting in human action recognition: (i) NTU RGB+D dataset for activity recognition, and (ii) SHREC-2017 dataset for hand gesture recognition. We find that POET consistently outperforms comprehensive benchmarks. Source code at https://github.com/humansensinglab/POET-continual-action-recognition.
comment: ECCV 2024 (Oral), webpage https://humansensinglab.github.io/POET-continual-action-recognition/
DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models NAACL 2025
Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data, thereby introducing new dimensions of potential attacks and complex risk combinations. In this paper, we begin with a detailed analysis aimed at disentangling risks through step-by-step reasoning within multimodal inputs. We find that systematic multimodal risk disentanglement substantially enhances the risk awareness of MLLMs. Via leveraging the strong discriminative abilities of multimodal risk disentanglement, we further introduce \textbf{DREAM} (\textit{\textbf{D}isentangling \textbf{R}isks to \textbf{E}nhance Safety \textbf{A}lignment in \textbf{M}LLMs}), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback (RLAIF). Experimental results show that DREAM significantly boosts safety during both inference and training phases without compromising performance on normal tasks (namely oversafety), achieving a 16.17\% improvement in the SIUO safe\&effective score compared to GPT-4V. The data and code are available at https://github.com/Kizna1ver/DREAM.
comment: [NAACL 2025] The first four authors contribute equally, 23 pages, repo at https://github.com/Kizna1ver/DREAM
A BERT-Style Self-Supervised Learning CNN for Disease Identification from Retinal Images
In the field of medical imaging, the advent of deep learning, especially the application of convolutional neural networks (CNNs) has revolutionized the analysis and interpretation of medical images. Nevertheless, deep learning methods usually rely on large amounts of labeled data. In medical imaging research, the acquisition of high-quality labels is both expensive and difficult. The introduction of Vision Transformers (ViT) and self-supervised learning provides a pre-training strategy that utilizes abundant unlabeled data, effectively alleviating the label acquisition challenge while broadening the breadth of data utilization. However, ViT's high computational density and substantial demand for computing power, coupled with the lack of localization characteristics of its operations on image patches, limit its efficiency and applicability in many application scenarios. In this study, we employ nn-MobileNet, a lightweight CNN framework, to implement a BERT-style self-supervised learning approach. We pre-train the network on the unlabeled retinal fundus images from the UK Biobank to improve downstream application performance. We validate the results of the pre-trained model on Alzheimer's disease (AD), Parkinson's disease (PD), and various retinal diseases identification. The results show that our approach can significantly improve performance in the downstream tasks. In summary, this study combines the benefits of CNNs with the capabilities of advanced self-supervised learning in handling large-scale unlabeled data, demonstrating the potential of CNNs in the presence of label scarcity.
DMS-Net:Dual-Modal Multi-Scale Siamese Network for Binocular Fundus Image Classification
Ophthalmic diseases pose a significant global health challenge, yet traditional diagnosis methods and existing single-eye deep learning approaches often fail to account for binocular pathological correlations. To address this, we propose DMS-Net, a dual-modal multi-scale Siamese network for binocular fundus image classification. Our framework leverages weight-shared Siamese ResNet-152 backbones to extract deep semantic features from paired fundus images. To tackle challenges such as lesion boundary ambiguity and scattered pathological distributions, we introduce a Multi-Scale Context-Aware Module (MSCAM) that integrates adaptive pooling and attention mechanisms for multi-resolution feature aggregation. Additionally, a Dual-Modal Feature Fusion (DMFF) module enhances cross-modal interaction through spatial-semantic recalibration and bidirectional attention, effectively combining global context and local edge features. Evaluated on the ODIR-5K dataset, DMS-Net achieves state-of-the-art performance with 80.5% accuracy, 86.1% recall, and 83.8% Cohen's kappa, demonstrating superior capability in detecting symmetric pathologies and advancing clinical decision-making for ocular diseases.
Cabbage: A Differential Growth Framework for Open Surfaces
We propose Cabbage, a differential growth framework to model buckling behavior in 3D open surfaces found in nature-like the curling of flower petals. Cabbage creates high-quality triangular meshes free of self-intersection. Cabbage-Shell is driven by edge subdivision which differentially increases discretization resolution. Shell forces expands the surface, generating buckling over time. Feature-aware smoothing and remeshing ensures mesh quality. Corrective collision effectively prevents self-collision even in tight spaces. We additionally provide Cabbage-Collision, and approximate alternative, followed by CAD-ready surface generation. Cabbage is the first open-source effort with this calibre and robustness, outperforming SOTA methods in its morphological expressiveness, mesh quality, and stably generates large, complex patterns over hundreds of simulation steps. It is a source not only of computational modeling, digital fabrication, education, but also high-quality, annotated data for geometry processing and shape analysis.
Enhancing Privacy-Utility Trade-offs to Mitigate Memorization in Diffusion Models CVPR 2025
Text-to-image diffusion models have demonstrated remarkable capabilities in creating images highly aligned with user prompts, yet their proclivity for memorizing training set images has sparked concerns about the originality of the generated images and privacy issues, potentially leading to legal complications for both model owners and users, particularly when the memorized images contain proprietary content. Although methods to mitigate these issues have been suggested, enhancing privacy often results in a significant decrease in the utility of the outputs, as indicated by text-alignment scores. To bridge the research gap, we introduce a novel method, PRSS, which refines the classifier-free guidance approach in diffusion models by integrating prompt re-anchoring (PR) to improve privacy and incorporating semantic prompt search (SS) to enhance utility. Extensive experiments across various privacy levels demonstrate that our approach consistently improves the privacy-utility trade-off, establishing a new state-of-the-art.
comment: Accepted at CVPR 2025. Project page: https://chenchen-usyd.github.io/PRSS-Project-Page/
A Large Vision-Language Model based Environment Perception System for Visually Impaired People IROS2024
It is a challenging task for visually impaired people to perceive their surrounding environment due to the complexity of the natural scenes. Their personal and social activities are thus highly limited. This paper introduces a Large Vision-Language Model(LVLM) based environment perception system which helps them to better understand the surrounding environment, by capturing the current scene they face with a wearable device, and then letting them retrieve the analysis results through the device. The visually impaired people could acquire a global description of the scene by long pressing the screen to activate the LVLM output, retrieve the categories of the objects in the scene resulting from a segmentation model by tapping or swiping the screen, and get a detailed description of the objects they are interested in by double-tapping the screen. To help visually impaired people more accurately perceive the world, this paper proposes incorporating the segmentation result of the RGB image as external knowledge into the input of LVLM to reduce the LVLM's hallucination. Technical experiments on POPE, MME and LLaVA-QA90 show that the system could provide a more accurate description of the scene compared to Qwen-VL-Chat, exploratory experiments show that the system helps visually impaired people to perceive the surrounding environment effectively.
comment: Accepted by IROS2024(9 pages, 8 figures)
ShapeSpeak: Body Shape-Aware Textual Alignment for Visible-Infrared Person Re-Identification
Visible-Infrared Person Re-identification (VIReID) aims to match visible and infrared pedestrian images, but the modality differences and the complexity of identity features make it challenging. Existing methods rely solely on identity label supervision, which makes it difficult to fully extract high-level semantic information. Recently, vision-language pre-trained models have been introduced to VIReID, enhancing semantic information modeling by generating textual descriptions. However, such methods do not explicitly model body shape features, which are crucial for cross-modal matching. To address this, we propose an effective Body Shape-aware Textual Alignment (BSaTa) framework that explicitly models and utilizes body shape information to improve VIReID performance. Specifically, we design a Body Shape Textual Alignment (BSTA) module that extracts body shape information using a human parsing model and converts it into structured text representations via CLIP. We also design a Text-Visual Consistency Regularizer (TVCR) to ensure alignment between body shape textual representations and visual body shape features. Furthermore, we introduce a Shape-aware Representation Learning (SRL) mechanism that combines Multi-text Supervision and Distribution Consistency Constraints to guide the visual encoder to learn modality-invariant and discriminative identity features, thus enhancing modality invariance. Experimental results demonstrate that our method achieves superior performance on the SYSU-MM01 and RegDB datasets, validating its effectiveness.
Federated Client-tailored Adapter for Medical Image Segmentation
Medical image segmentation in X-ray images is beneficial for computer-aided diagnosis and lesion localization. Existing methods mainly fall into a centralized learning paradigm, which is inapplicable in the practical medical scenario that only has access to distributed data islands. Federated Learning has the potential to offer a distributed solution but struggles with heavy training instability due to client-wise domain heterogeneity (including distribution diversity and class imbalance). In this paper, we propose a novel Federated Client-tailored Adapter (FCA) framework for medical image segmentation, which achieves stable and client-tailored adaptive segmentation without sharing sensitive local data. Specifically, the federated adapter stirs universal knowledge in off-the-shelf medical foundation models to stabilize the federated training process. In addition, we develop two client-tailored federated updating strategies that adaptively decompose the adapter into common and individual components, then globally and independently update the parameter groups associated with common client-invariant and individual client-specific units, respectively. They further stabilize the heterogeneous federated learning process and realize optimal client-tailored instead of sub-optimal global-compromised segmentation models. Extensive experiments on three large-scale datasets demonstrate the effectiveness and superiority of the proposed FCA framework for federated medical segmentation.
Diffusion-Driven Universal Model Inversion Attack for Face Recognition
Facial recognition technology poses significant privacy risks, as it relies on biometric data that is inherently sensitive and immutable if compromised. To mitigate these concerns, face recognition systems convert raw images into embeddings, traditionally considered privacy-preserving. However, model inversion attacks pose a significant privacy threat by reconstructing these private facial images, making them a crucial tool for evaluating the privacy risks of face recognition systems. Existing methods usually require training individual generators for each target model, a computationally expensive process. In this paper, we propose DiffUMI, a training-free diffusion-driven universal model inversion attack for face recognition systems. DiffUMI is the first approach to apply a diffusion model for unconditional image generation in model inversion. Unlike other methods, DiffUMI is universal, eliminating the need for training target-specific generators. It operates within a fixed framework and pretrained diffusion model while seamlessly adapting to diverse target identities and models. DiffUMI breaches privacy-preserving face recognition systems with state-of-the-art success, demonstrating that an unconditional diffusion model, coupled with optimized adversarial search, enables efficient and high-fidelity facial reconstruction. Additionally, we introduce a novel application of out-of-domain detection (OODD), marking the first use of model inversion to distinguish non-face inputs from face inputs based solely on embeddings.
Back to Fundamentals: Low-Level Visual Features Guided Progressive Token Pruning
Vision Transformers (ViTs) excel in semantic segmentation but demand significant computation, posing challenges for deployment on resource-constrained devices. Existing token pruning methods often overlook fundamental visual data characteristics. This study introduces 'LVTP', a progressive token pruning framework guided by multi-scale Tsallis entropy and low-level visual features with twice clustering. It integrates high-level semantics and basic visual attributes for precise segmentation. A novel dynamic scoring mechanism using multi-scale Tsallis entropy weighting overcomes limitations of traditional single-parameter entropy. The framework also incorporates low-level feature analysis to preserve critical edge information while optimizing computational cost. As a plug-and-play module, it requires no architectural changes or additional training. Evaluations across multiple datasets show 20%-45% computational reductions with negligible performance loss, outperforming existing methods in balancing cost and accuracy, especially in complex edge regions.
RSRNav: Reasoning Spatial Relationship for Image-Goal Navigation
Recent image-goal navigation (ImageNav) methods learn a perception-action policy by separately capturing semantic features of the goal and egocentric images, then passing them to a policy network. However, challenges remain: (1) Semantic features often fail to provide accurate directional information, leading to superfluous actions, and (2) performance drops significantly when viewpoint inconsistencies arise between training and application. To address these challenges, we propose RSRNav, a simple yet effective method that reasons spatial relationships between the goal and current observations as navigation guidance. Specifically, we model the spatial relationship by constructing correlations between the goal and current observations, which are then passed to the policy network for action prediction. These correlations are progressively refined using fine-grained cross-correlation and direction-aware correlation for more precise navigation. Extensive evaluation of RSRNav on three benchmark datasets demonstrates superior navigation performance, particularly in the "user-matched goal" setting, highlighting its potential for real-world applications.
From Mapping to Composing: A Two-Stage Framework for Zero-shot Composed Image Retrieval
Composed Image Retrieval (CIR) is a challenging multimodal task that retrieves a target image based on a reference image and accompanying modification text. Due to the high cost of annotating CIR triplet datasets, zero-shot (ZS) CIR has gained traction as a promising alternative. Existing studies mainly focus on projection-based methods, which map an image to a single pseudo-word token. However, these methods face three critical challenges: (1) insufficient pseudo-word token representation capacity, (2) discrepancies between training and inference phases, and (3) reliance on large-scale synthetic data. To address these issues, we propose a two-stage framework where the training is accomplished from mapping to composing. In the first stage, we enhance image-to-pseudo-word token learning by introducing a visual semantic injection module and a soft text alignment objective, enabling the token to capture richer and fine-grained image information. In the second stage, we optimize the text encoder using a small amount of synthetic triplet data, enabling it to effectively extract compositional semantics by combining pseudo-word tokens with modification text for accurate target image retrieval. The strong visual-to-pseudo mapping established in the first stage provides a solid foundation for the second stage, making our approach compatible with both high- and low-quality synthetic data, and capable of achieving significant performance gains with only a small amount of synthetic data. Extensive experiments were conducted on three public datasets, achieving superior performance compared to existing approaches.
Hierarchical and Multimodal Data for Daily Activity Understanding
Daily Activity Recordings for Artificial Intelligence (DARai, pronounced "Dahr-ree") is a multimodal, hierarchically annotated dataset constructed to understand human activities in real-world settings. DARai consists of continuous scripted and unscripted recordings of 50 participants in 10 different environments, totaling over 200 hours of data from 20 sensors including multiple camera views, depth and radar sensors, wearable inertial measurement units (IMUs), electromyography (EMG), insole pressure sensors, biomonitor sensors, and gaze tracker. To capture the complexity in human activities, DARai is annotated at three levels of hierarchy: (i) high-level activities (L1) that are independent tasks, (ii) lower-level actions (L2) that are patterns shared between activities, and (iii) fine-grained procedures (L3) that detail the exact execution steps for actions. The dataset annotations and recordings are designed so that 22.7% of L2 actions are shared between L1 activities and 14.2% of L3 procedures are shared between L2 actions. The overlap and unscripted nature of DARai allows counterfactual activities in the dataset. Experiments with various machine learning models showcase the value of DARai in uncovering important challenges in human-centered applications. Specifically, we conduct unimodal and multimodal sensor fusion experiments for recognition, temporal localization, and future action anticipation across all hierarchical annotation levels. To highlight the limitations of individual sensors, we also conduct domain-variant experiments that are enabled by DARai's multi-sensor and counterfactual activity design setup. The code, documentation, and dataset are available at the dedicated DARai website: https://alregib.ece.gatech.edu/software-and-datasets/darai-daily-activity-recordings-for-artificial-intelligence-and-machine-learning/
A Spatially-Aware Multiple Instance Learning Framework for Digital Pathology
Multiple instance learning (MIL) is a promising approach for weakly supervised classification in pathology using whole slide images (WSIs). However, conventional MIL methods such as Attention-Based Deep Multiple Instance Learning (ABMIL) typically disregard spatial interactions among patches that are crucial to pathological diagnosis. Recent advancements, such as Transformer based MIL (TransMIL), have incorporated spatial context and inter-patch relationships. However, it remains unclear whether explicitly modeling patch relationships yields similar performance gains in ABMIL, which relies solely on Multi-Layer Perceptrons (MLPs). In contrast, TransMIL employs Transformer-based layers, introducing a fundamental architectural shift at the cost of substantially increased computational complexity. In this work, we enhance the ABMIL framework by integrating interaction-aware representations to address this question. Our proposed model, Global ABMIL (GABMIL), explicitly captures inter-instance dependencies while preserving computational efficiency. Experimental results on two publicly available datasets for tumor subtyping in breast and lung cancers demonstrate that GABMIL achieves up to a 7 percentage point improvement in AUPRC and a 5 percentage point increase in the Kappa score over ABMIL, with minimal or no additional computational overhead. These findings underscore the importance of incorporating patch interactions within MIL frameworks. Our code is available at \href{https://github.com/tueimage/GABMIL}{\texttt{GABMIL}}.
Highly Accurate and Diverse Traffic Data: The DeepScenario Open 3D Dataset
Accurate 3D trajectory data is crucial for advancing autonomous driving. Yet, traditional datasets are usually captured by fixed sensors mounted on a car and are susceptible to occlusion. Additionally, such an approach can precisely reconstruct the dynamic environment in the close vicinity of the measurement vehicle only, while neglecting objects that are further away. In this paper, we introduce the DeepScenario Open 3D Dataset (DSC3D), a high-quality, occlusion-free dataset of 6 degrees of freedom bounding box trajectories acquired through a novel monocular camera drone tracking pipeline. Our dataset includes more than 175,000 trajectories of 14 types of traffic participants and significantly exceeds existing datasets in terms of diversity and scale, containing many unprecedented scenarios such as complex vehicle-pedestrian interaction on highly populated urban streets and comprehensive parking maneuvers from entry to exit. DSC3D dataset was captured in five various locations in Europe and the United States and include: a parking lot, a crowded inner-city, a steep urban intersection, a federal highway, and a suburban intersection. Our 3D trajectory dataset aims to enhance autonomous driving systems by providing detailed environmental 3D representations, which could lead to improved obstacle interactions and safety. We demonstrate its utility across multiple applications including motion prediction, motion planning, scenario mining, and generative reactive traffic agents. Our interactive online visualization platform and the complete dataset are publicly available at https://app.deepscenario.com, facilitating research in motion prediction, behavior modeling, and safety validation.
TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of reducing the mutual information between spurious factors and label information, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
We'll Fix it in Post: Improving Text-to-Video Generation with Neuro-Symbolic Feedback
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce NeuS-E, a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that NeuS-E significantly enhances temporal and logical alignment across diverse prompts by almost 40%
Neuro-Symbolic Evaluation of Text-to-Video Models using Formal Verification
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
Fast Orthogonal Matching Pursuit through Successive Regression
Orthogonal Matching Pursuit (OMP) has been a powerful method in sparse signal recovery and approximation. However, OMP suffers computational issues when the signal has a large number of non-zeros. This paper advances OMP and its extension called generalized OMP (gOMP) by offering fast algorithms for the orthogonal projection of the input signal at each iteration. The proposed modifications directly reduce the computational complexity of OMP and gOMP. Experiment results verified the improvement in computation time. This paper also provides sufficient conditions for exact signal recovery. For general signals with additive noise, the approximation error is at the same order as OMP (gOMP), but is obtained within much less time.
DCFormer: Efficient 3D Vision-Language Modeling with Decomposed Convolutions
Vision-language models (VLMs) have been widely applied to 2D medical image analysis due to their ability to align visual and textual representations. However, extending VLMs to 3D imaging remains computationally challenging. Existing 3D VLMs often rely on Vision Transformers (ViTs), which are computationally expensive due to the quadratic complexity of self-attention, or on 3D convolutions, which require large numbers of parameters and FLOPs as kernel size increases. We introduce DCFormer, an efficient 3D image encoder that factorizes 3D convolutions into three parallel 1D convolutions along the depth, height, and width dimensions. This design preserves spatial information while significantly reducing computational cost. Integrated into a CLIP-based vision-language framework, DCFormer is trained and evaluated on CT-RATE, a dataset of 50,188 paired 3D chest CT volumes and radiology reports. In zero-shot and fine-tuned detection of 18 pathologies, as well as in image-text retrieval tasks, DCFormer consistently outperforms state-of-the-art 3D vision encoders, including CT-ViT, ViT, ConvNeXt, PoolFormer, and TransUNet. These results highlight DCFormer's potential for scalable, clinically deployable 3D medical VLMs. Our code is available at: https://github.com/mirthAI/DCFormer.
Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors presents a fundamental challenge. Most deep learning-based fusion methods rely on large-scale paired datasets to extract global weighting features from raw images, thereby generating fused outputs that approximate real fused images. In contrast to previous studies, this paper explores few-shot training of neural networks under the condition of having prior knowledge. We propose a novel fusion framework named GBFF, and a Granular Ball Significant Extraction algorithm specifically designed for the few-shot prior setting. All pixel pairs involved in the fusion process are initially modeled as a Coarse-Grained Granular Ball. At the local level, Fine-Grained Granular Balls are used to slide through the brightness space to extract Non-Salient Pixel Pairs, and perform splitting operations to obtain Salient Pixel Pairs. Pixel-wise weights are then computed to generate a pseudo-supervised image. At the global level, pixel pairs with significant contributions to the fusion process are categorized into the Positive Region, while those whose contributions cannot be accurately determined are assigned to the Boundary Region. The Granular Ball performs modality-aware adaptation based on the proportion of the positive region, thereby adjusting the neural network's loss function and enabling it to complement the information of the boundary region. Extensive experiments demonstrate the effectiveness of both the proposed algorithm and the underlying theory. Compared with state-of-the-art (SOTA) methods, our approach shows strong competitiveness in terms of both fusion time and image expressiveness. Our code is publicly available at:
Understanding Depth and Height Perception in Large Visual-Language Models CVPR
Geometric understanding - including depth and height perception - is fundamental to intelligence and crucial for navigating our environment. Despite the impressive capabilities of large Vision Language Models (VLMs), it remains unclear how well they possess the geometric understanding required for practical applications in visual perception. In this work, we focus on evaluating the geometric understanding of these models, specifically targeting their ability to perceive the depth and height of objects in an image. To address this, we introduce GeoMeter, a suite of benchmark datasets - encompassing 2D and 3D scenarios - to rigorously evaluate these aspects. By benchmarking 18 state-of-the-art VLMs, we found that although they excel in perceiving basic geometric properties like shape and size, they consistently struggle with depth and height perception. Our analysis reveal that these challenges stem from shortcomings in their depth and height reasoning capabilities and inherent biases. This study aims to pave the way for developing VLMs with enhanced geometric understanding by emphasizing depth and height perception as critical components necessary for real-world applications.
comment: Accepted in CVPRW 2025. Project page: https://sacrcv.github.io/GeoMeter-website/
SpINR: Neural Volumetric Reconstruction for FMCW Radars
In this paper, we introduce SpINR, a novel framework for volumetric reconstruction using Frequency-Modulated Continuous-Wave (FMCW) radar data. Traditional radar imaging techniques, such as backprojection, often assume ideal signal models and require dense aperture sampling, leading to limitations in resolution and generalization. To address these challenges, SpINR integrates a fully differentiable forward model that operates natively in the frequency domain with implicit neural representations (INRs). This integration leverages the linear relationship between beat frequency and scatterer distance inherent in FMCW radar systems, facilitating more efficient and accurate learning of scene geometry. Additionally, by computing outputs for only the relevant frequency bins, our forward model achieves greater computational efficiency compared to time-domain approaches that process the entire signal before transformation. Through extensive experiments, we demonstrate that SpINR significantly outperforms classical backprojection methods and existing learning-based approaches, achieving higher resolution and more accurate reconstructions of complex scenes. This work represents the first application of neural volumetic reconstruction in the radar domain, offering a promising direction for future research in radar-based imaging and perception systems.
Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning
We present Skywork R1V2, a next-generation multimodal reasoning model and a major leap forward from its predecessor, Skywork R1V. At its core, R1V2 introduces a hybrid reinforcement learning paradigm that jointly leverages the Mixed Preference Optimization (MPO) and the Group Relative Policy Optimization (GRPO), which harmonizes reward-model guidance with rule-based strategies, thereby addressing the long-standing challenge of balancing sophisticated reasoning capabilities with broad generalization. To further enhance training efficiency, we introduce the Selective Sample Buffer (SSB) mechanism, which effectively counters the ``Vanishing Advantages'' dilemma inherent in GRPO by prioritizing high-value samples throughout the optimization process. Notably, we observe that excessive reinforcement signals can induce visual hallucinations--a phenomenon we systematically monitor and mitigate through calibrated reward thresholds throughout the training process. Empirical results affirm the exceptional capability of R1V2, with benchmark-leading performances such as 62.6 on OlympiadBench, 78.9 on AIME2024, 63.6 on LiveCodeBench, and 73.6 on MMMU. These results underscore R1V2's superiority over existing open-source models and demonstrate significant progress in closing the performance gap with premier proprietary systems, including Gemini 2.5 and OpenAI-o4-mini. The Skywork R1V2 model weights have been publicly released to promote openness and reproducibility https://huggingface.co/Skywork/Skywork-R1V2-38B.
Instant Policy: In-Context Imitation Learning via Graph Diffusion
Following the impressive capabilities of in-context learning with large transformers, In-Context Imitation Learning (ICIL) is a promising opportunity for robotics. We introduce Instant Policy, which learns new tasks instantly (without further training) from just one or two demonstrations, achieving ICIL through two key components. First, we introduce inductive biases through a graph representation and model ICIL as a graph generation problem with a learned diffusion process, enabling structured reasoning over demonstrations, observations, and actions. Second, we show that such a model can be trained using pseudo-demonstrations - arbitrary trajectories generated in simulation - as a virtually infinite pool of training data. Simulated and real experiments show that Instant Policy enables rapid learning of various everyday robot tasks. We also show how it can serve as a foundation for cross-embodiment and zero-shot transfer to language-defined tasks. Code and videos are available at https://www.robot-learning.uk/instant-policy.
comment: Code and videos are available on our project webpage at https://www.robot-learning.uk/instant-policy
L4P: Low-Level 4D Vision Perception Unified
The spatio-temporal relationship between the pixels of a video carries critical information for low-level 4D perception tasks. A single model that reasons about it should be able to solve several such tasks well. Yet, most state-of-the-art methods rely on architectures specialized for the task at hand. We present L4P, a feedforward, general-purpose architecture that solves low-level 4D perception tasks in a unified framework. L4P leverages a pre-trained ViT-based video encoder and combines it with per-task heads that are lightweight and therefore do not require extensive training. Despite its general and feedforward formulation, our method matches or surpasses the performance of existing specialized methods on both dense tasks, such as depth or optical flow estimation, and sparse tasks, such as 2D/3D tracking. Moreover, it solves all tasks at once in a time comparable to that of single-task methods.
Transforming Hyperspectral Images Into Chemical Maps: An End-to-End Deep Learning Approach
Current approaches to chemical map generation from hyperspectral images are based on models such as partial least squares (PLS) regression, generating pixel-wise predictions that do not consider spatial context and suffer from a high degree of noise. This study proposes an end-to-end deep learning approach using a modified version of U-Net and a custom loss function to directly obtain chemical maps from hyperspectral images, skipping all intermediate steps required for traditional pixel-wise analysis. We compare the U-Net with the traditional PLS regression on a real dataset of pork belly samples with associated mean fat reference values. The U-Net obtains a test set root mean squared error of between 9% and 13% lower than that of PLS regression on the task of mean fat prediction. At the same time, U-Net generates fine detail chemical maps where 99.91% of the variance is spatially correlated. Conversely, only 2.53% of the variance in the PLS-generated chemical maps is spatially correlated, indicating that each pixel-wise prediction is largely independent of neighboring pixels. Additionally, while the PLS-generated chemical maps contain predictions far beyond the physically possible range of 0-100%, U-Net learns to stay inside this range. Thus, the findings of this study indicate that U-Net is superior to PLS for chemical map generation.
TDAvec: Computing Vector Summaries of Persistence Diagrams for Topological Data Analysis in R and Python
Persistent homology is a widely-used tool in topological data analysis (TDA) for understanding the underlying shape of complex data. By constructing a filtration of simplicial complexes from data points, it captures topological features such as connected components, loops, and voids across multiple scales. These features are encoded in persistence diagrams (PDs), which provide a concise summary of the data's topological structure. However, the non-Hilbert nature of the space of PDs poses challenges for their direct use in machine learning applications. To address this, kernel methods and vectorization techniques have been developed to transform PDs into machine-learning-compatible formats. In this paper, we introduce a new software package designed to streamline the vectorization of PDs, offering an intuitive workflow and advanced functionalities. We demonstrate the necessity of the package through practical examples and provide a detailed discussion on its contributions to applied TDA. Definitions of all vectorization summaries used in the package are included in the appendix.
comment: 8 pages, 2 figures, 3 tables; minor changes: updated version of the library is described
StoryGPT-V: Large Language Models as Consistent Story Visualizers CVPR 2025
Recent generative models have demonstrated impressive capabilities in generating realistic and visually pleasing images grounded on textual prompts. Nevertheless, a significant challenge remains in applying these models for the more intricate task of story visualization. Since it requires resolving pronouns (he, she, they) in the frame descriptions, i.e., anaphora resolution, and ensuring consistent characters and background synthesis across frames. Yet, the emerging Large Language Model (LLM) showcases robust reasoning abilities to navigate through ambiguous references and process extensive sequences. Therefore, we introduce \emph{StoryGPT-V}, which leverages the merits of the latent diffusion (LDM) and LLM to produce images with consistent and high-quality characters grounded on given story descriptions. First, we train a character-aware LDM, which takes character-augmented semantic embedding as input and includes the supervision of the cross-attention map using character segmentation masks, aiming to enhance character generation accuracy and faithfulness. In the second stage, we enable an alignment between the output of LLM and the character-augmented embedding residing in the input space of the first-stage model. This harnesses the reasoning ability of LLM to address ambiguous references and the comprehension capability to memorize the context. We conduct comprehensive experiments on two visual story visualization benchmarks. Our model reports superior quantitative results and consistently generates accurate characters of remarkable quality with low memory consumption. Our code is publicly available at: \href{https://xiaoqian-shen.github.io/StoryGPT-V}{https://xiaoqian-shen.github.io/StoryGPT-V}.
comment: Accepted to CVPR 2025; Project page: https://xiaoqian-shen.github.io/StoryGPT-V
VisTabNet: Adapting Vision Transformers for Tabular Data
Although deep learning models have had great success in natural language processing and computer vision, we do not observe comparable improvements in the case of tabular data, which is still the most common data type used in biological, industrial and financial applications. In particular, it is challenging to transfer large-scale pre-trained models to downstream tasks defined on small tabular datasets. To address this, we propose VisTabNet -- a cross-modal transfer learning method, which allows for adapting Vision Transformer (ViT) with pre-trained weights to process tabular data. By projecting tabular inputs to patch embeddings acceptable by ViT, we can directly apply a pre-trained Transformer Encoder to tabular inputs. This approach eliminates the conceptual cost of designing a suitable architecture for processing tabular data, while reducing the computational cost of training the model from scratch. Experimental results on multiple small tabular datasets (less than 1k samples) demonstrate VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models. The proposed method goes beyond conventional transfer learning practice and shows that pre-trained image models can be transferred to solve tabular problems, extending the boundaries of transfer learning. We share our example implementation as a GitHub repository available at https://github.com/wwydmanski/VisTabNet.
EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region
This paper introduces the Emirates Multi-Task (EMT) dataset, designed to support multi-task benchmarking within a unified framework. It comprises over 30,000 frames from a dash-camera perspective and 570,000 annotated bounding boxes, covering approximately 150 kilometers of driving routes that reflect the distinctive road topology, congestion patterns, and driving behavior of Gulf region traffic. The dataset supports three primary tasks: tracking, trajectory forecasting, and intention prediction. Each benchmark is accompanied by corresponding evaluations: (1) multi-agent tracking experiments addressing multi-class scenarios and occlusion handling; (2) trajectory forecasting evaluation using deep sequential and interaction-aware models; and (3) intention prediction experiments based on observed trajectories. The dataset is publicly available at https://avlab.io/emt-dataset, with pre-processing scripts and evaluation models at https://github.com/AV-Lab/emt-dataset.
comment: 19 pages, 6 figures
All for One, and One for All: UrbanSyn Dataset, the third Musketeer of Synthetic Driving Scenes
We introduce UrbanSyn, a photorealistic dataset acquired through semi-procedurally generated synthetic urban driving scenarios. Developed using high-quality geometry and materials, UrbanSyn provides pixel-level ground truth, including depth, semantic segmentation, and instance segmentation with object bounding boxes and occlusion degree. It complements GTAV and Synscapes datasets to form what we coin as the 'Three Musketeers'. We demonstrate the value of the Three Musketeers in unsupervised domain adaptation for image semantic segmentation. Results on real-world datasets, Cityscapes, Mapillary Vistas, and BDD100K, establish new benchmarks, largely attributed to UrbanSyn. We make UrbanSyn openly and freely accessible (www.urbansyn.org).
comment: The UrbanSyn Dataset is available in http://urbansyn.org/
Contrastive Learning and Adversarial Disentanglement for Task-Oriented Semantic Communications
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission, where only information relevant to a specific task is communicated. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and subpar performance. To address this, we propose an information-bottleneck method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the lack of reliable and reproducible methods to gain insight into the informativeness and minimality of the encoded feature vectors, we introduce a new technique to compute the information retention index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input, reflecting the minimality of the encoded features. The IRI quantifies the minimality and informativeness of the encoded feature vectors across different task-oriented communication techniques. Our extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI. CLAD achieves a predictive performance improvement of around 2.5-3%, along with a 77-90% reduction in IRI and a 57-76% decrease in adversarial attribute inference attack accuracy.
Manipulating Multimodal Agents via Cross-Modal Prompt Injection
The emergence of multimodal large language models has redefined the agent paradigm by integrating language and vision modalities with external data sources, enabling agents to better interpret human instructions and execute increasingly complex tasks. However, in this work, we identify a critical yet previously overlooked security vulnerability in multimodal agents: cross-modal prompt injection attacks. To exploit this vulnerability, we propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities to align with target malicious content, allowing external instructions to hijack the agent's decision-making process and execute unauthorized tasks. Our approach consists of two key components. First, we introduce Visual Latent Alignment, where we optimize adversarial features to the malicious instructions in the visual embedding space based on a text-to-image generative model, ensuring that adversarial images subtly encode cues for malicious task execution. Subsequently, we present Textual Guidance Enhancement, where a large language model is leveraged to infer the black-box defensive system prompt through adversarial meta prompting and generate an malicious textual command that steers the agent's output toward better compliance with attackers' requests. Extensive experiments demonstrate that our method outperforms existing injection attacks, achieving at least a +26.4% increase in attack success rates across diverse tasks. Furthermore, we validate our attack's effectiveness in real-world multimodal autonomous agents, highlighting its potential implications for safety-critical applications.
comment: 17 pages, 5 figures
CoCoGesture: Toward Coherent Co-speech 3D Gesture Generation in the Wild
Deriving co-speech 3D gestures has seen tremendous progress in virtual avatar animation. Yet, the existing methods often produce stiff and unreasonable gestures with unseen human speech inputs due to the limited 3D speech-gesture data. In this paper, we propose CoCoGesture, a novel framework enabling vivid and diverse gesture synthesis from unseen human speech prompts. Our key insight is built upon the custom-designed pretrain-fintune training paradigm. At the pretraining stage, we aim to formulate a large generalizable gesture diffusion model by learning the abundant postures manifold. Therefore, to alleviate the scarcity of 3D data, we first construct a large-scale co-speech 3D gesture dataset containing more than 40M meshed posture instances across 4.3K speakers, dubbed GES-X. Then, we scale up the large unconditional diffusion model to 1B parameters and pre-train it to be our gesture experts. At the finetune stage, we present the audio ControlNet that incorporates the human voice as condition prompts to guide the gesture generation. Here, we construct the audio ControlNet through a trainable copy of our pre-trained diffusion model. Moreover, we design a novel Mixture-of-Gesture-Experts (MoGE) block to adaptively fuse the audio embedding from the human speech and the gesture features from the pre-trained gesture experts with a routing mechanism. Such an effective manner ensures audio embedding is temporal coordinated with motion features while preserving the vivid and diverse gesture generation. Extensive experiments demonstrate that our proposed CoCoGesture outperforms the state-of-the-art methods on the zero-shot speech-to-gesture generation. The dataset will be publicly available at: https://mattie-e.github.io/GES-X/
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
PreGSU-A Generalized Traffic Scene Understanding Model for Autonomous Driving based on Pre-trained Graph Attention Network
Scene understanding, defined as learning, extraction, and representation of interactions among traffic elements, is one of the critical challenges toward high-level autonomous driving (AD). Current scene understanding methods mainly focus on one concrete single task, such as trajectory prediction and risk level evaluation. Although they perform well on specific metrics, the generalization ability is insufficient to adapt to the real traffic complexity and downstream demand diversity. In this study, we propose PreGSU, a generalized pre-trained scene understanding model based on graph attention network to learn the universal interaction and reasoning of traffic scenes to support various downstream tasks. After the feature engineering and sub-graph module, all elements are embedded as nodes to form a dynamic weighted graph. Then, four graph attention layers are applied to learn the relationships among agents and lanes. In the pre-train phase, the understanding model is trained on two self-supervised tasks: Virtual Interaction Force (VIF) modeling and Masked Road Modeling (MRM). Based on the artificial potential field theory, VIF modeling enables PreGSU to capture the agent-to-agent interactions while MRM extracts agent-to-road connections. In the fine-tuning process, the pre-trained parameters are loaded to derive detailed understanding outputs. We conduct validation experiments on three datasets and two downstream tasks, i.e., trajectory prediction in urban scenario and intention recognition in highway scenario, to verify the model's generalization and understanding capabilities. Results show that compared with single-task-driven baselines, PreGSU achieves competitive performance on all datasets and downstream tasks, indicating its potential to be generalized to various scenes and targets. Ablation study shows the effectiveness of pre-train task design.
comment: 14 pages
A Parametric Approach to Adversarial Augmentation for Cross-Domain Iris Presentation Attack Detection WACV
Iris-based biometric systems are vulnerable to presentation attacks (PAs), where adversaries present physical artifacts (e.g., printed iris images, textured contact lenses) to defeat the system. This has led to the development of various presentation attack detection (PAD) algorithms, which typically perform well in intra-domain settings. However, they often struggle to generalize effectively in cross-domain scenarios, where training and testing employ different sensors, PA instruments, and datasets. In this work, we use adversarial training samples of both bonafide irides and PAs to improve the cross-domain performance of a PAD classifier. The novelty of our approach lies in leveraging transformation parameters from classical data augmentation schemes (e.g., translation, rotation) to generate adversarial samples. We achieve this through a convolutional autoencoder, ADV-GEN, that inputs original training samples along with a set of geometric and photometric transformations. The transformation parameters act as regularization variables, guiding ADV-GEN to generate adversarial samples in a constrained search space. Experiments conducted on the LivDet-Iris 2017 database, comprising four datasets, and the LivDet-Iris 2020 dataset, demonstrate the efficacy of our proposed method. The code is available at https://github.com/iPRoBe-lab/ADV-GEN-IrisPAD.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025
FungiTastic: A multi-modal dataset and benchmark for image categorization CVPR 2025
We introduce a new, challenging benchmark and a dataset, FungiTastic, based on fungal records continuously collected over a twenty-year span. The dataset is labelled and curated by experts and consists of about 350k multimodal observations of 6k fine-grained categories (species). The fungi observations include photographs and additional data, e.g., meteorological and climatic data, satellite images, and body part segmentation masks. FungiTastic is one of the few benchmarks that include a test set with DNA-sequenced ground truth of unprecedented label reliability. The benchmark is designed to support (i) standard closed-set classification, (ii) open-set classification, (iii) multi-modal classification, (iv) few-shot learning, (v) domain shift, and many more. We provide tailored baselines for many use cases, a multitude of ready-to-use pre-trained models on https://huggingface.co/collections/BVRA/fungitastic-66a227ce0520be533dc6403b, and a framework for model training. The documentation and the baselines are available at https://github.com/BohemianVRA/FungiTastic/ and https://www.kaggle.com/datasets/picekl/fungitastic.
comment: FGVC workshop, CVPR 2025
Multi-view Hand Reconstruction with a Point-Embedded Transformer CVPR2023
This work introduces a novel and generalizable multi-view Hand Mesh Reconstruction (HMR) model, named POEM, designed for practical use in real-world hand motion capture scenarios. The advances of the POEM model consist of two main aspects. First, concerning the modeling of the problem, we propose embedding a static basis point within the multi-view stereo space. A point represents a natural form of 3D information and serves as an ideal medium for fusing features across different views, given its varied projections across these views. Consequently, our method harnesses a simple yet effective idea: a complex 3D hand mesh can be represented by a set of 3D basis points that 1) are embedded in the multi-view stereo, 2) carry features from the multi-view images, and 3) encompass the hand in it. The second advance lies in the training strategy. We utilize a combination of five large-scale multi-view datasets and employ randomization in the number, order, and poses of the cameras. By processing such a vast amount of data and a diverse array of camera configurations, our model demonstrates notable generalizability in the real-world applications. As a result, POEM presents a highly practical, plug-and-play solution that enables user-friendly, cost-effective multi-view motion capture for both left and right hands. The model and source codes are available at https://github.com/JubSteven/POEM-v2.
comment: Generalizable multi-view Hand Mesh Reconstruction (HMR) model. Extension of the original work at CVPR2023
GranQ: Granular Zero-Shot Quantization with Unified Layer-Channel Awareness
Zero-shot quantization (ZSQ) enables neural network compression without training data, which is crucial in restricted data access environments. However, existing ZSQ methods suffer from significant activation loss in low-bit environments owing to their coarse-grained scaling strategy. To address this issue, we propose GranQ, a novel ZSQ approach that leverages layer-channel awareness to minimize the quantization error. Unlike conventional layer- or channel-wise quantization, GranQ dynamically adjusts quantization granularity by considering both layer- and channel-level activation distributions. This enables fine-grained quantization while minimizing activation distortion. Additionally, we introduce vectorized activation quantization, which enables efficient parallel computation and reduces computational overhead while preserving accuracy. GranQ achieves superior performance compared with those of state-of-the-art ZSQ methods that employ quantization-aware training. With these findings, we anticipate that GranQ will inspire novel research directions beyond conventional ZSQ approaches focused on data generation and model training.
Med-R1: Reinforcement Learning for Generalizable Medical Reasoning in Vision-Language Models
Vision-language models (VLMs) have achieved impressive progress in natural image reasoning, yet their potential in medical imaging remains underexplored. Medical vision-language tasks demand precise understanding and clinically coherent answers, which are difficult to achieve due to the complexity of medical data and the scarcity of high-quality expert annotations. These challenges limit the effectiveness of conventional supervised fine-tuning (SFT) and Chain-of-Thought (CoT) strategies that work well in general domains. To address these challenges, we propose Med-R1, a reinforcement learning (RL)-enhanced vision-language model designed to improve generalization and reliability in medical reasoning. Built on the DeepSeek strategy, Med-R1 adopts Group Relative Policy Optimization (GRPO) to encourage reward-guided learning beyond static annotations. We comprehensively evaluate Med-R1 across eight distinct medical imaging modalities. Med-R1 achieves a 29.94% improvement in average accuracy over its base model Qwen2-VL-2B, and even outperforms Qwen2-VL-72B-a model with 36x more parameters. To assess cross-task generalization, we further evaluate Med-R1 on five question types. Med-R1 outperforms Qwen2-VL-2B by 32.06% in question-type generalization, also surpassing Qwen2-VL-72B. We further explore the thinking process in Med-R1, a crucial component for the success of Deepseek-R1. Our results show that omitting intermediate rationales (No-Thinking-Med-R1) not only improves in-domain and cross-domain generalization with less training, but also challenges the assumption that more reasoning always helps. These findings suggest that in medical VQA, it is not reasoning itself, but its quality and domain alignment, that determine effectiveness. Together, these results highlight that RL improves medical reasoning and generalization, enabling efficient and reliable VLMs for real-world deployment.
M4U: Evaluating Multilingual Understanding and Reasoning for Large Multimodal Models
Multilingual capability is an essential aspect for large multimodal models, since they are usually deployed across various countries and languages. However, most existing benchmarks for multilingual multimodal reasoning struggle to differentiate between models of varying performance; even language models without visual capabilities can easily achieve high scores. This leaves a comprehensive evaluation of leading multilingual multimodal models largely unexplored. In this work, we introduce M4U, a novel and challenging benchmark for assessing the capability of multi-discipline multilingual multimodal understanding and reasoning. M4U contains 10k samples covering 64 disciplines across 16 subfields in Science, Engineering, and Healthcare in six languages. Using M4U, we conduct extensive evaluations of leading Large Multimodal Models (LMMs) and Large Language Models (LLMs) with external tools. The evaluation results demonstrate that the state-of-the-art model, GPT-4o, achieves only 47.6% average accuracy on M4U. Additionally, we observe that the leading LMMs exhibit significant language preferences. Our in-depth analysis indicates that leading LMMs, including GPT-4o, struggle to perform reasoning using multilingual information present in both visual and textual context. Specifically, they suffer performance degradation when prompted with cross-lingual multimodal questions. Our code and dataset is public available.
comment: Work in progress
Decomposing and Fusing Intra- and Inter-Sensor Spatio-Temporal Signal for Multi-Sensor Wearable Human Activity Recognition
Wearable Human Activity Recognition (WHAR) is a prominent research area within ubiquitous computing. Multi-sensor synchronous measurement has proven to be more effective for WHAR than using a single sensor. However, existing WHAR methods use shared convolutional kernels for indiscriminate temporal feature extraction across each sensor variable, which fails to effectively capture spatio-temporal relationships of intra-sensor and inter-sensor variables. We propose the DecomposeWHAR model consisting of a decomposition phase and a fusion phase to better model the relationships between modality variables. The decomposition creates high-dimensional representations of each intra-sensor variable through the improved Depth Separable Convolution to capture local temporal features while preserving their unique characteristics. The fusion phase begins by capturing relationships between intra-sensor variables and fusing their features at both the channel and variable levels. Long-range temporal dependencies are modeled using the State Space Model (SSM), and later cross-sensor interactions are dynamically captured through a self-attention mechanism, highlighting inter-sensor spatial correlations. Our model demonstrates superior performance on three widely used WHAR datasets, significantly outperforming state-of-the-art models while maintaining acceptable computational efficiency.
DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
comment: Project: https://superhero-7.github.io/DreamID/
Investigating Memorization in Video Diffusion Models ICLR 2025
Diffusion models, widely used for image and video generation, face a significant limitation: the risk of memorizing and reproducing training data during inference, potentially generating unauthorized copyrighted content. While prior research has focused on image diffusion models (IDMs), video diffusion models (VDMs) remain underexplored. To address this gap, we first formally define the two types of memorization in VDMs (content memorization and motion memorization) in a practical way that focuses on privacy preservation and applies to all generation types. We then introduce new metrics specifically designed to separately assess content and motion memorization in VDMs. Additionally, we curate a dataset of text prompts that are most prone to triggering memorization when used as conditioning in VDMs. By leveraging these prompts, we generate diverse videos from various open-source VDMs, successfully extracting numerous training videos from each tested model. Through the application of our proposed metrics, we systematically analyze memorization across various pretrained VDMs, including text-conditional and unconditional models, on a variety of datasets. Our comprehensive study reveals that memorization is widespread across all tested VDMs, indicating that VDMs can also memorize image training data in addition to video datasets. Finally, we propose efficient and effective detection strategies for both content and motion memorization, offering a foundational approach for improving privacy in VDMs.
comment: Accepted at DATA-FM Workshop @ ICLR 2025
Exploring Local Memorization in Diffusion Models via Bright Ending Attention ICLR 2025
Text-to-image diffusion models have achieved unprecedented proficiency in generating realistic images. However, their inherent tendency to memorize and replicate training data during inference raises significant concerns, including potential copyright infringement. In response, various methods have been proposed to evaluate, detect, and mitigate memorization. Our analysis reveals that existing approaches significantly underperform in handling local memorization, where only specific image regions are memorized, compared to global memorization, where the entire image is replicated. Also, they cannot locate the local memorization regions, making it hard to investigate locally. To address these, we identify a novel "bright ending" (BE) anomaly in diffusion models prone to memorizing training images. BE refers to a distinct cross-attention pattern observed in text-to-image diffusion models, where memorized image patches exhibit significantly greater attention to the final text token during the last inference step than non-memorized patches. This pattern highlights regions where the generated image replicates training data and enables efficient localization of memorized regions. Equipped with this, we propose a simple yet effective method to integrate BE into existing frameworks, significantly improving their performance by narrowing the performance gap caused by local memorization. Our results not only validate the successful execution of the new localization task but also establish new state-of-the-art performance across all existing tasks, underscoring the significance of the BE phenomenon.
comment: Accepted at ICLR 2025 (Spotlight). Project page: https://chenchen-usyd.github.io/BE-Project-Page/
Towards Synchronous Memorizability and Generalizability with Site-Modulated Diffusion Replay for Cross-Site Continual Segmentation
The ability to learn sequentially from different data sites is crucial for a deep network in solving practical medical image diagnosis problems due to privacy restrictions and storage limitations. However, adapting on incoming site leads to catastrophic forgetting on past sites and decreases generalizablity on unseen sites. Existing Continual Learning (CL) and Domain Generalization (DG) methods have been proposed to solve these two challenges respectively, but none of them can address both simultaneously. Recognizing this limitation, this paper proposes a novel training paradigm, learning towards Synchronous Memorizability and Generalizability (SMG-Learning). To achieve this, we create the orientational gradient alignment to ensure memorizability on previous sites, and arbitrary gradient alignment to enhance generalizability on unseen sites. This approach is named as Parallel Gradient Alignment (PGA). Furthermore, we approximate the PGA as dual meta-objectives using the first-order Taylor expansion to reduce computational cost of aligning gradients. Considering that performing gradient alignments, especially for previous sites, is not feasible due to the privacy constraints, we design a Site-Modulated Diffusion (SMD) model to generate images with site-specific learnable prompts, replaying images have similar data distributions as previous sites. We evaluate our method on two medical image segmentation tasks, where data from different sites arrive sequentially. Experimental results show that our method efficiently enhances both memorizability and generalizablity better than other state-of-the-art methods, delivering satisfactory performance across all sites. Our code will be available at: https://github.com/dyxu-cuhkcse/SMG-Learning.
comment: This paper is not proper to be published on arXiv, since we think some method are quite similar with one other paper
Better artificial intelligence does not mean better models of biology
Deep neural networks (DNNs) once showed increasing alignment with primate perception and neural responses as they improved on vision benchmarks, raising hopes that advances in AI would yield better models of biological vision. However, we show across three benchmarks that this alignment is now plateauing - and in some cases worsening - as DNNs scale to human or superhuman accuracy. This divergence may reflect the adoption of visual strategies that differ from those used by primates. These findings challenge the view that progress in artificial intelligence will naturally translate to neuroscience. We argue that vision science must chart its own course, developing algorithms grounded in biological visual systems rather than optimizing for benchmarks based on internet-scale datasets.
Treating Motion as Option with Output Selection for Unsupervised Video Object Segmentation
Unsupervised video object segmentation aims to detect the most salient object in a video without any external guidance regarding the object. Salient objects often exhibit distinctive movements compared to the background, and recent methods leverage this by combining motion cues from optical flow maps with appearance cues from RGB images. However, because optical flow maps are often closely correlated with segmentation masks, networks can become overly dependent on motion cues during training, leading to vulnerability when faced with confusing motion cues and resulting in unstable predictions. To address this challenge, we propose a novel motion-as-option network that treats motion cues as an optional component rather than a necessity. During training, we randomly input RGB images into the motion encoder instead of optical flow maps, which implicitly reduces the network's reliance on motion cues. This design ensures that the motion encoder is capable of processing both RGB images and optical flow maps, leading to two distinct predictions depending on the type of input provided. To make the most of this flexibility, we introduce an adaptive output selection algorithm that determines the optimal prediction during testing.
comment: TCSVT 2025
CLIC: Contrastive Learning Framework for Unsupervised Image Complexity Representation
As a fundamental visual attribute, image complexity significantly influences both human perception and the performance of computer vision models. However, accurately assessing and quantifying image complexity remains a challenging task. (1) Traditional metrics such as information entropy and compression ratio often yield coarse and unreliable estimates. (2) Data-driven methods require expensive manual annotations and are inevitably affected by human subjective biases. To address these issues, we propose CLIC, an unsupervised framework based on Contrastive Learning for learning Image Complexity representations. CLIC learns complexity-aware features from unlabeled data, thereby eliminating the need for costly labeling. Specifically, we design a novel positive and negative sample selection strategy to enhance the discrimination of complexity features. Additionally, we introduce a complexity-aware loss function guided by image priors to further constrain the learning process. Extensive experiments validate the effectiveness of CLIC in capturing image complexity. When fine-tuned with a small number of labeled samples from IC9600, CLIC achieves performance competitive with supervised methods. Moreover, applying CLIC to downstream tasks consistently improves performance. Notably, both the pretraining and application processes of CLIC are free from subjective bias.
comment: under review
Image and Video Processing
RSFR: A Coarse-to-Fine Reconstruction Framework for Diffusion Tensor Cardiac MRI with Semantic-Aware Refinement
Cardiac diffusion tensor imaging (DTI) offers unique insights into cardiomyocyte arrangements, bridging the gap between microscopic and macroscopic cardiac function. However, its clinical utility is limited by technical challenges, including a low signal-to-noise ratio, aliasing artefacts, and the need for accurate quantitative fidelity. To address these limitations, we introduce RSFR (Reconstruction, Segmentation, Fusion & Refinement), a novel framework for cardiac diffusion-weighted image reconstruction. RSFR employs a coarse-to-fine strategy, leveraging zero-shot semantic priors via the Segment Anything Model and a robust Vision Mamba-based reconstruction backbone. Our framework integrates semantic features effectively to mitigate artefacts and enhance fidelity, achieving state-of-the-art reconstruction quality and accurate DT parameter estimation under high undersampling rates. Extensive experiments and ablation studies demonstrate the superior performance of RSFR compared to existing methods, highlighting its robustness, scalability, and potential for clinical translation in quantitative cardiac DTI.
Iterative Event-based Motion Segmentation by Variational Contrast Maximization CVPR
Event cameras provide rich signals that are suitable for motion estimation since they respond to changes in the scene. As any visual changes in the scene produce event data, it is paramount to classify the data into different motions (i.e., motion segmentation), which is useful for various tasks such as object detection and visual servoing. We propose an iterative motion segmentation method, by classifying events into background (e.g., dominant motion hypothesis) and foreground (independent motion residuals), thus extending the Contrast Maximization framework. Experimental results demonstrate that the proposed method successfully classifies event clusters both for public and self-recorded datasets, producing sharp, motion-compensated edge-like images. The proposed method achieves state-of-the-art accuracy on moving object detection benchmarks with an improvement of over 30%, and demonstrates its possibility of applying to more complex and noisy real-world scenes. We hope this work broadens the sensitivity of Contrast Maximization with respect to both motion parameters and input events, thus contributing to theoretical advancements in event-based motion segmentation estimation. https://github.com/aoki-media-lab/event_based_segmentation_vcmax
comment: 11 pages, 9 figures, 3 tables, CVPR Workshop 2025
MROP: Modulated Rank-One Projections for compressive radio interferometric imaging
The emerging generation of radio-interferometric (RI) arrays are set to form images of the sky with a new regime of sensitivity and resolution. This implies a significant increase in visibility data volumes, scaling as $\mathcal{O}(Q^{2}B)$ for $Q$ antennas and $B$ short-time integration intervals (or batches), calling for efficient data dimensionality reduction techniques. This paper proposes a new approach to data compression during acquisition, coined modulated rank-one projection (MROP). MROP compresses the $Q\times Q$ batchwise covariance matrix into a smaller number $P$ of random rank-one projections and compresses across time by trading $B$ for a smaller number $M$ of random modulations of the ROP measurement vectors. Firstly, we introduce a dual perspective on the MROP acquisition, which can either be understood as random beamforming, or as a post-correlation compression. Secondly, we analyse the noise statistics of MROPs and demonstrate that the random projections induce a uniform noise level across measurements independently of the visibility-weighting scheme used. Thirdly, we propose a detailed analysis of the memory and computational cost requirements across the data acquisition and image reconstruction stages, with comparison to state-of-the-art dimensionality reduction approaches. Finally, the MROP model is validated in simulation for monochromatic intensity imaging, with comparison to the classical and baseline-dependent averaging (BDA) models, and using the uSARA optimisation algorithm for image formation. An extensive experimental setup is considered, with ground-truth images containing diffuse and faint emission and spanning a wide variety of dynamic ranges, and for a range of $uv$-coverages corresponding to VLA and MeerKAT observation.
Nearly isotropic segmentation for medial temporal lobe subregions in multi-modality MRI
Morphometry of medial temporal lobe (MTL) subregions in brain MRI is sensitive biomarker to Alzheimers Disease and other related conditions. While T2-weighted (T2w) MRI with high in-plane resolution is widely used to segment hippocampal subfields due to its higher contrast in hippocampus, its lower out-of-plane resolution reduces the accuracy of subregion thickness measurements. To address this issue, we developed a nearly isotropic segmentation pipeline that incorporates image and label upsampling and high-resolution segmentation in T2w MRI. First, a high-resolution atlas was created based on an existing anisotropic atlas derived from 29 individuals. Both T1-weighted and T2w images in the atlas were upsampled from their original resolution to a nearly isotropic resolution 0.4x0.4x0.52mm3 using a non-local means approach. Manual segmentations within the atlas were also upsampled to match this resolution using a UNet-based neural network, which was trained on a cohort consisting of both high-resolution ex vivo and low-resolution anisotropic in vivo MRI with manual segmentations. Second, a multi-modality deep learning-based segmentation model was trained within this nearly isotropic atlas. Finally, experiments showed the nearly isotropic subregion segmentation improved the accuracy of cortical thickness as an imaging biomarker for neurodegeneration in T2w MRI.
HepatoGEN: Generating Hepatobiliary Phase MRI with Perceptual and Adversarial Models
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a crucial role in the detection and characterization of focal liver lesions, with the hepatobiliary phase (HBP) providing essential diagnostic information. However, acquiring HBP images requires prolonged scan times, which may compromise patient comfort and scanner throughput. In this study, we propose a deep learning based approach for synthesizing HBP images from earlier contrast phases (precontrast and transitional) and compare three generative models: a perceptual U-Net, a perceptual GAN (pGAN), and a denoising diffusion probabilistic model (DDPM). We curated a multi-site DCE-MRI dataset from diverse clinical settings and introduced a contrast evolution score (CES) to assess training data quality, enhancing model performance. Quantitative evaluation using pixel-wise and perceptual metrics, combined with qualitative assessment through blinded radiologist reviews, showed that pGAN achieved the best quantitative performance but introduced heterogeneous contrast in out-of-distribution cases. In contrast, the U-Net produced consistent liver enhancement with fewer artifacts, while DDPM underperformed due to limited preservation of fine structural details. These findings demonstrate the feasibility of synthetic HBP image generation as a means to reduce scan time without compromising diagnostic utility, highlighting the clinical potential of deep learning for dynamic contrast enhancement in liver MRI. A project demo is available at: https://jhooge.github.io/hepatogen
A Multimodal Deep Learning Approach for White Matter Shape Prediction in Diffusion MRI Tractography
Shape measures have emerged as promising descriptors of white matter tractography, offering complementary insights into anatomical variability and associations with cognitive and clinical phenotypes. However, conventional methods for computing shape measures are computationally expensive and time-consuming for large-scale datasets due to reliance on voxel-based representations. We propose Tract2Shape, a novel multimodal deep learning framework that leverages geometric (point cloud) and scalar (tabular) features to predict ten white matter tractography shape measures. To enhance model efficiency, we utilize a dimensionality reduction algorithm for the model to predict five primary shape components. The model is trained and evaluated on two independently acquired datasets, the HCP-YA dataset, and the PPMI dataset. We evaluate the performance of Tract2Shape by training and testing it on the HCP-YA dataset and comparing the results with state-of-the-art models. To further assess its robustness and generalization ability, we also test Tract2Shape on the unseen PPMI dataset. Tract2Shape outperforms SOTA deep learning models across all ten shape measures, achieving the highest average Pearson's r and the lowest nMSE on the HCP-YA dataset. The ablation study shows that both multimodal input and PCA contribute to performance gains. On the unseen testing PPMI dataset, Tract2Shape maintains a high Pearson's r and low nMSE, demonstrating strong generalizability in cross-dataset evaluation. Tract2Shape enables fast, accurate, and generalizable prediction of white matter shape measures from tractography data, supporting scalable analysis across datasets. This framework lays a promising foundation for future large-scale white matter shape analysis.
comment: 21 pages, 3 figures, 6 tables
Partition Map-Based Fast Block Partitioning for VVC Inter Coding
Among the new techniques of Versatile Video Coding (VVC), the quadtree with nested multi-type tree (QT+MTT) block structure yields significant coding gains by providing more flexible block partitioning patterns. However, the recursive partition search in the VVC encoder increases the encoder complexity substantially. To address this issue, we propose a partition map-based algorithm to pursue fast block partitioning in inter coding. Based on our previous work on partition map-based methods for intra coding, we analyze the characteristics of VVC inter coding, and thus improve the partition map by incorporating an MTT mask for early termination. Next, we develop a neural network that uses both spatial and temporal features to predict the partition map. It consists of several special designs including stacked top-down and bottom-up processing, quantization parameter modulation layers, and partitioning-adaptive warping. Furthermore, we present a dual-threshold decision scheme to achieve a fine-grained trade-off between complexity reduction and rate-distortion (RD) performance loss. The experimental results demonstrate that the proposed method achieves an average 51.30% encoding time saving with a 2.12% Bjontegaard Delta Bit Rate (BDBR) under the random access configuration.
comment: 23 pages, 26 figures. Project page: https://github.com/ustc-ivclab/IPM
NUDF: Neural Unsigned Distance Fields for high resolution 3D medical image segmentation
Medical image segmentation is often considered as the task of labelling each pixel or voxel as being inside or outside a given anatomy. Processing the images at their original size and resolution often result in insuperable memory requirements, but downsampling the images leads to a loss of important details. Instead of aiming to represent a smooth and continuous surface in a binary voxel-grid, we propose to learn a Neural Unsigned Distance Field (NUDF) directly from the image. The small memory requirements of NUDF allow for high resolution processing, while the continuous nature of the distance field allows us to create high resolution 3D mesh models of shapes of any topology (i.e. open surfaces). We evaluate our method on the task of left atrial appendage (LAA) segmentation from Computed Tomography (CT) images. The LAA is a complex and highly variable shape, being thus difficult to represent with traditional segmentation methods using discrete labelmaps. With our proposed method, we are able to predict 3D mesh models that capture the details of the LAA and achieve accuracy in the order of the voxel spacing in the CT images.
Towards a deep learning approach for classifying treatment response in glioblastomas
Glioblastomas are the most aggressive type of glioma, having a 5-year survival rate of 6.9%. Treatment typically involves surgery, followed by radiotherapy and chemotherapy, and frequent magnetic resonance imaging (MRI) scans to monitor disease progression. To assess treatment response, radiologists use the Response Assessment in Neuro-Oncology (RANO) criteria to categorize the tumor into one of four labels based on imaging and clinical features: complete response, partial response, stable disease, and progressive disease. This assessment is very complex and time-consuming. Since deep learning (DL) has been widely used to tackle classification problems, this work aimed to implement the first DL pipeline for the classification of RANO criteria based on two consecutive MRI acquisitions. The models were trained and tested on the open dataset LUMIERE. Five approaches were tested: 1) subtraction of input images, 2) different combinations of modalities, 3) different model architectures, 4) different pretraining tasks, and 5) adding clinical data. The pipeline that achieved the best performance used a Densenet264 considering only T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) images as input without any pretraining. A median Balanced Accuracy of 50.96% was achieved. Additionally, explainability methods were applied. Using Saliency Maps, the tumor region was often successfully highlighted. In contrast, Grad-CAM typically failed to highlight the tumor region, with some exceptions observed in the Complete Response and Progressive Disease classes, where it effectively identified the tumor region. These results set a benchmark for future studies on glioblastoma treatment response assessment based on the RANO criteria while emphasizing the heterogeneity of factors that might play a role when assessing the tumor's response to treatment.
Adaptive Weight Modified Riesz Mean Filter For High-Density Salt and Pepper Noise Removal
This paper introduces a novel filter, the Adaptive Weight Modified Riesz Mean Filter (AWMRmF), designed for the effective removal of high-density salt and pepper noise (SPN). AWMRmF integrates a pixel weight function and adaptivity condition inspired by the Different Adaptive Modified Riesz Mean Filter (DAMRmF). In my simulations, I evaluated the performance of AWMRmF against established filters such as Adaptive Frequency Median Filter (AFMF), Adaptive Weighted Mean Filter (AWMF), Adaptive Cesaro Mean Filter (ACmF), Adaptive Riesz Mean Filter (ARmF), and Improved Adaptive Weighted Mean Filter (IAWMF). The assessment was conducted on 26 typical test images, varying noise levels from 60% to 95%. The findings indicate that, in terms of both Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics, AWMRmF outperformed other state-of-the-art filters. Furthermore, AWMRmF demonstrated superior performance in mean PSNR and SSIM results as well.
comment: This is a preprint. Submitted to Journal of Electrical Systems and Information Technology (Springer)
Physics-Driven Neural Compensation For Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) provides a non-invasive, portable imaging modality with significant potential in medical and industrial applications. Despite its advantages, EIT encounters two primary challenges: the ill-posed nature of its inverse problem and the spatially variable, location-dependent sensitivity distribution. Traditional model-based methods mitigate ill-posedness through regularization but overlook sensitivity variability, while supervised deep learning approaches require extensive training data and lack generalization. Recent developments in neural fields have introduced implicit regularization techniques for image reconstruction, but these methods typically neglect the physical principles underlying EIT, thus limiting their effectiveness. In this study, we propose PhyNC (Physics-driven Neural Compensation), an unsupervised deep learning framework that incorporates the physical principles of EIT. PhyNC addresses both the ill-posed inverse problem and the sensitivity distribution by dynamically allocating neural representational capacity to regions with lower sensitivity, ensuring accurate and balanced conductivity reconstructions. Extensive evaluations on both simulated and experimental data demonstrate that PhyNC outperforms existing methods in terms of detail preservation and artifact resistance, particularly in low-sensitivity regions. Our approach enhances the robustness of EIT reconstructions and provides a flexible framework that can be adapted to other imaging modalities with similar challenges.
Photon Absorption Remote Sensing Virtual Histopathology: Diagnostic Equivalence to Gold-Standard H&E Staining in Skin Cancer Excisional Biopsies
Photon Absorption Remote Sensing (PARS) enables label-free imaging of subcellular morphology by observing biomolecule specific absorption interactions. Coupled with deep-learning, PARS produces label-free virtual Hematoxylin and Eosin (H&E) stained images in unprocessed tissues. This study evaluates the diagnostic performance of these PARS-derived virtual H&E images in benign and malignant excisional skin biopsies, including Squamous (SCC), Basal (BCC) Cell Carcinoma, and normal skin. Sixteen unstained formalin-fixed paraffin-embedded skin excisions were PARS imaged, virtually H&E stained, then chemically stained and imaged at 40x. Seven fellowship trained dermatopathologists assessed all 32 images in a masked randomized fashion. Concordance analysis indicates 95.5% agreement between primary diagnoses rendered on PARS versus H&E images (Cohen's k=0.93). Inter-rater reliability was near-perfect for both image types (Fleiss' k=0.89 for PARS, k=0.80 for H&E). For subtype classification, agreement was near-perfect 91% (k=0.73) for SCC and was perfect for BCC. When assessing malignancy confinement (e.g., cancer margins), agreement was 92% between PARS and H&E (k=0.718). During assessment dermatopathologists could not reliably distinguish image origin (PARS vs. H&E), and diagnostic confidence was equivalent between the modalities. Inter-rater reliability for PARS virtual H&E was consistent with reported benchmarks for histologic evaluation. These results indicate that PARS virtual histology may be diagnostically equivalent to traditional H&E staining in dermatopathology diagnostics, while enabling assessment directly from unlabeled, or unprocessed slides. In turn, the label-free PARS virtual H&E imaging workflow may preserve tissue for downstream analysis while producing data well-suited for AI integration potentially accelerating and enhancing the accuracy of skin cancer diagnostics.
comment: 19 pages, 3 figures, 6 tables
A Spatially-Aware Multiple Instance Learning Framework for Digital Pathology
Multiple instance learning (MIL) is a promising approach for weakly supervised classification in pathology using whole slide images (WSIs). However, conventional MIL methods such as Attention-Based Deep Multiple Instance Learning (ABMIL) typically disregard spatial interactions among patches that are crucial to pathological diagnosis. Recent advancements, such as Transformer based MIL (TransMIL), have incorporated spatial context and inter-patch relationships. However, it remains unclear whether explicitly modeling patch relationships yields similar performance gains in ABMIL, which relies solely on Multi-Layer Perceptrons (MLPs). In contrast, TransMIL employs Transformer-based layers, introducing a fundamental architectural shift at the cost of substantially increased computational complexity. In this work, we enhance the ABMIL framework by integrating interaction-aware representations to address this question. Our proposed model, Global ABMIL (GABMIL), explicitly captures inter-instance dependencies while preserving computational efficiency. Experimental results on two publicly available datasets for tumor subtyping in breast and lung cancers demonstrate that GABMIL achieves up to a 7 percentage point improvement in AUPRC and a 5 percentage point increase in the Kappa score over ABMIL, with minimal or no additional computational overhead. These findings underscore the importance of incorporating patch interactions within MIL frameworks. Our code is available at \href{https://github.com/tueimage/GABMIL}{\texttt{GABMIL}}.
Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors presents a fundamental challenge. Most deep learning-based fusion methods rely on large-scale paired datasets to extract global weighting features from raw images, thereby generating fused outputs that approximate real fused images. In contrast to previous studies, this paper explores few-shot training of neural networks under the condition of having prior knowledge. We propose a novel fusion framework named GBFF, and a Granular Ball Significant Extraction algorithm specifically designed for the few-shot prior setting. All pixel pairs involved in the fusion process are initially modeled as a Coarse-Grained Granular Ball. At the local level, Fine-Grained Granular Balls are used to slide through the brightness space to extract Non-Salient Pixel Pairs, and perform splitting operations to obtain Salient Pixel Pairs. Pixel-wise weights are then computed to generate a pseudo-supervised image. At the global level, pixel pairs with significant contributions to the fusion process are categorized into the Positive Region, while those whose contributions cannot be accurately determined are assigned to the Boundary Region. The Granular Ball performs modality-aware adaptation based on the proportion of the positive region, thereby adjusting the neural network's loss function and enabling it to complement the information of the boundary region. Extensive experiments demonstrate the effectiveness of both the proposed algorithm and the underlying theory. Compared with state-of-the-art (SOTA) methods, our approach shows strong competitiveness in terms of both fusion time and image expressiveness. Our code is publicly available at:
Contrastive Learning and Adversarial Disentanglement for Task-Oriented Semantic Communications
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission, where only information relevant to a specific task is communicated. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and subpar performance. To address this, we propose an information-bottleneck method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the lack of reliable and reproducible methods to gain insight into the informativeness and minimality of the encoded feature vectors, we introduce a new technique to compute the information retention index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input, reflecting the minimality of the encoded features. The IRI quantifies the minimality and informativeness of the encoded feature vectors across different task-oriented communication techniques. Our extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI. CLAD achieves a predictive performance improvement of around 2.5-3%, along with a 77-90% reduction in IRI and a 57-76% decrease in adversarial attribute inference attack accuracy.
Scanning Electron Microscopy-based Automatic Defect Inspection for Semiconductor Manufacturing: A Systematic Review
In this review, automatic defect inspection algorithms that analyze Scanning Electron Microscopy (SEM) images for Semiconductor Manufacturing (SM) are identified, categorized, and discussed. This is a topic of critical importance for the SM industry as the continuous shrinking of device patterns has led to increasing defectivity and a greater prevalence of higher-resolution imaging tools such as SEM. Among others, these aspects threaten to increase costs due to increased inspection time-to-solution and decreased yield. Relevant research papers were systematically identified in four popular publication databases in January 2024. A total of 103 papers were selected after screening for novel contributions relating to automatic SEM image analysis algorithms for semiconductor defect inspection. These papers were then categorized based on the inspection tasks they addressed, their evaluation metrics, and the type of algorithms used. A notable finding from this categorization is that reference-based defect detection algorithms were the most popular algorithm type until 2020 when Deep Learning (DL)-based inspection algorithms became more popular, especially for defect classification. Furthermore, four broader research questions were discussed to come to the following conclusions: (i) the key components of inspection algorithms are set up, pre-processing, feature extraction, and final prediction; (ii) the maturity of the manufacturing process affects the data availability and required sensitivity of inspection algorithms; (iii) key challenges for these algorithms relate to the desiderata of minimizing time-to-solution which pushes for high imaging throughput, reducing manual input during algorithm setup, and higher processing throughput; and (iv) three promising directions for future work are suggested based on gaps in the reviewed literature that address key remaining limitations.
comment: Accepted for publication in the Journal of Micro/Nanopatterning, Materials, and Metrology (JM3)
Computation and Language
TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation
As large language models (LMs) advance, there is an increasing need to control their outputs to align with human values (e.g., detoxification) or desired attributes (e.g., personalization, topic). However, autoregressive models focus on next-token predictions and struggle with global properties that require looking ahead. Existing solutions either tune or post-train LMs for each new attribute - expensive and inflexible - or approximate the Expected Attribute Probability (EAP) of future sequences by sampling or training, which is slow and unreliable for rare attributes. We introduce TRACE (Tractable Probabilistic Reasoning for Adaptable Controllable gEneration), a novel framework that efficiently computes EAP and adapts to new attributes through tractable probabilistic reasoning and lightweight control. TRACE distills a Hidden Markov Model (HMM) from an LM and pairs it with a small classifier to estimate attribute probabilities, enabling exact EAP computation over the HMM's predicted futures. This EAP is then used to reweigh the LM's next-token probabilities for globally compliant continuations. Empirically, TRACE achieves state-of-the-art results in detoxification with only 10% decoding overhead, adapts to 76 low-resource personalized LLMs within seconds, and seamlessly extends to composite attributes.
Investigating Co-Constructive Behavior of Large Language Models in Explanation Dialogues
The ability to generate explanations that are understood by explainees is the quintessence of explainable artificial intelligence. Since understanding depends on the explainee's background and needs, recent research has focused on co-constructive explanation dialogues, where the explainer continuously monitors the explainee's understanding and adapts explanations dynamically. We investigate the ability of large language models (LLMs) to engage as explainers in co-constructive explanation dialogues. In particular, we present a user study in which explainees interact with LLMs, of which some have been instructed to explain a predefined topic co-constructively. We evaluate the explainees' understanding before and after the dialogue, as well as their perception of the LLMs' co-constructive behavior. Our results indicate that current LLMs show some co-constructive behaviors, such as asking verification questions, that foster the explainees' engagement and can improve understanding of a topic. However, their ability to effectively monitor the current understanding and scaffold the explanations accordingly remains limited.
comment: Submitted to the SIGDial Conference 2025
Generative Induction of Dialogue Task Schemas with Streaming Refinement and Simulated Interactions ACL 2025
In task-oriented dialogue (TOD) systems, Slot Schema Induction (SSI) is essential for automatically identifying key information slots from dialogue data without manual intervention. This paper presents a novel state-of-the-art (SoTA) approach that formulates SSI as a text generation task, where a language model incrementally constructs and refines a slot schema over a stream of dialogue data. To develop this approach, we present a fully automatic LLM-based TOD simulation method that creates data with high-quality state labels for novel task domains. Furthermore, we identify issues in SSI evaluation due to data leakage and poor metric alignment with human judgment. We resolve these by creating new evaluation data using our simulation method with human guidance and correction, as well as designing improved evaluation metrics. These contributions establish a foundation for future SSI research and advance the SoTA in dialogue understanding and system development.
comment: Accepted (B) to TACL 2025
Fast-Slow Thinking for Large Vision-Language Model Reasoning
Recent advances in large vision-language models (LVLMs) have revealed an \textit{overthinking} phenomenon, where models generate verbose reasoning across all tasks regardless of questions. To address this issue, we present \textbf{FAST}, a novel \textbf{Fa}st-\textbf{S}low \textbf{T}hinking framework that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. We develop FAST-GRPO with three components: model-based metrics for question characterization, an adaptive thinking reward mechanism, and difficulty-aware KL regularization. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
comment: 16 pages, 5 figures, and 12 tables
Reason Like a Radiologist: Chain-of-Thought and Reinforcement Learning for Verifiable Report Generation
Radiology report generation is critical for efficiency but current models lack the structured reasoning of experts, hindering clinical trust and explainability by failing to link visual findings to precise anatomical locations. This paper introduces BoxMed-RL, a groundbreaking unified training framework for generating spatially verifiable and explainable radiology reports. Built on a large vision-language model, BoxMed-RL revolutionizes report generation through two integrated phases: (1) In the Pretraining Phase, we refine the model via medical concept learning, using Chain-of-Thought supervision to internalize the radiologist-like workflow, followed by spatially verifiable reinforcement, which applies reinforcement learning to align medical findings with bounding boxes. (2) In the Downstream Adapter Phase, we freeze the pretrained weights and train a downstream adapter to ensure fluent and clinically credible reports. This framework precisely mimics radiologists' workflow, compelling the model to connect high-level medical concepts with definitive anatomical evidence. Extensive experiments on public datasets demonstrate that BoxMed-RL achieves an average 7% improvement in both METEOR and ROUGE-L metrics compared to state-of-the-art methods. An average 5% improvement in large language model-based metrics further underscores BoxMed-RL's robustness in generating high-quality radiology reports.
PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts
In this paper, we introduce PolyMath, a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels. Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation, making it a highly discriminative multilingual mathematical benchmark in the era of reasoning LLMs. We conduct a comprehensive evaluation for advanced LLMs and find that even Deepseek-R1-671B and Qwen-QwQ-32B, achieve only 43.4 and 41.8 benchmark scores, with less than 30% accuracy under the highest level. From a language perspective, our benchmark reveals several key challenges of LLMs in multilingual reasoning: (1) Reasoning performance varies widely across languages for current LLMs; (2) Input-output language consistency is low in reasoning LLMs and may be correlated with performance; (3) The thinking length differs significantly by language for current LLMs. Additionally, we demonstrate that controlling the output language in the instructions has the potential to affect reasoning performance, especially for some low-resource languages, suggesting a promising direction for improving multilingual capabilities in LLMs.
Kimi-Audio Technical Report
We present Kimi-Audio, an open-source audio foundation model that excels in audio understanding, generation, and conversation. We detail the practices in building Kimi-Audio, including model architecture, data curation, training recipe, inference deployment, and evaluation. Specifically, we leverage a 12.5Hz audio tokenizer, design a novel LLM-based architecture with continuous features as input and discrete tokens as output, and develop a chunk-wise streaming detokenizer based on flow matching. We curate a pre-training dataset that consists of more than 13 million hours of audio data covering a wide range of modalities including speech, sound, and music, and build a pipeline to construct high-quality and diverse post-training data. Initialized from a pre-trained LLM, Kimi-Audio is continual pre-trained on both audio and text data with several carefully designed tasks, and then fine-tuned to support a diverse of audio-related tasks. Extensive evaluation shows that Kimi-Audio achieves state-of-the-art performance on a range of audio benchmarks including speech recognition, audio understanding, audio question answering, and speech conversation. We release the codes, model checkpoints, as well as the evaluation toolkits in https://github.com/MoonshotAI/Kimi-Audio.
BitNet v2: Native 4-bit Activations with Hadamard Transformation for 1-bit LLMs
Efficient deployment of 1-bit Large Language Models (LLMs) is hindered by activation outliers, which complicate quantization to low bit-widths. We introduce BitNet v2, a novel framework enabling native 4-bit activation quantization for 1-bit LLMs. To tackle outliers in attention and feed-forward network activations, we propose H-BitLinear, a module applying an online Hadamard transformation prior to activation quantization. This transformation smooths sharp activation distributions into more Gaussian-like forms, suitable for low-bit representation. Experiments show BitNet v2 trained from scratch with 8-bit activations matches BitNet b1.58 performance. Crucially, BitNet v2 achieves minimal performance degradation when trained with native 4-bit activations, significantly reducing memory footprint and computational cost for batched inference.
comment: Work in progress
Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers
Should a large language model (LLM) be used as a therapist? In this paper, we investigate the use of LLMs to *replace* mental health providers, a use case promoted in the tech startup and research space. We conduct a mapping review of therapy guides used by major medical institutions to identify crucial aspects of therapeutic relationships, such as the importance of a therapeutic alliance between therapist and client. We then assess the ability of LLMs to reproduce and adhere to these aspects of therapeutic relationships by conducting several experiments investigating the responses of current LLMs, such as `gpt-4o`. Contrary to best practices in the medical community, LLMs 1) express stigma toward those with mental health conditions and 2) respond inappropriately to certain common (and critical) conditions in naturalistic therapy settings -- e.g., LLMs encourage clients' delusional thinking, likely due to their sycophancy. This occurs even with larger and newer LLMs, indicating that current safety practices may not address these gaps. Furthermore, we note foundational and practical barriers to the adoption of LLMs as therapists, such as that a therapeutic alliance requires human characteristics (e.g., identity and stakes). For these reasons, we conclude that LLMs should not replace therapists, and we discuss alternative roles for LLMs in clinical therapy.
HRScene: How Far Are VLMs from Effective High-Resolution Image Understanding?
High-resolution image (HRI) understanding aims to process images with a large number of pixels, such as pathological images and agricultural aerial images, both of which can exceed 1 million pixels. Vision Large Language Models (VLMs) can allegedly handle HRIs, however, there is a lack of a comprehensive benchmark for VLMs to evaluate HRI understanding. To address this gap, we introduce HRScene, a novel unified benchmark for HRI understanding with rich scenes. HRScene incorporates 25 real-world datasets and 2 synthetic diagnostic datasets with resolutions ranging from 1,024 $\times$ 1,024 to 35,503 $\times$ 26,627. HRScene is collected and re-annotated by 10 graduate-level annotators, covering 25 scenarios, ranging from microscopic to radiology images, street views, long-range pictures, and telescope images. It includes HRIs of real-world objects, scanned documents, and composite multi-image. The two diagnostic evaluation datasets are synthesized by combining the target image with the gold answer and distracting images in different orders, assessing how well models utilize regions in HRI. We conduct extensive experiments involving 28 VLMs, including Gemini 2.0 Flash and GPT-4o. Experiments on HRScene show that current VLMs achieve an average accuracy of around 50% on real-world tasks, revealing significant gaps in HRI understanding. Results on synthetic datasets reveal that VLMs struggle to effectively utilize HRI regions, showing significant Regional Divergence and lost-in-middle, shedding light on future research.
comment: 22 pages, 8 figures
A UD Treebank for Bohairic Coptic
Despite recent advances in digital resources for other Coptic dialects, especially Sahidic, Bohairic Coptic, the main Coptic dialect for pre-Mamluk, late Byzantine Egypt, and the contemporary language of the Coptic Church, remains critically under-resourced. This paper presents and evaluates the first syntactically annotated corpus of Bohairic Coptic, sampling data from a range of works, including Biblical text, saints' lives and Christian ascetic writing. We also explore some of the main differences we observe compared to the existing UD treebank of Sahidic Coptic, the classical dialect of the language, and conduct joint and cross-dialect parsing experiments, revealing the unique nature of Bohairic as a related, but distinct variety from the more often studied Sahidic.
Pushing the boundary on Natural Language Inference
Natural Language Inference (NLI) is a central task in natural language understanding with applications in fact-checking, question answering, and information retrieval. Despite its importance, current NLI systems heavily rely on supervised learning with datasets that often contain annotation artifacts and biases, limiting generalization and real-world applicability. In this work, we apply a reinforcement learning-based approach using Group Relative Policy Optimization (GRPO) for Chain-of-Thought (CoT) learning in NLI, eliminating the need for labeled rationales and enabling this type of training on more challenging datasets such as ANLI. We fine-tune 7B, 14B, and 32B language models using parameter-efficient techniques (LoRA and QLoRA), demonstrating strong performance across standard and adversarial NLI benchmarks. Our 32B AWQ-quantized model surpasses state-of-the-art results on 7 out of 11 adversarial sets$\unicode{x2013}$or on all of them considering our replication$\unicode{x2013}$within a 22GB memory footprint, showing that robust reasoning can be retained under aggressive quantization. This work provides a scalable and practical framework for building robust NLI systems without sacrificing inference quality.
Auto-SLURP: A Benchmark Dataset for Evaluating Multi-Agent Frameworks in Smart Personal Assistant
In recent years, multi-agent frameworks powered by large language models (LLMs) have advanced rapidly. Despite this progress, there is still a notable absence of benchmark datasets specifically tailored to evaluate their performance. To bridge this gap, we introduce Auto-SLURP, a benchmark dataset aimed at evaluating LLM-based multi-agent frameworks in the context of intelligent personal assistants. Auto-SLURP extends the original SLURP dataset -- initially developed for natural language understanding tasks -- by relabeling the data and integrating simulated servers and external services. This enhancement enables a comprehensive end-to-end evaluation pipeline, covering language understanding, task execution, and response generation. Our experiments demonstrate that Auto-SLURP presents a significant challenge for current state-of-the-art frameworks, highlighting that truly reliable and intelligent multi-agent personal assistants remain a work in progress. The dataset and related code are available at https://github.com/lorashen/Auto-SLURP/.
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Large Language Models (LLMs) have been transformative across many domains. However, hallucination -- confidently outputting incorrect information -- remains one of the leading challenges for LLMs. This raises the question of how to accurately assess and quantify the uncertainty of LLMs. Extensive literature on traditional models has explored Uncertainty Quantification (UQ) to measure uncertainty and employed calibration techniques to address the misalignment between uncertainty and accuracy. While some of these methods have been adapted for LLMs, the literature lacks an in-depth analysis of their effectiveness and does not offer a comprehensive benchmark to enable insightful comparison among existing solutions. In this work, we fill this gap via a systematic survey of representative prior works on UQ and calibration for LLMs and introduce a rigorous benchmark. Using two widely used reliability datasets, we empirically evaluate six related methods, which justify the significant findings of our review. Finally, we provide outlooks for key future directions and outline open challenges. To the best of our knowledge, this survey is the first dedicated study to review the calibration methods and relevant metrics for LLMs.
Adversarial Attacks on LLM-as-a-Judge Systems: Insights from Prompt Injections
LLM as judge systems used to assess text quality code correctness and argument strength are vulnerable to prompt injection attacks. We introduce a framework that separates content author attacks from system prompt attacks and evaluate five models Gemma 3.27B Gemma 3.4B Llama 3.2 3B GPT 4 and Claude 3 Opus on four tasks with various defenses using fifty prompts per condition. Attacks achieved up to seventy three point eight percent success smaller models proved more vulnerable and transferability ranged from fifty point five to sixty two point six percent. Our results contrast with Universal Prompt Injection and AdvPrompter We recommend multi model committees and comparative scoring and release all code and datasets
TextTIGER: Text-based Intelligent Generation with Entity Prompt Refinement for Text-to-Image Generation
Generating images from prompts containing specific entities requires models to retain as much entity-specific knowledge as possible. However, fully memorizing such knowledge is impractical due to the vast number of entities and their continuous emergence. To address this, we propose Text-based Intelligent Generation with Entity prompt Refinement (TextTIGER), which augments knowledge on entities included in the prompts and then summarizes the augmented descriptions using Large Language Models (LLMs) to mitigate performance degradation from longer inputs. To evaluate our method, we introduce WiT-Cub (WiT with Captions and Uncomplicated Background-explanations), a dataset comprising captions, images, and an entity list. Experiments on four image generation models and five LLMs show that TextTIGER improves image generation performance in standard metrics (IS, FID, and CLIPScore) compared to caption-only prompts. Additionally, multiple annotators' evaluation confirms that the summarized descriptions are more informative, validating LLMs' ability to generate concise yet rich descriptions. These findings demonstrate that refining prompts with augmented and summarized entity-related descriptions enhances image generation capabilities. The code and dataset will be available upon acceptance.
comment: Under review
MAGI: Multi-Agent Guided Interview for Psychiatric Assessment
Automating structured clinical interviews could revolutionize mental healthcare accessibility, yet existing large language models (LLMs) approaches fail to align with psychiatric diagnostic protocols. We present MAGI, the first framework that transforms the gold-standard Mini International Neuropsychiatric Interview (MINI) into automatic computational workflows through coordinated multi-agent collaboration. MAGI dynamically navigates clinical logic via four specialized agents: 1) an interview tree guided navigation agent adhering to the MINI's branching structure, 2) an adaptive question agent blending diagnostic probing, explaining, and empathy, 3) a judgment agent validating whether the response from participants meet the node, and 4) a diagnosis Agent generating Psychometric Chain-of- Thought (PsyCoT) traces that explicitly map symptoms to clinical criteria. Experimental results on 1,002 real-world participants covering depression, generalized anxiety, social anxiety and suicide shows that MAGI advances LLM- assisted mental health assessment by combining clinical rigor, conversational adaptability, and explainable reasoning.
comment: In progress
Efficient Single-Pass Training for Multi-Turn Reasoning
Training Large Language Models ( LLMs) to generate explicit reasoning before they produce an answer has been shown to improve their performance across various tasks such as mathematics and coding. However, fine-tuning LLMs on multi-turn reasoning datasets presents a unique challenge: LLMs must generate reasoning tokens that are excluded from subsequent inputs to the LLM. This discrepancy prevents us from processing an entire conversation in a single forward pass-an optimization readily available when we fine-tune on a multi-turn non-reasoning dataset. This paper proposes a novel approach that overcomes this limitation through response token duplication and a custom attention mask that enforces appropriate visibility constraints. Our approach significantly reduces the training time and allows efficient fine-tuning on multi-turn reasoning datasets.
comment: 9 pages, 3 figures
Even Small Reasoners Should Quote Their Sources: Introducing the Pleias-RAG Model Family
We introduce a new generation of small reasoning models for RAG, search, and source summarization. Pleias-RAG-350m and Pleias-RAG-1B are mid-trained on a large synthetic dataset emulating the retrieval of a wide variety of multilingual open sources from the Common Corpus. They provide native support for citation and grounding with literal quotes and reintegrate multiple features associated with RAG workflows, such as query routing, query reformulation, and source reranking. Pleias-RAG-350m and Pleias-RAG-1B outperform SLMs below 4 billion parameters on standardized RAG benchmarks (HotPotQA, 2wiki) and are competitive with popular larger models, including Qwen-2.5-7B, Llama-3.1-8B, and Gemma-3-4B. They are the only SLMs to date maintaining consistent RAG performance across leading European languages and ensuring systematic reference grounding for statements. Due to their size and ease of deployment on constrained infrastructure and higher factuality by design, the models unlock a range of new use cases for generative AI.
Optimising ChatGPT for creativity in literary translation: A case study from English into Dutch, Chinese, Catalan and Spanish
This study examines the variability of Chat-GPT machine translation (MT) outputs across six different configurations in four languages,with a focus on creativity in a literary text. We evaluate GPT translations in different text granularity levels, temperature settings and prompting strategies with a Creativity Score formula. We found that prompting ChatGPT with a minimal instruction yields the best creative translations, with "Translate the following text into [TG] creatively" at the temperature of 1.0 outperforming other configurations and DeepL in Spanish, Dutch, and Chinese. Nonetheless, ChatGPT consistently underperforms compared to human translation (HT).
comment: This paper has been accepted to the MT Summit 2025 to be held in Geneva on June 23-27 2025
Aligning Language Models for Icelandic Legal Text Summarization
The integration of language models in the legal domain holds considerable promise for streamlining processes and improving efficiency in managing extensive workloads. However, the specialized terminology, nuanced language, and formal style of legal texts can present substantial challenges. This study examines whether preference-based training techniques, specifically Reinforcement Learning from Human Feedback and Direct Preference Optimization, can enhance models' performance in generating Icelandic legal summaries that align with domain-specific language standards and user preferences. We compare models fine-tuned with preference training to those using conventional supervised learning. Results indicate that preference training improves the legal accuracy of generated summaries over standard fine-tuning but does not significantly enhance the overall quality of Icelandic language usage. Discrepancies between automated metrics and human evaluations further underscore the importance of qualitative assessment in developing language models for the legal domain.
comment: Published at NoDaLiDa 2025
EDU-NER-2025: Named Entity Recognition in Urdu Educational Texts using XLM-RoBERTa with X (formerly Twitter)
Named Entity Recognition (NER) plays a pivotal role in various Natural Language Processing (NLP) tasks by identifying and classifying named entities (NEs) from unstructured data into predefined categories such as person, organization, location, date, and time. While extensive research exists for high-resource languages and general domains, NER in Urdu particularly within domain-specific contexts like education remains significantly underexplored. This is Due to lack of annotated datasets for educational content which limits the ability of existing models to accurately identify entities such as academic roles, course names, and institutional terms, underscoring the urgent need for targeted resources in this domain. To the best of our knowledge, no dataset exists in the domain of the Urdu language for this purpose. To achieve this objective this study makes three key contributions. Firstly, we created a manually annotated dataset in the education domain, named EDU-NER-2025, which contains 13 unique most important entities related to education domain. Second, we describe our annotation process and guidelines in detail and discuss the challenges of labelling EDU-NER-2025 dataset. Third, we addressed and analyzed key linguistic challenges, such as morphological complexity and ambiguity, which are prevalent in formal Urdu texts.
Temporal Entailment Pretraining for Clinical Language Models over EHR Data
Clinical language models have achieved strong performance on downstream tasks by pretraining on domain specific corpora such as discharge summaries and medical notes. However, most approaches treat the electronic health record as a static document, neglecting the temporally-evolving and causally entwined nature of patient trajectories. In this paper, we introduce a novel temporal entailment pretraining objective for language models in the clinical domain. Our method formulates EHR segments as temporally ordered sentence pairs and trains the model to determine whether a later state is entailed by, contradictory to, or neutral with respect to an earlier state. Through this temporally structured pretraining task, models learn to perform latent clinical reasoning over time, improving their ability to generalize across forecasting and diagnosis tasks. We pretrain on a large corpus derived from MIMIC IV and demonstrate state of the art results on temporal clinical QA, early warning prediction, and disease progression modeling.
Evaluating Evaluation Metrics -- The Mirage of Hallucination Detection
Hallucinations pose a significant obstacle to the reliability and widespread adoption of language models, yet their accurate measurement remains a persistent challenge. While many task- and domain-specific metrics have been proposed to assess faithfulness and factuality concerns, the robustness and generalization of these metrics are still untested. In this paper, we conduct a large-scale empirical evaluation of 6 diverse sets of hallucination detection metrics across 4 datasets, 37 language models from 5 families, and 5 decoding methods. Our extensive investigation reveals concerning gaps in current hallucination evaluation: metrics often fail to align with human judgments, take an overtly myopic view of the problem, and show inconsistent gains with parameter scaling. Encouragingly, LLM-based evaluation, particularly with GPT-4, yields the best overall results, and mode-seeking decoding methods seem to reduce hallucinations, especially in knowledge-grounded settings. These findings underscore the need for more robust metrics to understand and quantify hallucinations, and better strategies to mitigate them.
Comparative Study on the Discourse Meaning of Chinese and English Media in the Paris Olympics Based on LDA Topic Modeling Technology and LLM Prompt Engineering
This study analyzes Chinese and English media reports on the Paris Olympics using topic modeling, Large Language Model (LLM) prompt engineering, and corpus phraseology methods to explore similarities and differences in discourse construction and attitudinal meanings. Common topics include the opening ceremony, athlete performance, and sponsorship brands. Chinese media focus on specific sports, sports spirit, doping controversies, and new technologies, while English media focus on female athletes, medal wins, and eligibility controversies. Chinese reports show more frequent prepositional co-occurrences and positive semantic prosody in describing the opening ceremony and sports spirit. English reports exhibit positive semantic prosody when covering female athletes but negative prosody in predicting opening ceremony reactions and discussing women's boxing controversies.
Application and Optimization of Large Models Based on Prompt Tuning for Fact-Check-Worthiness Estimation
In response to the growing problem of misinformation in the context of globalization and informatization, this paper proposes a classification method for fact-check-worthiness estimation based on prompt tuning. We construct a model for fact-check-worthiness estimation at the methodological level using prompt tuning. By applying designed prompt templates to large language models, we establish in-context learning and leverage prompt tuning technology to improve the accuracy of determining whether claims have fact-check-worthiness, particularly when dealing with limited or unlabeled data. Through extensive experiments on public datasets, we demonstrate that the proposed method surpasses or matches multiple baseline methods in the classification task of fact-check-worthiness estimation assessment, including classical pre-trained models such as BERT, as well as recent popular large models like GPT-3.5 and GPT-4. Experiments show that the prompt tuning-based method proposed in this study exhibits certain advantages in evaluation metrics such as F1 score and accuracy, thereby effectively validating its effectiveness and advancement in the task of fact-check-worthiness estimation.
Tracking Articulatory Dynamics in Speech with a Fixed-Weight BiLSTM-CNN Architecture
Speech production is a complex sequential process which involve the coordination of various articulatory features. Among them tongue being a highly versatile active articulator responsible for shaping airflow to produce targeted speech sounds that are intellectual, clear, and distinct. This paper presents a novel approach for predicting tongue and lip articulatory features involved in a given speech acoustics using a stacked Bidirectional Long Short-Term Memory (BiLSTM) architecture, combined with a one-dimensional Convolutional Neural Network (CNN) for post-processing with fixed weights initialization. The proposed network is trained with two datasets consisting of simultaneously recorded speech and Electromagnetic Articulography (EMA) datasets, each introducing variations in terms of geographical origin, linguistic characteristics, phonetic diversity, and recording equipment. The performance of the model is assessed in Speaker Dependent (SD), Speaker Independent (SI), corpus dependent (CD) and cross corpus (CC) modes. Experimental results indicate that the proposed model with fixed weights approach outperformed the adaptive weights initialization with in relatively minimal number of training epochs. These findings contribute to the development of robust and efficient models for articulatory feature prediction, paving the way for advancements in speech production research and applications.
comment: 10 pages with 8 figures. This paper presented in an international Conference
Random-Set Large Language Models
Large Language Models (LLMs) are known to produce very high-quality tests and responses to our queries. But how much can we trust this generated text? In this paper, we study the problem of uncertainty quantification in LLMs. We propose a novel Random-Set Large Language Model (RSLLM) approach which predicts finite random sets (belief functions) over the token space, rather than probability vectors as in classical LLMs. In order to allow so efficiently, we also present a methodology based on hierarchical clustering to extract and use a budget of "focal" subsets of tokens upon which the belief prediction is defined, rather than using all possible collections of tokens, making the method scalable yet effective. RS-LLMs encode the epistemic uncertainty induced in their generation process by the size and diversity of its training set via the size of the credal sets associated with the predicted belief functions. The proposed approach is evaluated on CoQA and OBQA datasets using Llama2-7b, Mistral-7b and Phi-2 models and is shown to outperform the standard model in both datasets in terms of correctness of answer while also showing potential in estimating the second level uncertainty in its predictions and providing the capability to detect when its hallucinating.
comment: 16 pages, 6 figures
Stabilizing Reasoning in Medical LLMs with Continued Pretraining and Reasoning Preference Optimization
Large Language Models (LLMs) show potential in medicine, yet clinical adoption is hindered by concerns over factual accuracy, language-specific limitations (e.g., Japanese), and critically, their reliability when required to generate reasoning explanations -- a prerequisite for trust. This paper introduces Preferred-MedLLM-Qwen-72B, a 72B-parameter model optimized for the Japanese medical domain to achieve both high accuracy and stable reasoning. We employ a two-stage fine-tuning process on the Qwen2.5-72B base model: first, Continued Pretraining (CPT) on a comprehensive Japanese medical corpus instills deep domain knowledge. Second, Reasoning Preference Optimization (RPO), a preference-based method, enhances the generation of reliable reasoning pathways while preserving high answer accuracy. Evaluations on the Japanese Medical Licensing Exam benchmark (IgakuQA) show Preferred-MedLLM-Qwen-72B achieves state-of-the-art performance (0.868 accuracy), surpassing strong proprietary models like GPT-4o (0.866). Crucially, unlike baseline or CPT-only models which exhibit significant accuracy degradation (up to 11.5\% and 3.8\% respectively on IgakuQA) when prompted for explanations, our model maintains its high accuracy (0.868) under such conditions. This highlights RPO's effectiveness in stabilizing reasoning generation. This work underscores the importance of optimizing for reliable explanations alongside accuracy. We release the Preferred-MedLLM-Qwen-72B model weights to foster research into trustworthy LLMs for specialized, high-stakes applications.
PropRAG: Guiding Retrieval with Beam Search over Proposition Paths
Retrieval Augmented Generation (RAG) has become the standard non-parametric approach for equipping Large Language Models (LLMs) with up-to-date knowledge and mitigating catastrophic forgetting common in continual learning. However, standard RAG, relying on independent passage retrieval, fails to capture the interconnected nature of human memory crucial for complex reasoning (associativity) and contextual understanding (sense-making). While structured RAG methods like HippoRAG utilize knowledge graphs (KGs) built from triples, the inherent context loss limits fidelity. We introduce PropRAG, a framework leveraging contextually rich propositions and a novel beam search algorithm over proposition paths to explicitly discover multi-step reasoning chains. Crucially, PropRAG's online retrieval process operates entirely without invoking generative LLMs, relying instead on efficient graph traversal and pre-computed embeddings. This avoids online LLM inference costs and potential inconsistencies during evidence gathering. LLMs are used effectively offline for high-quality proposition extraction and post-retrieval for answer generation. PropRAG achieves state-of-the-art zero-shot Recall@5 results on PopQA (55.3%), 2Wiki (93.7%), HotpotQA (97.0%), and MuSiQue (77.3%), alongside top F1 scores (e.g., 52.4% on MuSiQue). By improving evidence retrieval through richer representation and explicit, LLM-free online path finding, PropRAG advances non-parametric continual learning.
comment: Code and data to be released at: https://github.com/ReLink-Inc/PropRAG
Exploring Personality-Aware Interactions in Salesperson Dialogue Agents
The integration of dialogue agents into the sales domain requires a deep understanding of how these systems interact with users possessing diverse personas. This study explores the influence of user personas, defined using the Myers-Briggs Type Indicator (MBTI), on the interaction quality and performance of sales-oriented dialogue agents. Through large-scale testing and analysis, we assess the pre-trained agent's effectiveness, adaptability, and personalization capabilities across a wide range of MBTI-defined user types. Our findings reveal significant patterns in interaction dynamics, task completion rates, and dialogue naturalness, underscoring the future potential for dialogue agents to refine their strategies to better align with varying personality traits. This work not only provides actionable insights for building more adaptive and user-centric conversational systems in the sales domain but also contributes broadly to the field by releasing persona-defined user simulators. These simulators, unconstrained by domain, offer valuable tools for future research and demonstrate the potential for scaling personalized dialogue systems across diverse applications.
comment: Accepted by IWSDS 2025
DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models NAACL 2025
Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data, thereby introducing new dimensions of potential attacks and complex risk combinations. In this paper, we begin with a detailed analysis aimed at disentangling risks through step-by-step reasoning within multimodal inputs. We find that systematic multimodal risk disentanglement substantially enhances the risk awareness of MLLMs. Via leveraging the strong discriminative abilities of multimodal risk disentanglement, we further introduce \textbf{DREAM} (\textit{\textbf{D}isentangling \textbf{R}isks to \textbf{E}nhance Safety \textbf{A}lignment in \textbf{M}LLMs}), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback (RLAIF). Experimental results show that DREAM significantly boosts safety during both inference and training phases without compromising performance on normal tasks (namely oversafety), achieving a 16.17\% improvement in the SIUO safe\&effective score compared to GPT-4V. The data and code are available at https://github.com/Kizna1ver/DREAM.
comment: [NAACL 2025] The first four authors contribute equally, 23 pages, repo at https://github.com/Kizna1ver/DREAM
RAG LLMs are Not Safer: A Safety Analysis of Retrieval-Augmented Generation for Large Language Models NAACL 2025
Efforts to ensure the safety of large language models (LLMs) include safety fine-tuning, evaluation, and red teaming. However, despite the widespread use of the Retrieval-Augmented Generation (RAG) framework, AI safety work focuses on standard LLMs, which means we know little about how RAG use cases change a model's safety profile. We conduct a detailed comparative analysis of RAG and non-RAG frameworks with eleven LLMs. We find that RAG can make models less safe and change their safety profile. We explore the causes of this change and find that even combinations of safe models with safe documents can cause unsafe generations. In addition, we evaluate some existing red teaming methods for RAG settings and show that they are less effective than when used for non-RAG settings. Our work highlights the need for safety research and red-teaming methods specifically tailored for RAG LLMs.
comment: NAACL 2025
SMARTFinRAG: Interactive Modularized Financial RAG Benchmark
Financial sectors are rapidly adopting language model technologies, yet evaluating specialized RAG systems in this domain remains challenging. This paper introduces SMARTFinRAG, addressing three critical gaps in financial RAG assessment: (1) a fully modular architecture where components can be dynamically interchanged during runtime; (2) a document-centric evaluation paradigm generating domain-specific QA pairs from newly ingested financial documents; and (3) an intuitive interface bridging research-implementation divides. Our evaluation quantifies both retrieval efficacy and response quality, revealing significant performance variations across configurations. The platform's open-source architecture supports transparent, reproducible research while addressing practical deployment challenges faced by financial institutions implementing RAG systems.
comment: For open source github repo, see https://github.com/JonathanZha47/SMARTFinRAG
Memory Reviving, Continuing Learning and Beyond: Evaluation of Pre-trained Encoders and Decoders for Multimodal Machine Translation
Multimodal Machine Translation (MMT) aims to improve translation quality by leveraging auxiliary modalities such as images alongside textual input. While recent advances in large-scale pre-trained language and vision models have significantly benefited unimodal natural language processing tasks, their effectiveness and role in MMT remain underexplored. In this work, we conduct a systematic study on the impact of pre-trained encoders and decoders in multimodal translation models. Specifically, we analyze how different training strategies, from training from scratch to using pre-trained and partially frozen components, affect translation performance under a unified MMT framework. Experiments are carried out on the Multi30K and CoMMuTE dataset across English-German and English-French translation tasks. Our results reveal that pre-training plays a crucial yet asymmetrical role in multimodal settings: pre-trained decoders consistently yield more fluent and accurate outputs, while pre-trained encoders show varied effects depending on the quality of visual-text alignment. Furthermore, we provide insights into the interplay between modality fusion and pre-trained components, offering guidance for future architecture design in multimodal translation systems.
Improving LLM Personas via Rationalization with Psychological Scaffolds
Language models prompted with a user description or persona can predict a user's preferences and opinions, but existing approaches to building personas -- based solely on a user's demographic attributes and/or prior judgments -- fail to capture the underlying reasoning behind said user judgments. We introduce PB&J (Psychology of Behavior and Judgments), a framework that improves LLM personas by incorporating rationales of why a user might make specific judgments. These rationales are LLM-generated, and aim to reason about a user's behavior on the basis of their experiences, personality traits or beliefs. This is done using psychological scaffolds -- structured frameworks grounded in theories such as the Big 5 Personality Traits and Primal World Beliefs -- that help provide structure to the generated rationales. Experiments on public opinion and movie preference prediction tasks demonstrate that LLM personas augmented with PB&J rationales consistently outperform methods using only a user's demographics and/or judgments. Additionally, LLM personas constructed using scaffolds describing user beliefs perform competitively with those using human-written rationales.
EvidenceBench: A Benchmark for Extracting Evidence from Biomedical Papers
We study the task of automatically finding evidence relevant to hypotheses in biomedical papers. Finding relevant evidence is an important step when researchers investigate scientific hypotheses. We introduce EvidenceBench to measure models performance on this task, which is created by a novel pipeline that consists of hypothesis generation and sentence-by-sentence annotation of biomedical papers for relevant evidence, completely guided by and faithfully following existing human experts judgment. We demonstrate the pipeline's validity and accuracy with multiple sets of human-expert annotations. We evaluated a diverse set of language models and retrieval systems on the benchmark and found that model performances still fall significantly short of the expert level on this task. To show the scalability of our proposed pipeline, we create a larger EvidenceBench-100k with 107,461 fully annotated papers with hypotheses to facilitate model training and development. Both datasets are available at https://github.com/EvidenceBench/EvidenceBench
Building UD Cairo for Old English in the Classroom
In this paper we present a sample treebank for Old English based on the UD Cairo sentences, collected and annotated as part of a classroom curriculum in Historical Linguistics. To collect the data, a sample of 20 sentences illustrating a range of syntactic constructions in the world's languages, we employ a combination of LLM prompting and searches in authentic Old English data. For annotation we assigned sentences to multiple students with limited prior exposure to UD, whose annotations we compare and adjudicate. Our results suggest that while current LLM outputs in Old English do not reflect authentic syntax, this can be mitigated by post-editing, and that although beginner annotators do not possess enough background to complete the task perfectly, taken together they can produce good results and learn from the experience. We also conduct preliminary parsing experiments using Modern English training data, and find that although performance on Old English is poor, parsing on annotated features (lemma, hyperlemma, gloss) leads to improved performance.
comment: 7 pages, 2 figures
Spatial Speech Translation: Translating Across Space With Binaural Hearables
Imagine being in a crowded space where people speak a different language and having hearables that transform the auditory space into your native language, while preserving the spatial cues for all speakers. We introduce spatial speech translation, a novel concept for hearables that translate speakers in the wearer's environment, while maintaining the direction and unique voice characteristics of each speaker in the binaural output. To achieve this, we tackle several technical challenges spanning blind source separation, localization, real-time expressive translation, and binaural rendering to preserve the speaker directions in the translated audio, while achieving real-time inference on the Apple M2 silicon. Our proof-of-concept evaluation with a prototype binaural headset shows that, unlike existing models, which fail in the presence of interference, we achieve a BLEU score of up to 22.01 when translating between languages, despite strong interference from other speakers in the environment. User studies further confirm the system's effectiveness in spatially rendering the translated speech in previously unseen real-world reverberant environments. Taking a step back, this work marks the first step towards integrating spatial perception into speech translation.
comment: Accepted by CHI2025
Can Third-parties Read Our Emotions?
Natural Language Processing tasks that aim to infer an author's private states, e.g., emotions and opinions, from their written text, typically rely on datasets annotated by third-party annotators. However, the assumption that third-party annotators can accurately capture authors' private states remains largely unexamined. In this study, we present human subjects experiments on emotion recognition tasks that directly compare third-party annotations with first-party (author-provided) emotion labels. Our findings reveal significant limitations in third-party annotations-whether provided by human annotators or large language models (LLMs)-in faithfully representing authors' private states. However, LLMs outperform human annotators nearly across the board. We further explore methods to improve third-party annotation quality. We find that demographic similarity between first-party authors and third-party human annotators enhances annotation performance. While incorporating first-party demographic information into prompts leads to a marginal but statistically significant improvement in LLMs' performance. We introduce a framework for evaluating the limitations of third-party annotations and call for refined annotation practices to accurately represent and model authors' private states.
Span-Level Hallucination Detection for LLM-Generated Answers
Detecting spans of hallucination in LLM-generated answers is crucial for improving factual consistency. This paper presents a span-level hallucination detection framework for the SemEval-2025 Shared Task, focusing on English and Arabic texts. Our approach integrates Semantic Role Labeling (SRL) to decompose the answer into atomic roles, which are then compared with a retrieved reference context obtained via question-based LLM prompting. Using a DeBERTa-based textual entailment model, we evaluate each role semantic alignment with the retrieved context. The entailment scores are further refined through token-level confidence measures derived from output logits, and the combined scores are used to detect hallucinated spans. Experiments on the Mu-SHROOM dataset demonstrate competitive performance. Additionally, hallucinated spans have been verified through fact-checking by prompting GPT-4 and LLaMA. Our findings contribute to improving hallucination detection in LLM-generated responses.
Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training
Although large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks, the academic community still lacks an in-depth understanding of base model training processes and data quality. To address this, we construct a large-scale, difficulty-graded reasoning dataset containing approximately 3.34 million unique queries of varying difficulty levels and about 40 million distilled responses generated by multiple models over several passes. Leveraging pass rate and Coefficient of Variation (CV), we precisely select the most valuable training data to enhance reasoning capability. Notably, we observe a training pattern shift, indicating that reasoning-focused training based on base models requires higher learning rates for effective training. Using this carefully selected data, we significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2\% on the AIME2024 mathematical reasoning benchmark. This result surpasses most current distilled models and closely approaches state-of-the-art performance. We provide detailed descriptions of our data processing, difficulty assessment, and training methodology, and have publicly released all datasets and methods to promote rapid progress in open-source long-reasoning LLMs. The dataset is available at: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M
TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
The Rise of Small Language Models in Healthcare: A Comprehensive Survey
Despite substantial progress in healthcare applications driven by large language models (LLMs), growing concerns around data privacy, and limited resources; the small language models (SLMs) offer a scalable and clinically viable solution for efficient performance in resource-constrained environments for next-generation healthcare informatics. Our comprehensive survey presents a taxonomic framework to identify and categorize them for healthcare professionals and informaticians. The timeline of healthcare SLM contributions establishes a foundational framework for analyzing models across three dimensions: NLP tasks, stakeholder roles, and the continuum of care. We present a taxonomic framework to identify the architectural foundations for building models from scratch; adapting SLMs to clinical precision through prompting, instruction fine-tuning, and reasoning; and accessibility and sustainability through compression techniques. Our primary objective is to offer a comprehensive survey for healthcare professionals, introducing recent innovations in model optimization and equipping them with curated resources to support future research and development in the field. Aiming to showcase the groundbreaking advancements in SLMs for healthcare, we present a comprehensive compilation of experimental results across widely studied NLP tasks in healthcare to highlight the transformative potential of SLMs in healthcare. The updated repository is available at Github
comment: 35 pages, 7 tables, 5 figures
CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
Machine-generated text detection prevents language model collapse
As Large Language Models (LLMs) become increasingly prevalent, their generated outputs are proliferating across the web, risking a future where machine-generated content dilutes human-authored text. Since online data is the primary resource for LLM pre-training, subsequent models could be trained on an unknown portion of synthetic samples. This will lead to model collapse, a degenerative process whereby LLMs reinforce their own errors, and ultimately yield a declining performance. In this study, we investigate the impact of decoding strategy on model collapse, analysing the characteristics of text at each model generation, the similarity to human references, and the resulting model performance. Using the decoding strategies that lead to the most significant degradation, we evaluate model collapse in more realistic scenarios where the origin of the data (human or synthetic) is unknown. We train a machine-generated text detector and propose an importance sampling approach to alleviate model collapse. Our method is validated on two LLM variants (GPT-2 and SmolLM2) on the open-ended text generation task. We demonstrate that it can not only prevent model collapse but also improve performance when sufficient human-authored samples are present. We release our code at https://github.com/GeorgeDrayson/model_collapse.
ElChat: Adapting Chat Language Models Using Only Target Unlabeled Language Data
Vocabulary expansion (VE) is the de-facto approach to language adaptation of large language models (LLMs) by adding new tokens and continuing pre-training on target data. While this is effective for base models trained on unlabeled data, it poses challenges for chat models trained to follow instructions through labeled conversation data. Directly adapting the latter with VE on target unlabeled data may result in forgetting chat abilities. While ideal, target chat data is often unavailable or costly to create for low-resource languages, and machine-translated alternatives are not always effective. To address this issue, previous work proposed using a base and chat model from the same family. This method first adapts the base LLM with VE on target unlabeled data and then converts it to a chat model by adding a chat vector (CV) derived from the weight difference between the source base and chat models. We propose ElChat, a new language adaptation method for chat LLMs that adapts a chat model directly on target unlabeled data, without a base model. It elicits chat abilities by injecting information from the source chat model. ElChat offers more robust and competitive target language and safety performance while achieving superior English, chat, and instruction-following abilities compared to CV.
MeTHanol: Modularized Thinking Language Models with Intermediate Layer Thinking, Decoding and Bootstrapping Reasoning
Large Language Model can reasonably understand and generate human expressions but may lack of thorough thinking and reasoning mechanisms. Recently there have been several studies which enhance the thinking ability of language models but most of them are not data-driven or training-based. In this paper, we are motivated by the cognitive mechanism in the natural world, and design a novel model architecture called TaS which allows it to first consider the thoughts and then express the response based upon the query. We design several pipelines to annotate or generate the thought contents from prompt-response samples, then add language heads in a middle layer which behaves as the thinking layer. We train the language model by the thoughts-augmented data and successfully let the thinking layer automatically generate reasonable thoughts and finally output more reasonable responses. Both qualitative examples and quantitative results validate the effectiveness and performance of TaS. Our code is available at https://anonymous.4open.science/r/TadE.
comment: 19 pages, 7 figures
Spatial Audio Processing with Large Language Model on Wearable Devices
Integrating spatial context into large language models (LLMs) has the potential to revolutionize human-computer interaction, particularly in wearable devices. In this work, we present a novel system architecture that incorporates spatial speech understanding into LLMs, enabling contextually aware and adaptive applications for wearable technologies. Our approach leverages microstructure-based spatial sensing to extract precise Direction of Arrival (DoA) information using a monaural microphone. To address the lack of existing dataset for microstructure-assisted speech recordings, we synthetically create a dataset called OmniTalk by using the LibriSpeech dataset. This spatial information is fused with linguistic embeddings from OpenAI's Whisper model, allowing each modality to learn complementary contextual representations. The fused embeddings are aligned with the input space of LLaMA-3.2 3B model and fine-tuned with lightweight adaptation technique LoRA to optimize for on-device processing. SING supports spatially-aware automatic speech recognition (ASR), achieving a mean error of $25.72^\circ$-a substantial improvement compared to the 88.52$^\circ$ median error in existing work-with a word error rate (WER) of 5.3. SING also supports soundscaping, for example, inference how many people were talking and their directions, with up to 5 people and a median DoA error of 16$^\circ$. Our system demonstrates superior performance in spatial speech understanding while addressing the challenges of power efficiency, privacy, and hardware constraints, paving the way for advanced applications in augmented reality, accessibility, and immersive experiences.
Repurposing the scientific literature with vision-language models
Leading vision-language models (VLMs) are trained on general Internet content, overlooking scientific journals' rich, domain-specific knowledge. Training on specialty-specific literature could yield high-performance, task-specific tools, enabling generative AI to match generalist models in specialty publishing, educational, and clinical tasks. We created NeuroPubs, a multimodal dataset of 23,000 Neurosurgery Publications articles (134M words, 78K image-caption pairs). Using NeuroPubs, VLMs generated publication-ready graphical abstracts (70% of 100 abstracts) and board-style questions indistinguishable from human-written ones (54% of 89,587 questions). We used these questions to train CNS-Obsidian, a 34B-parameter VLM. In a blinded, randomized controlled trial, our model demonstrated non-inferiority to then state-of-the-art GPT-4o in neurosurgical differential diagnosis (clinical utility, 40.62% upvotes vs. 57.89%, p=0.1150; accuracy, 59.38% vs. 65.79%, p=0.3797). Our pilot study demonstrates how training generative AI models on specialty-specific journal content - without large-scale internet data - results in high-performance academic and clinical tools, enabling domain-tailored AI across diverse fields.
EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications. Code and data are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/EPO.
comment: 22 pages, 4 figures
Generative Evaluation of Complex Reasoning in Large Language Models
With powerful large language models (LLMs) demonstrating superhuman reasoning capabilities, a critical question arises: Do LLMs genuinely reason, or do they merely recall answers from their extensive, web-scraped training datasets? Publicly released benchmarks inevitably become contaminated once incorporated into subsequent LLM training sets, undermining their reliability as faithful assessments. To address this, we introduce KUMO, a generative evaluation framework designed specifically for assessing reasoning in LLMs. KUMO synergistically combines LLMs with symbolic engines to dynamically produce diverse, multi-turn reasoning tasks that are partially observable and adjustable in difficulty. Through an automated pipeline, KUMO continuously generates novel tasks across open-ended domains, compelling models to demonstrate genuine generalization rather than memorization. We evaluated 23 state-of-the-art LLMs on 5,000 tasks across 100 domains created by KUMO, benchmarking their reasoning abilities against university students. Our findings reveal that many LLMs have outperformed university-level performance on easy reasoning tasks, and reasoning-scaled LLMs reach university-level performance on complex reasoning challenges. Moreover, LLM performance on KUMO tasks correlates strongly with results on newly released real-world reasoning benchmarks, underscoring KUMO's value as a robust, enduring assessment tool for genuine LLM reasoning capabilities.
Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation SIGIR 2025
Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
comment: Accepted to SIGIR 2025
Multilingual Large Language Models and Curse of Multilinguality
Multilingual Large Language Models (LLMs) have gained large popularity among Natural Language Processing (NLP) researchers and practitioners. These models, trained on huge datasets, show proficiency across various languages and demonstrate effectiveness in numerous downstream tasks. This paper navigates the landscape of multilingual LLMs, providing an introductory overview of their technical aspects. It explains underlying architectures, objective functions, pre-training data sources, and tokenization methods. This work explores the unique features of different model types: encoder-only (mBERT, XLM-R), decoder-only (XGLM, PALM, BLOOM, GPT-3), and encoder-decoder models (mT5, mBART). Additionally, it addresses one of the significant limitations of multilingual LLMs - the curse of multilinguality - and discusses current attempts to overcome it.
Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution
Semantic similarity measures are a key component in natural language processing tasks such as document analysis, requirement matching, and user input interpretation. However, the performance of individual measures varies considerably across datasets. To address this, ensemble approaches that combine multiple measures are often employed. This paper presents an automated strategy based on grammatical evolution for constructing semantic similarity ensembles. The method evolves aggregation functions that maximize correlation with human-labeled similarity scores. Experiments on standard benchmark datasets demonstrate that the proposed approach outperforms existing ensemble techniques in terms of accuracy. The results confirm the effectiveness of grammatical evolution in designing adaptive and accurate similarity models. The source code that illustrates our approach can be downloaded from https://github.com/jorge-martinez-gil/sesige.
comment: 38 pages
Factual Knowledge in Language Models: Robustness and Anomalies under Simple Temporal Context Variations
This paper explores the robustness of language models (LMs) to variations in the temporal context within factual knowledge. It examines whether LMs can correctly associate a temporal context with a past fact valid over a defined period, by asking them to differentiate correct from incorrect contexts. The accuracy of LMs is analyzed along two dimensions: the distance of the incorrect context from the validity period and the granularity of the context. To this end, a dataset called TimeStress is introduced, enabling the evaluation of 18 diverse LMs. Results reveal that the best LM achieves perfect accuracy for only 6% of the studied facts, with critical errors that humans would not make. This work highlights the limitations of current LMs in temporal representation. We provide all data and code for further research.
comment: preprint v3
Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Direct Preference Optimization (DPO) simplifies reinforcement learning from human feedback (RLHF) for large language models (LLMs) by directly optimizing human preferences without an explicit reward model. We find that during DPO training, the reference model plays the role of a data weight adjuster. However, the common practice of initializing the policy and reference models identically in DPO can lead to inefficient data utilization and impose a performance ceiling. Meanwhile, the lack of a reference model in Simple Preference Optimization (SimPO) reduces training robustness and necessitates stricter conditions to prevent catastrophic forgetting. In this work, we propose Pre-DPO, a simple yet effective DPO-based training paradigm that enhances preference optimization performance by leveraging a guiding reference model. This reference model provides foresight into the optimal policy state achievable through the training preference data, serving as a guiding mechanism that adaptively assigns higher weights to samples more suitable for the model and lower weights to those less suitable. Extensive experiments on AlpacaEval 2.0 and Arena-Hard v0.1 benchmarks demonstrate that Pre-DPO consistently improves the performance of both DPO and SimPO, without relying on external models or additional data.
A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Synthetic Electronic Health Records (EHRs) offer a valuable opportunity to create privacy preserving and harmonized structured data, supporting numerous applications in healthcare. Key benefits of synthetic data include precise control over the data schema, improved fairness and representation of patient populations, and the ability to share datasets without concerns about compromising real individuals privacy. Consequently, the AI community has increasingly turned to Large Language Models (LLMs) to generate synthetic data across various domains. However, a significant challenge in healthcare is ensuring that synthetic health records reliably generalize across different hospitals, a long standing issue in the field. In this work, we evaluate the current state of commercial LLMs for generating synthetic data and investigate multiple aspects of the generation process to identify areas where these models excel and where they fall short. Our main finding from this work is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases, ultimately limiting their ability to generalize across diverse hospital settings.
comment: Accepted at the Conference of Health, Inference, Learning (CHIL 2025) in Berkeley, CA. To appear in PMLR later in 2025
Combining X-Vectors and Bayesian Batch Active Learning: Two-Stage Active Learning Pipeline for Speech Recognition
This paper introduces a novel two-stage active learning (AL) pipeline for automatic speech recognition (ASR), combining unsupervised and supervised AL methods. The first stage utilizes unsupervised AL by using x-vectors clustering for diverse sample selection from unlabeled speech data, thus establishing a robust initial dataset for the subsequent supervised AL. The second stage incorporates a supervised AL strategy, with a batch AL method specifically developed for ASR, aimed at selecting diverse and informative batches of samples. Here, sample diversity is also achieved using x-vectors clustering, while the most informative samples are identified using a Bayesian AL method tailored for ASR with an adaptation of Monte Carlo dropout to approximate Bayesian inference. This approach enables precise uncertainty estimation, thereby enhancing ASR model training with significantly reduced data requirements. Our method has shown superior performance compared to competing methods on homogeneous, heterogeneous, and OOD test sets, demonstrating that strategic sample selection and innovative Bayesian modeling can substantially optimize both labeling effort and data utilization in deep learning-based ASR applications.
Leveraging Label Semantics and Meta-Label Refinement for Multi-Label Question Classification
Accurate annotation of educational resources is crucial for effective personalized learning and resource recommendation in online education. However, fine-grained knowledge labels often overlap or share similarities, making it difficult for existing multi-label classification methods to differentiate them. The label distribution imbalance due to sparsity of human annotations further intensifies these challenges. To address these issues, this paper introduces RR2QC, a novel Retrieval Reranking method to multi-label Question Classification by leveraging label semantics and meta-label refinement. First, RR2QC improves the pre-training strategy by utilizing semantic relationships within and across label groups. Second, it introduces a class center learning task to align questions with label semantics during downstream training. Finally, this method decomposes labels into meta-labels and uses a meta-label classifier to rerank the retrieved label sequences. In doing so, RR2QC enhances the understanding and prediction capability of long-tail labels by learning from meta-labels that frequently appear in other labels. Additionally, a mathematical LLM is used to generate solutions for questions, extracting latent information to further refine the model's insights. Experimental results show that RR2QC outperforms existing methods in Precision@K and F1 scores across multiple educational datasets, demonstrating its effectiveness for online education applications. The code and datasets are available at https://github.com/78Erii/RR2QC.
Your Weak LLM is Secretly a Strong Teacher for Alignment ICLR 2025
The burgeoning capabilities of large language models (LLMs) have underscored the need for alignment to ensure these models act in accordance with human values and intentions. Existing alignment frameworks present constraints either in the form of expensive human effort or high computational costs. This paper explores a promising middle ground, where we employ a weak LLM that is significantly less resource-intensive than top-tier models, yet offers more automation than purely human feedback. We present a systematic study to evaluate and understand weak LLM's ability to generate feedback for alignment. Our empirical findings demonstrate that weak LLMs can provide feedback that rivals or even exceeds that of fully human-annotated data. Our study indicates a minimized impact of model size on feedback efficacy, shedding light on a scalable and sustainable alignment strategy. To deepen our understanding of alignment under weak LLM feedback, we conduct a series of qualitative and quantitative analyses, offering novel insights into the quality discrepancies between human feedback vs. weak LLM feedback.
comment: Accepted by ICLR 2025
Multiple-Instance, Cascaded Classification for Keyword Spotting in Narrow-Band Audio NeurIPS 2017
We propose using cascaded classifiers for a keyword spotting (KWS) task on narrow-band (NB), 8kHz audio acquired in non-IID environments -- a more challenging task than most state-of-the-art KWS systems face. We present a model that incorporates Deep Neural Networks (DNNs), cascading, multiple-feature representations, and multiple-instance learning. The cascaded classifiers handle the task's class imbalance and reduce power consumption on computationally-constrained devices via early termination. The KWS system achieves a false negative rate of 6% at an hourly false positive rate of 0.75
comment: Published in the proceedings of NeurIPS 2017 Workshop: Machine Learning on the Phone and other Consumer Devices
M4U: Evaluating Multilingual Understanding and Reasoning for Large Multimodal Models
Multilingual capability is an essential aspect for large multimodal models, since they are usually deployed across various countries and languages. However, most existing benchmarks for multilingual multimodal reasoning struggle to differentiate between models of varying performance; even language models without visual capabilities can easily achieve high scores. This leaves a comprehensive evaluation of leading multilingual multimodal models largely unexplored. In this work, we introduce M4U, a novel and challenging benchmark for assessing the capability of multi-discipline multilingual multimodal understanding and reasoning. M4U contains 10k samples covering 64 disciplines across 16 subfields in Science, Engineering, and Healthcare in six languages. Using M4U, we conduct extensive evaluations of leading Large Multimodal Models (LMMs) and Large Language Models (LLMs) with external tools. The evaluation results demonstrate that the state-of-the-art model, GPT-4o, achieves only 47.6% average accuracy on M4U. Additionally, we observe that the leading LMMs exhibit significant language preferences. Our in-depth analysis indicates that leading LMMs, including GPT-4o, struggle to perform reasoning using multilingual information present in both visual and textual context. Specifically, they suffer performance degradation when prompted with cross-lingual multimodal questions. Our code and dataset is public available.
comment: Work in progress
Knowledge-Augmented Multimodal Clinical Rationale Generation for Disease Diagnosis with Small Language Models
Interpretation is critical for disease diagnosis, but existing models struggle to balance predictive accuracy with human-understandable rationales. While large language models (LLMs) offer strong reasoning abilities, their clinical use is limited by high computational costs and restricted multimodal reasoning ability. Small language models (SLMs) are efficient but lack advanced reasoning for integrating multimodal medical data. In addition, both LLMs and SLMs lack of domain knowledge for trustworthy reasoning. Therefore, we propose ClinRaGen, enhancing SLMs by leveraging LLM-derived reasoning ability via rationale distillation and domain knowledge injection for trustworthy multimodal rationale generation. Key innovations include a sequential rationale distillation framework that equips SLMs with LLM-comparable mutlimodal reasoning abilities, and a knowledge-augmented attention mechanism that jointly unifies multimodal representation from time series and textual data in a same encoding space, enabling it naturally interpreted by SLMs while incorporating domain knowledge for reliable rationale generation. Experiments on real-world medical datasets show that ClinRaGen achieves state-of-the-art performance in disease diagnosis and rationale generation, demonstrating the effectiveness of combining LLM-driven reasoning with knowledge augmentation for improved interpretability.
comment: 13 pages. 7 figures
MIND: Math Informed syNthetic Dialogues for Pretraining LLMs
The utility of synthetic data to enhance pretraining data quality and hence to improve downstream task accuracy has been widely explored in recent large language models (LLMs). Yet, these approaches fall inadequate in complex, multi-hop and mathematical reasoning tasks as the synthetic data typically fails to add complementary knowledge to the existing raw corpus. In this work, we propose a novel large-scale and diverse Math Informed syNthetic Dialogue (MIND) generation method that improves the mathematical reasoning ability of LLMs. Specifically, using MIND, we generate synthetic conversations based on OpenWebMath (OWM), resulting in a new math corpus, MIND-OWM. Our experiments with different conversational settings reveal that incorporating knowledge gaps between dialog participants is essential for generating high-quality math data. We further identify an effective way to format and integrate synthetic and raw data during pretraining to maximize the gain in mathematical reasoning, emphasizing the need to restructure raw data rather than use it as-is. Compared to pretraining just on raw data, a model pretrained on MIND-OWM shows significant boost in mathematical reasoning (GSM8K: +13.42%, MATH: +2.30%), including superior performance in specialized knowledge (MMLU: +4.55%, MMLU-STEM: +4.28%) and general purpose reasoning tasks (GENERAL REASONING: +2.51%).
comment: 31 pages, 5 figures, 14 tables
BitNet b1.58 2B4T Technical Report
We introduce BitNet b1.58 2B4T, the first open-source, native 1-bit Large Language Model (LLM) at the 2-billion parameter scale. Trained on a corpus of 4 trillion tokens, the model has been rigorously evaluated across benchmarks covering language understanding, mathematical reasoning, coding proficiency, and conversational ability. Our results demonstrate that BitNet b1.58 2B4T achieves performance on par with leading open-weight, full-precision LLMs of similar size, while offering significant advantages in computational efficiency, including substantially reduced memory footprint, energy consumption, and decoding latency. To facilitate further research and adoption, the model weights are released via Hugging Face along with open-source inference implementations for both GPU and CPU architectures.
comment: Work in progress
AMR-RE: Abstract Meaning Representations for Retrieval-Based In-Context Learning in Relation Extraction NAACL 2025
Existing in-context learning (ICL) methods for relation extraction (RE) often prioritize language similarity over structural similarity, which can lead to overlooking entity relationships. To address this, we propose an AMR-enhanced retrieval-based ICL method for RE. Our model retrieves in-context examples based on semantic structure similarity between task inputs and training samples. Evaluations on four standard English RE datasets show that our model outperforms baselines in the unsupervised setting across all datasets. In the supervised setting, it achieves state-of-the-art results on three datasets and competitive results on the fourth.
comment: Accepted to NAACL 2025 SRW
LRAGE: Legal Retrieval Augmented Generation Evaluation Tool
Recently, building retrieval-augmented generation (RAG) systems to enhance the capability of large language models (LLMs) has become a common practice. Especially in the legal domain, previous judicial decisions play a significant role under the doctrine of stare decisis which emphasizes the importance of making decisions based on (retrieved) prior documents. However, the overall performance of RAG system depends on many components: (1) retrieval corpora, (2) retrieval algorithms, (3) rerankers, (4) LLM backbones, and (5) evaluation metrics. Here we propose LRAGE, an open-source tool for holistic evaluation of RAG systems focusing on the legal domain. LRAGE provides GUI and CLI interfaces to facilitate seamless experiments and investigate how changes in the aforementioned five components affect the overall accuracy. We validated LRAGE using multilingual legal benches including Korean (KBL), English (LegalBench), and Chinese (LawBench) by demonstrating how the overall accuracy changes when varying the five components mentioned above. The source code is available at https://github.com/hoorangyee/LRAGE.
comment: 12 pages
Nearest Neighbor Speculative Decoding for LLM Generation and Attribution
Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach these limitations by refining the output of an LM for a given prompt using its nearest neighbor matches in a non-parametric data store. However, these models often exhibit slow inference speeds and produce non-fluent texts. In this paper, we introduce Nearest Neighbor Speculative Decoding (NEST), a novel semi-parametric language modeling approach that is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources. NEST performs token-level retrieval at each inference step to compute a semi-parametric mixture distribution and identify promising span continuations in a corpus. It then uses an approximate speculative decoding procedure that accepts a prefix of the retrieved span or generates a new token. NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks, surpassing the conventional kNN-LM method and performing competitively with in-context retrieval augmentation. In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B. Code will be released at https://github.com/facebookresearch/NEST/tree/main.
InfoQuest: Evaluating Multi-Turn Dialogue Agents for Open-Ended Conversations with Hidden Context
Large language models excel at following explicit instructions, but they often struggle with ambiguous or incomplete user requests, defaulting to verbose, generic responses instead of seeking clarification. We introduce InfoQuest, a multi-turn chat benchmark designed to evaluate how dialogue agents handle hidden context in open-ended user requests. This benchmark presents intentionally ambiguous scenarios that require models to engage in information-seeking dialogue by asking clarifying questions before providing appropriate responses. Our evaluation of both open and closed models reveals that, while proprietary models generally perform better, all current assistants struggle to gather critical information effectively. They often require multiple turns to infer user intent and frequently default to generic responses without proper clarification. We provide a systematic methodology for generating diverse scenarios and evaluating models' information-seeking capabilities, which can be leveraged to automatically generate data for self-improvement. We also offer insights into the current limitations of language models in handling ambiguous requests through multi-turn interactions.
Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models
In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying more complex language model circuits by building up from a minimal circuit.
Optimizing GPT for Video Understanding: Zero-Shot Performance and Prompt Engineering
In this study, we tackle industry challenges in video content classification by exploring and optimizing GPT-based models for zero-shot classification across seven critical categories of video quality. We contribute a novel approach to improving GPT's performance through prompt optimization and policy refinement, demonstrating that simplifying complex policies significantly reduces false negatives. Additionally, we introduce a new decomposition-aggregation-based prompt engineering technique, which outperforms traditional single-prompt methods. These experiments, conducted on real industry problems, show that thoughtful prompt design can substantially enhance GPT's performance without additional finetuning, offering an effective and scalable solution for improving video classification.
comment: 9 pages
Benchmarking large language models for biomedical natural language processing applications and recommendations
The rapid growth of biomedical literature poses challenges for manual knowledge curation and synthesis. Biomedical Natural Language Processing (BioNLP) automates the process. While Large Language Models (LLMs) have shown promise in general domains, their effectiveness in BioNLP tasks remains unclear due to limited benchmarks and practical guidelines. We perform a systematic evaluation of four LLMs, GPT and LLaMA representatives on 12 BioNLP benchmarks across six applications. We compare their zero-shot, few-shot, and fine-tuning performance with traditional fine-tuning of BERT or BART models. We examine inconsistencies, missing information, hallucinations, and perform cost analysis. Here we show that traditional fine-tuning outperforms zero or few shot LLMs in most tasks. However, closed-source LLMs like GPT-4 excel in reasoning-related tasks such as medical question answering. Open source LLMs still require fine-tuning to close performance gaps. We find issues like missing information and hallucinations in LLM outputs. These results offer practical insights for applying LLMs in BioNLP.
Disambiguating Numeral Sequences to Decipher Ancient Accounting Corpora
A numeration system encodes abstract numeric quantities as concrete strings of written characters. The numeration systems used by modern scripts tend to be precise and unambiguous, but this was not so for the ancient and partially-deciphered proto-Elamite (PE) script, where written numerals can have up to four distinct readings depending on the system that is used to read them. We consider the task of disambiguating between these readings in order to determine the values of the numeric quantities recorded in this corpus. We algorithmically extract a list of possible readings for each PE numeral notation, and contribute two disambiguation techniques based on structural properties of the original documents and classifiers learned with the bootstrapping algorithm. We also contribute a test set for evaluating disambiguation techniques, as well as a novel approach to cautious rule selection for bootstrapped classifiers. Our analysis confirms existing intuitions about this script and reveals previously-unknown correlations between tablet content and numeral magnitude. This work is crucial to understanding and deciphering PE, as the corpus is heavily accounting-focused and contains many more numeric tokens than tokens of text.
comment: Englund 1996 incorrectly reported the relative values of signs in the decimal system. An earlier version of this paper used those values. This update fixes those mistakes and retrains our models using the corrected readings. Our analysis and discussion remain similar to the original, but the performance of the baseline model is now stronger
Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
Do Large Language Models know who did what to whom?
Large Language Models (LLMs) are commonly criticized for not understanding language. However, many critiques focus on cognitive abilities that, in humans, are distinct from language processing. Here, we instead study a kind of understanding tightly linked to language: inferring who did what to whom (thematic roles) in a sentence. Does the central training objective of LLMs-word prediction-result in sentence representations that capture thematic roles? In two experiments, we characterized sentence representations in four LLMs. In contrast to human similarity judgments, in LLMs the overall representational similarity of sentence pairs reflected syntactic similarity but not whether their agent and patient assignments were identical vs. reversed. Furthermore, we found little evidence that thematic role information was available in any subset of hidden units. However, some attention heads robustly captured thematic roles, independently of syntax. Therefore, LLMs can extract thematic roles but, relative to humans, this information influences their representations more weakly.
ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6$\times$ larger batch sizes and boost throughput by up to 3.04$\times$ on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
The Semantic Scholar Open Data Platform
The volume of scientific output is creating an urgent need for automated tools to help scientists keep up with developments in their field. Semantic Scholar (S2) is an open data platform and website aimed at accelerating science by helping scholars discover and understand scientific literature. We combine public and proprietary data sources using state-of-the-art techniques for scholarly PDF content extraction and automatic knowledge graph construction to build the Semantic Scholar Academic Graph, the largest open scientific literature graph to-date, with 200M+ papers, 80M+ authors, 550M+ paper-authorship edges, and 2.4B+ citation edges. The graph includes advanced semantic features such as structurally parsed text, natural language summaries, and vector embeddings. In this paper, we describe the components of the S2 data processing pipeline and the associated APIs offered by the platform. We will update this living document to reflect changes as we add new data offerings and improve existing services.
comment: 8 pages, 6 figures
Early Prediction of Alzheimers Disease Leveraging Symptom Occurrences from Longitudinal Electronic Health Records of US Military Veterans
Early prediction of Alzheimer's disease (AD) is crucial for timely intervention and treatment. This study aims to use machine learning approaches to analyze longitudinal electronic health records (EHRs) of patients with AD and identify signs and symptoms that can predict AD onset earlier. We used a case-control design with longitudinal EHRs from the U.S. Department of Veterans Affairs Veterans Health Administration (VHA) from 2004 to 2021. Cases were VHA patients with AD diagnosed after 1/1/2016 based on ICD-10-CM codes, matched 1:9 with controls by age, sex and clinical utilization with replacement. We used a panel of AD-related keywords and their occurrences over time in a patient's longitudinal EHRs as predictors for AD prediction with four machine learning models. We performed subgroup analyses by age, sex, and race/ethnicity, and validated the model in a hold-out and "unseen" VHA stations group. Model discrimination, calibration, and other relevant metrics were reported for predictions up to ten years before ICD-based diagnosis. The study population included 16,701 cases and 39,097 matched controls. The average number of AD-related keywords (e.g., "concentration", "speaking") per year increased rapidly for cases as diagnosis approached, from around 10 to over 40, while remaining flat at 10 for controls. The best model achieved high discriminative accuracy (ROCAUC 0.997) for predictions using data from at least ten years before ICD-based diagnoses. The model was well-calibrated (Hosmer-Lemeshow goodness-of-fit p-value = 0.99) and consistent across subgroups of age, sex and race/ethnicity, except for patients younger than 65 (ROCAUC 0.746). Machine learning models using AD-related keywords identified from EHR notes can predict future AD diagnoses, suggesting its potential use for identifying AD risk using EHR notes, offering an affordable way for early screening on large population.
comment: An updated version is under review. Data and experiment results have been updated
W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering
In knowledge-intensive tasks such as open-domain question answering (OpenQA), large language models (LLMs) often struggle to generate factual answers, relying solely on their internal (parametric) knowledge. To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources, thereby positioning the retriever as a pivotal component. Although dense retrieval demonstrates state-of-the-art performance, its training poses challenges due to the scarcity of ground-truth evidence, largely attributed to the high costs of human annotation. In this paper, we propose W-RAG, a method that draws weak training signals from the downstream task (such as OpenQA) of an LLM, and fine-tunes the retriever to prioritize passages that most benefit the task. Specifically, we rerank the top-$k$ passages retrieved via BM25 by assessing the probability that the LLM will generate the correct answer for a question given each passage. The highest-ranking passages are then used as positive fine-tuning examples for dense retrieval. We conduct comprehensive experiments across four publicly available OpenQA datasets to demonstrate that our approach enhances both retrieval and OpenQA performance compared to baseline models, achieving results comparable to models fine-tuned with human-labeled data.
Human-Computer Interaction
Facets, Taxonomies, and Syntheses: Navigating Structured Representations in LLM-Assisted Literature Review
Comprehensive literature review requires synthesizing vast amounts of research -- a labor intensive and cognitively demanding process. Most prior work focuses either on helping researchers deeply understand a few papers (e.g., for triaging or reading), or retrieving from and visualizing a vast corpus. Deep analysis and synthesis of large paper collections (e.g., to produce a survey paper) is largely conducted manually with little support. We present DimInd, an interactive system that scaffolds literature review across large paper collections through LLM-generated structured representations. DimInd scaffolds literature understanding with multiple levels of compression, from papers, to faceted literature comparison tables with information extracted from individual papers, to taxonomies of concepts, to narrative syntheses. Users are guided through these successive information transformations while maintaining provenance to source text. In an evaluation with 23 researchers, DimInd supported participants in extracting information and conceptually organizing papers with less effort compared to a ChatGPT-assisted baseline workflow.
Automatic Bias Detection in Source Code Review
Bias is an inherent threat to human decision-making, including in decisions made during software development. Extensive research has demonstrated the presence of biases at various stages of the software development life-cycle. Notably, code reviews are highly susceptible to prejudice-induced biases, and individuals are often unaware of these biases as they occur. Developing methods to automatically detect these biases is crucial for addressing the associated challenges. Recent advancements in visual data analytics have shown promising results in detecting potential biases by analyzing user interaction patterns. In this project, we propose a controlled experiment to extend this approach to detect potentially biased outcomes in code reviews by observing how reviewers interact with the code. We employ the "spotlight model of attention", a cognitive framework where a reviewer's gaze is tracked to determine their focus areas on the review screen. This focus, identified through gaze tracking, serves as an indicator of the reviewer's areas of interest or concern. We plan to analyze the sequence of gaze focus using advanced sequence modeling techniques, including Markov Models, Recurrent Neural Networks (RNNs), and Conditional Random Fields (CRF). These techniques will help us identify patterns that may suggest biased interactions. We anticipate that the ability to automatically detect potentially biased interactions in code reviews will significantly reduce unnecessary push-backs, enhance operational efficiency, and foster greater diversity and inclusion in software development. This approach not only helps in identifying biases but also in creating a more equitable development environment by mitigating these biases effectively
Can Code Outlove Blood? A LLM-based VR Experience to Prompt Reflection on Parental Verbal Abuse
Parental verbal abuse leaves lasting emotional impacts, yet current therapeutic approaches often lack immersive self-reflection opportunities. To address this, we developed a VR experience powered by LLMs to foster reflection on parental verbal abuse. Participants with relevant experiences engage in a dual-phase VR experience: first assuming the role of a verbally abusive parent, interacting with an LLM portraying a child, then observing the LLM reframing abusive dialogue into warm, supportive expressions as a nurturing parent. A qualitative study with 12 participants showed that the experience encourages reflection on their past experiences and fosters supportive emotions. However, these effects vary with participants' personal histories, emphasizing the need for greater personalization in AI-driven emotional support. This study explores the use of LLMs in immersive environment to promote emotional reflection, offering insights into the design of AI-driven emotional support systems.
comment: 8 pages, 5 figures, accetped by 30th International Symposium on Electronic Art (ISEA 2025)
Spatial Reasoner: A 3D Inference Pipeline for XR Applications
Modern extended reality XR systems provide rich analysis of image data and fusion of sensor input and demand AR/VR applications that can reason about 3D scenes in a semantic manner. We present a spatial reasoning framework that bridges geometric facts with symbolic predicates and relations to handle key tasks such as determining how 3D objects are arranged among each other ('on', 'behind', 'near', etc.). Its foundation relies on oriented 3D bounding box representations, enhanced by a comprehensive set of spatial predicates, ranging from topology and connectivity to directionality and orientation, expressed in a formalism related to natural language. The derived predicates form a spatial knowledge graph and, in combination with a pipeline-based inference model, enable spatial queries and dynamic rule evaluation. Implementations for client- and server-side processing demonstrate the framework's capability to efficiently translate geometric data into actionable knowledge, ensuring scalable and technology-independent spatial reasoning in complex 3D environments. The Spatial Reasoner framework is fostering the creation of spatial ontologies, and seamlessly integrates with and therefore enriches machine learning, natural language processing, and rule systems in XR applications.
comment: 11 pages, preprint of ICVARS 2025 paper
SSD-Poser: Avatar Pose Estimation with State Space Duality from Sparse Observations ICMR 2025
The growing applications of AR/VR increase the demand for real-time full-body pose estimation from Head-Mounted Displays (HMDs). Although HMDs provide joint signals from the head and hands, reconstructing a full-body pose remains challenging due to the unconstrained lower body. Recent advancements often rely on conventional neural networks and generative models to improve performance in this task, such as Transformers and diffusion models. However, these approaches struggle to strike a balance between achieving precise pose reconstruction and maintaining fast inference speed. To overcome these challenges, a lightweight and efficient model, SSD-Poser, is designed for robust full-body motion estimation from sparse observations. SSD-Poser incorporates a well-designed hybrid encoder, State Space Attention Encoders, to adapt the state space duality to complex motion poses and enable real-time realistic pose reconstruction. Moreover, a Frequency-Aware Decoder is introduced to mitigate jitter caused by variable-frequency motion signals, remarkably enhancing the motion smoothness. Comprehensive experiments on the AMASS dataset demonstrate that SSD-Poser achieves exceptional accuracy and computational efficiency, showing outstanding inference efficiency compared to state-of-the-art methods.
comment: 9 pages, 6 figures, conference ICMR 2025
Artificial Intelligence health advice accuracy varies across languages and contexts
Using basic health statements authorized by UK and EU registers and 9,100 journalist-vetted public-health assertions on topics such as abortion, COVID-19 and politics from sources ranging from peer-reviewed journals and government advisories to social media and news across the political spectrum, we benchmark six leading large language models from in 21 languages, finding that, despite high accuracy on English-centric textbook claims, performance falls in multiple non-European languages and fluctuates by topic and source, highlighting the urgency of comprehensive multilingual, domain-aware validation before deploying AI in global health communication.
comment: 10 pages, 2 figures. All data, code and materials used is freely available in the Zenodo (DOI: 10.5281/zenodo.15281282)
LEAM: A Prompt-only Large Language Model-enabled Antenna Modeling Method
Antenna modeling is a time-consuming and complex process, decreasing the speed of antenna analysis and design. In this paper, a large language model (LLM)- enabled antenna modeling method, called LEAM, is presented to address this challenge. LEAM enables automatic antenna model generation based on language descriptions via prompt input, images, descriptions from academic papers, patents, and technical reports (either one or multiple). The effectiveness of LEAM is demonstrated by three examples: a Vivaldi antenna generated from a complete user description, a slotted patch antenna generated from an incomplete user description and the operating frequency, and a monopole slotted antenna generated from images and descriptions scanned from the literature. For all the examples, correct antenna models are generated in a few minutes. The code can be accessed via https://github.com/TaoWu974/LEAM.
comment: Code are available: https://github.com/TaoWu974/LEAM
SecCityVR: Visualization and Collaborative Exploration of Software Vulnerabilities in Virtual Reality
Security vulnerabilities in software systems represent significant risks as potential entry points for malicious attacks. Traditional dashboards that display the results of static analysis security testing often use 2D or 3D visualizations, which tend to lack the spatial details required to effectively reveal issues such as the propagation of vulnerabilities across the codebase or the appearance of concurrent vulnerabilities. Additionally, most reporting solutions only treat the analysis results as an artifact that can be reviewed or edited asynchronously by developers, limiting real-time, collaborative exploration. To the best of our knowledge, no VR-based approach exists for the visualization and interactive exploration of software security vulnerabilities. Addressing these challenges, the virtual reality (VR) environment SecCityVR was developed as a proof-of-concept implementation that employs the code city metaphor within VR to visualize software security vulnerabilities as colored building floors inside the surrounding virtual city. By integrating the application's call graph, vulnerabilities are contextualized within related software components. SecCityVR supports multi-user collaboration and interactive exploration. It provides explanations and mitigations for detected issues. A user study comparing SecCityVR with the traditional dashboard find-sec-bugs showed the VR approach provided a favorable experience, with higher usability, lower temporal demand, and significantly lower frustration despite having longer task completion times. This paper and its results contribute to the fields of collaborative and secure software engineering, as well as software visualization. It provides a new application of VR code cities to visualize security vulnerabilities, as well as a novel environment for security audits using collaborative and immersive technologies.
comment: The paper has been peer-reviewed and accepted for publication in the proceedings of the 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025)
MVVM Revisited: Exploring Design Variants of the Model-View-ViewModel Pattern
Many enterprise software systems provide complex Graphical User Interfaces (GUIs) that need robust architectural patterns for well-structured software design. However, popular GUI architectural patterns like Model-View-ViewModel (MVVM) often lack detailed implementation guidance, leading GUI developers to inappropriately use the pattern without a comprehensive overview of design variants and often-mentioned trade-offs. Therefore, this paper presents an extensive review of MVVM design aspects and trade-offs, extending beyond the standard MVVM definition. We conducted a multivocal literature review (MLR), including white and gray literature, to cover essential knowledge from blogs, published papers, and other unpublished formats like books. Using the standard MVVM definition as a baseline, our study identifies (1) 76 additional design constructs grouped into 29 design aspects and (2) 16 additional benefits and 15 additional drawbacks. These insights can guide enterprise application developers in implementing practical MVVM solutions and enable informed design decisions.
comment: Conference: 28th International Conference on Enterprise Design, Operations, and Computing (EDOC 2024) 16 pages
ClassComet: Exploring and Designing AI-generated Danmaku in Educational Videos to Enhance Online Learning
Danmaku, users' live comments synchronized with, and overlaying on videos, has recently shown potential in promoting online video-based learning. However, user-generated danmaku can be scarce-especially in newer or less viewed videos and its quality is unpredictable, limiting its educational impact. This paper explores how large multimodal models (LMM) can be leveraged to automatically generate effective, high-quality danmaku. We first conducted a formative study to identify the desirable characteristics of content- and emotion-related danmaku in educational videos. Based on the obtained insights, we developed ClassComet, an educational video platform with novel LMM-driven techniques for generating relevant types of danmaku to enhance video-based learning. Through user studies, we examined the quality of generated danmaku and their influence on learning experiences. The results indicate that our generated danmaku is comparable to human-created ones, and videos with both content- and emotion-related danmaku showed significant improvement in viewers' engagement and learning outcome.
AI Ethics and Social Norms: Exploring ChatGPT's Capabilities From What to How SC
Using LLMs in healthcare, Computer-Supported Cooperative Work, and Social Computing requires the examination of ethical and social norms to ensure safe incorporation into human life. We conducted a mixed-method study, including an online survey with 111 participants and an interview study with 38 experts, to investigate the AI ethics and social norms in ChatGPT as everyday life tools. This study aims to evaluate whether ChatGPT in an empirical context operates following ethics and social norms, which is critical for understanding actions in industrial and academic research and achieving machine ethics. The findings of this study provide initial insights into six important aspects of AI ethics, including bias, trustworthiness, security, toxicology, social norms, and ethical data. Significant obstacles related to transparency and bias in unsupervised data collection methods are identified as ChatGPT's ethical concerns.
comment: Accepted for presentation at the ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW) 2025. To appear in Proceedings of the ACM on Human-Computer Interaction (PACM HCI)
Sky-Drive: A Distributed Multi-Agent Simulation Platform for Socially-Aware and Human-AI Collaborative Future Transportation
Recent advances in autonomous system simulation platforms have significantly enhanced the safe and scalable testing of driving policies. However, existing simulators do not yet fully meet the needs of future transportation research, particularly in modeling socially-aware driving agents and enabling effective human-AI collaboration. This paper introduces Sky-Drive, a novel distributed multi-agent simulation platform that addresses these limitations through four key innovations: (a) a distributed architecture for synchronized simulation across multiple terminals; (b) a multi-modal human-in-the-loop framework integrating diverse sensors to collect rich behavioral data; (c) a human-AI collaboration mechanism supporting continuous and adaptive knowledge exchange; and (d) a digital twin (DT) framework for constructing high-fidelity virtual replicas of real-world transportation environments. Sky-Drive supports diverse applications such as autonomous vehicle (AV)-vulnerable road user (VRU) interaction modeling, human-in-the-loop training, socially-aware reinforcement learning, personalized driving policy, and customized scenario generation. Future extensions will incorporate foundation models for context-aware decision support and hardware-in-the-loop (HIL) testing for real-world validation. By bridging scenario generation, data collection, algorithm training, and hardware integration, Sky-Drive has the potential to become a foundational platform for the next generation of socially-aware and human-centered autonomous transportation research. The demo video and code are available at:https://sky-lab-uw.github.io/Sky-Drive-website/
comment: 15 pages, 7 figures
Streaming, Fast and Slow: Cognitive Load-Aware Streaming for Efficient LLM Serving
Generative conversational interfaces powered by large language models (LLMs) typically stream output token-by-token at a rate determined by computational budget, often neglecting actual human reading speeds and the cognitive load associated with the content. This mismatch frequently leads to inefficient use of computational resources. For example, in cloud-based services, streaming content faster than users can read appears unnecessary, resulting in wasted computational resources and potential delays for other users, particularly during peak usage periods. To address this issue, we propose an adaptive streaming method that dynamically adjusts the pacing of LLM streaming output in real-time based on inferred cognitive load. Our approach estimates the cognitive load associated with streaming content and strategically slows down the stream during complex or information-rich segments, thereby freeing computational resources for other users. Our statistical analysis of computational savings, combined with crowdsourced user studies, provides insights into the trade-offs between service efficiency and user satisfaction, demonstrating that our method can significantly reduce computational consumption up to 16.8\%. This context-aware computational resource management strategy presents a practical framework for enhancing system efficiency in cloud-based conversational AI interfaces without compromising user experience.
Chatperone: An LLM-Based Negotiable Scaffolding System for Mediating Adolescent Mobile Interactions
Adolescents' uncontrolled exposure to digital content can negatively impact their development. Traditional regulatory methods, such as time limits or app restrictions, often take a rigid approach, ignoring adolescents' decision-making abilities. Another issue is the lack of content and services tailored for adolescents. To address this, we propose Chatperone, a concept of a system that provides adaptive scaffolding to support adolescents. Chatperone fosters healthy mobile interactions through three key modules: Perception, Negotiation, and Moderation. This paper outlines these modules' functionalities and discusses considerations for real-world implementation.
comment: 5 pages, Workshop Paper
Codetations: Intelligent, Persistent Notes and UIs for Programs and Other Documents
Software developers maintain extensive mental models of code they produce and its context, often relying on memory to retrieve or reconstruct design decisions, edge cases, and debugging experiences. These missing links and data obstruct both developers and, more recently, large language models (LLMs) working with unfamiliar code. We present Codetations, a system that helps developers contextualize documents with rich notes and tools. Unlike previous approaches, notes in Codetations stay outside the document to prevent code clutter, attaching to spans in the document using a hybrid edit-tracking/LLM-based method. Their content is dynamic, interactive, and synchronized with code changes. A worked example shows that relevant notes with interactively-collected data improve LLM performance during code repair. In our user evaluation, developers praised these properties and saw significant potential in annotation types that we generated with an LLM in just a few minutes.
comment: 24 pages, 5 figures, 2 tables
From Prompts to Propositions: A Logic-Based Lens on Student-LLM Interactions
Background and Context. The increasing integration of large language models (LLMs) in computing education presents an emerging challenge in understanding how students use LLMs and craft prompts to solve computational tasks. Prior research has used both qualitative and quantitative methods to analyze prompting behavior, but these approaches lack scalability or fail to effectively capture the semantic evolution of prompts. Objective. In this paper, we investigate whether students prompts can be systematically analyzed using propositional logic constraints. We examine whether this approach can identify patterns in prompt evolution, detect struggling students, and provide insights into effective and ineffective strategies. Method. We introduce Prompt2Constraints, a novel method that translates students prompts into logical constraints. The constraints are able to represent the intent of the prompts in succinct and quantifiable ways. We used this approach to analyze a dataset of 1,872 prompts from 203 students solving introductory programming tasks. Findings. We find that while successful and unsuccessful attempts tend to use a similar number of constraints overall, when students fail, they often modify their prompts more significantly, shifting problem-solving strategies midway. We also identify points where specific interventions could be most helpful to students for refining their prompts. Implications. This work offers a new and scalable way to detect students who struggle in solving natural language programming tasks. This work could be extended to investigate more complex tasks and integrated into programming tools to provide real-time support.
UFO2: The Desktop AgentOS
Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.
comment: The source code of UFO2 is publicly available at https://github.com/microsoft/UFO/, with comprehensive documentation provided at https://microsoft.github.io/UFO/
Repurposing the scientific literature with vision-language models
Leading vision-language models (VLMs) are trained on general Internet content, overlooking scientific journals' rich, domain-specific knowledge. Training on specialty-specific literature could yield high-performance, task-specific tools, enabling generative AI to match generalist models in specialty publishing, educational, and clinical tasks. We created NeuroPubs, a multimodal dataset of 23,000 Neurosurgery Publications articles (134M words, 78K image-caption pairs). Using NeuroPubs, VLMs generated publication-ready graphical abstracts (70% of 100 abstracts) and board-style questions indistinguishable from human-written ones (54% of 89,587 questions). We used these questions to train CNS-Obsidian, a 34B-parameter VLM. In a blinded, randomized controlled trial, our model demonstrated non-inferiority to then state-of-the-art GPT-4o in neurosurgical differential diagnosis (clinical utility, 40.62% upvotes vs. 57.89%, p=0.1150; accuracy, 59.38% vs. 65.79%, p=0.3797). Our pilot study demonstrates how training generative AI models on specialty-specific journal content - without large-scale internet data - results in high-performance academic and clinical tools, enabling domain-tailored AI across diverse fields.
Misty: UI Prototyping Through Interactive Conceptual Blending
UI prototyping often involves iterating and blending elements from examples such as screenshots and sketches, but current tools offer limited support for incorporating these examples. Inspired by the cognitive process of conceptual blending, we introduce a novel UI workflow that allows developers to rapidly incorporate diverse aspects from design examples into work-in-progress UIs. We prototyped this workflow as Misty. Through an exploratory first-use study with 14 frontend developers, we assessed Misty's effectiveness and gathered feedback on this workflow. Our findings suggest that Misty's conceptual blending workflow helps developers kickstart creative explorations, flexibly specify intent in different stages of prototyping, and inspires developers through serendipitous UI blends. Misty demonstrates the potential for tools that blur the boundaries between developers and designers.
Reputation-Driven Adoption and Avoidance of Algorithmic Decision Aids in Credence Goods Markets
In credence goods markets such as health care or repair services, consumers rely on experts with superior information to adequately diagnose and treat them. Experts, however, are constrained in their diagnostic abilities, which hurts market efficiency and consumer welfare. Technological breakthroughs that substitute or complement expert judgments have the potential to alleviate consumer mistreatment. This article studies how competitive experts adopt novel diagnostic technologies when skills are heterogeneously distributed and obfuscated to consumers. We differentiate between novel technologies that increase expert abilities, and algorithmic decision aids that complement expert judgments, but do not affect an expert's personal diagnostic precision. When consumers build up beliefs about an expert's type through repeated interactions, we show that high-ability experts may strategically forego the decision aid in order to escape a pooling equilibrium by differentiating themselves from low-ability experts. Without future visits, signaling concerns cause all experts to randomize their investment choice, leading to under-utilization from low-ability experts and over-utilization from high-ability experts. Results from two online experiments support our hypotheses. High-ability experts are significantly less likely than low-ability experts to invests into an algorithmic decision aid if reputation building is possible. Otherwise, there is no difference, and experts who believe that consumers play a signaling game randomize their investment choice.
Learning by gaming, coding and making with EDUMING: A new approach to utilising atypical digital games for learning
Papert's constructionism makes it clear that learning is particularly effective when learners create tangible artifacts and share and discuss them in social contexts. Technological progress in recent decades has created numerous opportunities for learners to not only passively consume media, but to actively shape it through construction. This article uses the EDUMING concept to present a new method to simplify the development of digital learning games and thus support their integration into learning situations. A key difference between the concept and established ideas such as game-based learning, gamification, serious games, etc. is that games are not closed and are consumed passively, but can also be actively developed by users individually by modifying the source code with the help of an IDE. As part of an empirical study, the usability of the game "Professor Chip's Learning Quest" (PCLQ) is recorded, as well as previous experience with digital learning games and the acceptance and motivation to use new technologies. The purpose of this article is to test the PCLQ digital learning game, developed according to the EDUMING concept, as part of an exploratory study regarding its usability, acceptance and suitability for use in schools. The study is intended as a first empirical approach to practical testing of the concept.
comment: 13 pages, 2 figures
Using customized GPT to develop prompting proficiency in architectural AI-generated images
This research investigates the use of customized GPT models to enhance prompting proficiency among architecture students when generating AI-driven images. Prompt engineering is increasingly essential in architectural education due to the widespread adoption of generative AI tools. This study utilized a mixed-methods experimental design involving architecture students divided into three distinct groups: a control group receiving no structured support, a second group provided with structured prompting guides, and a third group supported by both structured guides and interactive AI personas. Students engaged in reverse engineering tasks, first guessing provided image prompts and then generating their own prompts, aiming to boost critical thinking and prompting skills. Variables examined included time spent prompting, word count, prompt similarity, and concreteness. Quantitative analysis involved correlation assessments between these variables and a one-way ANOVA to evaluate differences across groups. While several correlations showed meaningful relationships, not all were statistically significant. ANOVA results indicated statistically significant improvements in word count, similarity, and concreteness, especially in the group supported by AI personas and structured prompting guides. Qualitative feedback complemented these findings, revealing enhanced confidence and critical thinking skills in students. These results suggest tailored GPT interactions substantially improve students' ability to communicate architectural concepts clearly and effectively.
Decomposing and Fusing Intra- and Inter-Sensor Spatio-Temporal Signal for Multi-Sensor Wearable Human Activity Recognition
Wearable Human Activity Recognition (WHAR) is a prominent research area within ubiquitous computing. Multi-sensor synchronous measurement has proven to be more effective for WHAR than using a single sensor. However, existing WHAR methods use shared convolutional kernels for indiscriminate temporal feature extraction across each sensor variable, which fails to effectively capture spatio-temporal relationships of intra-sensor and inter-sensor variables. We propose the DecomposeWHAR model consisting of a decomposition phase and a fusion phase to better model the relationships between modality variables. The decomposition creates high-dimensional representations of each intra-sensor variable through the improved Depth Separable Convolution to capture local temporal features while preserving their unique characteristics. The fusion phase begins by capturing relationships between intra-sensor variables and fusing their features at both the channel and variable levels. Long-range temporal dependencies are modeled using the State Space Model (SSM), and later cross-sensor interactions are dynamically captured through a self-attention mechanism, highlighting inter-sensor spatial correlations. Our model demonstrates superior performance on three widely used WHAR datasets, significantly outperforming state-of-the-art models while maintaining acceptable computational efficiency.
Prompts Are Programs Too! Understanding How Developers Build Software Containing Prompts
Generative pre-trained models power intelligent software features used by millions of users controlled by developer-written natural language prompts. Despite the impact of prompt-powered software, little is known about its development process and its relationship to programming. In this work, we argue that some prompts are programs and that the development of prompts is a distinct phenomenon in programming known as "prompt programming". We develop an understanding of prompt programming using Straussian grounded theory through interviews with 20 developers engaged in prompt development across a variety of contexts, models, domains, and prompt structures. We contribute 15 observations to form a preliminary understanding of current prompt programming practices. For example, rather than building mental models of code, prompt programmers develop mental models of the foundation model (FM)'s behavior on the prompt by interacting with the FM. While prior research shows that experts have well-formed mental models, we find that prompt programmers who have developed dozens of prompts still struggle to develop reliable mental models. Our observations show that prompt programming differs from traditional software development, motivating the creation of prompt programming tools and providing implications for software engineering stakeholders.
comment: Accepted to FSE'25
The Evolution of Information Seeking in Software Development: Understanding the Role and Impact of AI Assistants
About 32% of a software practitioners' day involves seeking and using information to support task completion. Although the information needs of software practitioners have been studied extensively, the impact of AI-assisted tools on their needs and information-seeking behaviors remains largely unexplored. To addresses this gap, we conducted a mixed-method study to understand AI-assisted information seeking behavior of practitioners and its impact on their perceived productivity and skill development. We found that developers are increasingly using AI tools to support their information seeking, citing increased efficiency as a key benefit. Our findings also amplify caveats that come with effectively using AI tools for information seeking, especially for learning and skill development, such as the importance of foundational developer knowledge that can guide and inform the information provided by AI tools. Our efforts have implications for the effective integration of AI tools into developer workflows as information retrieval systems and learning aids.
comment: To appear in FSE Companion '25: 33rd ACM International Conference on the Foundations of Software Engineering (HumanAISE Workshop)
Papers-to-Posts: Supporting Detailed Long-Document Summarization with an Interactive LLM-Powered Source Outline
Compressing long and technical documents (e.g., >10 pages) into shorter-form articles (e.g., <2 pages) is critical for communicating information to different audiences, for example, blog posts of scientific research paper or legal briefs of dense court proceedings. While large language models (LLMs) are powerful tools for condensing large amounts of text, current interfaces to these models lack support for understanding and controlling what content is included in a detailed summarizing article. Such capability is especially important for detail- and technical-oriented domains, in which tactical selection and coherent synthesis of key details is critical for effective communication to the target audience. For this, we present interactive reverse source outlines, a novel mechanism for controllable long-form summarization featuring outline bullet points with automatic point selections that the user can iteratively adjust to obtain an article with the desired content coverage. We implement this mechanism in Papers-to-Posts, a new LLM-powered system for authoring research-paper blog posts. Through a within-subjects lab study (n=20) and a between-subjects deployment study (n=37 blog posts, 26 participants), we compare Papers-to-Posts to a strong baseline tool that provides an LLM-generated draft and access to free-form prompting. Under time constraints, Papers-to-Posts significantly increases writer satisfaction with blog post quality, particularly with respect to content coverage. Furthermore, quantitative results showed an increase in editing power (change in text for an amount of time or writing actions) while using Papers-to-Posts, and qualitative results showed that participants found incorporating key research-paper insights in their blog posts easier while using Papers-to-Posts.
comment: Revised for clearer message
Cross-modality Force and Language Embeddings for Natural Human-Robot Communication
A method for cross-modality embedding of force profile and words is presented for synergistic coordination of verbal and haptic communication. When two people carry a large, heavy object together, they coordinate through verbal communication about the intended movements and physical forces applied to the object. This natural integration of verbal and physical cues enables effective coordination. Similarly, human-robot interaction could achieve this level of coordination by integrating verbal and haptic communication modalities. This paper presents a framework for embedding words and force profiles in a unified manner, so that the two communication modalities can be integrated and coordinated in a way that is effective and synergistic. Here, it will be shown that, although language and physical force profiles are deemed completely different, the two can be embedded in a unified latent space and proximity between the two can be quantified. In this latent space, a force profile and words can a) supplement each other, b) integrate the individual effects, and c) substitute in an exchangeable manner. First, the need for cross-modality embedding is addressed, and the basic architecture and key building block technologies are presented. Methods for data collection and implementation challenges will be addressed, followed by experimental results and discussions.
comment: Under review in RSS 2025
Predicting and Understanding Turn-Taking Behavior in Open-Ended Group Activities in Virtual Reality
In networked virtual reality (VR), user behaviors, individual differences, and group dynamics can serve as important signals into future speech behaviors, such as who the next speaker will be and the timing of turn-taking behaviors. The ability to predict and understand these behaviors offers opportunities to provide adaptive and personalized assistance, for example helping users with varying sensory abilities navigate complex social scenes and instantiating virtual moderators with natural behaviors. In this work, we predict turn-taking behaviors using features extracted based on social dynamics literature. We discuss results from a large-scale VR classroom dataset consisting of 77 sessions and 1660 minutes of small-group social interactions collected over four weeks. In our evaluation, gradient boosting classifiers achieved the best performance, with accuracies of 0.71--0.78 AUC (area under the ROC curve) across three tasks concerning the "what", "who", and "when" of turn-taking behaviors. In interpreting these models, we found that group size, listener personality, speech-related behavior (e.g., time elapsed since the listener's last speech event), group gaze (e.g., how much the group looks at the speaker), as well as the listener's and previous speaker's head pitch, head y-axis position, and left hand y-axis position more saliently influenced predictions. Results suggested that these features remain reliable indicators in novel social VR settings, as prediction performance is robust over time and with groups and activities not used in the training dataset. We discuss theoretical and practical implications of the work.
Multimedia
Kimi-Audio Technical Report
We present Kimi-Audio, an open-source audio foundation model that excels in audio understanding, generation, and conversation. We detail the practices in building Kimi-Audio, including model architecture, data curation, training recipe, inference deployment, and evaluation. Specifically, we leverage a 12.5Hz audio tokenizer, design a novel LLM-based architecture with continuous features as input and discrete tokens as output, and develop a chunk-wise streaming detokenizer based on flow matching. We curate a pre-training dataset that consists of more than 13 million hours of audio data covering a wide range of modalities including speech, sound, and music, and build a pipeline to construct high-quality and diverse post-training data. Initialized from a pre-trained LLM, Kimi-Audio is continual pre-trained on both audio and text data with several carefully designed tasks, and then fine-tuned to support a diverse of audio-related tasks. Extensive evaluation shows that Kimi-Audio achieves state-of-the-art performance on a range of audio benchmarks including speech recognition, audio understanding, audio question answering, and speech conversation. We release the codes, model checkpoints, as well as the evaluation toolkits in https://github.com/MoonshotAI/Kimi-Audio.
Seeing Soundscapes: Audio-Visual Generation and Separation from Soundscapes Using Audio-Visual Separator CVPR 2025
Recent audio-visual generative models have made substantial progress in generating images from audio. However, existing approaches focus on generating images from single-class audio and fail to generate images from mixed audio. To address this, we propose an Audio-Visual Generation and Separation model (AV-GAS) for generating images from soundscapes (mixed audio containing multiple classes). Our contribution is threefold: First, we propose a new challenge in the audio-visual generation task, which is to generate an image given a multi-class audio input, and we propose a method that solves this task using an audio-visual separator. Second, we introduce a new audio-visual separation task, which involves generating separate images for each class present in a mixed audio input. Lastly, we propose new evaluation metrics for the audio-visual generation task: Class Representation Score (CRS) and a modified R@K. Our model is trained and evaluated on the VGGSound dataset. We show that our method outperforms the state-of-the-art, achieving 7% higher CRS and 4% higher R@2* in generating plausible images with mixed audio.
comment: Originally submitted to CVPR 2025 on 2024-11-15 with paper ID 15808
EmoDubber: Towards High Quality and Emotion Controllable Movie Dubbing CVPR 2025
Given a piece of text, a video clip, and a reference audio, the movie dubbing task aims to generate speech that aligns with the video while cloning the desired voice. The existing methods have two primary deficiencies: (1) They struggle to simultaneously hold audio-visual sync and achieve clear pronunciation; (2) They lack the capacity to express user-defined emotions. To address these problems, we propose EmoDubber, an emotion-controllable dubbing architecture that allows users to specify emotion type and emotional intensity while satisfying high-quality lip sync and pronunciation. Specifically, we first design Lip-related Prosody Aligning (LPA), which focuses on learning the inherent consistency between lip motion and prosody variation by duration level contrastive learning to incorporate reasonable alignment. Then, we design Pronunciation Enhancing (PE) strategy to fuse the video-level phoneme sequences by efficient conformer to improve speech intelligibility. Next, the speaker identity adapting module aims to decode acoustics prior and inject the speaker style embedding. After that, the proposed Flow-based User Emotion Controlling (FUEC) is used to synthesize waveform by flow matching prediction network conditioned on acoustics prior. In this process, the FUEC determines the gradient direction and guidance scale based on the user's emotion instructions by the positive and negative guidance mechanism, which focuses on amplifying the desired emotion while suppressing others. Extensive experimental results on three benchmark datasets demonstrate favorable performance compared to several state-of-the-art methods.
comment: Accepted to CVPR 2025
Computer Vision and Pattern Recognition
LiDPM: Rethinking Point Diffusion for Lidar Scene Completion
Training diffusion models that work directly on lidar points at the scale of outdoor scenes is challenging due to the difficulty of generating fine-grained details from white noise over a broad field of view. The latest works addressing scene completion with diffusion models tackle this problem by reformulating the original DDPM as a local diffusion process. It contrasts with the common practice of operating at the level of objects, where vanilla DDPMs are currently used. In this work, we close the gap between these two lines of work. We identify approximations in the local diffusion formulation, show that they are not required to operate at the scene level, and that a vanilla DDPM with a well-chosen starting point is enough for completion. Finally, we demonstrate that our method, LiDPM, leads to better results in scene completion on SemanticKITTI. The project page is https://astra-vision.github.io/LiDPM .
comment: Accepted to IEEE IV 2025
Dynamic Camera Poses and Where to Find Them CVPR 2025
Annotating camera poses on dynamic Internet videos at scale is critical for advancing fields like realistic video generation and simulation. However, collecting such a dataset is difficult, as most Internet videos are unsuitable for pose estimation. Furthermore, annotating dynamic Internet videos present significant challenges even for state-of-theart methods. In this paper, we introduce DynPose-100K, a large-scale dataset of dynamic Internet videos annotated with camera poses. Our collection pipeline addresses filtering using a carefully combined set of task-specific and generalist models. For pose estimation, we combine the latest techniques of point tracking, dynamic masking, and structure-from-motion to achieve improvements over the state-of-the-art approaches. Our analysis and experiments demonstrate that DynPose-100K is both large-scale and diverse across several key attributes, opening up avenues for advancements in various downstream applications.
comment: Accepted to CVPR 2025. Project Page: https://research.nvidia.com/labs/dir/dynpose-100k
Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models
Autoregressive (AR) models, long dominant in language generation, are increasingly applied to image synthesis but are often considered less competitive than Diffusion-based models. A primary limitation is the substantial number of image tokens required for AR models, which constrains both training and inference efficiency, as well as image resolution. To address this, we present Token-Shuffle, a novel yet simple method that reduces the number of image tokens in Transformer. Our key insight is the dimensional redundancy of visual vocabularies in Multimodal Large Language Models (MLLMs), where low-dimensional visual codes from visual encoder are directly mapped to high-dimensional language vocabularies. Leveraging this, we consider two key operations: token-shuffle, which merges spatially local tokens along channel dimension to decrease the input token number, and token-unshuffle, which untangles the inferred tokens after Transformer blocks to restore the spatial arrangement for output. Jointly training with textual prompts, our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis in a unified next-token prediction way while maintaining efficient training and inference. For the first time, we push the boundary of AR text-to-image generation to a resolution of 2048x2048 with gratifying generation performance. In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15. Exhaustive large-scale human evaluations also demonstrate our prominent image generation ability in terms of text-alignment, visual flaw, and visual appearance. We hope that Token-Shuffle can serve as a foundational design for efficient high-resolution image generation within MLLMs.
The Fourth Monocular Depth Estimation Challenge CVPR
This paper presents the results of the fourth edition of the Monocular Depth Estimation Challenge (MDEC), which focuses on zero-shot generalization to the SYNS-Patches benchmark, a dataset featuring challenging environments in both natural and indoor settings. In this edition, we revised the evaluation protocol to use least-squares alignment with two degrees of freedom to support disparity and affine-invariant predictions. We also revised the baselines and included popular off-the-shelf methods: Depth Anything v2 and Marigold. The challenge received a total of 24 submissions that outperformed the baselines on the test set; 10 of these included a report describing their approach, with most leading methods relying on affine-invariant predictions. The challenge winners improved the 3D F-Score over the previous edition's best result, raising it from 22.58% to 23.05%.
comment: To appear in CVPRW2025
Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
comment: code: https://github.com/stepfun-ai/Step1X-Edit
EgoCHARM: Resource-Efficient Hierarchical Activity Recognition using an Egocentric IMU Sensor
Human activity recognition (HAR) on smartglasses has various use cases, including health/fitness tracking and input for context-aware AI assistants. However, current approaches for egocentric activity recognition suffer from low performance or are resource-intensive. In this work, we introduce a resource (memory, compute, power, sample) efficient machine learning algorithm, EgoCHARM, for recognizing both high level and low level activities using a single egocentric (head-mounted) Inertial Measurement Unit (IMU). Our hierarchical algorithm employs a semi-supervised learning strategy, requiring primarily high level activity labels for training, to learn generalizable low level motion embeddings that can be effectively utilized for low level activity recognition. We evaluate our method on 9 high level and 3 low level activities achieving 0.826 and 0.855 F1 scores on high level and low level activity recognition respectively, with just 63k high level and 22k low level model parameters, allowing the low level encoder to be deployed directly on current IMU chips with compute. Lastly, we present results and insights from a sensitivity analysis and highlight the opportunities and limitations of activity recognition using egocentric IMUs.
DPMambaIR:All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
All-in-One image restoration aims to address multiple image degradation problems using a single model, significantly reducing training costs and deployment complexity compared to traditional methods that design dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework. By integrating a Degradation-Aware Prompt State Space Model (DP-SSM) and a High-Frequency Enhancement Block (HEB), DPMambaIR enables fine-grained modeling of complex degradation information and efficient global integration, while mitigating the loss of high-frequency details caused by task competition. Specifically, the DP-SSM utilizes a pre-trained degradation extractor to capture fine-grained degradation features and dynamically incorporates them into the state space modeling process, enhancing the model's adaptability to diverse degradation types. Concurrently, the HEB supplements high-frequency information, effectively addressing the loss of critical details, such as edges and textures, in multi-task image restoration scenarios. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
CasualHDRSplat: Robust High Dynamic Range 3D Gaussian Splatting from Casually Captured Videos
Recently, photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), have garnered widespread attention due to their superior performance. However, most works rely on low dynamic range (LDR) images, which limits the capturing of richer scene details. Some prior works have focused on high dynamic range (HDR) scene reconstruction, typically require capturing of multi-view sharp images with different exposure times at fixed camera positions during exposure times, which is time-consuming and challenging in practice. For a more flexible data acquisition, we propose a one-stage method: \textbf{CasualHDRSplat} to easily and robustly reconstruct the 3D HDR scene from casually captured videos with auto-exposure enabled, even in the presence of severe motion blur and varying unknown exposure time. \textbf{CasualHDRSplat} contains a unified differentiable physical imaging model which first applies continuous-time trajectory constraint to imaging process so that we can jointly optimize exposure time, camera response function (CRF), camera poses, and sharp 3D HDR scene. Extensive experiments demonstrate that our approach outperforms existing methods in terms of robustness and rendering quality. Our source code will be available at https://github.com/WU-CVGL/CasualHDRSplat
comment: Source Code: https://github.com/WU-CVGL/CasualHDRSplat
Generative Fields: Uncovering Hierarchical Feature Control for StyleGAN via Inverted Receptive Fields
StyleGAN has demonstrated the ability of GANs to synthesize highly-realistic faces of imaginary people from random noise. One limitation of GAN-based image generation is the difficulty of controlling the features of the generated image, due to the strong entanglement of the low-dimensional latent space. Previous work that aimed to control StyleGAN with image or text prompts modulated sampling in W latent space, which is more expressive than Z latent space. However, W space still has restricted expressivity since it does not control the feature synthesis directly; also the feature embedding in W space requires a pre-training process to reconstruct the style signal, limiting its application. This paper introduces the concept of "generative fields" to explain the hierarchical feature synthesis in StyleGAN, inspired by the receptive fields of convolution neural networks (CNNs). Additionally, we propose a new image editing pipeline for StyleGAN using generative field theory and the channel-wise style latent space S, utilizing the intrinsic structural feature of CNNs to achieve disentangled control of feature synthesis at synthesis time.
Plasma State Monitoring and Disruption Characterization using Multimodal VAEs
When a plasma disrupts in a tokamak, significant heat and electromagnetic loads are deposited onto the surrounding device components. These forces scale with plasma current and magnetic field strength, making disruptions one of the key challenges for future devices. Unfortunately, disruptions are not fully understood, with many different underlying causes that are difficult to anticipate. Data-driven models have shown success in predicting them, but they only provide limited interpretability. On the other hand, large-scale statistical analyses have been a great asset to understanding disruptive patterns. In this paper, we leverage data-driven methods to find an interpretable representation of the plasma state for disruption characterization. Specifically, we use a latent variable model to represent diagnostic measurements as a low-dimensional, latent representation. We build upon the Variational Autoencoder (VAE) framework, and extend it for (1) continuous projections of plasma trajectories; (2) a multimodal structure to separate operating regimes; and (3) separation with respect to disruptive regimes. Subsequently, we can identify continuous indicators for the disruption rate and the disruptivity based on statistical properties of measurement data. The proposed method is demonstrated using a dataset of approximately 1600 TCV discharges, selecting for flat-top disruptions or regular terminations. We evaluate the method with respect to (1) the identified disruption risk and its correlation with other plasma properties; (2) the ability to distinguish different types of disruptions; and (3) downstream analyses. For the latter, we conduct a demonstrative study on identifying parameters connected to disruptions using counterfactual-like analysis. Overall, the method can adequately identify distinct operating regimes characterized by varying proximity to disruptions in an interpretable manner.
Hierarchical and Multimodal Data for Daily Activity Understanding
Daily Activity Recordings for Artificial Intelligence (DARai, pronounced "Dahr-ree") is a multimodal, hierarchically annotated dataset constructed to understand human activities in real-world settings. DARai consists of continuous scripted and unscripted recordings of 50 participants in 10 different environments, totaling over 200 hours of data from 20 sensors including multiple camera views, depth and radar sensors, wearable inertial measurement units (IMUs), electromyography (EMG), insole pressure sensors, biomonitor sensors, and gaze tracker. To capture the complexity in human activities, DARai is annotated at three levels of hierarchy: (i) high-level activities (L1) that are independent tasks, (ii) lower-level actions (L2) that are patterns shared between activities, and (iii) fine-grained procedures (L3) that detail the exact execution steps for actions. The dataset annotations and recordings are designed so that 22.7% of L2 actions are shared between L1 activities and 14.2% of L3 procedures are shared between L2 actions. The overlap and unscripted nature of DARai allows counterfactual activities in the dataset. Experiments with various machine learning models showcase the value of DARai in uncovering important challenges in human-centered applications. Specifically, we conduct unimodal and multimodal sensor fusion experiments for recognition, temporal localization, and future action anticipation across all hierarchical annotation levels. To highlight the limitations of individual sensors, we also conduct domain-variant experiments that are enabled by DARai's multi-sensor and counterfactual activity design setup. The code, documentation, and dataset are available at the dedicated DARai website: https://alregib.ece.gatech.edu/software-and-datasets/darai-daily-activity-recordings-for-artificial-intelligence-and-machine-learning/
PICO: Reconstructing 3D People In Contact with Objects CVPR'25
Recovering 3D Human-Object Interaction (HOI) from single color images is challenging due to depth ambiguities, occlusions, and the huge variation in object shape and appearance. Thus, past work requires controlled settings such as known object shapes and contacts, and tackles only limited object classes. Instead, we need methods that generalize to natural images and novel object classes. We tackle this in two main ways: (1) We collect PICO-db, a new dataset of natural images uniquely paired with dense 3D contact on both body and object meshes. To this end, we use images from the recent DAMON dataset that are paired with contacts, but these contacts are only annotated on a canonical 3D body. In contrast, we seek contact labels on both the body and the object. To infer these given an image, we retrieve an appropriate 3D object mesh from a database by leveraging vision foundation models. Then, we project DAMON's body contact patches onto the object via a novel method needing only 2 clicks per patch. This minimal human input establishes rich contact correspondences between bodies and objects. (2) We exploit our new dataset of contact correspondences in a novel render-and-compare fitting method, called PICO-fit, to recover 3D body and object meshes in interaction. PICO-fit infers contact for the SMPL-X body, retrieves a likely 3D object mesh and contact from PICO-db for that object, and uses the contact to iteratively fit the 3D body and object meshes to image evidence via optimization. Uniquely, PICO-fit works well for many object categories that no existing method can tackle. This is crucial to enable HOI understanding to scale in the wild. Our data and code are available at https://pico.is.tue.mpg.de.
comment: Accepted in CVPR'25. Project Page: https://pico.is.tue.mpg.de
BIM-Constrained Optimization for Accurate Localization and Deviation Correction in Construction Monitoring
Augmented reality (AR) applications for construction monitoring rely on real-time environmental tracking to visualize architectural elements. However, construction sites present significant challenges for traditional tracking methods due to featureless surfaces, dynamic changes, and drift accumulation, leading to misalignment between digital models and the physical world. This paper proposes a BIM-aware drift correction method to address these challenges. Instead of relying solely on SLAM-based localization, we align ``as-built" detected planes from the real-world environment with ``as-planned" architectural planes in BIM. Our method performs robust plane matching and computes a transformation (TF) between SLAM (S) and BIM (B) origin frames using optimization techniques, minimizing drift over time. By incorporating BIM as prior structural knowledge, we can achieve improved long-term localization and enhanced AR visualization accuracy in noisy construction environments. The method is evaluated through real-world experiments, showing significant reductions in drift-induced errors and optimized alignment consistency. On average, our system achieves a reduction of 52.24% in angular deviations and a reduction of 60.8% in the distance error of the matched walls compared to the initial manual alignment by the user.
DiMeR: Disentangled Mesh Reconstruction Model
With the advent of large-scale 3D datasets, feed-forward 3D generative models, such as the Large Reconstruction Model (LRM), have gained significant attention and achieved remarkable success. However, we observe that RGB images often lead to conflicting training objectives and lack the necessary clarity for geometry reconstruction. In this paper, we revisit the inductive biases associated with mesh reconstruction and introduce DiMeR, a novel disentangled dual-stream feed-forward model for sparse-view mesh reconstruction. The key idea is to disentangle both the input and framework into geometry and texture parts, thereby reducing the training difficulty for each part according to the Principle of Occam's Razor. Given that normal maps are strictly consistent with geometry and accurately capture surface variations, we utilize normal maps as exclusive input for the geometry branch to reduce the complexity between the network's input and output. Moreover, we improve the mesh extraction algorithm to introduce 3D ground truth supervision. As for texture branch, we use RGB images as input to obtain the textured mesh. Overall, DiMeR demonstrates robust capabilities across various tasks, including sparse-view reconstruction, single-image-to-3D, and text-to-3D. Numerous experiments show that DiMeR significantly outperforms previous methods, achieving over 30% improvement in Chamfer Distance on the GSO and OmniObject3D dataset.
comment: Project Page: https://lutao2021.github.io/DiMeR_page/
Aerial Image Classification in Scarce and Unconstrained Environments via Conformal Prediction
This paper presents a comprehensive empirical analysis of conformal prediction methods on a challenging aerial image dataset featuring diverse events in unconstrained environments. Conformal prediction is a powerful post-hoc technique that takes the output of any classifier and transforms it into a set of likely labels, providing a statistical guarantee on the coverage of the true label. Unlike evaluations on standard benchmarks, our study addresses the complexities of data-scarce and highly variable real-world settings. We investigate the effectiveness of leveraging pretrained models (MobileNet, DenseNet, and ResNet), fine-tuned with limited labeled data, to generate informative prediction sets. To further evaluate the impact of calibration, we consider two parallel pipelines (with and without temperature scaling) and assess performance using two key metrics: empirical coverage and average prediction set size. This setup allows us to systematically examine how calibration choices influence the trade-off between reliability and efficiency. Our findings demonstrate that even with relatively small labeled samples and simple nonconformity scores, conformal prediction can yield valuable uncertainty estimates for complex tasks. Moreover, our analysis reveals that while temperature scaling is often employed for calibration, it does not consistently lead to smaller prediction sets, underscoring the importance of careful consideration in its application. Furthermore, our results highlight the significant potential of model compression techniques within the conformal prediction pipeline for deployment in resource-constrained environments. Based on our observations, we advocate for future research to delve into the impact of noisy or ambiguous labels on conformal prediction performance and to explore effective model reduction strategies.
comment: 17 pages, 5 figures, and 2 tables
CLIPSE -- a minimalistic CLIP-based image search engine for research
A brief overview of CLIPSE, a self-hosted image search engine with the main application of research, is provided. In general, CLIPSE uses CLIP embeddings to process the images and also the text queries. The overall framework is designed with simplicity to enable easy extension and usage. Two benchmark scenarios are described and evaluated, covering indexing and querying time. It is shown that CLIPSE is capable of handling smaller datasets; for larger datasets, a distributed approach with several instances should be considered.
A Guide to Structureless Visual Localization
Visual localization algorithms, i.e., methods that estimate the camera pose of a query image in a known scene, are core components of many applications, including self-driving cars and augmented / mixed reality systems. State-of-the-art visual localization algorithms are structure-based, i.e., they store a 3D model of the scene and use 2D-3D correspondences between the query image and 3D points in the model for camera pose estimation. While such approaches are highly accurate, they are also rather inflexible when it comes to adjusting the underlying 3D model after changes in the scene. Structureless localization approaches represent the scene as a database of images with known poses and thus offer a much more flexible representation that can be easily updated by adding or removing images. Although there is a large amount of literature on structure-based approaches, there is significantly less work on structureless methods. Hence, this paper is dedicated to providing the, to the best of our knowledge, first comprehensive discussion and comparison of structureless methods. Extensive experiments show that approaches that use a higher degree of classical geometric reasoning generally achieve higher pose accuracy. In particular, approaches based on classical absolute or semi-generalized relative pose estimation outperform very recent methods based on pose regression by a wide margin. Compared with state-of-the-art structure-based approaches, the flexibility of structureless methods comes at the cost of (slightly) lower pose accuracy, indicating an interesting direction for future work.
Beyond Labels: Zero-Shot Diabetic Foot Ulcer Wound Segmentation with Self-attention Diffusion Models and the Potential for Text-Guided Customization
Diabetic foot ulcers (DFUs) pose a significant challenge in healthcare, requiring precise and efficient wound assessment to enhance patient outcomes. This study introduces the Attention Diffusion Zero-shot Unsupervised System (ADZUS), a novel text-guided diffusion model that performs wound segmentation without relying on labeled training data. Unlike conventional deep learning models, which require extensive annotation, ADZUS leverages zero-shot learning to dynamically adapt segmentation based on descriptive prompts, offering enhanced flexibility and adaptability in clinical applications. Experimental evaluations demonstrate that ADZUS surpasses traditional and state-of-the-art segmentation models, achieving an IoU of 86.68\% and the highest precision of 94.69\% on the chronic wound dataset, outperforming supervised approaches such as FUSegNet. Further validation on a custom-curated DFU dataset reinforces its robustness, with ADZUS achieving a median DSC of 75\%, significantly surpassing FUSegNet's 45\%. The model's text-guided segmentation capability enables real-time customization of segmentation outputs, allowing targeted analysis of wound characteristics based on clinical descriptions. Despite its competitive performance, the computational cost of diffusion-based inference and the need for potential fine-tuning remain areas for future improvement. ADZUS represents a transformative step in wound segmentation, providing a scalable, efficient, and adaptable AI-driven solution for medical imaging.
comment: 12 pages, 8 figures, journal article
Improving Open-World Object Localization by Discovering Background
Our work addresses the problem of learning to localize objects in an open-world setting, i.e., given the bounding box information of a limited number of object classes during training, the goal is to localize all objects, belonging to both the training and unseen classes in an image, during inference. Towards this end, recent work in this area has focused on improving the characterization of objects either explicitly by proposing new objective functions (localization quality) or implicitly using object-centric auxiliary-information, such as depth information, pixel/region affinity map etc. In this work, we address this problem by incorporating background information to guide the learning of the notion of objectness. Specifically, we propose a novel framework to discover background regions in an image and train an object proposal network to not detect any objects in these regions. We formulate the background discovery task as that of identifying image regions that are not discriminative, i.e., those that are redundant and constitute low information content. We conduct experiments on standard benchmarks to showcase the effectiveness of our proposed approach and observe significant improvements over the previous state-of-the-art approaches for this task.
Enhancing CNNs robustness to occlusions with bioinspired filters for border completion
We exploit the mathematical modeling of the visual cortex mechanism for border completion to define custom filters for CNNs. We see a consistent improvement in performance, particularly in accuracy, when our modified LeNet 5 is tested with occluded MNIST images.
comment: Submitted to the 7th International Conference on Geometric Science of Information
The effects of Hessian eigenvalue spectral density type on the applicability of Hessian analysis to generalization capability assessment of neural networks
Hessians of neural network (NN) contain essential information about the curvature of NN loss landscapes which can be used to estimate NN generalization capabilities. We have previously proposed generalization criteria that rely on the observation that Hessian eigenvalue spectral density (HESD) behaves similarly for a wide class of NNs. This paper further studies their applicability by investigating factors that can result in different types of HESD. We conduct a wide range of experiments showing that HESD mainly has positive eigenvalues (MP-HESD) for NN training and fine-tuning with various optimizers on different datasets with different preprocessing and augmentation procedures. We also show that mainly negative HESD (MN-HESD) is a consequence of external gradient manipulation, indicating that the previously proposed Hessian analysis methodology cannot be applied in such cases. We also propose criteria and corresponding conditions to determine HESD type and estimate NN generalization potential. These HESD types and previously proposed generalization criteria are combined into a unified HESD analysis methodology. Finally, we discuss how HESD changes during training, and show the occurrence of quasi-singular (QS) HESD and its influence on the proposed methodology and on the conventional assumptions about the relation between Hessian eigenvalues and NN loss landscape curvature.
comment: 11 pages, 10 figures, 4 tables, 4 equations
STCL:Curriculum learning Strategies for deep learning image steganography models
Aiming at the problems of poor quality of steganographic images and slow network convergence of image steganography models based on deep learning, this paper proposes a Steganography Curriculum Learning training strategy (STCL) for deep learning image steganography models. So that only easy images are selected for training when the model has poor fitting ability at the initial stage, and gradually expand to more difficult images, the strategy includes a difficulty evaluation strategy based on the teacher model and an knee point-based training scheduling strategy. Firstly, multiple teacher models are trained, and the consistency of the quality of steganographic images under multiple teacher models is used as the difficulty score to construct the training subsets from easy to difficult. Secondly, a training control strategy based on knee points is proposed to reduce the possibility of overfitting on small training sets and accelerate the training process. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed image steganography scheme is able to improve the model performance under multiple algorithmic frameworks, which not only has a high PSNR, SSIM score, and decoding accuracy, but also the steganographic images generated by the model under the training of the STCL strategy have a low steganography analysis scores. You can find our code at \href{https://github.com/chaos-boops/STCL}{https://github.com/chaos-boops/STCL}.
Tamper-evident Image using JPEG Fixed Points
An intriguing phenomenon about JPEG compression has been observed since two decades ago- after repeating JPEG compression and decompression, it leads to a stable image that does not change anymore, which is a fixed point. In this work, we prove the existence of fixed points in the essential JPEG procedures. We analyze JPEG compression and decompression processes, revealing the existence of fixed points that can be reached within a few iterations. These fixed points are diverse and preserve the image's visual quality, ensuring minimal distortion. This result is used to develop a method to create a tamper-evident image from the original authentic image, which can expose tampering operations by showing deviations from the fixed point image.
comment: 6 pages, 6 figures
RGB-D Tracking via Hierarchical Modality Aggregation and Distribution Network
The integration of dual-modal features has been pivotal in advancing RGB-Depth (RGB-D) tracking. However, current trackers are less efficient and focus solely on single-level features, resulting in weaker robustness in fusion and slower speeds that fail to meet the demands of real-world applications. In this paper, we introduce a novel network, denoted as HMAD (Hierarchical Modality Aggregation and Distribution), which addresses these challenges. HMAD leverages the distinct feature representation strengths of RGB and depth modalities, giving prominence to a hierarchical approach for feature distribution and fusion, thereby enhancing the robustness of RGB-D tracking. Experimental results on various RGB-D datasets demonstrate that HMAD achieves state-of-the-art performance. Moreover, real-world experiments further validate HMAD's capacity to effectively handle a spectrum of tracking challenges in real-time scenarios.
Occlusion-Aware Self-Supervised Monocular Depth Estimation for Weak-Texture Endoscopic Images
We propose a self-supervised monocular depth estimation network tailored for endoscopic scenes, aiming to infer depth within the gastrointestinal tract from monocular images. Existing methods, though accurate, typically assume consistent illumination, which is often violated due to dynamic lighting and occlusions caused by GI motility. These variations lead to incorrect geometric interpretations and unreliable self-supervised signals, degrading depth reconstruction quality. To address this, we introduce an occlusion-aware self-supervised framework. First, we incorporate an occlusion mask for data augmentation, generating pseudo-labels by simulating viewpoint-dependent occlusion scenarios. This enhances the model's ability to learn robust depth features under partial visibility. Second, we leverage semantic segmentation guided by non-negative matrix factorization, clustering convolutional activations to generate pseudo-labels in texture-deprived regions, thereby improving segmentation accuracy and mitigating information loss from lighting changes. Experimental results on the SCARED dataset show that our method achieves state-of-the-art performance in self-supervised depth estimation. Additionally, evaluations on the Endo-SLAM and SERV-CT datasets demonstrate strong generalization across diverse endoscopic environments.
Unsupervised Urban Land Use Mapping with Street View Contrastive Clustering and a Geographical Prior
Urban land use classification and mapping are critical for urban planning, resource management, and environmental monitoring. Existing remote sensing techniques often lack precision in complex urban environments due to the absence of ground-level details. Unlike aerial perspectives, street view images provide a ground-level view that captures more human and social activities relevant to land use in complex urban scenes. Existing street view-based methods primarily rely on supervised classification, which is challenged by the scarcity of high-quality labeled data and the difficulty of generalizing across diverse urban landscapes. This study introduces an unsupervised contrastive clustering model for street view images with a built-in geographical prior, to enhance clustering performance. When combined with a simple visual assignment of the clusters, our approach offers a flexible and customizable solution to land use mapping, tailored to the specific needs of urban planners. We experimentally show that our method can generate land use maps from geotagged street view image datasets of two cities. As our methodology relies on the universal spatial coherence of geospatial data ("Tobler's law"), it can be adapted to various settings where street view images are available, to enable scalable, unsupervised land use mapping and updating. The code will be available at https://github.com/lin102/CCGP.
comment: 11 pages, 7 figures, preprint version
A Comprehensive Survey of Knowledge-Based Vision Question Answering Systems: The Lifecycle of Knowledge in Visual Reasoning Task
Knowledge-based Vision Question Answering (KB-VQA) extends general Vision Question Answering (VQA) by not only requiring the understanding of visual and textual inputs but also extensive range of knowledge, enabling significant advancements across various real-world applications. KB-VQA introduces unique challenges, including the alignment of heterogeneous information from diverse modalities and sources, the retrieval of relevant knowledge from noisy or large-scale repositories, and the execution of complex reasoning to infer answers from the combined context. With the advancement of Large Language Models (LLMs), KB-VQA systems have also undergone a notable transformation, where LLMs serve as powerful knowledge repositories, retrieval-augmented generators and strong reasoners. Despite substantial progress, no comprehensive survey currently exists that systematically organizes and reviews the existing KB-VQA methods. This survey aims to fill this gap by establishing a structured taxonomy of KB-VQA approaches, and categorizing the systems into main stages: knowledge representation, knowledge retrieval, and knowledge reasoning. By exploring various knowledge integration techniques and identifying persistent challenges, this work also outlines promising future research directions, providing a foundation for advancing KB-VQA models and their applications.
comment: 20 pages, 5 figures, 4 tables
When Gaussian Meets Surfel: Ultra-fast High-fidelity Radiance Field Rendering
We introduce Gaussian-enhanced Surfels (GESs), a bi-scale representation for radiance field rendering, wherein a set of 2D opaque surfels with view-dependent colors represent the coarse-scale geometry and appearance of scenes, and a few 3D Gaussians surrounding the surfels supplement fine-scale appearance details. The rendering with GESs consists of two passes -- surfels are first rasterized through a standard graphics pipeline to produce depth and color maps, and then Gaussians are splatted with depth testing and color accumulation on each pixel order independently. The optimization of GESs from multi-view images is performed through an elaborate coarse-to-fine procedure, faithfully capturing rich scene appearance. The entirely sorting-free rendering of GESs not only achieves very fast rates, but also produces view-consistent images, successfully avoiding popping artifacts under view changes. The basic GES representation can be easily extended to achieve anti-aliasing in rendering (Mip-GES), boosted rendering speeds (Speedy-GES) and compact storage (Compact-GES), and reconstruct better scene geometries by replacing 3D Gaussians with 2D Gaussians (2D-GES). Experimental results show that GESs advance the state-of-the-arts as a compelling representation for ultra-fast high-fidelity radiance field rendering.
An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
Text-to-Image Alignment in Denoising-Based Models through Step Selection
Visual generative AI models often encounter challenges related to text-image alignment and reasoning limitations. This paper presents a novel method for selectively enhancing the signal at critical denoising steps, optimizing image generation based on input semantics. Our approach addresses the shortcomings of early-stage signal modifications, demonstrating that adjustments made at later stages yield superior results. We conduct extensive experiments to validate the effectiveness of our method in producing semantically aligned images on Diffusion and Flow Matching model, achieving state-of-the-art performance. Our results highlight the importance of a judicious choice of sampling stage to improve performance and overall image alignment.
ESDiff: Encoding Strategy-inspired Diffusion Model with Few-shot Learning for Color Image Inpainting
Image inpainting is a technique used to restore missing or damaged regions of an image. Traditional methods primarily utilize information from adjacent pixels for reconstructing missing areas, while they struggle to preserve complex details and structures. Simultaneously, models based on deep learning necessitate substantial amounts of training data. To address this challenge, an encoding strategy-inspired diffusion model with few-shot learning for color image inpainting is proposed in this paper. The main idea of this novel encoding strategy is the deployment of a "virtual mask" to construct high-dimensional objects through mutual perturbations between channels. This approach enables the diffusion model to capture diverse image representations and detailed features from limited training samples. Moreover, the encoding strategy leverages redundancy between channels, integrates with low-rank methods during iterative inpainting, and incorporates the diffusion model to achieve accurate information output. Experimental results indicate that our method exceeds current techniques in quantitative metrics, and the reconstructed images quality has been improved in aspects of texture and structural integrity, leading to more precise and coherent results.
comment: 11 pages,10 figures,Submit to tcsvt
Towards One-Stage End-to-End Table Structure Recognition with Parallel Regression for Diverse Scenarios
Table structure recognition aims to parse tables in unstructured data into machine-understandable formats. Recent methods address this problem through a two-stage process or optimized one-stage approaches. However, these methods either require multiple networks to be serially trained and perform more time-consuming sequential decoding, or rely on complex post-processing algorithms to parse the logical structure of tables. They struggle to balance cross-scenario adaptability, robustness, and computational efficiency. In this paper, we propose a one-stage end-to-end table structure parsing network called TableCenterNet. This network unifies the prediction of table spatial and logical structure into a parallel regression task for the first time, and implicitly learns the spatial-logical location mapping laws of cells through a synergistic architecture of shared feature extraction layers and task-specific decoding. Compared with two-stage methods, our method is easier to train and faster to infer. Experiments on benchmark datasets show that TableCenterNet can effectively parse table structures in diverse scenarios and achieve state-of-the-art performance on the TableGraph-24k dataset. Code is available at https://github.com/dreamy-xay/TableCenterNet.
Mamba-Sea: A Mamba-based Framework with Global-to-Local Sequence Augmentation for Generalizable Medical Image Segmentation
To segment medical images with distribution shifts, domain generalization (DG) has emerged as a promising setting to train models on source domains that can generalize to unseen target domains. Existing DG methods are mainly based on CNN or ViT architectures. Recently, advanced state space models, represented by Mamba, have shown promising results in various supervised medical image segmentation. The success of Mamba is primarily owing to its ability to capture long-range dependencies while keeping linear complexity with input sequence length, making it a promising alternative to CNNs and ViTs. Inspired by the success, in the paper, we explore the potential of the Mamba architecture to address distribution shifts in DG for medical image segmentation. Specifically, we propose a novel Mamba-based framework, Mamba-Sea, incorporating global-to-local sequence augmentation to improve the model's generalizability under domain shift issues. Our Mamba-Sea introduces a global augmentation mechanism designed to simulate potential variations in appearance across different sites, aiming to suppress the model's learning of domain-specific information. At the local level, we propose a sequence-wise augmentation along input sequences, which perturbs the style of tokens within random continuous sub-sequences by modeling and resampling style statistics associated with domain shifts. To our best knowledge, Mamba-Sea is the first work to explore the generalization of Mamba for medical image segmentation, providing an advanced and promising Mamba-based architecture with strong robustness to domain shifts. Remarkably, our proposed method is the first to surpass a Dice coefficient of 90% on the Prostate dataset, which exceeds previous SOTA of 88.61%. The code is available at https://github.com/orange-czh/Mamba-Sea.
comment: Accepted by IEEE TMI 2025. The code is available at https://github.com/orange-czh/Mamba-Sea
RefVNLI: Towards Scalable Evaluation of Subject-driven Text-to-image Generation
Subject-driven text-to-image (T2I) generation aims to produce images that align with a given textual description, while preserving the visual identity from a referenced subject image. Despite its broad downstream applicability -- ranging from enhanced personalization in image generation to consistent character representation in video rendering -- progress in this field is limited by the lack of reliable automatic evaluation. Existing methods either assess only one aspect of the task (i.e., textual alignment or subject preservation), misalign with human judgments, or rely on costly API-based evaluation. To address this, we introduce RefVNLI, a cost-effective metric that evaluates both textual alignment and subject preservation in a single prediction. Trained on a large-scale dataset derived from video-reasoning benchmarks and image perturbations, RefVNLI outperforms or matches existing baselines across multiple benchmarks and subject categories (e.g., \emph{Animal}, \emph{Object}), achieving up to 6.4-point gains in textual alignment and 8.5-point gains in subject consistency. It also excels with lesser-known concepts, aligning with human preferences at over 87\% accuracy.
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
We propose a novel sample selection method for image classification in the presence of noisy labels. Existing methods typically consider small-loss samples as correctly labeled. However, some correctly labeled samples are inherently difficult for the model to learn and can exhibit high loss similar to mislabeled samples in the early stages of training. Consequently, setting a threshold on per-sample loss to select correct labels results in a trade-off between precision and recall in sample selection: a lower threshold may miss many correctly labeled hard-to-learn samples (low recall), while a higher threshold may include many mislabeled samples (low precision). To address this issue, our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones, thus alleviating the trade-off dilemma. We achieve this by considering the trends in model prediction confidence rather than relying solely on loss values. Empirical observations show that only for correctly labeled samples, the model's prediction confidence for the annotated labels typically increases faster than for any other classes. Based on this insight, we propose tracking the confidence gaps between the annotated labels and other classes during training and evaluating their trends using the Mann-Kendall Test. A sample is considered potentially correctly labeled if all its confidence gaps tend to increase. Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques. Experiments on several standard benchmarks and real-world datasets demonstrate that our method enhances the performance of existing methods for learning with noisy labels.
Unveiling Hidden Vulnerabilities in Digital Human Generation via Adversarial Attacks
Expressive human pose and shape estimation (EHPS) is crucial for digital human generation, especially in applications like live streaming. While existing research primarily focuses on reducing estimation errors, it largely neglects robustness and security aspects, leaving these systems vulnerable to adversarial attacks. To address this significant challenge, we propose the \textbf{Tangible Attack (TBA)}, a novel framework designed to generate adversarial examples capable of effectively compromising any digital human generation model. Our approach introduces a \textbf{Dual Heterogeneous Noise Generator (DHNG)}, which leverages Variational Autoencoders (VAE) and ControlNet to produce diverse, targeted noise tailored to the original image features. Additionally, we design a custom \textbf{adversarial loss function} to optimize the noise, ensuring both high controllability and potent disruption. By iteratively refining the adversarial sample through multi-gradient signals from both the noise and the state-of-the-art EHPS model, TBA substantially improves the effectiveness of adversarial attacks. Extensive experiments demonstrate TBA's superiority, achieving a remarkable 41.0\% increase in estimation error, with an average improvement of approximately 17.0\%. These findings expose significant security vulnerabilities in current EHPS models and highlight the need for stronger defenses in digital human generation systems.
comment: 14 pages, 7 figures
FRAG: Frame Selection Augmented Generation for Long Video and Long Document Understanding
There has been impressive progress in Large Multimodal Models (LMMs). Recent works extend these models to long inputs, including multi-page documents and long videos. However, the model size and performance of these long context models are still limited due to the computational cost in both training and inference. In this work, we explore an orthogonal direction and process long inputs without long context LMMs. We propose Frame Selection Augmented Generation (FRAG), where the model first selects relevant frames within the input, and then only generates the final outputs based on the selected frames. The core of the selection process is done by scoring each frame independently, which does not require long context processing. The frames with the highest scores are then selected by a simple Top-K selection. We show that this frustratingly simple framework is applicable to both long videos and multi-page documents using existing LMMs without any fine-tuning. We consider two models, LLaVA-OneVision and InternVL2, in our experiments and show that FRAG consistently improves the performance and achieves state-of-the-art performances for both long video and long document understanding. For videos, FRAG substantially improves InternVL2-76B by 5.8% on MLVU and 3.7% on Video-MME. For documents, FRAG achieves over 20% improvements on MP-DocVQA compared with recent LMMs specialized in long document understanding. Code is available at: https://github.com/NVlabs/FRAG
Predict-Optimize-Distill: A Self-Improving Cycle for 4D Object Understanding
Humans can resort to long-form inspection to build intuition on predicting the 3D configurations of unseen objects. The more we observe the object motion, the better we get at predicting its 3D state immediately. Existing systems either optimize underlying representations from multi-view observations or train a feed-forward predictor from supervised datasets. We introduce Predict-Optimize-Distill (POD), a self-improving framework that interleaves prediction and optimization in a mutually reinforcing cycle to achieve better 4D object understanding with increasing observation time. Given a multi-view object scan and a long-form monocular video of human-object interaction, POD iteratively trains a neural network to predict local part poses from RGB frames, uses this predictor to initialize a global optimization which refines output poses through inverse rendering, then finally distills the results of optimization back into the model by generating synthetic self-labeled training data from novel viewpoints. Each iteration improves both the predictive model and the optimized motion trajectory, creating a virtuous cycle that bootstraps its own training data to learn about the pose configurations of an object. We also introduce a quasi-multiview mining strategy for reducing depth ambiguity by leveraging long video. We evaluate POD on 14 real-world and 5 synthetic objects with various joint types, including revolute and prismatic joints as well as multi-body configurations where parts detach or reattach independently. POD demonstrates significant improvement over a pure optimization baseline which gets stuck in local minima, particularly for longer videos. We also find that POD's performance improves with both video length and successive iterations of the self-improving cycle, highlighting its ability to scale performance with additional observations and looped refinement.
comment: See our website at: https://predict-optimize-distill.github.io/pod.github.io First two authors contributed equally
Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs
The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
comment: 13 pages, 8 figures, Project page: https://garygutc.github.io/UniME
3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models 3DV
Video try-on replaces clothing in videos with target garments. Existing methods struggle to generate high-quality and temporally consistent results when handling complex clothing patterns and diverse body poses. We present 3DV-TON, a novel diffusion-based framework for generating high-fidelity and temporally consistent video try-on results. Our approach employs generated animatable textured 3D meshes as explicit frame-level guidance, alleviating the issue of models over-focusing on appearance fidelity at the expanse of motion coherence. This is achieved by enabling direct reference to consistent garment texture movements throughout video sequences. The proposed method features an adaptive pipeline for generating dynamic 3D guidance: (1) selecting a keyframe for initial 2D image try-on, followed by (2) reconstructing and animating a textured 3D mesh synchronized with original video poses. We further introduce a robust rectangular masking strategy that successfully mitigates artifact propagation caused by leaking clothing information during dynamic human and garment movements. To advance video try-on research, we introduce HR-VVT, a high-resolution benchmark dataset containing 130 videos with diverse clothing types and scenarios. Quantitative and qualitative results demonstrate our superior performance over existing methods. The project page is at this link https://2y7c3.github.io/3DV-TON/
comment: Project page: https://2y7c3.github.io/3DV-TON/
StereoMamba: Real-time and Robust Intraoperative Stereo Disparity Estimation via Long-range Spatial Dependencies
Stereo disparity estimation is crucial for obtaining depth information in robot-assisted minimally invasive surgery (RAMIS). While current deep learning methods have made significant advancements, challenges remain in achieving an optimal balance between accuracy, robustness, and inference speed. To address these challenges, we propose the StereoMamba architecture, which is specifically designed for stereo disparity estimation in RAMIS. Our approach is based on a novel Feature Extraction Mamba (FE-Mamba) module, which enhances long-range spatial dependencies both within and across stereo images. To effectively integrate multi-scale features from FE-Mamba, we then introduce a novel Multidimensional Feature Fusion (MFF) module. Experiments against the state-of-the-art on the ex-vivo SCARED benchmark demonstrate that StereoMamba achieves superior performance on EPE of 2.64 px and depth MAE of 2.55 mm, the second-best performance on Bad2 of 41.49% and Bad3 of 26.99%, while maintaining an inference speed of 21.28 FPS for a pair of high-resolution images (1280*1024), striking the optimum balance between accuracy, robustness, and efficiency. Furthermore, by comparing synthesized right images, generated from warping left images using the generated disparity maps, with the actual right image, StereoMamba achieves the best average SSIM (0.8970) and PSNR (16.0761), exhibiting strong zero-shot generalization on the in-vivo RIS2017 and StereoMIS datasets.
S2S-Net: Addressing the Domain Gap of Heterogeneous Sensor Systems in LiDAR-Based Collective Perception
Collective Perception (CP) has emerged as a promising approach to overcome the limitations of individual perception in the context of autonomous driving. Various approaches have been proposed to realize collective perception; however, the Sensor2Sensor domain gap that arises from the utilization of different sensor systems in Connected and Automated Vehicles (CAVs) remains mostly unaddressed. This is primarily due to the paucity of datasets containing heterogeneous sensor setups among the CAVs. The recently released SCOPE datasets address this issue by providing data from three different LiDAR sensors for each CAV. This study is the first to tackle the Sensor2Sensor domain gap in vehicle to vehicle (V2V) collective perception. First, we present our sensor-domain robust architecture S2S-Net. Then an in-depth analysis of the Sensor2Sensor domain adaptation capabilities of S2S-Net on the SCOPE dataset is conducted. S2S-Net demonstrates the capability to maintain very high performance in unseen sensor domains and achieved state-of-the-art results on the SCOPE dataset.
Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
Earth observation (EO) is crucial for monitoring environmental changes, responding to disasters, and managing natural resources. In this context, foundation models facilitate remote sensing image analysis to retrieve relevant geoinformation accurately and efficiently. However, as these models grow in size, fine-tuning becomes increasingly challenging due to the associated computational resources and costs, limiting their accessibility and scalability. Furthermore, full fine-tuning can lead to forgetting pre-trained features and even degrade model generalization. To address this, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a promising solution. In this paper, we conduct extensive experiments with various foundation model architectures and PEFT techniques to evaluate their effectiveness on five different EO datasets. Our results provide a comprehensive comparison, offering insights into when and how PEFT methods support the adaptation of pre-trained geospatial models. We demonstrate that PEFT techniques match or even exceed full fine-tuning performance and enhance model generalisation to unseen geographic regions, while reducing training time and memory requirements. Additional experiments investigate the effect of architecture choices such as the decoder type or the use of metadata, suggesting UNet decoders and fine-tuning without metadata as the recommended configuration. We have integrated all evaluated foundation models and techniques into the open-source package TerraTorch to support quick, scalable, and cost-effective model adaptation.
comment: Code available at https://github.com/IBM/peft-geofm
SDVPT: Semantic-Driven Visual Prompt Tuning for Open-World Object Counting
Open-world object counting leverages the robust text-image alignment of pre-trained vision-language models (VLMs) to enable counting of arbitrary categories in images specified by textual queries. However, widely adopted naive fine-tuning strategies concentrate exclusively on text-image consistency for categories contained in training, which leads to limited generalizability for unseen categories. In this work, we propose a plug-and-play Semantic-Driven Visual Prompt Tuning framework (SDVPT) that transfers knowledge from the training set to unseen categories with minimal overhead in parameters and inference time. First, we introduce a two-stage visual prompt learning strategy composed of Category-Specific Prompt Initialization (CSPI) and Topology-Guided Prompt Refinement (TGPR). The CSPI generates category-specific visual prompts, and then TGPR distills latent structural patterns from the VLM's text encoder to refine these prompts. During inference, we dynamically synthesize the visual prompts for unseen categories based on the semantic correlation between unseen and training categories, facilitating robust text-image alignment for unseen categories. Extensive experiments integrating SDVPT with all available open-world object counting models demonstrate its effectiveness and adaptability across three widely used datasets: FSC-147, CARPK, and PUCPR+.
A Spatially-Aware Multiple Instance Learning Framework for Digital Pathology
Multiple instance learning (MIL) is a promising approach for weakly supervised classification in pathology using whole slide images (WSIs). However, conventional MIL methods such as Attention-Based Deep Multiple Instance Learning (ABMIL) typically disregard spatial interactions among patches that are crucial to pathological diagnosis. Recent advancements, such as Transformer based MIL (TransMIL), have incorporated spatial context and inter-patch relationships. However, it remains unclear whether explicitly modeling patch relationships yields similar performance gains in ABMIL, which relies solely on Multi-Layer Perceptrons (MLPs). In contrast, TransMIL employs Transformer-based layers, introducing a fundamental architectural shift at the cost of substantially increased computational complexity. In this work, we enhance the ABMIL framework by integrating interaction-aware representations to address this question. Our proposed model, Global ABMIL (GABMIL), explicitly captures inter-instance dependencies while preserving computational efficiency. Experimental results on two publicly available datasets for tumor subtyping in breast and lung cancers demonstrate that GABMIL achieves up to a 7 percentage point improvement in AUPRC and a 5 percentage point increase in the Kappa score over ABMIL, with minimal or no additional computational overhead. These findings underscore the importance of incorporating patch interactions within MIL frameworks.
Highly Accurate and Diverse Traffic Data: The DeepScenario Open 3D Dataset
Accurate 3D trajectory data is crucial for advancing autonomous driving. Yet, traditional datasets are usually captured by fixed sensors mounted on a car and are susceptible to occlusion. Additionally, such an approach can precisely reconstruct the dynamic environment in the close vicinity of the measurement vehicle only, while neglecting objects that are further away. In this paper, we introduce the DeepScenario Open 3D Dataset (DSC3D), a high-quality, occlusion-free dataset of 6 degrees of freedom bounding box trajectories acquired through a novel monocular camera drone tracking pipeline. Our dataset includes more than 175,000 trajectories of 14 types of traffic participants and significantly exceeds existing datasets in terms of diversity and scale, containing many unprecedented scenarios such as complex vehicle-pedestrian interaction on highly populated urban streets and comprehensive parking maneuvers from entry to exit. DSC3D dataset was captured in five various locations in Europe and the United States and include: a parking lot, a crowded inner-city, a steep urban intersection, a federal highway, and a suburban intersection. Our 3D trajectory dataset aims to enhance autonomous driving systems by providing detailed environmental 3D representations, which could lead to improved obstacle interactions and safety. We demonstrate its utility across multiple applications including motion prediction, motion planning, scenario mining, and generative reactive traffic agents. Our interactive online visualization platform and the complete dataset are publicly available at app.deepscenario.com, facilitating research in motion prediction, behavior modeling, and safety validation.
TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
I-INR: Iterative Implicit Neural Representations
Implicit Neural Representations (INRs) have revolutionized signal processing and computer vision by modeling signals as continuous, differentiable functions parameterized by neural networks. However, their inherent formulation as a regression problem makes them prone to regression to the mean, limiting their ability to capture fine details, retain high-frequency information, and handle noise effectively. To address these challenges, we propose Iterative Implicit Neural Representations (I-INRs) a novel plug-and-play framework that enhances signal reconstruction through an iterative refinement process. I-INRs effectively recover high-frequency details, improve robustness to noise, and achieve superior reconstruction quality. Our framework seamlessly integrates with existing INR architectures, delivering substantial performance gains across various tasks. Extensive experiments show that I-INRs outperform baseline methods, including WIRE, SIREN, and Gauss, in diverse computer vision applications such as image restoration, image denoising, and object occupancy prediction.
M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
DRC: Enhancing Personalized Image Generation via Disentangled Representation Composition
Personalized image generation has emerged as a promising direction in multimodal content creation. It aims to synthesize images tailored to individual style preferences (e.g., color schemes, character appearances, layout) and semantic intentions (e.g., emotion, action, scene contexts) by leveraging user-interacted history images and multimodal instructions. Despite notable progress, existing methods -- whether based on diffusion models, large language models, or Large Multimodal Models (LMMs) -- struggle to accurately capture and fuse user style preferences and semantic intentions. In particular, the state-of-the-art LMM-based method suffers from the entanglement of visual features, leading to Guidance Collapse, where the generated images fail to preserve user-preferred styles or reflect the specified semantics. To address these limitations, we introduce DRC, a novel personalized image generation framework that enhances LMMs through Disentangled Representation Composition. DRC explicitly extracts user style preferences and semantic intentions from history images and the reference image, respectively, to form user-specific latent instructions that guide image generation within LMMs. Specifically, it involves two critical learning stages: 1) Disentanglement learning, which employs a dual-tower disentangler to explicitly separate style and semantic features, optimized via a reconstruction-driven paradigm with difficulty-aware importance sampling; and 2) Personalized modeling, which applies semantic-preserving augmentations to effectively adapt the disentangled representations for robust personalized generation. Extensive experiments on two benchmarks demonstrate that DRC shows competitive performance while effectively mitigating the guidance collapse issue, underscoring the importance of disentangled representation learning for controllable and effective personalized image generation.
TimeChat-Online: 80% Visual Tokens are Naturally Redundant in Streaming Videos
The rapid growth of online video platforms, particularly live streaming services, has created an urgent need for real-time video understanding systems. These systems must process continuous video streams and respond to user queries instantaneously, presenting unique challenges for current Video Large Language Models (VideoLLMs). While existing VideoLLMs excel at processing complete videos, they face significant limitations in streaming scenarios due to their inability to handle dense, redundant frames efficiently. We introduce TimeChat-Online, a novel online VideoLLM that revolutionizes real-time video interaction. At its core lies our innovative Differential Token Drop (DTD) module, which addresses the fundamental challenge of visual redundancy in streaming videos. Drawing inspiration from human visual perception's Change Blindness phenomenon, DTD preserves meaningful temporal changes while filtering out static, redundant content between frames. Remarkably, our experiments demonstrate that DTD achieves an 82.8% reduction in video tokens while maintaining 98% performance on StreamingBench, revealing that over 80% of visual content in streaming videos is naturally redundant without requiring language guidance. To enable seamless real-time interaction, we present TimeChat-Online-139K, a comprehensive streaming video dataset featuring diverse interaction patterns including backward-tracing, current-perception, and future-responding scenarios. TimeChat-Online's unique Proactive Response capability, naturally achieved through continuous monitoring of video scene transitions via DTD, sets it apart from conventional approaches. Our extensive evaluation demonstrates TimeChat-Online's superior performance on streaming benchmarks (StreamingBench and OvOBench) and maintaining competitive results on long-form video tasks such as Video-MME and MLVU.
DIMT25@ICDAR2025: HW-TSC's End-to-End Document Image Machine Translation System Leveraging Large Vision-Language Model
This paper presents the technical solution proposed by Huawei Translation Service Center (HW-TSC) for the "End-to-End Document Image Machine Translation for Complex Layouts" competition at the 19th International Conference on Document Analysis and Recognition (DIMT25@ICDAR2025). Leveraging state-of-the-art open-source large vision-language model (LVLM), we introduce a training framework that combines multi-task learning with perceptual chain-of-thought to develop a comprehensive end-to-end document translation system. During the inference phase, we apply minimum Bayesian decoding and post-processing strategies to further enhance the system's translation capabilities. Our solution uniquely addresses both OCR-based and OCR-free document image translation tasks within a unified framework. This paper systematically details the training methods, inference strategies, LVLM base models, training data, experimental setups, and results, demonstrating an effective approach to document image machine translation.
comment: 7 pages, 1 figures, 2 tables
Class-Conditional Distribution Balancing for Group Robust Classification
Spurious correlations that lead models to correct predictions for the wrong reasons pose a critical challenge for robust real-world generalization. Existing research attributes this issue to group imbalance and addresses it by maximizing group-balanced or worst-group accuracy, which heavily relies on expensive bias annotations. A compromise approach involves predicting bias information using extensively pretrained foundation models, which requires large-scale data and becomes impractical for resource-limited rare domains. To address these challenges, we offer a novel perspective by reframing the spurious correlations as imbalances or mismatches in class-conditional distributions, and propose a simple yet effective robust learning method that eliminates the need for both bias annotations and predictions. With the goal of reducing the mutual information between spurious factors and label information, our method leverages a sample reweighting strategy to achieve class-conditional distribution balancing, which automatically highlights minority groups and classes, effectively dismantling spurious correlations and producing a debiased data distribution for classification. Extensive experiments and analysis demonstrate that our approach consistently delivers state-of-the-art performance, rivaling methods that rely on bias supervision.
Advanced Segmentation of Diabetic Retinopathy Lesions Using DeepLabv3+ CCS
To improve the segmentation of diabetic retinopathy lesions (microaneurysms, hemorrhages, exudates, and soft exudates), we implemented a binary segmentation method specific to each type of lesion. As post-segmentation, we combined the individual model outputs into a single image to better analyze the lesion types. This approach facilitated parameter optimization and improved accuracy, effectively overcoming challenges related to dataset limitations and annotation complexity. Specific preprocessing steps included cropping and applying contrast-limited adaptive histogram equalization to the L channel of the LAB image. Additionally, we employed targeted data augmentation techniques to further refine the model's efficacy. Our methodology utilized the DeepLabv3+ model, achieving a segmentation accuracy of 99%. These findings highlight the efficacy of innovative strategies in advancing medical image analysis, particularly in the precise segmentation of diabetic retinopathy lesions. The IDRID dataset was utilized to validate and demonstrate the robustness of our approach.
comment: This work was accepted at the ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) 2024
EdgePoint2: Compact Descriptors for Superior Efficiency and Accuracy
The field of keypoint extraction, which is essential for vision applications like Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM), has evolved from relying on handcrafted methods to leveraging deep learning techniques. While deep learning approaches have significantly improved performance, they often incur substantial computational costs, limiting their deployment in real-time edge applications. Efforts to create lightweight neural networks have seen some success, yet they often result in trade-offs between efficiency and accuracy. Additionally, the high-dimensional descriptors generated by these networks poses challenges for distributed applications requiring efficient communication and coordination, highlighting the need for compact yet competitively accurate descriptors. In this paper, we present EdgePoint2, a series of lightweight keypoint detection and description neural networks specifically tailored for edge computing applications on embedded system. The network architecture is optimized for efficiency without sacrificing accuracy. To train compact descriptors, we introduce a combination of Orthogonal Procrustes loss and similarity loss, which can serve as a general approach for hypersphere embedding distillation tasks. Additionally, we offer 14 sub-models to satisfy diverse application requirements. Our experiments demonstrate that EdgePoint2 consistently achieves state-of-the-art (SOTA) accuracy and efficiency across various challenging scenarios while employing lower-dimensional descriptors (32/48/64). Beyond its accuracy, EdgePoint2 offers significant advantages in flexibility, robustness, and versatility. Consequently, EdgePoint2 emerges as a highly competitive option for visual tasks, especially in contexts demanding adaptability to diverse computational and communication constraints.
Towards Generalized and Training-Free Text-Guided Semantic Manipulation
Text-guided semantic manipulation refers to semantically editing an image generated from a source prompt to match a target prompt, enabling the desired semantic changes (e.g., addition, removal, and style transfer) while preserving irrelevant contents. With the powerful generative capabilities of the diffusion model, the task has shown the potential to generate high-fidelity visual content. Nevertheless, existing methods either typically require time-consuming fine-tuning (inefficient), fail to accomplish multiple semantic manipulations (poorly extensible), and/or lack support for different modality tasks (limited generalizability). Upon further investigation, we find that the geometric properties of noises in the diffusion model are strongly correlated with the semantic changes. Motivated by this, we propose a novel $\textit{GTF}$ for text-guided semantic manipulation, which has the following attractive capabilities: 1) $\textbf{Generalized}$: our $\textit{GTF}$ supports multiple semantic manipulations (e.g., addition, removal, and style transfer) and can be seamlessly integrated into all diffusion-based methods (i.e., Plug-and-play) across different modalities (i.e., modality-agnostic); and 2) $\textbf{Training-free}$: $\textit{GTF}$ produces high-fidelity results via simply controlling the geometric relationship between noises without tuning or optimization. Our extensive experiments demonstrate the efficacy of our approach, highlighting its potential to advance the state-of-the-art in semantics manipulation.
Precision Neural Network Quantization via Learnable Adaptive Modules
Quantization Aware Training (QAT) is a neural network quantization technique that compresses model size and improves operational efficiency while effectively maintaining model performance. The paradigm of QAT is to introduce fake quantization operators during the training process, allowing the model to autonomously compensate for information loss caused by quantization. Making quantization parameters trainable can significantly improve the performance of QAT, but at the cost of compromising the flexibility during inference, especially when dealing with activation values with substantially different distributions. In this paper, we propose an effective learnable adaptive neural network quantization method, called Adaptive Step Size Quantization (ASQ), to resolve this conflict. Specifically, the proposed ASQ method first dynamically adjusts quantization scaling factors through a trained module capable of accommodating different activations. Then, to address the rigid resolution issue inherent in Power of Two (POT) quantization, we propose an efficient non-uniform quantization scheme. We utilize the Power Of Square root of Two (POST) as the basis for exponential quantization, effectively handling the bell-shaped distribution of neural network weights across various bit-widths while maintaining computational efficiency through a Look-Up Table method (LUT). Extensive experimental results demonstrate that the proposed ASQ method is superior to the state-of-the-art QAT approaches. Notably that the ASQ is even competitive compared to full precision baselines, with its 4-bit quantized ResNet34 model improving accuracy by 1.2\% on ImageNet.
Group Downsampling with Equivariant Anti-aliasing
Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups with anti-aliasing. This involves the following: (a) Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. (b) Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
comment: Accepted by IEEE Transactions on Multimedia
Scene Perceived Image Perceptual Score (SPIPS): combining global and local perception for image quality assessment
The rapid advancement of artificial intelligence and widespread use of smartphones have resulted in an exponential growth of image data, both real (camera-captured) and virtual (AI-generated). This surge underscores the critical need for robust image quality assessment (IQA) methods that accurately reflect human visual perception. Traditional IQA techniques primarily rely on spatial features - such as signal-to-noise ratio, local structural distortions, and texture inconsistencies - to identify artifacts. While effective for unprocessed or conventionally altered images, these methods fall short in the context of modern image post-processing powered by deep neural networks (DNNs). The rise of DNN-based models for image generation, enhancement, and restoration has significantly improved visual quality, yet made accurate assessment increasingly complex. To address this, we propose a novel IQA approach that bridges the gap between deep learning methods and human perception. Our model disentangles deep features into high-level semantic information and low-level perceptual details, treating each stream separately. These features are then combined with conventional IQA metrics to provide a more comprehensive evaluation framework. This hybrid design enables the model to assess both global context and intricate image details, better reflecting the human visual process, which first interprets overall structure before attending to fine-grained elements. The final stage employs a multilayer perceptron (MLP) to map the integrated features into a concise quality score. Experimental results demonstrate that our method achieves improved consistency with human perceptual judgments compared to existing IQA models.
Range Image-Based Implicit Neural Compression for LiDAR Point Clouds
This paper presents a novel scheme to efficiently compress Light Detection and Ranging~(LiDAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way for a detailed understanding of the corresponding 3D scenes. We focus on 2D range images~(RIs) as a lightweight format for representing 3D LiDAR observations. Although conventional image compression techniques can be adapted to improve compression efficiency for RIs, their practical performance is expected to be limited due to differences in bit precision and the distinct pixel value distribution characteristics between natural images and RIs. We propose a novel implicit neural representation~(INR)--based RI compression method that effectively handles floating-point valued pixels. The proposed method divides RIs into depth and mask images and compresses them using patch-wise and pixel-wise INR architectures with model pruning and quantization, respectively. Experiments on the KITTI dataset show that the proposed method outperforms existing image, point cloud, RI, and INR-based compression methods in terms of 3D reconstruction and detection quality at low bitrates and decoding latency.
Visual and textual prompts for enhancing emotion recognition in video
Vision Large Language Models (VLLMs) exhibit promising potential for multi-modal understanding, yet their application to video-based emotion recognition remains limited by insufficient spatial and contextual awareness. Traditional approaches, which prioritize isolated facial features, often neglect critical non-verbal cues such as body language, environmental context, and social interactions, leading to reduced robustness in real-world scenarios. To address this gap, we propose Set-of-Vision-Text Prompting (SoVTP), a novel framework that enhances zero-shot emotion recognition by integrating spatial annotations (e.g., bounding boxes, facial landmarks), physiological signals (facial action units), and contextual cues (body posture, scene dynamics, others' emotions) into a unified prompting strategy. SoVTP preserves holistic scene information while enabling fine-grained analysis of facial muscle movements and interpersonal dynamics. Extensive experiments show that SoVTP achieves substantial improvements over existing visual prompting methods, demonstrating its effectiveness in enhancing VLLMs' video emotion recognition capabilities.
comment: 12 pages, 10 figures
Towards Generalizable Deepfake Detection with Spatial-Frequency Collaborative Learning and Hierarchical Cross-Modal Fusion
The rapid evolution of deep generative models poses a critical challenge to deepfake detection, as detectors trained on forgery-specific artifacts often suffer significant performance degradation when encountering unseen forgeries. While existing methods predominantly rely on spatial domain analysis, frequency domain operations are primarily limited to feature-level augmentation, leaving frequency-native artifacts and spatial-frequency interactions insufficiently exploited. To address this limitation, we propose a novel detection framework that integrates multi-scale spatial-frequency analysis for universal deepfake detection. Our framework comprises three key components: (1) a local spectral feature extraction pipeline that combines block-wise discrete cosine transform with cascaded multi-scale convolutions to capture subtle spectral artifacts; (2) a global spectral feature extraction pipeline utilizing scale-invariant differential accumulation to identify holistic forgery distribution patterns; and (3) a multi-stage cross-modal fusion mechanism that incorporates shallow-layer attention enhancement and deep-layer dynamic modulation to model spatial-frequency interactions. Extensive evaluations on widely adopted benchmarks demonstrate that our method outperforms state-of-the-art deepfake detection methods in both accuracy and generalizability.
MCAF: Efficient Agent-based Video Understanding Framework through Multimodal Coarse-to-Fine Attention Focusing
Even in the era of rapid advances in large models, video understanding, particularly long videos, remains highly challenging. Compared with textual or image-based information, videos commonly contain more information with redundancy, requiring large models to strategically allocate attention at a global level for accurate comprehension. To address this, we propose MCAF, an agent-based, training-free framework perform video understanding through Multimodal Coarse-to-fine Attention Focusing. The key innovation lies in its ability to sense and prioritize segments of the video that are highly relevant to the understanding task. First, MCAF hierarchically concentrates on highly relevant frames through multimodal information, enhancing the correlation between the acquired contextual information and the query. Second, it employs a dilated temporal expansion mechanism to mitigate the risk of missing crucial details when extracting information from these concentrated frames. In addition, our framework incorporates a self-reflection mechanism utilizing the confidence level of the model's responses as feedback. By iteratively applying these two creative focusing strategies, it adaptively adjusts attention to capture highly query-connected context and thus improves response accuracy. MCAF outperforms comparable state-of-the-art methods on average. On the EgoSchema dataset, it achieves a remarkable 5% performance gain over the leading approach. Meanwhile, on Next-QA and IntentQA datasets, it outperforms the current state-of-the-art standard by 0.2% and 0.3% respectively. On the Video-MME dataset, which features videos averaging nearly an hour in length, MCAF also outperforms other agent-based methods.
Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
comment: Project Page: https://apc-vlm.github.io/
We'll Fix it in Post: Improving Text-to-Video Generation with Neuro-Symbolic Feedback
Current text-to-video (T2V) generation models are increasingly popular due to their ability to produce coherent videos from textual prompts. However, these models often struggle to generate semantically and temporally consistent videos when dealing with longer, more complex prompts involving multiple objects or sequential events. Additionally, the high computational costs associated with training or fine-tuning make direct improvements impractical. To overcome these limitations, we introduce \(\projectname\), a novel zero-training video refinement pipeline that leverages neuro-symbolic feedback to automatically enhance video generation, achieving superior alignment with the prompts. Our approach first derives the neuro-symbolic feedback by analyzing a formal video representation and pinpoints semantically inconsistent events, objects, and their corresponding frames. This feedback then guides targeted edits to the original video. Extensive empirical evaluations on both open-source and proprietary T2V models demonstrate that \(\projectname\) significantly enhances temporal and logical alignment across diverse prompts by almost $40\%$.
AUTHENTICATION: Identifying Rare Failure Modes in Autonomous Vehicle Perception Systems using Adversarially Guided Diffusion Models
Autonomous Vehicles (AVs) rely on artificial intelligence (AI) to accurately detect objects and interpret their surroundings. However, even when trained using millions of miles of real-world data, AVs are often unable to detect rare failure modes (RFMs). The problem of RFMs is commonly referred to as the "long-tail challenge", due to the distribution of data including many instances that are very rarely seen. In this paper, we present a novel approach that utilizes advanced generative and explainable AI techniques to aid in understanding RFMs. Our methods can be used to enhance the robustness and reliability of AVs when combined with both downstream model training and testing. We extract segmentation masks for objects of interest (e.g., cars) and invert them to create environmental masks. These masks, combined with carefully crafted text prompts, are fed into a custom diffusion model. We leverage the Stable Diffusion inpainting model guided by adversarial noise optimization to generate images containing diverse environments designed to evade object detection models and expose vulnerabilities in AI systems. Finally, we produce natural language descriptions of the generated RFMs that can guide developers and policymakers to improve the safety and reliability of AV systems.
comment: 8 pages, 10 figures. Accepted to IEEE Conference on Artificial Intelligence (CAI), 2025
A Genealogy of Multi-Sensor Foundation Models in Remote Sensing
Foundation models have garnered increasing attention for representation learning in remote sensing, primarily adopting approaches that have demonstrated success in computer vision with minimal domain-specific modification. However, the development and application of foundation models in this field are still burgeoning, as there are a variety of competing approaches that each come with significant benefits and drawbacks. This paper examines these approaches along with their roots in the computer vision field in order to characterize potential advantages and pitfalls while outlining future directions to further improve remote sensing-specific foundation models. We discuss the quality of the learned representations and methods to alleviate the need for massive compute resources. We place emphasis on the multi-sensor aspect of Earth observations, and the extent to which existing approaches leverage multiple sensors in training foundation models in relation to multi-modal foundation models. Finally, we identify opportunities for further harnessing the vast amounts of unlabeled, seasonal, and multi-sensor remote sensing observations.
comment: 20 pages, submitted to ACM SigSpatial, currently under peer review
PhysioSync: Temporal and Cross-Modal Contrastive Learning Inspired by Physiological Synchronization for EEG-Based Emotion Recognition
Electroencephalography (EEG) signals provide a promising and involuntary reflection of brain activity related to emotional states, offering significant advantages over behavioral cues like facial expressions. However, EEG signals are often noisy, affected by artifacts, and vary across individuals, complicating emotion recognition. While multimodal approaches have used Peripheral Physiological Signals (PPS) like GSR to complement EEG, they often overlook the dynamic synchronization and consistent semantics between the modalities. Additionally, the temporal dynamics of emotional fluctuations across different time resolutions in PPS remain underexplored. To address these challenges, we propose PhysioSync, a novel pre-training framework leveraging temporal and cross-modal contrastive learning, inspired by physiological synchronization phenomena. PhysioSync incorporates Cross-Modal Consistency Alignment (CM-CA) to model dynamic relationships between EEG and complementary PPS, enabling emotion-related synchronizations across modalities. Besides, it introduces Long- and Short-Term Temporal Contrastive Learning (LS-TCL) to capture emotional synchronization at different temporal resolutions within modalities. After pre-training, cross-resolution and cross-modal features are hierarchically fused and fine-tuned to enhance emotion recognition. Experiments on DEAP and DREAMER datasets demonstrate PhysioSync's advanced performance under uni-modal and cross-modal conditions, highlighting its effectiveness for EEG-centered emotion recognition.
comment: The source code will be publicly available at https://github.com/MSA-LMC/PhysioSync
A Comprehensive Review on RNA Subcellular Localization Prediction
The subcellular localization of RNAs, including long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and other smaller RNAs, plays a critical role in determining their biological functions. For instance, lncRNAs are predominantly associated with chromatin and act as regulators of gene transcription and chromatin structure, while mRNAs are distributed across the nucleus and cytoplasm, facilitating the transport of genetic information for protein synthesis. Understanding RNA localization sheds light on processes like gene expression regulation with spatial and temporal precision. However, traditional wet lab methods for determining RNA localization, such as in situ hybridization, are often time-consuming, resource-demanding, and costly. To overcome these challenges, computational methods leveraging artificial intelligence (AI) and machine learning (ML) have emerged as powerful alternatives, enabling large-scale prediction of RNA subcellular localization. This paper provides a comprehensive review of the latest advancements in AI-based approaches for RNA subcellular localization prediction, covering various RNA types and focusing on sequence-based, image-based, and hybrid methodologies that combine both data types. We highlight the potential of these methods to accelerate RNA research, uncover molecular pathways, and guide targeted disease treatments. Furthermore, we critically discuss the challenges in AI/ML approaches for RNA subcellular localization, such as data scarcity and lack of benchmarks, and opportunities to address them. This review aims to serve as a valuable resource for researchers seeking to develop innovative solutions in the field of RNA subcellular localization and beyond.
OUI Need to Talk About Weight Decay: A New Perspective on Overfitting Detection
We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.
comment: 10 pages, 3 figures
iVR-GS: Inverse Volume Rendering for Explorable Visualization via Editable 3D Gaussian Splatting
In volume visualization, users can interactively explore the three-dimensional data by specifying color and opacity mappings in the transfer function (TF) or adjusting lighting parameters, facilitating meaningful interpretation of the underlying structure. However, rendering large-scale volumes demands powerful GPUs and high-speed memory access for real-time performance. While existing novel view synthesis (NVS) methods offer faster rendering speeds with lower hardware requirements, the visible parts of a reconstructed scene are fixed and constrained by preset TF settings, significantly limiting user exploration. This paper introduces inverse volume rendering via Gaussian splatting (iVR-GS), an innovative NVS method that reduces the rendering cost while enabling scene editing for interactive volume exploration. Specifically, we compose multiple iVR-GS models associated with basic TFs covering disjoint visible parts to make the entire volumetric scene visible. Each basic model contains a collection of 3D editable Gaussians, where each Gaussian is a 3D spatial point that supports real-time scene rendering and editing. We demonstrate the superior reconstruction quality and composability of iVR-GS against other NVS solutions (Plenoxels, CCNeRF, and base 3DGS) on various volume datasets. The code is available at https://github.com/TouKaienn/iVR-GS.
comment: Accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)
Spectral Bias Correction in PINNs for Myocardial Image Registration of Pathological Data
Accurate myocardial image registration is essential for cardiac strain analysis and disease diagnosis. However, spectral bias in neural networks impedes modeling high-frequency deformations, producing inaccurate, biomechanically implausible results, particularly in pathological data. This paper addresses spectral bias in physics-informed neural networks (PINNs) by integrating Fourier Feature mappings and introducing modulation strategies into a PINN framework. Experiments on two distinct datasets demonstrate that the proposed methods enhance the PINN's ability to capture complex, high-frequency deformations in cardiomyopathies, achieving superior registration accuracy while maintaining biomechanical plausibility - thus providing a foundation for scalable cardiac image registration and generalization across multiple patients and pathologies.
comment: 6 pages, 3 figures, 3 tables
Predicting Dairy Calf Body Weight from Depth Images Using Deep Learning (YOLOv8) and Threshold Segmentation with Cross-Validation and Longitudinal Analysis
Monitoring calf body weight (BW) before weaning is essential for assessing growth, feed efficiency, health, and weaning readiness. However, labor, time, and facility constraints limit BW collection. Additionally, Holstein calf coat patterns complicate image-based BW estimation, and few studies have explored non-contact measurements taken at early time points for predicting later BW. The objectives of this study were to (1) develop deep learning-based segmentation models for extracting calf body metrics, (2) compare deep learning segmentation with threshold-based methods, and (3) evaluate BW prediction using single-time-point cross-validation with linear regression (LR) and extreme gradient boosting (XGBoost) and multiple-time-point cross-validation with LR, XGBoost, and a linear mixed model (LMM). Depth images from Holstein (n = 63) and Jersey (n = 5) pre-weaning calves were collected, with 20 Holstein calves being weighed manually. Results showed that You Only Look Once version 8 (YOLOv8) deep learning segmentation (intersection over union = 0.98) outperformed threshold-based methods (0.89). In single-time-point cross-validation, XGBoost achieved the best BW prediction (R^2 = 0.91, mean absolute percentage error (MAPE) = 4.37%), while LMM provided the most accurate longitudinal BW prediction (R^2 = 0.99, MAPE = 2.39%). These findings highlight the potential of deep learning for automated BW prediction, enhancing farm management.
comment: Published on Animals, 18 March 2025
Masked strategies for images with small objects
The hematology analytics used for detection and classification of small blood components is a significant challenge. In particular, when objects exists as small pixel-sized entities in a large context of similar objects. Deep learning approaches using supervised models with pre-trained weights, such as residual networks and vision transformers have demonstrated success for many applications. Unfortunately, when applied to images outside the domain of learned representations, these methods often result with less than acceptable performance. A strategy to overcome this can be achieved by using self-supervised models, where representations are learned and weights are then applied for downstream applications. Recently, masked autoencoders have proven to be effective to obtain representations that captures global context information. By masking regions of an image and having the model learn to reconstruct both the masked and non-masked regions, weights can be used for various applications. However, if the sizes of the objects in images are less than the size of the mask, the global context information is lost, making it almost impossible to reconstruct the image. In this study, we investigated the effect of mask ratios and patch sizes for blood components using a MAE to obtain learned ViT encoder representations. We then applied the encoder weights to train a U-Net Transformer for semantic segmentation to obtain both local and global contextual information. Our experimental results demonstrates that both smaller mask ratios and patch sizes improve the reconstruction of images using a MAE. We also show the results of semantic segmentation with and without pre-trained weights, where smaller-sized blood components benefited with pre-training. Overall, our proposed method offers an efficient and effective strategy for the segmentation and classification of small objects.
CAMU: Context Augmentation for Meme Understanding ACM MM 2025
Social media memes are a challenging domain for hate detection because they intertwine visual and textual cues into culturally nuanced messages. We introduce a novel framework, CAMU, which leverages large vision-language models to generate more descriptive captions, a caption-scoring neural network to emphasise hate-relevant content, and parameter-efficient fine-tuning of CLIP's text encoder for an improved multimodal understanding of memes. Experiments on publicly available hateful meme datasets show that simple projection layer fine-tuning yields modest gains, whereas selectively tuning deeper text encoder layers significantly boosts performance on all evaluation metrics. Moreover, our approach attains high accuracy (0.807) and F1-score (0.806) on the Hateful Memes dataset, at par with the existing SoTA framework while being much more efficient, offering practical advantages in real-world scenarios that rely on fixed decision thresholds. CAMU also achieves the best F1-score of 0.673 on the MultiOFF dataset for offensive meme identification, demonstrating its generalisability. Additional analyses on benign confounders reveal that robust visual grounding and nuanced text representations are crucial for reliable hate and offence detection. We will publicly release CAMU along with the resultant models for further research. Disclaimer: This paper includes references to potentially disturbing, hateful, or offensive content due to the nature of the task.
comment: Under review at ACM MM 2025
Material Identification Via RFID For Smart Shopping
Cashierless stores rely on computer vision and RFID tags to associate shoppers with items, but concealed items placed in backpacks, pockets, or bags create challenges for theft prevention. We introduce a system that turns existing RFID tagged items into material sensors by exploiting how different containers attenuate and scatter RF signals. Using RSSI and phase angle, we trained a neural network to classify seven common containers. In a simulated retail environment, the model achieves 89% accuracy with one second samples and 74% accuracy from single reads. Incorporating distance measurements, our system achieves 82% accuracy across 0.3-2m tag to reader separations. When deployed at aisle or doorway choke points, the system can flag suspicious events in real time, prompting camera screening or staff intervention. By combining material identification with computer vision tracking, our system provides proactive loss prevention for cashierless retail while utilizing existing infrastructure.
comment: 5 pages, 7 figures
DCT-Shield: A Robust Frequency Domain Defense against Malicious Image Editing
Advancements in diffusion models have enabled effortless image editing via text prompts, raising concerns about image security. Attackers with access to user images can exploit these tools for malicious edits. Recent defenses attempt to protect images by adding a limited noise in the pixel space to disrupt the functioning of diffusion-based editing models. However, the adversarial noise added by previous methods is easily noticeable to the human eye. Moreover, most of these methods are not robust to purification techniques like JPEG compression under a feasible pixel budget. We propose a novel optimization approach that introduces adversarial perturbations directly in the frequency domain by modifying the Discrete Cosine Transform (DCT) coefficients of the input image. By leveraging the JPEG pipeline, our method generates adversarial images that effectively prevent malicious image editing. Extensive experiments across a variety of tasks and datasets demonstrate that our approach introduces fewer visual artifacts while maintaining similar levels of edit protection and robustness to noise purification techniques.
Token Sequence Compression for Efficient Multimodal Computing
The exponential growth of Large Multimodal Models (LMMs) has driven advancements in cross-modal reasoning but at significant computational costs. In this work, we focus on visual language models. We highlight the redundancy and inefficiency in current vision encoders, and seek to construct an adaptive compression method for multimodal data. In this work, we characterize a panoply of visual token selection and merging approaches through both benchmarking and qualitative analysis. In particular, we demonstrate that simple cluster-level token aggregation outperforms prior state-of-the-art works in token selection and merging, including merging at the vision encoder level and attention-based approaches. We underline the redundancy in current vision encoders, and shed light on several puzzling trends regarding principles of visual token selection through cross-modal attention visualizations. This work is a first effort towards more effective encoding and processing of high-dimensional data, and paves the way for more scalable and sustainable multimodal systems.
Set Phasers to Stun: Beaming Power and Control to Mobile Robots with Laser Light IROS 2025
We present Phaser, a flexible system that directs narrow-beam laser light to moving robots for concurrent wireless power delivery and communication. We design a semi-automatic calibration procedure to enable fusion of stereo-vision-based 3D robot tracking with high-power beam steering, and a low-power optical communication scheme that reuses the laser light as a data channel. We fabricate a Phaser prototype using off-the-shelf hardware and evaluate its performance with battery-free autonomous robots. Phaser delivers optical power densities of over 110 mW/cm$^2$ and error-free data to mobile robots at multi-meter ranges, with on-board decoding drawing 0.3 mA (97\% less current than Bluetooth Low Energy). We demonstrate Phaser fully powering gram-scale battery-free robots to nearly 2x higher speeds than prior work while simultaneously controlling them to navigate around obstacles and along paths. Code, an open-source design guide, and a demonstration video of Phaser is available at https://mobilex.cs.columbia.edu/phaser.
comment: 8 pages, 7 figures, submitted to IROS 2025
V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
Optimizing the similarity between parametric shapes is crucial for numerous computer vision tasks, where Intersection over Union (IoU) stands as the canonical measure. However, existing optimization methods exhibit significant shortcomings: regression-based losses like L1/L2 lack correlation with IoU, IoU-based losses are unstable and limited to simple shapes, and task-specific methods are computationally intensive and not generalizable accross domains. As a result, the current landscape of parametric shape objective functions has become scattered, with each domain proposing distinct IoU approximations. To address this, we unify the parametric shape optimization objective functions by introducing Marginalized Generalized IoU (MGIoU), a novel loss function that overcomes these challenges by projecting structured convex shapes onto their unique shape Normals to compute one-dimensional normalized GIoU. MGIoU offers a simple, efficient, fully differentiable approximation strongly correlated with IoU. We then extend MGIoU to MGIoU+ that supports optimizing unstructured convex shapes. Together, MGIoU and MGIoU+ unify parametric shape optimization across diverse applications. Experiments on standard benchmarks demonstrate that MGIoU and MGIoU+ consistently outperform existing losses while reducing loss computation latency by 10-40x. Additionally, MGIoU and MGIoU+ satisfy metric properties and scale-invariance, ensuring robustness as an objective function. We further propose MGIoU- for minimizing overlaps in tasks like collision-free trajectory prediction. Code is available at https://ldtho.github.io/MGIoU
comment: 8 pages
A New Graph Grammar Formalism for Robust Syntactic Pattern Recognition
I introduce a formalism for representing the syntax of recursively structured graph-like patterns. It does not use production rules, like a conventional graph grammar, but represents the syntactic structure in a more direct and declarative way. The grammar and the pattern are both represented as networks, and parsing is seen as the construction of a homomorphism from the pattern to the grammar. The grammars can represent iterative, hierarchical and nested recursive structure in more than one dimension. This supports a highly parallel style of parsing, in which all aspects of pattern recognition (feature detection, segmentation, parsing, filling in missing symbols, top-down and bottom-up inference) are integrated into a single process, to exploit the synergy between them. The emphasis of this paper is on underlying theoretical issues, but I also give some example runs to illustrate the error-tolerant parsing of complex recursively structured patterns of 50-1000 symbols, involving variability in geometric relationships, blurry and indistinct symbols, overlapping symbols, cluttered images, and erased patches.
comment: 64 pages, 23 figures. Version 2: mathematical supplement added, 98 pages, 1 figure
Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
HierarQ: Task-Aware Hierarchical Q-Former for Enhanced Video Understanding CVPR 2025
Despite advancements in multimodal large language models (MLLMs), current approaches struggle in medium-to-long video understanding due to frame and context length limitations. As a result, these models often depend on frame sampling, which risks missing key information over time and lacks task-specific relevance. To address these challenges, we introduce HierarQ, a task-aware hierarchical Q-Former based framework that sequentially processes frames to bypass the need for frame sampling, while avoiding LLM's context length limitations. We introduce a lightweight two-stream language-guided feature modulator to incorporate task awareness in video understanding, with the entity stream capturing frame-level object information within a short context and the scene stream identifying their broader interactions over longer period of time. Each stream is supported by dedicated memory banks which enables our proposed Hierachical Querying transformer (HierarQ) to effectively capture short and long-term context. Extensive evaluations on 10 video benchmarks across video understanding, question answering, and captioning tasks demonstrate HierarQ's state-of-the-art performance across most datasets, proving its robustness and efficiency for comprehensive video analysis.
comment: Accepted in CVPR 2025
DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images ICASSP 2025
The proliferation of digital microscopy images, driven by advances in automated whole slide scanning, presents significant opportunities for biomedical research and clinical diagnostics. However, accurately annotating densely packed information in these images remains a major challenge. To address this, we introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks. DiffKillR employs two complementary neural networks: one that learns a diffeomorphism-invariant feature space for robust cell matching and another that computes the precise warping field between cells for annotation mapping. Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling. More importantly, it is suitable for any type of pixel-level annotation. We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods. The code is available at https://github.com/KrishnaswamyLab/DiffKillR.
comment: ICASSP 2025, Oral Presentation
ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: ICASSP 2025, Oral Presentation
jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
Contrastive Language-Image Pretraining (CLIP) has been widely used for crossmodal information retrieval and multimodal understanding tasks. However, CLIP models are mainly optimized for crossmodal vision-language tasks and underperform in single-mode text tasks. Moreover, these models are often trained on English datasets and therefore lack multilingual understanding. Additionally, from a visual understanding perspective, previous CLIP-based models exhibit insufficient understanding of visually rich documents. In this work, we propose jina-clip-v2, a contrastive vision-language model trained on text pairs, triplets and image-text pairs via a multi-task and multi-stage contrastive learning paradigm in order to support both text-only and crossmodal tasks. We employ a multilingual text encoder and expand the training dataset to include multilingual texts from 29 non-English languages, including Hindi, Chinese, German, French, and others, as well as images of visually rich documents. We evaluate the model's performance and show that jina-clip-v2 achieves notable improvements over state-of-the-art CLIP-based models in zero-shot text-only retrieval, semantic textual similarity, and crossmodal retrieval tasks in both English and multilingual settings. jina-clip-v2 also provides for flexibility in embedding dimensionality, enabling users to select the granularity of the representations. jina-clip-v2 is publicly available at https://huggingface.co/jinaai/jina-clip-v2.
comment: 30 pages, 1-10 main paper, 10-12 refs, 12-30 benchmarks
DDU-Net: A Domain Decomposition-Based CNN for High-Resolution Image Segmentation on Multiple GPUs
The segmentation of ultra-high resolution images poses challenges such as loss of spatial information or computational inefficiency. In this work, a novel approach that combines encoder-decoder architectures with domain decomposition strategies to address these challenges is proposed. Specifically, a domain decomposition-based U-Net (DDU-Net) architecture is introduced, which partitions input images into non-overlapping patches that can be processed independently on separate devices. A communication network is added to facilitate inter-patch information exchange to enhance the understanding of spatial context. Experimental validation is performed on a synthetic dataset that is designed to measure the effectiveness of the communication network. Then, the performance is tested on the DeepGlobe land cover classification dataset as a real-world benchmark data set. The results demonstrate that the approach, which includes inter-patch communication for images divided into $16\times16$ non-overlapping subimages, achieves a $2-3\,\%$ higher intersection over union (IoU) score compared to the same network without inter-patch communication. The performance of the network which includes communication is equivalent to that of a baseline U-Net trained on the full image, showing that our model provides an effective solution for segmenting ultra-high-resolution images while preserving spatial context. The code is available at https://github.com/corne00/DDU-Net.
Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models with high efficiency through Flexible Progressive Supervised Fine-tuning (FP-SFT). Equipped with our proposed Unambiguous image Representation (UniRep), Lumina-mGPT can flexibly generate high-quality images of varying aspect ratios. Building on the strong image generation capabilities, we further explore Ominiponent Supervised Fine-tuning (Omni-SFT), an initial attempt to elevate Lumina-mGPT into a unified multi-modal generalist. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like text-to-image/multiview generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multi-turn visual question answering, showing the rosy potential of the technical direction. Codes and checkpoints are available at https://github.com/Alpha-VLLM/Lumina-mGPT.
comment: Code available at: https://github.com/Alpha-VLLM/Lumina-mGPT
Weak-to-Strong Diffusion with Reflection
The goal of diffusion generative models is to align the learned distribution with the real data distribution through gradient score matching. However, inherent limitations in training data quality, modeling strategies, and architectural design lead to inevitable gap between generated outputs and real data. To reduce this gap, we propose Weak-to-Strong Diffusion (W2SD), a novel framework that utilizes the estimated difference between existing weak and strong models (i.e., weak-to-strong difference) to bridge the gap between an ideal model and a strong model. By employing a reflective operation that alternates between denoising and inversion with weak-to-strong difference, we theoretically understand that W2SD steers latent variables along sampling trajectories toward regions of the real data distribution. W2SD is highly flexible and broadly applicable, enabling diverse improvements through the strategic selection of weak-to-strong model pairs (e.g., DreamShaper vs. SD1.5, good experts vs. bad experts in MoE). Extensive experiments demonstrate that W2SD significantly improves human preference, aesthetic quality, and prompt adherence, achieving SOTA performance across various modalities (e.g., image, video), architectures (e.g., UNet-based, DiT-based, MoE), and benchmarks. For example, Juggernaut-XL with W2SD can improve with the HPSv2 winning rate up to 90% over the original results. Moreover, the performance gains achieved by W2SD markedly outweigh its additional computational overhead, while the cumulative improvements from different weak-to-strong difference further solidify its practical utility and deployability.
comment: 23 pages, 23 figures, 15 tables
Contrastive Learning with Synthetic Positives
Contrastive learning with the nearest neighbor has proved to be one of the most efficient self-supervised learning (SSL) techniques by utilizing the similarity of multiple instances within the same class. However, its efficacy is constrained as the nearest neighbor algorithm primarily identifies "easy" positive pairs, where the representations are already closely located in the embedding space. In this paper, we introduce a novel approach called Contrastive Learning with Synthetic Positives (CLSP) that utilizes synthetic images, generated by an unconditional diffusion model, as the additional positives to help the model learn from diverse positives. Through feature interpolation in the diffusion model sampling process, we generate images with distinct backgrounds yet similar semantic content to the anchor image. These images are considered "hard" positives for the anchor image, and when included as supplementary positives in the contrastive loss, they contribute to a performance improvement of over 2% and 1% in linear evaluation compared to the previous NNCLR and All4One methods across multiple benchmark datasets such as CIFAR10, achieving state-of-the-art methods. On transfer learning benchmarks, CLSP outperforms existing SSL frameworks on 6 out of 8 downstream datasets. We believe CLSP establishes a valuable baseline for future SSL studies incorporating synthetic data in the training process.
comment: 8 pages, conference
ARF-Plus: Controlling Perceptual Factors in Artistic Radiance Fields for 3D Scene Stylization WACV 2025
The radiance fields style transfer is an emerging field that has recently gained popularity as a means of 3D scene stylization, thanks to the outstanding performance of neural radiance fields in 3D reconstruction and view synthesis. We highlight a research gap in radiance fields style transfer, the lack of sufficient perceptual controllability, motivated by the existing concept in the 2D image style transfer. In this paper, we present ARF-Plus, a 3D neural style transfer framework offering manageable control over perceptual factors, to systematically explore the perceptual controllability in 3D scene stylization. Four distinct types of controls - color preservation control, (style pattern) scale control, spatial (selective stylization area) control, and depth enhancement control - are proposed and integrated into this framework. Results from real-world datasets, both quantitative and qualitative, show that the four types of controls in our ARF-Plus framework successfully accomplish their corresponding perceptual controls when stylizing 3D scenes. These techniques work well for individual style inputs as well as for the simultaneous application of multiple styles within a scene. This unlocks a realm of limitless possibilities, allowing customized modifications of stylization effects and flexible merging of the strengths of different styles, ultimately enabling the creation of novel and eye-catching stylistic effects on 3D scenes.
comment: Accepted at WACV 2025. The published version is available at https://ieeexplore.ieee.org/document/10944114
Variational Self-Supervised Learning NeurIPS 2025
We present Variational Self-Supervised Learning (VSSL), a novel framework that combines variational inference with self-supervised learning to enable efficient, decoder-free representation learning. Unlike traditional VAEs that rely on input reconstruction via a decoder, VSSL symmetrically couples two encoders with Gaussian outputs. A momentum-updated teacher network defines a dynamic, data-dependent prior, while the student encoder produces an approximate posterior from augmented views. The reconstruction term in the ELBO is replaced with a cross-view denoising objective, preserving the analytical tractability of Gaussian KL divergence. We further introduce cosine-based formulations of KL and log-likelihood terms to enhance semantic alignment in high-dimensional latent spaces. Experiments on CIFAR-10, CIFAR-100, and ImageNet-100 show that VSSL achieves competitive or superior performance to leading self-supervised methods, including BYOL and MoCo V3. VSSL offers a scalable, probabilistically grounded approach to learning transferable representations without generative reconstruction, bridging the gap between variational modeling and modern self-supervised techniques.
comment: NeurIPS 2025 - SSL Workshop Submission
FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embedded in daily life, concurrently amplifying risks of misinformation dissemination. Consequently, multimodal fake news detection has garnered significant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public engagement, whereas professionally crafted fake news videos disseminated by media outlets, often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel dataset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture integrating CLIP and Faster R-CNN for video feature extraction, enhanced by co-attention mechanisms for feature refinement and multimodal aggregation. Comparative experiments demonstrate both the generalization capability of FMNV across multiple baselines and the superior detection efficacy of FMNVD. This work establishes critical benchmarks for detecting high-impact fake news in media ecosystems while advancing methodologies for cross-modal inconsistency analysis.
Continuous and complete liver vessel segmentation with graph-attention guided diffusion
Improving connectivity and completeness are the most challenging aspects of liver vessel segmentation, especially for small vessels. These challenges require both learning the continuous vessel geometry and focusing on small vessel detection. However, current methods do not explicitly address these two aspects and cannot generalize well when constrained by inconsistent annotations. Here, we take advantage of the generalization of the diffusion model and explicitly integrate connectivity and completeness in our diffusion-based segmentation model. Specifically, we use a graph-attention module that adds knowledge about vessel geometry. Additionally, we perform the graph-attention at multiple-scales, thus focusing on small liver vessels. Our method outperforms five state-of-the-art medical segmentation methods on two public datasets: 3D-ircadb-01 and LiVS.
comment: Second version
Latent Representations for Visual Proprioception in Inexpensive Robots
Robotic manipulation requires explicit or implicit knowledge of the robot's joint positions. Precise proprioception is standard in high-quality industrial robots but is often unavailable in inexpensive robots operating in unstructured environments. In this paper, we ask: to what extent can a fast, single-pass regression architecture perform visual proprioception from a single external camera image, available even in the simplest manipulation settings? We explore several latent representations, including CNNs, VAEs, ViTs, and bags of uncalibrated fiducial markers, using fine-tuning techniques adapted to the limited data available. We evaluate the achievable accuracy through experiments on an inexpensive 6-DoF robot.
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification CVPR 2025
Visual transformers have achieved remarkable performance in image classification tasks, but this performance gain has come at the cost of interpretability. One of the main obstacles to the interpretation of transformers is the self-attention mechanism, which mixes visual information across the whole image in a complex way. In this paper, we propose Hindered Transformer (HiT), a novel interpretable by design architecture inspired by visual transformers. Our proposed architecture rethinks the design of transformers to better disentangle patch influences at the classification stage. Ultimately, HiT can be interpreted as a linear combination of patch-level information. We show that the advantages of our approach in terms of explicability come with a reasonable trade-off in performance, making it an attractive alternative for applications where interpretability is paramount.
comment: CVPR 2025 official version. Main manuscript + supplementary
ObjectAdd: Adding Objects into Image via a Training-Free Diffusion Modification Fashion
We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
comment: 13 pages in total
AgentsCoMerge: Large Language Model Empowered Collaborative Decision Making for Ramp Merging
Ramp merging is one of the bottlenecks in traffic systems, which commonly cause traffic congestion, accidents, and severe carbon emissions. In order to address this essential issue and enhance the safety and efficiency of connected and autonomous vehicles (CAVs) at multi-lane merging zones, we propose a novel collaborative decision-making framework, named AgentsCoMerge, to leverage large language models (LLMs). Specifically, we first design a scene observation and understanding module to allow an agent to capture the traffic environment. Then we propose a hierarchical planning module to enable the agent to make decisions and plan trajectories based on the observation and the agent's own state. In addition, in order to facilitate collaboration among multiple agents, we introduce a communication module to enable the surrounding agents to exchange necessary information and coordinate their actions. Finally, we develop a reinforcement reflection guided training paradigm to further enhance the decision-making capability of the framework. Extensive experiments are conducted to evaluate the performance of our proposed method, demonstrating its superior efficiency and effectiveness for multi-agent collaborative decision-making under various ramp merging scenarios.
comment: Accepted by IEEE Transactions on Mobile Computing (TMC)
Causal Disentanglement for Robust Long-tail Medical Image Generation
Counterfactual medical image generation effectively addresses data scarcity and enhances the interpretability of medical images. However, due to the complex and diverse pathological features of medical images and the imbalanced class distribution in medical data, generating high-quality and diverse medical images from limited data is significantly challenging. Additionally, to fully leverage the information in limited data, such as anatomical structure information and generate more structurally stable medical images while avoiding distortion or inconsistency. In this paper, in order to enhance the clinical relevance of generated data and improve the interpretability of the model, we propose a novel medical image generation framework, which generates independent pathological and structural features based on causal disentanglement and utilizes text-guided modeling of pathological features to regulate the generation of counterfactual images. First, we achieve feature separation through causal disentanglement and analyze the interactions between features. Here, we introduce group supervision to ensure the independence of pathological and identity features. Second, we leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images. Meanwhile, we enhance accuracy by leveraging a large language model to extract lesion severity and location from medical reports. Additionally, we improve the performance of the latent diffusion model on long-tailed categories through initial noise optimization.
PhysFlow: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation CVPR 2025
Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce PhysFlow, a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
comment: CVPR 2025. Homepage: https://zhuomanliu.github.io/PhysFlow/
Large-image Object Detection for Fine-grained Recognition of Punches Patterns in Medieval Panel Painting
The attribution of the author of an art piece is typically a laborious manual process, usually relying on subjective evaluations of expert figures. However, there are some situations in which quantitative features of the artwork can support these evaluations. The extraction of these features can sometimes be automated, for instance, with the use of Machine Learning (ML) techniques. An example of these features is represented by repeated, mechanically impressed patterns, called punches, present chiefly in 13th and 14th-century panel paintings from Tuscany. Previous research in art history showcased a strong connection between the shapes of punches and specific artists or workshops, suggesting the possibility of using these quantitative cues to support the attribution. In the present work, we first collect a dataset of large-scale images of these panel paintings. Then, using YOLOv10, a recent and popular object detection model, we train a ML pipeline to perform object detection on the punches contained in the images. Due to the large size of the images, the detection procedure is split across multiple frames by adopting a sliding-window approach with overlaps, after which the predictions are combined for the whole image using a custom non-maximal suppression routine. Our results indicate how art historians working in the field can reliably use our method for the identification and extraction of punches.
Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.
QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning ICRA 2025
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
comment: Accepted to ICRA 2025; Github page: https://quart-online.github.io
Review of Demographic Fairness in Face Recognition
Demographic fairness in face recognition (FR) has emerged as a critical area of research, given its impact on fairness, equity, and reliability across diverse applications. As FR technologies are increasingly deployed globally, disparities in performance across demographic groups-- such as race, ethnicity, and gender-- have garnered significant attention. These biases not only compromise the credibility of FR systems but also raise ethical concerns, especially when these technologies are employed in sensitive domains. This review consolidates extensive research efforts providing a comprehensive overview of the multifaceted aspects of demographic fairness in FR. We systematically examine the primary causes, datasets, assessment metrics, and mitigation approaches associated with demographic disparities in FR. By categorizing key contributions in these areas, this work provides a structured approach to understanding and addressing the complexity of this issue. Finally, we highlight current advancements and identify emerging challenges that need further investigation. This article aims to provide researchers with a unified perspective on the state-of-the-art while emphasizing the critical need for equitable and trustworthy FR systems.
comment: under review
3D-LLaVA: Towards Generalist 3D LMMs with Omni Superpoint Transformer CVPR 2025
Current 3D Large Multimodal Models (3D LMMs) have shown tremendous potential in 3D-vision-based dialogue and reasoning. However, how to further enhance 3D LMMs to achieve fine-grained scene understanding and facilitate flexible human-agent interaction remains a challenging problem. In this work, we introduce 3D-LLaVA, a simple yet highly powerful 3D LMM designed to act as an intelligent assistant in comprehending, reasoning, and interacting with the 3D world. Unlike existing top-performing methods that rely on complicated pipelines-such as offline multi-view feature extraction or additional task-specific heads-3D-LLaVA adopts a minimalist design with integrated architecture and only takes point clouds as input. At the core of 3D-LLaVA is a new Omni Superpoint Transformer (OST), which integrates three functionalities: (1) a visual feature selector that converts and selects visual tokens, (2) a visual prompt encoder that embeds interactive visual prompts into the visual token space, and (3) a referring mask decoder that produces 3D masks based on text description. This versatile OST is empowered by the hybrid pretraining to obtain perception priors and leveraged as the visual connector that bridges the 3D data to the LLM. After performing unified instruction tuning, our 3D-LLaVA reports impressive results on various benchmarks.
comment: Accepted by CVPR 2025
Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than videos of existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
OmniMamba4D: Spatio-temporal Mamba for longitudinal CT lesion segmentation
Accurate segmentation of longitudinal CT scans is important for monitoring tumor progression and evaluating treatment responses. However, existing 3D segmentation models solely focus on spatial information. To address this gap, we propose OmniMamba4D, a novel segmentation model designed for 4D medical images (3D images over time). OmniMamba4D utilizes a spatio-temporal tetra-orientated Mamba block to effectively capture both spatial and temporal features. Unlike traditional 3D models, which analyze single-time points, OmniMamba4D processes 4D CT data, providing comprehensive spatio-temporal information on lesion progression. Evaluated on an internal dataset comprising of 3,252 CT scans, OmniMamba4D achieves a competitive Dice score of 0.682, comparable to state-of-the-arts (SOTA) models, while maintaining computational efficiency and better detecting disappeared lesions. This work demonstrates a new framework to leverage spatio-temporal information for longitudinal CT lesion segmentation.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025
How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; however, their ability to perform Theory of Mind (ToM) tasks, such as inferring human intentions, beliefs, and mental states, remains underexplored. We propose an open-ended question framework to evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset of 30 images and evaluated the performance of four VLMs of varying sizes. Our results show that the GPT-4 model outperformed all the others, with only one smaller model, GPT-4o-mini, achieving comparable performance. We observed that VLMs often struggle to infer intentions in complex scenarios such as bullying or cheating. Our findings reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues. The dataset is available at https://github.com/ximingwen/ToM-AAAI25-Multimodal.
comment: 4 pages, accepted by ToM@AAAI25
Diffusion Models Are Real-Time Game Engines ICLR 2025
We present GameNGen, the first game engine powered entirely by a neural model that also enables real-time interaction with a complex environment over long trajectories at high quality. When trained on the classic game DOOM, GameNGen extracts gameplay and uses it to generate a playable environment that can interactively simulate new trajectories. GameNGen runs at 20 frames per second on a single TPU and remains stable over extended multi-minute play sessions. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation, even after 5 minutes of auto-regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations help ensure stable auto-regressive generation over long trajectories, and decoder fine-tuning improves the fidelity of visual details and text.
comment: ICLR 2025. Project page: https://gamengen.github.io/
On the Generalizability of Foundation Models for Crop Type Mapping
Foundation models pre-trained using self-supervised learning have shown powerful transfer learning capabilities on various downstream tasks, including language understanding, text generation, and image recognition. The Earth observation (EO) field has produced several foundation models pre-trained directly on multispectral satellite imagery for applications like precision agriculture, wildfire and drought monitoring, and natural disaster response. However, few studies have investigated the ability of these models to generalize to new geographic locations, and potential concerns of geospatial bias -- models trained on data-rich developed nations not transferring well to data-scarce developing nations -- remain. We investigate the ability of popular EO foundation models to transfer to new geographic regions in the agricultural domain, where differences in farming practices and class imbalance make transfer learning particularly challenging. We first select five crop classification datasets across five continents, normalizing for dataset size and harmonizing classes to focus on four major cereal grains: maize, soybean, rice, and wheat. We then compare three popular foundation models, pre-trained on SSL4EO-S12, SatlasPretrain, and ImageNet, using in-distribution (ID) and out-of-distribution (OOD) evaluation. Experiments show that pre-trained weights designed explicitly for Sentinel-2, such as SSL4EO-S12, outperform general pre-trained weights like ImageNet. Furthermore, while only 100 labeled images are sufficient for achieving high overall accuracy, 900 images are required to achieve high average accuracy due to class imbalance. All harmonized datasets and experimental code are open-source and available for download.
RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
Neuro-Symbolic Evaluation of Text-to-Video Models using Formal Verification
Recent advancements in text-to-video models such as Sora, Gen-3, MovieGen, and CogVideoX are pushing the boundaries of synthetic video generation, with adoption seen in fields like robotics, autonomous driving, and entertainment. As these models become prevalent, various metrics and benchmarks have emerged to evaluate the quality of the generated videos. However, these metrics emphasize visual quality and smoothness, neglecting temporal fidelity and text-to-video alignment, which are crucial for safety-critical applications. To address this gap, we introduce NeuS-V, a novel synthetic video evaluation metric that rigorously assesses text-to-video alignment using neuro-symbolic formal verification techniques. Our approach first converts the prompt into a formally defined Temporal Logic (TL) specification and translates the generated video into an automaton representation. Then, it evaluates the text-to-video alignment by formally checking the video automaton against the TL specification. Furthermore, we present a dataset of temporally extended prompts to evaluate state-of-the-art video generation models against our benchmark. We find that NeuS-V demonstrates a higher correlation by over 5x with human evaluations when compared to existing metrics. Our evaluation further reveals that current video generation models perform poorly on these temporally complex prompts, highlighting the need for future work in improving text-to-video generation capabilities.
Importance-Based Token Merging for Efficient Image and Video Generation
Token merging can effectively accelerate various vision systems by processing groups of similar tokens only once and sharing the results across them. However, existing token grouping methods are often ad hoc and random, disregarding the actual content of the samples. We show that preserving high-information tokens during merging - those essential for semantic fidelity and structural details - significantly improves sample quality, producing finer details and more coherent, realistic generations. Despite being simple and intuitive, this approach remains underexplored. To do so, we propose an importance-based token merging method that prioritizes the most critical tokens in computational resource allocation, leveraging readily available importance scores, such as those from classifier-free guidance in diffusion models. Experiments show that our approach significantly outperforms baseline methods across multiple applications, including text-to-image synthesis, multi-view image generation, and video generation with various model architectures such as Stable Diffusion, Zero123++, AnimateDiff, or PixArt-$\alpha$.
Unified Video Action Model
A unified video and action model holds significant promise for robotics, where videos provide rich scene information for action prediction, and actions provide dynamics information for video prediction. However, effectively combining video generation and action prediction remains challenging, and current video generation-based methods struggle to match the performance of direct policy learning in action accuracy and inference speed. To bridge this gap, we introduce the Unified Video Action model (UVA), which jointly optimizes video and action predictions to achieve both high accuracy and efficient action inference. The key lies in learning a joint video-action latent representation and decoupling video-action decoding. The joint latent representation bridges the visual and action domains, effectively modeling the relationship between video and action sequences. Meanwhile, the decoupled decoding, powered by two lightweight diffusion heads, enables high-speed action inference by bypassing video generation during inference. Such a unified framework further enables versatile functionality through masked input training. By selectively masking actions or videos, a single model can tackle diverse tasks beyond policy learning, such as forward and inverse dynamics modeling and video generation. Via an extensive set of experiments, we demonstrate that UVA can serve as a general-purpose solution for a wide range of robotics tasks, such as policy learning, forward/inverse dynamics and video observation prediction, without compromising performance compared to methods tailored for specific applications. Results are best viewed on https://unified-video-action-model.github.io/.
comment: Project website: https://unified-video-action-model.github.io/
GaussianBlock: Building Part-Aware Compositional and Editable 3D Scene by Primitives and Gaussians
Recently, with the development of Neural Radiance Fields and Gaussian Splatting, 3D reconstruction techniques have achieved remarkably high fidelity. However, the latent representations learnt by these methods are highly entangled and lack interpretability. In this paper, we propose a novel part-aware compositional reconstruction method, called GaussianBlock, that enables semantically coherent and disentangled representations, allowing for precise and physical editing akin to building blocks, while simultaneously maintaining high fidelity. Our GaussianBlock introduces a hybrid representation that leverages the advantages of both primitives, known for their flexible actionability and editability, and 3D Gaussians, which excel in reconstruction quality. Specifically, we achieve semantically coherent primitives through a novel attention-guided centering loss derived from 2D semantic priors, complemented by a dynamic splitting and fusion strategy. Furthermore, we utilize 3D Gaussians that hybridize with primitives to refine structural details and enhance fidelity. Additionally, a binding inheritance strategy is employed to strengthen and maintain the connection between the two. Our reconstructed scenes are evidenced to be disentangled, compositional, and compact across diverse benchmarks, enabling seamless, direct and precise editing while maintaining high quality.
Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation ACM MM 2025
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
comment: 11 pages, 4 figures, Submitted to ACM MM 2025
A Temporal Convolutional Network-Based Approach and a Benchmark Dataset for Colonoscopy Video Temporal Segmentation
Following recent advancements in computer-aided detection and diagnosis systems for colonoscopy, the automated reporting of colonoscopy procedures is set to further revolutionize clinical practice. A crucial yet underexplored aspect in the development of these systems is the creation of computer vision models capable of autonomously segmenting full-procedure colonoscopy videos into anatomical sections and procedural phases. In this work, we aim to create the first open-access dataset for this task and propose a state-of-the-art approach, benchmarked against competitive models. We annotated the publicly available REAL-Colon dataset, consisting of 2.7 million frames from 60 complete colonoscopy videos, with frame-level labels for anatomical locations and colonoscopy phases across nine categories. We then present ColonTCN, a learning-based architecture that employs custom temporal convolutional blocks designed to efficiently capture long temporal dependencies for the temporal segmentation of colonoscopy videos. We also propose a dual k-fold cross-validation evaluation protocol for this benchmark, which includes model assessment on unseen, multi-center data.ColonTCN achieves state-of-the-art performance in classification accuracy while maintaining a low parameter count when evaluated using the two proposed k-fold cross-validation settings, outperforming competitive models. We report ablation studies to provide insights into the challenges of this task and highlight the benefits of the custom temporal convolutional blocks, which enhance learning and improve model efficiency. We believe that the proposed open-access benchmark and the ColonTCN approach represent a significant advancement in the temporal segmentation of colonoscopy procedures, fostering further open-access research to address this clinical need.
Improving Consistency in Diffusion Models for Image Super-Resolution
Recent methods exploit the powerful text-to-image (T2I) diffusion models for real-world image super-resolution (Real-ISR) and achieve impressive results compared to previous models. However, we observe two kinds of inconsistencies in diffusion-based methods which hinder existing models from fully exploiting diffusion priors. The first is the semantic inconsistency arising from diffusion guidance. T2I generation focuses on semantic-level consistency with text prompts, while Real-ISR emphasizes pixel-level reconstruction from low-quality (LQ) images, necessitating more detailed semantic guidance from LQ inputs. The second is the training-inference inconsistency stemming from the DDPM, which improperly assumes high-quality (HQ) latent corrupted by Gaussian noise as denoising inputs for each timestep. To address these issues, we introduce ConsisSR to handle both semantic and training-inference consistencies. On the one hand, to address the semantic inconsistency, we proposed a Hybrid Prompt Adapter (HPA). Instead of text prompts with coarse-grained classification information, we leverage the more powerful CLIP image embeddings to explore additional color and texture guidance. On the other hand, we introduce Time-Aware Latent Augmentation (TALA) to bridge the training-inference inconsistency. Based on the probability function p(t), we accordingly enhance the SDSR training strategy. With LQ latent with Gaussian noise as inputs, our TALA not only focuses on diffusion noise but also refine the LQ latent towards the HQ counterpart. Our method demonstrates state-of-the-art performance among existing diffusion models. The code will be made publicly available.
FACTR: Force-Attending Curriculum Training for Contact-Rich Policy Learning
Many contact-rich tasks humans perform, such as box pickup or rolling dough, rely on force feedback for reliable execution. However, this force information, which is readily available in most robot arms, is not commonly used in teleoperation and policy learning. Consequently, robot behavior is often limited to quasi-static kinematic tasks that do not require intricate force-feedback. In this paper, we first present a low-cost, intuitive, bilateral teleoperation setup that relays external forces of the follower arm back to the teacher arm, facilitating data collection for complex, contact-rich tasks. We then introduce FACTR, a policy learning method that employs a curriculum which corrupts the visual input with decreasing intensity throughout training. The curriculum prevents our transformer-based policy from over-fitting to the visual input and guides the policy to properly attend to the force modality. We demonstrate that by fully utilizing the force information, our method significantly improves generalization to unseen objects by 43\% compared to baseline approaches without a curriculum. Video results, codebases, and instructions at https://jasonjzliu.com/factr/
comment: Video results, codebases, and instructions: https://jasonjzliu.com/factr/
Beyond Fixed Topologies: Unregistered Training and Comprehensive Evaluation Metrics for 3D Talking Heads
Generating speech-driven 3D talking heads presents numerous challenges; among those is dealing with varying mesh topologies where no point-wise correspondence exists across all meshes the model can animate. While simplifying the problem, it limits applicability as unseen meshes must adhere to the training topology. This work presents a framework capable of animating 3D faces in arbitrary topologies, including real scanned data. Our approach relies on a model leveraging heat diffusion to predict features robust to the mesh topology. We explore two training settings: a registered one, in which meshes in a training sequences share a fixed topology but any mesh can be animated at test time, and an fully unregistered one, which allows effective training with varying mesh structures. Additionally, we highlight the limitations of current evaluation metrics and propose new metrics for better lip-syncing evaluation between speech and facial movements. Our extensive evaluation shows our approach performs favorably compared to fixed topology techniques, setting a new benchmark by offering a versatile and high-fidelity solution for 3D talking head generation where the topology constraint is dropped.
comment: https://fedenoce.github.io/scantalk/
Scaling Open-Vocabulary Action Detection
In this work, we focus on scaling open-vocabulary action detection. Existing approaches for action detection are predominantly limited to closed-set scenarios and rely on complex, parameter-heavy architectures. Extending these models to the open-vocabulary setting poses two key challenges: (1) the lack of large-scale datasets with many action classes for robust training, and (2) parameter-heavy adaptations to a pretrained vision-language contrastive model to convert it for detection, risking overfitting the additional non-pretrained parameters to base action classes. Firstly, we introduce an encoder-only multimodal model for video action detection, reducing the reliance on parameter-heavy additions for video action detection. Secondly, we introduce a simple weakly supervised training strategy to exploit an existing closed-set action detection dataset for pretraining. Finally, we depart from the ill-posed base-to-novel benchmark used by prior works in open-vocabulary action detection and devise a new benchmark to evaluate on existing closed-set action detection datasets without ever using them for training, showing novel results to serve as baselines for future work. Our code is available at: https://siatheindochinese.github.io/sia_act_page/
Image and Video Processing
Self-Supervised Noise Adaptive MRI Denoising via Repetition to Repetition (Rep2Rep) Learning
Purpose: This work proposes a novel self-supervised noise-adaptive image denoising framework, called Repetition to Repetition (Rep2Rep) learning, for low-field (<1T) MRI applications. Methods: Rep2Rep learning extends the Noise2Noise framework by training a neural network on two repeated MRI acquisitions, using one repetition as input and another as target, without requiring ground-truth data. It incorporates noise-adaptive training, enabling denoising generalization across varying noise levels and flexible inference with any number of repetitions. Performance was evaluated on both synthetic noisy brain MRI and 0.55T prostate MRI data, and compared against supervised learning and Monte Carlo Stein's Unbiased Risk Estimator (MC-SURE). Results: Rep2Rep learning outperforms MC-SURE on both synthetic and 0.55T MRI datasets. On synthetic brain data, it achieved denoising quality comparable to supervised learning and surpassed MC-SURE, particularly in preserving structural details and reducing residual noise. On the 0.55T prostate MRI dataset, a reader study showed radiologists preferred Rep2Rep-denoised 2-average images over 8-average noisy images. Rep2Rep demonstrated robustness to noise-level discrepancies between training and inference, supporting its practical implementation. Conclusion: Rep2Rep learning offers an effective self-supervised denoising for low-field MRI by leveraging routinely acquired multi-repetition data. Its noise-adaptivity enables generalization to different SNR regimes without clean reference images. This makes Rep2Rep learning a promising tool for improving image quality and scan efficiency in low-field MRI.
comment: 13 pages, 9 figures, 1 table, supplementary information at end of document
Beyond Labels: Zero-Shot Diabetic Foot Ulcer Wound Segmentation with Self-attention Diffusion Models and the Potential for Text-Guided Customization
Diabetic foot ulcers (DFUs) pose a significant challenge in healthcare, requiring precise and efficient wound assessment to enhance patient outcomes. This study introduces the Attention Diffusion Zero-shot Unsupervised System (ADZUS), a novel text-guided diffusion model that performs wound segmentation without relying on labeled training data. Unlike conventional deep learning models, which require extensive annotation, ADZUS leverages zero-shot learning to dynamically adapt segmentation based on descriptive prompts, offering enhanced flexibility and adaptability in clinical applications. Experimental evaluations demonstrate that ADZUS surpasses traditional and state-of-the-art segmentation models, achieving an IoU of 86.68\% and the highest precision of 94.69\% on the chronic wound dataset, outperforming supervised approaches such as FUSegNet. Further validation on a custom-curated DFU dataset reinforces its robustness, with ADZUS achieving a median DSC of 75\%, significantly surpassing FUSegNet's 45\%. The model's text-guided segmentation capability enables real-time customization of segmentation outputs, allowing targeted analysis of wound characteristics based on clinical descriptions. Despite its competitive performance, the computational cost of diffusion-based inference and the need for potential fine-tuning remain areas for future improvement. ADZUS represents a transformative step in wound segmentation, providing a scalable, efficient, and adaptable AI-driven solution for medical imaging.
comment: 12 pages, 8 figures, journal article
An Explainable Nature-Inspired Framework for Monkeypox Diagnosis: Xception Features Combined with NGBoost and African Vultures Optimization Algorithm
The recent global spread of monkeypox, particularly in regions where it has not historically been prevalent, has raised significant public health concerns. Early and accurate diagnosis is critical for effective disease management and control. In response, this study proposes a novel deep learning-based framework for the automated detection of monkeypox from skin lesion images, leveraging the power of transfer learning, dimensionality reduction, and advanced machine learning techniques. We utilize the newly developed Monkeypox Skin Lesion Dataset (MSLD), which includes images of monkeypox, chickenpox, and measles, to train and evaluate our models. The proposed framework employs the Xception architecture for deep feature extraction, followed by Principal Component Analysis (PCA) for dimensionality reduction, and the Natural Gradient Boosting (NGBoost) algorithm for classification. To optimize the model's performance and generalization, we introduce the African Vultures Optimization Algorithm (AVOA) for hyperparameter tuning, ensuring efficient exploration of the parameter space. Our results demonstrate that the proposed AVOA-NGBoost model achieves state-of-the-art performance, with an accuracy of 97.53%, F1-score of 97.72% and an AUC of 97.47%. Additionally, we enhance model interpretability using Grad-CAM and LIME techniques, providing insights into the decision-making process and highlighting key features influencing classification. This framework offers a highly precise and efficient diagnostic tool, potentially aiding healthcare providers in early detection and diagnosis, particularly in resource-constrained environments.
A Spatially-Aware Multiple Instance Learning Framework for Digital Pathology
Multiple instance learning (MIL) is a promising approach for weakly supervised classification in pathology using whole slide images (WSIs). However, conventional MIL methods such as Attention-Based Deep Multiple Instance Learning (ABMIL) typically disregard spatial interactions among patches that are crucial to pathological diagnosis. Recent advancements, such as Transformer based MIL (TransMIL), have incorporated spatial context and inter-patch relationships. However, it remains unclear whether explicitly modeling patch relationships yields similar performance gains in ABMIL, which relies solely on Multi-Layer Perceptrons (MLPs). In contrast, TransMIL employs Transformer-based layers, introducing a fundamental architectural shift at the cost of substantially increased computational complexity. In this work, we enhance the ABMIL framework by integrating interaction-aware representations to address this question. Our proposed model, Global ABMIL (GABMIL), explicitly captures inter-instance dependencies while preserving computational efficiency. Experimental results on two publicly available datasets for tumor subtyping in breast and lung cancers demonstrate that GABMIL achieves up to a 7 percentage point improvement in AUPRC and a 5 percentage point increase in the Kappa score over ABMIL, with minimal or no additional computational overhead. These findings underscore the importance of incorporating patch interactions within MIL frameworks.
3D Deep-learning-based Segmentation of Human Skin Sweat Glands and Their 3D Morphological Response to Temperature Variations
Skin, the primary regulator of heat exchange, relies on sweat glands for thermoregulation. Alterations in sweat gland morphology play a crucial role in various pathological conditions and clinical diagnoses. Current methods for observing sweat gland morphology are limited by their two-dimensional, in vitro, and destructive nature, underscoring the urgent need for real-time, non-invasive, quantifiable technologies. We proposed a novel three-dimensional (3D) transformer-based multi-object segmentation framework, integrating a sliding window approach, joint spatial-channel attention mechanism, and architectural heterogeneity between shallow and deep layers. Our proposed network enables precise 3D sweat gland segmentation from skin volume data captured by optical coherence tomography (OCT). For the first time, subtle variations of sweat gland 3D morphology in response to temperature changes, have been visualized and quantified. Our approach establishes a benchmark for normal sweat gland morphology and provides a real-time, non-invasive tool for quantifying 3D structural parameters. This enables the study of individual variability and pathological changes in sweat gland structure, advancing dermatological research and clinical applications, including thermoregulation and bromhidrosis treatment.
Spectral Bias Correction in PINNs for Myocardial Image Registration of Pathological Data
Accurate myocardial image registration is essential for cardiac strain analysis and disease diagnosis. However, spectral bias in neural networks impedes modeling high-frequency deformations, producing inaccurate, biomechanically implausible results, particularly in pathological data. This paper addresses spectral bias in physics-informed neural networks (PINNs) by integrating Fourier Feature mappings and introducing modulation strategies into a PINN framework. Experiments on two distinct datasets demonstrate that the proposed methods enhance the PINN's ability to capture complex, high-frequency deformations in cardiomyopathies, achieving superior registration accuracy while maintaining biomechanical plausibility - thus providing a foundation for scalable cardiac image registration and generalization across multiple patients and pathologies.
comment: 6 pages, 3 figures, 3 tables
Predicting Dairy Calf Body Weight from Depth Images Using Deep Learning (YOLOv8) and Threshold Segmentation with Cross-Validation and Longitudinal Analysis
Monitoring calf body weight (BW) before weaning is essential for assessing growth, feed efficiency, health, and weaning readiness. However, labor, time, and facility constraints limit BW collection. Additionally, Holstein calf coat patterns complicate image-based BW estimation, and few studies have explored non-contact measurements taken at early time points for predicting later BW. The objectives of this study were to (1) develop deep learning-based segmentation models for extracting calf body metrics, (2) compare deep learning segmentation with threshold-based methods, and (3) evaluate BW prediction using single-time-point cross-validation with linear regression (LR) and extreme gradient boosting (XGBoost) and multiple-time-point cross-validation with LR, XGBoost, and a linear mixed model (LMM). Depth images from Holstein (n = 63) and Jersey (n = 5) pre-weaning calves were collected, with 20 Holstein calves being weighed manually. Results showed that You Only Look Once version 8 (YOLOv8) deep learning segmentation (intersection over union = 0.98) outperformed threshold-based methods (0.89). In single-time-point cross-validation, XGBoost achieved the best BW prediction (R^2 = 0.91, mean absolute percentage error (MAPE) = 4.37%), while LMM provided the most accurate longitudinal BW prediction (R^2 = 0.99, MAPE = 2.39%). These findings highlight the potential of deep learning for automated BW prediction, enhancing farm management.
comment: Published on Animals, 18 March 2025
Masked strategies for images with small objects
The hematology analytics used for detection and classification of small blood components is a significant challenge. In particular, when objects exists as small pixel-sized entities in a large context of similar objects. Deep learning approaches using supervised models with pre-trained weights, such as residual networks and vision transformers have demonstrated success for many applications. Unfortunately, when applied to images outside the domain of learned representations, these methods often result with less than acceptable performance. A strategy to overcome this can be achieved by using self-supervised models, where representations are learned and weights are then applied for downstream applications. Recently, masked autoencoders have proven to be effective to obtain representations that captures global context information. By masking regions of an image and having the model learn to reconstruct both the masked and non-masked regions, weights can be used for various applications. However, if the sizes of the objects in images are less than the size of the mask, the global context information is lost, making it almost impossible to reconstruct the image. In this study, we investigated the effect of mask ratios and patch sizes for blood components using a MAE to obtain learned ViT encoder representations. We then applied the encoder weights to train a U-Net Transformer for semantic segmentation to obtain both local and global contextual information. Our experimental results demonstrates that both smaller mask ratios and patch sizes improve the reconstruction of images using a MAE. We also show the results of semantic segmentation with and without pre-trained weights, where smaller-sized blood components benefited with pre-training. Overall, our proposed method offers an efficient and effective strategy for the segmentation and classification of small objects.
Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
OmniMamba4D: Spatio-temporal Mamba for longitudinal CT lesion segmentation
Accurate segmentation of longitudinal CT scans is important for monitoring tumor progression and evaluating treatment responses. However, existing 3D segmentation models solely focus on spatial information. To address this gap, we propose OmniMamba4D, a novel segmentation model designed for 4D medical images (3D images over time). OmniMamba4D utilizes a spatio-temporal tetra-orientated Mamba block to effectively capture both spatial and temporal features. Unlike traditional 3D models, which analyze single-time points, OmniMamba4D processes 4D CT data, providing comprehensive spatio-temporal information on lesion progression. Evaluated on an internal dataset comprising of 3,252 CT scans, OmniMamba4D achieves a competitive Dice score of 0.682, comparable to state-of-the-arts (SOTA) models, while maintaining computational efficiency and better detecting disappeared lesions. This work demonstrates a new framework to leverage spatio-temporal information for longitudinal CT lesion segmentation.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025
ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: ICASSP 2025, Oral Presentation
Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An Application for MxIF Oncology Data SDM24
Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier that can distinguish between two classes based on the arrangements of their points. This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies. It is challenging due to spatial variability and interpretability needs. Previously proposed techniques require dense training data or have limited ability to handle significant spatial variability within a single place-type. Most importantly, these deep neural network (DNN) approaches are not designed to work in non-Euclidean space, particularly point sets. Existing non-Euclidean DNN methods are limited to one-size-fits-all approaches. We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation, on various place-types for spatially-lucid classification. Experimental results on real-world datasets (e.g., MxIF oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
comment: SIAM International Conference on Data Mining (SDM24)
Continuous and complete liver vessel segmentation with graph-attention guided diffusion
Improving connectivity and completeness are the most challenging aspects of liver vessel segmentation, especially for small vessels. These challenges require both learning the continuous vessel geometry and focusing on small vessel detection. However, current methods do not explicitly address these two aspects and cannot generalize well when constrained by inconsistent annotations. Here, we take advantage of the generalization of the diffusion model and explicitly integrate connectivity and completeness in our diffusion-based segmentation model. Specifically, we use a graph-attention module that adds knowledge about vessel geometry. Additionally, we perform the graph-attention at multiple-scales, thus focusing on small liver vessels. Our method outperforms five state-of-the-art medical segmentation methods on two public datasets: 3D-ircadb-01 and LiVS.
comment: Second version
RSEND: Retinex-based Squeeze and Excitation Network with Dark Region Detection for Efficient Low Light Image Enhancement
Images captured under low-light scenarios often suffer from low quality. Previous CNN-based deep learning methods often involve using Retinex theory. Nevertheless, most of them cannot perform well in more complicated datasets like LOL-v2 while consuming too much computational resources. Besides, some of these methods require sophisticated training at different stages, making the procedure even more time-consuming and tedious. In this paper, we propose a more accurate, concise, and one-stage Retinex theory based framework, RSEND. RSEND first divides the low-light image into the illumination map and reflectance map, then captures the important details in the illumination map and performs light enhancement. After this step, it refines the enhanced gray-scale image and does element-wise matrix multiplication with the reflectance map. By denoising the output it has from the previous step, it obtains the final result. In all the steps, RSEND utilizes Squeeze and Excitation network to better capture the details. Comprehensive quantitative and qualitative experiments show that our Efficient Retinex model significantly outperforms other CNN-based models, achieving a PSNR improvement ranging from 0.44 dB to 4.2 dB in different datasets and even outperforms transformer-based models in the LOL-v2-real dataset.
A Temporal Convolutional Network-Based Approach and a Benchmark Dataset for Colonoscopy Video Temporal Segmentation
Following recent advancements in computer-aided detection and diagnosis systems for colonoscopy, the automated reporting of colonoscopy procedures is set to further revolutionize clinical practice. A crucial yet underexplored aspect in the development of these systems is the creation of computer vision models capable of autonomously segmenting full-procedure colonoscopy videos into anatomical sections and procedural phases. In this work, we aim to create the first open-access dataset for this task and propose a state-of-the-art approach, benchmarked against competitive models. We annotated the publicly available REAL-Colon dataset, consisting of 2.7 million frames from 60 complete colonoscopy videos, with frame-level labels for anatomical locations and colonoscopy phases across nine categories. We then present ColonTCN, a learning-based architecture that employs custom temporal convolutional blocks designed to efficiently capture long temporal dependencies for the temporal segmentation of colonoscopy videos. We also propose a dual k-fold cross-validation evaluation protocol for this benchmark, which includes model assessment on unseen, multi-center data.ColonTCN achieves state-of-the-art performance in classification accuracy while maintaining a low parameter count when evaluated using the two proposed k-fold cross-validation settings, outperforming competitive models. We report ablation studies to provide insights into the challenges of this task and highlight the benefits of the custom temporal convolutional blocks, which enhance learning and improve model efficiency. We believe that the proposed open-access benchmark and the ColonTCN approach represent a significant advancement in the temporal segmentation of colonoscopy procedures, fostering further open-access research to address this clinical need.
Multimedia
CasualHDRSplat: Robust High Dynamic Range 3D Gaussian Splatting from Casually Captured Videos
Recently, photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), have garnered widespread attention due to their superior performance. However, most works rely on low dynamic range (LDR) images, which limits the capturing of richer scene details. Some prior works have focused on high dynamic range (HDR) scene reconstruction, typically require capturing of multi-view sharp images with different exposure times at fixed camera positions during exposure times, which is time-consuming and challenging in practice. For a more flexible data acquisition, we propose a one-stage method: \textbf{CasualHDRSplat} to easily and robustly reconstruct the 3D HDR scene from casually captured videos with auto-exposure enabled, even in the presence of severe motion blur and varying unknown exposure time. \textbf{CasualHDRSplat} contains a unified differentiable physical imaging model which first applies continuous-time trajectory constraint to imaging process so that we can jointly optimize exposure time, camera response function (CRF), camera poses, and sharp 3D HDR scene. Extensive experiments demonstrate that our approach outperforms existing methods in terms of robustness and rendering quality. Our source code will be available at https://github.com/WU-CVGL/CasualHDRSplat
comment: Source Code: https://github.com/WU-CVGL/CasualHDRSplat
A Comprehensive Survey of Knowledge-Based Vision Question Answering Systems: The Lifecycle of Knowledge in Visual Reasoning Task
Knowledge-based Vision Question Answering (KB-VQA) extends general Vision Question Answering (VQA) by not only requiring the understanding of visual and textual inputs but also extensive range of knowledge, enabling significant advancements across various real-world applications. KB-VQA introduces unique challenges, including the alignment of heterogeneous information from diverse modalities and sources, the retrieval of relevant knowledge from noisy or large-scale repositories, and the execution of complex reasoning to infer answers from the combined context. With the advancement of Large Language Models (LLMs), KB-VQA systems have also undergone a notable transformation, where LLMs serve as powerful knowledge repositories, retrieval-augmented generators and strong reasoners. Despite substantial progress, no comprehensive survey currently exists that systematically organizes and reviews the existing KB-VQA methods. This survey aims to fill this gap by establishing a structured taxonomy of KB-VQA approaches, and categorizing the systems into main stages: knowledge representation, knowledge retrieval, and knowledge reasoning. By exploring various knowledge integration techniques and identifying persistent challenges, this work also outlines promising future research directions, providing a foundation for advancing KB-VQA models and their applications.
comment: 20 pages, 5 figures, 4 tables
M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
MV-Crafter: An Intelligent System for Music-guided Video Generation
Music videos, as a prevalent form of multimedia entertainment, deliver engaging audio-visual experiences to audiences and have gained immense popularity among singers and fans. Creators can express their interpretations of music naturally through visual elements. However, the creation process of music video demands proficiency in script design, video shooting, and music-video synchronization, posing significant challenges for non-professionals. Previous work has designed automated music video generation frameworks. However, they suffer from complexity in input and poor output quality. In response, we present MV-Crafter, a system capable of producing high-quality music videos with synchronized music-video rhythm and style. Our approach involves three technical modules that simulate the human creation process: the script generation module, video generation module, and music-video synchronization module. MV-Crafter leverages a large language model to generate scripts considering the musical semantics. To address the challenge of synchronizing short video clips with music of varying lengths, we propose a dynamic beat matching algorithm and visual envelope-induced warping method to ensure precise, monotonic music-video synchronization. Besides, we design a user-friendly interface to simplify the creation process with intuitive editing features. Extensive experiments have demonstrated that MV-Crafter provides an effective solution for improving the quality of generated music videos.
DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
comment: Accepted by IEEE Transactions on Multimedia
Machine Learning-Based Prediction of Quality Shifts on Video Streaming Over 5G
The Quality of Experience (QoE) is the users satisfaction while streaming a video session over an over-the-top (OTT) platform like YouTube. QoE of YouTube reflects the smooth streaming session without any buffering and quality shift events. One of the most important factors nowadays affecting QoE of YouTube is frequent shifts from higher to lower resolutions and vice versa. These shifts ensure a smooth streaming session; however, it might get a lower mean opinion score. For instance, dropping from 1080p to 480p during a video can preserve continuity but might reduce the viewers enjoyment. Over time, OTT platforms are looking for alternative ways to boost user experience instead of relying on traditional Quality of Service (QoS) metrics such as bandwidth, latency, and throughput. As a result, we look into the relationship between quality shifting in YouTube streaming sessions and the channel metrics RSRP, RSRQ, and SNR. Our findings state that these channel metrics positively correlate with shifts. Thus, in real-time, OTT can only rely on them to predict video streaming sessions into lower- and higher-resolution categories, thus providing more resources to improve user experience. Using traditional Machine Learning (ML) classifiers, we achieved an accuracy of 77-percent, while using only RSRP, RSRQ, and SNR. In the era of 5G and beyond, where ultra-reliable, low-latency networks promise enhanced streaming capabilities, the proposed methodology can be used to improve OTT services.
Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embedded in daily life, concurrently amplifying risks of misinformation dissemination. Consequently, multimodal fake news detection has garnered significant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public engagement, whereas professionally crafted fake news videos disseminated by media outlets, often politically or virally motivated-pose substantially greater societal harm. To address this gap, we construct FMNV, a novel dataset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture integrating CLIP and Faster R-CNN for video feature extraction, enhanced by co-attention mechanisms for feature refinement and multimodal aggregation. Comparative experiments demonstrate both the generalization capability of FMNV across multiple baselines and the superior detection efficacy of FMNVD. This work establishes critical benchmarks for detecting high-impact fake news in media ecosystems while advancing methodologies for cross-modal inconsistency analysis.
Computation and Language
The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs
Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.
Conversational Assistants to support Heart Failure Patients: comparing a Neurosymbolic Architecture with ChatGPT
Conversational assistants are becoming more and more popular, including in healthcare, partly because of the availability and capabilities of Large Language Models. There is a need for controlled, probing evaluations with real stakeholders which can highlight advantages and disadvantages of more traditional architectures and those based on generative AI. We present a within-group user study to compare two versions of a conversational assistant that allows heart failure patients to ask about salt content in food. One version of the system was developed in-house with a neurosymbolic architecture, and one is based on ChatGPT. The evaluation shows that the in-house system is more accurate, completes more tasks and is less verbose than the one based on ChatGPT; on the other hand, the one based on ChatGPT makes fewer speech errors and requires fewer clarifications to complete the task. Patients show no preference for one over the other.
Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in six languages (Hindi, Arabic, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
Safety in Large Reasoning Models: A Survey
Large Reasoning Models (LRMs) have exhibited extraordinary prowess in tasks like mathematics and coding, leveraging their advanced reasoning capabilities. Nevertheless, as these capabilities progress, significant concerns regarding their vulnerabilities and safety have arisen, which can pose challenges to their deployment and application in real-world settings. This paper presents a comprehensive survey of LRMs, meticulously exploring and summarizing the newly emerged safety risks, attacks, and defense strategies. By organizing these elements into a detailed taxonomy, this work aims to offer a clear and structured understanding of the current safety landscape of LRMs, facilitating future research and development to enhance the security and reliability of these powerful models.
Ensemble Bayesian Inference: Leveraging Small Language Models to Achieve LLM-level Accuracy in Profile Matching Tasks
This study explores the potential of small language model(SLM) ensembles to achieve accuracy comparable to proprietary large language models (LLMs). We propose Ensemble Bayesian Inference (EBI), a novel approach that applies Bayesian estimation to combine judgments from multiple SLMs, allowing them to exceed the performance limitations of individual models. Our experiments on diverse tasks(aptitude assessments and consumer profile analysis in both Japanese and English) demonstrate EBI's effectiveness. Notably, we analyze cases where incorporating models with negative Lift values into ensembles improves overall performance, and we examine the method's efficacy across different languages. These findings suggest new possibilities for constructing high-performance AI systems with limited computational resources and for effectively utilizing models with individually lower performance. Building on existing research on LLM performance evaluation, ensemble methods, and open-source LLM utilization, we discuss the novelty and significance of our approach.
comment: 13 pages, 2 figures
Energy Considerations of Large Language Model Inference and Efficiency Optimizations
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise. Prior benchmarking efforts have primarily focused on latency reduction in idealized settings, often overlooking the diverse real-world inference workloads that shape energy use. In this work, we systematically analyze the energy implications of common inference efficiency optimizations across diverse Natural Language Processing (NLP) and generative Artificial Intelligence (AI) workloads, including conversational AI and code generation. We introduce a modeling approach that approximates real-world LLM workflows through a binning strategy for input-output token distributions and batch size variations. Our empirical analysis spans software frameworks, decoding strategies, GPU architectures, online and offline serving settings, and model parallelism configurations. We show that the effectiveness of inference optimizations is highly sensitive to workload geometry, software stack, and hardware accelerators, demonstrating that naive energy estimates based on FLOPs or theoretical GPU utilization significantly underestimate real-world energy consumption. Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines. These insights provide a foundation for sustainable LLM deployment and inform energy-efficient design strategies for future AI infrastructure.
comment: 16 pages
Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction
This study addresses the critical challenge of hallucination mitigation in Large Vision-Language Models (LVLMs) for Visual Question Answering (VQA) tasks through a Split Conformal Prediction (SCP) framework. While LVLMs excel in multi-modal reasoning, their outputs often exhibit hallucinated content with high confidence, posing risks in safety-critical applications. We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification. By partitioning data into calibration and test sets, the framework computes nonconformity scores to construct prediction sets with statistical guarantees under user-defined risk levels ($\alpha$). Key innovations include: (1) rigorous control of \textbf{marginal coverage} to ensure empirical error rates remain strictly below $\alpha$; (2) dynamic adjustment of prediction set sizes inversely with $\alpha$, filtering low-confidence outputs; (3) elimination of prior distribution assumptions and retraining requirements. Evaluations on benchmarks (ScienceQA, MMMU) with eight LVLMs demonstrate that SCP enforces theoretical guarantees across all $\alpha$ values. The framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains. This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
Evaluating Grounded Reasoning by Code-Assisted Large Language Models for Mathematics
Assisting LLMs with code generation improved their performance on mathematical reasoning tasks. However, the evaluation of code-assisted LLMs is generally restricted to execution correctness, lacking a rigorous evaluation of their generated programs. In this work, we bridge this gap by conducting an in-depth analysis of code-assisted LLMs' generated programs in response to math reasoning tasks. Our evaluation focuses on the extent to which LLMs ground their programs to math rules, and how that affects their end performance. For this purpose, we assess the generations of five different LLMs, on two different math datasets, both manually and automatically. Our results reveal that the distribution of grounding depends on LLMs' capabilities and the difficulty of math problems. Furthermore, mathematical grounding is more effective for closed-source models, while open-source models fail to employ math rules in their solutions correctly. On MATH500, the percentage of grounded programs decreased to half, while the ungrounded generations doubled in comparison to ASDiv grade-school problems. Our work highlights the need for in-depth evaluation beyond execution accuracy metrics, toward a better understanding of code-assisted LLMs' capabilities and limits in the math domain.
Towards a comprehensive taxonomy of online abusive language informed by machine leaning
The proliferation of abusive language in online communications has posed significant risks to the health and wellbeing of individuals and communities. The growing concern regarding online abuse and its consequences necessitates methods for identifying and mitigating harmful content and facilitating continuous monitoring, moderation, and early intervention. This paper presents a taxonomy for distinguishing key characteristics of abusive language within online text. Our approach uses a systematic method for taxonomy development, integrating classification systems of 18 existing multi-label datasets to capture key characteristics relevant to online abusive language classification. The resulting taxonomy is hierarchical and faceted, comprising 5 categories and 17 dimensions. It classifies various facets of online abuse, including context, target, intensity, directness, and theme of abuse. This shared understanding can lead to more cohesive efforts, facilitate knowledge exchange, and accelerate progress in the field of online abuse detection and mitigation among researchers, policy makers, online platform owners, and other stakeholders.
RAGAT-Mind: A Multi-Granular Modeling Approach for Rumor Detection Based on MindSpore
As false information continues to proliferate across social media platforms, effective rumor detection has emerged as a pressing challenge in natural language processing. This paper proposes RAGAT-Mind, a multi-granular modeling approach for Chinese rumor detection, built upon the MindSpore deep learning framework. The model integrates TextCNN for local semantic extraction, bidirectional GRU for sequential context learning, Multi-Head Self-Attention for global dependency focusing, and Bidirectional Graph Convolutional Networks (BiGCN) for structural representation of word co-occurrence graphs. Experiments on the Weibo1-Rumor dataset demonstrate that RAGAT-Mind achieves superior classification performance, attaining 99.2% accuracy and a macro-F1 score of 0.9919. The results validate the effectiveness of combining hierarchical linguistic features with graph-based semantic structures. Furthermore, the model exhibits strong generalization and interpretability, highlighting its practical value for real-world rumor detection applications.
DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training
Although large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks, the academic community still lacks an in-depth understanding of base model training processes and data quality. To address this, we construct a large-scale, difficulty-graded reasoning dataset containing approximately 3.34 million unique queries of varying difficulty levels and about 40 million distilled responses generated by multiple models over several passes. Leveraging pass rate and Coefficient of Variation (CV), we precisely select the most valuable training data to enhance reasoning capability. Notably, we observe a training pattern shift, indicating that reasoning-focused training based on base models requires higher learning rates for effective training. Using this carefully selected data, we significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2\% on the AIME2024 mathematical reasoning benchmark. This result surpasses most current distilled models and closely approaches state-of-the-art performance. We provide detailed descriptions of our data processing, difficulty assessment, and training methodology, and have publicly released all datasets and methods to promote rapid progress in open-source long-reasoning LLMs. The dataset is available at: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-Distilled-40M
When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars
The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.
HalluLens: LLM Hallucination Benchmark
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination." These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is essential for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks, built upon clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from "factuality," proposing a clear taxonomy that distinguishes between extrinsic and intrinsic hallucinations, to promote consistency and facilitate research. Extrinsic hallucinations, where the generated content is not consistent with the training data, are increasingly important as LLMs evolve. Our benchmark includes dynamic test set generation to mitigate data leakage and ensure robustness against such leakage. We also analyze existing benchmarks, highlighting their limitations and saturation. The work aims to: (1) establish a clear taxonomy of hallucinations, (2) introduce new extrinsic hallucination tasks, with data that can be dynamically regenerated to prevent saturation by leakage, (3) provide a comprehensive analysis of existing benchmarks, distinguishing them from factuality evaluations.
comment: 42 pages
Unified Attacks to Large Language Model Watermarks: Spoofing and Scrubbing in Unauthorized Knowledge Distillation
Watermarking has emerged as a critical technique for combating misinformation and protecting intellectual property in large language models (LLMs). A recent discovery, termed watermark radioactivity, reveals that watermarks embedded in teacher models can be inherited by student models through knowledge distillation. On the positive side, this inheritance allows for the detection of unauthorized knowledge distillation by identifying watermark traces in student models. However, the robustness of watermarks against scrubbing attacks and their unforgeability in the face of spoofing attacks under unauthorized knowledge distillation remain largely unexplored. Existing watermark attack methods either assume access to model internals or fail to simultaneously support both scrubbing and spoofing attacks. In this work, we propose Contrastive Decoding-Guided Knowledge Distillation (CDG-KD), a unified framework that enables bidirectional attacks under unauthorized knowledge distillation. Our approach employs contrastive decoding to extract corrupted or amplified watermark texts via comparing outputs from the student model and weakly watermarked references, followed by bidirectional distillation to train new student models capable of watermark removal and watermark forgery, respectively. Extensive experiments show that CDG-KD effectively performs attacks while preserving the general performance of the distilled model. Our findings underscore critical need for developing watermarking schemes that are robust and unforgeable.
HMI: Hierarchical Knowledge Management for Efficient Multi-Tenant Inference in Pretrained Language Models VLDB
The significant computational demands of pretrained language models (PLMs), which often require dedicated hardware, present a substantial challenge in serving them efficiently, especially in multi-tenant environments. To address this, we introduce HMI, a Hierarchical knowledge management-based Multi-tenant Inference system, designed to manage tenants with distinct PLMs resource-efficiently. Our approach is three-fold: Firstly, we categorize PLM knowledge into general, domain-specific, and task-specific. Leveraging insights on knowledge acquisition across different model layers, we construct hierarchical PLMs (hPLMs) by extracting and storing knowledge at different levels, significantly reducing GPU memory usage per tenant. Secondly, we establish hierarchical knowledge management for hPLMs generated by various tenants in HMI. We manage domain-specific knowledge with acceptable storage increases by constructing and updating domain-specific knowledge trees based on frequency. We manage task-specific knowledge within limited GPU memory through parameter swapping. Finally, we propose system optimizations to enhance resource utilization and inference throughput. These include fine-grained pipelining via hierarchical knowledge prefetching to overlap CPU and I/O operations with GPU computations, and optimizing parallel implementations with batched matrix multiplications. Our experimental results demonstrate that the proposed HMI can efficiently serve up to 10,000 hPLMs (hBERTs and hGPTs) on a single GPU, with only a negligible compromise in accuracy.
comment: Accepted by VLDBJ 2025
Creating Targeted, Interpretable Topic Models with LLM-Generated Text Augmentation
Unsupervised machine learning techniques, such as topic modeling and clustering, are often used to identify latent patterns in unstructured text data in fields such as political science and sociology. These methods overcome common concerns about reproducibility and costliness involved in the labor-intensive process of human qualitative analysis. However, two major limitations of topic models are their interpretability and their practicality for answering targeted, domain-specific social science research questions. In this work, we investigate opportunities for using LLM-generated text augmentation to improve the usefulness of topic modeling output. We use a political science case study to evaluate our results in a domain-specific application, and find that topic modeling using GPT-4 augmentations creates highly interpretable categories that can be used to investigate domain-specific research questions with minimal human guidance.
comment: Presented at IC2S2 2024 in Philadelphia, USA
PicPersona-TOD : A Dataset for Personalizing Utterance Style in Task-Oriented Dialogue with Image Persona NAACL 2025
Task-Oriented Dialogue (TOD) systems are designed to fulfill user requests through natural language interactions, yet existing systems often produce generic, monotonic responses that lack individuality and fail to adapt to users' personal attributes. To address this, we introduce PicPersona-TOD, a novel dataset that incorporates user images as part of the persona, enabling personalized responses tailored to user-specific factors such as age or emotional context. This is facilitated by first impressions, dialogue policy-guided prompting, and the use of external knowledge to reduce hallucinations. Human evaluations confirm that our dataset enhances user experience, with personalized responses contributing to a more engaging interaction. Additionally, we introduce a new NLG model, Pictor, which not only personalizes responses, but also demonstrates robust performance across unseen domains https://github.com/JihyunLee1/PicPersona.
comment: Accepted in NAACL 2025 main
LiveLongBench: Tackling Long-Context Understanding for Spoken Texts from Live Streams
Long-context understanding poses significant challenges in natural language processing, particularly for real-world dialogues characterized by speech-based elements, high redundancy, and uneven information density. Although large language models (LLMs) achieve impressive results on existing benchmarks, these datasets fail to reflect the complexities of such texts, limiting their applicability to practical scenarios. To bridge this gap, we construct the first spoken long-text dataset, derived from live streams, designed to reflect the redundancy-rich and conversational nature of real-world scenarios. We construct tasks in three categories: retrieval-dependent, reasoning-dependent, and hybrid. We then evaluate both popular LLMs and specialized methods to assess their ability to understand long-contexts in these tasks. Our results show that current methods exhibit strong task-specific preferences and perform poorly on highly redundant inputs, with no single method consistently outperforming others. We propose a new baseline that better handles redundancy in spoken text and achieves strong performance across tasks. Our findings highlight key limitations of current methods and suggest future directions for improving long-context understanding. Finally, our benchmark fills a gap in evaluating long-context spoken language understanding and provides a practical foundation for developing real-world e-commerce systems. The code and benchmark are available at https://github.com/Yarayx/livelongbench.
TimeSoccer: An End-to-End Multimodal Large Language Model for Soccer Commentary Generation
Soccer is a globally popular sporting event, typically characterized by long matches and distinctive highlight moments. Recent advances in Multimodal Large Language Models (MLLMs) offer promising capabilities in temporal grounding and video understanding, soccer commentary generation often requires precise temporal localization and semantically rich descriptions over long-form video. However, existing soccer MLLMs often rely on the temporal a priori for caption generation, so they cannot process the soccer video end-to-end. While some traditional approaches follow a two-step paradigm that is complex and fails to capture the global context to achieve suboptimal performance. To solve the above issues, we present TimeSoccer, the first end-to-end soccer MLLM for Single-anchor Dense Video Captioning (SDVC) in full-match soccer videos. TimeSoccer jointly predicts timestamps and generates captions in a single pass, enabling global context modeling across 45-minute matches. To support long video understanding of soccer matches, we introduce MoFA-Select, a training-free, motion-aware frame compression module that adaptively selects representative frames via a coarse-to-fine strategy, and incorporates complementary training paradigms to strengthen the model's ability to handle long temporal sequences. Extensive experiments demonstrate that our TimeSoccer achieves State-of-The-Art (SoTA) performance on the SDVC task in an end-to-end form, generating high-quality commentary with accurate temporal alignment and strong semantic relevance.
PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare
Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task. However, performance improvement comes at the cost of training on vast amounts of annotated data which could be sensitive leading to significant data privacy concerns. In particular, the healthcare domain is one of the most sensitive domains exposed to data privacy issues. In this paper, we present PatientDx, a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data. Our proposal is based on recently proposed techniques known as merging of LLMs and aims to optimize a building block merging strategy. PatientDx uses a pivotal model adapted to numerical reasoning and tunes hyperparameters on examples based on a performance metric but without training of the LLM on these data. Experiments using the mortality tasks of the MIMIC-IV dataset show improvements up to 7% in terms of AUROC when compared to initial models. Additionally, we confirm that when compared to fine-tuned models, our proposal is less prone to data leak problems without hurting performance. Finally, we qualitatively show the capabilities of our proposal through a case study. Our best model is publicly available at https://huggingface.co/ Jgmorenof/mistral\_merged\_0\_4.
M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection
In the digital era, social media has become a major conduit for information dissemination, yet it also facilitates the rapid spread of misinformation. Traditional misinformation detection methods primarily focus on surface-level features, overlooking the crucial roles of human empathy in the propagation process. To address this gap, we propose the Dual-Aspect Empathy Framework (DAE), which integrates cognitive and emotional empathy to analyze misinformation from both the creator and reader perspectives. By examining creators' cognitive strategies and emotional appeals, as well as simulating readers' cognitive judgments and emotional responses using Large Language Models (LLMs), DAE offers a more comprehensive and human-centric approach to misinformation detection. Moreover, we further introduce an empathy-aware filtering mechanism to enhance response authenticity and diversity. Experimental results on benchmark datasets demonstrate that DAE outperforms existing methods, providing a novel paradigm for multimodal misinformation detection.
FLUKE: A Linguistically-Driven and Task-Agnostic Framework for Robustness Evaluation
We present FLUKE (Framework for LingUistically-driven and tasK-agnostic robustness Evaluation), a task-agnostic framework for assessing model robustness through systematic minimal variations of test data. FLUKE introduces controlled variations across linguistic levels - from orthography to dialect and style varieties - and leverages large language models (LLMs) with human validation to generate modifications. We demonstrate FLUKE's utility by evaluating both fine-tuned models and LLMs across four diverse NLP tasks, and reveal that (1) the impact of linguistic variations is highly task-dependent, with some tests being critical for certain tasks but irrelevant for others; (2) while LLMs have better overall robustness compared to fine-tuned models, they still exhibit significant brittleness to certain linguistic variations; (3) all models show substantial vulnerability to negation modifications across most tasks. These findings highlight the importance of systematic robustness testing for understanding model behaviors.
CoheMark: A Novel Sentence-Level Watermark for Enhanced Text Quality ICLR 2025
Watermarking technology is a method used to trace the usage of content generated by large language models. Sentence-level watermarking aids in preserving the semantic integrity within individual sentences while maintaining greater robustness. However, many existing sentence-level watermarking techniques depend on arbitrary segmentation or generation processes to embed watermarks, which can limit the availability of appropriate sentences. This limitation, in turn, compromises the quality of the generated response. To address the challenge of balancing high text quality with robust watermark detection, we propose CoheMark, an advanced sentence-level watermarking technique that exploits the cohesive relationships between sentences for better logical fluency. The core methodology of CoheMark involves selecting sentences through trained fuzzy c-means clustering and applying specific next sentence selection criteria. Experimental evaluations demonstrate that CoheMark achieves strong watermark strength while exerting minimal impact on text quality.
comment: Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025
Evaluating and Mitigating Bias in AI-Based Medical Text Generation
Artificial intelligence (AI) systems, particularly those based on deep learning models, have increasingly achieved expert-level performance in medical applications. However, there is growing concern that such AI systems may reflect and amplify human bias, and reduce the quality of their performance in historically under-served populations. The fairness issue has attracted considerable research interest in the medical imaging classification field, yet it remains understudied in the text generation domain. In this study, we investigate the fairness problem in text generation within the medical field and observe significant performance discrepancies across different races, sexes, and age groups, including intersectional groups, various model scales, and different evaluation metrics. To mitigate this fairness issue, we propose an algorithm that selectively optimizes those underperformed groups to reduce bias. The selection rules take into account not only word-level accuracy but also the pathology accuracy to the target reference, while ensuring that the entire process remains fully differentiable for effective model training. Our evaluations across multiple backbones, datasets, and modalities demonstrate that our proposed algorithm enhances fairness in text generation without compromising overall performance. Specifically, the disparities among various groups across different metrics were diminished by more than 30% with our algorithm, while the relative change in text generation accuracy was typically within 2%. By reducing the bias generated by deep learning models, our proposed approach can potentially alleviate concerns about the fairness and reliability of text generation diagnosis in medical domain. Our code is publicly available to facilitate further research at https://github.com/iriscxy/GenFair.
comment: 12 pages, 8 figures, published in Nature Computational Science
JurisCTC: Enhancing Legal Judgment Prediction via Cross-Domain Transfer and Contrastive Learning IJCNN
In recent years, Unsupervised Domain Adaptation (UDA) has gained significant attention in the field of Natural Language Processing (NLP) owing to its ability to enhance model generalization across diverse domains. However, its application for knowledge transfer between distinct legal domains remains largely unexplored. To address the challenges posed by lengthy and complex legal texts and the limited availability of large-scale annotated datasets, we propose JurisCTC, a novel model designed to improve the accuracy of Legal Judgment Prediction (LJP) tasks. Unlike existing approaches, JurisCTC facilitates effective knowledge transfer across various legal domains and employs contrastive learning to distinguish samples from different domains. Specifically, for the LJP task, we enable knowledge transfer between civil and criminal law domains. Compared to other models and specific large language models (LLMs), JurisCTC demonstrates notable advancements, achieving peak accuracies of 76.59% and 78.83%, respectively.
comment: Accepted in International Joint Conference on Neural Networks (IJCNN) 2025
Low-Resource Neural Machine Translation Using Recurrent Neural Networks and Transfer Learning: A Case Study on English-to-Igbo
In this study, we develop Neural Machine Translation (NMT) and Transformer-based transfer learning models for English-to-Igbo translation - a low-resource African language spoken by over 40 million people across Nigeria and West Africa. Our models are trained on a curated and benchmarked dataset compiled from Bible corpora, local news, Wikipedia articles, and Common Crawl, all verified by native language experts. We leverage Recurrent Neural Network (RNN) architectures, including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), enhanced with attention mechanisms to improve translation accuracy. To further enhance performance, we apply transfer learning using MarianNMT pre-trained models within the SimpleTransformers framework. Our RNN-based system achieves competitive results, closely matching existing English-Igbo benchmarks. With transfer learning, we observe a performance gain of +4.83 BLEU points, reaching an estimated translation accuracy of 70%. These findings highlight the effectiveness of combining RNNs with transfer learning to address the performance gap in low-resource language translation tasks.
comment: 25 pages, 14 combined figures (19 total), includes horizontal layouts. Submitted to arXiv for open access
Crisp: Cognitive Restructuring of Negative Thoughts through Multi-turn Supportive Dialogues
Cognitive Restructuring (CR) is a psychotherapeutic process aimed at identifying and restructuring an individual's negative thoughts, arising from mental health challenges, into more helpful and positive ones via multi-turn dialogues. Clinician shortage and stigma urge the development of human-LLM interactive psychotherapy for CR. Yet, existing efforts implement CR via simple text rewriting, fixed-pattern dialogues, or a one-shot CR workflow, failing to align with the psychotherapeutic process for effective CR. To address this gap, we propose CRDial, a novel framework for CR, which creates multi-turn dialogues with specifically designed identification and restructuring stages of negative thoughts, integrates sentence-level supportive conversation strategies, and adopts a multi-channel loop mechanism to enable iterative CR. With CRDial, we distill Crisp, a large-scale and high-quality bilingual dialogue dataset, from LLM. We then train Crispers, Crisp-based conversational LLMs for CR, at 7B and 14B scales. Extensive human studies show the superiority of Crispers in pointwise, pairwise, and intervention evaluations.
Does Knowledge Distillation Matter for Large Language Model based Bundle Generation?
LLMs are increasingly explored for bundle generation, thanks to their reasoning capabilities and knowledge. However, deploying large-scale LLMs introduces significant efficiency challenges, primarily high computational costs during fine-tuning and inference due to their massive parameterization. Knowledge distillation (KD) offers a promising solution, transferring expertise from large teacher models to compact student models. This study systematically investigates knowledge distillation approaches for bundle generation, aiming to minimize computational demands while preserving performance. We explore three critical research questions: (1) how does the format of KD impact bundle generation performance? (2) to what extent does the quantity of distilled knowledge influence performance? and (3) how do different ways of utilizing the distilled knowledge affect performance? We propose a comprehensive KD framework that (i) progressively extracts knowledge (patterns, rules, deep thoughts); (ii) captures varying quantities of distilled knowledge through different strategies; and (iii) exploits complementary LLM adaptation techniques (in-context learning, supervised fine-tuning, combination) to leverage distilled knowledge in small student models for domain-specific adaptation and enhanced efficiency. Extensive experiments provide valuable insights into how knowledge format, quantity, and utilization methodologies collectively shape LLM-based bundle generation performance, exhibiting KD's significant potential for more efficient yet effective LLM-based bundle generation.
A RAG-Based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
Large language models (LLMs) are a transformational capability at the frontier of artificial intelligence and machine learning that can support decision-makers in addressing pressing societal challenges such as extreme natural hazard events. As generalized models, LLMs often struggle to provide context-specific information, particularly in areas requiring specialized knowledge. In this work we propose a retrieval-augmented generation (RAG)-based multi-agent LLM system to support analysis and decision-making in the context of natural hazards and extreme weather events. As a proof of concept, we present WildfireGPT, a specialized system focused on wildfire hazards. The architecture employs a user-centered, multi-agent design to deliver tailored risk insights across diverse stakeholder groups. By integrating natural hazard and extreme weather projection data, observational datasets, and scientific literature through an RAG framework, the system ensures both the accuracy and contextual relevance of the information it provides. Evaluation across ten expert-led case studies demonstrates that WildfireGPT significantly outperforms existing LLM-based solutions for decision support.
Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning
Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins.
Optimism, Expectation, or Sarcasm? Multi-Class Hope Speech Detection in Spanish and English
Hope is a complex and underexplored emotional state that plays a significant role in education, mental health, and social interaction. Unlike basic emotions, hope manifests in nuanced forms ranging from grounded optimism to exaggerated wishfulness or sarcasm, making it difficult for Natural Language Processing systems to detect accurately. This study introduces PolyHope V2, a multilingual, fine-grained hope speech dataset comprising over 30,000 annotated tweets in English and Spanish. This resource distinguishes between four hope subtypes Generalized, Realistic, Unrealistic, and Sarcastic and enhances existing datasets by explicitly labeling sarcastic instances. We benchmark multiple pretrained transformer models and compare them with large language models (LLMs) such as GPT 4 and Llama 3 under zero-shot and few-shot regimes. Our findings show that fine-tuned transformers outperform prompt-based LLMs, especially in distinguishing nuanced hope categories and sarcasm. Through qualitative analysis and confusion matrices, we highlight systematic challenges in separating closely related hope subtypes. The dataset and results provide a robust foundation for future emotion recognition tasks that demand greater semantic and contextual sensitivity across languages.
Collaborating Action by Action: A Multi-agent LLM Framework for Embodied Reasoning
Collaboration is ubiquitous and essential in day-to-day life -- from exchanging ideas, to delegating tasks, to generating plans together. This work studies how LLMs can adaptively collaborate to perform complex embodied reasoning tasks. To this end we introduce MINDcraft, an easily extensible platform built to enable LLM agents to control characters in the open-world game of Minecraft; and MineCollab, a benchmark to test the different dimensions of embodied and collaborative reasoning. An experimental study finds that the primary bottleneck in collaborating effectively for current state-of-the-art agents is efficient natural language communication, with agent performance dropping as much as 15% when they are required to communicate detailed task completion plans. We conclude that existing LLM agents are ill-optimized for multi-agent collaboration, especially in embodied scenarios, and highlight the need to employ methods beyond in-context and imitation learning. Our website can be found here: https://mindcraft-minecollab.github.io/
comment: 9 pages of main paper with 6 main figures, overall 28 pages
Toward a Human-Centered Evaluation Framework for Trustworthy LLM-Powered GUI Agents
The rise of Large Language Models (LLMs) has revolutionized Graphical User Interface (GUI) automation through LLM-powered GUI agents, yet their ability to process sensitive data with limited human oversight raises significant privacy and security risks. This position paper identifies three key risks of GUI agents and examines how they differ from traditional GUI automation and general autonomous agents. Despite these risks, existing evaluations focus primarily on performance, leaving privacy and security assessments largely unexplored. We review current evaluation metrics for both GUI and general LLM agents and outline five key challenges in integrating human evaluators for GUI agent assessments. To address these gaps, we advocate for a human-centered evaluation framework that incorporates risk assessments, enhances user awareness through in-context consent, and embeds privacy and security considerations into GUI agent design and evaluation.
CAMU: Context Augmentation for Meme Understanding ACM MM 2025
Social media memes are a challenging domain for hate detection because they intertwine visual and textual cues into culturally nuanced messages. We introduce a novel framework, CAMU, which leverages large vision-language models to generate more descriptive captions, a caption-scoring neural network to emphasise hate-relevant content, and parameter-efficient fine-tuning of CLIP's text encoder for an improved multimodal understanding of memes. Experiments on publicly available hateful meme datasets show that simple projection layer fine-tuning yields modest gains, whereas selectively tuning deeper text encoder layers significantly boosts performance on all evaluation metrics. Moreover, our approach attains high accuracy (0.807) and F1-score (0.806) on the Hateful Memes dataset, at par with the existing SoTA framework while being much more efficient, offering practical advantages in real-world scenarios that rely on fixed decision thresholds. CAMU also achieves the best F1-score of 0.673 on the MultiOFF dataset for offensive meme identification, demonstrating its generalisability. Additional analyses on benign confounders reveal that robust visual grounding and nuanced text representations are crucial for reliable hate and offence detection. We will publicly release CAMU along with the resultant models for further research. Disclaimer: This paper includes references to potentially disturbing, hateful, or offensive content due to the nature of the task.
comment: Under review at ACM MM 2025
Token Sequence Compression for Efficient Multimodal Computing
The exponential growth of Large Multimodal Models (LMMs) has driven advancements in cross-modal reasoning but at significant computational costs. In this work, we focus on visual language models. We highlight the redundancy and inefficiency in current vision encoders, and seek to construct an adaptive compression method for multimodal data. In this work, we characterize a panoply of visual token selection and merging approaches through both benchmarking and qualitative analysis. In particular, we demonstrate that simple cluster-level token aggregation outperforms prior state-of-the-art works in token selection and merging, including merging at the vision encoder level and attention-based approaches. We underline the redundancy in current vision encoders, and shed light on several puzzling trends regarding principles of visual token selection through cross-modal attention visualizations. This work is a first effort towards more effective encoding and processing of high-dimensional data, and paves the way for more scalable and sustainable multimodal systems.
Unsupervised Corpus Poisoning Attacks in Continuous Space for Dense Retrieval SIGIR 2025
This paper concerns corpus poisoning attacks in dense information retrieval, where an adversary attempts to compromise the ranking performance of a search algorithm by injecting a small number of maliciously generated documents into the corpus. Our work addresses two limitations in the current literature. First, attacks that perform adversarial gradient-based word substitution search do so in the discrete lexical space, while retrieval itself happens in the continuous embedding space. We thus propose an optimization method that operates in the embedding space directly. Specifically, we train a perturbation model with the objective of maintaining the geometric distance between the original and adversarial document embeddings, while also maximizing the token-level dissimilarity between the original and adversarial documents. Second, it is common for related work to have a strong assumption that the adversary has prior knowledge about the queries. In this paper, we focus on a more challenging variant of the problem where the adversary assumes no prior knowledge about the query distribution (hence, unsupervised). Our core contribution is an adversarial corpus attack that is fast and effective. We present comprehensive experimental results on both in- and out-of-domain datasets, focusing on two related tasks: a top-1 attack and a corpus poisoning attack. We consider attacks under both a white-box and a black-box setting. Notably, our method can generate successful adversarial examples in under two minutes per target document; four times faster compared to the fastest gradient-based word substitution methods in the literature with the same hardware. Furthermore, our adversarial generation method generates text that is more likely to occur under the distribution of natural text (low perplexity), and is therefore more difficult to detect.
comment: This paper has been accepted as a full paper at SIGIR 2025 and will be presented orally
Unveiling the Hidden: Movie Genre and User Bias in Spoiler Detection
Spoilers in movie reviews are important on platforms like IMDb and Rotten Tomatoes, offering benefits and drawbacks. They can guide some viewers' choices but also affect those who prefer no plot details in advance, making effective spoiler detection essential. Existing spoiler detection methods mainly analyze review text, often overlooking the impact of movie genres and user bias, limiting their effectiveness. To address this, we analyze movie review data, finding genre-specific variations in spoiler rates and identifying that certain users are more likely to post spoilers. Based on these findings, we introduce a new spoiler detection framework called GUSD (The code is available at https://github.com/AI-explorer-123/GUSD) (Genre-aware and User-specific Spoiler Detection), which incorporates genre-specific data and user behavior bias. User bias is calculated through dynamic graph modeling of review history. Additionally, the R2GFormer module combines RetGAT (Retentive Graph Attention Network) for graph information and GenreFormer for genre-specific aggregation. The GMoE (Genre-Aware Mixture of Experts) model further assigns reviews to specialized experts based on genre. Extensive testing on benchmark datasets shows that GUSD achieves state-of-the-art results. This approach advances spoiler detection by addressing genre and user-specific patterns, enhancing user experience on movie review platforms.
comment: 11 pages, 6 figures, under review
TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tale-suite.
Synthetic Lyrics Detection Across Languages and Genres NAACL 2025
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the TrustNLP Workshop at NAACL 2025
LaMsS: When Large Language Models Meet Self-Skepticism ICLR 2025
Hallucination is a major challenge for large language models (LLMs), preventing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hallucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, representing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accuracy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures, Published at ICLR 2025 Workshop on Scaling Self-Improving Foundation Models,
Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
Contrastive Language-Image Pretraining (CLIP) has been widely used for crossmodal information retrieval and multimodal understanding tasks. However, CLIP models are mainly optimized for crossmodal vision-language tasks and underperform in single-mode text tasks. Moreover, these models are often trained on English datasets and therefore lack multilingual understanding. Additionally, from a visual understanding perspective, previous CLIP-based models exhibit insufficient understanding of visually rich documents. In this work, we propose jina-clip-v2, a contrastive vision-language model trained on text pairs, triplets and image-text pairs via a multi-task and multi-stage contrastive learning paradigm in order to support both text-only and crossmodal tasks. We employ a multilingual text encoder and expand the training dataset to include multilingual texts from 29 non-English languages, including Hindi, Chinese, German, French, and others, as well as images of visually rich documents. We evaluate the model's performance and show that jina-clip-v2 achieves notable improvements over state-of-the-art CLIP-based models in zero-shot text-only retrieval, semantic textual similarity, and crossmodal retrieval tasks in both English and multilingual settings. jina-clip-v2 also provides for flexibility in embedding dimensionality, enabling users to select the granularity of the representations. jina-clip-v2 is publicly available at https://huggingface.co/jinaai/jina-clip-v2.
comment: 30 pages, 1-10 main paper, 10-12 refs, 12-30 benchmarks
CallNavi, A Challenge and Empirical Study on LLM Function Calling and Routing
API-driven chatbot systems are increasingly integral to software engineering applications, yet their effectiveness hinges on accurately generating and executing API calls. This is particularly challenging in scenarios requiring multi-step interactions with complex parameterization and nested API dependencies. Addressing these challenges, this work contributes to the evaluation and assessment of AI-based software development through three key advancements: (1) the introduction of a novel dataset specifically designed for benchmarking API function selection, parameter generation, and nested API execution; (2) an empirical evaluation of state-of-the-art language models, analyzing their performance across varying task complexities in API function generation and parameter accuracy; and (3) a hybrid approach to API routing, combining general-purpose large language models for API selection with fine-tuned models and prompt engineering for parameter generation. These innovations significantly improve API execution in chatbot systems, offering practical methodologies for enhancing software design, testing, and operational workflows in real-world software engineering contexts.
Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse ICLR 2025
LLMs are an integral component of retrieval-augmented generation (RAG) systems. While many studies focus on evaluating the overall quality of end-to-end RAG systems, there is a gap in understanding the appropriateness of LLMs for the RAG task. To address this, we introduce Trust-Score, a holistic metric that evaluates the trustworthiness of LLMs within the RAG framework. Our results show that various prompting methods, such as in-context learning, fail to effectively adapt LLMs to the RAG task as measured by Trust-Score. Consequently, we propose Trust-Align, a method to align LLMs for improved Trust-Score performance. 26 out of 27 models aligned using Trust-Align substantially outperform competitive baselines on ASQA, QAMPARI, and ELI5. Specifically, in LLaMA-3-8b, Trust-Align outperforms FRONT on ASQA (up 12.56), QAMPARI (up 36.04), and ELI5 (up 17.69). Trust-Align also significantly enhances models' ability to correctly refuse and provide quality citations. We also demonstrate the effectiveness of Trust-Align across different open-weight models, including the LLaMA series (1b to 8b), Qwen-2.5 series (0.5b to 7b), and Phi3.5 (3.8b). We release our code at https://github.com/declare-lab/trust-align.
comment: Published at ICLR 2025 (Oral)
Keyframe-oriented Vision Token Pruning: Enhancing Efficiency of Large Vision Language Models on Long-Form Video Processing
Vision language models (VLMs) demonstrate strong capabilities in jointly processing visual and textual data. However, they often incur substantial computational overhead due to redundant visual information, particularly in long-form video scenarios. Existing approaches predominantly focus on either vision token pruning, which may overlook spatio-temporal dependencies, or keyframe selection, which identifies informative frames but discards others, thus disrupting contextual continuity. In this work, we propose KVTP (Keyframe-oriented Vision Token Pruning), a novel framework that overcomes the drawbacks of token pruning and keyframe selection. By adaptively assigning pruning rates based on frame relevance to the query, KVTP effectively retains essential contextual information while significantly reducing redundant computation. To thoroughly evaluate the long-form video understanding capacities of VLMs, we curated and reorganized subsets from VideoMME, EgoSchema, and NextQA into a unified benchmark named SparseKV-QA that highlights real-world scenarios with sparse but crucial events. Our experiments with VLMs of various scales show that KVTP can reduce token usage by 80% without compromising spatiotemporal and contextual consistency, significantly cutting computation while maintaining the performance. These results demonstrate our approach's effectiveness in efficient long-video processing, facilitating more scalable VLM deployment.
ReaL: Efficient RLHF Training of Large Language Models with Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for empowering large language model (LLM) applications. Compared with the supervised training process of LLMs, the RLHF training process is much more sophisticated, requiring a diverse range of computation workloads with intricate dependencies between multiple LLM instances. Therefore, simply adopting the fixed parallelization strategies from supervised training for LLMs can be insufficient for RLHF and result in low training efficiency. To overcome this limitation, we propose a novel technique named parameter ReaLlocation, which dynamically adapts the parallelization strategies for different workloads during training by redistributing LLM parameters across the training cluster. Building upon this idea, we introduce ReaL, a pioneering system for efficient RLHF training. ReaL introduces the concept of an execution plan, which defines a fine-grained resource allocation and parallelization strategy particularly designed for RLHF training. Based on this concept, ReaL employs a tailored search algorithm with a lightweight run-time estimator to automatically discover an efficient execution plan for an instance of RLHF experiment. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaL on the LLaMA models with up to 70 billion parameters and 128 GPUs. The experimental results demonstrate that ReaL achieves speedups of up to $3.58\times$ compared to baseline methods. Furthermore, the execution plans generated by ReaL exhibit an average of $81\%$ performance improvement over heuristic approaches based on Megatron-LM in the long-context scenario. The source code of ReaL is publicly available at https://github.com/openpsi-project/ReaLHF .
comment: 11 pages (20 pages with references and the appendix), 17 figures. Accepted by MLSys 25
Not All Data Are Unlearned Equally
Machine unlearning is concerned with the task of removing knowledge learned from particular data points from a trained model. In the context of large language models (LLMs), unlearning has recently received increased attention, particularly for removing knowledge about named entities from models for privacy purposes. While various approaches have been proposed to address the unlearning problem, most existing approaches treat all data points to be unlearned equally, i.e., unlearning that Montreal is a city in Canada is treated exactly the same as unlearning the phone number of the first author of this paper. In this work, we show that this all data is equal assumption does not hold for LLM unlearning. We study how the success of unlearning depends on the frequency of the knowledge we want to unlearn in the pre-training data of a model and find that frequency strongly affects unlearning, i.e., more frequent knowledge is harder to unlearn. Additionally, we uncover a misalignment between probability and generation-based evaluations of unlearning and show that this problem worsens as models become larger. Overall, our experiments highlight the need for better evaluation practices and novel methods for LLM unlearning that take the training data of models into account.
Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing
The integration of contextual embeddings into the optimization processes of large language models is an advancement in natural language processing. The Context-Aware Neural Gradient Mapping framework introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process. This approach facilitates real-time parameter adjustments, enhancing task-specific generalization even in the presence of sparse or noisy data inputs. The mathematical foundation of this framework relies on gradient descent modifications, where contextual embeddings are derived from a supplementary neural network trained to map input features to optimal adaptation gradients. By employing differential geometry principles, high-dimensional input dependencies are encoded into low-dimensional gradient manifolds, enabling efficient adaptation without necessitating the retraining of the entire model. Empirical evaluations demonstrate that the proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency. The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena. Furthermore, the computational efficiency achieved through this method demonstrates its scalability for large-scale language models operating under diverse constraints.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
Probabilistic Subspace Manifolds for Contextual Inference in Large Language Models
Representing token embeddings as probability distributions over learned manifolds allows for more flexible contextual inference, reducing representational rigidity while enhancing semantic granularity. Comparative evaluations demonstrate that probabilistic embeddings improve neighborhood consistency and decrease redundancy, ensuring that token relationships remain more structurally coherent across fine-tuning iterations. The integration of probabilistic subspaces within attention mechanisms facilitates more adaptive contextual weighting, enabling models to capture latent dependencies that would otherwise be obscured in conventional embeddings. Experimental results highlight increased robustness against adversarial modifications, with probabilistic embeddings preserving contextual integrity even under perturbation-based evaluation scenarios. Performance assessments indicate that probabilistic representations achieve greater adaptability in domain-specific applications, mitigating the need for extensive retraining when shifting across linguistic domains. Computational trade-offs remain within operationally feasible limits, with marginal increases in inference latency balanced against the benefits of enhanced representation stability and contextual expressiveness. The capacity to encode structured uncertainty provides advantages in generative modeling tasks, particularly where maintaining coherence across extended sequences requires a representation framework capable of handling ambiguous or context-dependent linguistic constructs.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
Transferable text data distillation by trajectory matching
In the realm of large language model (LLM), as the size of large models increases, it also brings higher training costs. There is a urgent need to minimize the data size in LLM training. Compared with data selection method, the data distillation method aims to synthesize a small number of data samples to achieve the training effect of the full data set and has better flexibility. Despite its successes in computer vision, the discreteness of text data has hitherto stymied its exploration in natural language processing (NLP). In this work, we proposed a method that involves learning pseudo prompt data based on trajectory matching and finding its nearest neighbor ID to achieve cross-architecture transfer. During the distillation process, we introduce a regularization loss to improve the robustness of our distilled data. To our best knowledge, this is the first data distillation work suitable for text generation tasks such as instruction tuning. Evaluations on two benchmarks, including ARC-Easy and MMLU instruction tuning datasets, established the superiority of our distillation approach over the SOTA data selection method LESS. Furthermore, our method demonstrates a good transferability over LLM structures (i.e., OPT to Llama).
Can LLMs Really Learn to Translate a Low-Resource Language from One Grammar Book? ICLR 2025
Extremely low-resource (XLR) languages lack substantial corpora for training NLP models, motivating the use of all available resources such as dictionaries and grammar books. Machine Translation from One Book (Tanzer et al., 2024) suggests that prompting long-context LLMs with one grammar book enables English-Kalamang translation, an XLR language unseen by LLMs - a noteworthy case of linguistics helping an NLP task. We investigate the source of this translation ability, finding almost all improvements stem from the book's parallel examples rather than its grammatical explanations. We find similar results for Nepali and Guarani, seen low-resource languages, and we achieve performance comparable to an LLM with a grammar book by simply fine-tuning an encoder-decoder translation model. We then investigate where grammar books help by testing two linguistic tasks, grammaticality judgment and gloss prediction, and we explore what kind of grammatical knowledge helps by introducing a typological feature prompt that achieves leading results on these more relevant tasks. We thus emphasise the importance of task-appropriate data for XLR languages: parallel examples for translation, and grammatical data for linguistic tasks. As we find no evidence that long-context LLMs can make effective use of grammatical explanations for XLR translation, we conclude data collection for multilingual XLR tasks such as translation is best focused on parallel data over linguistic description.
comment: Accepted at ICLR 2025 (Spotlight)
OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure ACL
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
comment: Published in TACL
SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection SemEval2025
We present our shared task on text-based emotion detection, covering more than 30 languages from seven distinct language families. These languages are predominantly low-resource and are spoken across various continents. The data instances are multi-labeled with six emotional classes, with additional datasets in 11 languages annotated for emotion intensity. Participants were asked to predict labels in three tracks: (a) multilabel emotion detection, (b) emotion intensity score detection, and (c) cross-lingual emotion detection. The task attracted over 700 participants. We received final submissions from more than 200 teams and 93 system description papers. We report baseline results, along with findings on the best-performing systems, the most common approaches, and the most effective methods across different tracks and languages. The datasets for this task are publicly available. The dataset is available at SemEval2025 Task 11 https://brighter-dataset.github.io
comment: SemEval2025 Task11 (Task Description Paper). arXiv admin note: text overlap with arXiv:2502.11926
From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combines techniques like rejection fine-tuning, reinforcement learning, and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress models to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies
The large models, as predicted by scaling raw forecasts, have made groundbreaking progress in many fields, particularly in natural language generation tasks, where they have approached or even surpassed human levels. However, the unprecedented scale of their parameters brings significant computational and storage costs. These large models require substantial computational resources and GPU memory to operate. When adapting large models to specific downstream tasks, their massive parameter scale poses a significant challenge in fine-tuning on hardware platforms with limited computational power and GPU memory. To address this issue, Parameter-Efficient Fine-Tuning (PEFT) offers a practical solution by efficiently adjusting the parameters of large pre-trained models to suit various downstream tasks. Specifically, PEFT adjusts the parameters of pre-trained large models to adapt to specific tasks or domains, minimizing the introduction of additional parameters and the computational resources required. This review mainly introduces the preliminary knowledge of PEFT, the core ideas and principles of various PEFT algorithms, the applications of PEFT, and potential future research directions. By reading this review, we believe that interested parties can quickly grasp the PEFT methodology, thereby accelerating its development and innovation.
Automatically Evaluating the Paper Reviewing Capability of Large Language Models
Peer review is essential for scientific progress, but it faces challenges such as reviewer shortages and growing workloads. Although Large Language Models (LLMs) show potential for providing assistance, research has reported significant limitations in the reviews they generate. While the insights are valuable, conducting the analysis is challenging due to the considerable time and effort required, especially given the rapid pace of LLM developments. To address the challenge, we developed an automatic evaluation pipeline to assess the LLMs' paper review capability by comparing them with expert-generated reviews. By constructing a dataset consisting of 676 OpenReview papers, we examined the agreement between LLMs and experts in their strength and weakness identifications. The results showed that LLMs lack balanced perspectives, significantly overlook novelty assessment when criticizing, and produce poor acceptance decisions. Our automated pipeline enables a scalable evaluation of LLMs' paper review capability over time.
Multilingual State Space Models for Structured Question Answering in Indic Languages NAACL
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
comment: Accepted at NAACL
Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (\textit{PHD}-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. \textit{PHD}-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: \textit{PHD-SWA} employs sliding window attention to preserve local dependencies, while \textit{PHD-CSWA} implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
Shared Global and Local Geometry of Language Model Embeddings
Researchers have recently suggested that models share common representations. In our work, we find that token embeddings of language models exhibit common geometric structure. First, we find ``global'' similarities: token embeddings often share similar relative orientations. Next, we characterize local geometry in two ways: (1) by using Locally Linear Embeddings, and (2) by defining a simple measure for the intrinsic dimension of each token embedding. Our intrinsic dimension demonstrates that token embeddings lie on a lower dimensional manifold. We qualitatively show that tokens with lower intrinsic dimensions often have semantically coherent clusters, while those with higher intrinsic dimensions do not. Both characterizations allow us to find similarities in the local geometry of token embeddings. Perhaps most surprisingly, we find that alignment in token embeddings persists through the hidden states of language models, allowing us to develop an application for interpretability. Namely, we introduce Emb2Emb, a simple method to transfer steering vectors from one language model to another, despite the two models having different dimensions.
Selective Attention Improves Transformer ICLR 2025
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention consistently improves language modeling and downstream task performance in a variety of model sizes and context lengths. For example, transformers trained with the language modeling objective on C4 with selective attention perform language modeling equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
comment: ICLR 2025
GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning
Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of $65.3$. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.
comment: 10 pages, 8 figures
Cognitive Memory in Large Language Models
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
comment: 37 pages, 9 figures
Cross-lingual, Character-Level Neural Morphological Tagging EMNLP 2017
Even for common NLP tasks, sufficient supervision is not available in many languages -- morphological tagging is no exception. In the work presented here, we explore a transfer learning scheme, whereby we train character-level recurrent neural taggers to predict morphological taggings for high-resource languages and low-resource languages together. Learning joint character representations among multiple related languages successfully enables knowledge transfer from the high-resource languages to the low-resource ones, improving accuracy by up to 30% over a monolingual model.
comment: Published as a conference paper at EMNLP 2017; Fixed minor typos and cleaned up formatting
FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows" ICLR 2025
Ensuring faithfulness to context in large language models (LLMs) and retrieval-augmented generation (RAG) systems is crucial for reliable deployment in real-world applications, as incorrect or unsupported information can erode user trust. Despite advancements on standard benchmarks, faithfulness hallucination-where models generate responses misaligned with the provided context-remains a significant challenge. In this work, we introduce FaithEval, a novel and comprehensive benchmark tailored to evaluate the faithfulness of LLMs in contextual scenarios across three diverse tasks: unanswerable, inconsistent, and counterfactual contexts. These tasks simulate real-world challenges where retrieval mechanisms may surface incomplete, contradictory, or fabricated information. FaithEval comprises 4.9K high-quality problems in total, validated through a rigorous four-stage context construction and validation framework, employing both LLM-based auto-evaluation and human validation. Our extensive study across a wide range of open-source and proprietary models reveals that even state-of-the-art models often struggle to remain faithful to the given context, and that larger models do not necessarily exhibit improved faithfulness.Project is available at: https://github.com/SalesforceAIResearch/FaithEval.
comment: The conference version of this paper is published at ICLR 2025
Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs ICLR 2025
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora. However, this poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods that remove sensitive data without retraining from scratch. While Gradient Ascent (GA) is commonly used to unlearn by reducing the likelihood of generating unwanted content, it leads to unstable optimization and catastrophic forgetting of retrained knowledge. We find that combining GA with low-rank adaptation results in poor trade-offs between computational cost and generative performance. To address these challenges, we propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs. First, we introduce Inverted Hinge Loss, which suppresses unwanted tokens while maintaining fluency by boosting the probability of the next most likely token. Second, we develop a data-adaptive initialization for LoRA adapters via low-rank approximation weighted with relative Fisher information, thereby focusing updates on parameters critical for removing targeted knowledge. Experiments on the Training Data Extraction Challenge dataset using GPT-Neo models as well as on the TOFU benchmark with Phi-1.5B and Llama2-7B models demonstrate that our approach effectively removes sensitive information while maintaining reasoning and generative capabilities with minimal impact. Our implementation can be found in https://github.com/csm9493/efficient-llm-unlearning.
comment: ICLR 2025 camera-ready version
Adaptive Uncertainty Quantification for Generative AI
This work is concerned with conformal prediction in contemporary applications (including generative AI) where a black-box model has been trained on data that are not accessible to the user. Mirroring split-conformal inference, we design a wrapper around a black-box algorithm which calibrates conformity scores. This calibration is local and proceeds in two stages by first adaptively partitioning the predictor space into groups and then calibrating sectionally group by group. Adaptive partitioning (self-grouping) is achieved by fitting a robust regression tree to the conformity scores on the calibration set. This new tree variant is designed in such a way that adding a single new observation does not change the tree fit with overwhelmingly large probability. This add-one-in robustness property allows us to conclude a finite sample group-conditional coverage guarantee, a refinement of the marginal guarantee. In addition, unlike traditional split-conformal inference, adaptive splitting and within-group calibration yields adaptive bands which can stretch and shrink locally. We demonstrate benefits of local tightening on several simulated as well as real examples using non-parametric regression. Finally, we consider two contemporary classification applications for obtaining uncertainty quantification around GPT-4o predictions. We conformalize skin disease diagnoses based on self-reported symptoms as well as predicted states of U.S. legislators based on summaries of their ideology. We demonstrate substantial local tightening of the uncertainty sets while attaining similar marginal coverage.
PRobELM: Plausibility Ranking Evaluation for Language Models
This paper introduces PRobELM (Plausibility Ranking Evaluation for Language Models), a benchmark designed to assess language models' ability to discern more plausible from less plausible scenarios through their parametric knowledge. While benchmarks such as TruthfulQA emphasise factual accuracy or truthfulness, and others such as COPA explore plausible scenarios without explicitly incorporating world knowledge, PRobELM seeks to bridge this gap by evaluating models' capabilities to prioritise plausible scenarios that leverage world knowledge over less plausible alternatives. This design allows us to assess the potential of language models for downstream use cases such as literature-based discovery where the focus is on identifying information that is likely but not yet known. Our benchmark is constructed from a dataset curated from Wikidata edit histories, tailored to align the temporal bounds of the training data for the evaluated models. PRobELM facilitates the evaluation of language models across multiple prompting types, including statement, text completion, and question-answering. Experiments with 10 models of various sizes and architectures on the relationship between model scales, training recency, and plausibility performance, reveal that factual accuracy does not directly correlate with plausibility performance and that up-to-date training data enhances plausibility assessment across different model architectures.
GOFA: A Generative One-For-All Model for Joint Graph Language Modeling
Foundation models, such as Large Language Models (LLMs) or Large Vision Models (LVMs), have emerged as one of the most powerful tools in the respective fields. However, unlike text and image data, graph data do not have a definitive structure, posing great challenges to developing a Graph Foundation Model (GFM). For example, current attempts at designing general graph models either transform graph data into a language format for LLM-based prediction or still train a GNN model with LLM as an assistant. The former can handle unlimited tasks, while the latter captures graph structure much better -- yet, no existing work can achieve both simultaneously. In this paper, we identify three key desirable properties of a GFM: self-supervised pretraining, fluidity in tasks, and graph awareness. To account for these properties, we extend the conventional language modeling to the graph domain and propose a novel generative graph language model GOFA to solve the problem. The model interleaves randomly initialized GNN layers into a frozen pre-trained LLM so that the semantic and structural modeling abilities are organically combined. GOFA is pre-trained on newly proposed graph-level next-word prediction, question-answering, and structural tasks to obtain the above GFM properties. The pre-trained model is further fine-tuned on downstream tasks to obtain task-solving ability. The fine-tuned model is evaluated on various downstream tasks, demonstrating a strong ability to solve structural and contextual problems in zero-shot scenarios. The code is available at https://github.com/JiaruiFeng/GOFA.
Using Large Language Models to Create AI Personas for Replication, Generalization and Prediction of Media Effects: An Empirical Test of 133 Published Experimental Research Findings
This report analyzes the potential for large language models (LLMs) to expedite accurate replication and generalization of published research about message effects in marketing. LLM-powered participants (personas) were tested by replicating 133 experimental findings from 14 papers containing 45 recent studies published in the Journal of Marketing. For each study, the measures, stimuli, and sampling specifications were used to generate prompts for LLMs to act as unique personas. The AI personas, 19,447 in total across all of the studies, generated complete datasets and statistical analyses were then compared with the original human study results. The LLM replications successfully reproduced 76% of the original main effects (84 out of 111), demonstrating strong potential for AI-assisted replication. The overall replication rate including interaction effects was 68% (90 out of 133). Furthermore, a test of how human results generalized to different participant samples, media stimuli, and measures showed that replication results can change when tests go beyond the parameters of the original human studies. Implications are discussed for the replication and generalizability crises in social science, the acceleration of theory building in media and marketing psychology, and the practical advantages of rapid message testing for consumer products. Limitations of AI replications are addressed with respect to complex interaction effects, biases in AI models, and establishing benchmarks for AI metrics in marketing research.
comment: 40 pages, 13 figures, 3 tables
Can Reasoning LLMs Enhance Clinical Document Classification?
Clinical document classification is essential for converting unstructured medical texts into standardised ICD-10 diagnoses, yet it faces challenges due to complex medical language, privacy constraints, and limited annotated datasets. Large Language Models (LLMs) offer promising improvements in accuracy and efficiency for this task. This study evaluates the performance and consistency of eight LLMs; four reasoning (Qwen QWQ, Deepseek Reasoner, GPT o3 Mini, Gemini 2.0 Flash Thinking) and four non-reasoning (Llama 3.3, GPT 4o Mini, Gemini 2.0 Flash, Deepseek Chat); in classifying clinical discharge summaries using the MIMIC-IV dataset. Using cTAKES to structure clinical narratives, models were assessed across three experimental runs, with majority voting determining final predictions. Results showed that reasoning models outperformed non-reasoning models in accuracy (71% vs 68%) and F1 score (67% vs 60%), with Gemini 2.0 Flash Thinking achieving the highest accuracy (75%) and F1 score (76%). However, non-reasoning models demonstrated greater stability (91% vs 84% consistency). Performance varied across ICD-10 codes, with reasoning models excelling in complex cases but struggling with abstract categories. Findings indicate a trade-off between accuracy and consistency, suggesting that a hybrid approach could optimise clinical coding. Future research should explore multi-label classification, domain-specific fine-tuning, and ensemble methods to enhance model reliability in real-world applications.
comment: 27 pages
Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. Antidistillation sampling provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
Human-Computer Interaction
LUIDA: Large-scale Unified Infrastructure for Digital Assessments based on Commercial Metaverse Platform
Online experiments using metaverse platforms have gained significant traction in Human-Computer Interaction and Virtual Reality (VR) research. However, current research workflows are highly fragmented, as researchers must use separate tools for system implementation, participant recruitment, experiment execution, and data collection, reducing consistency and increasing workload. We present LUIDA (Large-scale Unified Infrastructure for Digital Assessments), a metaverse-based framework that integrates these fragmented processes. LUIDA automatically allocates interconnected virtual environments for parallel experiment execution and provides implementation templates adaptable to various VR research domains, requiring minimal metaverse development expertise. Our evaluation included two studies using a prototype built on Cluster, the commercial metaverse platform. First, VR researchers using LUIDA to develop and run experiments reported high usability scores (SUS: 73.75) and moderate workload (NASA-TLX: 24.11) for overall usage, with interviews confirming streamlined workflows compared to traditional laboratory experiments. Second, we conducted three replicated experiments with public Cluster users, each recruiting approximately 200 participants within one week. These experiments produced results that closely matched the original studies, validating the experimental integrity of LUIDA across research domains. After technical refinements, we plan to release LUIDA as an open platform, providing a standardized protocol to improve research efficiency and experimental reproducibility in VR studies.
'The Boring and the Tedious': Invisible Labour in India's Gig-Economy
India's gig-based food delivery platforms, such as Swiggy and Zomato, provide crucial income to marginalised communities but also entrench workers in cycles of invisible labour. Through 14 semi-structured interviews, we analyse waiting time and repetitive UI itneractions as key burdens that contribute to 'digital discomfort' for gig based food delivery agents. We find that workers employ creative strategies to navigate algorithmic management, yet remain constrained by platform-side 'gamification' and system opacity. We propose worker-centered GUI automation as a potential intervention to reduce friction while preserving agency. In conclusion, this position paper argues for rethinking HCI approaches in the Global South to prioritise worker autonomy over efficiency-driven design optimisations.
comment: 6 pages, 2 figures
INSIGHT: Bridging the Student-Teacher Gap in Times of Large Language Models
The rise of AI, especially Large Language Models, presents challenges and opportunities to integrate such technology into the classroom. AI has the potential to revolutionize education by helping teaching staff with various tasks, such as personalizing their teaching methods, but it also raises concerns, for example, about the degradation of student-teacher interactions and user privacy. This paper introduces INSIGHT, a proof of concept to combine various AI tools to assist teaching staff and students in the process of solving exercises. INSIGHT has a modular design that allows it to be integrated into various higher education courses. We analyze students' questions to an LLM by extracting keywords, which we use to dynamically build an FAQ from students' questions and provide new insights for the teaching staff to use for more personalized face-to-face support. Future work could build upon INSIGHT by using the collected data to provide adaptive learning and adjust content based on student progress and learning styles to offer a more interactive and inclusive learning experience.
The Malicious Technical Ecosystem: Exposing Limitations in Technical Governance of AI-Generated Non-Consensual Intimate Images of Adults
In this paper, we adopt a survivor-centered approach to locate and dissect the role of sociotechnical AI governance in preventing AI-Generated Non-Consensual Intimate Images (AIG-NCII) of adults, colloquially known as "deep fake pornography." We identify a "malicious technical ecosystem" or "MTE," comprising of open-source face-swapping models and nearly 200 "nudifying" software programs that allow non-technical users to create AIG-NCII within minutes. Then, using the National Institute of Standards and Technology (NIST) AI 100-4 report as a reflection of current synthetic content governance methods, we show how the current landscape of practices fails to effectively regulate the MTE for adult AIG-NCII, as well as flawed assumptions explaining these gaps.
Towards User-Centred Design of AI-Assisted Decision-Making in Law Enforcement
Artificial Intelligence (AI) has become an important part of our everyday lives, yet user requirements for designing AI-assisted systems in law enforcement remain unclear. To address this gap, we conducted qualitative research on decision-making within a law enforcement agency. Our study aimed to identify limitations of existing practices, explore user requirements and understand the responsibilities that humans expect to undertake in these systems. Participants in our study highlighted the need for a system capable of processing and analysing large volumes of data efficiently to help in crime detection and prevention. Additionally, the system should satisfy requirements for scalability, accuracy, justification, trustworthiness and adaptability to be adopted in this domain. Participants also emphasised the importance of having end users review the input data that might be challenging for AI to interpret, and validate the generated output to ensure the system's accuracy. To keep up with the evolving nature of the law enforcement domain, end users need to help the system adapt to the changes in criminal behaviour and government guidance, and technical experts need to regularly oversee and monitor the system. Furthermore, user-friendly human interaction with the system is essential for its adoption and some of the participants confirmed they would be happy to be in the loop and provide necessary feedback that the system can learn from. Finally, we argue that it is very unlikely that the system will ever achieve full automation due to the dynamic and complex nature of the law enforcement domain.
comment: 10 pages, 1 figure
The Riemannian Means Field Classifier for EEG-Based BCI Data
A substantial amount of research has demonstrated the robustness and accuracy of the Riemannian minimum distance to mean (MDM) classifier for all kinds of EEG-based brain--computer interfaces (BCIs). This classifier is simple, fully deterministic, robust to noise, computationally efficient, and prone to transfer learning. Its training is very simple, requiring just the computation of a geometric mean of a symmetric positive-definite (SPD) matrix per class. We propose an improvement of the MDM involving a number of power means of SPD matrices instead of the sole geometric mean. By the analysis of 20 public databases, 10 for the motor-imagery BCI paradigm and 10 for the P300 BCI paradigm, comprising 587 individuals in total, we show that the proposed classifier clearly outperforms the MDM, approaching the state-of-the art in terms of performance while retaining the simplicity and the deterministic behavior. In order to promote reproducible research, our code will be released as open source.
DataScout: Automatic Data Fact Retrieval for Statement Augmentation with an LLM-Based Agent
A data story typically integrates data facts from multiple perspectives and stances to construct a comprehensive and objective narrative. However, retrieving these facts demands time for data search and challenges the creator's analytical skills. In this work, we introduce DataScout, an interactive system that automatically performs reasoning and stance-based data facts retrieval to augment the user's statement. Particularly, DataScout leverages an LLM-based agent to construct a retrieval tree, enabling collaborative control of its expansion between users and the agent. The interface visualizes the retrieval tree as a mind map that eases users to intuitively steer the retrieval direction and effectively engage in reasoning and analysis. We evaluate the proposed system through case studies and in-depth expert interviews. Our evaluation demonstrates that DataScout can effectively retrieve multifaceted data facts from different stances, helping users verify their statements and enhance the credibility of their stories.
Exploring Context-aware and LLM-driven Locomotion for Immersive Virtual Reality
Locomotion plays a crucial role in shaping the user experience within virtual reality environments. In particular, hands-free locomotion offers a valuable alternative by supporting accessibility and freeing users from reliance on handheld controllers. To this end, traditional speech-based methods often depend on rigid command sets, limiting the naturalness and flexibility of interaction. In this study, we propose a novel locomotion technique powered by large language models (LLMs), which allows users to navigate virtual environments using natural language with contextual awareness. We evaluate three locomotion methods: controller-based teleportation, voice-based steering, and our language model-driven approach. Our evaluation measures include eye-tracking data analysis, including explainable machine learning through SHAP analysis as well as standardized questionnaires for usability, presence, cybersickness, and cognitive load to examine user attention and engagement. Our findings indicate that the LLM-driven locomotion possesses comparable usability, presence, and cybersickness scores to established methods like teleportation, demonstrating its novel potential as a comfortable, natural language-based, hands-free alternative. In addition, it enhances user attention within the virtual environment, suggesting greater engagement. Complementary to these findings, SHAP analysis revealed that fixation, saccade, and pupil-related features vary across techniques, indicating distinct patterns of visual attention and cognitive processing. Overall, we state that our method can facilitate hands-free locomotion in virtual spaces, especially in supporting accessibility.
comment: This work has been submitted to the IEEE for possible publication
MV-Crafter: An Intelligent System for Music-guided Video Generation
Music videos, as a prevalent form of multimedia entertainment, deliver engaging audio-visual experiences to audiences and have gained immense popularity among singers and fans. Creators can express their interpretations of music naturally through visual elements. However, the creation process of music video demands proficiency in script design, video shooting, and music-video synchronization, posing significant challenges for non-professionals. Previous work has designed automated music video generation frameworks. However, they suffer from complexity in input and poor output quality. In response, we present MV-Crafter, a system capable of producing high-quality music videos with synchronized music-video rhythm and style. Our approach involves three technical modules that simulate the human creation process: the script generation module, video generation module, and music-video synchronization module. MV-Crafter leverages a large language model to generate scripts considering the musical semantics. To address the challenge of synchronizing short video clips with music of varying lengths, we propose a dynamic beat matching algorithm and visual envelope-induced warping method to ensure precise, monotonic music-video synchronization. Besides, we design a user-friendly interface to simplify the creation process with intuitive editing features. Extensive experiments have demonstrated that MV-Crafter provides an effective solution for improving the quality of generated music videos.
Crisp: Cognitive Restructuring of Negative Thoughts through Multi-turn Supportive Dialogues
Cognitive Restructuring (CR) is a psychotherapeutic process aimed at identifying and restructuring an individual's negative thoughts, arising from mental health challenges, into more helpful and positive ones via multi-turn dialogues. Clinician shortage and stigma urge the development of human-LLM interactive psychotherapy for CR. Yet, existing efforts implement CR via simple text rewriting, fixed-pattern dialogues, or a one-shot CR workflow, failing to align with the psychotherapeutic process for effective CR. To address this gap, we propose CRDial, a novel framework for CR, which creates multi-turn dialogues with specifically designed identification and restructuring stages of negative thoughts, integrates sentence-level supportive conversation strategies, and adopts a multi-channel loop mechanism to enable iterative CR. With CRDial, we distill Crisp, a large-scale and high-quality bilingual dialogue dataset, from LLM. We then train Crispers, Crisp-based conversational LLMs for CR, at 7B and 14B scales. Extensive human studies show the superiority of Crispers in pointwise, pairwise, and intervention evaluations.
Factually: Exploring Wearable Fact-Checking for Augmented Truth Discernment
Wearable devices are transforming human capabilities by seamlessly augmenting cognitive functions. In this position paper, we propose a voice-based, interactive learning companion designed to amplify and extend cognitive abilities through informal learning. Our vision is threefold: (1) to enable users to discover new knowledge on-the-go through contextual interactive quizzes, fostering critical thinking and mindfulness, (2) to proactively detect misinformation, empowering users to critically assess information in real time, and (3) to provide spoken language correction and prompting hints for second language learning and effective communication. As an initial step toward this vision, we present Factually - a proactive, wearable fact-checking system integrated into devices like smartwatches or rings. Factually discreetly alerts users to potential falsehoods via vibrotactile feedback, helping them assess information critically. We demonstrate its utility through three illustrative scenarios, highlighting its potential to extend cognitive abilities for real-time misinformation detection. Early qualitative feedback suggests that Factually can enhance users' fact-checking capabilities, offering both practical and experiential benefits.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
Lessons from Deploying Learning-based CSI Localization on a Large-Scale ISAC Platform
In recent years, Channel State Information (CSI), recognized for its fine-grained spatial characteristics, has attracted increasing attention in WiFi-based indoor localization. However, despite its potential, CSI-based approaches have yet to achieve the same level of deployment scale and commercialization as those based on Received Signal Strength Indicator (RSSI). A key limitation lies in the fact that most existing CSI-based systems are developed and evaluated in controlled, small-scale environments, limiting their generalizability. To bridge this gap, we explore the deployment of a large-scale CSI-based localization system involving over 400 Access Points (APs) in a real-world building under the Integrated Sensing and Communication (ISAC) paradigm. We highlight two critical yet often overlooked factors: the underutilization of unlabeled data and the inherent heterogeneity of CSI measurements. To address these challenges, we propose a novel CSI-based learning framework for WiFi localization, tailored for large-scale ISAC deployments on the server side. Specifically, we employ a novel graph-based structure to model heterogeneous CSI data and reduce redundancy. We further design a pretext pretraining task that incorporates spatial and temporal priors to effectively leverage large-scale unlabeled CSI data. Complementarily, we introduce a confidence-aware fine-tuning strategy to enhance the robustness of localization results. In a leave-one-smartphone-out experiment spanning five floors and 25, 600 m2, we achieve a median localization error of 2.17 meters and a floor accuracy of 99.49%. This performance corresponds to an 18.7% reduction in mean absolute error (MAE) compared to the best-performing baseline.
Augmenting Captions with Emotional Cues: An AR Interface for Real-Time Accessible Communication
This paper introduces an augmented reality (AR) captioning framework designed to support Deaf and Hard of Hearing (DHH) learners in STEM classrooms by integrating non-verbal emotional cues into live transcriptions. Unlike conventional captioning systems that offer only plain text, our system fuses real-time speech recognition with affective and visual signal interpretation, including facial movements, gestures, and vocal tone, to produce emotionally enriched captions. These enhanced captions are rendered in an AR interface developed with Unity and provide contextual annotations such as speaker tone markers (e.g., "concerned") and gesture indicators (e.g., "nods"). The system leverages live camera and microphone input, processed through AI models to detect multimodal cues. Findings from preliminary evaluations suggest that this AR-based captioning approach significantly enhances comprehension and reduces cognitive effort compared to standard captions. Our work emphasizes the potential of immersive environments for inclusive, emotion-aware educational accessibility.
Improving Human-Autonomous Vehicle Interaction in Complex Systems
Unresolved questions about how autonomous vehicles (AVs) should meet the informational needs of riders hinder real-world adoption. Complicating our ability to satisfy rider needs is that different people, goals, and driving contexts have different criteria for what constitutes interaction success. Unfortunately, most human-AV research and design today treats all people and situations uniformly. It is crucial to understand how an AV should communicate to meet rider needs, and how communications should change when the human-AV complex system changes. I argue that understanding the relationships between different aspects of the human-AV system can help us build improved and adaptable AV communications. I support this argument using three empirical studies. First, I identify optimal communication strategies that enhance driving performance, confidence, and trust for learning in extreme driving environments. Findings highlight the need for task-sensitive, modality-appropriate communications tuned to learner cognitive limits and goals. Next, I highlight the consequences of deploying faulty communication systems and demonstrate the need for context-sensitive communications. Third, I use machine learning (ML) to illuminate personal factors predicting trust in AVs, emphasizing the importance of tailoring designs to individual traits and concerns. Together, this dissertation supports the necessity of transparent, adaptable, and personalized AV systems that cater to individual needs, goals, and contextual demands. By considering the complex system within which human-AV interactions occur, we can deliver valuable insights for designers, researchers, and policymakers. This dissertation also provides a concrete domain to study theories of human-machine joint action and situational awareness, and can be used to guide future human-AI interaction research. [shortened for arxiv]
comment: PhD Dissertation from University of California, San Diego; 175 pages
DashGuide: Authoring Interactive Dashboard Tours for Guiding Dashboard Users
Dashboard guidance helps dashboard users better navigate interactive features, understand the underlying data, and assess insights they can potentially extract from dashboards. However, authoring dashboard guidance is a time consuming task, and embedding guidance into dashboards for effective delivery is difficult to realize. In this work, we contribute DashGuide, a framework and system to support the creation of interactive dashboard guidance with minimal authoring input. Given a dashboard and a communication goal, DashGuide captures a sequence of author-performed interactions to generate guidance materials delivered as playable step-by-step overlays, a.k.a., dashboard tours. Authors can further edit and refine individual tour steps while receiving generative assistance. We also contribute findings from a formative assessment with 9 dashboard creators, which helped inform the design of DashGuide; and findings from an evaluation of DashGuide with 12 dashboard creators, suggesting it provides an improved authoring experience that balances efficiency, expressiveness, and creative freedom.
Evaluating Machine Expertise: How Graduate Students Develop Frameworks for Assessing GenAI Content
This paper examines how graduate students develop frameworks for evaluating machine-generated expertise in web-based interactions with large language models (LLMs). Through a qualitative study combining surveys, LLM interaction transcripts, and in-depth interviews with 14 graduate students, we identify patterns in how these emerging professionals assess and engage with AI-generated content. Our findings reveal that students construct evaluation frameworks shaped by three main factors: professional identity, verification capabilities, and system navigation experience. Rather than uniformly accepting or rejecting LLM outputs, students protect domains central to their professional identities while delegating others--with managers preserving conceptual work, designers safeguarding creative processes, and programmers maintaining control over core technical expertise. These evaluation frameworks are further influenced by students' ability to verify different types of content and their experience navigating complex systems. This research contributes to web science by highlighting emerging human-genAI interaction patterns and suggesting how platforms might better support users in developing effective frameworks for evaluating machine-generated expertise signals in AI-mediated web environments.
comment: Under review at ACM Web Science Conference 2025's Human-GenAI Interactions Workshop, 4 pages
VIGMA: An Open-Access Framework for Visual Gait and Motion Analytics
Gait disorders are commonly observed in older adults, who frequently experience various issues related to walking. Additionally, researchers and clinicians extensively investigate mobility related to gait in typically and atypically developing children, athletes, and individuals with orthopedic and neurological disorders. Effective gait analysis enables the understanding of the causal mechanisms of mobility and balance control of patients, the development of tailored treatment plans to improve mobility, the reduction of fall risk, and the tracking of rehabilitation progress. However, analyzing gait data is a complex task due to the multivariate nature of the data, the large volume of information to be interpreted, and the technical skills required. Existing tools for gait analysis are often limited to specific patient groups (e.g., cerebral palsy), only handle a specific subset of tasks in the entire workflow, and are not openly accessible. To address these shortcomings, we conducted a requirements assessment with gait practitioners (e.g., researchers, clinicians) via surveys and identified key components of the workflow, including (1) data processing and (2) data analysis and visualization. Based on the findings, we designed VIGMA, an open-access visual analytics framework integrated with computational notebooks and a Python library, to meet the identified requirements. Notably, the framework supports analytical capabilities for assessing disease progression and for comparing multiple patient groups. We validated the framework through usage scenarios with experts specializing in gait and mobility rehabilitation. VIGMA is available at https://github.com/komar41/VIGMA.
comment: Accepted for publication in the IEEE Transactions on Visualization and Computer Graphics. VIGMA is available at https://github.com/komar41/VIGMA
Toward a Human-Centered Evaluation Framework for Trustworthy LLM-Powered GUI Agents
The rise of Large Language Models (LLMs) has revolutionized Graphical User Interface (GUI) automation through LLM-powered GUI agents, yet their ability to process sensitive data with limited human oversight raises significant privacy and security risks. This position paper identifies three key risks of GUI agents and examines how they differ from traditional GUI automation and general autonomous agents. Despite these risks, existing evaluations focus primarily on performance, leaving privacy and security assessments largely unexplored. We review current evaluation metrics for both GUI and general LLM agents and outline five key challenges in integrating human evaluators for GUI agent assessments. To address these gaps, we advocate for a human-centered evaluation framework that incorporates risk assessments, enhances user awareness through in-context consent, and embeds privacy and security considerations into GUI agent design and evaluation.
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
In this paper, we investigate how concept-based models (CMs) respond to out-of-distribution (OOD) inputs. CMs are interpretable neural architectures that first predict a set of high-level concepts (e.g., stripes, black) and then predict a task label from those concepts. In particular, we study the impact of concept interventions (i.e., operations where a human expert corrects a CM's mispredicted concepts at test time) on CMs' task predictions when inputs are OOD. Our analysis reveals a weakness in current state-of-the-art CMs, which we term leakage poisoning, that prevents them from properly improving their accuracy when intervened on for OOD inputs. To address this, we introduce MixCEM, a new CM that learns to dynamically exploit leaked information missing from its concepts only when this information is in-distribution. Our results across tasks with and without complete sets of concept annotations demonstrate that MixCEMs outperform strong baselines by significantly improving their accuracy for both in-distribution and OOD samples in the presence and absence of concept interventions.
"Shifting Access Control Left" using Asset and Goal Models
Access control needs have broad design implications, but access control specifications may be elicited before, during, or after these needs are captured. Because access control knowledge is distributed, we need to make knowledge asymmetries more transparent, and use expertise already available to stakeholders. In this paper, we present a tool-supported technique identifying knowledge asymmetries around access control based on asset and goal models. Using simple and conventional modelling languages that complement different design techniques, we provide boundary objects to make access control transparent, thereby making knowledge about access control concerns more symmetric. We illustrate this technique using a case study example considering the suitability of a reusable software component in a new military air system.
comment: To appear in the NATO ICMCIS proceedings
Subthreshold Jitter in VR Can Induce Visual Discomfort
Visual-vestibular conflicts (VVCs) are a primary contributor to visually induced motion sickness (VIMS) in head-mounted displays (HMDs). However, virtual reality (VR) comfort studies often rely on exposing seated or standing users to experiences with high intensity visual motion (such as roller coasters). These drastic VVCs tend to induce pronounced VIMS symptoms that can be reliably detected across individuals using common survey measures. The conclusions from studies using these extreme motion-based conflicts may not accurately generalize to naturalistic use cases in VR where efforts are made to minimize, rather than maximize, VIMS symptoms. In this work, we show that a subthreshold visual-vestibular conflict can induce measurable discomfort during naturalistic, long duration use. We first present a psychophysical study, conducted outside of an HMD, to rigorously identify the perceptual thresholds for sinusoidal noise in render pose (i.e., jitter) resulting in erroneous 3D motion of rendered content. We next introduce subthreshold levels of jitter to a Meta Quest 3 VR HMD and demonstrate that this can induce visual discomfort in participants playing the commercially-available game Cubism across a three-session, repeated-measures study. Importantly, we did not identify statistically significant comfort differences between control and jitter conditions with traditional pre- and post-test comparison of Simulator Sickness Questionnaire (SSQ) scores. Significant differences were only identified using the Motion Illness Symptoms Classification (MISC) survey administered every 10 minutes across each 90 minute session. This highlights the benefits of incorporating time-resolved data points and suggests that lightweight, more frequent surveys may be important tools for measuring visual discomfort in more ecologically-valid scenarios.
Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
Should Benevolent Deception be Allowed in EHMI? A Mechanism Explanation Based on Game Theory
The application of external human-machine interface (EHMI) on autonomous vehicles (AVs) facilitates information exchange. Existing research fails to consider the impact of the sequence of actions, as well as the effects of EHMI applications and deception, raising the question of whether benevolent, well-intentioned deception should be permitted (i.e., misleading statements that are intended to benefit both parties). We established a game theory based EHMI information disclosure framework for AVs in this study. In considering benevolent deception, this framework divided the decision-making process into three stages, respectively encompassing three key questions: whether to disclose, when to disclose, and what type of intention information to disclose. The results show that theoretical advantages of deception exist in certain cases when AV expects to maximize the safety of the interaction. In 40 out of 484 cases (8.3%), safety can be enhanced through successful deception. Those successful deceptions fall into two categories: 1) In 28 of these cases, the straight-going AV expected the left-turning HV to yield, while HV exhibited lower speed and higher acceleration; 2) In 12 of these cases, AV expected HV to proceed first, while HV exhibited higher speed and lower acceleration. We also conducted a VR-based driving simulation experiment, and the results confirmed our conclusion. Additionally, we found that when participants had low trust in the EHMI, its use negatively impacted interaction efficiency instead. This study aims to analyze the mechanisms of EHMI information disclosure and contribute to the ongoing discourse on the ethical framework governing autonomous driving systems.
WiReSens Toolkit: An Open-source Platform towards Accessible Wireless Tactile Sensing
Past research has widely explored the design and fabrication of resistive matrix-based tactile sensors as a means of creating touch-sensitive devices. However, developing portable, adaptive, and long-lasting tactile sensing systems that incorporate these sensors remains challenging for individuals having limited prior experience with them. To address this, we developed the WiReSens Toolkit, an open-source platform for accessible wireless tactile sensing. Central to our approach is adaptive hardware for interfacing with resistive sensors and a web-based GUI that mediates access to complex functionalities for developing scalable tactile sensing systems, including 1) multi-device programming and wireless visualization across three distinct communication protocols 2) autocalibration methods for adaptive sensitivity and 3) intermittent data transmission for low-power operation. We validated the toolkit's usability through a user study with 11 novice participants, who, on average, successfully configured a tactile sensor with over 95\% accuracy in under five minutes, calibrated sensors 10x faster than baseline methods, and demonstrated enhanced tactile data sense-making.
Control Center Framework for Teleoperation Support of Automated Vehicles on Public Roads
Implementing a teleoperation system with its various actors and interactions is challenging and requires an overview of the necessary functions. This work collects all tasks that arise in a control center for an automated vehicle fleet from literature and assigns them to the two roles Remote Operator and Fleet Manager. Focusing on the driving-related tasks of the remote operator, a process is derived that contains the sequence of tasks, associated vehicle states, and transitions between the states. The resulting state diagram shows all remote operator actions available to effectively resolve automated vehicle disengagements. Thus, the state diagram can be applied to existing legislation or modified based on prohibitions of specific interactions. The developed control center framework and included state diagram should serve as a basis for implementing and testing remote support for automated vehicles to be validated on public roads.
The GenUI Study: Exploring the Design of Generative UI Tools to Support UX Practitioners and Beyond
AI can now generate high-fidelity UI mock-up screens from a high-level textual description, promising to support UX practitioners' work. However, it remains unclear how UX practitioners would adopt such Generative UI (GenUI) models in a way that is integral and beneficial to their work. To answer this question, we conducted a formative study with 37 UX-related professionals that consisted of four roles: UX designers, UX researchers, software engineers, and product managers. Using a state-of-the-art GenUI tool, each participant went through a week-long, individual mini-project exercise with role-specific tasks, keeping a daily journal of their usage and experiences with GenUI, followed by a semi-structured interview. We report findings on participants' workflow using the GenUI tool, how GenUI can support all and each specific roles, and existing gaps between GenUI and users' needs and expectations, which lead to design implications to inform future work on GenUI development.
Co-Designing with Algorithms: Unpacking the Complex Role of GenAI in Interactive System Design Education
Generative Artificial Intelligence (GenAI) is transforming Human-Computer Interaction (HCI) education and technology design, yet its impact remains poorly understood. This study explores how graduate students in an applied HCI course used GenAI tools during interactive device design. Despite no encouragement, all groups integrated GenAI into their workflows. Through 12 post-class group interviews, we identified how GenAI co-design behaviors present both benefits, such as enhanced creativity and faster design iterations, and risks, including shallow learning and reflection. Benefits were most evident during the execution phases, while the discovery and reflection phases showed limited gains. A taxonomy of usage patterns revealed that students' outcomes depended more on how they used GenAI than the specific tasks performed. These findings highlight the need for HCI education to adapt to GenAI's role and offer recommendations for curricula to better prepare future designers for effective creative co-design.
comment: Conditionally accepted to DIS'25
Computer Vision and Pattern Recognition
Procedural Dataset Generation for Zero-Shot Stereo Matching
Synthetic datasets are a crucial ingredient for training stereo matching networks, but the question of what makes a stereo dataset effective remains largely unexplored. We investigate the design space of synthetic datasets by varying the parameters of a procedural dataset generator, and report the effects on zero-shot stereo matching performance using standard benchmarks. We collect the best settings to produce Infinigen-Stereo, a procedural generator specifically optimized for zero-shot stereo datasets. Models trained only on data from our system outperform robust baselines trained on a combination of existing synthetic datasets and have stronger zero-shot stereo matching performance than public checkpoints from prior works. We open source our system at https://github.com/princeton-vl/InfinigenStereo to enable further research on procedural stereo datasets.
I-Con: A Unifying Framework for Representation Learning ICLR 2025
As the field of representation learning grows, there has been a proliferation of different loss functions to solve different classes of problems. We introduce a single information-theoretic equation that generalizes a large collection of modern loss functions in machine learning. In particular, we introduce a framework that shows that several broad classes of machine learning methods are precisely minimizing an integrated KL divergence between two conditional distributions: the supervisory and learned representations. This viewpoint exposes a hidden information geometry underlying clustering, spectral methods, dimensionality reduction, contrastive learning, and supervised learning. This framework enables the development of new loss functions by combining successful techniques from across the literature. We not only present a wide array of proofs, connecting over 23 different approaches, but we also leverage these theoretical results to create state-of-the-art unsupervised image classifiers that achieve a +8% improvement over the prior state-of-the-art on unsupervised classification on ImageNet-1K. We also demonstrate that I-Con can be used to derive principled debiasing methods which improve contrastive representation learners.
comment: ICLR 2025; website: https://aka.ms/i-con . Proceedings of the Thirteenth International Conference on Learning Representations (ICLR 2025)
Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light
Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.
comment: https://github.com/SHI-Labs/NATTEN/
DreamO: A Unified Framework for Image Customization
Recently, extensive research on image customization (e.g., identity, subject, style, background, etc.) demonstrates strong customization capabilities in large-scale generative models. However, most approaches are designed for specific tasks, restricting their generalizability to combine different types of condition. Developing a unified framework for image customization remains an open challenge. In this paper, we present DreamO, an image customization framework designed to support a wide range of tasks while facilitating seamless integration of multiple conditions. Specifically, DreamO utilizes a diffusion transformer (DiT) framework to uniformly process input of different types. During training, we construct a large-scale training dataset that includes various customization tasks, and we introduce a feature routing constraint to facilitate the precise querying of relevant information from reference images. Additionally, we design a placeholder strategy that associates specific placeholders with conditions at particular positions, enabling control over the placement of conditions in the generated results. Moreover, we employ a progressive training strategy consisting of three stages: an initial stage focused on simple tasks with limited data to establish baseline consistency, a full-scale training stage to comprehensively enhance the customization capabilities, and a final quality alignment stage to correct quality biases introduced by low-quality data. Extensive experiments demonstrate that the proposed DreamO can effectively perform various image customization tasks with high quality and flexibly integrate different types of control conditions.
BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
High-Quality Cloud-Free Optical Image Synthesis Using Multi-Temporal SAR and Contaminated Optical Data
Addressing gaps caused by cloud cover and the long revisit cycle of satellites is vital for providing essential data to support remote sensing applications. This paper tackles the challenges of missing optical data synthesis, particularly in complex scenarios with cloud cover. We propose CRSynthNet, a novel image synthesis network that incorporates innovative designed modules such as the DownUp Block and Fusion Attention to enhance accuracy. Experimental results validate the effectiveness of CRSynthNet, demonstrating substantial improvements in restoring structural details, preserving spectral consist, and achieving superior visual effects that far exceed those produced by comparison methods. It achieves quantitative improvements across multiple metrics: a peak signal-to-noise ratio (PSNR) of 26.978, a structural similarity index measure (SSIM) of 0.648, and a root mean square error (RMSE) of 0.050. Furthermore, this study creates the TCSEN12 dataset, a valuable resource specifically designed to address cloud cover challenges in missing optical data synthesis study. The dataset uniquely includes cloud-covered images and leverages earlier image to predict later image, offering a realistic representation of real-world scenarios. This study offer practical method and valuable resources for optical satellite image synthesis task.
Hyperspectral Vision Transformers for Greenhouse Gas Estimations from Space
Hyperspectral imaging provides detailed spectral information and holds significant potential for monitoring of greenhouse gases (GHGs). However, its application is constrained by limited spatial coverage and infrequent revisit times. In contrast, multispectral imaging offers broader spatial and temporal coverage but often lacks the spectral detail that can enhance GHG detection. To address these challenges, this study proposes a spectral transformer model that synthesizes hyperspectral data from multispectral inputs. The model is pre-trained via a band-wise masked autoencoder and subsequently fine-tuned on spatio-temporally aligned multispectral-hyperspectral image pairs. The resulting synthetic hyperspectral data retain the spatial and temporal benefits of multispectral imagery and improve GHG prediction accuracy relative to using multispectral data alone. This approach effectively bridges the trade-off between spectral resolution and coverage, highlighting its potential to advance atmospheric monitoring by combining the strengths of hyperspectral and multispectral systems with self-supervised deep learning.
A Low-Cost Photogrammetry System for 3D Plant Modeling and Phenotyping
We present an open-source, low-cost photogrammetry system for 3D plant modeling and phenotyping. The system uses a structure-from-motion approach to reconstruct 3D representations of the plants via point clouds. Using wheat as an example, we demonstrate how various phenotypic traits can be computed easily from the point clouds. These include standard measurements such as plant height and radius, as well as features that would be more cumbersome to measure by hand, such as leaf angles and convex hull. We further demonstrate the utility of the system through the investigation of specific metrics that may yield objective classifications of erectophile versus planophile wheat canopy architectures.
Decoupled Global-Local Alignment for Improving Compositional Understanding
Contrastive Language-Image Pre-training (CLIP) has achieved success on multiple downstream tasks by aligning image and text modalities. However, the nature of global contrastive learning limits CLIP's ability to comprehend compositional concepts, such as relations and attributes. Although recent studies employ global hard negative samples to improve compositional understanding, these methods significantly compromise the model's inherent general capabilities by forcibly distancing textual negative samples from images in the embedding space. To overcome this limitation, we introduce a Decoupled Global-Local Alignment (DeGLA) framework that improves compositional understanding while substantially mitigating losses in general capabilities. To optimize the retention of the model's inherent capabilities, we incorporate a self-distillation mechanism within the global alignment process, aligning the learnable image-text encoder with a frozen teacher model derived from an exponential moving average. Under the constraint of self-distillation, it effectively mitigates the catastrophic forgetting of pretrained knowledge during fine-tuning. To improve compositional understanding, we first leverage the in-context learning capability of Large Language Models (LLMs) to construct about 2M high-quality negative captions across five types. Subsequently, we propose the Image-Grounded Contrast (IGC) loss and Text-Grounded Contrast (TGC) loss to enhance vision-language compositionally. Extensive experimental results demonstrate the effectiveness of the DeGLA framework. Compared to previous state-of-the-art methods, DeGLA achieves an average enhancement of 3.5% across the VALSE, SugarCrepe, and ARO benchmarks. Concurrently, it obtains an average performance improvement of 13.0% on zero-shot classification tasks across eleven datasets. Our code will be released at https://github.com/xiaoxing2001/DeGLA
4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis
Multimodal neuroimaging provides complementary structural and functional insights into both human brain organization and disease-related dynamics. Recent studies demonstrate enhanced diagnostic sensitivity for Alzheimer's disease (AD) through synergistic integration of neuroimaging data (e.g., sMRI, fMRI) with behavioral cognitive scores tabular data biomarkers. However, the intrinsic heterogeneity across modalities (e.g., 4D spatiotemporal fMRI dynamics vs. 3D anatomical sMRI structure) presents critical challenges for discriminative feature fusion. To bridge this gap, we propose M2M-AlignNet: a geometry-aware multimodal co-attention network with latent alignment for early AD diagnosis using sMRI and fMRI. At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies via geometry-weighted patch correspondence, explicitly aligning fMRI components across brain regions with their sMRI structural substrates without one-to-one constraints. Additionally, we propose a latent-as-query co-attention module to autonomously discover fusion patterns, circumventing modality prioritization biases while minimizing feature redundancy. We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
Towards Explainable AI: Multi-Modal Transformer for Video-based Image Description Generation
Understanding and analyzing video actions are essential for producing insightful and contextualized descriptions, especially for video-based applications like intelligent monitoring and autonomous systems. The proposed work introduces a novel framework for generating natural language descriptions from video datasets by combining textual and visual modalities. The suggested architecture makes use of ResNet50 to extract visual features from video frames that are taken from the Microsoft Research Video Description Corpus (MSVD), and Berkeley DeepDrive eXplanation (BDD-X) datasets. The extracted visual characteristics are converted into patch embeddings and then run through an encoder-decoder model based on Generative Pre-trained Transformer-2 (GPT-2). In order to align textual and visual representations and guarantee high-quality description production, the system uses multi-head self-attention and cross-attention techniques. The model's efficacy is demonstrated by performance evaluation using BLEU (1-4), CIDEr, METEOR, and ROUGE-L. The suggested framework outperforms traditional methods with BLEU-4 scores of 0.755 (BDD-X) and 0.778 (MSVD), CIDEr scores of 1.235 (BDD-X) and 1.315 (MSVD), METEOR scores of 0.312 (BDD-X) and 0.329 (MSVD), and ROUGE-L scores of 0.782 (BDD-X) and 0.795 (MSVD). By producing human-like, contextually relevant descriptions, strengthening interpretability, and improving real-world applications, this research advances explainable AI.
Advanced Chest X-Ray Analysis via Transformer-Based Image Descriptors and Cross-Model Attention Mechanism
The examination of chest X-ray images is a crucial component in detecting various thoracic illnesses. This study introduces a new image description generation model that integrates a Vision Transformer (ViT) encoder with cross-modal attention and a GPT-4-based transformer decoder. The ViT captures high-quality visual features from chest X-rays, which are fused with text data through cross-modal attention to improve the accuracy, context, and richness of image descriptions. The GPT-4 decoder transforms these fused features into accurate and relevant captions. The model was tested on the National Institutes of Health (NIH) and Indiana University (IU) Chest X-ray datasets. On the IU dataset, it achieved scores of 0.854 (B-1), 0.883 (CIDEr), 0.759 (METEOR), and 0.712 (ROUGE-L). On the NIH dataset, it achieved the best performance on all metrics: BLEU 1--4 (0.825, 0.788, 0.765, 0.752), CIDEr (0.857), METEOR (0.726), and ROUGE-L (0.705). This framework has the potential to enhance chest X-ray evaluation, assisting radiologists in more precise and efficient diagnosis.
Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
comment: Work-in-Progress
Tri-FusionNet: Enhancing Image Description Generation with Transformer-based Fusion Network and Dual Attention Mechanism
Image description generation is essential for accessibility and AI understanding of visual content. Recent advancements in deep learning have significantly improved natural language processing and computer vision. In this work, we propose Tri-FusionNet, a novel image description generation model that integrates transformer modules: a Vision Transformer (ViT) encoder module with dual-attention mechanism, a Robustly Optimized BERT Approach (RoBERTa) decoder module, and a Contrastive Language-Image Pre-Training (CLIP) integrating module. The ViT encoder, enhanced with dual attention, focuses on relevant spatial regions and linguistic context, improving image feature extraction. The RoBERTa decoder is employed to generate precise textual descriptions. CLIP's integrating module aligns visual and textual data through contrastive learning, ensuring effective combination of both modalities. This fusion of ViT, RoBERTa, and CLIP, along with dual attention, enables the model to produce more accurate, contextually rich, and flexible descriptions. The proposed framework demonstrated competitive performance on the Flickr30k and Flickr8k datasets, with BLEU scores ranging from 0.767 to 0.456 and 0.784 to 0.479, CIDEr scores of 1.679 and 1.483, METEOR scores of 0.478 and 0.358, and ROUGE-L scores of 0.567 and 0.789, respectively. On MS-COCO, the framework obtained BLEU scores of 0.893 (B-1), 0.821 (B-2), 0.794 (B-3), and 0.725 (B-4). The results demonstrate the effectiveness of Tri-FusionNet in generating high-quality image descriptions.
Feature Mixing Approach for Detecting Intraoperative Adverse Events in Laparoscopic Roux-en-Y Gastric Bypass Surgery
Intraoperative adverse events (IAEs), such as bleeding or thermal injury, can lead to severe postoperative complications if undetected. However, their rarity results in highly imbalanced datasets, posing challenges for AI-based detection and severity quantification. We propose BetaMixer, a novel deep learning model that addresses these challenges through a Beta distribution-based mixing approach, converting discrete IAE severity scores into continuous values for precise severity regression (0-5 scale). BetaMixer employs Beta distribution-based sampling to enhance underrepresented classes and regularizes intermediate embeddings to maintain a structured feature space. A generative approach aligns the feature space with sampled IAE severity, enabling robust classification and severity regression via a transformer. Evaluated on the MultiBypass140 dataset, which we extended with IAE labels, BetaMixer achieves a weighted F1 score of 0.76, recall of 0.81, PPV of 0.73, and NPV of 0.84, demonstrating strong performance on imbalanced data. By integrating Beta distribution-based sampling, feature mixing, and generative modeling, BetaMixer offers a robust solution for IAE detection and quantification in clinical settings.
comment: 9 pages, 7 figures, 8 tables, Release new dataset annotations
Frequency-Compensated Network for Daily Arctic Sea Ice Concentration Prediction
Accurately forecasting sea ice concentration (SIC) in the Arctic is critical to global ecosystem health and navigation safety. However, current methods still is confronted with two challenges: 1) these methods rarely explore the long-term feature dependencies in the frequency domain. 2) they can hardly preserve the high-frequency details, and the changes in the marginal area of the sea ice cannot be accurately captured. To this end, we present a Frequency-Compensated Network (FCNet) for Arctic SIC prediction on a daily basis. In particular, we design a dual-branch network, including branches for frequency feature extraction and convolutional feature extraction. For frequency feature extraction, we design an adaptive frequency filter block, which integrates trainable layers with Fourier-based filters. By adding frequency features, the FCNet can achieve refined prediction of edges and details. For convolutional feature extraction, we propose a high-frequency enhancement block to separate high and low-frequency information. Moreover, high-frequency features are enhanced via channel-wise attention, and temporal attention unit is employed for low-frequency feature extraction to capture long-range sea ice changes. Extensive experiments are conducted on a satellite-derived daily SIC dataset, and the results verify the effectiveness of the proposed FCNet. Our codes and data will be made public available at: https://github.com/oucailab/FCNet .
comment: Accepted by IEEE TGRS 2025
Gaussian Splatting is an Effective Data Generator for 3D Object Detection
We investigate data augmentation for 3D object detection in autonomous driving. We utilize recent advancements in 3D reconstruction based on Gaussian Splatting for 3D object placement in driving scenes. Unlike existing diffusion-based methods that synthesize images conditioned on BEV layouts, our approach places 3D objects directly in the reconstructed 3D space with explicitly imposed geometric transformations. This ensures both the physical plausibility of object placement and highly accurate 3D pose and position annotations. Our experiments demonstrate that even by integrating a limited number of external 3D objects into real scenes, the augmented data significantly enhances 3D object detection performance and outperforms existing diffusion-based 3D augmentation for object detection. Extensive testing on the nuScenes dataset reveals that imposing high geometric diversity in object placement has a greater impact compared to the appearance diversity of objects. Additionally, we show that generating hard examples, either by maximizing detection loss or imposing high visual occlusion in camera images, does not lead to more efficient 3D data augmentation for camera-based 3D object detection in autonomous driving.
Prompt-Tuning SAM: From Generalist to Specialist with only 2048 Parameters and 16 Training Images
The Segment Anything Model (SAM) is widely used for segmenting a diverse range of objects in natural images from simple user prompts like points or bounding boxes. However, SAM's performance decreases substantially when applied to non-natural domains like microscopic imaging. Furthermore, due to SAM's interactive design, it requires a precise prompt for each image and object, which is unfeasible in many automated biomedical applications. Previous solutions adapt SAM by training millions of parameters via fine-tuning large parts of the model or of adapter layers. In contrast, we show that as little as 2,048 additional parameters are sufficient for turning SAM into a use-case specialist for a certain downstream task. Our novel PTSAM (prompt-tuned SAM) method uses prompt-tuning, a parameter-efficient fine-tuning technique, to adapt SAM for a specific task. We validate the performance of our approach on multiple microscopic and one medical dataset. Our results show that prompt-tuning only SAM's mask decoder already leads to a performance on-par with state-of-the-art techniques while requiring roughly 2,000x less trainable parameters. For addressing domain gaps, we find that additionally prompt-tuning SAM's image encoder is beneficial, further improving segmentation accuracy by up to 18% over state-of-the-art results. Since PTSAM can be reliably trained with as little as 16 annotated images, we find it particularly helpful for applications with limited training data and domain shifts.
V$^2$R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations
Large Vision Language Models (LVLMs) excel in various vision-language tasks. Yet, their robustness to visual variations in position, scale, orientation, and context that objects in natural scenes inevitably exhibit due to changes in viewpoint and environment remains largely underexplored. To bridge this gap, we introduce V$^2$R-Bench, a comprehensive benchmark framework for evaluating Visual Variation Robustness of LVLMs, which encompasses automated evaluation dataset generation and principled metrics for thorough robustness assessment. Through extensive evaluation on 21 LVLMs, we reveal a surprising vulnerability to visual variations, in which even advanced models that excel at complex vision-language tasks significantly underperform on simple tasks such as object recognition. Interestingly, these models exhibit a distinct visual position bias that contradicts theories of effective receptive fields, and demonstrate a human-like visual acuity threshold. To identify the source of these vulnerabilities, we present a systematic framework for component-level analysis, featuring a novel visualization approach for aligned visual features. Results show that these vulnerabilities stem from error accumulation in the pipeline architecture and inadequate multimodal alignment. Complementary experiments with synthetic data further demonstrate that these limitations are fundamentally architectural deficiencies, scoring the need for architectural innovations in future LVLM designs.
Detecting and Understanding Hateful Contents in Memes Through Captioning and Visual Question-Answering
Memes are widely used for humor and cultural commentary, but they are increasingly exploited to spread hateful content. Due to their multimodal nature, hateful memes often evade traditional text-only or image-only detection systems, particularly when they employ subtle or coded references. To address these challenges, we propose a multimodal hate detection framework that integrates key components: OCR to extract embedded text, captioning to describe visual content neutrally, sub-label classification for granular categorization of hateful content, RAG for contextually relevant retrieval, and VQA for iterative analysis of symbolic and contextual cues. This enables the framework to uncover latent signals that simpler pipelines fail to detect. Experimental results on the Facebook Hateful Memes dataset reveal that the proposed framework exceeds the performance of unimodal and conventional multimodal models in both accuracy and AUC-ROC.
comment: 13 pages, 2 figures, 2025 International Conference on Computational Science
PMG: Progressive Motion Generation via Sparse Anchor Postures Curriculum Learning
In computer animation, game design, and human-computer interaction, synthesizing human motion that aligns with user intent remains a significant challenge. Existing methods have notable limitations: textual approaches offer high-level semantic guidance but struggle to describe complex actions accurately; trajectory-based techniques provide intuitive global motion direction yet often fall short in generating precise or customized character movements; and anchor poses-guided methods are typically confined to synthesize only simple motion patterns. To generate more controllable and precise human motions, we propose \textbf{ProMoGen (Progressive Motion Generation)}, a novel framework that integrates trajectory guidance with sparse anchor motion control. Global trajectories ensure consistency in spatial direction and displacement, while sparse anchor motions only deliver precise action guidance without displacement. This decoupling enables independent refinement of both aspects, resulting in a more controllable, high-fidelity, and sophisticated motion synthesis. ProMoGen supports both dual and single control paradigms within a unified training process. Moreover, we recognize that direct learning from sparse motions is inherently unstable, we introduce \textbf{SAP-CL (Sparse Anchor Posture Curriculum Learning)}, a curriculum learning strategy that progressively adjusts the number of anchors used for guidance, thereby enabling more precise and stable convergence. Extensive experiments demonstrate that ProMoGen excels in synthesizing vivid and diverse motions guided by predefined trajectory and arbitrary anchor frames. Our approach seamlessly integrates personalized motion with structured guidance, significantly outperforming state-of-the-art methods across multiple control scenarios.
Energy-Based Pseudo-Label Refining for Source-free Domain Adaptation
Source-free domain adaptation (SFDA), which involves adapting models without access to source data, is both demanding and challenging. Existing SFDA techniques typically rely on pseudo-labels generated from confidence levels, leading to negative transfer due to significant noise. To tackle this problem, Energy-Based Pseudo-Label Refining (EBPR) is proposed for SFDA. Pseudo-labels are created for all sample clusters according to their energy scores. Global and class energy thresholds are computed to selectively filter pseudo-labels. Furthermore, a contrastive learning strategy is introduced to filter difficult samples, aligning them with their augmented versions to learn more discriminative features. Our method is validated on the Office-31, Office-Home, and VisDA-C datasets, consistently finding that our model outperformed state-of-the-art methods.
comment: 8 pages, 3 figures, accepted by PRL. code at https://github.com/Sthen111/EBPR
SemanticSugarBeets: A Multi-Task Framework and Dataset for Inspecting Harvest and Storage Characteristics of Sugar Beets CVPR
While sugar beets are stored prior to processing, they lose sugar due to factors such as microorganisms present in adherent soil and excess vegetation. Their automated visual inspection promises to aide in quality assurance and thereby increase efficiency throughout the processing chain of sugar production. In this work, we present a novel high-quality annotated dataset and two-stage method for the detection, semantic segmentation and mass estimation of post-harvest and post-storage sugar beets in monocular RGB images. We conduct extensive ablation experiments for the detection of sugar beets and their fine-grained semantic segmentation regarding damages, rot, soil adhesion and excess vegetation. For these tasks, we evaluate multiple image sizes, model architectures and encoders, as well as the influence of environmental conditions. Our experiments show an mAP50-95 of 98.8 for sugar-beet detection and an mIoU of 64.0 for the best-performing segmentation model.
comment: Accepted at Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Code and dataset available at https://github.com/semanticsugarbeets/semanticsugarbeets
Representation Learning via Non-Contrastive Mutual Information
Labeling data is often very time consuming and expensive, leaving us with a majority of unlabeled data. Self-supervised representation learning methods such as SimCLR (Chen et al., 2020) or BYOL (Grill et al., 2020) have been very successful at learning meaningful latent representations from unlabeled image data, resulting in much more general and transferable representations for downstream tasks. Broadly, self-supervised methods fall into two types: 1) Contrastive methods, such as SimCLR; and 2) Non-Contrastive methods, such as BYOL. Contrastive methods are generally trying to maximize mutual information between related data points, so they need to compare every data point to every other data point, resulting in high variance, and thus requiring large batch sizes to work well. Non-contrastive methods like BYOL have much lower variance as they do not need to make pairwise comparisons, but are much trickier to implement as they have the possibility of collapsing to a constant vector. In this paper, we aim to develop a self-supervised objective that combines the strength of both types. We start with a particular contrastive method called the Spectral Contrastive Loss (HaoChen et al., 2021; Lu et al., 2024), and we convert it into a more general non-contrastive form; this removes the pairwise comparisons resulting in lower variance, but keeps the mutual information formulation of the contrastive method preventing collapse. We call our new objective the Mutual Information Non-Contrastive (MINC) loss. We test MINC by learning image representations on ImageNet (similar to SimCLR and BYOL) and show that it consistently improves upon the Spectral Contrastive loss baseline.
A Diff-Attention Aware State Space Fusion Model for Remote Sensing Classification
Multispectral (MS) and panchromatic (PAN) images describe the same land surface, so these images not only have their own advantages, but also have a lot of similar information. In order to separate these similar information and their respective advantages, reduce the feature redundancy in the fusion stage. This paper introduces a diff-attention aware state space fusion model (DAS2F-Model) for multimodal remote sensing image classification. Based on the selective state space model, a cross-modal diff-attention module (CMDA-Module) is designed to extract and separate the common features and their respective dominant features of MS and PAN images. Among this, space preserving visual mamba (SPVM) retains image spatial features and captures local features by optimizing visual mamba's input reasonably. Considering that features in the fusion stage will have large semantic differences after feature separation and simple fusion operations struggle to effectively integrate these significantly different features, an attention-aware linear fusion module (AALF-Module) is proposed. It performs pixel-wise linear fusion by calculating influence coefficients. This mechanism can fuse features with large semantic differences while keeping the feature size unchanged. Empirical evaluations indicate that the presented method achieves better results than alternative approaches. The relevant code can be found at:https://github.com/AVKSKVL/DAS-F-Model
comment: 12 pages,9 figures
A Time Series Dataset of NIR Spectra and RGB and NIR-HSI Images of the Barley Germination Process
We provide an open-source dataset of RGB and NIR-HSI (near-infrared hyperspectral imaging) images with associated segmentation masks and NIR spectra of 2242 individual malting barley kernels. We imaged every kernel pre-exposure to moisture and every 24 hours after exposure to moisture for five consecutive days. Every barley kernel was labeled as germinated or not germinated during each image acquisition. The barley kernels were imaged with black filter paper as the background, facilitating straight-forward intensity threshold-based segmentation, e.g., by Otsu's method. This dataset facilitates time series analysis of germination time for barley kernels using either RGB image analysis, NIR spectral analysis, NIR-HSI analysis, or a combination hereof.
Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning
We present Skywork R1V2, a next-generation multimodal reasoning model and a major leap forward from its predecessor, Skywork R1V. At its core, R1V2 introduces a hybrid reinforcement learning paradigm that harmonizes reward-model guidance with rule-based strategies, thereby addressing the long-standing challenge of balancing sophisticated reasoning capabilities with broad generalization. To further enhance training efficiency, we propose the Selective Sample Buffer (SSB) mechanism, which effectively counters the ``Vanishing Advantages'' dilemma inherent in Group Relative Policy Optimization (GRPO) by prioritizing high-value samples throughout the optimization process. Notably, we observe that excessive reinforcement signals can induce visual hallucinations--a phenomenon we systematically monitor and mitigate through calibrated reward thresholds throughout the training process. Empirical results affirm the exceptional capability of R1V2, with benchmark-leading performances such as 62.6 on OlympiadBench, 79.0 on AIME2024, 63.6 on LiveCodeBench, and 74.0 on MMMU. These results underscore R1V2's superiority over existing open-source models and demonstrate significant progress in closing the performance gap with premier proprietary systems, including Gemini 2.5 and OpenAI o4-mini. The Skywork R1V2 model weights have been publicly released to promote openness and reproducibility https://huggingface.co/Skywork/Skywork-R1V2-38B.
WiFi based Human Fall and Activity Recognition using Transformer based Encoder Decoder and Graph Neural Networks
Human pose estimation and action recognition have received attention due to their critical roles in healthcare monitoring, rehabilitation, and assistive technologies. In this study, we proposed a novel architecture named Transformer based Encoder Decoder Network (TED Net) designed for estimating human skeleton poses from WiFi Channel State Information (CSI). TED Net integrates convolutional encoders with transformer based attention mechanisms to capture spatiotemporal features from CSI signals. The estimated skeleton poses were used as input to a customized Directed Graph Neural Network (DGNN) for action recognition. We validated our model on two datasets: a publicly available multi modal dataset for assessing general pose estimation, and a newly collected dataset focused on fall related scenarios involving 20 participants. Experimental results demonstrated that TED Net outperformed existing approaches in pose estimation, and that the DGNN achieves reliable action classification using CSI based skeletons, with performance comparable to RGB based systems. Notably, TED Net maintains robust performance across both fall and non fall cases. These findings highlight the potential of CSI driven human skeleton estimation for effective action recognition, particularly in home environments such as elderly fall detection. In such settings, WiFi signals are often readily available, offering a privacy preserving alternative to vision based methods, which may raise concerns about continuous camera monitoring.
comment: 8 pages, 4 figures
SSLR: A Semi-Supervised Learning Method for Isolated Sign Language Recognition
Sign language is the primary communication language for people with disabling hearing loss. Sign language recognition (SLR) systems aim to recognize sign gestures and translate them into spoken language. One of the main challenges in SLR is the scarcity of annotated datasets. To address this issue, we propose a semi-supervised learning (SSL) approach for SLR (SSLR), employing a pseudo-label method to annotate unlabeled samples. The sign gestures are represented using pose information that encodes the signer's skeletal joint points. This information is used as input for the Transformer backbone model utilized in the proposed approach. To demonstrate the learning capabilities of SSL across various labeled data sizes, several experiments were conducted using different percentages of labeled data with varying numbers of classes. The performance of the SSL approach was compared with a fully supervised learning-based model on the WLASL-100 dataset. The obtained results of the SSL model outperformed the supervised learning-based model with less labeled data in many cases.
RouteWinFormer: A Route-Window Transformer for Middle-range Attention in Image Restoration
Transformer models have recently garnered significant attention in image restoration due to their ability to capture long-range pixel dependencies. However, long-range attention often results in computational overhead without practical necessity, as degradation and context are typically localized. Normalized average attention distance across various degradation datasets shows that middle-range attention is enough for image restoration. Building on this insight, we propose RouteWinFormer, a novel window-based Transformer that models middle-range context for image restoration. RouteWinFormer incorporates Route-Windows Attnetion Module, which dynamically selects relevant nearby windows based on regional similarity for attention aggregation, extending the receptive field to a mid-range size efficiently. In addition, we introduce Multi-Scale Structure Regularization during training, enabling the sub-scale of the U-shaped network to focus on structural information, while the original-scale learns degradation patterns based on generalized image structure priors. Extensive experiments demonstrate that RouteWinFormer outperforms state-of-the-art methods across 9 datasets in various image restoration tasks.
Dual-Camera All-in-Focus Neural Radiance Fields
We present the first framework capable of synthesizing the all-in-focus neural radiance field (NeRF) from inputs without manual refocusing. Without refocusing, the camera will automatically focus on the fixed object for all views, and current NeRF methods typically using one camera fail due to the consistent defocus blur and a lack of sharp reference. To restore the all-in-focus NeRF, we introduce the dual-camera from smartphones, where the ultra-wide camera has a wider depth-of-field (DoF) and the main camera possesses a higher resolution. The dual camera pair saves the high-fidelity details from the main camera and uses the ultra-wide camera's deep DoF as reference for all-in-focus restoration. To this end, we first implement spatial warping and color matching to align the dual camera, followed by a defocus-aware fusion module with learnable defocus parameters to predict a defocus map and fuse the aligned camera pair. We also build a multi-view dataset that includes image pairs of the main and ultra-wide cameras in a smartphone. Extensive experiments on this dataset verify that our solution, termed DC-NeRF, can produce high-quality all-in-focus novel views and compares favorably against strong baselines quantitatively and qualitatively. We further show DoF applications of DC-NeRF with adjustable blur intensity and focal plane, including refocusing and split diopter.
comment: Published by IEEE TPAMI 2025
EHGCN: Hierarchical Euclidean-Hyperbolic Fusion via Motion-Aware GCN for Hybrid Event Stream Perception
Event cameras, with microsecond temporal resolution and high dynamic range (HDR) characteristics, emit high-speed event stream for perception tasks. Despite the recent advancement in GNN-based perception methods, they are prone to use straightforward pairwise connectivity mechanisms in the pure Euclidean space where they struggle to capture long-range dependencies and fail to effectively characterize the inherent hierarchical structures of non-uniformly distributed event stream. To this end, in this paper we propose a novel approach named EHGCN, which is a pioneer to perceive event stream in both Euclidean and hyperbolic spaces for event vision. In EHGCN, we introduce an adaptive sampling strategy to dynamically regulate sampling rates, retaining discriminative events while attenuating chaotic noise. Then we present a Markov Vector Field (MVF)-driven motion-aware hyperedge generation method based on motion state transition probabilities, thereby eliminating cross-target spurious associations and providing critically topological priors while capturing long-range dependencies between events. Finally, we propose a Euclidean-Hyperbolic GCN to fuse the information locally aggregated and globally hierarchically modeled in Euclidean and hyperbolic spaces, respectively, to achieve hybrid event perception. Experimental results on event perception tasks such as object detection and recognition validate the effectiveness of our approach.
Federated EndoViT: Pretraining Vision Transformers via Federated Learning on Endoscopic Image Collections
Purpose: In this study, we investigate the training of foundation models using federated learning to address data-sharing limitations and enable collaborative model training without data transfer for minimally invasive surgery. Methods: Inspired by the EndoViT study, we adapt the Masked Autoencoder for federated learning, enhancing it with adaptive Sharpness-Aware Minimization (FedSAM) and Stochastic Weight Averaging (SWA). Our model is pretrained on the Endo700k dataset collection and later fine-tuned and evaluated for tasks such as Semantic Segmentation, Action Triplet Recognition, and Surgical Phase Recognition. Results: Our findings demonstrate that integrating adaptive FedSAM into the federated MAE approach improves pretraining, leading to a reduction in reconstruction loss per patch. The application of FL-EndoViT in surgical downstream tasks results in performance comparable to CEN-EndoViT. Furthermore, FL-EndoViT exhibits advantages over CEN-EndoViT in surgical scene segmentation when data is limited and in action triplet recognition when large datasets are used. Conclusion: These findings highlight the potential of federated learning for privacy-preserving training of surgical foundation models, offering a robust and generalizable solution for surgical data science. Effective collaboration requires adapting federated learning methods, such as the integration of FedSAM, which can accommodate the inherent data heterogeneity across institutions. In future, exploring FL in video-based models may enhance these capabilities by incorporating spatiotemporal dynamics crucial for real-world surgical environments.
comment: Preprint submitted to MEDIA
HUG: Hierarchical Urban Gaussian Splatting with Block-Based Reconstruction
As urban 3D scenes become increasingly complex and the demand for high-quality rendering grows, efficient scene reconstruction and rendering techniques become crucial. We present HUG, a novel approach to address inefficiencies in handling large-scale urban environments and intricate details based on 3D Gaussian splatting. Our method optimizes data partitioning and the reconstruction pipeline by incorporating a hierarchical neural Gaussian representation. We employ an enhanced block-based reconstruction pipeline focusing on improving reconstruction quality within each block and reducing the need for redundant training regions around block boundaries. By integrating neural Gaussian representation with a hierarchical architecture, we achieve high-quality scene rendering at a low computational cost. This is demonstrated by our state-of-the-art results on public benchmarks, which prove the effectiveness and advantages in large-scale urban scene representation.
JEPA for RL: Investigating Joint-Embedding Predictive Architectures for Reinforcement Learning
Joint-Embedding Predictive Architectures (JEPA) have recently become popular as promising architectures for self-supervised learning. Vision transformers have been trained using JEPA to produce embeddings from images and videos, which have been shown to be highly suitable for downstream tasks like classification and segmentation. In this paper, we show how to adapt the JEPA architecture to reinforcement learning from images. We discuss model collapse, show how to prevent it, and provide exemplary data on the classical Cart Pole task.
comment: Published at ESANN 2025
CountingDINO: A Training-free Pipeline for Class-Agnostic Counting using Unsupervised Backbones
Class-agnostic counting (CAC) aims to estimate the number of objects in images without being restricted to predefined categories. However, while current exemplar-based CAC methods offer flexibility at inference time, they still rely heavily on labeled data for training, which limits scalability and generalization to many downstream use cases. In this paper, we introduce CountingDINO, the first training-free exemplar-based CAC framework that exploits a fully unsupervised feature extractor. Specifically, our approach employs self-supervised vision-only backbones to extract object-aware features, and it eliminates the need for annotated data throughout the entire proposed pipeline. At inference time, we extract latent object prototypes via ROI-Align from DINO features and use them as convolutional kernels to generate similarity maps. These are then transformed into density maps through a simple yet effective normalization scheme. We evaluate our approach on the FSC-147 benchmark, where we outperform a baseline under the same label-free setting. Our method also achieves competitive -- and in some cases superior -- results compared to training-free approaches relying on supervised backbones, as well as several fully supervised state-of-the-art methods. This demonstrates that training-free CAC can be both scalable and competitive. Website: https://lorebianchi98.github.io/CountingDINO/
comment: 13 pages, 2 figures, 2 tables. Project website: https://lorebianchi98.github.io/CountingDINO/
SAIP-Net: Enhancing Remote Sensing Image Segmentation via Spectral Adaptive Information Propagation
Semantic segmentation of remote sensing imagery demands precise spatial boundaries and robust intra-class consistency, challenging conventional hierarchical models. To address limitations arising from spatial domain feature fusion and insufficient receptive fields, this paper introduces SAIP-Net, a novel frequency-aware segmentation framework that leverages Spectral Adaptive Information Propagation. SAIP-Net employs adaptive frequency filtering and multi-scale receptive field enhancement to effectively suppress intra-class feature inconsistencies and sharpen boundary lines. Comprehensive experiments demonstrate significant performance improvements over state-of-the-art methods, highlighting the effectiveness of spectral-adaptive strategies combined with expanded receptive fields for remote sensing image segmentation.
Beyond Anonymization: Object Scrubbing for Privacy-Preserving 2D and 3D Vision Tasks ICCV 2025
We introduce ROAR (Robust Object Removal and Re-annotation), a scalable framework for privacy-preserving dataset obfuscation that eliminates sensitive objects instead of modifying them. Our method integrates instance segmentation with generative inpainting to remove identifiable entities while preserving scene integrity. Extensive evaluations on 2D COCO-based object detection show that ROAR achieves 87.5% of the baseline detection average precision (AP), whereas image dropping achieves only 74.2% of the baseline AP, highlighting the advantage of scrubbing in preserving dataset utility. The degradation is even more severe for small objects due to occlusion and loss of fine-grained details. Furthermore, in NeRF-based 3D reconstruction, our method incurs a PSNR loss of at most 1.66 dB while maintaining SSIM and improving LPIPS, demonstrating superior perceptual quality. Our findings establish object removal as an effective privacy framework, achieving strong privacy guarantees with minimal performance trade-offs. The results highlight key challenges in generative inpainting, occlusion-robust segmentation, and task-specific scrubbing, setting the foundation for future advancements in privacy-preserving vision systems.
comment: Submitted to ICCV 2025
ToF-Splatting: Dense SLAM using Sparse Time-of-Flight Depth and Multi-Frame Integration
Time-of-Flight (ToF) sensors provide efficient active depth sensing at relatively low power budgets; among such designs, only very sparse measurements from low-resolution sensors are considered to meet the increasingly limited power constraints of mobile and AR/VR devices. However, such extreme sparsity levels limit the seamless usage of ToF depth in SLAM. In this work, we propose ToF-Splatting, the first 3D Gaussian Splatting-based SLAM pipeline tailored for using effectively very sparse ToF input data. Our approach improves upon the state of the art by introducing a multi-frame integration module, which produces dense depth maps by merging cues from extremely sparse ToF depth, monocular color, and multi-view geometry. Extensive experiments on both synthetic and real sparse ToF datasets demonstrate the viability of our approach, as it achieves state-of-the-art tracking and mapping performances on reference datasets.
Streetscape Analysis with Generative AI (SAGAI): Vision-Language Assessment and Mapping of Urban Scenes
Streetscapes are an essential component of urban space. Their assessment is presently either limited to morphometric properties of their mass skeleton or requires labor-intensive qualitative evaluations of visually perceived qualities. This paper introduces SAGAI: Streetscape Analysis with Generative Artificial Intelligence, a modular workflow for scoring street-level urban scenes using open-access data and vision-language models. SAGAI integrates OpenStreetMap geometries, Google Street View imagery, and a lightweight version of the LLaVA model to generate structured spatial indicators from images via customizable natural language prompts. The pipeline includes an automated mapping module that aggregates visual scores at both the point and street levels, enabling direct cartographic interpretation. It operates without task-specific training or proprietary software dependencies, supporting scalable and interpretable analysis of urban environments. Two exploratory case studies in Nice and Vienna illustrate SAGAI's capacity to produce geospatial outputs from vision-language inference. The initial results show strong performance for binary urban-rural scene classification, moderate precision in commercial feature detection, and lower estimates, but still informative, of sidewalk width. Fully deployable by any user, SAGAI can be easily adapted to a wide range of urban research themes, such as walkability, safety, or urban design, through prompt modification alone.
comment: 25 pages, 6 figures in main paper, 6 figures in appendices
A Few-Shot Metric Learning Method with Dual-Channel Attention for Cross-Modal Same-Neuron Identification
In neuroscience research, achieving single-neuron matching across different imaging modalities is critical for understanding the relationship between neuronal structure and function. However, modality gaps and limited annotations present significant challenges. We propose a few-shot metric learning method with a dual-channel attention mechanism and a pretrained vision transformer to enable robust cross-modal neuron identification. The local and global channels extract soma morphology and fiber context, respectively, and a gating mechanism fuses their outputs. To enhance the model's fine-grained discrimination capability, we introduce a hard sample mining strategy based on the MultiSimilarityMiner algorithm, along with the Circle Loss function. Experiments on two-photon and fMOST datasets demonstrate superior Top-K accuracy and recall compared to existing methods. Ablation studies and t-SNE visualizations validate the effectiveness of each module. The method also achieves a favorable trade-off between accuracy and training efficiency under different fine-tuning strategies. These results suggest that the proposed approach offers a promising technical solution for accurate single-cell level matching and multimodal neuroimaging integration.
comment: 23 pages, 9 figures, submitted to arXiv for public access
Think Hierarchically, Act Dynamically: Hierarchical Multi-modal Fusion and Reasoning for Vision-and-Language Navigation ACM MM 2025
Vision-and-Language Navigation (VLN) aims to enable embodied agents to follow natural language instructions and reach target locations in real-world environments. While prior methods often rely on either global scene representations or object-level features, these approaches are insufficient for capturing the complex interactions across modalities required for accurate navigation. In this paper, we propose a Multi-level Fusion and Reasoning Architecture (MFRA) to enhance the agent's ability to reason over visual observations, language instructions and navigation history. Specifically, MFRA introduces a hierarchical fusion mechanism that aggregates multi-level features-ranging from low-level visual cues to high-level semantic concepts-across multiple modalities. We further design a reasoning module that leverages fused representations to infer navigation actions through instruction-guided attention and dynamic context integration. By selectively capturing and combining relevant visual, linguistic, and temporal signals, MFRA improves decision-making accuracy in complex navigation scenarios. Extensive experiments on benchmark VLN datasets including REVERIE, R2R, and SOON demonstrate that MFRA achieves superior performance compared to state-of-the-art methods, validating the effectiveness of multi-level modal fusion for embodied navigation.
comment: 11 pages, 4 figures, Submitted to ACM MM 2025
Federated Learning of Low-Rank One-Shot Image Detection Models in Edge Devices with Scalable Accuracy and Compute Complexity
This paper introduces a novel federated learning framework termed LoRa-FL designed for training low-rank one-shot image detection models deployed on edge devices. By incorporating low-rank adaptation techniques into one-shot detection architectures, our method significantly reduces both computational and communication overhead while maintaining scalable accuracy. The proposed framework leverages federated learning to collaboratively train lightweight image recognition models, enabling rapid adaptation and efficient deployment across heterogeneous, resource-constrained devices. Experimental evaluations on the MNIST and CIFAR10 benchmark datasets, both in an independent-and-identically-distributed (IID) and non-IID setting, demonstrate that our approach achieves competitive detection performance while significantly reducing communication bandwidth and compute complexity. This makes it a promising solution for adaptively reducing the communication and compute power overheads, while not sacrificing model accuracy.
comment: accepted for publication at IEEE IWCMC 2025
TraveLLaMA: Facilitating Multi-modal Large Language Models to Understand Urban Scenes and Provide Travel Assistance
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for urban scene understanding and travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through a novel large-scale dataset of 220k question-answer pairs. This comprehensive dataset uniquely combines 130k text QA pairs meticulously curated from authentic travel forums with GPT-enhanced responses, alongside 90k vision-language QA pairs specifically focused on map understanding and scene comprehension. Through extensive fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we demonstrate significant performance improvements ranging from 6.5\%-9.4\% in both pure text travel understanding and visual question answering tasks. Our model exhibits exceptional capabilities in providing contextual travel recommendations, interpreting map locations, and understanding place-specific imagery while offering practical information such as operating hours and visitor reviews. Comparative evaluations show TraveLLaMA significantly outperforms general-purpose models in travel-specific tasks, establishing a new benchmark for multi-modal travel assistance systems.
PRaDA: Projective Radial Distortion Averaging CVPR 2025
We tackle the problem of automatic calibration of radially distorted cameras in challenging conditions. Accurately determining distortion parameters typically requires either 1) solving the full Structure from Motion (SfM) problem involving camera poses, 3D points, and the distortion parameters, which is only possible if many images with sufficient overlap are provided, or 2) relying heavily on learning-based methods that are comparatively less accurate. In this work, we demonstrate that distortion calibration can be decoupled from 3D reconstruction, maintaining the accuracy of SfM-based methods while avoiding many of the associated complexities. This is achieved by working in Projective Space, where the geometry is unique up to a homography, which encapsulates all camera parameters except for distortion. Our proposed method, Projective Radial Distortion Averaging, averages multiple distortion estimates in a fully projective framework without creating 3d points and full bundle adjustment. By relying on pairwise projective relations, our methods support any feature-matching approaches without constructing point tracks across multiple images.
comment: Accepted at CVPR 2025. 8 pages + references
Rethinking Generalizable Infrared Small Target Detection: A Real-scene Benchmark and Cross-view Representation Learning
Infrared small target detection (ISTD) is highly sensitive to sensor type, observation conditions, and the intrinsic properties of the target. These factors can introduce substantial variations in the distribution of acquired infrared image data, a phenomenon known as domain shift. Such distribution discrepancies significantly hinder the generalization capability of ISTD models across diverse scenarios. To tackle this challenge, this paper introduces an ISTD framework enhanced by domain adaptation. To alleviate distribution shift between datasets and achieve cross-sample alignment, we introduce Cross-view Channel Alignment (CCA). Additionally, we propose the Cross-view Top-K Fusion strategy, which integrates target information with diverse background features, enhancing the model' s ability to extract critical data characteristics. To further mitigate the impact of noise on ISTD, we develop a Noise-guided Representation learning strategy. This approach enables the model to learn more noise-resistant feature representations, to improve its generalization capability across diverse noisy domains. Finally, we develop a dedicated infrared small target dataset, RealScene-ISTD. Compared to state-of-the-art methods, our approach demonstrates superior performance in terms of detection probability (Pd), false alarm rate (Fa), and intersection over union (IoU). The code is available at: https://github.com/luy0222/RealScene-ISTD.
comment: A benchmark associated with real-world scenes for the Infrared Small Target Detection (ISTD) is presented
RGB-D Video Object Segmentation via Enhanced Multi-store Feature Memory
The RGB-Depth (RGB-D) Video Object Segmentation (VOS) aims to integrate the fine-grained texture information of RGB with the spatial geometric clues of depth modality, boosting the performance of segmentation. However, off-the-shelf RGB-D segmentation methods fail to fully explore cross-modal information and suffer from object drift during long-term prediction. In this paper, we propose a novel RGB-D VOS method via multi-store feature memory for robust segmentation. Specifically, we design the hierarchical modality selection and fusion, which adaptively combines features from both modalities. Additionally, we develop a segmentation refinement module that effectively utilizes the Segmentation Anything Model (SAM) to refine the segmentation mask, ensuring more reliable results as memory to guide subsequent segmentation tasks. By leveraging spatio-temporal embedding and modality embedding, mixed prompts and fused images are fed into SAM to unleash its potential in RGB-D VOS. Experimental results show that the proposed method achieves state-of-the-art performance on the latest RGB-D VOS benchmark.
MTSGL: Multi-Task Structure Guided Learning for Robust and Interpretable SAR Aircraft Recognition
Aircraft recognition in synthetic aperture radar (SAR) imagery is a fundamental mission in both military and civilian applications. Recently deep learning (DL) has emerged a dominant paradigm for its explosive performance on extracting discriminative features. However, current classification algorithms focus primarily on learning decision hyperplane without enough comprehension on aircraft structural knowledge. Inspired by the fined aircraft annotation methods for optical remote sensing images (RSI), we first introduce a structure-based SAR aircraft annotations approach to provide structural and compositional supplement information. On this basis, we propose a multi-task structure guided learning (MTSGL) network for robust and interpretable SAR aircraft recognition. Besides the classification task, MTSGL includes a structural semantic awareness (SSA) module and a structural consistency regularization (SCR) module. The SSA is designed to capture structure semantic information, which is conducive to gain human-like comprehension of aircraft knowledge. The SCR helps maintain the geometric consistency between the aircraft structure in SAR imagery and the proposed annotation. In this process, the structural attribute can be disentangled in a geometrically meaningful manner. In conclusion, the MTSGL is presented with the expert-level aircraft prior knowledge and structure guided learning paradigm, aiming to comprehend the aircraft concept in a way analogous to the human cognitive process. Extensive experiments are conducted on a self-constructed multi-task SAR aircraft recognition dataset (MT-SARD) and the effective results illustrate the superiority of robustness and interpretation ability of the proposed MTSGL.
Cross Paradigm Representation and Alignment Transformer for Image Deraining
Transformer-based networks have achieved strong performance in low-level vision tasks like image deraining by utilizing spatial or channel-wise self-attention. However, irregular rain patterns and complex geometric overlaps challenge single-paradigm architectures, necessitating a unified framework to integrate complementary global-local and spatial-channel representations. To address this, we propose a novel Cross Paradigm Representation and Alignment Transformer (CPRAformer). Its core idea is the hierarchical representation and alignment, leveraging the strengths of both paradigms (spatial-channel and global-local) to aid image reconstruction. It bridges the gap within and between paradigms, aligning and coordinating them to enable deep interaction and fusion of features. Specifically, we use two types of self-attention in the Transformer blocks: sparse prompt channel self-attention (SPC-SA) and spatial pixel refinement self-attention (SPR-SA). SPC-SA enhances global channel dependencies through dynamic sparsity, while SPR-SA focuses on spatial rain distribution and fine-grained texture recovery. To address the feature misalignment and knowledge differences between them, we introduce the Adaptive Alignment Frequency Module (AAFM), which aligns and interacts with features in a two-stage progressive manner, enabling adaptive guidance and complementarity. This reduces the information gap within and between paradigms. Through this unified cross-paradigm dynamic interaction framework, we achieve the extraction of the most valuable interactive fusion information from the two paradigms. Extensive experiments demonstrate that our model achieves state-of-the-art performance on eight benchmark datasets and further validates CPRAformer's robustness in other image restoration tasks and downstream applications.
comment: code: https://github.com/zs1314/CPRAformer
Marginalized Generalized IoU (MGIoU): A Unified Objective Function for Optimizing Any Convex Parametric Shapes
Optimizing the similarity between parametric shapes is crucial for numerous computer vision tasks, where Intersection over Union (IoU) stands as the canonical measure. However, existing optimization methods exhibit significant shortcomings: regression-based losses like L1/L2 lack correlation with IoU, IoU-based losses are unstable and limited to simple shapes, and task-specific methods are computationally intensive and not generalizable accross domains. As a result, the current landscape of parametric shape objective functions has become scattered, with each domain proposing distinct IoU approximations. To address this, we unify the parametric shape optimization objective functions by introducing Marginalized Generalized IoU (MGIoU), a novel loss function that overcomes these challenges by projecting structured convex shapes onto their unique shape Normals to compute one-dimensional normalized GIoU. MGIoU offers a simple, efficient, fully differentiable approximation strongly correlated with IoU. We then extend MGIoU to MGIoU+ that supports optimizing unstructured convex shapes. Together, MGIoU and MGIoU+ unify parametric shape optimization across diverse applications. Experiments on standard benchmarks demonstrate that MGIoU and MGIoU+ consistently outperform existing losses while reducing loss computation latency by 10-40x. Additionally, MGIoU and MGIoU+ satisfy metric properties and scale-invariance, ensuring robustness as an objective function. We further propose MGIoU- for minimizing overlaps in tasks like collision-free trajectory prediction. Code is available at https://ldtho.github.io/MGIoU
comment: 8 pages
FrogDogNet: Fourier frequency Retained visual prompt Output Guidance for Domain Generalization of CLIP in Remote Sensing
In recent years, large-scale vision-language models (VLMs) like CLIP have gained attention for their zero-shot inference using instructional text prompts. While these models excel in general computer vision, their potential for domain generalization in remote sensing (RS) remains underexplored. Existing approaches enhance prompt learning by generating visual prompt tokens but rely on full-image features, introducing noise and background artifacts that vary within a class, causing misclassification. To address this, we propose FrogDogNet, a novel prompt learning framework integrating Fourier frequency filtering and self-attention to improve RS scene classification and domain generalization. FrogDogNet selectively retains invariant low-frequency components while eliminating noise and irrelevant backgrounds, ensuring robust feature representation across domains. The model first extracts significant features via projection and self-attention, then applies frequency-based filtering to preserve essential structural information for prompt learning. Extensive experiments on four RS datasets and three domain generalization tasks show that FrogDogNet consistently outperforms state-of-the-art prompt learning methods, demonstrating superior adaptability across domain shifts. Our findings highlight the effectiveness of frequency-based invariant feature retention in generalization, paving the way for broader applications. Our code is available at https://github.com/HariseetharamG/FrogDogNet
MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
SaENeRF: Suppressing Artifacts in Event-based Neural Radiance Fields IJCNN 2025
Event cameras are neuromorphic vision sensors that asynchronously capture changes in logarithmic brightness changes, offering significant advantages such as low latency, low power consumption, low bandwidth, and high dynamic range. While these characteristics make them ideal for high-speed scenarios, reconstructing geometrically consistent and photometrically accurate 3D representations from event data remains fundamentally challenging. Current event-based Neural Radiance Fields (NeRF) methods partially address these challenges but suffer from persistent artifacts caused by aggressive network learning in early stages and the inherent noise of event cameras. To overcome these limitations, we present SaENeRF, a novel self-supervised framework that effectively suppresses artifacts and enables 3D-consistent, dense, and photorealistic NeRF reconstruction of static scenes solely from event streams. Our approach normalizes predicted radiance variations based on accumulated event polarities, facilitating progressive and rapid learning for scene representation construction. Additionally, we introduce regularization losses specifically designed to suppress artifacts in regions where photometric changes fall below the event threshold and simultaneously enhance the light intensity difference of non-zero events, thereby improving the visual fidelity of the reconstructed scene. Extensive qualitative and quantitative experiments demonstrate that our method significantly reduces artifacts and achieves superior reconstruction quality compared to existing methods. The code is available at https://github.com/Mr-firework/SaENeRF.
comment: Accepted by IJCNN 2025
Revisiting Radar Camera Alignment by Contrastive Learning for 3D Object Detection
Recently, 3D object detection algorithms based on radar and camera fusion have shown excellent performance, setting the stage for their application in autonomous driving perception tasks. Existing methods have focused on dealing with feature misalignment caused by the domain gap between radar and camera. However, existing methods either neglect inter-modal features interaction during alignment or fail to effectively align features at the same spatial location across modalities. To alleviate the above problems, we propose a new alignment model called Radar Camera Alignment (RCAlign). Specifically, we design a Dual-Route Alignment (DRA) module based on contrastive learning to align and fuse the features between radar and camera. Moreover, considering the sparsity of radar BEV features, a Radar Feature Enhancement (RFE) module is proposed to improve the densification of radar BEV features with the knowledge distillation loss. Experiments show RCAlign achieves a new state-of-the-art on the public nuScenes benchmark in radar camera fusion for 3D Object Detection. Furthermore, the RCAlign achieves a significant performance gain (4.3\% NDS and 8.4\% mAP) in real-time 3D detection compared to the latest state-of-the-art method (RCBEVDet).
CLPSTNet: A Progressive Multi-Scale Convolutional Steganography Model Integrating Curriculum Learning
In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.
Almost Right: Making First-layer Kernels Nearly Orthogonal Improves Model Generalization
An ongoing research challenge within several domains in computer vision is how to increase model generalization capabilities. Several attempts to improve model generalization performance are heavily inspired by human perceptual intelligence, which is remarkable in both its performance and efficiency to generalize to unknown samples. Many of these methods attempt to force portions of the network to be orthogonal, following some observation within neuroscience related to early vision processes. In this paper, we propose a loss component that regularizes the filtering kernels in the first convolutional layer of a network to make them nearly orthogonal. Deviating from previous works, we give the network flexibility in which pairs of kernels it makes orthogonal, allowing the network to navigate to a better solution space, imposing harsh penalties. Without architectural modifications, we report substantial gains in generalization performance using the proposed loss against previous works (including orthogonalization- and saliency-based regularization methods) across three different architectures (ResNet-50, DenseNet-121, ViT-b-16) and two difficult open-set recognition tasks: presentation attack detection in iris biometrics, and anomaly detection in chest X-ray images.
comment: 8 pages, 1 figure, 3 tables
Latent Video Dataset Distillation
Dataset distillation has demonstrated remarkable effectiveness in high-compression scenarios for image datasets. While video datasets inherently contain greater redundancy, existing video dataset distillation methods primarily focus on compression in the pixel space, overlooking advances in the latent space that have been widely adopted in modern text-to-image and text-to-video models. In this work, we bridge this gap by introducing a novel video dataset distillation approach that operates in the latent space using a state-of-the-art variational encoder. Furthermore, we employ a diversity-aware data selection strategy to select both representative and diverse samples. Additionally, we introduce a simple, training-free method to further compress the distilled latent dataset. By combining these techniques, our approach achieves a new state-of-the-art performance in dataset distillation, outperforming prior methods on all datasets, e.g. on HMDB51 IPC 1, we achieve a 2.6% performance increase; on MiniUCF IPC 5, we achieve a 7.8% performance increase.
comment: https://openreview.net/forum?id=i665TIHv92
Physiological neural representation for personalised tracer kinetic parameter estimation from dynamic PET
Dynamic positron emission tomography (PET) with [$^{18}$F]FDG enables non-invasive quantification of glucose metabolism through kinetic analysis, often modelled by the two-tissue compartment model (TCKM). However, voxel-wise kinetic parameter estimation using conventional methods is computationally intensive and limited by spatial resolution. Deep neural networks (DNNs) offer an alternative but require large training datasets and significant computational resources. To address these limitations, we propose a physiological neural representation based on implicit neural representations (INRs) for personalized kinetic parameter estimation. INRs, which learn continuous functions, allow for efficient, high-resolution parametric imaging with reduced data requirements. Our method also integrates anatomical priors from a 3D CT foundation model to enhance robustness and precision in kinetic modelling. We evaluate our approach on an [$^{18}$F]FDG dynamic PET/CT dataset and compare it to state-of-the-art DNNs. Results demonstrate superior spatial resolution, lower mean-squared error, and improved anatomical consistency, particularly in tumour and highly vascularized regions. Our findings highlight the potential of INRs for personalized, data-efficient tracer kinetic modelling, enabling applications in tumour characterization, segmentation, and prognostic assessment.
comment: The code is available at: https://github.com/tkartikay/PhysNRPET
Anatomy-constrained modelling of image-derived input functions in dynamic PET using multi-organ segmentation
Accurate kinetic analysis of [$^{18}$F]FDG distribution in dynamic positron emission tomography (PET) requires anatomically constrained modelling of image-derived input functions (IDIFs). Traditionally, IDIFs are obtained from the aorta, neglecting anatomical variations and complex vascular contributions. This study proposes a multi-organ segmentation-based approach that integrates IDIFs from the aorta, portal vein, pulmonary artery, and ureters. Using high-resolution CT segmentations of the liver, lungs, kidneys, and bladder, we incorporate organ-specific blood supply sources to improve kinetic modelling. Our method was evaluated on dynamic [$^{18}$F]FDG PET data from nine patients, resulting in a mean squared error (MSE) reduction of $13.39\%$ for the liver and $10.42\%$ for the lungs. These initial results highlight the potential of multiple IDIFs in improving anatomical modelling and fully leveraging dynamic PET imaging. This approach could facilitate the integration of tracer kinetic modelling into clinical routine.
comment: The code is available under https://github.com/tinolan/curve_fit_multi_idif
Transferring Spatial Filters via Tangent Space Alignment in Motor Imagery BCIs
We propose a method to improve subject transfer in motor imagery BCIs by aligning covariance matrices on a Riemannian manifold, followed by computing a new common spatial patterns (CSP) based spatial filter. We explore various ways to integrate information from multiple subjects and show improved performance compared to standard CSP. Across three datasets, our method shows marginal improvements over standard CSP; however, when training data are limited, the improvements become more significant.
Scene-Aware Location Modeling for Data Augmentation in Automotive Object Detection
Generative image models are increasingly being used for training data augmentation in vision tasks. In the context of automotive object detection, methods usually focus on producing augmented frames that look as realistic as possible, for example by replacing real objects with generated ones. Others try to maximize the diversity of augmented frames, for example by pasting lots of generated objects onto existing backgrounds. Both perspectives pay little attention to the locations of objects in the scene. Frame layouts are either reused with little or no modification, or they are random and disregard realism entirely. In this work, we argue that optimal data augmentation should also include realistic augmentation of layouts. We introduce a scene-aware probabilistic location model that predicts where new objects can realistically be placed in an existing scene. By then inpainting objects in these locations with a generative model, we obtain much stronger augmentation performance than existing approaches. We set a new state of the art for generative data augmentation on two automotive object detection tasks, achieving up to $2.8\times$ higher gains than the best competing approach ($+1.4$ vs. $+0.5$ mAP boost). We also demonstrate significant improvements for instance segmentation.
Distilling semantically aware orders for autoregressive image generation
Autoregressive patch-based image generation has recently shown competitive results in terms of image quality and scalability. It can also be easily integrated and scaled within Vision-Language models. Nevertheless, autoregressive models require a defined order for patch generation. While a natural order based on the dictation of the words makes sense for text generation, there is no inherent generation order that exists for image generation. Traditionally, a raster-scan order (from top-left to bottom-right) guides autoregressive image generation models. In this paper, we argue that this order is suboptimal, as it fails to respect the causality of the image content: for instance, when conditioned on a visual description of a sunset, an autoregressive model may generate clouds before the sun, even though the color of clouds should depend on the color of the sun and not the inverse. In this work, we show that first by training a model to generate patches in any-given-order, we can infer both the content and the location (order) of each patch during generation. Secondly, we use these extracted orders to finetune the any-given-order model to produce better-quality images. Through our experiments, we show on two datasets that this new generation method produces better images than the traditional raster-scan approach, with similar training costs and no extra annotations.
PPS-Ctrl: Controllable Sim-to-Real Translation for Colonoscopy Depth Estimation
Accurate depth estimation enhances endoscopy navigation and diagnostics, but obtaining ground-truth depth in clinical settings is challenging. Synthetic datasets are often used for training, yet the domain gap limits generalization to real data. We propose a novel image-to-image translation framework that preserves structure while generating realistic textures from clinical data. Our key innovation integrates Stable Diffusion with ControlNet, conditioned on a latent representation extracted from a Per-Pixel Shading (PPS) map. PPS captures surface lighting effects, providing a stronger structural constraint than depth maps. Experiments show our approach produces more realistic translations and improves depth estimation over GAN-based MI-CycleGAN. Our code is publicly accessible at https://github.com/anaxqx/PPS-Ctrl.
ePBR: Extended PBR Materials in Image Synthesis CVPR
Realistic indoor or outdoor image synthesis is a core challenge in computer vision and graphics. The learning-based approach is easy to use but lacks physical consistency, while traditional Physically Based Rendering (PBR) offers high realism but is computationally expensive. Intrinsic image representation offers a well-balanced trade-off, decomposing images into fundamental components (intrinsic channels) such as geometry, materials, and illumination for controllable synthesis. However, existing PBR materials struggle with complex surface models, particularly high-specular and transparent surfaces. In this work, we extend intrinsic image representations to incorporate both reflection and transmission properties, enabling the synthesis of transparent materials such as glass and windows. We propose an explicit intrinsic compositing framework that provides deterministic, interpretable image synthesis. With the Extended PBR (ePBR) Materials, we can effectively edit the materials with precise controls.
comment: 8 pages without references, 7 figures, accepted in CVPRW 2025
DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs
We present DyMU, an efficient, training-free framework that dynamically reduces the computational burden of vision-language models (VLMs) while maintaining high task performance. Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity, addressing the inherent inefficiency of fixed-length outputs in vision transformers. Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence, thus preserving the downstream performance without additional fine-tuning. Unlike previous approaches, our method dynamically adapts token compression to the content of the image and operates completely training-free, making it readily applicable to most state-of-the-art VLM architectures. Extensive experiments on image and video understanding tasks demonstrate that DyMU can reduce the average visual token count by 32%-85% while achieving comparable performance to full-length models across diverse VLM architectures, including the recently popularized AnyRes-based visual encoders. Furthermore, through qualitative analyses, we demonstrate that DToMe effectively adapts token reduction based on image complexity and, unlike existing systems, provides users more control over computational costs. Project page: https://mikewangwzhl.github.io/dymu/.
Dense Air Pollution Estimation from Sparse in-situ Measurements and Satellite Data
This paper addresses the critical environmental challenge of estimating ambient Nitrogen Dioxide (NO$_2$) concentrations, a key issue in public health and environmental policy. Existing methods for satellite-based air pollution estimation model the relationship between satellite and in-situ measurements at select point locations. While these approaches have advanced our ability to provide air quality estimations on a global scale, they come with inherent limitations. The most notable limitation is the computational intensity required for generating comprehensive estimates over extensive areas. Motivated by these limitations, this study introduces a novel dense estimation technique. Our approach seeks to balance the accuracy of high-resolution estimates with the practicality of computational constraints, thereby enabling efficient and scalable global environmental assessment. By utilizing a uniformly random offset sampling strategy, our method disperses the ground truth data pixel location evenly across a larger patch. At inference, the dense estimation method can then generate a grid of estimates in a single step, significantly reducing the computational resources required to provide estimates for larger areas. Notably, our approach also surpasses the results of existing point-wise methods by a significant margin of $9.45\%$, achieving a Mean Absolute Error (MAE) of $4.98\ \mu\text{g}/\text{m}^3$. This demonstrates both high accuracy and computational efficiency, highlighting the applicability of our method for global environmental assessment. Furthermore, we showcase the method's adaptability and robustness by applying it to diverse geographic regions. Our method offers a viable solution to the computational challenges of large-scale environmental monitoring.
Automating tumor-infiltrating lymphocyte assessment in breast cancer histopathology images using QuPath: a transparent and accessible machine learning pipeline
In this study, we built an end-to-end tumor-infiltrating lymphocytes (TILs) assessment pipeline within QuPath, demonstrating the potential of easily accessible tools to perform complex tasks in a fully automatic fashion. First, we trained a pixel classifier to segment tumor, tumor-associated stroma, and other tissue compartments in breast cancer H&E-stained whole-slide images (WSI) to isolate tumor-associated stroma for subsequent analysis. Next, we applied a pre-trained StarDist deep learning model in QuPath for cell detection and used the extracted cell features to train a binary classifier distinguishing TILs from other cells. To evaluate our TILs assessment pipeline, we calculated the TIL density in each WSI and categorized them as low, medium, or high TIL levels. Our pipeline was evaluated against pathologist-assigned TIL scores, achieving a Cohen's kappa of 0.71 on the external test set, corroborating previous research findings. These results confirm that existing software can offer a practical solution for the assessment of TILs in H&E-stained WSIs of breast cancer.
comment: 16 Pages, 9 Figures, 3 tables
Seeing The Words: Evaluating AI-generated Biblical Art
The past years witnessed a significant amount of Artificial Intelligence (AI) tools that can generate images from texts. This triggers the discussion of whether AI can generate accurate images using text from the Bible with respect to the corresponding biblical contexts and backgrounds. Despite some existing attempts at a small scale, little work has been done to systematically evaluate these generated images. In this work, we provide a large dataset of over 7K images using biblical text as prompts. These images were evaluated with multiple neural network-based tools on various aspects. We provide an assessment of accuracy and some analysis from the perspective of religion and aesthetics. Finally, we discuss the use of the generated images and reflect on the performance of the AI generators.
Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 10 pages, 7 figures, 5 tables
A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
comment: Preprint V2 with 30 pages main text. Online project at https://github.com/Westlake-AI/Awesome-Mixup
Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
DiffArtist: Towards Structure and Appearance Controllable Image Stylization
Artistic style includes both structural and appearance elements. Existing neural stylization techniques primarily focus on transferring appearance features such as color and texture, often neglecting the equally crucial aspect of structural stylization. In this paper, we present a comprehensive study on the simultaneous stylization of structure and appearance of 2D images. Specifically, we introduce DiffArtist, which, to the best of our knowledge, is the first stylization method to allow for dual controllability over structure and appearance. Our key insight is to represent structure and appearance as separate diffusion processes to achieve complete disentanglement without requiring any training, thereby endowing users with unprecedented controllability for both components. The evaluation of stylization of both appearance and structure, however, remains challenging as it necessitates semantic understanding. To this end, we further propose a Multimodal LLM-based style evaluator, which better aligns with human preferences than metrics lacking semantic understanding. With this powerful evaluator, we conduct extensive analysis, demonstrating that DiffArtist achieves superior style fidelity, editability, and structure-appearance disentanglement. These merits make DiffArtist a highly versatile solution for creative applications. Project homepage: https://github.com/songrise/Artist.
comment: Homepage: https://DiffusionArtist.github.io
A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
MediSee: Reasoning-based Pixel-level Perception in Medical Images
Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods.
comment: 10 pages, 6 figures
Luminance-GS: Adapting 3D Gaussian Splatting to Challenging Lighting Conditions with View-Adaptive Curve Adjustment CVPR 2025
Capturing high-quality photographs under diverse real-world lighting conditions is challenging, as both natural lighting (e.g., low-light) and camera exposure settings (e.g., exposure time) significantly impact image quality. This challenge becomes more pronounced in multi-view scenarios, where variations in lighting and image signal processor (ISP) settings across viewpoints introduce photometric inconsistencies. Such lighting degradations and view-dependent variations pose substantial challenges to novel view synthesis (NVS) frameworks based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). To address this, we introduce Luminance-GS, a novel approach to achieving high-quality novel view synthesis results under diverse challenging lighting conditions using 3DGS. By adopting per-view color matrix mapping and view-adaptive curve adjustments, Luminance-GS achieves state-of-the-art (SOTA) results across various lighting conditions -- including low-light, overexposure, and varying exposure -- while not altering the original 3DGS explicit representation. Compared to previous NeRF- and 3DGS-based baselines, Luminance-GS provides real-time rendering speed with improved reconstruction quality.
comment: CVPR 2025, project page: https://cuiziteng.github.io/Luminance_GS_web/
Adapter-Enhanced Semantic Prompting for Continual Learning
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IEEE for possible publication
OSDFace: One-Step Diffusion Model for Face Restoration CVPR 2025
Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
comment: Accepted to CVPR 2025. The code and model will be available at https://github.com/jkwang28/OSDFace
Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles. This work leverages quaternions and the two-dimensional orthogonal planes split framework (splitting of a quaternion - representing a pixel - into pairs of orthogonal 2D planes) for natural/biomedical image analysis through the following computational workflows and outcomes: natural/biomedical image re-colorization, natural image de-colorization, natural/biomedical image contrast enhancement, computational re-staining and stain separation in histological images, and performance gains in machine/deep learning pipelines for histological images. The workflows are analyzed separately for natural and biomedical images to showcase the effectiveness of the proposed approaches. The proposed workflows can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines (e.g. isolating stain components, boosting learning models), and assist in digital pathology applications (e.g. enhancing biomarker visibility, enabling colorblind-friendly renditions). Employing only basic arithmetic and matrix operations, this work offers a computationally accessible methodology - in the hypercomplex domain - that showcases versatility and consistency across image processing tasks and a range of computer vision and biomedical applications. The proposed non-data-driven methods achieve comparable or better results (particularly in cases involving well-known methods) to those reported in the literature, showcasing the potential of robust theoretical frameworks with practical effectiveness. Results, methods, and limitations are detailed alongside discussion of promising extensions, emphasizing the potential of feature-rich mathematical/computational frameworks for natural and biomedical images.
comment: 24 pages, 18 figures, 14 tables
AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion
Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability
As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.
Anti-Aesthetics: Protecting Facial Privacy against Customized Text-to-Image Synthesis
The rise of customized diffusion models has spurred a boom in personalized visual content creation, but also poses risks of malicious misuse, severely threatening personal privacy and copyright protection. Some studies show that the aesthetic properties of images are highly positively correlated with human perception of image quality. Inspired by this, we approach the problem from a novel and intriguing aesthetic perspective to degrade the generation quality of maliciously customized models, thereby achieving better protection of facial identity. Specifically, we propose a Hierarchical Anti-Aesthetic (HAA) framework to fully explore aesthetic cues, which consists of two key branches: 1) Global Anti-Aesthetics: By establishing a global anti-aesthetic reward mechanism and a global anti-aesthetic loss, it can degrade the overall aesthetics of the generated content; 2) Local Anti-Aesthetics: A local anti-aesthetic reward mechanism and a local anti-aesthetic loss are designed to guide adversarial perturbations to disrupt local facial identity. By seamlessly integrating both branches, our HAA effectively achieves the goal of anti-aesthetics from a global to a local level during customized generation. Extensive experiments show that HAA outperforms existing SOTA methods largely in identity removal, providing a powerful tool for protecting facial privacy and copyright.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
Exploring Adversarial Transferability between Kolmogorov-arnold Networks
Kolmogorov-Arnold Networks (KANs) have emerged as a transformative model paradigm, significantly impacting various fields. However, their adversarial robustness remains less underexplored, especially across different KAN architectures. To explore this critical safety issue, we conduct an analysis and find that due to overfitting to the specific basis functions of KANs, they possess poor adversarial transferability among different KANs. To tackle this challenge, we propose AdvKAN, the first transfer attack method for KANs. AdvKAN integrates two key components: 1) a Breakthrough-Defense Surrogate Model (BDSM), which employs a breakthrough-defense training strategy to mitigate overfitting to the specific structures of KANs. 2) a Global-Local Interaction (GLI) technique, which promotes sufficient interaction between adversarial gradients of hierarchical levels, further smoothing out loss surfaces of KANs. Both of them work together to enhance the strength of transfer attack among different KANs. Extensive experimental results on various KANs and datasets demonstrate the effectiveness of AdvKAN, which possesses notably superior attack capabilities and deeply reveals the vulnerabilities of KANs. Code will be released upon acceptance.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
comment: After the submission of the paper, we realized that the study still has room for expansion. In order to make the research findings more profound and comprehensive, we have decided to withdraw the paper so that we can conduct further research and expansion
SEGA: Drivable 3D Gaussian Head Avatar from a Single Image
Creating photorealistic 3D head avatars from limited input has become increasingly important for applications in virtual reality, telepresence, and digital entertainment. While recent advances like neural rendering and 3D Gaussian splatting have enabled high-quality digital human avatar creation and animation, most methods rely on multiple images or multi-view inputs, limiting their practicality for real-world use. In this paper, we propose SEGA, a novel approach for Single-imagE-based 3D drivable Gaussian head Avatar creation that combines generalized prior models with a new hierarchical UV-space Gaussian Splatting framework. SEGA seamlessly combines priors derived from large-scale 2D datasets with 3D priors learned from multi-view, multi-expression, and multi-ID data, achieving robust generalization to unseen identities while ensuring 3D consistency across novel viewpoints and expressions. We further present a hierarchical UV-space Gaussian Splatting framework that leverages FLAME-based structural priors and employs a dual-branch architecture to disentangle dynamic and static facial components effectively. The dynamic branch encodes expression-driven fine details, while the static branch focuses on expression-invariant regions, enabling efficient parameter inference and precomputation. This design maximizes the utility of limited 3D data and achieves real-time performance for animation and rendering. Additionally, SEGA performs person-specific fine-tuning to further enhance the fidelity and realism of the generated avatars. Experiments show our method outperforms state-of-the-art approaches in generalization ability, identity preservation, and expression realism, advancing one-shot avatar creation for practical applications.
HandDiffuse: Generative Controllers for Two-Hand Interactions via Diffusion Models
Existing hands datasets are largely short-range and the interaction is weak due to the self-occlusion and self-similarity of hands, which can not yet fit the need for interacting hands motion generation. To rescue the data scarcity, we propose HandDiffuse12.5M, a novel dataset that consists of temporal sequences with strong two-hand interactions. HandDiffuse12.5M has the largest scale and richest interactions among the existing two-hand datasets. We further present a strong baseline method HandDiffuse for the controllable motion generation of interacting hands using various controllers. Specifically, we apply the diffusion model as the backbone and design two motion representations for different controllers. To reduce artifacts, we also propose Interaction Loss which explicitly quantifies the dynamic interaction process. Our HandDiffuse enables various applications with vivid two-hand interactions, i.e., motion in-betweening and trajectory control. Experiments show that our method outperforms the state-of-the-art techniques in motion generation and can also contribute to data augmentation for other datasets. Our dataset, corresponding codes, and pre-trained models will be disseminated to the community for future research towards two-hand interaction modeling.
UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion CVPR 2025
Capturing high dynamic range (HDR) scenes is one of the most important issues in camera design. Majority of cameras use exposure fusion, which fuses images captured by different exposure levels, to increase dynamic range. However, this approach can only handle images with limited exposure difference, normally 3-4 stops. When applying to very high dynamic range scenes where a large exposure difference is required, this approach often fails due to incorrect alignment or inconsistent lighting between inputs, or tone mapping artifacts. In this work, we propose \model, the first exposure fusion technique that can merge inputs with 9 stops differences. The key idea is that we model exposure fusion as a guided inpainting problem, where the under-exposed image is used as a guidance to fill the missing information of over-exposed highlights in the over-exposed region. Using an under-exposed image as a soft guidance, instead of a hard constraint, our model is robust to potential alignment issue or lighting variations. Moreover, by utilizing the image prior of the generative model, our model also generates natural tone mapping, even for very high-dynamic range scenes. Our approach outperforms HDR-Transformer on latest HDR benchmarks. Moreover, to test its performance in ultra high dynamic range scenes, we capture a new real-world exposure fusion benchmark, UltraFusion dataset, with exposure differences up to 9 stops, and experiments show that UltraFusion can generate beautiful and high-quality fusion results under various scenarios. Code and data will be available at https://openimaginglab.github.io/UltraFusion.
comment: Accepted by CVPR 2025. Project Page: https://openimaginglab.github.io/UltraFusion
Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
DEFOM-Stereo: Depth Foundation Model Based Stereo Matching
Stereo matching is a key technique for metric depth estimation in computer vision and robotics. Real-world challenges like occlusion and non-texture hinder accurate disparity estimation from binocular matching cues. Recently, monocular relative depth estimation has shown remarkable generalization using vision foundation models. Thus, to facilitate robust stereo matching with monocular depth cues, we incorporate a robust monocular relative depth model into the recurrent stereo-matching framework, building a new framework for depth foundation model-based stereo-matching, DEFOM-Stereo. In the feature extraction stage, we construct the combined context and matching feature encoder by integrating features from conventional CNNs and DEFOM. In the update stage, we use the depth predicted by DEFOM to initialize the recurrent disparity and introduce a scale update module to refine the disparity at the correct scale. DEFOM-Stereo is verified to have much stronger zero-shot generalization compared with SOTA methods. Moreover, DEFOM-Stereo achieves top performance on the KITTI 2012, KITTI 2015, Middlebury, and ETH3D benchmarks, ranking $1^{st}$ on many metrics. In the joint evaluation under the robust vision challenge, our model simultaneously outperforms previous models on the individual benchmarks, further demonstrating its outstanding capabilities.
comment: https://insta360-research-team.github.io/DEFOM-Stereo/
Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
FREAK: Frequency-modulated High-fidelity and Real-time Audio-driven Talking Portrait Synthesis ICMR 2025
Achieving high-fidelity lip-speech synchronization in audio-driven talking portrait synthesis remains challenging. While multi-stage pipelines or diffusion models yield high-quality results, they suffer from high computational costs. Some approaches perform well on specific individuals with low resources, yet still exhibit mismatched lip movements. The aforementioned methods are modeled in the pixel domain. We observed that there are noticeable discrepancies in the frequency domain between the synthesized talking videos and natural videos. Currently, no research on talking portrait synthesis has considered this aspect. To address this, we propose a FREquency-modulated, high-fidelity, and real-time Audio-driven talKing portrait synthesis framework, named FREAK, which models talking portraits from the frequency domain perspective, enhancing the fidelity and naturalness of the synthesized portraits. FREAK introduces two novel frequency-based modules: 1) the Visual Encoding Frequency Modulator (VEFM) to couple multi-scale visual features in the frequency domain, better preserving visual frequency information and reducing the gap in the frequency spectrum between synthesized and natural frames. and 2) the Audio Visual Frequency Modulator (AVFM) to help the model learn the talking pattern in the frequency domain and improve audio-visual synchronization. Additionally, we optimize the model in both pixel domain and frequency domain jointly. Furthermore, FREAK supports seamless switching between one-shot and video dubbing settings, offering enhanced flexibility. Due to its superior performance, it can simultaneously support high-resolution video results and real-time inference. Extensive experiments demonstrate that our method synthesizes high-fidelity talking portraits with detailed facial textures and precise lip synchronization in real-time, outperforming state-of-the-art methods.
comment: Accepted by ICMR 2025
Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
A Deep Learning System for Rapid and Accurate Warning of Acute Aortic Syndrome on Non-contrast CT in China
The accurate and timely diagnosis of acute aortic syndromes (AAS) in patients presenting with acute chest pain remains a clinical challenge. Aortic CT angiography (CTA) is the imaging protocol of choice in patients with suspected AAS. However, due to economic and workflow constraints in China, the majority of suspected patients initially undergo non-contrast CT as the initial imaging testing, and CTA is reserved for those at higher risk. In this work, we present an artificial intelligence-based warning system, iAorta, using non-contrast CT for AAS identification in China, which demonstrates remarkably high accuracy and provides clinicians with interpretable warnings. iAorta was evaluated through a comprehensive step-wise study. In the multi-center retrospective study (n = 20,750), iAorta achieved a mean area under the receiver operating curve (AUC) of 0.958 (95% CI 0.950-0.967). In the large-scale real-world study (n = 137,525), iAorta demonstrated consistently high performance across various non-contrast CT protocols, achieving a sensitivity of 0.913-0.942 and a specificity of 0.991-0.993. In the prospective comparative study (n = 13,846), iAorta demonstrated the capability to significantly shorten the time to correct diagnostic pathway. For the prospective pilot deployment that we conducted, iAorta correctly identified 21 out of 22 patients with AAS among 15,584 consecutive patients presenting with acute chest pain and under non-contrast CT protocol in the emergency department (ED) and enabled the average diagnostic time of these 21 AAS positive patients to be 102.1 (75-133) mins. Last, the iAorta can help avoid delayed or missed diagnosis of AAS in settings where non-contrast CT remains the unavoidable the initial or only imaging test in resource-constrained regions and in patients who cannot or did not receive intravenous contrast.
CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts ECCV 2024
Contrastive vision-language models, such as CLIP, have garnered considerable attention for various downstream tasks, mainly due to the remarkable ability of the learned features for generalization. However, the features they learned often blend content and style information, which somewhat limits their generalization capabilities under distribution shifts. To address this limitation, we adopt a causal generative perspective for multimodal data and propose contrastive learning with data augmentation to disentangle content features from the original representations. To achieve this, we begin with exploring image augmentation techniques and develop a method to seamlessly integrate them into pre-trained CLIP-like models to extract pure content features. Taking a step further, recognizing the inherent semantic richness and logical structure of text data, we explore the use of text augmentation to isolate latent content from style features. This enables CLIP-like model's encoders to concentrate on latent content information, refining the learned representations by pre-trained CLIP-like models. Our extensive experiments across diverse datasets demonstrate significant improvements in zero-shot and few-shot classification tasks, alongside enhanced robustness to various perturbations. These results underscore the effectiveness of our proposed methods in refining vision-language representations and advancing the state-of-the-art in multimodal learning.
comment: Accepted as a conference paper at ECCV 2024
PooDLe: Pooled and dense self-supervised learning from naturalistic videos
Self-supervised learning has driven significant progress in learning from single-subject, iconic images. However, there are still unanswered questions about the use of minimally-curated, naturalistic video data, which contain dense scenes with many independent objects, imbalanced class distributions, and varying object sizes. In this paper, we propose PooDLe, a self-supervised learning method that combines an invariance-based objective on pooled representations with a dense SSL objective that enforces equivariance to optical flow warping. Our results show that a unified objective applied at multiple feature scales is essential for learning effective image representations from naturalistic videos. We validate our method with experiments on the BDD100K driving video dataset and the Walking Tours first-person video dataset, demonstrating its ability to capture spatial understanding from a dense objective and semantic understanding via a pooled representation objective.
comment: Project page: https://agenticlearning.ai/poodle/
Pix2Next: Leveraging Vision Foundation Models for RGB to NIR Image Translation
This paper proposes Pix2Next, a novel image-to-image translation framework designed to address the challenge of generating high-quality Near-Infrared (NIR) images from RGB inputs. Our approach leverages a state-of-the-art Vision Foundation Model (VFM) within an encoder-decoder architecture, incorporating cross-attention mechanisms to enhance feature integration. This design captures detailed global representations and preserves essential spectral characteristics, treating RGB-to-NIR translation as more than a simple domain transfer problem. A multi-scale PatchGAN discriminator ensures realistic image generation at various detail levels, while carefully designed loss functions couple global context understanding with local feature preservation. We performed experiments on the RANUS dataset to demonstrate Pix2Next's advantages in quantitative metrics and visual quality, improving the FID score by 34.81% compared to existing methods. Furthermore, we demonstrate the practical utility of Pix2Next by showing improved performance on a downstream object detection task using generated NIR data to augment limited real NIR datasets. The proposed approach enables the scaling up of NIR datasets without additional data acquisition or annotation efforts, potentially accelerating advancements in NIR-based computer vision applications.
comment: 19 pages,12 figures
Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: change affiliation of A. Pichiecchio. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: this https URL, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks
3D Gaussian Splatting (3DGS) has been widely used in 3D reconstruction and 3D generation. Training to get a 3DGS scene often takes a lot of time and resources and even valuable inspiration. The increasing amount of 3DGS digital asset have brought great challenges to the copyright protection. However, it still lacks profound exploration targeted at 3DGS. In this paper, we propose a new framework X-SG$^2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged. Generally, we have a X-SG$^2$S injector for adding multi-modal messages simultaneously and an extractor for extract them. Specifically, we first split the watermarks into message patches in a fixed manner and sort the 3DGS points. A self-adaption gate is used to pick out suitable location for watermarking. Then use a XD(multi-dimension)-injection heads to add multi-modal messages into sorted 3DGS points. A learnable gate can recognize the location with extra messages and XD-extraction heads can restore hidden messages from the location recommended by the learnable gate. Extensive experiments demonstrated that the proposed X-SG$^2$S can effectively conceal multi modal messages without changing pretrained 3DGS pipeline or the original form of 3DGS parameters. Meanwhile, with simple and efficient model structure and high practicality, X-SG$^2$S still shows good performance in hiding and extracting multi-modal inner structured or unstructured messages. X-SG$^2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS which pave the wave for later researches.
MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024 CVPR 2025
We present GFreeDet, an unseen object detection approach that leverages Gaussian splatting and vision Foundation models under model-free setting. Unlike existing methods that rely on predefined CAD templates, GFreeDet reconstructs objects directly from reference videos using Gaussian splatting, enabling robust detection of novel objects without prior 3D models. Evaluated on the BOP-H3 benchmark, GFreeDet achieves comparable performance to CAD-based methods, demonstrating the viability of model-free detection for mixed reality (MR) applications. Notably, GFreeDet won the best overall method and the best fast method awards in the model-free 2D detection track at BOP Challenge 2024.
comment: CVPR 2025 CV4MR Workshop (citation style changed)
Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering ICLR 2025
For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions in 3D scenes from videos is crucial for effective reasoning about high-level temporal and action semantics. Although humans are adept at understanding these properties by constructing 3D and temporal (4D) representations of the world, current video understanding models struggle to extract these dynamic semantics, arguably because these models use cross-frame reasoning without underlying knowledge of the 3D/4D scenes. In this work, we introduce DynSuperCLEVR, the first video question answering dataset that focuses on language understanding of the dynamic properties of 3D objects. We concentrate on three physical concepts -- velocity, acceleration, and collisions within 4D scenes. We further generate three types of questions, including factual queries, future predictions, and counterfactual reasoning that involve different aspects of reasoning about these 4D dynamic properties. To further demonstrate the importance of explicit scene representations in answering these 4D dynamics questions, we propose NS-4DPhysics, a Neural-Symbolic VideoQA model integrating Physics prior for 4D dynamic properties with explicit scene representation of videos. Instead of answering the questions directly from the video text input, our method first estimates the 4D world states with a 3D generative model powered by physical priors, and then uses neural symbolic reasoning to answer the questions based on the 4D world states. Our evaluation on all three types of questions in DynSuperCLEVR shows that previous video question answering models and large multimodal models struggle with questions about 4D dynamics, while our NS-4DPhysics significantly outperforms previous state-of-the-art models. Our code and data are released in https://xingruiwang.github.io/projects/DynSuperCLEVR/.
comment: ICLR 2025 accepted paper. Project url: https://xingruiwang.github.io/projects/DynSuperCLEVR/
ST-Think: How Multimodal Large Language Models Reason About 4D Worlds from Ego-Centric Videos
Humans excel at spatial-temporal reasoning, effortlessly interpreting dynamic visual events from an egocentric viewpoint. However, whether multimodal large language models (MLLMs) can similarly understand the 4D world remains uncertain. This paper explores multimodal spatial-temporal reasoning from an egocentric perspective, aiming to equip MLLMs with human-like reasoning capabilities. To support this objective, we introduce \textbf{Ego-ST Bench}, a novel benchmark containing over 5,000 question-answer pairs across four categories, systematically evaluating spatial, temporal, and integrated spatial-temporal reasoning. Additionally, we propose \textbf{ST-R1} training paradigm, a video-based reasoning model that incorporates reverse thinking into its reinforcement learning process, significantly enhancing performance. We combine long-chain-of-thought (long-CoT) supervised fine-tuning with Group Relative Policy Optimization (GRPO) reinforcement learning, achieving notable improvements with limited high-quality data. Ego-ST Bench and ST-R1 provide valuable insights and resources for advancing video-based spatial-temporal reasoning research.
Embedding Radiomics into Vision Transformers for Multimodal Medical Image Classification
Background: Deep learning has significantly advanced medical image analysis, with Vision Transformers (ViTs) offering a powerful alternative to convolutional models by modeling long-range dependencies through self-attention. However, ViTs are inherently data-intensive and lack domain-specific inductive biases, limiting their applicability in medical imaging. In contrast, radiomics provides interpretable, handcrafted descriptors of tissue heterogeneity but suffers from limited scalability and integration into end-to-end learning frameworks. In this work, we propose the Radiomics-Embedded Vision Transformer (RE-ViT) that combines radiomic features with data-driven visual embeddings within a ViT backbone. Purpose: To develop a hybrid RE-ViT framework that integrates radiomics and patch-wise ViT embeddings through early fusion, enhancing robustness and performance in medical image classification. Methods: Following the standard ViT pipeline, images were divided into patches. For each patch, handcrafted radiomic features were extracted and fused with linearly projected pixel embeddings. The fused representations were normalized, positionally encoded, and passed to the ViT encoder. A learnable [CLS] token aggregated patch-level information for classification. We evaluated RE-ViT on three public datasets (including BUSI, ChestXray2017, and Retinal OCT) using accuracy, macro AUC, sensitivity, and specificity. RE-ViT was benchmarked against CNN-based (VGG-16, ResNet) and hybrid (TransMed) models. Results: RE-ViT achieved state-of-the-art results: on BUSI, AUC=0.950+/-0.011; on ChestXray2017, AUC=0.989+/-0.004; on Retinal OCT, AUC=0.986+/-0.001, which outperforms other comparison models. Conclusions: The RE-ViT framework effectively integrates radiomics with ViT architectures, demonstrating improved performance and generalizability across multimodal medical image classification tasks.
comment: 27 pages, 3 figures
SLAM-Based Navigation and Fault Resilience in a Surveillance Quadcopter with Embedded Vision Systems
We present an autonomous aerial surveillance platform, Veg, designed as a fault-tolerant quadcopter system that integrates visual SLAM for GPS-independent navigation, advanced control architecture for dynamic stability, and embedded vision modules for real-time object and face recognition. The platform features a cascaded control design with an LQR inner-loop and PD outer-loop trajectory control. It leverages ORB-SLAM3 for 6-DoF localization and loop closure, and supports waypoint-based navigation through Dijkstra path planning over SLAM-derived maps. A real-time Failure Detection and Identification (FDI) system detects rotor faults and executes emergency landing through re-routing. The embedded vision system, based on a lightweight CNN and PCA, enables onboard object detection and face recognition with high precision. The drone operates fully onboard using a Raspberry Pi 4 and Arduino Nano, validated through simulations and real-world testing. This work consolidates real-time localization, fault recovery, and embedded AI on a single platform suitable for constrained environments.
comment: 18 pages, 21 figures, 15 tables. Onboard processing using Raspberry Pi 4 and Arduino Nano. Includes ORB-SLAM3-based navigation, LQR control, rotor fault recovery, object detection, and PCA face recognition. Real-world and simulation tests included. Designed for GPS-denied autonomous UAV surveillance
DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
comment: Project: https://superhero-7.github.io/DreamID/
A Robust Real-Time Lane Detection Method with Fog-Enhanced Feature Fusion for Foggy Conditions
Lane detection is a critical component of Advanced Driver Assistance Systems (ADAS). Existing lane detection algorithms generally perform well under favorable weather conditions. However, their performance degrades significantly in adverse conditions, such as fog, which increases the risk of traffic accidents. This challenge is compounded by the lack of specialized datasets and methods designed for foggy environments. To address this, we introduce the FoggyLane dataset, captured in real-world foggy scenarios, and synthesize two additional datasets, FoggyCULane and FoggyTusimple, from existing popular lane detection datasets. Furthermore, we propose a robust Fog-Enhanced Network for lane detection, incorporating a Global Feature Fusion Module (GFFM) to capture global relationships in foggy images, a Kernel Feature Fusion Module (KFFM) to model the structural and positional relationships of lane instances, and a Low-level Edge Enhanced Module (LEEM) to address missing edge details in foggy conditions. Comprehensive experiments demonstrate that our method achieves state-of-the-art performance, with F1-scores of 95.04 on FoggyLane, 79.85 on FoggyCULane, and 96.95 on FoggyTusimple. Additionally, with TensorRT acceleration, the method reaches a processing speed of 38.4 FPS on the NVIDIA Jetson AGX Orin, confirming its real-time capabilities and robustness in foggy environments.
Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
P2P: Part-to-Part Motion Cues Guide a Strong Tracking Framework for LiDAR Point Clouds
3D single object tracking (SOT) methods based on appearance matching has long suffered from insufficient appearance information incurred by incomplete, textureless and semantically deficient LiDAR point clouds. While motion paradigm exploits motion cues instead of appearance matching for tracking, it incurs complex multi-stage processing and segmentation module. In this paper, we first provide in-depth explorations on motion paradigm, which proves that (\textbf{i}) it is feasible to directly infer target relative motion from point clouds across consecutive frames; (\textbf{ii}) fine-grained information comparison between consecutive point clouds facilitates target motion modeling. We thereby propose to perform part-to-part motion modeling for consecutive point clouds and introduce a novel tracking framework, termed \textbf{P2P}. The novel framework fuses each corresponding part information between consecutive point clouds, effectively exploring detailed information changes and thus modeling accurate target-related motion cues. Following this framework, we present P2P-point and P2P-voxel models, incorporating implicit and explicit part-to-part motion modeling by point- and voxel-based representation, respectively. Without bells and whistles, P2P-voxel sets a new state-of-the-art performance ($\sim$\textbf{89\%}, \textbf{72\%} and \textbf{63\%} precision on KITTI, NuScenes and Waymo Open Dataset, respectively). Moreover, under the same point-based representation, P2P-point outperforms the previous motion tracker M$^2$Track by \textbf{3.3\%} and \textbf{6.7\%} on the KITTI and NuScenes, while running at a considerably high speed of \textbf{107 Fps} on a single RTX3090 GPU. The source code and pre-trained models are available at https://github.com/haooozi/P2P.
comment: Accept by IJCV
Effective Lymph Nodes Detection in CT Scans Using Location Debiased Query Selection and Contrastive Query Representation in Transformer ECCV24
Lymph node (LN) assessment is a critical, indispensable yet very challenging task in the routine clinical workflow of radiology and oncology. Accurate LN analysis is essential for cancer diagnosis, staging, and treatment planning. Finding scatteredly distributed, low-contrast clinically relevant LNs in 3D CT is difficult even for experienced physicians under high inter-observer variations. Previous automatic LN detection works typically yield limited recall and high false positives (FPs) due to adjacent anatomies with similar image intensities, shapes, or textures (vessels, muscles, esophagus, etc). In this work, we propose a new LN DEtection TRansformer, named LN-DETR, to achieve more accurate performance. By enhancing the 2D backbone with a multi-scale 2.5D feature fusion to incorporate 3D context explicitly, more importantly, we make two main contributions to improve the representation quality of LN queries. 1) Considering that LN boundaries are often unclear, an IoU prediction head and a location debiased query selection are proposed to select LN queries of higher localization accuracy as the decoder query's initialization. 2) To reduce FPs, query contrastive learning is employed to explicitly reinforce LN queries towards their best-matched ground-truth queries over unmatched query predictions. Trained and tested on 3D CT scans of 1067 patients (with 10,000+ labeled LNs) via combining seven LN datasets from different body parts (neck, chest, and abdomen) and pathologies/cancers, our method significantly improves the performance of previous leading methods by > 4-5% average recall at the same FP rates in both internal and external testing. We further evaluate on the universal lesion detection task using NIH DeepLesion benchmark, and our method achieves the top performance of 88.46% averaged recall across 0.5 to 4 FPs per image, compared with other leading reported results.
comment: Accepted by ECCV24
Discrete Cosine Transform Based Decorrelated Attention for Vision Transformers
Central to the Transformer architectures' effectiveness is the self-attention mechanism, a function that maps queries, keys, and values into a high-dimensional vector space. However, training the attention weights of queries, keys, and values is non-trivial from a state of random initialization. In this paper, we propose two methods. (i) We first address the initialization problem of Vision Transformers by introducing a simple, yet highly innovative, initialization approach utilizing discrete cosine transform (DCT) coefficients. Our proposed DCT-based \textit{attention} initialization marks a significant gain compared to traditional initialization strategies; offering a robust foundation for the attention mechanism. Our experiments reveal that the DCT-based initialization enhances the accuracy of Vision Transformers in classification tasks. (ii) We also recognize that since DCT effectively decorrelates image information in the frequency domain, this decorrelation is useful for compression because it allows the quantization step to discard many of the higher-frequency components. Based on this observation, we propose a novel DCT-based compression technique for the attention function of Vision Transformers. Since high-frequency DCT coefficients usually correspond to noise, we truncate the high-frequency DCT components of the input patches. Our DCT-based compression reduces the size of weight matrices for queries, keys, and values. While maintaining the same level of accuracy, our DCT compressed Swin Transformers obtain a considerable decrease in the computational overhead.
AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets
Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.
comment: 2 tables, 6 figures
Event-based Continuous Color Video Decompression from Single Frames
We present ContinuityCam, a novel approach to generate a continuous video from a single static RGB image and an event camera stream. Conventional cameras struggle with high-speed motion capture due to bandwidth and dynamic range limitations. Event cameras are ideal sensors to solve this problem because they encode compressed change information at high temporal resolution. In this work, we tackle the problem of event-based continuous color video decompression, pairing single static color frames and event data to reconstruct temporally continuous videos. Our approach combines continuous long-range motion modeling with a neural synthesis model, enabling frame prediction at arbitrary times within the events. Our method only requires an initial image, thus increasing the robustness to sudden motions, light changes, minimizing the prediction latency, and decreasing bandwidth usage. We also introduce a novel single-lens beamsplitter setup that acquires aligned images and events, and a novel and challenging Event Extreme Decompression Dataset (E2D2) that tests the method in various lighting and motion profiles. We thoroughly evaluate our method by benchmarking color frame reconstruction, outperforming the baseline methods by 3.61 dB in PSNR and by 33% decrease in LPIPS, as well as showing superior results on two downstream tasks.
Fast OMP for Exact Recovery and Sparse Approximation ICPR 2024
Orthogonal Matching Pursuit (OMP) has been a powerful method in sparse signal recovery and approximation. However OMP suffers computational issue when the signal has large number of non-zeros. This paper advances OMP in two fronts: it offers a fast algorithm for the orthogonal projection of the input signal at each iteration, and a new selection criterion for making the greedy choice, which reduces the number of iterations it takes to recover the signal. The proposed modifications to OMP directly reduce the computational complexity. Experiment results show significant improvement over the classical OMP in computation time. The paper also provided a sufficient condition for exact recovery under the new greedy choice criterion. For general signals that may not have sparse representations, the paper provides a bound for the approximation error. The approximation error is at the same order as OMP but is obtained within fewer iterations and less time.
comment: It has been published in ICPR 2024
LinPrim: Linear Primitives for Differentiable Volumetric Rendering
Volumetric rendering has become central to modern novel view synthesis methods, which use differentiable rendering to optimize 3D scene representations directly from observed views. While many recent works build on NeRF or 3D Gaussians, we explore an alternative volumetric scene representation. More specifically, we introduce two new scene representations based on linear primitives - octahedra and tetrahedra - both of which define homogeneous volumes bounded by triangular faces. To optimize these primitives, we present a differentiable rasterizer that runs efficiently on GPUs, allowing end-to-end gradient-based optimization while maintaining real-time rendering capabilities. Through experiments on real-world datasets, we demonstrate comparable performance to state-of-the-art volumetric methods while requiring fewer primitives to achieve similar reconstruction fidelity. Our findings deepen the understanding of 3D representations by providing insights into the fidelity and performance characteristics of transparent polyhedra and suggest that adopting novel primitives can expand the available design space.
comment: Project page: https://nicolasvonluetzow.github.io/LinPrim - Project video: https://youtu.be/NRRlmFZj5KQ
Set2Seq Transformer: Temporal and Positional-Aware Set Representations for Sequential Multiple-Instance Learning
Sequential multiple-instance learning involves learning representations of sets distributed across discrete timesteps. In many real-world applications, modeling both the internal structure of sets and their temporal relationships across time is essential for capturing complex underlying patterns. However, existing methods either focus on learning set representations at a static level, ignoring temporal dynamics, or treat sequences as ordered lists of individual elements, lacking explicit mechanisms to represent sets. In this work, we propose Set2Seq Transformer, a novel architecture that jointly models permutation-invariant set structure and temporal dependencies by learning temporal and positional-aware representations of sets within a sequence in an end-to-end multimodal manner. We evaluate our Set2Seq Transformer on two tasks that require modeling both set structure alongside temporal and positional patterns, but differ significantly in domain, modality, and objective. First, we consider a fine-art analysis task, modeling artists' oeuvres for predicting artistic success using a novel dataset, WikiArt-Seq2Rank. Second, we utilize our Set2Seq Transformer for a short-term wildfire danger forecasting task. Through extensive experimentation, we show that our Set2Seq Transformer significantly improves over traditional static multiple-instance learning methods by effectively learning permutation-invariant set, temporal, and positional-aware representations across diverse domains, modalities, and tasks. We will release both the dataset and model implementations on GitHub.
Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery
The forest serves as the most significant terrestrial carbon stock mechanism, effectively reducing atmospheric CO2 concentrations and mitigating climate change. Remote sensing provides high data accuracy and enables large-scale observations. Optical images facilitate long-term monitoring, which is crucial for future carbon stock estimation studies. This study focuses on Huize County, Qujing City, Yunnan Province, China, utilizing GF-1 WFV satellite imagery. The KD-VGG and KD-UNet modules were introduced for initial feature extraction, and the improved implicit diffusion model (IIDM) was proposed. The results showed: (1) The VGG module improved initial feature extraction, improving accuracy, and reducing inference time with optimized model parameters. (2) The Cross-attention + MLPs module enabled effective feature fusion, establishing critical relationships between global and local features, achieving high-accuracy estimation. (3) The IIDM model, a novel contribution, demonstrated the highest estimation accuracy with an RMSE of 12.17%, significantly improving by 41.69% to 42.33% compared to the regression model. In carbon stock estimation, the generative model excelled in extracting deeper features, significantly outperforming other models, demonstrating the feasibility of AI-generated content in quantitative remote sensing. The 16-meter resolution estimates provide a robust basis for tailoring forest carbon sink regulations, enhancing regional carbon stock management.
Image and Video Processing
Advanced Chest X-Ray Analysis via Transformer-Based Image Descriptors and Cross-Model Attention Mechanism
The examination of chest X-ray images is a crucial component in detecting various thoracic illnesses. This study introduces a new image description generation model that integrates a Vision Transformer (ViT) encoder with cross-modal attention and a GPT-4-based transformer decoder. The ViT captures high-quality visual features from chest X-rays, which are fused with text data through cross-modal attention to improve the accuracy, context, and richness of image descriptions. The GPT-4 decoder transforms these fused features into accurate and relevant captions. The model was tested on the National Institutes of Health (NIH) and Indiana University (IU) Chest X-ray datasets. On the IU dataset, it achieved scores of 0.854 (B-1), 0.883 (CIDEr), 0.759 (METEOR), and 0.712 (ROUGE-L). On the NIH dataset, it achieved the best performance on all metrics: BLEU 1--4 (0.825, 0.788, 0.765, 0.752), CIDEr (0.857), METEOR (0.726), and ROUGE-L (0.705). This framework has the potential to enhance chest X-ray evaluation, assisting radiologists in more precise and efficient diagnosis.
Frequency-Compensated Network for Daily Arctic Sea Ice Concentration Prediction
Accurately forecasting sea ice concentration (SIC) in the Arctic is critical to global ecosystem health and navigation safety. However, current methods still is confronted with two challenges: 1) these methods rarely explore the long-term feature dependencies in the frequency domain. 2) they can hardly preserve the high-frequency details, and the changes in the marginal area of the sea ice cannot be accurately captured. To this end, we present a Frequency-Compensated Network (FCNet) for Arctic SIC prediction on a daily basis. In particular, we design a dual-branch network, including branches for frequency feature extraction and convolutional feature extraction. For frequency feature extraction, we design an adaptive frequency filter block, which integrates trainable layers with Fourier-based filters. By adding frequency features, the FCNet can achieve refined prediction of edges and details. For convolutional feature extraction, we propose a high-frequency enhancement block to separate high and low-frequency information. Moreover, high-frequency features are enhanced via channel-wise attention, and temporal attention unit is employed for low-frequency feature extraction to capture long-range sea ice changes. Extensive experiments are conducted on a satellite-derived daily SIC dataset, and the results verify the effectiveness of the proposed FCNet. Our codes and data will be made public available at: https://github.com/oucailab/FCNet .
comment: Accepted by IEEE TGRS 2025
Assessing the Feasibility of Internet-Sourced Video for Automatic Cattle Lameness Detection
Cattle lameness is often caused by hoof injuries or interdigital dermatitis, leads to pain and significantly impacts essential physiological activities such as walking, feeding, and drinking. This study presents a deep learning-based model for detecting cattle lameness, sickness, or gait abnormalities using publicly available video data. The dataset consists of 50 unique videos from 40 individual cattle, recorded from various angles in both indoor and outdoor environments. Half of the dataset represents naturally walking (normal/non-lame) cattle, while the other half consists of cattle exhibiting gait abnormalities (lame). To enhance model robustness and generalizability, data augmentation was applied to the training data. The pre-processed videos were then classified using two deep learning models: ConvLSTM2D and 3D CNN. A comparative analysis of the results demonstrates strong classification performance. Specifically, the 3D CNN model achieved a video-level classification accuracy of 90%, with precision, recall, and f1-score of 90.9%, 90.9%, and 90.91% respectively. The ConvLSTM2D model exhibited a slightly lower accuracy of 85%. This study highlights the effectiveness of directly applying classification models to learn spatiotemporal features from video data, offering an alternative to traditional multi-stage approaches that typically involve object detection, pose estimation, and feature extraction. Besides, the findings demonstrate that the proposed deep learning models, particularly the 3D CNN, effectively classify and detect lameness in cattle while simplifying the processing pipeline.
Physiological neural representation for personalised tracer kinetic parameter estimation from dynamic PET
Dynamic positron emission tomography (PET) with [$^{18}$F]FDG enables non-invasive quantification of glucose metabolism through kinetic analysis, often modelled by the two-tissue compartment model (TCKM). However, voxel-wise kinetic parameter estimation using conventional methods is computationally intensive and limited by spatial resolution. Deep neural networks (DNNs) offer an alternative but require large training datasets and significant computational resources. To address these limitations, we propose a physiological neural representation based on implicit neural representations (INRs) for personalized kinetic parameter estimation. INRs, which learn continuous functions, allow for efficient, high-resolution parametric imaging with reduced data requirements. Our method also integrates anatomical priors from a 3D CT foundation model to enhance robustness and precision in kinetic modelling. We evaluate our approach on an [$^{18}$F]FDG dynamic PET/CT dataset and compare it to state-of-the-art DNNs. Results demonstrate superior spatial resolution, lower mean-squared error, and improved anatomical consistency, particularly in tumour and highly vascularized regions. Our findings highlight the potential of INRs for personalized, data-efficient tracer kinetic modelling, enabling applications in tumour characterization, segmentation, and prognostic assessment.
comment: The code is available at: https://github.com/tkartikay/PhysNRPET
Anatomy-constrained modelling of image-derived input functions in dynamic PET using multi-organ segmentation
Accurate kinetic analysis of [$^{18}$F]FDG distribution in dynamic positron emission tomography (PET) requires anatomically constrained modelling of image-derived input functions (IDIFs). Traditionally, IDIFs are obtained from the aorta, neglecting anatomical variations and complex vascular contributions. This study proposes a multi-organ segmentation-based approach that integrates IDIFs from the aorta, portal vein, pulmonary artery, and ureters. Using high-resolution CT segmentations of the liver, lungs, kidneys, and bladder, we incorporate organ-specific blood supply sources to improve kinetic modelling. Our method was evaluated on dynamic [$^{18}$F]FDG PET data from nine patients, resulting in a mean squared error (MSE) reduction of $13.39\%$ for the liver and $10.42\%$ for the lungs. These initial results highlight the potential of multiple IDIFs in improving anatomical modelling and fully leveraging dynamic PET imaging. This approach could facilitate the integration of tracer kinetic modelling into clinical routine.
comment: The code is available under https://github.com/tinolan/curve_fit_multi_idif
Diffusion Probabilistic Models for Compressive SAR Imaging
Compressed sensing Synthetic Aperture Radar (SAR) image formation, formulated as an inverse problem and solved with traditional iterative optimization methods can be very computationally expensive. We investigate the use of denoising diffusion probabilistic models for compressive SAR image reconstruction, where the diffusion model is guided by a poor initial reconstruction from sub-sampled data obtained via standard imaging methods. We present results on real SAR data and compare our compressively sampled diffusion model reconstruction with standard image reconstruction methods utilizing the full data set, demonstrating the potential performance gains in imaging quality.
A Coding-Enhanced Jamming Approach for Secure Semantic Communication over Wiretap Channels
As semantic communication (SemCom) gains increasing attention as a novel communication paradigm, ensuring the security of transmitted semantic information over open wireless channels becomes crucial. Existing secure SemCom solutions often lack explicit control over security. To address this, we propose a coding-enhanced jamming approach for secure SemCom over wiretap channels. This approach integrates deep joint source and channel coding (DeepJSCC) with neural network-based digital modulation, enabling controlled jamming through two-layer superposition coding. The outer constellation sequence encodes the source image, while the inner constellation sequence, derived from a secret image, acts as the jamming signal. By minimizing the mutual information between the outer and inner constellation sequences, the jamming effect is enhanced. The jamming signal is superposed on the outer constellation sequence, preventing the eavesdropper from recovering the source image. The power allocation coefficient (PAC) in the superposition coding can be adjusted to control system security. Experiments show that our approach matches existing methods in security while significantly improving reconstruction performance across varying channel signal-to-noise ratios (SNRs) and compression ratios.
Iterative Collaboration Network Guided By Reconstruction Prior for Medical Image Super-Resolution
High-resolution medical images can provide more detailed information for better diagnosis. Conventional medical image super-resolution relies on a single task which first performs the extraction of the features and then upscaling based on the features. The features extracted may not be complete for super-resolution. Recent multi-task learning,including reconstruction and super-resolution, is a good solution to obtain additional relevant information. The interaction between the two tasks is often insufficient, which still leads to incomplete and less relevant deep features. To address above limitations, we propose an iterative collaboration network (ICONet) to improve communications between tasks by progressively incorporating reconstruction prior to the super-resolution learning procedure in an iterative collaboration way. It consists of a reconstruction branch, a super-resolution branch, and a SR-Rec fusion module. The reconstruction branch generates the artifact-free image as prior, which is followed by a super-resolution branch for prior knowledge-guided super-resolution. Unlike the widely-used convolutional neural networks for extracting local features and Transformers with quadratic computational complexity for modeling long-range dependencies, we develop a new residual spatial-channel feature learning (RSCFL) module of two branches to efficiently establish feature relationships in spatial and channel dimensions. Moreover, the designed SR-Rec fusion module fuses the reconstruction prior and super-resolution features with each other in an adaptive manner. Our ICONet is built with multi-stage models to iteratively upscale the low-resolution images using steps of 2x and simultaneously interact between two branches in multi-stage supervisions.
A Deep Bayesian Convolutional Spiking Neural Network-based CAD system with Uncertainty Quantification for Medical Images Classification
The Computer_Aided Diagnosis (CAD) systems facilitate accurate diagnosis of diseases. The development of CADs by leveraging third generation neural network, namely, Spiking Neural Network (SNN), is essential to utilize of the benefits of SNNs, such as their event_driven processing, parallelism, low power consumption, and the ability to process sparse temporal_spatial information. However, Deep SNN as a deep learning model faces challenges with unreliability. To deal with unreliability challenges due to inability to quantify the uncertainty of the predictions, we proposed a deep Bayesian Convolutional Spiking Neural Network based_CADs with uncertainty_aware module. In this study, the Monte Carlo Dropout method as Bayesian approximation is used as an uncertainty quantification method. This method was applied to several medical image classification tasks. Our experimental results demonstrate that our proposed model is accurate and reliable and will be a proper alternative to conventional deep learning for medical image classification.
Subject-driven Video Generation via Disentangled Identity and Motion
We propose to train a subject-driven customized video generation model through decoupling the subject-specific learning from temporal dynamics in zero-shot without additional tuning. A traditional method for video customization that is tuning-free often relies on large, annotated video datasets, which are computationally expensive and require extensive annotation. In contrast to the previous approach, we introduce the use of an image customization dataset directly on training video customization models, factorizing the video customization into two folds: (1) identity injection through image customization dataset and (2) temporal modeling preservation with a small set of unannotated videos through the image-to-video training method. Additionally, we employ random image token dropping with randomized image initialization during image-to-video fine-tuning to mitigate the copy-and-paste issue. To further enhance learning, we introduce stochastic switching during joint optimization of subject-specific and temporal features, mitigating catastrophic forgetting. Our method achieves strong subject consistency and scalability, outperforming existing video customization models in zero-shot settings, demonstrating the effectiveness of our framework.
comment: Project Page : https://carpedkm.github.io/projects/disentangled_sub/index.html
Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy
Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information. However, transmitting semantic-rich data over insecure channels introduces privacy risks. This paper proposes a novel SemCom framework that integrates differential privacy (DP) mechanisms to protect sensitive semantic features. This method employs the generative adversarial network (GAN) inversion technique to extract disentangled semantic features and uses neural networks (NNs) to approximate the DP application and removal processes, effectively mitigating the non-invertibility issue of DP. Additionally, an NN-based encryption scheme is introduced to strengthen the security of channel inputs. Simulation results demonstrate that the proposed approach effectively prevents eavesdroppers from reconstructing sensitive information by generating chaotic or fake images, while ensuring high-quality image reconstruction for legitimate users. The system exhibits robust performance across various privacy budgets and channel conditions, achieving an optimal balance between privacy protection and reconstruction fidelity.
Robust multi-coil MRI reconstruction via self-supervised denoising
We study the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: change affiliation of A. Pichiecchio. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: this https URL, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
Learned enclosure method for experimental EIT data
Electrical impedance tomography (EIT) is a non-invasive imaging method with diverse applications, including medical imaging and non-destructive testing. The inverse problem of reconstructing internal electrical conductivity from boundary measurements is nonlinear and highly ill-posed, making it difficult to solve accurately. In recent years, there has been growing interest in combining analytical methods with machine learning to solve inverse problems. In this paper, we propose a method for estimating the convex hull of inclusions from boundary measurements by combining the enclosure method proposed by Ikehata with neural networks. We demonstrate its performance using experimental data. Compared to the classical enclosure method with least squares fitting, the learned convex hull achieves superior performance on both simulated and experimental data.
A Novel Adaptive Hybrid Focal-Entropy Loss for Enhancing Diabetic Retinopathy Detection Using Convolutional Neural Networks
Diabetic retinopathy is a leading cause of blindness around the world and demands precise AI-based diagnostic tools. Traditional loss functions in multi-class classification, such as Categorical Cross-Entropy (CCE), are very common but break down with class imbalance, especially in cases with inherently challenging or overlapping classes, which leads to biased and less sensitive models. Since a heavy imbalance exists in the number of examples for higher severity stage 4 diabetic retinopathy, etc., classes compared to those very early stages like class 0, achieving class balance is key. For this purpose, we propose the Adaptive Hybrid Focal-Entropy Loss which combines the ideas of focal loss and entropy loss with adaptive weighting in order to focus on minority classes and highlight the challenging samples. The state-of-the art models applied for diabetic retinopathy detection with AHFE revealed good performance improvements, indicating the top performances of ResNet50 at 99.79%, DenseNet121 at 98.86%, Xception at 98.92%, MobileNetV2 at 97.84%, and InceptionV3 at 93.62% accuracy. This sheds light into how AHFE promotes enhancement in AI-driven diagnostics for complex and imbalanced medical datasets.
comment: 7 pages,7 figures
Resolving quantitative MRI model degeneracy in self-supervised machine learning
Quantitative MRI (qMRI) estimates tissue properties of interest from measured MRI signals. This process is conventionally achieved by model fitting, whose computational expense limits qMRI's clinical use, motivating recent development of machine learning-based methods. Self-supervised approaches are particularly popular as they avoid the pitfall of distributional shift that affects supervised methods. However, it is unknown how such methods behave if similar signals can result from multiple tissue properties, a common challenge known as model degeneracy. Understanding this is crucial for ascertaining the scope within which self-supervised approaches may be applied. To this end, this work makes two contributions. First, we demonstrate that model degeneracy compromises self-supervised approaches, motivating the development of mitigation strategies. Second, we propose a mitigation strategy based on applying appropriate constraining transforms on the output of the bottleneck layer of the autoencoder network typically employed in self-supervised approaches. We illustrate both contributions using the estimation of proton density fat fraction and $R_2^*$ from chemical shift-encoded MRI, an ideal exemplar due to its exhibition of degeneracy across the full parameter space. The results from both simulation and $\textit{in vivo}$ experiments demonstrate that the proposed strategy helps resolve model degeneracy.
comment: Accepted at IPMI 2025
A Deep Learning System for Rapid and Accurate Warning of Acute Aortic Syndrome on Non-contrast CT in China
The accurate and timely diagnosis of acute aortic syndromes (AAS) in patients presenting with acute chest pain remains a clinical challenge. Aortic CT angiography (CTA) is the imaging protocol of choice in patients with suspected AAS. However, due to economic and workflow constraints in China, the majority of suspected patients initially undergo non-contrast CT as the initial imaging testing, and CTA is reserved for those at higher risk. In this work, we present an artificial intelligence-based warning system, iAorta, using non-contrast CT for AAS identification in China, which demonstrates remarkably high accuracy and provides clinicians with interpretable warnings. iAorta was evaluated through a comprehensive step-wise study. In the multi-center retrospective study (n = 20,750), iAorta achieved a mean area under the receiver operating curve (AUC) of 0.958 (95% CI 0.950-0.967). In the large-scale real-world study (n = 137,525), iAorta demonstrated consistently high performance across various non-contrast CT protocols, achieving a sensitivity of 0.913-0.942 and a specificity of 0.991-0.993. In the prospective comparative study (n = 13,846), iAorta demonstrated the capability to significantly shorten the time to correct diagnostic pathway. For the prospective pilot deployment that we conducted, iAorta correctly identified 21 out of 22 patients with AAS among 15,584 consecutive patients presenting with acute chest pain and under non-contrast CT protocol in the emergency department (ED) and enabled the average diagnostic time of these 21 AAS positive patients to be 102.1 (75-133) mins. Last, the iAorta can help avoid delayed or missed diagnosis of AAS in settings where non-contrast CT remains the unavoidable the initial or only imaging test in resource-constrained regions and in patients who cannot or did not receive intravenous contrast.
Semantic Communication with Entropy-and-Channel-Adaptive Rate Control over Multi-User MIMO Fading Channels
Although significant improvements in transmission efficiency have been achieved, existing semantic communication (SemCom) methods typically use a fixed transmission rate for varying channel conditions and transmission contents, leading to performance degradation under harsh channel conditions. To address these challenges, we propose a novel SemCom method for wireless image transmission that integrates entropy-andchannel-adaptive rate control mechanism, specifically designed for multi-user multiple-input multiple-output (MU-MIMO) fading channels. Unlike existing methods, our system dynamically adjusts transmission rates by leveraging the entropy of feature maps, channel state information (CSI), and signal-to-noise ratio (SNR), ensuring optimal communication resource usage. It incorporates feature map pruning, channel attention, spatial attention, and multi-head self-attention (MHSA) to effectively prioritize critical semantic features while minimizing unnecessary transmission overhead. Experimental results demonstrate that the proposed system outperforms separated source and channel coding and deep joint source and channel coding (Deep JSCC), in terms of rate-distortion performance, flexibility, and robustness, particularly in challenging scenarios such as low SNR, imperfect CSI, and inter-user interference.
Deep Generative Model-Based Generation of Synthetic Individual-Specific Brain MRI Segmentations
To the best of our knowledge, all existing methods that can generate synthetic brain magnetic resonance imaging (MRI) scans for a specific individual require detailed structural or volumetric information about the individual's brain. However, such brain information is often scarce, expensive, and difficult to obtain. In this paper, we propose the first approach capable of generating synthetic brain MRI segmentations -- specifically, 3D white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) segmentations -- for individuals using their easily obtainable and often readily available demographic, interview, and cognitive test information. Our approach features a novel deep generative model, CSegSynth, which outperforms existing prominent generative models, including conditional variational autoencoder (C-VAE), conditional generative adversarial network (C-GAN), and conditional latent diffusion model (C-LDM). We demonstrate the high quality of our synthetic segmentations through extensive evaluations. Also, in assessing the effectiveness of the individual-specific generation, we achieve superior volume prediction, with mean absolute errors of only 36.44mL, 29.20mL, and 35.51mL between the ground-truth WM, GM, and CSF volumes of test individuals and those volumes predicted based on generated individual-specific segmentations, respectively.
Automated Discovery of Operable Dynamics from Videos
Dynamical systems form the foundation of scientific discovery, traditionally modeled with predefined state variables such as the angle and angular velocity, and differential equations such as the equation of motion for a single pendulum. We introduce a framework that automatically discovers a low-dimensional and operable representation of system dynamics, including a set of compact state variables that preserve the smoothness of the system dynamics and a differentiable vector field, directly from video without requiring prior domain-specific knowledge. The prominence and effectiveness of the proposed approach are demonstrated through both quantitative and qualitative analyses of a range of dynamical systems, including the identification of stable equilibria, the prediction of natural frequencies, and the detection of of chaotic and limit cycle behaviors. The results highlight the potential of our data-driven approach to advance automated scientific discovery.
Computation and Language
IberBench: LLM Evaluation on Iberian Languages
Large Language Models (LLMs) remain difficult to evaluate comprehensively, particularly for languages other than English, where high-quality data is often limited. Existing benchmarks and leaderboards are predominantly English-centric, with only a few addressing other languages. These benchmarks fall short in several key areas: they overlook the diversity of language varieties, prioritize fundamental Natural Language Processing (NLP) capabilities over tasks of industrial relevance, and are static. With these aspects in mind, we present IberBench, a comprehensive and extensible benchmark designed to assess LLM performance on both fundamental and industry-relevant NLP tasks, in languages spoken across the Iberian Peninsula and Ibero-America. IberBench integrates 101 datasets from evaluation campaigns and recent benchmarks, covering 22 task categories such as sentiment and emotion analysis, toxicity detection, and summarization. The benchmark addresses key limitations in current evaluation practices, such as the lack of linguistic diversity and static evaluation setups by enabling continual updates and community-driven model and dataset submissions moderated by a committee of experts. We evaluate 23 LLMs ranging from 100 million to 14 billion parameters and provide empirical insights into their strengths and limitations. Our findings indicate that (i) LLMs perform worse on industry-relevant tasks than in fundamental ones, (ii) performance is on average lower for Galician and Basque, (iii) some tasks show results close to random, and (iv) in other tasks LLMs perform above random but below shared task systems. IberBench offers open-source implementations for the entire evaluation pipeline, including dataset normalization and hosting, incremental evaluation of LLMs, and a publicly accessible leaderboard.
OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents
Optimization plays a vital role in scientific research and practical applications, but formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce \textbf{OptimAI}, a framework for solving \underline{Optim}ization problems described in natural language by leveraging LLM-powered \underline{AI} agents, achieving superior performance over current state-of-the-art methods. Our framework is built upon four key roles: (1) a \emph{formulator} that translates natural language problem descriptions into precise mathematical formulations; (2) a \emph{planner} that constructs a high-level solution strategy prior to execution; and (3) a \emph{coder} and a \emph{code critic} capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in $5.8\times$ and $3.1\times$ drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional $3.3\times$ productivity gain. Our design emphasizes multi-agent collaboration, allowing us to conveniently explore the synergistic effect of combining diverse models within a unified system. Our approach attains 88.1\% accuracy on the NLP4LP dataset and 71.2\% on the Optibench (non-linear w/o table) subset, reducing error rates by 58\% and 50\% respectively over prior best results.
Tracing Thought: Using Chain-of-Thought Reasoning to Identify the LLM Behind AI-Generated Text AAAI 2025
In recent years, the detection of AI-generated text has become a critical area of research due to concerns about academic integrity, misinformation, and ethical AI deployment. This paper presents COT Fine-tuned, a novel framework for detecting AI-generated text and identifying the specific language model. responsible for generating the text. We propose a dual-task approach, where Task A involves classifying text as AI-generated or human-written, and Task B identifies the specific LLM behind the text. The key innovation of our method lies in the use of Chain-of-Thought reasoning, which enables the model to generate explanations for its predictions, enhancing transparency and interpretability. Our experiments demonstrate that COT Fine-tuned achieves high accuracy in both tasks, with strong performance in LLM identification and human-AI classification. We also show that the CoT reasoning process contributes significantly to the models effectiveness and interpretability.
comment: De-Factify 4: 4th Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI 2025. Pennsylvania
AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset
This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license.
comment: Report of AIMO-2 winning submission
Do Large Language Models know who did what to whom?
Large Language Models (LLMs) are commonly criticized for not understanding language. However, many critiques focus on cognitive abilities that, in humans, are distinct from language processing. Here, we instead study a kind of understanding tightly linked to language: inferring who did what to whom (thematic roles) in a sentence. Does the central training objective of LLMs-word prediction-result in sentence representations that capture thematic roles? In two experiments, we characterized sentence representations in four LLMs. In contrast to human similarity judgments, in LLMs the overall representational similarity of sentence pairs reflected syntactic similarity but not whether their agent and patient assignments were identical vs. reversed. Furthermore, we found little evidence that thematic role information was available in any subset of hidden units. However, some attention heads robustly captured thematic roles, independently of syntax. Therefore, LLMs can extract thematic roles but, relative to humans, this information influences their representations more weakly.
Planning with Diffusion Models for Target-Oriented Dialogue Systems
Target-Oriented Dialogue (TOD) remains a significant challenge in the LLM era, where strategic dialogue planning is crucial for directing conversations toward specific targets. However, existing dialogue planning methods generate dialogue plans in a step-by-step sequential manner, and may suffer from compounding errors and myopic actions. To address these limitations, we introduce a novel dialogue planning framework, DiffTOD, which leverages diffusion models to enable non-sequential dialogue planning. DiffTOD formulates dialogue planning as a trajectory generation problem with conditional guidance, and leverages a diffusion language model to estimate the likelihood of the dialogue trajectory. To optimize the dialogue action strategies, DiffTOD introduces three tailored guidance mechanisms for different target types, offering flexible guidance towards diverse TOD targets at test time. Extensive experiments across three diverse TOD settings show that DiffTOD can effectively perform non-myopic lookahead exploration and optimize action strategies over a long horizon through non-sequential dialogue planning, and demonstrates strong flexibility across complex and diverse dialogue scenarios. Our code and data are accessible through https://anonymous.4open.science/r/DiffTOD.
Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification
Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.
Monte Carlo Planning with Large Language Model for Text-Based Game Agents
Text-based games provide valuable environments for language-based autonomous agents. However, planning-then-learning paradigms, such as those combining Monte Carlo Tree Search (MCTS) and reinforcement learning (RL), are notably time-consuming due to extensive iterations. Additionally, these algorithms perform uncertainty-driven exploration but lack language understanding and reasoning abilities. In this paper, we introduce the Monte Carlo planning with Dynamic Memory-guided Large language model (MC-DML) algorithm. MC-DML leverages the language understanding and reasoning capabilities of Large Language Models (LLMs) alongside the exploratory advantages of tree search algorithms. Specifically, we enhance LLMs with in-trial and cross-trial memory mechanisms, enabling them to learn from past experiences and dynamically adjust action evaluations during planning. We conduct experiments on a series of text-based games from the Jericho benchmark. Our results demonstrate that the MC-DML algorithm significantly enhances performance across various games at the initial planning phase, outperforming strong contemporary methods that require multiple iterations. This demonstrates the effectiveness of our algorithm, paving the way for more efficient language-grounded planning in complex environments.
GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning
Chain-of-Thought (CoT) is a robust approach for tackling LLM tasks that require intermediate reasoning steps prior to generating a final answer. In this paper, we present GreenMind-Medium-14B-R1, the Vietnamese reasoning model inspired by the finetuning strategy based on Group Relative Policy Optimization. We also leverage a high-quality Vietnamese synthesized reasoning dataset and design two reward functions to tackle the main limitations of this technique: (i) language mixing, where we explicitly detect the presence of biased language characters during the process of sampling tokens, and (ii) we leverage Sentence Transformer-based models to ensure that the generated reasoning content maintains factual correctness and does not distort the final output. Experimental results on the Vietnamese dataset from the VLSP 2023 Challenge demonstrate that our model outperforms prior works and enhances linguistic consistency in its responses. Furthermore, we extend our evaluation to SeaExam-a multilingual multiple-choice dataset, showing the effectiveness of our reasoning method compared to few-shot prompting techniques.
Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
LLM-assisted Graph-RAG Information Extraction from IFC Data
IFC data has become the general building information standard for collaborative work in the construction industry. However, IFC data can be very complicated because it allows for multiple ways to represent the same product information. In this research, we utilise the capabilities of LLMs to parse the IFC data with Graph Retrieval-Augmented Generation (Graph-RAG) technique to retrieve building object properties and their relations. We will show that, despite limitations due to the complex hierarchy of the IFC data, the Graph-RAG parsing enhances generative LLMs like GPT-4o with graph-based knowledge, enabling natural language query-response retrieval without the need for a complex pipeline.
comment: 2025 European Conference on Computing in Construction
Random Long-Context Access for Mamba via Hardware-aligned Hierarchical Sparse Attention
A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their linear computational and space complexity enables faster training and inference for long sequences. However, RNNs are fundamentally unable to randomly access historical context, and simply integrating attention mechanisms may undermine their efficiency advantages. To overcome this limitation, we propose \textbf{H}ierarchical \textbf{S}parse \textbf{A}ttention (HSA), a novel attention mechanism that enhances RNNs with long-range random access flexibility while preserving their merits in efficiency and length generalization. HSA divides inputs into chunks, selecting the top-$k$ chunks and hierarchically aggregates information. The core innovation lies in learning token-to-chunk relevance based on fine-grained token-level information inside each chunk. This approach enhances the precision of chunk selection across both in-domain and out-of-domain context lengths. To make HSA efficient, we further introduce a hardware-aligned kernel design. By combining HSA with Mamba, we introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64 million contexts despite pre-training on only 4K-length contexts, and significant improvements on various downstream tasks, with nearly constant memory footprint. These results show RAMba's huge potential in long-context modeling.
comment: preprint
Credible plan-driven RAG method for Multi-hop Question Answering
Multi-hop question answering (QA) presents a considerable challenge for Retrieval-Augmented Generation (RAG), requiring the structured decomposition of complex queries into logical reasoning paths and the generation of dependable intermediate results. However, deviations in reasoning paths or errors in intermediate results, which are common in current RAG methods, may propagate and accumulate throughout the reasoning process, diminishing the accuracy of the answer to complex queries. To address this challenge, we propose the Plan-then-Act-and-Review (PAR RAG) framework, which is organized into three key stages: planning, act, and review, and aims to offer an interpretable and incremental reasoning paradigm for accurate and reliable multi-hop question answering by mitigating error propagation.PAR RAG initially applies a top-down problem decomposition strategy, formulating a comprehensive plan that integrates multiple executable steps from a holistic viewpoint. This approach avoids the pitfalls of local optima common in traditional RAG methods, ensuring the accuracy of the entire reasoning path. Subsequently, PAR RAG incorporates a plan execution mechanism based on multi-granularity verification. By utilizing both coarse-grained similarity information and fine-grained relevant data, the framework thoroughly checks and adjusts intermediate results, ensuring process accuracy while effectively managing error propagation and amplification. Experimental results on multi-hop QA datasets demonstrate that the PAR RAG framework substantially outperforms existing state-of-the-art methods in key metrics, including EM and F1 scores.
comment: 18 pages, 3 figures
MOOSComp: Improving Lightweight Long-Context Compressor via Mitigating Over-Smoothing and Incorporating Outlier Scores
Recent advances in large language models have significantly improved their ability to process long-context input, but practical applications are challenged by increased inference time and resource consumption, particularly in resource-constrained environments. To address these challenges, we propose MOOSComp, a token-classification-based long-context compression method that enhances the performance of a BERT-based compressor by mitigating the over-smoothing problem and incorporating outlier scores. In the training phase, we add an inter-class cosine similarity loss term to penalize excessively similar token representations, thereby improving the token classification accuracy. During the compression phase, we introduce outlier scores to preserve rare but critical tokens that are prone to be discarded in task-agnostic compression. These scores are integrated with the classifier's output, making the compressor more generalizable to various tasks. Superior performance is achieved at various compression ratios on long-context understanding and reasoning benchmarks. Moreover, our method obtains a speedup of 3.3x at a 4x compression ratio on a resource-constrained mobile device.
Evaluation Framework for AI Systems in "the Wild"
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.
comment: 35 pages
How Effective are Generative Large Language Models in Performing Requirements Classification?
In recent years, transformer-based large language models (LLMs) have revolutionised natural language processing (NLP), with generative models opening new possibilities for tasks that require context-aware text generation. Requirements engineering (RE) has also seen a surge in the experimentation of LLMs for different tasks, including trace-link detection, regulatory compliance, and others. Requirements classification is a common task in RE. While non-generative LLMs like BERT have been successfully applied to this task, there has been limited exploration of generative LLMs. This gap raises an important question: how well can generative LLMs, which produce context-aware outputs, perform in requirements classification? In this study, we explore the effectiveness of three generative LLMs-Bloom, Gemma, and Llama-in performing both binary and multi-class requirements classification. We design an extensive experimental study involving over 400 experiments across three widely used datasets (PROMISE NFR, Functional-Quality, and SecReq). Our study concludes that while factors like prompt design and LLM architecture are universally important, others-such as dataset variations-have a more situational impact, depending on the complexity of the classification task. This insight can guide future model development and deployment strategies, focusing on optimising prompt structures and aligning model architectures with task-specific needs for improved performance.
HEMA : A Hippocampus-Inspired Extended Memory Architecture for Long-Context AI Conversations
Large language models (LLMs) struggle with maintaining coherence in extended conversations spanning hundreds of turns, despite performing well within their context windows. This paper introduces HEMA (Hippocampus-Inspired Extended Memory Architecture), a dual-memory system inspired by human cognitive processes. HEMA combines Compact Memory - a continuously updated one-sentence summary preserving global narrative coherence, and Vector Memory - an episodic store of chunk embeddings queried via cosine similarity. When integrated with a 6B-parameter transformer, HEMA maintains coherent dialogues beyond 300 turns while keeping prompt length under 3,500 tokens. Experimental results show substantial improvements: factual recall accuracy increases from 41% to 87%, and human-rated coherence improves from 2.7 to 4.3 on a 5-point scale. With 10K indexed chunks, Vector Memory achieves P@5 >= 0.80 and R@50 >= 0.74, doubling the area under the precision-recall curve compared to summarization-only approaches. Ablation studies reveal two key insights: semantic forgetting through age-weighted pruning reduces retrieval latency by 34% with minimal recall loss, and a two-level summary hierarchy prevents cascade errors in ultra-long conversations exceeding 1,000 turns. HEMA demonstrates that combining verbatim recall with semantic continuity provides a practical solution for privacy-aware conversational AI capable of month-long dialogues without model retraining.
IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
comment: 6 pages main-text, 2 pages appendix
A Post-trainer's Guide to Multilingual Training Data: Uncovering Cross-lingual Transfer Dynamics
In order for large language models to be useful across the globe, they are fine-tuned to follow instructions on multilingual data. Despite the ubiquity of such post-training, a clear understanding of the dynamics that enable cross-lingual transfer remains elusive. This study examines cross-lingual transfer (CLT) dynamics in realistic post-training settings. We study two model families of up to 35B parameters in size trained on carefully controlled mixtures of multilingual data on three generative tasks with varying levels of complexity (summarization, instruction following, and mathematical reasoning) in both single-task and multi-task instruction tuning settings. Overall, we find that the dynamics of cross-lingual transfer and multilingual performance cannot be explained by isolated variables, varying depending on the combination of post-training settings. Finally, we identify the conditions that lead to effective cross-lingual transfer in practice.
ParetoHqD: Fast Offline Multiobjective Alignment of Large Language Models using Pareto High-quality Data
Aligning large language models with multiple human expectations and values is crucial for ensuring that they adequately serve a variety of user needs. To this end, offline multiobjective alignment algorithms such as the Rewards-in-Context algorithm have shown strong performance and efficiency. However, inappropriate preference representations and training with imbalanced reward scores limit the performance of such algorithms. In this work, we introduce ParetoHqD that addresses the above issues by representing human preferences as preference directions in the objective space and regarding data near the Pareto front as ''high-quality'' data. For each preference, ParetoHqD follows a two-stage supervised fine-tuning process, where each stage uses an individual Pareto high-quality training set that best matches its preference direction. The experimental results have demonstrated the superiority of ParetoHqD over five baselines on two multiobjective alignment tasks.
comment: 19 pages, 6 figure, Multiobjective Alignment of LLMs
TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval
We address the challenge of retrieving previously fact-checked claims in monolingual and crosslingual settings - a critical task given the global prevalence of disinformation. Our approach follows a two-stage strategy: a reliable baseline retrieval system using a fine-tuned embedding model and an LLM-based reranker. Our key contribution is demonstrating how LLM-based translation can overcome the hurdles of multilingual information retrieval. Additionally, we focus on ensuring that the bulk of the pipeline can be replicated on a consumer GPU. Our final integrated system achieved a success@10 score of 0.938 and 0.81025 on the monolingual and crosslingual test sets, respectively.
Debunking with Dialogue? Exploring AI-Generated Counterspeech to Challenge Conspiracy Theories
Counterspeech is a key strategy against harmful online content, but scaling expert-driven efforts is challenging. Large Language Models (LLMs) present a potential solution, though their use in countering conspiracy theories is under-researched. Unlike for hate speech, no datasets exist that pair conspiracy theory comments with expert-crafted counterspeech. We address this gap by evaluating the ability of GPT-4o, Llama 3, and Mistral to effectively apply counterspeech strategies derived from psychological research provided through structured prompts. Our results show that the models often generate generic, repetitive, or superficial results. Additionally, they over-acknowledge fear and frequently hallucinate facts, sources, or figures, making their prompt-based use in practical applications problematic.
comment: 15 pages
Comparing Large Language Models and Traditional Machine Translation Tools for Translating Medical Consultation Summaries: A Pilot Study
This study evaluates how well large language models (LLMs) and traditional machine translation (MT) tools translate medical consultation summaries from English into Arabic, Chinese, and Vietnamese. It assesses both patient, friendly and clinician, focused texts using standard automated metrics. Results showed that traditional MT tools generally performed better, especially for complex texts, while LLMs showed promise, particularly in Vietnamese and Chinese, when translating simpler summaries. Arabic translations improved with complexity due to the language's morphology. Overall, while LLMs offer contextual flexibility, they remain inconsistent, and current evaluation metrics fail to capture clinical relevance. The study highlights the need for domain-specific training, improved evaluation methods, and human oversight in medical translation.
comment: 8 pages, 2 tables and 1 Figure
PIS: Linking Importance Sampling and Attention Mechanisms for Efficient Prompt Compression
Large language models (LLMs) have achieved remarkable progress, demonstrating unprecedented capabilities across various natural language processing tasks. However, the high costs associated with such exceptional performance limit the widespread adoption of LLMs, highlighting the need for prompt compression. Existing prompt compression methods primarily rely on heuristic truncation or abstractive summarization techniques, which fundamentally overlook the intrinsic mechanisms of LLMs and lack a systematic evaluation of token importance for generation. In this work, we introduce Prompt Importance Sampling (PIS), a novel compression framework that dynamically compresses prompts by sampling important tokens based on the analysis of attention scores of hidden states. PIS employs a dual-level compression mechanism: 1) at the token level, we quantify saliency using LLM-native attention scores and implement adaptive compression through a lightweight 9-layer reinforcement learning (RL) network; 2) at the semantic level, we propose a Russian roulette sampling strategy for sentence-level importance sampling. Comprehensive evaluations across multiple domain benchmarks demonstrate that our method achieves state-of-the-art compression performance. Notably, our framework serendipitously enhances reasoning efficiency through optimized context structuring. This work advances prompt engineering by offering both theoretical grounding and practical efficiency in context management for LLMs.
Transformers for Complex Query Answering over Knowledge Hypergraphs
Complex Query Answering (CQA) has been extensively studied in recent years. In order to model data that is closer to real-world distribution, knowledge graphs with different modalities have been introduced. Triple KGs, as the classic KGs composed of entities and relations of arity 2, have limited representation of real-world facts. Real-world data is more sophisticated. While hyper-relational graphs have been introduced, there are limitations in representing relationships of varying arity that contain entities with equal contributions. To address this gap, we sampled new CQA datasets: JF17k-HCQA and M-FB15k-HCQA. Each dataset contains various query types that include logical operations such as projection, negation, conjunction, and disjunction. In order to answer knowledge hypergraph (KHG) existential first-order queries, we propose a two-stage transformer model, the Logical Knowledge Hypergraph Transformer (LKHGT), which consists of a Projection Encoder for atomic projection and a Logical Encoder for complex logical operations. Both encoders are equipped with Type Aware Bias (TAB) for capturing token interactions. Experimental results on CQA datasets show that LKHGT is a state-of-the-art CQA method over KHG and is able to generalize to out-of-distribution query types.
QuaDMix: Quality-Diversity Balanced Data Selection for Efficient LLM Pretraining
Quality and diversity are two critical metrics for the training data of large language models (LLMs), positively impacting performance. Existing studies often optimize these metrics separately, typically by first applying quality filtering and then adjusting data proportions. However, these approaches overlook the inherent trade-off between quality and diversity, necessitating their joint consideration. Given a fixed training quota, it is essential to evaluate both the quality of each data point and its complementary effect on the overall dataset. In this paper, we introduce a unified data selection framework called QuaDMix, which automatically optimizes the data distribution for LLM pretraining while balancing both quality and diversity. Specifically, we first propose multiple criteria to measure data quality and employ domain classification to distinguish data points, thereby measuring overall diversity. QuaDMix then employs a unified parameterized data sampling function that determines the sampling probability of each data point based on these quality and diversity related labels. To accelerate the search for the optimal parameters involved in the QuaDMix framework, we conduct simulated experiments on smaller models and use LightGBM for parameters searching, inspired by the RegMix method. Our experiments across diverse models and datasets demonstrate that QuaDMix achieves an average performance improvement of 7.2% across multiple benchmarks. These results outperform the independent strategies for quality and diversity, highlighting the necessity and ability to balance data quality and diversity.
T-VEC: A Telecom-Specific Vectorization Model with Enhanced Semantic Understanding via Deep Triplet Loss Fine-Tuning
The specialized vocabulary and complex concepts of the telecommunications industry present significant challenges for standard Natural Language Processing models. Generic text embeddings often fail to capture telecom-specific semantics, hindering downstream task performance. We introduce T-VEC (Telecom Vectorization Model), a novel embedding model tailored for the telecom domain through deep fine-tuning. Developed by NetoAI, T-VEC is created by adapting the state-of-the-art gte-Qwen2-1.5B-instruct model using a triplet loss objective on a meticulously curated, large-scale dataset of telecom-specific data. Crucially, this process involved substantial modification of weights across 338 layers of the base model, ensuring deep integration of domain knowledge, far exceeding superficial adaptation techniques. We quantify this deep change via weight difference analysis. A key contribution is the development and open-sourcing (MIT License) of the first dedicated telecom-specific tokenizer, enhancing the handling of industry jargon. T-VEC achieves a leading average MTEB score (0.825) compared to established models and demonstrates vastly superior performance (0.9380 vs. less than 0.07) on our internal telecom-specific triplet evaluation benchmark, indicating an exceptional grasp of domain-specific nuances, visually confirmed by improved embedding separation. This work positions NetoAI at the forefront of telecom AI innovation, providing the community with a powerful, deeply adapted, open-source tool.
comment: Introduces T-VEC, a telecom-specific text embedding model. Fine-tuned gte-Qwen2-1.5B-instruct on curated telecom data points. Includes the first open-source telecom tokenizer. Model available at https://huggingface.co/NetoAISolutions/T-VEC
EMRModel: A Large Language Model for Extracting Medical Consultation Dialogues into Structured Medical Records
Medical consultation dialogues contain critical clinical information, yet their unstructured nature hinders effective utilization in diagnosis and treatment. Traditional methods, relying on rule-based or shallow machine learning techniques, struggle to capture deep and implicit semantics. Recently, large pre-trained language models and Low-Rank Adaptation (LoRA), a lightweight fine-tuning method, have shown promise for structured information extraction. We propose EMRModel, a novel approach that integrates LoRA-based fine-tuning with code-style prompt design, aiming to efficiently convert medical consultation dialogues into structured electronic medical records (EMRs). Additionally, we construct a high-quality, realistically grounded dataset of medical consultation dialogues with detailed annotations. Furthermore, we introduce a fine-grained evaluation benchmark for medical consultation information extraction and provide a systematic evaluation methodology, advancing the optimization of medical natural language processing (NLP) models. Experimental results show EMRModel achieves an F1 score of 88.1%, improving by49.5% over standard pre-trained models. Compared to traditional LoRA fine-tuning methods, our model shows superior performance, highlighting its effectiveness in structured medical record extraction tasks.
MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study
In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.
Out-of-the-Box Conditional Text Embeddings from Large Language Models
Conditional text embedding is a proposed representation that captures the shift in perspective on texts when conditioned on a specific aspect. Previous methods have relied on extensive training data for fine-tuning models, leading to challenges in terms of labor and resource costs. We propose PonTE, a novel unsupervised conditional text embedding method that leverages a causal large language model and a conditional prompt. Through experiments on conditional semantic text similarity and text clustering, we demonstrate that PonTE can generate useful conditional text embeddings and achieve performance comparable to supervised methods without fine-tuning. We also show the interpretability of text embeddings with PonTE by analyzing word generation following prompts and embedding visualization.
comment: work in progress
Less is More: Enhancing Structured Multi-Agent Reasoning via Quality-Guided Distillation
The XLLM@ACL2025 Shared Task-III formulates a low-resource structural reasoning task that challenges LLMs to generate interpretable, step-by-step rationales with minimal labeled data. We present Less is More, the third-place winning approach in the XLLM@ACL2025 Shared Task-III, which focuses on structured reasoning from only 24 labeled examples. Our approach leverages a multi-agent framework with reverse-prompt induction, retrieval-augmented reasoning synthesis via GPT-4o, and dual-stage reward-guided filtering to distill high-quality supervision across three subtasks: question parsing, CoT parsing, and step-level verification. All modules are fine-tuned from Meta-Llama-3-8B-Instruct under a unified LoRA+ setup. By combining structure validation with reward filtering across few-shot and zero-shot prompts, our pipeline consistently improves structure reasoning quality. These results underscore the value of controllable data distillation in enhancing structured inference under low-resource constraints. Our code is available at https://github.com/Jiahao-Yuan/Less-is-More.
ConTextual: Improving Clinical Text Summarization in LLMs with Context-preserving Token Filtering and Knowledge Graphs
Unstructured clinical data can serve as a unique and rich source of information that can meaningfully inform clinical practice. Extracting the most pertinent context from such data is critical for exploiting its true potential toward optimal and timely decision-making in patient care. While prior research has explored various methods for clinical text summarization, most prior studies either process all input tokens uniformly or rely on heuristic-based filters, which can overlook nuanced clinical cues and fail to prioritize information critical for decision-making. In this study, we propose Contextual, a novel framework that integrates a Context-Preserving Token Filtering method with a Domain-Specific Knowledge Graph (KG) for contextual augmentation. By preserving context-specific important tokens and enriching them with structured knowledge, ConTextual improves both linguistic coherence and clinical fidelity. Our extensive empirical evaluations on two public benchmark datasets demonstrate that ConTextual consistently outperforms other baselines. Our proposed approach highlights the complementary role of token-level filtering and structured retrieval in enhancing both linguistic and clinical integrity, as well as offering a scalable solution for improving precision in clinical text generation.
SplitReason: Learning To Offload Reasoning
Reasoning in large language models (LLMs) tends to produce substantially longer token generation sequences than simpler language modeling tasks. This extended generation length reflects the multi-step, compositional nature of reasoning and is often correlated with higher solution accuracy. From an efficiency perspective, longer token generation exacerbates the inherently sequential and memory-bound decoding phase of LLMs. However, not all parts of this expensive reasoning process are equally difficult to generate. We leverage this observation by offloading only the most challenging parts of the reasoning process to a larger, more capable model, while performing most of the generation with a smaller, more efficient model; furthermore, we teach the smaller model to identify these difficult segments and independently trigger offloading when needed. To enable this behavior, we annotate difficult segments across 18k reasoning traces from the OpenR1-Math-220k chain-of-thought (CoT) dataset. We then apply supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT) to a 1.5B-parameter reasoning model, training it to learn to offload the most challenging parts of its own reasoning process to a larger model. This approach improves AIME24 reasoning accuracy by 24% and 28.3% while offloading 1.35% and 5% of the generated tokens respectively. We open-source our SplitReason model, data, code and logs.
Text-to-TrajVis: Enabling Trajectory Data Visualizations from Natural Language Questions
This paper introduces the Text-to-TrajVis task, which aims to transform natural language questions into trajectory data visualizations, facilitating the development of natural language interfaces for trajectory visualization systems. As this is a novel task, there is currently no relevant dataset available in the community. To address this gap, we first devised a new visualization language called Trajectory Visualization Language (TVL) to facilitate querying trajectory data and generating visualizations. Building on this foundation, we further proposed a dataset construction method that integrates Large Language Models (LLMs) with human efforts to create high-quality data. Specifically, we first generate TVLs using a comprehensive and systematic process, and then label each TVL with corresponding natural language questions using LLMs. This process results in the creation of the first large-scale Text-to-TrajVis dataset, named TrajVL, which contains 18,140 (question, TVL) pairs. Based on this dataset, we systematically evaluated the performance of multiple LLMs (GPT, Qwen, Llama, etc.) on this task. The experimental results demonstrate that this task is both feasible and highly challenging and merits further exploration within the research community.
Transformer-Based Extraction of Statutory Definitions from the U.S. Code
Automatic extraction of definitions from legal texts is critical for enhancing the comprehension and clarity of complex legal corpora such as the United States Code (U.S.C.). We present an advanced NLP system leveraging transformer-based architectures to automatically extract defined terms, their definitions, and their scope from the U.S.C. We address the challenges of automatically identifying legal definitions, extracting defined terms, and determining their scope within this complex corpus of over 200,000 pages of federal statutory law. Building upon previous feature-based machine learning methods, our updated model employs domain-specific transformers (Legal-BERT) fine-tuned specifically for statutory texts, significantly improving extraction accuracy. Our work implements a multi-stage pipeline that combines document structure analysis with state-of-the-art language models to process legal text from the XML version of the U.S. Code. Each paragraph is first classified using a fine-tuned legal domain BERT model to determine if it contains a definition. Our system then aggregates related paragraphs into coherent definitional units and applies a combination of attention mechanisms and rule-based patterns to extract defined terms and their jurisdictional scope. The definition extraction system is evaluated on multiple titles of the U.S. Code containing thousands of definitions, demonstrating significant improvements over previous approaches. Our best model achieves 96.8% precision and 98.9% recall (98.2% F1-score), substantially outperforming traditional machine learning classifiers. This work contributes to improving accessibility and understanding of legal information while establishing a foundation for downstream legal reasoning tasks.
comment: 7 pages, to be published in IEEE AIIoT 2025
MIRAGE: A Metric-Intensive Benchmark for Retrieval-Augmented Generation Evaluation NAACL2025
Retrieval-Augmented Generation (RAG) has gained prominence as an effective method for enhancing the generative capabilities of Large Language Models (LLMs) through the incorporation of external knowledge. However, the evaluation of RAG systems remains a challenge, due to the intricate interplay between retrieval and generation components. This limitation has resulted in a scarcity of benchmarks that facilitate a detailed, component-specific assessment. In this work, we present MIRAGE, a Question Answering dataset specifically designed for RAG evaluation. MIRAGE consists of 7,560 curated instances mapped to a retrieval pool of 37,800 entries, enabling an efficient and precise evaluation of both retrieval and generation tasks. We also introduce novel evaluation metrics aimed at measuring RAG adaptability, encompassing dimensions such as noise vulnerability, context acceptability, context insensitivity, and context misinterpretation. Through comprehensive experiments across various retriever-LLM configurations, we provide new insights into the optimal alignment of model pairs and the nuanced dynamics within RAG systems. The dataset and evaluation code are publicly available, allowing for seamless integration and customization in diverse research settings\footnote{The MIRAGE code and data are available at https://github.com/nlpai-lab/MIRAGE.
comment: Accepted to NAACL2025 Findings
Steering the CensorShip: Uncovering Representation Vectors for LLM "Thought" Control
Large language models (LLMs) have transformed the way we access information. These models are often tuned to refuse to comply with requests that are considered harmful and to produce responses that better align with the preferences of those who control the models. To understand how this "censorship" works. We use representation engineering techniques to study open-weights safety-tuned models. We present a method for finding a refusal--compliance vector that detects and controls the level of censorship in model outputs. We also analyze recent reasoning LLMs, distilled from DeepSeek-R1, and uncover an additional dimension of censorship through "thought suppression". We show a similar approach can be used to find a vector that suppresses the model's reasoning process, allowing us to remove censorship by applying the negative multiples of this vector
The Rise of Small Language Models in Healthcare: A Comprehensive Survey
Despite substantial progress in healthcare applications driven by large language models (LLMs), growing concerns around data privacy, and limited resources; the small language models (SLMs) offer a scalable and clinically viable solution for efficient performance in resource-constrained environments for next-generation healthcare informatics. Our comprehensive survey presents a taxonomic framework to identify and categorize them for healthcare professionals and informaticians. The timeline of healthcare SLM contributions establishes a foundational framework for analyzing models across three dimensions: NLP tasks, stakeholder roles, and the continuum of care. We present a taxonomic framework to identify the architectural foundations for building models from scratch; adapting SLMs to clinical precision through prompting, instruction fine-tuning, and reasoning; and accessibility and sustainability through compression techniques. Our primary objective is to offer a comprehensive survey for healthcare professionals, introducing recent innovations in model optimization and equipping them with curated resources to support future research and development in the field. Aiming to showcase the groundbreaking advancements in SLMs for healthcare, we present a comprehensive compilation of experimental results across widely studied NLP tasks in healthcare to highlight the transformative potential of SLMs in healthcare. The updated repository is available at Github
comment: 35 pages, 7 tables, 5 figures
Co-CoT: A Prompt-Based Framework for Collaborative Chain-of-Thought Reasoning
Due to the proliferation of short-form content and the rapid adoption of AI, opportunities for deep, reflective thinking have significantly diminished, undermining users' critical thinking and reducing engagement with the reasoning behind AI-generated outputs. To address this issue, we propose an Interactive Chain-of-Thought (CoT) Framework that enhances human-centered explainability and responsible AI usage by making the model's inference process transparent, modular, and user-editable. The framework decomposes reasoning into clearly defined blocks that users can inspect, modify, and re-execute, encouraging active cognitive engagement rather than passive consumption. It further integrates a lightweight edit-adaptation mechanism inspired by preference learning, allowing the system to align with diverse cognitive styles and user intentions. Ethical transparency is ensured through explicit metadata disclosure, built-in bias checkpoint functionality, and privacy-preserving safeguards. This work outlines the design principles and architecture necessary to promote critical engagement, responsible interaction, and inclusive adaptation in AI systems aimed at addressing complex societal challenges.
comment: 5 page
How Individual Traits and Language Styles Shape Preferences In Open-ended User-LLM Interaction: A Preliminary Study
What makes an interaction with the LLM more preferable for the user? While it is intuitive to assume that information accuracy in the LLM's responses would be one of the influential variables, recent studies have found that inaccurate LLM's responses could still be preferable when they are perceived to be more authoritative, certain, well-articulated, or simply verbose. These variables interestingly fall under the broader category of language style, implying that the style in the LLM's responses might meaningfully influence users' preferences. This hypothesized dynamic could have double-edged consequences: enhancing the overall user experience while simultaneously increasing their susceptibility to risks such as LLM's misinformation or hallucinations. In this short paper, we present our preliminary studies in exploring this subject. Through a series of exploratory and experimental user studies, we found that LLM's language style does indeed influence user's preferences, but how and which language styles influence the preference varied across different user populations, and more interestingly, moderated by the user's very own individual traits. As a preliminary work, the findings in our studies should be interpreted with caution, particularly given the limitations in our samples, which still need wider demographic diversity and larger sample sizes. Our future directions will first aim to address these limitations, which would enable a more comprehensive joint effect analysis between the language style, individual traits, and preferences, and further investigate the potential causal relationship between and beyond these variables.
comment: Accepted at GenAICHI 2025 @ ACM CHI 2025
Agree to Disagree? A Meta-Evaluation of LLM Misgendering
Numerous methods have been proposed to measure LLM misgendering, including probability-based evaluations (e.g., automatically with templatic sentences) and generation-based evaluations (e.g., with automatic heuristics or human validation). However, it has gone unexamined whether these evaluation methods have convergent validity, that is, whether their results align. Therefore, we conduct a systematic meta-evaluation of these methods across three existing datasets for LLM misgendering. We propose a method to transform each dataset to enable parallel probability- and generation-based evaluation. Then, by automatically evaluating a suite of 6 models from 3 families, we find that these methods can disagree with each other at the instance, dataset, and model levels, conflicting on 20.2% of evaluation instances. Finally, with a human evaluation of 2400 LLM generations, we show that misgendering behaviour is complex and goes far beyond pronouns, which automatic evaluations are not currently designed to capture, suggesting essential disagreement with human evaluations. Based on our findings, we provide recommendations for future evaluations of LLM misgendering. Our results are also more widely relevant, as they call into question broader methodological conventions in LLM evaluation, which often assume that different evaluation methods agree.
comment: Work in progress
Do Words Reflect Beliefs? Evaluating Belief Depth in Large Language Models
Large Language Models (LLMs) are increasingly shaping political discourse, yet their responses often display inconsistency when subjected to scrutiny. While prior research has primarily categorized LLM outputs as left- or right-leaning to assess their political stances, a critical question remains: Do these responses reflect genuine internal beliefs or merely surface-level alignment with training data? To address this, we propose a novel framework for evaluating belief depth by analyzing (1) argumentative consistency and (2) uncertainty quantification. We evaluate 12 LLMs on 19 economic policies from the Political Compass Test, challenging their belief stability with both supportive and opposing arguments. Our analysis reveals that LLMs exhibit topic-specific belief stability rather than a uniform ideological stance. Notably, up to 95% of left-leaning models' responses and 89% of right-leaning models' responses remain consistent under the challenge, enabling semantic entropy to achieve high accuracy (AUROC=0.78), effectively distinguishing between surface-level alignment from genuine belief. These findings call into question the assumption that LLMs maintain stable, human-like political ideologies, emphasizing the importance of conducting topic-specific reliability assessments for real-world applications.
comment: 20 pages, 9 figures
SCALAR: A Part-of-speech Tagger for Identifiers
The paper presents the Source Code Analysis and Lexical Annotation Runtime (SCALAR), a tool specialized for mapping (annotating) source code identifier names to their corresponding part-of-speech tag sequence (grammar pattern). SCALAR's internal model is trained using scikit-learn's GradientBoostingClassifier in conjunction with a manually-curated oracle of identifier names and their grammar patterns. This specializes the tagger to recognize the unique structure of the natural language used by developers to create all types of identifiers (e.g., function names, variable names etc.). SCALAR's output is compared with a previous version of the tagger, as well as a modern off-the-shelf part-of-speech tagger to show how it improves upon other taggers' output for annotating identifiers. The code is available on Github
Optimizing LLMs for Italian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation
The number of pretrained Large Language Models (LLMs) is increasing steadily, though the majority are designed predominantly for the English language. While state-of-the-art LLMs can handle other languages, due to language contamination or some degree of multilingual pretraining data, they are not optimized for non-English languages, leading to inefficient encoding (high token "fertility") and slower inference speed. In this work, we thoroughly compare a variety of vocabulary adaptation techniques for optimizing English LLMs for the Italian language, and put forward Semantic Alignment Vocabulary Adaptation (SAVA), a novel method that leverages neural mapping for vocabulary substitution. SAVA achieves competitive performance across multiple downstream tasks, enhancing grounded alignment strategies. We adapt two LLMs: Mistral-7b-v0.1, reducing token fertility by 25\%, and Llama-3.1-8B, optimizing the vocabulary and reducing the number of parameters by 1 billion. We show that, following the adaptation of the vocabulary, these models can recover their performance with a relatively limited stage of continual training on the target language. Finally, we test the capabilities of the adapted models on various multi-choice and generative tasks.
(Im)possibility of Automated Hallucination Detection in Large Language Models
Is automated hallucination detection possible? In this work, we introduce a theoretical framework to analyze the feasibility of automatically detecting hallucinations produced by large language models (LLMs). Inspired by the classical Gold-Angluin framework for language identification and its recent adaptation to language generation by Kleinberg and Mullainathan, we investigate whether an algorithm, trained on examples drawn from an unknown target language $K$ (selected from a countable collection) and given access to an LLM, can reliably determine whether the LLM's outputs are correct or constitute hallucinations. First, we establish an equivalence between hallucination detection and the classical task of language identification. We prove that any hallucination detection method can be converted into a language identification method, and conversely, algorithms solving language identification can be adapted for hallucination detection. Given the inherent difficulty of language identification, this implies that hallucination detection is fundamentally impossible for most language collections if the detector is trained using only correct examples from the target language. Second, we show that the use of expert-labeled feedback, i.e., training the detector with both positive examples (correct statements) and negative examples (explicitly labeled incorrect statements), dramatically changes this conclusion. Under this enriched training regime, automated hallucination detection becomes possible for all countable language collections. These results highlight the essential role of expert-labeled examples in training hallucination detectors and provide theoretical support for feedback-based methods, such as reinforcement learning with human feedback (RLHF), which have proven critical for reliable LLM deployment.
Tokenization Matters: Improving Zero-Shot NER for Indic Languages
Tokenization is a critical component of Natural Language Processing (NLP), especially for low resource languages, where subword segmentation influences vocabulary structure and downstream task accuracy. Although Byte Pair Encoding (BPE) is a standard tokenization method in multilingual language models, its suitability for Named Entity Recognition (NER) in low resource Indic languages remains underexplored due to its limitations in handling morphological complexity. In this work, we systematically compare BPE, SentencePiece, and Character Level tokenization strategies using IndicBERT for NER tasks in low resource Indic languages like Assamese, Bengali, Marathi, and Odia, as well as extremely low resource Indic languages like Santali, Manipuri, and Sindhi. We assess both intrinsic linguistic properties tokenization efficiency, out of vocabulary (OOV) rates, and morphological preservation as well as extrinsic downstream performance, including fine tuning and zero shot cross lingual transfer. Our experiments show that SentencePiece is a consistently better performing approach than BPE for NER in low resource Indic Languages, particularly in zero shot cross lingual settings, as it better preserves entity consistency. While BPE provides the most compact tokenization form, it is not capable of generalization because it misclassifies or even fails to recognize entity labels when tested on unseen languages. In contrast, SentencePiece constitutes a better linguistic structural preservation model, benefiting extremely low resource and morphologically rich Indic languages, such as Santali and Manipuri, for superior entity recognition, as well as high generalization across scripts, such as Sindhi, written in Arabic. The results point to SentencePiece as the more effective tokenization strategy for NER within multilingual and low resource Indic NLP applications.
CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking.
comment: Project Website: https://github.com/Eclipsess/Awesome-Efficient-Reasoning-LLMs
Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
Clinical QA 2.0: Multi-Task Learning for Answer Extraction and Categorization
Clinical Question Answering (CQA) plays a crucial role in medical decision-making, enabling physicians to extract relevant information from Electronic Medical Records (EMRs). While transformer-based models such as BERT, BioBERT, and ClinicalBERT have demonstrated state-of-the-art performance in CQA, existing models lack the ability to categorize extracted answers, which is critical for structured retrieval, content filtering, and medical decision support. To address this limitation, we introduce a Multi-Task Learning (MTL) framework that jointly trains CQA models for both answer extraction and medical categorization. In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports. This categorization enables more structured and interpretable outputs, making clinical QA models more useful in real-world healthcare settings. We evaluate our approach on emrQA, a large-scale dataset for medical question answering. Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization. These findings suggest that MTL not only enhances CQA performance but also introduces an effective mechanism for categorization and structured medical information retrieval.
TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
Comparative Performance Evaluation of Large Language Models for Extracting Molecular Interactions and Pathway Knowledge
Background: Identification of the interactions and regulatory relations between biomolecules play pivotal roles in understanding complex biological systems and the mechanisms underlying diverse biological functions. However, the collection of such molecular interactions has heavily relied on expert curation in the past, making it labor-intensive and time-consuming. To mitigate these challenges, we propose leveraging the capabilities of large language models (LLMs) to automate genome-scale extraction of this crucial knowledge. Results: In this study, we investigate the efficacy of various LLMs in addressing biological tasks, such as the recognition of protein interactions, identification of genes linked to pathways affected by low-dose radiation, and the delineation of gene regulatory relationships. Overall, the larger models exhibited superior performance, indicating their potential for specific tasks that involve the extraction of complex interactions among genes and proteins. Although these models possessed detailed information for distinct gene and protein groups, they faced challenges in identifying groups with diverse functions and in recognizing highly correlated gene regulatory relationships. Conclusions: By conducting a comprehensive assessment of the state-of-the-art models using well-established molecular interaction and pathway databases, our study reveals that LLMs can identify genes/proteins associated with pathways of interest and predict their interactions to a certain extent. Furthermore, these models can provide important insights, marking a noteworthy stride toward advancing our understanding of biological systems through AI-assisted knowledge discovery.
Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy
Large Language Models (LLMs) have been shown to encode clinical knowledge. Many evaluations, however, rely on structured question-answer benchmarks, overlooking critical challenges of interpreting and reasoning about unstructured clinical narratives in real-world settings. Using free-text clinical descriptions, we present SemioLLM, an evaluation framework that benchmarks 6 state-of-the-art models (GPT-3.5, GPT-4, Mixtral-8x7B, Qwen-72B, LlaMa2, LlaMa3) on a core diagnostic task in epilepsy. Leveraging a database of 1,269 seizure descriptions, we show that most LLMs are able to accurately and confidently generate probabilistic predictions of seizure onset zones in the brain. Most models approach clinician-level performance after prompt engineering, with expert-guided chain-of-thought reasoning leading to the most consistent improvements. Performance was further strongly modulated by clinical in-context impersonation, narrative length and language context (13.7%, 32.7% and 14.2% performance variation, respectively). However, expert analysis of reasoning outputs revealed that correct prediction can be based on hallucinated knowledge and deficient source citation accuracy, underscoring the need to improve interpretability of LLMs in clinical use. Overall, SemioLLM provides a scalable, domain-adaptable framework for evaluating LLMs in clinical disciplines where unstructured verbal descriptions encode diagnostic information. By identifying both the strengths and limitations of state-of-the-art models, our work supports the development of clinically robust and globally applicable AI systems for healthcare.
Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
Synthetic Lyrics Detection Across Languages and Genres NAACL
In recent years, the use of large language models (LLMs) to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the text modality, lyrics, in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We performed a thorough evaluation of existing synthetic text detection approaches on lyrics, a previously unexplored data type. We also investigated methods to adapt the best-performing features to lyrics through unsupervised domain adaptation. Following both music and industrial constraints, we examined how well these approaches generalize across languages, scale with data availability, handle multilingual language content, and perform on novel genres in few-shot settings. Our findings show promising results that could inform policy decisions around AI-generated music and enhance transparency for users.
comment: Published in the workshop TrustNLP @ NAACL
NovelQA: Benchmarking Question Answering on Documents Exceeding 200K Tokens ICLR-2025
Recent advancements in Large Language Models (LLMs) have pushed the boundaries of natural language processing, especially in long-context understanding. However, the evaluation of these models' long-context abilities remains a challenge due to the limitations of current benchmarks. To address this gap, we introduce NovelQA, a benchmark tailored for evaluating LLMs with complex, extended narratives. Constructed from English novels, NovelQA offers a unique blend of complexity, length, and narrative coherence, making it an ideal tool for assessing deep textual understanding in LLMs. This paper details the design and construction of NovelQA, focusing on its comprehensive manual annotation process and the variety of question types aimed at evaluating nuanced comprehension. Our evaluation of long-context LLMs on NovelQA reveals significant insights into their strengths and weaknesses. Notably, the models struggle with multi-hop reasoning, detail-oriented questions, and handling extremely long inputs, with average lengths exceeding 200,000 tokens. Results highlight the need for substantial advancements in LLMs to enhance their long-context comprehension and contribute effectively to computational literary analysis.
comment: Accepted by ICLR-2025
Lawma: The Power of Specialization for Legal Annotation ICLR 2025
Annotation and classification of legal text are central components of empirical legal research. Traditionally, these tasks are often delegated to trained research assistants. Motivated by the advances in language modeling, empirical legal scholars are increasingly turning to prompting commercial models, hoping that it will alleviate the significant cost of human annotation. Despite growing use, our understanding of how to best utilize large language models for legal annotation remains limited. To bridge this gap, we introduce CaselawQA, a benchmark comprising 260 legal annotation tasks, nearly all new to the machine learning community. We demonstrate that commercial models, such as GPT-4.5 and Claude 3.7 Sonnet, achieve non-trivial yet highly variable accuracy, generally falling short of the performance required for legal work. We then demonstrate that small, lightly fine-tuned models outperform commercial models. A few hundred to a thousand labeled examples are usually enough to achieve higher accuracy. Our work points to a viable alternative to the predominant practice of prompting commercial models. For concrete legal annotation tasks with some available labeled data, researchers are likely better off using a fine-tuned open-source model.
comment: ICLR 2025
Modelling Multimodal Integration in Human Concept Processing with Vision-Language Models
Text representations from language models have proven remarkably predictive of human neural activity involved in language processing, with the recent transformer-based models outperforming previous architectures in downstream tasks and prediction of brain responses. However, the word representations learnt by language-only models may be limited in that they lack sensory information from other modalities, which several cognitive and neuroscience studies showed to be reflected in human meaning representations. Here, we leverage current pre-trained vision-language models (VLMs) to investigate whether the integration of visuo-linguistic information they operate leads to representations that are more aligned with human brain activity than those obtained by models trained with language-only input. We focus on fMRI responses recorded while participants read concept words in the context of either a full sentence or a picture. Our results reveal that VLM representations correlate more strongly than those by language-only models with activations in brain areas functionally related to language processing. Additionally, we find that transformer-based vision-language encoders -- e.g., LXMERT and VisualBERT -- yield more brain-aligned representations than generative VLMs, whose autoregressive abilities do not seem to provide an advantage when modelling single words. Finally, our ablation analyses suggest that the high brain alignment achieved by some of the VLMs we evaluate results from semantic information acquired specifically during multimodal pretraining as opposed to being already encoded in their unimodal modules. Altogether, our findings indicate an advantage of multimodal models in predicting human brain activations, which reveals that modelling language and vision integration has the potential to capture the multimodal nature of human concept representations.
The advantages of context specific language models: the case of the Erasmian Language Model
The current trend to improve language model performance seems to be based on scaling up with the number of parameters (e.g. the state of the art GPT4 model has approximately 1.7 trillion parameters) or the amount of training data fed into the model. However this comes at significant costs in terms of computational resources and energy costs that compromise the sustainability of AI solutions, as well as risk relating to privacy and misuse. In this paper we present the Erasmian Language Model (ELM) a small context specific, 900 million parameter model, pre-trained and fine-tuned by and for Erasmus University Rotterdam. We show how the model performs adequately in a classroom context for essay writing, and how it achieves superior performance in subjects that are part of its context. This has implications for a wide range of institutions and organizations, showing that context specific language models may be a viable alternative for resource constrained, privacy sensitive use cases.
comment: 12 pages, 3 figures, 1 table
Dynamic hashtag recommendation in social media with trend shift detection and adaptation
Hashtag recommendation systems have emerged as a key tool for automatically suggesting relevant hashtags and enhancing content categorization and search. However, existing static models struggle to adapt to the highly dynamic nature of social media conversations, where new hashtags constantly emerge and existing ones undergo semantic shifts. To address these challenges, this paper introduces H-ADAPTS (Hashtag recommendAtion by Detecting and adAPting to Trend Shifts), a dynamic hashtag recommendation methodology that employs a trend-aware mechanism to detect shifts in hashtag usage-reflecting evolving trends and topics within social media conversations-and triggers efficient model adaptation based on a (small) set of recent posts. Additionally, the Apache Storm framework is leveraged to support scalable and fault-tolerant analysis of high-velocity social data, enabling the timely detection of trend shifts. Experimental results from two real-world case studies, including the COVID-19 pandemic and the 2020 US presidential election, demonstrate the effectiveness of H-ADAPTS in providing timely and relevant hashtag recommendations by adapting to emerging trends, significantly outperforming existing solutions.
lamss: when large language models meet self-skepticism
Hallucination is a major challenge for large language models (LLMs), prevent ing their further application in some fields. The skeptical thinking of humankind could be useful for LLMs to self-cognition, self-reflection and alleviate their hal lucinations. Inspired by this consideration, we propose a novel approach called LaMsS, which combines the semantic understanding capability of LLMs with self-skepticism. By introducing a series of skepticism tokens and augmenting them into the vocabulary, we conduct both pertaining and finetuning, which allow the LLM to decode each normal token followed by a skeptical token, represent ing different skepticism levels. By calculating the response skepticism given a query, one can define a new self-aware LLM which is only willing to answer with relative lower skepticism level than the threshold. By examining the accu racy, AUC and AP of willingly answering questions, we demonstrate that LaMsS achieves better performance than baselines on both multi-choice questions and open-domain question-answering benchmarks, and can generalize to multi-task and out-of-domain settings. Our study sheds some lights on the self-skepticism modeling on further artificial intelligence. Project code and model checkpoints can be found in https://anonymous.4open.science/r/SM-1E76.
comment: 11 pages, 6 figures
Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Recent advances in reasoning models have demonstrated significant improvements in accuracy, particularly for complex tasks such as mathematical reasoning, by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning branches exist, we decode multiple tokens per step using a specialized attention mask, processing them within a single sequence, avoiding additional memory usage. Experimental results show that our method achieves over 100% speedup in decoding time while maintaining the answer quality.
comment: Our code is available in https://github.com/yuyijiong/parallel-decoding-in-one-sequence
TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) endeavors to understand human sentiment by leveraging language, visual, and acoustic modalities. Despite the remarkable performance exhibited by previous MSA approaches, the presence of inherent multimodal heterogeneities poses a challenge, with the contribution of different modalities varying considerably. Past research predominantly focused on improving representation learning techniques and feature fusion strategies. However, many of these efforts overlooked the variation in semantic richness among different modalities, treating each modality uniformly. This approach may lead to underestimating the significance of strong modalities while overemphasizing the importance of weak ones. Motivated by these insights, we introduce a Text-oriented Cross-Attention Network (TCAN), emphasizing the predominant role of the text modality in MSA. Specifically, for each multimodal sample, by taking unaligned sequences of the three modalities as inputs, we initially allocate the extracted unimodal features into a visual-text and an acoustic-text pair. Subsequently, we implement self-attention on the text modality and apply text-queried cross-attention to the visual and acoustic modalities. To mitigate the influence of noise signals and redundant features, we incorporate a gated control mechanism into the framework. Additionally, we introduce unimodal joint learning to gain a deeper understanding of homogeneous emotional tendencies across diverse modalities through backpropagation. Experimental results demonstrate that TCAN consistently outperforms state-of-the-art MSA methods on two datasets (CMU-MOSI and CMU-MOSEI).
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks? ICLR 2025
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
comment: Accepted at ICLR 2025
Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables
EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test
The sequential nature of modern LLMs makes them expensive and slow, and speculative sampling has proven to be an effective solution to this problem. Methods like EAGLE perform autoregression at the feature level, reusing top-layer features from the target model to achieve better results than vanilla speculative sampling. A growing trend in the LLM community is scaling up training data to improve model intelligence without increasing inference costs. However, we observe that scaling up data provides limited improvements for EAGLE. We identify that this limitation arises from EAGLE's feature prediction constraints. In this paper, we introduce EAGLE-3, which abandons feature prediction in favor of direct token prediction and replaces reliance on top-layer features with multi-layer feature fusion via a technique named training-time test. These improvements significantly enhance performance and enable the draft model to fully benefit from scaling up training data. Our experiments include both chat models and reasoning models, evaluated on five tasks. The results show that EAGLE-3 achieves a speedup ratio up to 6.5x, with about 1.4x improvement over EAGLE-2. In the SGLang framework, EAGLE-3 achieves a 1.38x throughput improvement at a batch size of 64. The code is available at https://github.com/SafeAILab/EAGLE.
ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation
Recently, large language models (LLMs) have demonstrated excellent performance, inspiring researchers to explore their use in automating register transfer level (RTL) code generation and improving hardware design efficiency. However, the existing approaches to fine-tune LLMs for RTL generation typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data, which are costly to acquire. To mitigate these issues, we innovatively introduce an iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in current loop. Furthermore, we introduce a plug-and-play data filtering strategy, thereby encouraging the model to generate high-quality, self-contained code. Our model outperforms GPT4 and state-of-the-art (SOTA) open-source models, achieving remarkable 53.8% pass@1 rate on VerilogEval-human benchmark. Under similar conditions of data quantity and quality, our approach significantly outperforms the baseline. Extensive experiments validate the effectiveness of the proposed method.
MedMax: Mixed-Modal Instruction Tuning for Training Biomedical Assistants
Recent advancements in mixed-modal generative have opened new avenues for developing unified biomedical assistants capable of analyzing biomedical images, answering complex questions about them, and generating multimodal patient reports. However, existing datasets face challenges such as small sizes, limited coverage of biomedical tasks and domains, and a reliance on narrow sources. To address these gaps, we present MedMax, a large-scale multimodal biomedical instruction-tuning dataset for mixed-modal foundation models. With 1.47 million instances, MedMax encompasses a diverse range of tasks, including interleaved image-text generation, biomedical image captioning and generation, visual chat, and report understanding. These tasks span knowledge across diverse biomedical domains, including radiology and histopathology, grounded in medical papers and YouTube videos. Subsequently, we fine-tune a mixed-modal foundation model on the MedMax dataset, achieving significant performance improvements: a 26% gain over the Chameleon model and an 18.3% improvement over GPT-4o across 12 downstream biomedical visual question-answering tasks. Finally, we introduce a unified evaluation suite for biomedical tasks to guide the development of mixed-modal biomedical AI assistants. The data, model, and code is available at https://mint-medmax.github.io/.
comment: 29 pages
ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems NAACL
Retrieval-Augmented Generation (RAG) systems using large language models (LLMs) often generate inaccurate responses due to the retrieval of irrelevant or loosely related information. Existing methods, which operate at the document level, fail to effectively filter out such content. We propose LLM-driven chunk filtering, ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level. Our approach employs semantic chunking to divide documents into coherent sections and utilizes LLM-based relevance scoring to assess each chunk's alignment with the user's query. By filtering out less pertinent chunks before the generation phase, we significantly reduce hallucinations and improve factual accuracy. Experiments show that our method outperforms existing RAG models, achieving higher accuracy on tasks requiring precise information retrieval. This advancement enhances the reliability of RAG systems, making them particularly beneficial for applications like fact-checking and multi-hop reasoning.
comment: Accepted at Conference of the North American Chapter of the Association for Computational Linguistics, Student Research Workshop 2025 (NAACL SRW 2025)
SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users
Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.
comment: work in progress
Automated Trustworthiness Oracle Generation for Machine Learning Text Classifiers
Machine learning (ML) for text classification has been widely used in various domains. These applications can significantly impact ethics, economics, and human behavior, raising serious concerns about trusting ML decisions. Studies indicate that conventional metrics are insufficient to build human trust in ML models. These models often learn spurious correlations and predict based on them. In the real world, their performance can deteriorate significantly. To avoid this, a common practice is to test whether predictions are reasonable based on valid patterns in the data. Along with this, a challenge known as the trustworthiness oracle problem has been introduced. Due to the lack of automated trustworthiness oracles, the assessment requires manual validation of the decision process disclosed by explanation methods. However, this is time-consuming, error-prone, and unscalable. We propose TOKI, the first automated trustworthiness oracle generation method for text classifiers. TOKI automatically checks whether the words contributing the most to a prediction are semantically related to the predicted class. Specifically, we leverage ML explanations to extract the decision-contributing words and measure their semantic relatedness with the class based on word embeddings. We also introduce a novel adversarial attack method that targets trustworthiness vulnerabilities identified by TOKI. To evaluate their alignment with human judgement, experiments are conducted. We compare TOKI with a naive baseline based solely on model confidence and TOKI-guided adversarial attack method with A2T, a SOTA adversarial attack method. Results show that relying on prediction uncertainty cannot effectively distinguish between trustworthy and untrustworthy predictions, TOKI achieves 142% higher accuracy than the naive baseline, and TOKI-guided attack method is more effective with fewer perturbations than A2T.
comment: 24 pages, 5 tables, 9 figures, Camera-ready version accepted to FSE 2025
Large Language Model Sentinel: LLM Agent for Adversarial Purification
Over the past two years, the use of large language models (LLMs) has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named Large LAnguage MOdel Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.
Evaluating Text Style Transfer Evaluation: Are There Any Reliable Metrics? NAACL
Text style transfer (TST) is the task of transforming a text to reflect a particular style while preserving its original content. Evaluating TST outputs is a multidimensional challenge, requiring the assessment of style transfer accuracy, content preservation, and naturalness. Using human evaluation is ideal but costly, as is common in other natural language processing (NLP) tasks, however, automatic metrics for TST have not received as much attention as metrics for, e.g., machine translation or summarization. In this paper, we examine both set of existing and novel metrics from broader NLP tasks for TST evaluation, focusing on two popular subtasks, sentiment transfer and detoxification, in a multilingual context comprising English, Hindi, and Bengali. By conducting meta-evaluation through correlation with human judgments, we demonstrate the effectiveness of these metrics when used individually and in ensembles. Additionally, we investigate the potential of large language models (LLMs) as tools for TST evaluation. Our findings highlight newly applied advanced NLP metrics and LLM-based evaluations provide better insights than existing TST metrics. Our oracle ensemble approaches show even more potential.
comment: Accepted at NAACL SRW 2025
Sustainability via LLM Right-sizing
Large language models (LLMs) have become increasingly embedded in organizational workflows. This has raised concerns over their energy consumption, financial costs, and data sovereignty. While performance benchmarks often celebrate cutting-edge models, real-world deployment decisions require a broader perspective: when is a smaller, locally deployable model "good enough"? This study offers an empirical answer by evaluating eleven proprietary and open-weight LLMs across ten everyday occupational tasks, including summarizing texts, generating schedules, and drafting emails and proposals. Using a dual-LLM-based evaluation framework, we automated task execution and standardized evaluation across ten criteria related to output quality, factual accuracy, and ethical responsibility. Results show that GPT-4o delivers consistently superior performance but at a significantly higher cost and environmental footprint. Notably, smaller models like Gemma-3 and Phi-4 achieved strong and reliable results on most tasks, suggesting their viability in contexts requiring cost-efficiency, local deployment, or privacy. A cluster analysis revealed three model groups -- premium all-rounders, competent generalists, and limited but safe performers -- highlighting trade-offs between quality, control, and sustainability. Significantly, task type influenced model effectiveness: conceptual tasks challenged most models, while aggregation and transformation tasks yielded better performances. We argue for a shift from performance-maximizing benchmarks to task- and context-aware sufficiency assessments that better reflect organizational priorities. Our approach contributes a scalable method to evaluate AI models through a sustainability lens and offers actionable guidance for responsible LLM deployment in practice.
comment: 17 pages, 2 Figures, 6 Tables
Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a method to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that larger models with higher baseline performance (Gemini 1.5 Pro, GPT 4o, Claude 3.5) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, smaller models with lower baseline performance (Mistral 3, Gemma 2) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10\% for Gemini, GPT, and Gemma. Key findings and the prompts used in our autorater analysis are available on our github.
A dataset and benchmark for hospital course summarization with adapted large language models
Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel pre-processed dataset, the MIMIC-IV-BHC, encapsulating clinical note and brief hospital course (BHC) pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of two general-purpose LLMs and three healthcare-adapted LLMs. Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to three open-source LLMs (Clinical-T5-Large, Llama2-13B, FLAN-UL2) and two proprietary LLMs (GPT-3.5, GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with five clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We observe that the Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of BLEU and BERT-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries, highlighting the need for qualitative clinical evaluation.
7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
Post-hoc Study of Climate Microtargeting on Social Media Ads with LLMs: Thematic Insights and Fairness Evaluation
Climate change communication on social media increasingly employs microtargeting strategies to effectively reach and influence specific demographic groups. This study presents a post-hoc analysis of microtargeting practices within climate campaigns by leveraging large language models (LLMs) to examine Facebook advertisements. Our analysis focuses on two key aspects: demographic targeting and fairness. We evaluate the ability of LLMs to accurately predict the intended demographic targets, such as gender and age group, achieving an overall accuracy of 88.55%. Furthermore, we instruct the LLMs to generate explanations for their classifications, providing transparent reasoning behind each decision. These explanations reveal the specific thematic elements used to engage different demographic segments, highlighting distinct strategies tailored to various audiences. Our findings show that young adults are primarily targeted through messages emphasizing activism and environmental consciousness, while women are engaged through themes related to caregiving roles and social advocacy. In addition to evaluating the effectiveness of LLMs in detecting microtargeted messaging, we conduct a comprehensive fairness analysis to identify potential biases in model predictions. Our findings indicate that while LLMs perform well overall, certain biases exist, particularly in the classification of senior citizens and male audiences. By showcasing the efficacy of LLMs in dissecting and explaining targeted communication strategies and by highlighting fairness concerns, this study provides a valuable framework for future research aimed at enhancing transparency, accountability, and inclusivity in social media-driven climate campaigns.
Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
comment: # fixed some typos, added public slm reasoning leaderboard
Are Transformers Able to Reason by Connecting Separated Knowledge in Training Data? ICLR 2025
Humans exhibit remarkable compositional reasoning by integrating knowledge from various sources. For example, if someone learns ( B = f(A) ) from one source and ( C = g(B) ) from another, they can deduce ( C=g(B)=g(f(A)) ) even without encountering ( ABC ) together, showcasing the generalization ability of human intelligence. In this paper, we introduce a synthetic learning task, "FTCT" (Fragmented at Training, Chained at Testing), to validate the potential of Transformers in replicating this skill and interpret its inner mechanism. In the training phase, data consist of separated knowledge fragments from an overall causal graph. During testing, Transformers must infer complete causal graph traces by integrating these fragments. Our findings demonstrate that few-shot Chain-of-Thought prompting enables Transformers to perform compositional reasoning on FTCT by revealing correct combinations of fragments, even if such combinations were absent in the training data. Furthermore, the emergence of compositional reasoning ability is strongly correlated with the model complexity and training-testing data similarity. We propose, both theoretically and empirically, that Transformers learn an underlying generalizable program from training, enabling effective compositional reasoning during testing.
comment: Accepted by ICLR 2025
Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF
Large Language Models (LLMs) have achieved remarkable success at tasks like summarization that involve a single turn of interaction. However, they can still struggle with multi-turn tasks like dialogue that require long-term planning. Previous works on multi-turn dialogue extend single-turn reinforcement learning from human feedback (RLHF) methods to the multi-turn setting by treating all prior dialogue turns as a long context. Such approaches suffer from covariate shift: the conversations in the training set have previous turns generated by some reference policy, which means that low training error may not necessarily correspond to good performance when the learner is actually in the conversation loop. In response, we introduce REgressing the RELative FUture (REFUEL), an efficient policy optimization approach designed to address multi-turn RLHF in LLMs. REFUEL employs a single model to estimate $Q$-values and trains on self-generated data, addressing the covariate shift issue. REFUEL frames the multi-turn RLHF problem as a sequence of regression tasks on iteratively collected datasets, enabling ease of implementation. Theoretically, we prove that REFUEL can match the performance of any policy covered by the training set. Empirically, we evaluate our algorithm by using Llama-3.1-70B-it to simulate a user in conversation with our model. REFUEL consistently outperforms state-of-the-art methods such as DPO and REBEL across various settings. Furthermore, despite having only 8 billion parameters, Llama-3-8B-it fine-tuned with REFUEL outperforms Llama-3.1-70B-it on long multi-turn dialogues. Implementation of REFUEL can be found at https://github.com/ZhaolinGao/REFUEL/, and models trained by REFUEL can be found at https://huggingface.co/Cornell-AGI.
HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
Multilingual MFA: Forced Alignment on Low-Resource Related Languages
We compare the outcomes of multilingual and crosslingual training for related and unrelated Australian languages with similar phonological inventories. We use the Montreal Forced Aligner to train acoustic models from scratch and adapt a large English model, evaluating results against seen data, unseen data (seen language), and unseen data and language. Results indicate benefits of adapting the English baseline model for previously unseen languages.
Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
comment: Code: https://github.com/twni2016/llm-reasoning-uft
TypedThinker: Diversify Large Language Model Reasoning with Typed Thinking
Large Language Models (LLMs) have demonstrated strong reasoning capabilities in solving complex problems. However, current approaches primarily enhance reasoning through the elaboration of thoughts while neglecting the diversity of reasoning types. LLMs typically employ deductive reasoning, proceeding step-by-step from given conditions, which limits their exploration during problem-solving. Our analysis reveals that certain problems are exclusively solvable through specific reasoning strategies like inductive, abductive, or analogical reasoning. However, incorporating diverse reasoning approaches presents two key challenges: identifying the appropriate reasoning type for each problem and exploiting this approach during problem-solving. Therefore, we propose the TypedThinker that predicts suitable reasoning types based on the problem and their previous effectiveness and provides relevant demonstrations to guide LLMs in applying these strategies. Experimental results show significant improvements across multiple benchmarks, with performance gains of 3.4% for Mistral 7B, 6.5% for LLaMA3 8B, and 7% for Qwen 2 7B on logical and mathematical reasoning tasks. TypedThinker enhances LLM reasoning without requiring knowledge distillation from larger models. It can be integrated into more advanced systems like GPT-4o or specialized models like MetaMath to diversify their reasoning approaches and improve their problem-solving capabilities.
comment: work in process
Lab-AI: Using Retrieval Augmentation to Enhance Language Models for Personalized Lab Test Interpretation in Clinical Medicine
Accurate interpretation of lab results is crucial in clinical medicine, yet most patient portals use universal normal ranges, ignoring conditional factors like age and gender. This study introduces Lab-AI, an interactive system that offers personalized normal ranges using retrieval-augmented generation (RAG) from credible health sources. Lab-AI has two modules: factor retrieval and normal range retrieval. We tested these on 122 lab tests: 40 with conditional factors and 82 without. For tests with factors, normal ranges depend on patient-specific information. Our results show GPT-4-turbo with RAG achieved a 0.948 F1 score for factor retrieval and 0.995 accuracy for normal range retrieval. GPT-4-turbo with RAG outperformed the best non-RAG system by 33.5% in factor retrieval and showed 132% and 100% improvements in question-level and lab-level performance, respectively, for normal range retrieval. These findings highlight Lab-AI's potential to enhance patient understanding of lab results.
PSCon: Product Search Through Conversations SIGIR 2025
Conversational Product Search ( CPS ) systems interact with users via natural language to offer personalized and context-aware product lists. However, most existing research on CPS is limited to simulated conversations, due to the lack of a real CPS dataset driven by human-like language. Moreover, existing conversational datasets for e-commerce are constructed for a particular market or a particular language and thus can not support cross-market and multi-lingual usage. In this paper, we propose a CPS data collection protocol and create a new CPS dataset, called PSCon, which assists product search through conversations with human-like language. The dataset is collected by a coached human-human data collection protocol and is available for dual markets and two languages. By formulating the task of CPS, the dataset allows for comprehensive and in-depth research on six subtasks: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Moreover, we present a concise analysis of the dataset and propose a benchmark model on the proposed CPS dataset. Our proposed dataset and model will be helpful for facilitating future research on CPS.
comment: 11 pages. Accepted by SIGIR 2025
Estimating the Influence of Sequentially Correlated Literary Properties in Textual Classification: A Data-Centric Hypothesis-Testing Approach
We introduce a data-centric hypothesis-testing framework to quantify the influence of sequentially correlated literary properties--such as thematic continuity--on textual classification tasks. Our method models label sequences as stochastic processes and uses an empirical autocovariance matrix to generate surrogate labelings that preserve sequential dependencies. This enables statistical testing to determine whether classification outcomes are primarily driven by thematic structure or by non-sequential features like authorial style. Applying this framework across a diverse corpus of English prose, we compare traditional (word n-grams and character k-mers) and neural (contrastively trained) embeddings in both supervised and unsupervised classification settings. Crucially, our method identifies when classifications are confounded by sequentially correlated similarity, revealing that supervised and neural models are more prone to false positives--mistaking shared themes and cross-genre differences for stylistic signals. In contrast, unsupervised models using traditional features often yield high true positive rates with minimal false positives, especially in genre-consistent settings. By disentangling sequential from non-sequential influences, our approach provides a principled way to assess and interpret classification reliability. This is particularly impactful for authorship attribution, forensic linguistics, and the analysis of redacted or composite texts, where conventional methods may conflate theme with style. Our results demonstrate that controlling for sequential correlation is essential for reducing false positives and ensuring that classification outcomes reflect genuine stylistic distinctions.
CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization
Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although reviews have been conducted on this topic, there is a lack of comprehensive work detailing the challenges of dialogue summarization, unifying the differing understanding of the task, and aligning proposed techniques, datasets, and evaluation metrics with the challenges. This article summarizes the research on Transformer-based abstractive summarization for English dialogues by systematically reviewing 1262 unique research papers published between 2019 and 2024, relying on the Semantic Scholar and DBLP databases. We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality) and link them to corresponding techniques such as graph-based approaches, additional training tasks, and planning strategies, which typically overly rely on BART-based encoder-decoder models. We find that while some challenges, like language, have seen considerable progress, mainly due to training methods, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities. We investigate how these approaches are typically assessed, covering the datasets for the subdomains of dialogue (e.g., meeting, medical), the established automatic metrics and human evaluation approaches for assessing scores and annotator agreement. We observe that only a few datasets span across all subdomains. The ROUGE metric is the most used, while human evaluation is frequently reported without sufficient detail on inner-annotator agreement and annotation guidelines. Additionally, we discuss the possible implications of the recently explored large language models and conclude that despite a potential shift in relevance and difficulty, our described challenge taxonomy remains relevant.
comment: Published in the Journal of Artificial Intelligence Research (JAIR) (https://www.jair.org/index.php/jair/article/view/16674)
Human-Computer Interaction
Texture: Structured Exploration of Text Datasets
Exploratory analysis of a text corpus is essential for assessing data quality and developing meaningful hypotheses. Text analysis relies on understanding documents through structured attributes spanning various granularities of the documents such as words, phrases, sentences, topics, or clusters. However, current text visualization tools typically adopt a fixed representation tailored to specific tasks or domains, requiring users to switch tools as their analytical goals change. To address this limitation, we present Texture, a general-purpose interactive text exploration tool. Texture introduces a configurable data schema for representing text documents enriched with descriptive attributes. These attributes can appear at arbitrary levels of granularity in the text and possibly have multiple values, including document-level attributes, multi-valued attributes (e.g., topics), fine-grained span-level attributes (e.g., words), and vector embeddings. The system then combines existing interactive methods for text exploration into a single interface that provides attribute overview visualizations, supports cross-filtering attribute charts to explore subsets, uses embeddings for a dataset overview and similar instance search, and contextualizes filters in the actual documents. We evaluated Texture through a two-part user study with 10 participants from varied domains who each analyzed their own dataset in a baseline session and then with Texture. Texture was able to represent all of the previously derived dataset attributes, enabled participants to more quickly iterate during their exploratory analysis, and discover new insights about their data. Our findings contribute to the design of scalable, interactive, and flexible exploration systems that improve users' ability to make sense of text data.
Enhancing Critical Thinking with AI: A Tailored Warning System for RAG Models
Retrieval-Augmented Generation (RAG) systems offer a powerful approach to enhancing large language model (LLM) outputs by incorporating fact-checked, contextually relevant information. However, fairness and reliability concerns persist, as hallucinations can emerge at both the retrieval and generation stages, affecting users' reasoning and decision-making. Our research explores how tailored warning messages -- whose content depends on the specific context of hallucination -- shape user reasoning and actions in an educational quiz setting. Preliminary findings suggest that while warnings improve accuracy and awareness of high-level hallucinations, they may also introduce cognitive friction, leading to confusion and diminished trust in the system. By examining these interactions, this work contributes to the broader goal of AI-augmented reasoning: developing systems that actively support human reflection, critical thinking, and informed decision-making rather than passive information consumption.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning
Nurturing Language Proficiency in Spanish.speaking children Through digital competence
This article explores into the intricate design and meticulous construction of a digital platform aimed at revolutionizing early-age English education, particularly for Spanish-speaking children. The focus of this work used an innovative methodologies, vibrant and engaging visuals, and a comprehensive approach to phonics. The principles of usability, accessibility, and user-centered design are intricately woven into every facet of the platform's architecture.
DeBiasMe: De-biasing Human-AI Interactions with Metacognitive AIED (AI in Education) Interventions
While generative artificial intelligence (Gen AI) increasingly transforms academic environments, a critical gap exists in understanding and mitigating human biases in AI interactions, such as anchoring and confirmation bias. This position paper advocates for metacognitive AI literacy interventions to help university students critically engage with AI and address biases across the Human-AI interaction workflows. The paper presents the importance of considering (1) metacognitive support with deliberate friction focusing on human bias; (2) bi-directional Human-AI interaction intervention addressing both input formulation and output interpretation; and (3) adaptive scaffolding that responds to diverse user engagement patterns. These frameworks are illustrated through ongoing work on "DeBiasMe," AIED (AI in Education) interventions designed to enhance awareness of cognitive biases while empowering user agency in AI interactions. The paper invites multiple stakeholders to engage in discussions on design and evaluation methods for scaffolding mechanisms, bias visualization, and analysis frameworks. This position contributes to the emerging field of AI-augmented learning by emphasizing the critical role of metacognition in helping students navigate the complex interaction between human, statistical, and systemic biases in AI use while highlighting how cognitive adaptation to AI systems must be explicitly integrated into comprehensive AI literacy frameworks.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
Search Timelines: Visualizing Search History to Enable Cross-Session Exploratory Search
Purpose: The timespan over which exploratory searching can occur, as well as the scope and volume of the search activities undertaken, can make it difficult for searchers to remember key details about their search activities. These difficulties are present both in the midst of searching as well as when resuming a search that spans multiple sessions. In this paper, we present a search interface designed to support cross-session exploratory search in a public digital library context. Methods: Search Timelines provides a visualization of current and past search activities via a dynamic timeline of the search activity (queries and saved resources). This timeline is presented at two levels of detail. An overview timeline is provided alongside the search results in a typical search engine results page design. A detailed timeline is provided in the workspace, where searchers can review the history of their search activities and their saved resources. A controlled laboratory study was conducted to compare this approach to a baseline interface modelled after a typical public digital library search/workspace interface. Results: Participants who used Search Timelines reported higher levels of user engagement, usability, and perceived knowledge gain, during an initial search session and when resuming the search after a 7-8 day interval. This came at the expense of the searchers taking more time to complete the search task, which we view as positive evidence of engagement in cross-session exploratory search processes. Conclusion: Search Timelines serves as an example of how lightweight visualization approaches can be used to enhance typical search interface designs to support exploratory search. The results highlight the value of providing persistent representations of past search activities within the search interface.
LLMCode: Evaluating and Enhancing Researcher-AI Alignment in Qualitative Analysis
The use of large language models (LLMs) in qualitative analysis offers enhanced efficiency but raises questions about their alignment with the contextual nature of research for design (RfD). This research examines the trustworthiness of LLM-driven design insights, using qualitative coding as a case study to explore the interpretive processes central to RfD. We introduce LLMCode, an open-source tool integrating two metrics, namely Intersection over Union (IoU) and Modified Hausdorff Distance, to assess the alignment between human and LLM-generated insights. Across two studies involving 26 designers, we find that while the model performs well with deductive coding, its ability to emulate a designer's deeper interpretive lens over the data is limited, emphasising the importance of human-AI collaboration. Our results highlight a reciprocal dynamic where users refine LLM outputs and adapt their own perspectives based on the model's suggestions. These findings underscore the importance of fostering appropriate reliance on LLMs by designing tools that preserve interpretive depth while facilitating intuitive collaboration between designers and AI.
Open Source Software Lifecycle Classification: Developing Wrangling Techniques for Complex Sociotechnical Systems
Open source software is a rapidly evolving center for distributed work, and understanding the characteristics of this work across its different contexts is vital for informing policy, economics, and the design of enabling software. The steep increase in open source projects and corporate participation have transformed a peripheral, cottage industry component of the global technology ecosystem into a large, infinitely complex "technology parts supplier" wired into every corner of contemporary life. The lack of theory and tools for breaking this complexity down into identifiable project types or strategies for understanding them more systematically is incommensurate with current industry, society, and developer needs. This paper reviews previous attempts to classify open source software and other organizational ecosystems, using open source scientific software ecosystems in contrast with those found in corporatized open source software. It then examines the divergent and sometimes conflicting purposes that may exist for classifying open source projects and how these competing interests impede our progress in developing a comprehensive understanding of how open source software projects and companies operate. Finally, we will present an empirical, mixed-methods study demonstrating how to classify open-source projects by their lifecycle position. This is the first step forward, advancing our scientific and practical knowledge of open source software through the lens of dynamic and evolving open source genres. It concludes with examples and a proposed path forward.
Algorithmic Mirror: Designing an Interactive Tool to Promote Self-Reflection for YouTube Recommendations
Big Data analytics and Artificial Intelligence systems derive non-intuitive and often unverifiable inferences about individuals' behaviors, preferences, and private lives. Drawing on diverse, feature-rich datasets of unpredictable value, these systems erode the intuitive connection between our actions and how we are perceived, diminishing control over our digital identities. While Explainable Artificial Intelligence scholars have attempted to explain the inner workings of algorithms, their visualizations frequently overwhelm end-users with complexity. This research introduces 'hypothetical inference', a novel approach that uses language models to simulate how algorithms might interpret users' digital footprints and infer personal characteristics without requiring access to proprietary platform algorithms. Through empirical studies with fourteen adult participants, we identified three key design opportunities to foster critical algorithmic literacy: (1) reassembling scattered digital footprints into a unified map, (2) simulating algorithmic inference through LLM-generated interpretations, and (3) incorporating temporal dimensions to visualize evolving patterns. This research lays the groundwork for tools that can help users recognize the influence of data on platforms and develop greater autonomy in increasingly algorithm-mediated digital environments.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
PsyCounAssist: A Full-Cycle AI-Powered Psychological Counseling Assistant System
Psychological counseling is a highly personalized and dynamic process that requires therapists to continuously monitor emotional changes, document session insights, and maintain therapeutic continuity. In this paper, we introduce PsyCounAssist, a comprehensive AI-powered counseling assistant system specifically designed to augment psychological counseling practices. PsyCounAssist integrates multimodal emotion recognition combining speech and photoplethysmography (PPG) signals for accurate real-time affective analysis, automated structured session reporting using large language models (LLMs), and personalized AI-generated follow-up support. Deployed on Android-based tablet devices, the system demonstrates practical applicability and flexibility in real-world counseling scenarios. Experimental evaluation confirms the reliability of PPG-based emotional classification and highlights the system's potential for non-intrusive, privacy-aware emotional support. PsyCounAssist represents a novel approach to ethically and effectively integrating AI into psychological counseling workflows.
Bridging Data Gaps and Building Knowledge Networks in Indian Football Analytics
The global rise of football analytics has rapidly transformed how clubs make strategic decisions. However, in India, the adoption of analytics remains constrained by institutional resistance, infrastructural limitations, and cultural barriers -- challenges that grassroots innovation and low-cost data solutions have the potential to overcome. Despite the growing popularity of the Indian Super League, resource scarcity and fragmented governance continue to hinder the widespread adoption and impact of analytics. This mixed-methods study explores how informal, decentralised analytics communities -- comprising amateur analysts and Twitter-based "data sleuths" -- navigate these constraints through peer mentorship and grassroots innovation. Drawing on extensive digital ethnography, participant observation, and interviews, the study illustrates how these informal networks mitigate data scarcity, limited digital infrastructure, and institutional indifference while fostering skill development and professional growth. Building on these insights, the paper proposes HCI interventions such as decentralised knowledge platforms to facilitate structured, cross-border peer mentorship and low-cost data solutions -- including AI-assisted player tracking and mobile analytics dashboards -- rooted in principles of frugal innovation. These interventions aim to bridge the data divide, support inclusive technical engagement in sport, and enhance analytics-driven decision-making in resource-constrained environments. This paper contributes to HCIxB's focus on cross-border collaboration by highlighting how community-driven technological adaptation in the Global South can foster meaningful participation, skill-building, and long-term sustainability through informal learning networks and scalable, context-sensitive tools.
comment: 6 pages
A Vision for AI-Driven Adaptation of Dynamic AR Content to Users and Environments
Augmented Reality (AR) is transforming the way we interact with virtual information in the physical world. By overlaying digital content in real-world environments, AR enables new forms of immersive and engaging experiences. However, existing AR systems often struggle to effectively manage the many interactive possibilities that AR presents. This vision paper speculates on AI-driven approaches for adaptive AR content placement, dynamically adjusting to user movement and environmental changes. By leveraging machine learning methods, such a system would intelligently manage content distribution between AR projections integrated into the external environment and fixed static content, enabling seamless UI layout and potentially reducing users' cognitive load. By exploring the possibilities of AI-driven dynamic AR content placement, we aim to envision new opportunities for innovation and improvement in various industries, from urban navigation and workplace productivity to immersive learning and beyond. This paper outlines a vision for the development of more intuitive, engaging, and effective AI-powered AR experiences.
Exploring human-SAV interaction using large language models: The impact of psychological ownership and anthropomorphism on user experience
There has been extensive prior work exploring how psychological factors such as anthropomorphism affect the adoption of shared autonomous vehicles (SAVs). However, limited research has been conducted on how prompt strategies in large language model (LLM)-powered SAV User Interfaces (UIs) affect users' perceptions, experiences, and intentions to adopt such technology. In this work, we investigate how conversational UIs powered by LLMs drive these psychological factors and psychological ownership, the sense of possession a user may come to feel towards an entity or object they may not legally own. We designed four SAV UIs with varying levels of anthropomorphic characteristics and psychological ownership triggers. Quantitative measures of psychological ownership, anthropomorphism, quality of service, disclosure tendency, sentiment of SAV responses, and overall acceptance were collected after participants interacted with each SAV. Qualitative feedback was also gathered regarding the experience of psychological ownership during the interactions. The results indicate that an SAV conversational UI designed to be more anthropomorphic and to induce psychological ownership improved users' perceptions of the SAV's human-like qualities and improved the sentiment of responses compared to a control condition. These findings provide practical guidance for designing LLM-based conversational UIs that enhance user experience and adoption of SAVs.
Tinkering Against Scaling
The ascent of scaling in artificial intelligence research has revolutionized the field over the past decade, yet it presents significant challenges for academic researchers, particularly in computational social science and critical algorithm studies. The dominance of large language models, characterized by their extensive parameters and costly training processes, creates a disparity where only industry-affiliated researchers can access these resources. This imbalance restricts academic researchers from fully understanding their tools, leading to issues like reproducibility in computational social science and a reliance on black-box metaphors in critical studies. To address these challenges, we propose a "tinkering" approach that is inspired by existing works. This method involves engaging with smaller models or components that are manageable for ordinary researchers, fostering hands-on interaction with algorithms. We argue that tinkering is both a way of making and knowing for computational social science and a way of knowing for critical studies, and fundamentally, it is a way of caring that has broader implications for both fields.
comment: 43 pages, 4 figures
SafeSpect: Safety-First Augmented Reality Heads-up Display for Drone Inspections
Current tablet-based interfaces for drone operations often impose a heavy cognitive load on pilots and reduce situational awareness by dividing attention between the video feed and the real world. To address these challenges, we designed a heads-up augmented reality (AR) interface that overlays in-situ information to support drone pilots in safety-critical tasks. Through participatory design workshops with professional pilots, we identified key features and developed an adaptive AR interface that dynamically switches between task and safety views to prevent information overload. We evaluated our prototype by creating a realistic building inspection task and comparing three interfaces: a 2D tablet, a static AR, and our adaptive AR design. A user study with 15 participants showed that the AR interface improved access to safety information, while the adaptive AR interface reduced cognitive load and enhanced situational awareness without compromising task performance. We offer design insights for developing safety-first heads-up AR interfaces.
Intelligent Depression Prevention via LLM-Based Dialogue Analysis: Overcoming the Limitations of Scale-Dependent Diagnosis through Precise Emotional Pattern Recognition
Existing depression screening predominantly relies on standardized questionnaires (e.g., PHQ-9, BDI), which suffer from high misdiagnosis rates (18-34% in clinical studies) due to their static, symptom-counting nature and susceptibility to patient recall bias. This paper presents an AI-powered depression prevention system that leverages large language models (LLMs) to analyze real-time conversational cues--including subtle emotional expressions (e.g., micro-sentiment shifts, self-referential language patterns)--for more accurate and dynamic mental state assessment. Our system achieves three key innovations: (1) Continuous monitoring through natural dialogue, detecting depression-indicative linguistic features (anhedonia markers, hopelessness semantics) with 89% precision (vs. 72% for PHQ-9); (2) Adaptive risk stratification that updates severity levels based on conversational context, reducing false positives by 41% compared to scale-based thresholds; and (3) Personalized intervention strategies tailored to users' emotional granularity, demonstrating 2.3x higher adherence rates than generic advice. Clinical validation with 450 participants shows the system identifies 92% of at-risk cases missed by traditional scales, while its explainable AI interface bridges the gap between automated analysis and clinician judgment. This work establishes conversational AI as a paradigm shift from episodic scale-dependent diagnosis to continuous, emotionally intelligent mental health monitoring.
Helping Blind People Grasp: Enhancing a Tactile Bracelet with an Automated Hand Navigation System
Grasping constitutes a critical challenge for visually impaired people. To address this problem, we developed a tactile bracelet that assists in grasping by guiding the user's hand to a target object using vibration commands. Here we demonstrate the fully automated system around the bracelet, which can confidently detect and track target and distractor objects and reliably guide the user's hand. We validate our approach in three tasks that resemble complex, everyday use cases. In a grasping task, the participants grasp varying target objects on a table, guided via the automated hand navigation system. In the multiple objects task, participants grasp objects from the same class, demonstrating our system's ability to track one specific object without targeting surrounding distractor objects. Finally, the participants grasp one specific target object by avoiding an obstacle along the way in the depth navigation task, showcasing the potential to utilize our system's depth estimations to navigate even complex scenarios. Additionally, we demonstrate that the system can aid users in the real world by testing it in a less structured environment with a blind participant. Overall, our results demonstrate that the system, by translating the AI-processed visual inputs into a reduced data rate of actionable signals, enables autonomous behavior in everyday environments, thus potentially increasing the quality of life of visually impaired people.
comment: This work has been submitted to the IEEE for possible publication
Insect-Computer Hybrid Speaker: Speaker using Chirp of the Cicada Controlled by Electrical Muscle Stimulation
We propose "Insect-Computer Hybrid Speaker", which enables us to make musics made from combinations of computer and insects. Lots of studies have proposed methods and interfaces for controlling insects and obtaining feedback. However, there have been less research on the use of insects for interaction with third parties. In this paper, we propose a method in which cicadas are used as speakers triggered by using Electrical Muscle Stimulation (EMS). We explored and investigated the suitable waveform of chirp to be controlled, the appropriate voltage range, and the maximum pitch at which cicadas can chirp.
comment: 6 pages, 3 figures
Advancing Radar Hand Gesture Recognition: A Hybrid Spectrum Synthetic Framework Merging Simulation with Neural Networks
Millimeter wave (mmWave) radar sensors play a vital role in hand gesture recognition (HGR) by detecting subtle motions while preserving user privacy. However, the limited scale of radar datasets hinders the performance. Existing synthetic data generation methods fall short in two key areas. On the one hand, modeling-based approaches fail to accurately simulate the wave propagation and reflection at the hand-gesture level, facing unique complexities such as diffraction and occlusion. On the other hand, generative model-based methods are hard to converge while radar data is limited, lacking interpretability, and sometimes fail to produce kinematically plausible results. To overcome these limitations, we propose a novel hybrid spectrum synthetic framework leveraging visual hand gesture data. It combines a cylinder mesh-based hand reflection model with a small-scale neural network called RadarWeightNet, which focuses on assigning weights to simulated signals. Our framework addresses two key challenges: achieving accurate simulation of complex hand geometry and bridging the simulation-to-real gap in a data-driven manner while preserving interpretability, which balances physical accuracy with machine learning adaptability. We tested our framework under extreme scenarios where radar data is scarce. The results demonstrate the effectiveness of our hybrid framework, achieving up to 63% SSIM in synthetic performance and up to 30% improvement in classification performance in few-shot learning.
PixelWeb: The First Web GUI Dataset with Pixel-Wise Labels
Graphical User Interface (GUI) datasets are crucial for various downstream tasks. However, GUI datasets often generate annotation information through automatic labeling, which commonly results in inaccurate GUI element BBox annotations, including missing, duplicate, or meaningless BBoxes. These issues can degrade the performance of models trained on these datasets, limiting their effectiveness in real-world applications. Additionally, existing GUI datasets only provide BBox annotations visually, which restricts the development of visually related GUI downstream tasks. To address these issues, we introduce PixelWeb, a large-scale GUI dataset containing over 100,000 annotated web pages. PixelWeb is constructed using a novel automatic annotation approach that integrates visual feature extraction and Document Object Model (DOM) structure analysis through two core modules: channel derivation and layer analysis. Channel derivation ensures accurate localization of GUI elements in cases of occlusion and overlapping elements by extracting BGRA four-channel bitmap annotations. Layer analysis uses the DOM to determine the visibility and stacking order of elements, providing precise BBox annotations. Additionally, PixelWeb includes comprehensive metadata such as element images, contours, and mask annotations. Manual verification by three independent annotators confirms the high quality and accuracy of PixelWeb annotations. Experimental results on GUI element detection tasks show that PixelWeb achieves performance on the mAP95 metric that is 3-7 times better than existing datasets. We believe that PixelWeb has great potential for performance improvement in downstream tasks such as GUI generation and automated user interaction.
FeedQUAC: Quick Unobtrusive AI-Generated Commentary
Design thrives on feedback. However, gathering constant feedback throughout the design process can be labor-intensive and disruptive. We explore how AI can bridge this gap by providing effortless, ambient feedback. We introduce FeedQUAC, a design companion that delivers real-time AI-generated commentary from a variety of perspectives through different personas. A design probe study with eight participants highlights how designers can leverage quick yet ambient AI feedback to enhance their creative workflows. Participants highlight benefits such as convenience, playfulness, confidence boost, and inspiration from this lightweight feedback agent, while suggesting additional features, like chat interaction and context curation. We discuss the role of AI feedback, its strengths and limitations, and how to integrate it into existing design workflows while balancing user involvement. Our findings also suggest that ambient interaction is a valuable consideration for both the design and evaluation of future creativity support systems.
comment: 20 pages, 12 figures
Cyberoception: Finding a Painlessly-Measurable New Sense in the Cyberworld Towards Emotion-Awareness in Computing
In Affective computing, recognizing users' emotions accurately is the basis of affective human-computer interaction. Understanding users' interoception contributes to a better understanding of individually different emotional abilities, which is essential for achieving inter-individually accurate emotion estimation. However, existing interoception measurement methods, such as the heart rate discrimination task, have several limitations, including their dependence on a well-controlled laboratory environment and precision apparatus, making monitoring users' interoception challenging. This study aims to determine other forms of data that can explain users' interoceptive or similar states in their real-world lives and propose a novel hypothetical concept "cyberoception," a new sense (1) which has properties similar to interoception in terms of the correlation with other emotion-related abilities, and (2) which can be measured only by the sensors embedded inside commodity smartphone devices in users' daily lives. Results from a 10-day-long in-lab/in-the-wild hybrid experiment reveal a specific cyberoception type "Turn On" (users' subjective sensory perception about the frequency of turning-on behavior on their smartphones), significantly related to participants' emotional valence. We anticipate that cyberoception to serve as a fundamental building block for developing more "emotion-aware", user-friendly applications and services.
comment: Accepted by ACM CHI2025
What Sensors See, What People Feel: Exploring Subjective Collaboration Perception in Mixed Reality
Mixed Reality (MR) enables rich, embodied collaboration, yet it's uncertain if sensor and system-logged behavioral signals capture how users experience that collaboration. This disconnect stems from a fundamental gap: behavioral signals are observable and continuous, while collaboration is interpreted subjectively, shaped by internal states like presence, cognitive availability, and social awareness. Our core insight is that sensor signals serve as observable manifestations of subjective experiences in MR collaboration, and they can be captured through sensor data such as shared gaze, speech, spatial movement, and other system-logged performance metrics. We propose the Sensor-to-Subjective (S2S) Mapping Framework, a conceptual model that links observable interaction patterns to users' subjective perceptions of collaboration and internal cognitive states through sensor-based indicators and task performance metrics. To validate this model, we conducted a study with 48 participants across 12 MR groups engaged in a collaborative image-sorting task. Our findings show a correlation between sensed behavior and perceived collaboration, particularly through shared attention and proximity.
comment: 12 pages, 4 figures, 8 tables
AI for Accessible Education: Personalized Audio-Based Learning for Blind Students
Blind and visually impaired (BVI) students face significant challenges in traditional educational settings. While screen readers and braille materials offer some accessibility, they often lack interactivity and real-time adaptability to individual learning needs. This paper presents Audemy, an AI-powered audio-based learning platform designed to provide personalized, accessible, and engaging educational experiences for BVI students. Audemy uses adaptive learning techniques to customize content based on student accuracy, pacing preferences, and engagement patterns. The platform has been iteratively developed with input from over 20 educators specializing in accessibility and currently serves over 2,000 BVI students. Educator insights show key considerations for accessible AI, including the importance of engagement, intuitive design, compatibility with existing assistive technologies, and the role of positive reinforcement in maintaining student motivation. Beyond accessibility, this paper explores the ethical implications of AI in education, emphasizing data privacy, security, and transparency. Audemy demonstrates how AI can empower BVI students with personalized and equitable learning opportunities, advancing the broader goal of inclusive education.
comment: 4 pages, CHI 2025 Workshop on Augmented Educators and AI: Shaping the Future of Human and AI Cooperation in Learning
Cybernetic Governance in a Coliving House
We report an 18-month field experiment in distributed digital institutions: a nine-bedroom Los Angeles coliving house that runs without managers, while sustaining 98% occupancy and below-market rents. Drawing on Elinor Ostrom's commons theory, we outline design principles and three digital mechanisms that form the institutional core: 1) A continuous-auction chore scheduler turns regenerative labor into a time-indexed points market; residents meet a 100-point monthly obligation by claiming tasks whose value rises linearly with neglect. 2) A pairwise-preference layer lets participants asynchronously reprioritize tasks, translating meta-governance into low-cognition spot inputs. 3) A symbolic "hearts" ledger tracks norm compliance through automated enforcement, lightweight challenges, and peer-awarded karma. Together, these mechanisms operationalize cybernetic principles--human sensing, machine bookkeeping, real-time feedback--while minimizing dependence on privileged roles. Our exploratory data (567 chore claims, 255 heart events, and 551 group purchases) show that such tooling can sustain reliable commons governance without continuous leadership, offering a transferable design palette for online communities, coliving houses, and other digitally mediated collectives.
comment: 19 pages, 5 figures, earlier working version at https://ssrn.com/abstract=4856267
What Makes for a Good Saliency Map? Comparing Strategies for Evaluating Saliency Maps in Explainable AI (XAI)
Saliency maps are a popular approach for explaining classifications of (convolutional) neural networks. However, it remains an open question as to how best to evaluate salience maps, with three families of evaluation methods commonly being used: subjective user measures, objective user measures, and mathematical metrics. We examine three of the most popular saliency map approaches (viz., LIME, Grad-CAM, and Guided Backpropagation) in a between subject study (N=166) across these families of evaluation methods. We test 1) for subjective measures, if the maps differ with respect to user trust and satisfaction; 2) for objective measures, if the maps increase users' abilities and thus understanding of a model; 3) for mathematical metrics, which map achieves the best ratings across metrics; and 4) whether the mathematical metrics can be associated with objective user measures. To our knowledge, our study is the first to compare several salience maps across all these evaluation methods$-$with the finding that they do not agree in their assessment (i.e., there was no difference concerning trust and satisfaction, Grad-CAM improved users' abilities best, and Guided Backpropagation had the most favorable mathematical metrics). Additionally, we show that some mathematical metrics were associated with user understanding, although this relationship was often counterintuitive. We discuss these findings in light of general debates concerning the complementary use of user studies and mathematical metrics in the evaluation of explainable AI (XAI) approaches.
comment: 27 pages, 7 figures, 4 tables
LLM impact on BLV programming
Large Language Models (LLMs) are rapidly becoming integral to a wide range of tools, tasks, and problem-solving processes, especially in software development. Originally designed for natural language processing tasks such as text generation, LLMs are increasingly being used to assist both professionals and students in writing code. This growing reliance on LLM-based tools is reshaping programming workflows and task execution. In this study, we explore the impact of these technologies on blind and low-vision (BLV) developers. Our review of existing literature indicates that while LLMs help mitigate some of the challenges faced by BLV programmers, they also introduce new forms of inaccessibility. We conducted an evaluation of five popular LLM-powered integrated development environments (IDEs), assessing their performance across a comprehensive set of programming tasks. Our findings highlight several unsupported scenarios, instances of incorrect model output, and notable limitations in interaction support for specific tasks. Through observing BLV developers as they engaged in coding activities, we uncovered key interaction barriers that go beyond model accuracy or code generation quality. This paper outlines the challenges and corresponding opportunities for improving accessibility in the context of generative AI-assisted programming. Addressing these issues can meaningfully enhance the programming experience for BLV developers. As the generative AI revolution continues to unfold, it must also address the unique burdens faced by this community.
comment: Submitted to ASSETS 2025
The Cloud Weaving Model for AI development
While analysing challenges in pilot projects developing AI with marginalized communities, we found it difficult to express them within commonly used paradigms. We therefore constructed an alternative conceptual framework to ground AI development in the social fabric -- the Cloud Weaving Model -- inspired (amongst others) by indigenous knowledge, motifs from nature, and Eastern traditions. This paper introduces and elaborates on the fundamental elements of the model (clouds, spiders, threads, spiderwebs, and weather) and their interpretation in an AI context. The framework is then applied to comprehend patterns observed in co-creation pilots approaching marginalized communities, highlighting neglected yet relevant dimensions for responsible AI development.
comment: presented at alt.CHI 2025, Yokohama
Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
A Measure Based Generalizable Approach to Understandability
Successful agent-human partnerships require that any agent generated information is understandable to the human, and that the human can easily steer the agent towards a goal. Such effective communication requires the agent to develop a finer-level notion of what is understandable to the human. State-of-the-art agents, including LLMs, lack this detailed notion of understandability because they only capture average human sensibilities from the training data, and therefore afford limited steerability (e.g., requiring non-trivial prompt engineering). In this paper, instead of only relying on data, we argue for developing generalizable, domain-agnostic measures of understandability that can be used as directives for these agents. Existing research on understandability measures is fragmented, we survey various such efforts across domains, and lay a cognitive-science-rooted groundwork for more coherent and domain-agnostic research investigations in future.
comment: 6 pages
Toward a Human-AI Task Tensor: A Taxonomy for Organizing Work in the Age of Generative AI
We introduce a framework for understanding the impact of generative AI on human work, which we call the human-AI task tensor. A tensor is a structured framework that organizes tasks along multiple interdependent dimensions. Our human-AI task tensor introduces a systematic approach to studying how humans and AI interact to perform tasks, and has eight dimensions: task definition, AI contribution, interaction modality, audit requirement, output definition, decision-making authority, AI structure, and human persona. After describing the eight dimensions of the tensor, we provide illustrative frameworks (derived from projections of the tensor) and a human-AI task canvas that provide analytical tractability and practical insight for organizational decision-making. We demonstrate how the human-AI task tensor can be used to organize emerging and future research on generative AI. We propose that the human-AI task tensor offers a starting point for understanding how work will be performed with the emergence of generative AI.
A New Framework to Predict and Visualize Technology Acceptance: A Case Study of Shared Autonomous Vehicles SC
Public acceptance is critical to the adoption of Shared Autonomous Vehicles (SAVs) in the transport sector. Traditional acceptance models, primarily reliant on Structural Equation Modeling, may not adequately capture the complex, non-linear relationships among factors influencing technology acceptance and often have limited predictive capabilities. This paper introduces a framework that combines Machine Learning techniques with chord diagram visualizations to analyze and predict public acceptance of technologies. Using SAV acceptance as a case study, we applied a Random Forest machine learning approach to model the non-linear relationships among psychological factors influencing acceptance. Chord diagrams were then employed to provide an intuitive visualization of the relative importance and interplay of these factors at both factor and item levels in a single plot. Our findings identified Attitude as the primary predictor of SAV usage intention, followed by Perceived Risk, Perceived Usefulness, Trust, and Perceived Ease of Use. The framework also reveals divergent perceptions between SAV adopters and non-adopters, providing insights for tailored strategies to enhance SAV acceptance. This study contributes a data-driven perspective to the technology acceptance discourse, demonstrating the efficacy of integrating predictive modeling with visual analytics to understand the relative importance of factors in predicting public acceptance of emerging technologies.
comment: This manuscript has undergone peer review and has been updated to the revised version. It has been accepted and published in Technological Forecasting and Social Change. This version (v3) updates the license to CC BY-NC-ND 4.0 to match the published version in TFSC. The content remains unchanged
Better Together? The Role of Explanations in Supporting Novices in Individual and Collective Deliberations about AI
Deploying AI systems in public institutions can have far-reaching consequences for many people, making it a matter of public interest. Providing opportunities for stakeholders to come together, understand these systems, and debate their merits and harms is thus essential. Explainable AI often focuses on individuals, but deliberation benefits from group settings, which are underexplored. To address this gap, we present findings from an interview study with 8 focus groups and 12 individuals. Our findings provide insight into how explanations support AI novices in deliberating alone and in groups. Participants used modular explanations with four information categories to solve tasks and decide about an AI system's deployment. We found that the explanations supported groups in creating shared understanding and in finding arguments for and against the system's deployment. In comparison, individual participants engaged with explanations in more depth and performed better in the study tasks, but missed an exchange with others. Based on our findings, we provide suggestions on how explanations should be designed to work in group settings and describe their potential use in real-world contexts. With this, our contributions inform XAI research that aims to enable AI novices to understand and deliberate AI systems in the public sector.
comment: 30 pages main text, 8 figures, 4 tables. Supplementary material is included in the appendix
Consistency Matters: Defining Demonstration Data Quality Metrics in Robot Learning from Demonstration
Learning from Demonstration (LfD) empowers robots to acquire new skills through human demonstrations, making it feasible for everyday users to teach robots. However, the success of learning and generalization heavily depends on the quality of these demonstrations. Consistency is often used to indicate quality in LfD, yet the factors that define this consistency remain underexplored. In this paper, we evaluate a comprehensive set of motion data characteristics to determine which consistency measures best predict learning performance. By ensuring demonstration consistency prior to training, we enhance models' predictive accuracy and generalization to novel scenarios. We validate our approach with two user studies involving participants with diverse levels of robotics expertise. In the first study (N = 24), users taught a PR2 robot to perform a button-pressing task in a constrained environment, while in the second study (N = 30), participants trained a UR5 robot on a pick-and-place task. Results show that demonstration consistency significantly impacts success rates in both learning and generalization, with 70% and 89% of task success rates in the two studies predicted using our consistency metrics. Moreover, our metrics estimate generalized performance success rates with 76% and 91% accuracy. These findings suggest that our proposed measures provide an intuitive, practical way to assess demonstration data quality before training, without requiring expert data or algorithm-specific modifications. Our approach offers a systematic way to evaluate demonstration quality, addressing a critical gap in LfD by formalizing consistency metrics that enhance the reliability of robot learning from human demonstrations.
Multimedia
4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis
Multimodal neuroimaging provides complementary structural and functional insights into both human brain organization and disease-related dynamics. Recent studies demonstrate enhanced diagnostic sensitivity for Alzheimer's disease (AD) through synergistic integration of neuroimaging data (e.g., sMRI, fMRI) with behavioral cognitive scores tabular data biomarkers. However, the intrinsic heterogeneity across modalities (e.g., 4D spatiotemporal fMRI dynamics vs. 3D anatomical sMRI structure) presents critical challenges for discriminative feature fusion. To bridge this gap, we propose M2M-AlignNet: a geometry-aware multimodal co-attention network with latent alignment for early AD diagnosis using sMRI and fMRI. At the core of our approach is a multi-patch-to-multi-patch (M2M) contrastive loss function that quantifies and reduces representational discrepancies via geometry-weighted patch correspondence, explicitly aligning fMRI components across brain regions with their sMRI structural substrates without one-to-one constraints. Additionally, we propose a latent-as-query co-attention module to autonomously discover fusion patterns, circumventing modality prioritization biases while minimizing feature redundancy. We conduct extensive experiments to confirm the effectiveness of our method and highlight the correspondance between fMRI and sMRI as AD biomarkers.
Rethinking Vision Transformer for Large-Scale Fine-Grained Image Retrieval
Large-scale fine-grained image retrieval (FGIR) aims to retrieve images belonging to the same subcategory as a given query by capturing subtle differences in a large-scale setting. Recently, Vision Transformers (ViT) have been employed in FGIR due to their powerful self-attention mechanism for modeling long-range dependencies. However, most Transformer-based methods focus primarily on leveraging self-attention to distinguish fine-grained details, while overlooking the high computational complexity and redundant dependencies inherent to these models, limiting their scalability and effectiveness in large-scale FGIR. In this paper, we propose an Efficient and Effective ViT-based framework, termed \textbf{EET}, which integrates token pruning module with a discriminative transfer strategy to address these limitations. Specifically, we introduce a content-based token pruning scheme to enhance the efficiency of the vanilla ViT, progressively removing background or low-discriminative tokens at different stages by exploiting feature responses and self-attention mechanism. To ensure the resulting efficient ViT retains strong discriminative power, we further present a discriminative transfer strategy comprising both \textit{discriminative knowledge transfer} and \textit{discriminative region guidance}. Using a distillation paradigm, these components transfer knowledge from a larger ``teacher'' ViT to a more efficient ``student'' model, guiding the latter to focus on subtle yet crucial regions in a cost-free manner. Extensive experiments on two widely-used fine-grained datasets and four large-scale fine-grained datasets demonstrate the effectiveness of our method. Specifically, EET reduces the inference latency of ViT-Small by 42.7\% and boosts the retrieval performance of 16-bit hash codes by 5.15\% on the challenging NABirds dataset.
comment: Accepted by IEEE TMM
Learning Switchable Priors for Neural Image Compression
Neural image compression (NIC) usually adopts a predefined family of probabilistic distributions as the prior of the latent variables, and meanwhile relies on entropy models to estimate the parameters for the probabilistic family. More complex probabilistic distributions may fit the latent variables more accurately, but also incur higher complexity of the entropy models, limiting their practical value. To address this dilemma, we propose a solution to decouple the entropy model complexity from the prior distributions. We use a finite set of trainable priors that correspond to samples of the parametric probabilistic distributions. We train the entropy model to predict the index of the appropriate prior within the set, rather than the specific parameters. Switching between the trained priors further enables us to embrace a skip mode into the prior set, which simply omits a latent variable during the entropy coding. To demonstrate the practical value of our solution, we present a lightweight NIC model, namely FastNIC, together with the learning of switchable priors. FastNIC obtains a better trade-off between compression efficiency and computational complexity for neural image compression. We also implanted the switchable priors into state-of-the-art NIC models and observed improved compression efficiency with a significant reduction of entropy coding complexity.
comment: 18 pages, 15 figures
TraveLLaMA: Facilitating Multi-modal Large Language Models to Understand Urban Scenes and Provide Travel Assistance
Tourism and travel planning increasingly rely on digital assistance, yet existing multimodal AI systems often lack specialized knowledge and contextual understanding of urban environments. We present TraveLLaMA, a specialized multimodal language model designed for urban scene understanding and travel assistance. Our work addresses the fundamental challenge of developing practical AI travel assistants through a novel large-scale dataset of 220k question-answer pairs. This comprehensive dataset uniquely combines 130k text QA pairs meticulously curated from authentic travel forums with GPT-enhanced responses, alongside 90k vision-language QA pairs specifically focused on map understanding and scene comprehension. Through extensive fine-tuning experiments on state-of-the-art vision-language models (LLaVA, Qwen-VL, Shikra), we demonstrate significant performance improvements ranging from 6.5\%-9.4\% in both pure text travel understanding and visual question answering tasks. Our model exhibits exceptional capabilities in providing contextual travel recommendations, interpreting map locations, and understanding place-specific imagery while offering practical information such as operating hours and visitor reviews. Comparative evaluations show TraveLLaMA significantly outperforms general-purpose models in travel-specific tasks, establishing a new benchmark for multi-modal travel assistance systems.
Can Large Language Models Help Multimodal Language Analysis? MMLA: A Comprehensive Benchmark
Multimodal language analysis is a rapidly evolving field that leverages multiple modalities to enhance the understanding of high-level semantics underlying human conversational utterances. Despite its significance, little research has investigated the capability of multimodal large language models (MLLMs) to comprehend cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive benchmark specifically designed to address this gap. MMLA comprises over 61K multimodal utterances drawn from both staged and real-world scenarios, covering six core dimensions of multimodal semantics: intent, emotion, dialogue act, sentiment, speaking style, and communication behavior. We evaluate eight mainstream branches of LLMs and MLLMs using three methods: zero-shot inference, supervised fine-tuning, and instruction tuning. Extensive experiments reveal that even fine-tuned models achieve only about 60%~70% accuracy, underscoring the limitations of current MLLMs in understanding complex human language. We believe that MMLA will serve as a solid foundation for exploring the potential of large language models in multimodal language analysis and provide valuable resources to advance this field. The datasets and code are open-sourced at https://github.com/thuiar/MMLA.
comment: 23 pages, 5 figures
FeedQUAC: Quick Unobtrusive AI-Generated Commentary
Design thrives on feedback. However, gathering constant feedback throughout the design process can be labor-intensive and disruptive. We explore how AI can bridge this gap by providing effortless, ambient feedback. We introduce FeedQUAC, a design companion that delivers real-time AI-generated commentary from a variety of perspectives through different personas. A design probe study with eight participants highlights how designers can leverage quick yet ambient AI feedback to enhance their creative workflows. Participants highlight benefits such as convenience, playfulness, confidence boost, and inspiration from this lightweight feedback agent, while suggesting additional features, like chat interaction and context curation. We discuss the role of AI feedback, its strengths and limitations, and how to integrate it into existing design workflows while balancing user involvement. Our findings also suggest that ambient interaction is a valuable consideration for both the design and evaluation of future creativity support systems.
comment: 20 pages, 12 figures
EEmo-Bench: A Benchmark for Multi-modal Large Language Models on Image Evoked Emotion Assessment
The furnishing of multi-modal large language models (MLLMs) has led to the emergence of numerous benchmark studies, particularly those evaluating their perception and understanding capabilities. Among these, understanding image-evoked emotions aims to enhance MLLMs' empathy, with significant applications such as human-machine interaction and advertising recommendations. However, current evaluations of this MLLM capability remain coarse-grained, and a systematic and comprehensive assessment is still lacking. To this end, we introduce EEmo-Bench, a novel benchmark dedicated to the analysis of the evoked emotions in images across diverse content categories. Our core contributions include: 1) Regarding the diversity of the evoked emotions, we adopt an emotion ranking strategy and employ the Valence-Arousal-Dominance (VAD) as emotional attributes for emotional assessment. In line with this methodology, 1,960 images are collected and manually annotated. 2) We design four tasks to evaluate MLLMs' ability to capture the evoked emotions by single images and their associated attributes: Perception, Ranking, Description, and Assessment. Additionally, image-pairwise analysis is introduced to investigate the model's proficiency in performing joint and comparative analysis. In total, we collect 6,773 question-answer pairs and perform a thorough assessment on 19 commonly-used MLLMs. The results indicate that while some proprietary and large-scale open-source MLLMs achieve promising overall performance, the analytical capabilities in certain evaluation dimensions remain suboptimal. Our EEmo-Bench paves the path for further research aimed at enhancing the comprehensive perceiving and understanding capabilities of MLLMs concerning image-evoked emotions, which is crucial for machine-centric emotion perception and understanding.
Seeing The Words: Evaluating AI-generated Biblical Art
The past years witnessed a significant amount of Artificial Intelligence (AI) tools that can generate images from texts. This triggers the discussion of whether AI can generate accurate images using text from the Bible with respect to the corresponding biblical contexts and backgrounds. Despite some existing attempts at a small scale, little work has been done to systematically evaluate these generated images. In this work, we provide a large dataset of over 7K images using biblical text as prompts. These images were evaluated with multiple neural network-based tools on various aspects. We provide an assessment of accuracy and some analysis from the perspective of religion and aesthetics. Finally, we discuss the use of the generated images and reflect on the performance of the AI generators.
Social sustainability through engagement in a training context with tools such as the Native Podcast and Facebook social network
The social dimension of sustainability seems to have been a notion rarely addressed in the literature (Dubois et al., 2001) until the early 2000s. The EUTIC 2023 symposium provides an opportunity to take up this topical issue. To this end, we are presenting an engagement process that is part of a sustainable development dynamic, based on digital tools inspired by everyday life, for applications in the context of training, with a view to lifelong learning. Our work, which stems from the information and communication sciences, is rooted in a multi-disciplinary approach that we believe can be echoed in a variety of disciplines, but which it is interesting to challenge, hence the purpose of this contribution.
comment: in French language
AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
MM-InstructEval: Zero-Shot Evaluation of (Multimodal) Large Language Models on Multimodal Reasoning Tasks
The emergence of multimodal large language models (MLLMs) has triggered extensive research in model evaluation. While existing evaluation studies primarily focus on unimodal (vision-only) comprehension and reasoning capabilities, they overlook critical assessments of complex multimodal reasoning tasks that require integrated understanding of both visual and textual contexts. Such multimodal tasks present unique challenges, demanding sophisticated reasoning across multiple modalities and deep comprehension of multimodal contexts. In this paper, we present MM-InstructEval, a comprehensive evaluation framework that incorporates diverse metrics to assess model performance across various multimodal reasoning tasks with vision-text contexts. We conduct extensive zero-shot evaluations on 45 models (including 36 MLLMs) across 16 multimodal datasets, encompassing 6 distinct tasks using 10 different instructions. Our framework introduces multiple innovative metrics, including the 'Best Performance' metric to benchmark peak model capabilities, the 'Mean Relative Gain' metric to assess overall efficacy across models and instructions, the 'Stability' metric to measure robustness, and the 'Adaptability' metric to quantify the compatibility between models and instructions. Through comprehensive evaluation and analysis, we uncover several significant insights about model architectures, instruction formats, and their interactions in multimodal reasoning tasks. Our findings establish new benchmarks for assessing the reasoning capabilities of MLLMs and provide strategic guidance for future developments. To facilitate continued research and evaluation in this field, we release our framework and resources at https://github.com/declare-lab/MM-InstructEval, with an interactive leaderboard available at MM-InstructEval Leaderboard (https://declare-lab.github.io/MM-InstructEval/).
comment: Accepted by the Information Fusion Journal
TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) endeavors to understand human sentiment by leveraging language, visual, and acoustic modalities. Despite the remarkable performance exhibited by previous MSA approaches, the presence of inherent multimodal heterogeneities poses a challenge, with the contribution of different modalities varying considerably. Past research predominantly focused on improving representation learning techniques and feature fusion strategies. However, many of these efforts overlooked the variation in semantic richness among different modalities, treating each modality uniformly. This approach may lead to underestimating the significance of strong modalities while overemphasizing the importance of weak ones. Motivated by these insights, we introduce a Text-oriented Cross-Attention Network (TCAN), emphasizing the predominant role of the text modality in MSA. Specifically, for each multimodal sample, by taking unaligned sequences of the three modalities as inputs, we initially allocate the extracted unimodal features into a visual-text and an acoustic-text pair. Subsequently, we implement self-attention on the text modality and apply text-queried cross-attention to the visual and acoustic modalities. To mitigate the influence of noise signals and redundant features, we incorporate a gated control mechanism into the framework. Additionally, we introduce unimodal joint learning to gain a deeper understanding of homogeneous emotional tendencies across diverse modalities through backpropagation. Experimental results demonstrate that TCAN consistently outperforms state-of-the-art MSA methods on two datasets (CMU-MOSI and CMU-MOSEI).
Computer Vision and Pattern Recognition
MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention
The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.
MR. Video: "MapReduce" is the Principle for Long Video Understanding
We propose MR. Video, an agentic long video understanding framework that demonstrates the simple yet effective MapReduce principle for processing long videos: (1) Map: independently and densely perceiving short video clips, and (2) Reduce: jointly aggregating information from all clips. Compared with sequence-to-sequence vision-language models (VLMs), MR. Video performs detailed short video perception without being limited by context length. Compared with existing video agents that typically rely on sequential key segment selection, the Map operation enables simpler and more scalable sequence parallel perception of short video segments. Its Reduce step allows for more comprehensive context aggregation and reasoning, surpassing explicit key segment retrieval. This MapReduce principle is applicable to both VLMs and video agents, and we use LLM agents to validate its effectiveness. In practice, MR. Video employs two MapReduce stages: (A) Captioning: generating captions for short video clips (map), then standardizing repeated characters and objects into shared names (reduce); (B) Analysis: for each user question, analyzing relevant information from individual short videos (map), and integrating them into a final answer (reduce). MR. Video achieves over 10% accuracy improvement on the challenging LVBench compared to state-of-the-art VLMs and video agents. Code is available at: https://github.com/ziqipang/MR-Video
comment: Preprint
Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning
Recent text-to-image diffusion models achieve impressive visual quality through extensive scaling of training data and model parameters, yet they often struggle with complex scenes and fine-grained details. Inspired by the self-reflection capabilities emergent in large language models, we propose ReflectionFlow, an inference-time framework enabling diffusion models to iteratively reflect upon and refine their outputs. ReflectionFlow introduces three complementary inference-time scaling axes: (1) noise-level scaling to optimize latent initialization; (2) prompt-level scaling for precise semantic guidance; and most notably, (3) reflection-level scaling, which explicitly provides actionable reflections to iteratively assess and correct previous generations. To facilitate reflection-level scaling, we construct GenRef, a large-scale dataset comprising 1 million triplets, each containing a reflection, a flawed image, and an enhanced image. Leveraging this dataset, we efficiently perform reflection tuning on state-of-the-art diffusion transformer, FLUX.1-dev, by jointly modeling multimodal inputs within a unified framework. Experimental results show that ReflectionFlow significantly outperforms naive noise-level scaling methods, offering a scalable and compute-efficient solution toward higher-quality image synthesis on challenging tasks.
comment: All code, checkpoints, and datasets are available at \url{https://diffusion-cot.github.io/reflection2perfection}
Describe Anything: Detailed Localized Image and Video Captioning
Generating detailed and accurate descriptions for specific regions in images and videos remains a fundamental challenge for vision-language models. We introduce the Describe Anything Model (DAM), a model designed for detailed localized captioning (DLC). DAM preserves both local details and global context through two key innovations: a focal prompt, which ensures high-resolution encoding of targeted regions, and a localized vision backbone, which integrates precise localization with its broader context. To tackle the scarcity of high-quality DLC data, we propose a Semi-supervised learning (SSL)-based Data Pipeline (DLC-SDP). DLC-SDP starts with existing segmentation datasets and expands to unlabeled web images using SSL. We introduce DLC-Bench, a benchmark designed to evaluate DLC without relying on reference captions. DAM sets new state-of-the-art on 7 benchmarks spanning keyword-level, phrase-level, and detailed multi-sentence localized image and video captioning.
comment: Project page: https://describe-anything.github.io/
Boosting Generative Image Modeling via Joint Image-Feature Synthesis
Latent diffusion models (LDMs) dominate high-quality image generation, yet integrating representation learning with generative modeling remains a challenge. We introduce a novel generative image modeling framework that seamlessly bridges this gap by leveraging a diffusion model to jointly model low-level image latents (from a variational autoencoder) and high-level semantic features (from a pretrained self-supervised encoder like DINO). Our latent-semantic diffusion approach learns to generate coherent image-feature pairs from pure noise, significantly enhancing both generative quality and training efficiency, all while requiring only minimal modifications to standard Diffusion Transformer architectures. By eliminating the need for complex distillation objectives, our unified design simplifies training and unlocks a powerful new inference strategy: Representation Guidance, which leverages learned semantics to steer and refine image generation. Evaluated in both conditional and unconditional settings, our method delivers substantial improvements in image quality and training convergence speed, establishing a new direction for representation-aware generative modeling.
ForesightNav: Learning Scene Imagination for Efficient Exploration
Understanding how humans leverage prior knowledge to navigate unseen environments while making exploratory decisions is essential for developing autonomous robots with similar abilities. In this work, we propose ForesightNav, a novel exploration strategy inspired by human imagination and reasoning. Our approach equips robotic agents with the capability to predict contextual information, such as occupancy and semantic details, for unexplored regions. These predictions enable the robot to efficiently select meaningful long-term navigation goals, significantly enhancing exploration in unseen environments. We validate our imagination-based approach using the Structured3D dataset, demonstrating accurate occupancy prediction and superior performance in anticipating unseen scene geometry. Our experiments show that the imagination module improves exploration efficiency in unseen environments, achieving a 100% completion rate for PointNav and an SPL of 67% for ObjectNav on the Structured3D Validation split. These contributions demonstrate the power of imagination-driven reasoning for autonomous systems to enhance generalizable and efficient exploration.
Vision language models are unreliable at trivial spatial cognition
Vision language models (VLMs) are designed to extract relevant visuospatial information from images. Some research suggests that VLMs can exhibit humanlike scene understanding, while other investigations reveal difficulties in their ability to process relational information. To achieve widespread applicability, VLMs must perform reliably, yielding comparable competence across a wide variety of related tasks. We sought to test how reliable these architectures are at engaging in trivial spatial cognition, e.g., recognizing whether one object is left of another in an uncluttered scene. We developed a benchmark dataset -- TableTest -- whose images depict 3D scenes of objects arranged on a table, and used it to evaluate state-of-the-art VLMs. Results show that performance could be degraded by minor variations of prompts that use logically equivalent descriptions. These analyses suggest limitations in how VLMs may reason about spatial relations in real-world applications. They also reveal novel opportunities for bolstering image caption corpora for more efficient training and testing.
Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis
Foundation models, trained on vast amounts of data using self-supervised techniques, have emerged as a promising frontier for advancing artificial intelligence (AI) applications in medicine. This study evaluates three different vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks. The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs. Self-supervised RAD-DINO consistently excelled in segmentation tasks, while text-supervised CheXagent demonstrated superior classification performance. BiomedCLIP showed inconsistent performance across tasks. A custom segmentation model that integrates global and local features substantially improved performance for all foundation models, particularly for challenging pneumothorax segmentation. The findings highlight that pre-training methodology significantly influences model performance on specific downstream tasks. For fine-grained segmentation tasks, models trained without text supervision performed better, while text-supervised models offered advantages in classification and interpretability. These insights provide guidance for selecting foundation models based on specific clinical applications in radiology.
LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale CVPR 2025
Recent video large language models (Video LLMs) often depend on costly human annotations or proprietary model APIs (e.g., GPT-4o) to produce training data, which limits their training at scale. In this paper, we explore large-scale training for Video LLM with cheap automatic speech recognition (ASR) transcripts. Specifically, we propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps. Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR, thus enabling the model to learn temporally-aligned, fine-grained vision-language modeling. To support the training algorithm, we introduce a data production pipeline to process YouTube videos and their closed captions (CC, same as ASR), resulting in Live-CC-5M dataset for pre-training and Live-WhisperX-526K dataset for high-quality supervised fine-tuning (SFT). Remarkably, even without SFT, the ASR-only pre-trained LiveCC-7B-Base model demonstrates competitive general video QA performance and exhibits a new capability in real-time video commentary. To evaluate this, we carefully design a new LiveSports-3K benchmark, using LLM-as-a-judge to measure the free-form commentary. Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-Video-72B) in commentary quality even working in a real-time mode. Meanwhile, it achieves state-of-the-art results at the 7B/8B scale on popular video QA benchmarks such as VideoMME and OVOBench, demonstrating the broad generalizability of our approach. All resources of this paper have been released at https://showlab.github.io/livecc.
comment: CVPR 2025. If any references are missing, please contact joyachen@u.nus.edu
PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning CVPR2025
Self-supervised representation learning for point cloud has demonstrated effectiveness in improving pre-trained model performance across diverse tasks. However, as pre-trained models grow in complexity, fully fine-tuning them for downstream applications demands substantial computational and storage resources. Parameter-efficient fine-tuning (PEFT) methods offer a promising solution to mitigate these resource requirements, yet most current approaches rely on complex adapter and prompt mechanisms that increase tunable parameters. In this paper, we propose PointLoRA, a simple yet effective method that combines low-rank adaptation (LoRA) with multi-scale token selection to efficiently fine-tune point cloud models. Our approach embeds LoRA layers within the most parameter-intensive components of point cloud transformers, reducing the need for tunable parameters while enhancing global feature capture. Additionally, multi-scale token selection extracts critical local information to serve as prompts for downstream fine-tuning, effectively complementing the global context captured by LoRA. The experimental results across various pre-trained models and three challenging public datasets demonstrate that our approach achieves competitive performance with only 3.43% of the trainable parameters, making it highly effective for resource-constrained applications. Source code is available at: https://github.com/songw-zju/PointLoRA.
comment: Accepted by CVPR2025
Efficient Temporal Consistency in Diffusion-Based Video Editing with Adaptor Modules: A Theoretical Framework
Adapter-based methods are commonly used to enhance model performance with minimal additional complexity, especially in video editing tasks that require frame-to-frame consistency. By inserting small, learnable modules into pretrained diffusion models, these adapters can maintain temporal coherence without extensive retraining. Approaches that incorporate prompt learning with both shared and frame-specific tokens are particularly effective in preserving continuity across frames at low training cost. In this work, we want to provide a general theoretical framework for adapters that maintain frame consistency in DDIM-based models under a temporal consistency loss. First, we prove that the temporal consistency objective is differentiable under bounded feature norms, and we establish a Lipschitz bound on its gradient. Second, we show that gradient descent on this objective decreases the loss monotonically and converges to a local minimum if the learning rate is within an appropriate range. Finally, we analyze the stability of modules in the DDIM inversion procedure, showing that the associated error remains controlled. These theoretical findings will reinforce the reliability of diffusion-based video editing methods that rely on adapter strategies and provide theoretical insights in video generation tasks.
comment: arXiv admin note: substantial text overlap with arXiv:2501.04606
MVQA: Mamba with Unified Sampling for Efficient Video Quality Assessment
The rapid growth of long-duration, high-definition videos has made efficient video quality assessment (VQA) a critical challenge. Existing research typically tackles this problem through two main strategies: reducing model parameters and resampling inputs. However, light-weight Convolution Neural Networks (CNN) and Transformers often struggle to balance efficiency with high performance due to the requirement of long-range modeling capabilities. Recently, the state-space model, particularly Mamba, has emerged as a promising alternative, offering linear complexity with respect to sequence length. Meanwhile, efficient VQA heavily depends on resampling long sequences to minimize computational costs, yet current resampling methods are often weak in preserving essential semantic information. In this work, we present MVQA, a Mamba-based model designed for efficient VQA along with a novel Unified Semantic and Distortion Sampling (USDS) approach. USDS combines semantic patch sampling from low-resolution videos and distortion patch sampling from original-resolution videos. The former captures semantically dense regions, while the latter retains critical distortion details. To prevent computation increase from dual inputs, we propose a fusion mechanism using pre-defined masks, enabling a unified sampling strategy that captures both semantic and quality information without additional computational burden. Experiments show that the proposed MVQA, equipped with USDS, achieve comparable performance to state-of-the-art methods while being $2\times$ as fast and requiring only $1/5$ GPU memory.
Efficient Adaptation of Deep Neural Networks for Semantic Segmentation in Space Applications
In recent years, the application of Deep Learning techniques has shown remarkable success in various computer vision tasks, paving the way for their deployment in extraterrestrial exploration. Transfer learning has emerged as a powerful strategy for addressing the scarcity of labeled data in these novel environments. This paper represents one of the first efforts in evaluating the feasibility of employing adapters toward efficient transfer learning for rock segmentation in extraterrestrial landscapes, mainly focusing on lunar and martian terrains. Our work suggests that the use of adapters, strategically integrated into a pre-trained backbone model, can be successful in reducing both bandwidth and memory requirements for the target extraterrestrial device. In this study, we considered two memory-saving strategies: layer fusion (to reduce to zero the inference overhead) and an ``adapter ranking'' (to also reduce the transmission cost). Finally, we evaluate these results in terms of task performance, memory, and computation on embedded devices, evidencing trade-offs that open the road to more research in the field.
A New Graph Grammar Formalism for Robust Syntactic Pattern Recognition
I introduce a formalism for representing the syntax of recursively structured graph-like patterns. It does not use production rules, like a conventional graph grammar, but represents the syntactic structure in a more direct and declarative way. The grammar and the pattern are both represented as networks, and parsing is seen as the construction of a homomorphism from the pattern to the grammar. The grammars can represent iterative, hierarchical and nested recursive structure in more than one dimension. This supports a highly parallel style of parsing, in which all aspects of pattern recognition (feature detection, segmentation, parsing, filling in missing symbols, top-down and bottom-up inference) are integrated into a single process, to exploit the synergy between them. The emphasis of this paper is on underlying theoretical issues, but I also give some example runs to illustrate the error-tolerant parsing of complex recursively structured patterns of 50-1000 symbols, involving variability in geometric relationships, blurry and indistinct symbols, overlapping symbols, cluttered images, and erased patches.
comment: 64 pages, 23 figures
Recent Advances and Future Directions in Extended Reality (XR): Exploring AI-Powered Spatial Intelligence
Extended Reality (XR), encompassing Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR), is a transformative technology bridging the physical and virtual world and it has diverse potential which will be ubiquitous in the future. This review examines XR's evolution through foundational framework - hardware ranging from monitors to sensors and software ranging from visual tasks to user interface; highlights state of the art (SOTA) XR products with the comparison and analysis of performance based on their foundational framework; discusses how commercial XR devices can support the demand of high-quality performance focusing on spatial intelligence. For future directions, attention should be given to the integration of multi-modal AI and IoT-driven digital twins to enable adaptive XR systems. With the concept of spatial intelligence, future XR should establish a new digital space with realistic experience that benefits humanity. This review underscores the pivotal role of AI in unlocking XR as the next frontier in human-computer interaction.
comment: 7 pages,4 figures
FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance, yet existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive subject-specific optimization, while zero-shot methods fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor employs semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated image. Additionally, our framework incorporates a novel noise initialization strategy to preserve geometry priors of reference subjects for robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
Visual Place Cell Encoding: A Computational Model for Spatial Representation and Cognitive Mapping
This paper presents the Visual Place Cell Encoding (VPCE) model, a biologically inspired computational framework for simulating place cell-like activation using visual input. Drawing on evidence that visual landmarks play a central role in spatial encoding, the proposed VPCE model activates visual place cells by clustering high-dimensional appearance features extracted from images captured by a robot-mounted camera. Each cluster center defines a receptive field, and activation is computed based on visual similarity using a radial basis function. We evaluate whether the resulting activation patterns correlate with key properties of biological place cells, including spatial proximity, orientation alignment, and boundary differentiation. Experiments demonstrate that the VPCE can distinguish between visually similar yet spatially distinct locations and adapt to environment changes such as the insertion or removal of walls. These results suggest that structured visual input, even in the absence of motion cues or reward-driven learning, is sufficient to generate place-cell-like spatial representations and support biologically inspired cognitive mapping.
Reasoning Physical Video Generation with Diffusion Timestep Tokens via Reinforcement Learning
Despite recent progress in video generation, producing videos that adhere to physical laws remains a significant challenge. Traditional diffusion-based methods struggle to extrapolate to unseen physical conditions (eg, velocity) due to their reliance on data-driven approximations. To address this, we propose to integrate symbolic reasoning and reinforcement learning to enforce physical consistency in video generation. We first introduce the Diffusion Timestep Tokenizer (DDT), which learns discrete, recursive visual tokens by recovering visual attributes lost during the diffusion process. The recursive visual tokens enable symbolic reasoning by a large language model. Based on it, we propose the Phys-AR framework, which consists of two stages: The first stage uses supervised fine-tuning to transfer symbolic knowledge, while the second stage applies reinforcement learning to optimize the model's reasoning abilities through reward functions based on physical conditions. Our approach allows the model to dynamically adjust and improve the physical properties of generated videos, ensuring adherence to physical laws. Experimental results demonstrate that PhysAR can generate videos that are physically consistent.
Benchmarking the Reproducibility of Brain MRI Segmentation Across Scanners and Time
Accurate and reproducible brain morphometry from structural MRI is critical for monitoring neuroanatomical changes across time and across imaging domains. Although deep learning has accelerated segmentation workflows, scanner-induced variability and reproducibility limitations remain-especially in longitudinal and multi-site settings. In this study, we benchmark two modern segmentation pipelines, FastSurfer and SynthSeg, both integrated into FreeSurfer, one of the most widely adopted tools in neuroimaging. Using two complementary datasets - a 17-year longitudinal cohort (SIMON) and a 9-site test-retest cohort (SRPBS)-we quantify inter-scan segmentation variability using Dice coefficient, Surface Dice, Hausdorff Distance (HD95), and Mean Absolute Percentage Error (MAPE). Our results reveal up to 7-8% volume variation in small subcortical structures such as the amygdala and ventral diencephalon, even under controlled test-retest conditions. This raises a key question: is it feasible to detect subtle longitudinal changes on the order of 5-10% in pea-sized brain regions, given the magnitude of domain-induced morphometric noise? We further analyze the effects of registration templates and interpolation modes, and propose surface-based quality filtering to improve segmentation reliability. This study provides a reproducible benchmark for morphometric reproducibility and emphasizes the need for harmonization strategies in real-world neuroimaging studies. Code and figures: https://github.com/kondratevakate/brain-mri-segmentation
Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models
Diagnostic imaging relies on interpreting both images and radiology reports, but the growing data volumes place significant pressure on medical experts, yielding increased errors and workflow backlogs. Medical vision-language models (med-VLMs) have emerged as a powerful framework to efficiently process multimodal imaging data, particularly in chest X-ray (CXR) evaluations, albeit their performance hinges on how well image and text representations are aligned. Existing alignment methods, predominantly based on contrastive learning, prioritize separation between disease classes over segregation of fine-grained pathology attributes like location, size or severity, leading to suboptimal representations. Here, we propose MedTrim (Meta-entity-driven Triplet mining), a novel method that enhances image-text alignment through multimodal triplet learning synergistically guided by disease class as well as adjectival and directional pathology descriptors. Unlike common alignment methods that separate broad disease classes, MedTrim leverages structured meta-entity information to preserve subtle but clinically significant intra-class variations. For this purpose, we first introduce an ontology-based entity recognition module that extracts pathology-specific meta-entities from CXR reports, as annotations on pathology attributes are rare in public datasets. For refined sample selection in triplet mining, we then introduce a novel score function that captures an aggregate measure of inter-sample similarity based on disease classes and adjectival/directional descriptors. Lastly, we introduce a multimodal triplet alignment objective for explicit within- and cross-modal alignment between samples sharing detailed pathology characteristics. Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
comment: 18 pages, 7 figures, 6 tables
A Clinician-Friendly Platform for Ophthalmic Image Analysis Without Technical Barriers
Artificial intelligence (AI) shows remarkable potential in medical imaging diagnostics, but current models typically require retraining when deployed across different clinical centers, limiting their widespread adoption. We introduce GlobeReady, a clinician-friendly AI platform that enables ocular disease diagnosis without retraining/fine-tuning or technical expertise. GlobeReady achieves high accuracy across imaging modalities: 93.9-98.5% for an 11-category fundus photo dataset and 87.2-92.7% for a 15-category OCT dataset. Through training-free local feature augmentation, it addresses domain shifts across centers and populations, reaching an average accuracy of 88.9% across five centers in China, 86.3% in Vietnam, and 90.2% in the UK. The built-in confidence-quantifiable diagnostic approach further boosted accuracy to 94.9-99.4% (fundus) and 88.2-96.2% (OCT), while identifying out-of-distribution cases at 86.3% (49 CFP categories) and 90.6% (13 OCT categories). Clinicians from multiple countries rated GlobeReady highly (average 4.6 out of 5) for its usability and clinical relevance. These results demonstrate GlobeReady's robust, scalable diagnostic capability and potential to support ophthalmic care without technical barriers.
ViSMaP: Unsupervised Hour-long Video Summarisation by Meta-Prompting
We introduce ViSMap: Unsupervised Video Summarisation by Meta Prompting, a system to summarise hour long videos with no-supervision. Most existing video understanding models work well on short videos of pre-segmented events, yet they struggle to summarise longer videos where relevant events are sparsely distributed and not pre-segmented. Moreover, long-form video understanding often relies on supervised hierarchical training that needs extensive annotations which are costly, slow and prone to inconsistency. With ViSMaP we bridge the gap between short videos (where annotated data is plentiful) and long ones (where it's not). We rely on LLMs to create optimised pseudo-summaries of long videos using segment descriptions from short ones. These pseudo-summaries are used as training data for a model that generates long-form video summaries, bypassing the need for expensive annotations of long videos. Specifically, we adopt a meta-prompting strategy to iteratively generate and refine creating pseudo-summaries of long videos. The strategy leverages short clip descriptions obtained from a supervised short video model to guide the summary. Each iteration uses three LLMs working in sequence: one to generate the pseudo-summary from clip descriptions, another to evaluate it, and a third to optimise the prompt of the generator. This iteration is necessary because the quality of the pseudo-summaries is highly dependent on the generator prompt, and varies widely among videos. We evaluate our summaries extensively on multiple datasets; our results show that ViSMaP achieves performance comparable to fully supervised state-of-the-art models while generalising across domains without sacrificing performance. Code will be released upon publication.
Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
RaSCL: Radar to Satellite Crossview Localization
GNSS is unreliable, inaccurate, and insufficient in many real-time autonomous field applications. In this work, we present a GNSS-free global localization solution that contains a method of registering imaging radar on the ground with overhead RGB imagery, with joint optimization of relative poses from odometry and global poses from our overhead registration. Previous works have used various combinations of ground sensors and overhead imagery, and different feature extraction and matching methods. These include various handcrafted and deep-learning-based methods for extracting features from overhead imagery. Our work presents insights on extracting essential features from RGB overhead images for effective global localization against overhead imagery using only ground radar and a single georeferenced initial guess. We motivate our method by evaluating it on datasets in diverse geographic conditions and robotic platforms, including on an Unmanned Surface Vessel (USV) as well as urban and suburban driving datasets.
MS-Occ: Multi-Stage LiDAR-Camera Fusion for 3D Semantic Occupancy Prediction
Accurate 3D semantic occupancy perception is essential for autonomous driving in complex environments with diverse and irregular objects. While vision-centric methods suffer from geometric inaccuracies, LiDAR-based approaches often lack rich semantic information. To address these limitations, MS-Occ, a novel multi-stage LiDAR-camera fusion framework which includes middle-stage fusion and late-stage fusion, is proposed, integrating LiDAR's geometric fidelity with camera-based semantic richness via hierarchical cross-modal fusion. The framework introduces innovations at two critical stages: (1) In the middle-stage feature fusion, the Gaussian-Geo module leverages Gaussian kernel rendering on sparse LiDAR depth maps to enhance 2D image features with dense geometric priors, and the Semantic-Aware module enriches LiDAR voxels with semantic context via deformable cross-attention; (2) In the late-stage voxel fusion, the Adaptive Fusion (AF) module dynamically balances voxel features across modalities, while the High Classification Confidence Voxel Fusion (HCCVF) module resolves semantic inconsistencies using self-attention-based refinement. Experiments on the nuScenes-OpenOccupancy benchmark show that MS-Occ achieves an Intersection over Union (IoU) of 32.1% and a mean IoU (mIoU) of 25.3%, surpassing the state-of-the-art by +0.7% IoU and +2.4% mIoU. Ablation studies further validate the contribution of each module, with substantial improvements in small-object perception, demonstrating the practical value of MS-Occ for safety-critical autonomous driving scenarios.
comment: 8 pages, 5 figures
Integrating Non-Linear Radon Transformation for Diabetic Retinopathy Grading
Diabetic retinopathy is a serious ocular complication that poses a significant threat to patients' vision and overall health. Early detection and accurate grading are essential to prevent vision loss. Current automatic grading methods rely heavily on deep learning applied to retinal fundus images, but the complex, irregular patterns of lesions in these images, which vary in shape and distribution, make it difficult to capture subtle changes. This study introduces RadFuse, a multi-representation deep learning framework that integrates non-linear RadEx-transformed sinogram images with traditional fundus images to enhance diabetic retinopathy detection and grading. Our RadEx transformation, an optimized non-linear extension of the Radon transform, generates sinogram representations to capture complex retinal lesion patterns. By leveraging both spatial and transformed domain information, RadFuse enriches the feature set available to deep learning models, improving the differentiation of severity levels. We conducted extensive experiments on two benchmark datasets, APTOS-2019 and DDR, using three convolutional neural networks (CNNs): ResNeXt-50, MobileNetV2, and VGG19. RadFuse showed significant improvements over fundus-image-only models across all three CNN architectures and outperformed state-of-the-art methods on both datasets. For severity grading across five stages, RadFuse achieved a quadratic weighted kappa of 93.24%, an accuracy of 87.07%, and an F1-score of 87.17%. In binary classification between healthy and diabetic retinopathy cases, the method reached an accuracy of 99.09%, precision of 98.58%, and recall of 99.6%, surpassing previously established models. These results demonstrate RadFuse's capacity to capture complex non-linear features, advancing diabetic retinopathy classification and promoting the integration of advanced mathematical transforms in medical image analysis.
MedNNS: Supernet-based Medical Task-Adaptive Neural Network Search
Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
DERD-Net: Learning Depth from Event-based Ray Densities
Event cameras offer a promising avenue for multi-view stereo depth estimation and Simultaneous Localization And Mapping (SLAM) due to their ability to detect blur-free 3D edges at high-speed and over broad illumination conditions. However, traditional deep learning frameworks designed for conventional cameras struggle with the asynchronous, stream-like nature of event data, as their architectures are optimized for discrete, image-like inputs. We propose a scalable, flexible and adaptable framework for pixel-wise depth estimation with event cameras in both monocular and stereo setups. The 3D scene structure is encoded into disparity space images (DSIs), representing spatial densities of rays obtained by back-projecting events into space via known camera poses. Our neural network processes local subregions of the DSIs combining 3D convolutions and a recurrent structure to recognize valuable patterns for depth prediction. Local processing enables fast inference with full parallelization and ensures constant ultra-low model complexity and memory costs, regardless of camera resolution. Experiments on standard benchmarks (MVSEC and DSEC datasets) demonstrate unprecedented effectiveness: (i) using purely monocular data, our method achieves comparable results to existing stereo methods; (ii) when applied to stereo data, it strongly outperforms all state-of-the-art (SOTA) approaches, reducing the mean absolute error by at least 42%; (iii) our method also allows for increases in depth completeness by more than 3-fold while still yielding a reduction in median absolute error of at least 30%. Given its remarkable performance and effective processing of event-data, our framework holds strong potential to become a standard approach for using deep learning for event-based depth estimation and SLAM. Project page: https://github.com/tub-rip/DERD-Net
comment: 13 pages, 3 figures, 14 tables. Project page: https://github.com/tub-rip/DERD-Net
Text-based Animatable 3D Avatars with Morphable Model Alignment
The generation of high-quality, animatable 3D head avatars from text has enormous potential in content creation applications such as games, movies, and embodied virtual assistants. Current text-to-3D generation methods typically combine parametric head models with 2D diffusion models using score distillation sampling to produce 3D-consistent results. However, they struggle to synthesize realistic details and suffer from misalignments between the appearance and the driving parametric model, resulting in unnatural animation results. We discovered that these limitations stem from ambiguities in the 2D diffusion predictions during 3D avatar distillation, specifically: i) the avatar's appearance and geometry is underconstrained by the text input, and ii) the semantic alignment between the predictions and the parametric head model is insufficient because the diffusion model alone cannot incorporate information from the parametric model. In this work, we propose a novel framework, AnimPortrait3D, for text-based realistic animatable 3DGS avatar generation with morphable model alignment, and introduce two key strategies to address these challenges. First, we tackle appearance and geometry ambiguities by utilizing prior information from a pretrained text-to-3D model to initialize a 3D avatar with robust appearance, geometry, and rigging relationships to the morphable model. Second, we refine the initial 3D avatar for dynamic expressions using a ControlNet that is conditioned on semantic and normal maps of the morphable model to ensure accurate alignment. As a result, our method outperforms existing approaches in terms of synthesis quality, alignment, and animation fidelity. Our experiments show that the proposed method advances the state of the art in text-based, animatable 3D head avatar generation.
Human-Imperceptible Physical Adversarial Attack for NIR Face Recognition Models
Near-infrared (NIR) face recognition systems, which can operate effectively in low-light conditions or in the presence of makeup, exhibit vulnerabilities when subjected to physical adversarial attacks. To further demonstrate the potential risks in real-world applications, we design a novel, stealthy, and practical adversarial patch to attack NIR face recognition systems in a black-box setting. We achieved this by utilizing human-imperceptible infrared-absorbing ink to generate multiple patches with digitally optimized shapes and positions for infrared images. To address the optimization mismatch between digital and real-world NIR imaging, we develop a light reflection model for human skin to minimize pixel-level discrepancies by simulating NIR light reflection. Compared to state-of-the-art (SOTA) physical attacks on NIR face recognition systems, the experimental results show that our method improves the attack success rate in both digital and physical domains, particularly maintaining effectiveness across various face postures. Notably, the proposed approach outperforms SOTA methods, achieving an average attack success rate of 82.46% in the physical domain across different models, compared to 64.18% for existing methods. The artifact is available at https://anonymous.4open.science/r/Human-imperceptible-adversarial-patch-0703/.
Locating and Mitigating Gradient Conflicts in Point Cloud Domain Adaptation via Saliency Map Skewness
Object classification models utilizing point cloud data are fundamental for 3D media understanding, yet they often struggle with unseen or out-of-distribution (OOD) scenarios. Existing point cloud unsupervised domain adaptation (UDA) methods typically employ a multi-task learning (MTL) framework that combines primary classification tasks with auxiliary self-supervision tasks to bridge the gap between cross-domain feature distributions. However, our further experiments demonstrate that not all gradients from self-supervision tasks are beneficial and some may negatively impact the classification performance. In this paper, we propose a novel solution, termed Saliency Map-based Data Sampling Block (SM-DSB), to mitigate these gradient conflicts. Specifically, our method designs a new scoring mechanism based on the skewness of 3D saliency maps to estimate gradient conflicts without requiring target labels. Leveraging this, we develop a sample selection strategy that dynamically filters out samples whose self-supervision gradients are not beneficial for the classification. Our approach is scalable, introducing modest computational overhead, and can be integrated into all the point cloud UDA MTL frameworks. Extensive evaluations demonstrate that our method outperforms state-of-the-art approaches. In addition, we provide a new perspective on understanding the UDA problem through back-propagation analysis.
Development and evaluation of a deep learning algorithm for German word recognition from lip movements
When reading lips, many people benefit from additional visual information from the lip movements of the speaker, which is, however, very error prone. Algorithms for lip reading with artificial intelligence based on artificial neural networks significantly improve word recognition but are not available for the German language. A total of 1806 video clips with only one German-speaking person each were selected, split into word segments, and assigned to word classes using speech-recognition software. In 38,391 video segments with 32 speakers, 18 polysyllabic, visually distinguishable words were used to train and validate a neural network. The 3D Convolutional Neural Network and Gated Recurrent Units models and a combination of both models (GRUConv) were compared, as were different image sections and color spaces of the videos. The accuracy was determined in 5000 training epochs. Comparison of the color spaces did not reveal any relevant different correct classification rates in the range from 69% to 72%. With a cut to the lips, a significantly higher accuracy of 70% was achieved than when cut to the entire speaker's face (34%). With the GRUConv model, the maximum accuracies were 87% with known speakers and 63% in the validation with unknown speakers. The neural network for lip reading, which was first developed for the German language, shows a very high level of accuracy, comparable to English-language algorithms. It works with unknown speakers as well and can be generalized with more word classes.
comment: English version of journal article in HNO 2022
Satellite to GroundScape -- Large-scale Consistent Ground View Generation from Satellite Views
Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.
comment: 8 figures
Towards prediction of morphological heart age from computed tomography angiography
Age prediction from medical images or other health-related non-imaging data is an important approach to data-driven aging research, providing knowledge of how much information a specific tissue or organ carries about the chronological age of the individual. In this work, we studied the prediction of age from computed tomography angiography (CTA) images, which provide detailed representations of the heart morphology, with the goals of (i) studying the relationship between morphology and aging, and (ii) developing a novel \emph{morphological heart age} biomarker. We applied an image registration-based method that standardizes the images from the whole cohort into a single space. We then extracted supervoxels (using unsupervised segmentation), and corresponding robust features of density and local volume, which provide a detailed representation of the heart morphology while being robust to registration errors. Machine learning models are then trained to fit regression models from these features to the chronological age. We applied the method to a subset of the images from the Swedish CArdioPulomonary bioImage Study (SCAPIS) dataset, consisting of 721 females and 666 males. We observe a mean absolute error of $2.74$ years for females and $2.77$ years for males. The predictions from different sub-regions of interest were observed to be more highly correlated with the predictions from the whole heart, compared to the chronological age, revealing a high consistency in the predictions from morphology. Saliency analysis was also performed on the prediction models to study what regions are associated positively and negatively with the predicted age. This resulted in detailed association maps where the density and volume of known, as well as some novel sub-regions of interest, are determined to be important. The saliency analysis aids in the interpretability of the models and their predictions.
comment: 24 pages
Model-based Metric 3D Shape and Motion Reconstruction of Wild Bottlenose Dolphins in Drone-Shot Videos
We address the problem of estimating the metric 3D shape and motion of wild dolphins from monocular video, with the aim of assessing their body condition. While considerable progress has been made in reconstructing 3D models of terrestrial quadrupeds, aquatic animals remain unexplored due to the difficulty of observing them in their natural underwater environment. To address this, we propose a model-based approach that incorporates a transmission model to account for water-induced occlusion. We apply our method to video captured under different sea conditions. We estimate mass and volume, and compare our results to a manual 2D measurements-based method.
comment: 9 pages, 7 figures
Pose Optimization for Autonomous Driving Datasets using Neural Rendering Models
Autonomous driving systems rely on accurate perception and localization of the ego car to ensure safety and reliability in challenging real-world driving scenarios. Public datasets play a vital role in benchmarking and guiding advancement in research by providing standardized resources for model development and evaluation. However, potential inaccuracies in sensor calibration and vehicle poses within these datasets can lead to erroneous evaluations of downstream tasks, adversely impacting the reliability and performance of the autonomous systems. To address this challenge, we propose a robust optimization method based on Neural Radiance Fields (NeRF) to refine sensor poses and calibration parameters, enhancing the integrity of dataset benchmarks. To validate improvement in accuracy of our optimized poses without ground truth, we present a thorough evaluation process, relying on reprojection metrics, Novel View Synthesis rendering quality, and geometric alignment. We demonstrate that our method achieves significant improvements in sensor pose accuracy. By optimizing these critical parameters, our approach not only improves the utility of existing datasets but also paves the way for more reliable autonomous driving models. To foster continued progress in this field, we make the optimized sensor poses publicly available, providing a valuable resource for the research community.
comment: under review
Multi-Scale Tensorial Summation and Dimensional Reduction Guided Neural Network for Edge Detection
Edge detection has attracted considerable attention thanks to its exceptional ability to enhance performance in downstream computer vision tasks. In recent years, various deep learning methods have been explored for edge detection tasks resulting in a significant performance improvement compared to conventional computer vision algorithms. In neural networks, edge detection tasks require considerably large receptive fields to provide satisfactory performance. In a typical convolutional operation, such a large receptive field can be achieved by utilizing a significant number of consecutive layers, which yields deep network structures. Recently, a Multi-scale Tensorial Summation (MTS) factorization operator was presented, which can achieve very large receptive fields even from the initial layers. In this paper, we propose a novel MTS Dimensional Reduction (MTS-DR) module guided neural network, MTS-DR-Net, for the edge detection task. The MTS-DR-Net uses MTS layers, and corresponding MTS-DR blocks as a new backbone to remove redundant information initially. Such a dimensional reduction module enables the neural network to focus specifically on relevant information (i.e., necessary subspaces). Finally, a weight U-shaped refinement module follows MTS-DR blocks in the MTS-DR-Net. We conducted extensive experiments on two benchmark edge detection datasets: BSDS500 and BIPEDv2 to verify the effectiveness of our model. The implementation of the proposed MTS-DR-Net can be found at https://github.com/LeiXuAI/MTS-DR-Net.git.
DSDNet: Raw Domain Demoiréing via Dual Color-Space Synergy
With the rapid advancement of mobile imaging, capturing screens using smartphones has become a prevalent practice in distance learning and conference recording. However, moir\'e artifacts, caused by frequency aliasing between display screens and camera sensors, are further amplified by the image signal processing pipeline, leading to severe visual degradation. Existing sRGB domain demoir\'eing methods struggle with irreversible information loss, while recent two-stage raw domain approaches suffer from information bottlenecks and inference inefficiency. To address these limitations, we propose a single-stage raw domain demoir\'eing framework, Dual-Stream Demoir\'eing Network (DSDNet), which leverages the synergy of raw and YCbCr images to remove moir\'e while preserving luminance and color fidelity. Specifically, to guide luminance correction and moir\'e removal, we design a raw-to-YCbCr mapping pipeline and introduce the Synergic Attention with Dynamic Modulation (SADM) module. This module enriches the raw-to-sRGB conversion with cross-domain contextual features. Furthermore, to better guide color fidelity, we develop a Luminance-Chrominance Adaptive Transformer (LCAT), which decouples luminance and chrominance representations. Extensive experiments demonstrate that DSDNet outperforms state-of-the-art methods in both visual quality and quantitative evaluation, and achieves an inference speed $\mathrm{\textbf{2.4x}}$ faster than the second-best method, highlighting its practical advantages. We provide an anonymous online demo at https://xxxxxxxxdsdnet.github.io/DSDNet/.
GADS: A Super Lightweight Model for Head Pose Estimation
In human-computer interaction, head pose estimation profoundly influences application functionality. Although utilizing facial landmarks is valuable for this purpose, existing landmark-based methods prioritize precision over simplicity and model size, limiting their deployment on edge devices and in compute-poor environments. To bridge this gap, we propose \textbf{Grouped Attention Deep Sets (GADS)}, a novel architecture based on the Deep Set framework. By grouping landmarks into regions and employing small Deep Set layers, we reduce computational complexity. Our multihead attention mechanism extracts and combines inter-group information, resulting in a model that is $7.5\times$ smaller and executes $25\times$ faster than the current lightest state-of-the-art model. Notably, our method achieves an impressive reduction, being $4321\times$ smaller than the best-performing model. We introduce vanilla GADS and Hybrid-GADS (landmarks + RGB) and evaluate our models on three benchmark datasets -- AFLW2000, BIWI, and 300W-LP. We envision our architecture as a robust baseline for resource-constrained head pose estimation methods.
comment: 16 pages, 5 tables, 10 figures, not submitted to any conference or journal
SAGA: Semantic-Aware Gray color Augmentation for Visible-to-Thermal Domain Adaptation across Multi-View Drone and Ground-Based Vision Systems CVPR
Domain-adaptive thermal object detection plays a key role in facilitating visible (RGB)-to-thermal (IR) adaptation by reducing the need for co-registered image pairs and minimizing reliance on large annotated IR datasets. However, inherent limitations of IR images, such as the lack of color and texture cues, pose challenges for RGB-trained models, leading to increased false positives and poor-quality pseudo-labels. To address this, we propose Semantic-Aware Gray color Augmentation (SAGA), a novel strategy for mitigating color bias and bridging the domain gap by extracting object-level features relevant to IR images. Additionally, to validate the proposed SAGA for drone imagery, we introduce the IndraEye, a multi-sensor (RGB-IR) dataset designed for diverse applications. The dataset contains 5,612 images with 145,666 instances, captured from diverse angles, altitudes, backgrounds, and times of day, offering valuable opportunities for multimodal learning, domain adaptation for object detection and segmentation, and exploration of sensor-specific strengths and weaknesses. IndraEye aims to enhance the development of more robust and accurate aerial perception systems, especially in challenging environments. Experimental results show that SAGA significantly improves RGB-to-IR adaptation for autonomous driving and IndraEye dataset, achieving consistent performance gains of +0.4% to +7.6% (mAP) when integrated with state-of-the-art domain adaptation techniques. The dataset and codes are available at https://github.com/airliisc/IndraEye.
comment: Accepted at CVPR-W PBVS 2025
Structure-Preserving Zero-Shot Image Editing via Stage-Wise Latent Injection in Diffusion Models
We propose a diffusion-based framework for zero-shot image editing that unifies text-guided and reference-guided approaches without requiring fine-tuning. Our method leverages diffusion inversion and timestep-specific null-text embeddings to preserve the structural integrity of the source image. By introducing a stage-wise latent injection strategy-shape injection in early steps and attribute injection in later steps-we enable precise, fine-grained modifications while maintaining global consistency. Cross-attention with reference latents facilitates semantic alignment between the source and reference. Extensive experiments across expression transfer, texture transformation, and style infusion demonstrate state-of-the-art performance, confirming the method's scalability and adaptability to diverse image editing scenarios.
RePOPE: Impact of Annotation Errors on the POPE Benchmark
Since data annotation is costly, benchmark datasets often incorporate labels from established image datasets. In this work, we assess the impact of label errors in MSCOCO on the frequently used object hallucination benchmark POPE. We re-annotate the benchmark images and identify an imbalance in annotation errors across different subsets. Evaluating multiple models on the revised labels, which we denote as RePOPE, we observe notable shifts in model rankings, highlighting the impact of label quality. Code and data are available at https://github.com/YanNeu/RePOPE .
You Sense Only Once Beneath: Ultra-Light Real-Time Underwater Object Detection
Despite the remarkable achievements in object detection, the model's accuracy and efficiency still require further improvement under challenging underwater conditions, such as low image quality and limited computational resources. To address this, we propose an Ultra-Light Real-Time Underwater Object Detection framework, You Sense Only Once Beneath (YSOOB). Specifically, we utilize a Multi-Spectrum Wavelet Encoder (MSWE) to perform frequency-domain encoding on the input image, minimizing the semantic loss caused by underwater optical color distortion. Furthermore, we revisit the unique characteristics of even-sized and transposed convolutions, allowing the model to dynamically select and enhance key information during the resampling process, thereby improving its generalization ability. Finally, we eliminate model redundancy through a simple yet effective channel compression and reconstructed large kernel convolution (RLKC) to achieve model lightweight. As a result, forms a high-performance underwater object detector YSOOB with only 1.2 million parameters. Extensive experimental results demonstrate that, with the fewest parameters, YSOOB achieves mAP50 of 83.1% and 82.9% on the URPC2020 and DUO datasets, respectively, comparable to the current SOTA detectors. The inference speed reaches 781.3 FPS and 57.8 FPS on the T4 GPU (TensorRT FP16) and the edge computing device Jetson Xavier NX (TensorRT FP16), surpassing YOLOv12-N by 28.1% and 22.5%, respectively.
Vidi: Large Multimodal Models for Video Understanding and Editing
Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
DINOv2-powered Few-Shot Semantic Segmentation: A Unified Framework via Cross-Model Distillation and 4D Correlation Mining
Few-shot semantic segmentation has gained increasing interest due to its generalization capability, i.e., segmenting pixels of novel classes requiring only a few annotated images. Prior work has focused on meta-learning for support-query matching, with extensive development in both prototype-based and aggregation-based methods. To address data scarcity, recent approaches have turned to foundation models to enhance representation transferability for novel class segmentation. Among them, a hybrid dual-modal framework including both DINOv2 and SAM has garnered attention due to their complementary capabilities. We wonder "can we build a unified model with knowledge from both foundation models?" To this end, we propose FS-DINO, with only DINOv2's encoder and a lightweight segmenter. The segmenter features a bottleneck adapter, a meta-visual prompt generator based on dense similarities and semantic embeddings, and a decoder. Through coarse-to-fine cross-model distillation, we effectively integrate SAM's knowledge into our lightweight segmenter, which can be further enhanced by 4D correlation mining on support-query pairs. Extensive experiments on COCO-20i, PASCAL-5i, and FSS-1000 demonstrate the effectiveness and superiority of our method.
Performance Estimation for Supervised Medical Image Segmentation Models on Unlabeled Data Using UniverSeg
The performance of medical image segmentation models is usually evaluated using metrics like the Dice score and Hausdorff distance, which compare predicted masks to ground truth annotations. However, when applying the model to unseen data, such as in clinical settings, it is often impractical to annotate all the data, making the model's performance uncertain. To address this challenge, we propose the Segmentation Performance Evaluator (SPE), a framework for estimating segmentation models' performance on unlabeled data. This framework is adaptable to various evaluation metrics and model architectures. Experiments on six publicly available datasets across six evaluation metrics including pixel-based metrics such as Dice score and distance-based metrics like HD95, demonstrated the versatility and effectiveness of our approach, achieving a high correlation (0.956$\pm$0.046) and low MAE (0.025$\pm$0.019) compare with real Dice score on the independent test set. These results highlight its ability to reliably estimate model performance without requiring annotations. The SPE framework integrates seamlessly into any model training process without adding training overhead, enabling performance estimation and facilitating the real-world application of medical image segmentation algorithms. The source code is publicly available
Motion-Enhanced Nonlocal Similarity Implicit Neural Representation for Infrared Dim and Small Target Detection
Infrared dim and small target detection presents a significant challenge due to dynamic multi-frame scenarios and weak target signatures in the infrared modality. Traditional low-rank plus sparse models often fail to capture dynamic backgrounds and global spatial-temporal correlations, which results in background leakage or target loss. In this paper, we propose a novel motion-enhanced nonlocal similarity implicit neural representation (INR) framework to address these challenges. We first integrate motion estimation via optical flow to capture subtle target movements, and propose multi-frame fusion to enhance motion saliency. Second, we leverage nonlocal similarity to construct patch tensors with strong low-rank properties, and propose an innovative tensor decomposition-based INR model to represent the nonlocal patch tensor, effectively encoding both the nonlocal low-rankness and spatial-temporal correlations of background through continuous neural representations. An alternating direction method of multipliers is developed for the nonlocal INR model, which enjoys theoretical fixed-point convergence. Experimental results show that our approach robustly separates dim targets from complex infrared backgrounds, outperforming state-of-the-art methods in detection accuracy and robustness.
An XAI-based Analysis of Shortcut Learning in Neural Networks
Machine learning models tend to learn spurious features - features that strongly correlate with target labels but are not causal. Existing approaches to mitigate models' dependence on spurious features work in some cases, but fail in others. In this paper, we systematically analyze how and where neural networks encode spurious correlations. We introduce the neuron spurious score, an XAI-based diagnostic measure to quantify a neuron's dependence on spurious features. We analyze both convolutional neural networks (CNNs) and vision transformers (ViTs) using architecture-specific methods. Our results show that spurious features are partially disentangled, but the degree of disentanglement varies across model architectures. Furthermore, we find that the assumptions behind existing mitigation methods are incomplete. Our results lay the groundwork for the development of novel methods to mitigate spurious correlations and make AI models safer to use in practice.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence 2025 (XAI-2025)
DiTPainter: Efficient Video Inpainting with Diffusion Transformers
Many existing video inpainting algorithms utilize optical flows to construct the corresponding maps and then propagate pixels from adjacent frames to missing areas by mapping. Despite the effectiveness of the propagation mechanism, they might encounter blurry and inconsistencies when dealing with inaccurate optical flows or large masks. Recently, Diffusion Transformer (DiT) has emerged as a revolutionary technique for video generation tasks. However, pretrained DiT models for video generation all contain a large amount of parameters, which makes it very time consuming to apply to video inpainting tasks. In this paper, we present DiTPainter, an end-to-end video inpainting model based on Diffusion Transformer (DiT). DiTPainter uses an efficient transformer network designed for video inpainting, which is trained from scratch instead of initializing from any large pretrained models. DiTPainter can address videos with arbitrary lengths and can be applied to video decaptioning and video completion tasks with an acceptable time cost. Experiments show that DiTPainter outperforms existing video inpainting algorithms with higher quality and better spatial-temporal consistency.
A Vision-Enabled Prosthetic Hand for Children with Upper Limb Disabilities
This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist children aged 10-12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance, multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both accessible and affordable for low-income families. Using 3D printing technology and integrating advanced machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c) ultra-low-power operation that delivers high performance within constrained power and resource limits.
AffordanceSAM: Segment Anything Once More in Affordance Grounding
Improving the generalization ability of an affordance grounding model to recognize regions for unseen objects and affordance functions is crucial for real-world application. However, current models are still far away from such standards. To address this problem, we introduce AffordanceSAM, an effective approach that extends SAM's generalization capacity to the domain of affordance grounding. For the purpose of thoroughly transferring SAM's robust performance in segmentation to affordance, we initially propose an affordance-adaption module in order to help modify SAM's segmentation output to be adapted to the specific functional regions required for affordance grounding. We concurrently make a coarse-to-fine training recipe to make SAM first be aware of affordance objects and actions coarsely, and then be able to generate affordance heatmaps finely. Both quantitative and qualitative experiments show the strong generalization capacity of our AffordanceSAM, which not only surpasses previous methods under AGD20K benchmark but also shows evidence to handle the task with novel objects and affordance functions.
comment: SAM Meets Affordance Grounding
RepNet-VSR: Reparameterizable Architecture for High-Fidelity Video Super-Resolution CVPR 2025
As a fundamental challenge in visual computing, video super-resolution (VSR) focuses on reconstructing highdefinition video sequences from their degraded lowresolution counterparts. While deep convolutional neural networks have demonstrated state-of-the-art performance in spatial-temporal super-resolution tasks, their computationally intensive nature poses significant deployment challenges for resource-constrained edge devices, particularly in real-time mobile video processing scenarios where power efficiency and latency constraints coexist. In this work, we propose a Reparameterizable Architecture for High Fidelity Video Super Resolution method, named RepNet-VSR, for real-time 4x video super-resolution. On the REDS validation set, the proposed model achieves 27.79 dB PSNR when processing 180p to 720p frames in 103 ms per 10 frames on a MediaTek Dimensity NPU. The competition results demonstrate an excellent balance between restoration quality and deployment efficiency. The proposed method scores higher than the previous champion algorithm of MAI video super-resolution challenge.
comment: Champion Solution for CVPR 2025 MAI VSR Track
ZeroSlide: Is Zero-Shot Classification Adequate for Lifelong Learning in Whole-Slide Image Analysis in the Era of Pathology Vision-Language Foundation Models?
Lifelong learning for whole slide images (WSIs) poses the challenge of training a unified model to perform multiple WSI-related tasks, such as cancer subtyping and tumor classification, in a distributed, continual fashion. This is a practical and applicable problem in clinics and hospitals, as WSIs are large, require storage, processing, and transfer time. Training new models whenever new tasks are defined is time-consuming. Recent work has applied regularization- and rehearsal-based methods to this setting. However, the rise of vision-language foundation models that align diagnostic text with pathology images raises the question: are these models alone sufficient for lifelong WSI learning using zero-shot classification, or is further investigation into continual learning strategies needed to improve performance? To our knowledge, this is the first study to compare conventional continual-learning approaches with vision-language zero-shot classification for WSIs. Our source code and experimental results will be available soon.
comment: 10 pages, 3 figures, 1 table, conference submission
FaceInsight: A Multimodal Large Language Model for Face Perception
Recent advances in multimodal large language models (MLLMs) have demonstrated strong capabilities in understanding general visual content. However, these general-domain MLLMs perform poorly in face perception tasks, often producing inaccurate or misleading responses to face-specific queries. To address this gap, we propose FaceInsight, the versatile face perception MLLM that provides fine-grained facial information. Our approach introduces visual-textual alignment of facial knowledge to model both uncertain dependencies and deterministic relationships among facial information, mitigating the limitations of language-driven reasoning. Additionally, we incorporate face segmentation maps as an auxiliary perceptual modality, enriching the visual input with localized structural cues to enhance semantic understanding. Comprehensive experiments and analyses across three face perception tasks demonstrate that FaceInsight consistently outperforms nine compared MLLMs under both training-free and fine-tuned settings.
AdaViP: Aligning Multi-modal LLMs via Adaptive Vision-enhanced Preference Optimization
Preference alignment through Direct Preference Optimization (DPO) has demonstrated significant effectiveness in aligning multimodal large language models (MLLMs) with human preferences. However, existing methods focus primarily on language preferences while neglecting the critical visual context. In this paper, we propose an Adaptive Vision-enhanced Preference optimization (AdaViP) that addresses these limitations through two key innovations: (1) vision-based preference pair construction, which integrates multiple visual foundation models to strategically remove key visual elements from the image, enhancing MLLMs' sensitivity to visual details; and (2) adaptive preference optimization that dynamically balances vision- and language-based preferences for more accurate alignment. Extensive evaluations across different benchmarks demonstrate our effectiveness. Notably, our AdaViP-7B achieves 93.7% and 96.4% reductions in response-level and mentioned-level hallucination respectively on the Object HalBench, significantly outperforming current state-of-the-art methods.
SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction
The analysis and prediction of agent trajectories are crucial for decision-making processes in intelligent systems, with precise short-term trajectory forecasting being highly significant across a range of applications. Agents and their social interactions have been quantified and modeled by researchers from various perspectives; however, substantial limitations exist in the current work due to the inherent high uncertainty of agent intentions and the complex higher-order influences among neighboring groups. SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups while reinforcing the primary role of first-order intention interactions between neighbors and the target agent. This method develops a multi-order intention fusion model to achieve a more comprehensive understanding of both direct and indirect intention information. Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data, thereby enhancing model interpretability. Furthermore, a global trajectory optimizer is introduced to enable more accurate and efficient parallel predictions. By incorporating a novel loss function that accounts for distance and direction during training, experimental results demonstrate that the model outperforms previous state-of-the-art baselines across multiple metrics in both dynamic and static datasets.
comment: 11 pages,6 figures
HS-Mamba: Full-Field Interaction Multi-Groups Mamba for Hyperspectral Image Classification
Hyperspectral image (HSI) classification has been one of the hot topics in remote sensing fields. Recently, the Mamba architecture based on selective state-space models (S6) has demonstrated great advantages in long sequence modeling. However, the unique properties of hyperspectral data, such as high dimensionality and feature inlining, pose challenges to the application of Mamba to HSI classification. To compensate for these shortcomings, we propose an full-field interaction multi-groups Mamba framework (HS-Mamba), which adopts a strategy different from pixel-patch based or whole-image based, but combines the advantages of both. The patches cut from the whole image are sent to multi-groups Mamba, combined with positional information to perceive local inline features in the spatial and spectral domains, and the whole image is sent to a lightweight attention module to enhance the global feature representation ability. Specifically, HS-Mamba consists of a dual-channel spatial-spectral encoder (DCSS-encoder) module and a lightweight global inline attention (LGI-Att) branch. The DCSS-encoder module uses multiple groups of Mamba to decouple and model the local features of dual-channel sequences with non-overlapping patches. The LGI-Att branch uses a lightweight compressed and extended attention module to perceive the global features of the spatial and spectral domains of the unsegmented whole image. By fusing local and global features, high-precision classification of hyperspectral images is achieved. Extensive experiments demonstrate the superiority of the proposed HS-Mamba, outperforming state-of-the-art methods on four benchmark HSI datasets.
SonarT165: A Large-scale Benchmark and STFTrack Framework for Acoustic Object Tracking
Underwater observation systems typically integrate optical cameras and imaging sonar systems. When underwater visibility is insufficient, only sonar systems can provide stable data, which necessitates exploration of the underwater acoustic object tracking (UAOT) task. Previous studies have explored traditional methods and Siamese networks for UAOT. However, the absence of a unified evaluation benchmark has significantly constrained the value of these methods. To alleviate this limitation, we propose the first large-scale UAOT benchmark, SonarT165, comprising 165 square sequences, 165 fan sequences, and 205K high-quality annotations. Experimental results demonstrate that SonarT165 reveals limitations in current state-of-the-art SOT trackers. To address these limitations, we propose STFTrack, an efficient framework for acoustic object tracking. It includes two novel modules, a multi-view template fusion module (MTFM) and an optimal trajectory correction module (OTCM). The MTFM module integrates multi-view feature of both the original image and the binary image of the dynamic template, and introduces a cross-attention-like layer to fuse the spatio-temporal target representations. The OTCM module introduces the acoustic-response-equivalent pixel property and proposes normalized pixel brightness response scores, thereby suppressing suboptimal matches caused by inaccurate Kalman filter prediction boxes. To further improve the model feature, STFTrack introduces a acoustic image enhancement method and a Frequency Enhancement Module (FEM) into its tracking pipeline. Comprehensive experiments show the proposed STFTrack achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/SonarT165.
Multi-Modal Fusion of In-Situ Video Data and Process Parameters for Online Forecasting of Cookie Drying Readiness
Food drying is essential for food production, extending shelf life, and reducing transportation costs. Accurate real-time forecasting of drying readiness is crucial for minimizing energy consumption, improving productivity, and ensuring product quality. However, this remains challenging due to the dynamic nature of drying, limited data availability, and the lack of effective predictive analytical methods. To address this gap, we propose an end-to-end multi-modal data fusion framework that integrates in-situ video data with process parameters for real-time food drying readiness forecasting. Our approach leverages a new encoder-decoder architecture with modality-specific encoders and a transformer-based decoder to effectively extract features while preserving the unique structure of each modality. We apply our approach to sugar cookie drying, where time-to-ready is predicted at each timestamp. Experimental results demonstrate that our model achieves an average prediction error of only 15 seconds, outperforming state-of-the-art data fusion methods by 65.69% and a video-only model by 11.30%. Additionally, our model balances prediction accuracy, model size, and computational efficiency, making it well-suited for heterogenous industrial datasets. The proposed model is extensible to various other industrial modality fusion tasks for online decision-making.
comment: 17 pages, 12 figures
Analytical Softmax Temperature Setting from Feature Dimensions for Model- and Domain-Robust Classification
In deep learning-based classification tasks, the softmax function's temperature parameter $T$ critically influences the output distribution and overall performance. This study presents a novel theoretical insight that the optimal temperature $T^*$ is uniquely determined by the dimensionality of the feature representations, thereby enabling training-free determination of $T^*$. Despite this theoretical grounding, empirical evidence reveals that $T^*$ fluctuates under practical conditions owing to variations in models, datasets, and other confounding factors. To address these influences, we propose and optimize a set of temperature determination coefficients that specify how $T^*$ should be adjusted based on the theoretical relationship to feature dimensionality. Additionally, we insert a batch normalization layer immediately before the output layer, effectively stabilizing the feature space. Building on these coefficients and a suite of large-scale experiments, we develop an empirical formula to estimate $T^*$ without additional training while also introducing a corrective scheme to refine $T^*$ based on the number of classes and task complexity. Our findings confirm that the derived temperature not only aligns with the proposed theoretical perspective but also generalizes effectively across diverse tasks, consistently enhancing classification performance and offering a practical, training-free solution for determining $T^*$.
comment: 22 pages, 11 figures, under review
Bayesian Autoencoder for Medical Anomaly Detection: Uncertainty-Aware Approach for Brain 2 MRI Analysis
In medical imaging, anomaly detection is a vital element of healthcare diagnostics, especially for neurological conditions which can be life-threatening. Conventional deterministic methods often fall short when it comes to capturing the inherent uncertainty of anomaly detection tasks. This paper introduces a Bayesian Variational Autoencoder (VAE) equipped with multi-head attention mechanisms for detecting anomalies in brain magnetic resonance imaging (MRI). For the purpose of improving anomaly detection performance, we incorporate both epistemic and aleatoric uncertainty estimation through Bayesian inference. The model was tested on the BraTS2020 dataset, and the findings were a 0.83 ROC AUC and a 0.83 PR AUC. The data in our paper suggests that modeling uncertainty is an essential component of anomaly detection, enhancing both performance and interpretability and providing confidence estimates, as well as anomaly predictions, for clinicians to leverage in making medical decisions.
comment: 16 pages, 6 figures
VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
In histopathology, tissue sections are typically stained using common H&E staining or special stains (MAS, PAS, PASM, etc.) to clearly visualize specific tissue structures. The rapid advancement of deep learning offers an effective solution for generating virtually stained images, significantly reducing the time and labor costs associated with traditional histochemical staining. However, a new challenge arises in separating the fundamental visual characteristics of tissue sections from the visual differences induced by staining agents. Additionally, virtual staining often overlooks essential pathological knowledge and the physical properties of staining, resulting in only style-level transfer. To address these issues, we introduce, for the first time in virtual staining tasks, a pathological vision-language large model (VLM) as an auxiliary tool. We integrate contrastive learnable prompts, foundational concept anchors for tissue sections, and staining-specific concept anchors to leverage the extensive knowledge of the pathological VLM. This approach is designed to describe, frame, and enhance the direction of virtual staining. Furthermore, we have developed a data augmentation method based on the constraints of the VLM. This method utilizes the VLM's powerful image interpretation capabilities to further integrate image style and structural information, proving beneficial in high-precision pathological diagnostics. Extensive evaluations on publicly available multi-domain unpaired staining datasets demonstrate that our method can generate highly realistic images and enhance the accuracy of downstream tasks, such as glomerular detection and segmentation. Our code is available at: https://github.com/CZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR
InstaRevive: One-Step Image Enhancement via Dynamic Score Matching ICLR 2025
Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.
comment: Accepted by ICLR 2025
Fluorescence Reference Target Quantitative Analysis Library
Standardized performance evaluation of fluorescence imaging systems remains a critical unmet need in the field of fluorescence-guided surgery (FGS). While the American Association of Physicists in Medicine (AAPM) TG311 report and recent FDA draft guidance provide recommended metrics for system characterization, practical tools for extracting these metrics remain limited, inconsistent, and often inaccessible. We present QUEL-QAL, an open-source Python library designed to streamline and standardize the quantitative analysis of fluorescence images using solid reference targets. The library provides a modular, reproducible workflow that includes region of interest (ROI) detection, statistical analysis, and visualization capabilities. QUEL-QAL supports key metrics such as response linearity, limit of detection, depth sensitivity, and spatial resolution, in alignment with regulatory and academic guidance. Built on widely adopted Python packages, the library is designed to be extensible, enabling users to adapt it to novel target designs and analysis protocols. By promoting transparency, reproducibility, and regulatory alignment, QUEL-QAL offers a foundational tool to support standardized benchmarking and accelerate the development and evaluation of fluorescence imaging systems.
comment: 12 pages, 1 table, 4 figures. Code available: https://github.com/QUEL-Imaging/quel-qal), PyPi: quel-qal
SignX: The Foundation Model for Sign Recognition
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID glosses, which serve to uniquely identify ASL signs. Note that there is no shared convention for assigning such glosses to ASL signs, so it is essential that the same glossing conventions are used for all of the data in the datasets that are employed. This paper proposes SignX, a foundation model framework for sign recognition. It is a concise yet powerful framework applicable to multiple human activity recognition scenarios. First, we developed a Pose2Gloss component based on an inverse diffusion model, which contains a multi-track pose fusion layer that unifies five of the most powerful pose information sources--SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation--into a single latent pose representation. Second, we trained a Video2Pose module based on ViT that can directly convert raw video into signer pose representation. Through this 2-stage training framework, we enable sign language recognition models to be compatible with existing pose formats, laying the foundation for the common pose estimation necessary for sign recognition. Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
Regularizing Differentiable Architecture Search with Smooth Activation
Differentiable Architecture Search (DARTS) is an efficient Neural Architecture Search (NAS) method but suffers from robustness, generalization, and discrepancy issues. Many efforts have been made towards the performance collapse issue caused by skip dominance with various regularization techniques towards operation weights, path weights, noise injection, and super-network redesign. It had become questionable at a certain point if there could exist a better and more elegant way to retract the search to its intended goal -- NAS is a selection problem. In this paper, we undertake a simple but effective approach, named Smooth Activation DARTS (SA-DARTS), to overcome skip dominance and discretization discrepancy challenges. By leveraging a smooth activation function on architecture weights as an auxiliary loss, our SA-DARTS mitigates the unfair advantage of weight-free operations, converging to fanned-out architecture weight values, and can recover the search process from skip-dominance initialization. Through theoretical and empirical analysis, we demonstrate that the SA-DARTS can yield new state-of-the-art (SOTA) results on NAS-Bench-201, classification, and super-resolution. Further, we show that SA-DARTS can help improve the performance of SOTA models with fewer parameters, such as Information Multi-distillation Network on the super-resolution task.
MetaHarm: Harmful YouTube Video Dataset Annotated by Domain Experts, GPT-4-Turbo, and Crowdworkers
Short video platforms, such as YouTube, Instagram, or TikTok, are used by billions of users. These platforms expose users to harmful content, ranging from clickbait or physical harms to hate or misinformation. Yet, we lack a comprehensive understanding and measurement of online harm on short video platforms. Toward this end, we present two large-scale datasets of multi-modal and multi-categorical online harm: (1) 60,906 systematically selected potentially harmful YouTube videos and (2) 19,422 videos annotated by three labeling actors: trained domain experts, GPT-4-Turbo (using 14 image frames, 1 thumbnail, and text metadata), and crowdworkers (Amazon Mechanical Turk master workers). The annotated dataset includes both (a) binary classification (harmful vs. harmless) and (b) multi-label categorizations of six harm categories: Information, Hate and harassment, Addictive, Clickbait, Sexual, and Physical harms. Furthermore, the annotated dataset provides (1) ground truth data with videos annotated consistently across (a) all three actors and (b) the majority of the labeling actors, and (2) three data subsets labeled by individual actors. These datasets are expected to facilitate future work on online harm, aid in (multi-modal) classification efforts, and advance the identification and potential mitigation of harmful content on video platforms.
Naturally Computed Scale Invariance in the Residual Stream of ResNet18
An important capacity in visual object recognition is invariance to image-altering variables which leave the identity of objects unchanged, such as lighting, rotation, and scale. How do neural networks achieve this? Prior mechanistic interpretability research has illuminated some invariance-building circuitry in InceptionV1, but the results are limited and networks with different architectures have remained largely unexplored. This work investigates ResNet18 with a particular focus on its residual stream, an architectural component which InceptionV1 lacks. We observe that many convolutional channels in intermediate blocks exhibit scale invariant properties, computed by the element-wise residual summation of scale equivariant representations: the block input's smaller-scale copy with the block pre-sum output's larger-scale copy. Through subsequent ablation experiments, we attempt to causally link these neural properties with scale-robust object recognition behavior. Our tentative findings suggest how the residual stream computes scale invariance and its possible role in behavior. Code is available at: https://github.com/cest-andre/residual-stream-interp
An Automated Pipeline for Few-Shot Bird Call Classification: A Case Study with the Tooth-Billed Pigeon
This paper presents an automated one-shot bird call classification pipeline designed for rare species absent from large publicly available classifiers like BirdNET and Perch. While these models excel at detecting common birds with abundant training data, they lack options for species with only 1-3 known recordings-a critical limitation for conservationists monitoring the last remaining individuals of endangered birds. To address this, we leverage the embedding space of large bird classification networks and develop a classifier using cosine similarity, combined with filtering and denoising preprocessing techniques, to optimize detection with minimal training data. We evaluate various embedding spaces using clustering metrics and validate our approach in both a simulated scenario with Xeno-Canto recordings and a real-world test on the critically endangered tooth-billed pigeon (Didunculus strigirostris), which has no existing classifiers and only three confirmed recordings. The final model achieved 1.0 recall and 0.95 accuracy in detecting tooth-billed pigeon calls, making it practical for use in the field. This open-source system provides a practical tool for conservationists seeking to detect and monitor rare species on the brink of extinction.
comment: 16 pages, 5 figures, 4 tables
Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
comment: Under Review
DeepCS-TRD, a Deep Learning-based Cross-Section Tree Ring Detector
Here, we propose Deep CS-TRD, a new automatic algorithm for detecting tree rings in whole cross-sections. It substitutes the edge detection step of CS-TRD by a deep-learning-based approach (U-Net), which allows the application of the method to different image domains: microscopy, scanner or smartphone acquired, and species (Pinus taeda, Gleditsia triachantos and Salix glauca). Additionally, we introduce two publicly available datasets of annotated images to the community. The proposed method outperforms state-of-the-art approaches in macro images (Pinus taeda and Gleditsia triacanthos) while showing slightly lower performance in microscopy images of Salix glauca. To our knowledge, this is the first paper that studies automatic tree ring detection for such different species and acquisition conditions. The dataset and source code are available in https://github.com/hmarichal93/deepcstrd
comment: 12 pages, 6 figures. Accepted in ICIAP 2025
Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
This study performs a comprehensive evaluation of quantitative measurements as extracted from automated deep-learning-based segmentation methods, beyond traditional Dice Similarity Coefficient assessments, focusing on six quantitative metrics, namely SUVmax, SUVmean, total lesion activity (TLA), tumor volume (TMTV), lesion count, and lesion spread. We analyzed 380 prostate-specific membrane antigen (PSMA) targeted [18F]DCFPyL PET/CT scans of patients with biochemical recurrence of prostate cancer, training deep neural networks, U-Net, Attention U-Net and SegResNet with four loss functions: Dice Loss, Dice Cross Entropy, Dice Focal Loss, and our proposed L1 weighted Dice Focal Loss (L1DFL). Evaluations indicated that Attention U-Net paired with L1DFL achieved the strongest correlation with the ground truth (concordance correlation = 0.90-0.99 for SUVmax and TLA), whereas models employing the Dice Loss and the other two compound losses, particularly with SegResNet, underperformed. Equivalence testing (TOST, alpha = 0.05, Delta = 20%) confirmed high performance for SUV metrics, lesion count and TLA, with L1DFL yielding the best performance. By contrast, tumor volume and lesion spread exhibited greater variability. Bland-Altman, Coverage Probability, and Total Deviation Index analyses further highlighted that our proposed L1DFL minimizes variability in quantification of the ground truth clinical measures. The code is publicly available at: https://github.com/ObedDzik/pca\_segment.git.
comment: 12 pages, 8 figures
CLIP-IT: CLIP-based Pairing for Histology Images Classification
Multimodal learning has shown significant promise for improving medical image analysis by integrating information from complementary data sources. This is widely employed for training vision-language models (VLMs) for cancer detection based on histology images and text reports. However, one of the main limitations in training these VLMs is the requirement for large paired datasets, raising concerns over privacy, and data collection, annotation, and maintenance costs. To address this challenge, we introduce CLIP-IT method to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source. At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset without the need for manually paired samples. Then, we propose a multimodal training procedure that distills the knowledge from the paired text modality to the unimodal image classifier for enhanced performance without the need for the textual data during inference. A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities. During inference, the improved unimodal histology classifier is used, with only minimal additional computational complexity. Our experiments on challenging PCAM, CRC, and BACH histology image datasets show that CLIP-IT can provide a cost-effective approach to leverage privileged textual information and outperform unimodal classifiers for histology.
A detection-task-specific deep-learning method to improve the quality of sparse-view myocardial perfusion SPECT images
Myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT) is a widely used and cost-effective diagnostic tool for coronary artery disease. However, the lengthy scanning time in this imaging procedure can cause patient discomfort, motion artifacts, and potentially inaccurate diagnoses due to misalignment between the SPECT scans and the CT-scans which are acquired for attenuation compensation. Reducing projection angles is a potential way to shorten scanning time, but this can adversely impact the quality of the reconstructed images. To address this issue, we propose a detection-task-specific deep-learning method for sparse-view MPI SPECT images. This method integrates an observer loss term that penalizes the loss of anthropomorphic channel features with the goal of improving performance in perfusion defect-detection task. We observed that, on the task of detecting myocardial perfusion defects, the proposed method yielded an area under the receiver operating characteristic (ROC) curve (AUC) significantly larger than the sparse-view protocol. Further, the proposed method was observed to be able to restore the structure of the left ventricle wall, demonstrating ability to overcome sparse-sampling artifacts. Our preliminary results motivate further evaluations of the method.
Classification of Firn Data via Topological Features
In this paper we evaluate the performance of topological features for generalizable and robust classification of firn image data, with the broader goal of understanding the advantages, pitfalls, and trade-offs in topological featurization. Firn refers to layers of granular snow within glaciers that haven't been compressed into ice. This compactification process imposes distinct topological and geometric structure on firn that varies with depth within the firn column, making topological data analysis (TDA) a natural choice for understanding the connection between depth and structure. We use two classes of topological features, sublevel set features and distance transform features, together with persistence curves, to predict sample depth from microCT images. A range of challenging training-test scenarios reveals that no one choice of method dominates in all categories, and uncoveres a web of trade-offs between accuracy, interpretability, and generalizability.
DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
VistaDepth: Frequency Modulation With Bias Reweighting For Enhanced Long-Range Depth Estimation
Monocular depth estimation (MDE) aims to predict per-pixel depth values from a single RGB image. Recent advancements have positioned diffusion models as effective MDE tools by framing the challenge as a conditional image generation task. Despite their progress, these methods often struggle with accurately reconstructing distant depths, due largely to the imbalanced distribution of depth values and an over-reliance on spatial-domain features. To overcome these limitations, we introduce VistaDepth, a novel framework that integrates adaptive frequency-domain feature enhancements with an adaptive weight-balancing mechanism into the diffusion process. Central to our approach is the Latent Frequency Modulation (LFM) module, which dynamically refines spectral responses in the latent feature space, thereby improving the preservation of structural details and reducing noisy artifacts. Furthermore, we implement an adaptive weighting strategy that modulates the diffusion loss in real-time, enhancing the model's sensitivity towards distant depth reconstruction. These innovations collectively result in superior depth perception performance across both distance and detail. Experimental evaluations confirm that VistaDepth achieves state-of-the-art performance among diffusion-based MDE techniques, particularly excelling in the accurate reconstruction of distant regions.
comment: 8 pages, 6 figures, 4 tables
Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperforms state-of-the-art methods. Our code is available at https://github.com/LiuShiBen/DAFC.
comment: 12 pages, 5 figures
EmoSEM: Segment and Explain Emotion Stimuli in Visual Art
This paper focuses on a key challenge in visual art understanding: given an art image, the model pinpoints pixel regions that trigger a specific human emotion, and generates linguistic explanations for the emotional arousal. Despite recent advances in art understanding, pixel-level emotion understanding still faces a dual challenge: first, the subjectivity of emotion makes it difficult for general segmentation models like SAM to adapt to emotion-oriented segmentation tasks; and second, the abstract nature of art expression makes it difficult for captioning models to balance pixel-level semantic understanding and emotion reasoning. To solve the above problems, this paper proposes the Emotion stimuli Segmentation and Explanation Model (EmoSEM) to endow the segmentation model SAM with emotion comprehension capability. First, to enable the model to perform segmentation under the guidance of emotional intent well, we introduce an emotional prompt with a learnable mask token as the conditional input for segmentation decoding. Then, we design an emotion projector to establish the association between emotion and visual features. Next, more importantly, to address emotion-visual stimuli alignment, we develop a lightweight prefix projector, a module that fuses the learned emotional mask with the corresponding emotion into a unified representation compatible with the language model. Finally, we input the joint visual, mask, and emotional tokens into the language model and output the emotional explanations. It ensures that the generated interpretations remain semantically and emotionally coherent with the visual stimuli. The method innovatively realizes end-to-end modeling from low-level pixel features to high-level emotion interpretation, providing the first interpretable fine-grained analysis framework for artistic emotion computing. Extensive experiments validate the effectiveness of our model.
LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty
Earth observation (EO) data such as satellite imagery can have far-reaching impacts on our understanding of the geography of poverty, especially when coupled with machine learning (ML) and computer vision. Early research used computer vision to predict living conditions in areas with limited data, but recent studies increasingly focus on causal analysis. Despite this shift, the use of EO-ML methods for causal inference lacks thorough documentation, and best practices are still developing. Through a comprehensive scoping review, we catalog the current literature on EO-ML methods in causal analysis. We synthesize five principal approaches to incorporating EO data in causal workflows: (1) outcome imputation for downstream causal analysis, (2) EO image deconfounding, (3) EO-based treatment effect heterogeneity, (4) EO-based transportability analysis, and (5) image-informed causal discovery. Building on these findings, we provide a detailed protocol guiding researchers in integrating EO data into causal analysis -- covering data requirements, computer vision model selection, and evaluation metrics. While our focus centers on health and living conditions outcomes, our protocol is adaptable to other sustainable development domains utilizing EO data.
comment: To appear as: Sakamoto, Kazuki, Connor T. Jerzak, and Adel Daoud. "A Scoping Review of Earth Observation and Machine Learning for Causal Inference: Implications for the Geography of Poverty." In Geography of Poverty, edited by Ola Hall and Ibrahim Wahab. Edward Elgar Publishing (Cheltenham, UK), 2025
Is Large-Scale Pretraining the Secret to Good Domain Generalization? ICLR 2025
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains. Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results. However, it remains unclear if DG finetuning methods are becoming better over time, or if improved benchmark performance is simply an artifact of stronger pre-training. Prior studies have shown that perceptual similarity to pre-training data correlates with zero-shot performance, but we find the effect limited in the DG setting. Instead, we posit that having perceptually similar data in pretraining is not enough; and that it is how well these data were learned that determines performance. This leads us to introduce the Alignment Hypothesis, which states that the final DG performance will be high if and only if alignment of image and class label text embeddings is high. Our experiments confirm the Alignment Hypothesis is true, and we use it as an analysis tool of existing DG methods evaluated on DomainBed datasets by splitting evaluation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP. Put together, our findings highlight the need for DG methods which can generalize beyond pretraining alignment.
comment: Accepted at ICLR 2025
Onboard Satellite Image Classification for Earth Observation: A Comparative Study of ViT Models
This study focuses on identifying the most effective pre-trained model for land use classification in onboard satellite processing, emphasizing achieving high accuracy, computational efficiency, and robustness against noisy data conditions commonly encountered during satellite-based inference. Through extensive experimentation, we compare the performance of traditional CNN-based, ResNet-based, and various pre-trained vision Transformer models. Our findings demonstrate that pre-trained Vision Transformer (ViT) models, particularly MobileViTV2 and EfficientViT-M2, outperform models trained from scratch in terms of accuracy and efficiency. These models achieve high performance with reduced computational requirements and exhibit greater resilience during inference under noisy conditions. While MobileViTV2 has excelled on clean validation data, EfficientViT-M2 has proved more robust when handling noise, making it the most suitable model for onboard satellite EO tasks. Our experimental results demonstrate that EfficientViT-M2 is the optimal choice for reliable and efficient RS-IC in satellite operations, achieving 98.76 % of accuracy, precision, and recall. Precisely, EfficientViT-M2 delivers the highest performance across all metrics, excels in training efficiency (1,000s) and inference time (10s), and demonstrates greater robustness (overall robustness score of 0.79). Consequently, EfficientViT-M2 consumes 63.93 % less power than MobileViTV2 (79.23 W) and 73.26 % less power than SwinTransformer (108.90 W). This highlights its significant advantage in energy efficiency.
Talk is Not Always Cheap: Promoting Wireless Sensing Models with Text Prompts
Wireless signal-based human sensing technologies, such as WiFi, millimeter-wave (mmWave) radar, and Radio Frequency Identification (RFID), enable the detection and interpretation of human presence, posture, and activities, thereby providing critical support for applications in public security, healthcare, and smart environments. These technologies exhibit notable advantages due to their non-contact operation and environmental adaptability; however, existing systems often fail to leverage the textual information inherent in datasets. To address this, we propose an innovative text-enhanced wireless sensing framework, WiTalk, that seamlessly integrates semantic knowledge through three hierarchical prompt strategies-label-only, brief description, and detailed action description-without requiring architectural modifications or incurring additional data costs. We rigorously validate this framework across three public benchmark datasets: XRF55 for human action recognition (HAR), and WiFiTAL and XRFV2 for WiFi temporal action localization (TAL). Experimental results demonstrate significant performance improvements: on XRF55, accuracy for WiFi, RFID, and mmWave increases by 3.9%, 2.59%, and 0.46%, respectively; on WiFiTAL, the average performance of WiFiTAD improves by 4.98%; and on XRFV2, the mean average precision gains across various methods range from 4.02% to 13.68%. Our codes have been included in https://github.com/yangzhenkui/WiTalk.
comment: 10 pages
Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation CVPR 2025
Prompts play a critical role in unleashing the power of language and vision foundation models for specific tasks. For the first time, we introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything. Specifically, we use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution. Our approach centers on a concise prompt fusion design that integrates the LiDAR at multiple scales within the depth decoder. To address training challenges posed by limited datasets containing both LiDAR depth and precise GT depth, we propose a scalable data pipeline that includes synthetic data LiDAR simulation and real data pseudo GT depth generation. Our approach sets new state-of-the-arts on the ARKitScenes and ScanNet++ datasets and benefits downstream applications, including 3D reconstruction and generalized robotic grasping.
comment: CVPR 2025, Project page: https://PromptDA.github.io/
HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression
In this work, we propose a novel compression framework for 3D Gaussian Splatting (3DGS) data. Building on anchor-based 3DGS methodologies, our approach compresses all attributes within each anchor by introducing a novel Hybrid Entropy Model for 3D Gaussian Splatting (HEMGS) to achieve hybrid lossy-lossless compression. It consists of three main components: a variable-rate predictor, a hyperprior network, and an autoregressive network. First, unlike previous methods that adopt multiple models to achieve multi-rate lossy compression, thereby increasing training overhead, our variable-rate predictor enables variable-rate compression with a single model and a hyperparameter $\lambda$ by producing a learned Quantization Step feature for versatile lossy compression. Second, to improve lossless compression, the hyperprior network captures both scene-agnostic and scene-specific features to generate a prior feature, while the autoregressive network employs an adaptive context selection algorithm with flexible receptive fields to produce a contextual feature. By integrating these two features, HEMGS can accurately estimate the distribution of the current coding element within each attribute, enabling improved entropy coding and reduced storage. We integrate HEMGS into a compression framework, and experimental results on four benchmarks indicate that HEMGS achieves about a 40% average reduction in size while maintaining rendering quality over baseline methods and achieving state-of-the-art compression results.
Towards Robust Infrared Small Target Detection: A Feature-Enhanced and Sensitivity-Tunable Framework
Recently, single-frame infrared small target (SIRST) detection technology has attracted wide-spread attention. However, due to the intrinsic feature scarcity in infrared small targets, precise segmentation of small targets from complex backgrounds remains a significant challenge. Different from most existing deep learning-based methods that focus on improving network architectures, we propose a feature-enhanced and sensitivity-tunable (FEST) framework, which is compatible with existing SIRST detection networks and further enhances their detection performance. The FEST framework improves the model's robustness from two aspects: feature enhancement and target confidence regulation. For feature enhancement, on the one hand, we adopt a multi-scale fusion strategy, which can effectively improve the model's perception and adaptability to multi-scale features of multi-size targets. On the other hand, we construct an edge enhancement difficulty mining (EEDM) loss based on the analysis of the task characteristics, which helps guide the network to continuously focus on challenging target regions and edge features during training. For target confidence regulation, we design an adjustable sensitivity (AS) strategy for network post-processing. This strategy not only enhances the adaptability of the network in complex scenarios, but also significantly improves the detection rate of infrared small targets while maintaining segmentation accuracy. Extensive experimental results show that our FEST framework can significantly enhance the performance of existing SIRST detection networks. Notably, the multi-scale direction-aware network (MSDA-Net) equipped with the FEST framework won the first prize in the PRCV 2024 wide-area infrared small target detection competition.
Switch-a-View: View Selection Learned from Unlabeled In-the-wild Videos
We introduce SWITCH-A-VIEW, a model that learns to automatically select the viewpoint to display at each timepoint when creating a how-to video. The key insight of our approach is how to train such a model from unlabeled -- but human-edited -- video samples. We pose a pretext task that pseudo-labels segments in the training videos for their primary viewpoint (egocentric or exocentric), and then discovers the patterns between the visual and spoken content in a how-to video on the one hand and its view-switch moments on the other hand. Armed with this predictor, our model can be applied to new multi-view video settings for orchestrating which viewpoint should be displayed when, even when such settings come with limited labels. We demonstrate our idea on a variety of real-world videos from HowTo100M and Ego-Exo4D, and rigorously validate its advantages. Project: https://vision.cs.utexas.edu/projects/switch_a_view/.
PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution CVPR 2025
Polarization cameras can capture multiple polarized images with different polarizer angles in a single shot, bringing convenience to polarization-based downstream tasks. However, their direct outputs are color-polarization filter array (CPFA) raw images, requiring demosaicing to reconstruct full-resolution, full-color polarized images; unfortunately, this necessary step introduces artifacts that make polarization-related parameters such as the degree of polarization (DoP) and angle of polarization (AoP) prone to error. Besides, limited by the hardware design, the resolution of a polarization camera is often much lower than that of a conventional RGB camera. Existing polarized image demosaicing (PID) methods are limited in that they cannot enhance resolution, while polarized image super-resolution (PISR) methods, though designed to obtain high-resolution (HR) polarized images from the demosaicing results, tend to retain or even amplify errors in the DoP and AoP introduced by demosaicing artifacts. In this paper, we propose PIDSR, a joint framework that performs complementary Polarized Image Demosaicing and Super-Resolution, showing the ability to robustly obtain high-quality HR polarized images with more accurate DoP and AoP from a CPFA raw image in a direct manner. Experiments show our PIDSR not only achieves state-of-the-art performance on both synthetic and real data, but also facilitates downstream tasks.
comment: CVPR 2025
Enhancing Features in Long-tailed Data Using Large Vision Model
Language-based foundation models, such as large language models (LLMs) or large vision-language models (LVLMs), have been widely studied in long-tailed recognition. However, the need for linguistic data is not applicable to all practical tasks. In this study, we aim to explore using large vision models (LVMs) or visual foundation models (VFMs) to enhance long-tailed data features without any language information. Specifically, we extract features from the LVM and fuse them with features in the baseline network's map and latent space to obtain the augmented features. Moreover, we design several prototype-based losses in the latent space to further exploit the potential of the augmented features. In the experimental section, we validate our approach on two benchmark datasets: ImageNet-LT and iNaturalist2018.
FocusedAD: Character-centric Movie Audio Description
Movie Audio Description (AD) aims to narrate visual content during dialogue-free segments, particularly benefiting blind and visually impaired (BVI) audiences. Compared with general video captioning, AD demands plot-relevant narration with explicit character name references, posing unique challenges in movie understanding.To identify active main characters and focus on storyline-relevant regions, we propose FocusedAD, a novel framework that delivers character-centric movie audio descriptions. It includes: (i) a Character Perception Module(CPM) for tracking character regions and linking them to names; (ii) a Dynamic Prior Module(DPM) that injects contextual cues from prior ADs and subtitles via learnable soft prompts; and (iii) a Focused Caption Module(FCM) that generates narrations enriched with plot-relevant details and named characters. To overcome limitations in character identification, we also introduce an automated pipeline for building character query banks. FocusedAD achieves state-of-the-art performance on multiple benchmarks, including strong zero-shot results on MAD-eval-Named and our newly proposed Cinepile-AD dataset. Code and data will be released at https://github.com/Thorin215/FocusedAD .
comment: Code and Demo link: https://github.com/Thorin215/FocusedAD
Normal-guided Detail-Preserving Neural Implicit Function for High-Fidelity 3D Surface Reconstruction SIGGRAPH
Neural implicit representations have emerged as a powerful paradigm for 3D reconstruction. However, despite their success, existing methods fail to capture fine geometric details and thin structures, especially in scenarios where only sparse multi-view RGB images of the objects of interest are available. This paper shows that training neural representations with first-order differential properties (surface normals) leads to highly accurate 3D surface reconstruction, even with as few as two RGB images. Using input RGB images, we compute approximate ground-truth surface normals from depth maps produced by an off-the-shelf monocular depth estimator. During training, we directly locate the surface point of the SDF network and supervise its normal with the one estimated from the depth map. Extensive experiments demonstrate that our method achieves state-of-the-art reconstruction accuracy with a minimal number of views, capturing intricate geometric details and thin structures that were previously challenging to capture.
comment: Accepted at ACM SIGGRAPH I3D 2025. Published in PACMCGIT journal. Project page with images and code: https://graphics-research-group.github.io/sn-nir
Localization Meets Uncertainty: Uncertainty-Aware Multi-Modal Localization
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out unreliable 3-DoF pose predictions based on aleatoric and epistemic uncertainties the network estimates. We apply this approach to a multi-modal end-to-end localization that fuses RGB images and 2D LiDAR data, and we evaluate it across three real-world datasets collected using a commercialized serving robot. Experimental results show that applying stricter uncertainty thresholds consistently improves pose accuracy. Specifically, the mean position error is reduced by 41.0%, 56.7%, and 69.4%, and the mean orientation error by 55.6%, 65.7%, and 73.3%, when applying 90%, 80%, and 70% thresholds, respectively. Furthermore, the rejection strategy effectively removes extreme outliers, resulting in better alignment with ground truth trajectories. To the best of our knowledge, this is the first study to quantitatively demonstrate the benefits of percentile-based uncertainty rejection in multi-modal end-to-end localization tasks. Our approach provides a practical means to enhance the reliability and accuracy of localization systems in real-world deployments.
comment: 13 pages, 6 figures
MObI: Multimodal Object Inpainting Using Diffusion Models
Safety-critical applications, such as autonomous driving, require extensive multimodal data for rigorous testing. Methods based on synthetic data are gaining prominence due to the cost and complexity of gathering real-world data but require a high degree of realism and controllability in order to be useful. This paper introduces MObI, a novel framework for Multimodal Object Inpainting that leverages a diffusion model to create realistic and controllable object inpaintings across perceptual modalities, demonstrated for both camera and lidar simultaneously. Using a single reference RGB image, MObI enables objects to be seamlessly inserted into existing multimodal scenes at a 3D location specified by a bounding box, while maintaining semantic consistency and multimodal coherence. Unlike traditional inpainting methods that rely solely on edit masks, our 3D bounding box conditioning gives objects accurate spatial positioning and realistic scaling. As a result, our approach can be used to insert novel objects flexibly into multimodal scenes, providing significant advantages for testing perception models.
comment: 8 pages; Project page at https://alexbubu.com/mobi
Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization AAAI2023
Recent advances in large pre-trained models showed promising results in few-shot learning. However, their generalization ability on two-dimensional Out-of-Distribution (OoD) data, i.e., correlation shift and diversity shift, has not been thoroughly investigated. Researches have shown that even with a significant amount of training data, few methods can achieve better performance than the standard empirical risk minimization method (ERM) in OoD generalization. This few-shot OoD generalization dilemma emerges as a challenging direction in deep neural network generalization research, where the performance suffers from overfitting on few-shot examples and OoD generalization errors. In this paper, leveraging a broader supervision source, we explore a novel Bayesian cross-modal image-text alignment learning method (Bayes-CAL) to address this issue. Specifically, the model is designed as only text representations are fine-tuned via a Bayesian modelling approach with gradient orthogonalization loss and invariant risk minimization (IRM) loss. The Bayesian approach is essentially introduced to avoid overfitting the base classes observed during training and improve generalization to broader unseen classes. The dedicated loss is introduced to achieve better image-text alignment by disentangling the causal and non-casual parts of image features. Numerical experiments demonstrate that Bayes-CAL achieved state-of-the-art OoD generalization performances on two-dimensional distribution shifts. Moreover, compared with CLIP-like models, Bayes-CAL yields more stable generalization performances on unseen classes. Our code is available at https://github.com/LinLLLL/BayesCAL.
comment: Accepted by AAAI2023
BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
HoLa: B-Rep Generation using a Holistic Latent Representation SIGGRAPH 2025
We introduce a novel representation for learning and generating Computer-Aided Design (CAD) models in the form of $\textit{boundary representations}$ (B-Reps). Our representation unifies the continuous geometric properties of B-Rep primitives in different orders (e.g., surfaces and curves) and their discrete topological relations in a $\textit{holistic latent}$ (HoLa) space. This is based on the simple observation that the topological connection between two surfaces is intrinsically tied to the geometry of their intersecting curve. Such a prior allows us to reformulate topology learning in B-Reps as a geometric reconstruction problem in Euclidean space. Specifically, we eliminate the presence of curves, vertices, and all the topological connections in the latent space by learning to distinguish and derive curve geometries from a pair of surface primitives via a neural intersection network. To this end, our holistic latent space is only defined on surfaces but encodes a full B-Rep model, including the geometry of surfaces, curves, vertices, and their topological relations. Our compact and holistic latent space facilitates the design of a first diffusion-based generator to take on a large variety of inputs including point clouds, single/multi-view images, 2D sketches, and text prompts. Our method significantly reduces ambiguities, redundancies, and incoherences among the generated B-Rep primitives, as well as training complexities inherent in prior multi-step B-Rep learning pipelines, while achieving greatly improved validity rate over current state of the art: 82% vs. $\approx$50%.
comment: ACM TOG and SIGGRAPH 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/HolaBrep
PolyFootNet: Extracting Polygonal Building Footprints in Off-Nadir Remote Sensing Images
Extracting polygonal building footprints from off-nadir imagery is crucial for diverse applications. Current deep-learning-based extraction approaches predominantly rely on semantic segmentation paradigms and post-processing algorithms, limiting their boundary precision and applicability. However, existing polygonal extraction methodologies are inherently designed for near-nadir imagery and fail under the geometric complexities introduced by off-nadir viewing angles. To address these challenges, this paper introduces Polygonal Footprint Network (PolyFootNet), a novel deep-learning framework that directly outputs polygonal building footprints without requiring external post-processing steps. PolyFootNet employs a High-Quality Mask Prompter to generate precise roof masks, which guide polygonal vertex extraction in a unified model pipeline. A key contribution of PolyFootNet is introducing the Self Offset Attention mechanism, grounded in Nadaraya-Watson regression, to effectively mitigate the accuracy discrepancy observed between low-rise and high-rise buildings. This approach allows low-rise building predictions to leverage angular corrections learned from high-rise building offsets, significantly enhancing overall extraction accuracy. Additionally, motivated by the inherent ambiguity of building footprint extraction tasks, we systematically investigate alternative extraction paradigms and demonstrate that a combined approach of building masks and offsets achieves superior polygonal footprint results. Extensive experiments validate PolyFootNet's effectiveness, illustrating its promising potential as a robust, generalizable, and precise polygonal building footprint extraction method from challenging off-nadir imagery. To facilitate further research, we will release pre-trained weights of our offset prediction module at https://github.com/likaiucas/PolyFootNet.
3DGR-CT: Sparse-View CT Reconstruction with a 3D Gaussian Representation
Sparse-view computed tomography (CT) reduces radiation exposure by acquiring fewer projections, making it a valuable tool in clinical scenarios where low-dose radiation is essential. However, this often results in increased noise and artifacts due to limited data. In this paper we propose a novel 3D Gaussian representation (3DGR) based method for sparse-view CT reconstruction. Inspired by recent success in novel view synthesis driven by 3D Gaussian splatting, we leverage the efficiency and expressiveness of 3D Gaussian representation as an alternative to implicit neural representation. To unleash the potential of 3DGR for CT imaging scenario, we propose two key innovations: (i) FBP-image-guided Guassian initialization and (ii) efficient integration with a differentiable CT projector. Extensive experiments and ablations on diverse datasets demonstrate the proposed 3DGR-CT consistently outperforms state-of-the-art counterpart methods, achieving higher reconstruction accuracy with faster convergence. Furthermore, we showcase the potential of 3DGR-CT for real-time physical simulation, which holds important clinical applications while challenging for implicit neural representations.
AFiRe: Anatomy-Driven Self-Supervised Learning for Fine-Grained Representation in Radiographic Images
Current self-supervised methods, such as contrastive learning, predominantly focus on global discrimination, neglecting the critical fine-grained anatomical details required for accurate radiographic analysis. To address this challenge, we propose an Anatomy-driven self-supervised framework for enhancing Fine-grained Representation in radiographic image analysis (AFiRe). The core idea of AFiRe is to align the anatomical consistency with the unique token-processing characteristics of Vision Transformer. Specifically, AFiRe synergistically performs two self-supervised schemes: (i) Token-wise anatomy-guided contrastive learning, which aligns image tokens based on structural and categorical consistency, thereby enhancing fine-grained spatial-anatomical discrimination; (ii) Pixel-level anomaly-removal restoration, which particularly focuses on local anomalies, thereby refining the learned discrimination with detailed geometrical information. Additionally, we propose Synthetic Lesion Mask to enhance anatomical diversity while preserving intra-consistency, which is typically corrupted by traditional data augmentations, such as Cropping and Affine transformations. Experimental results show that AFiRe: (i) provides robust anatomical discrimination, achieving more cohesive feature clusters compared to state-of-the-art contrastive learning methods; (ii) demonstrates superior generalization, surpassing 7 radiography-specific self-supervised methods in multi-label classification tasks with limited labeling; and (iii) integrates fine-grained information, enabling precise anomaly detection using only image-level annotations.
LOOC: Localizing Organs using Occupancy Networks and Body Surface Depth Images
We introduce a novel approach for the precise localization of 67 anatomical structures from single depth images captured from the exterior of the human body. Our method uses a multi-class occupancy network, trained using segmented CT scans augmented with body-pose changes, and incorporates a specialized sampling strategy to handle densely packed internal organs. Our contributions include the application of occupancy networks for occluded structure localization, a robust method for estimating anatomical positions from depth images, and the creation of detailed, individualized 3D anatomical atlases. We outperform localization using template matching and provide qualitative real-world reconstructions. This method promises improvements in automated medical imaging and diagnostic procedures by offering accurate, non-invasive localization of critical anatomical structures.
comment: Published in IEEE Access
Red Team Diffuser: Exposing Toxic Continuation Vulnerabilities in Vision-Language Models via Reinforcement Learning
The growing deployment of large Vision-Language Models (VLMs) exposes critical safety gaps in their alignment mechanisms. While existing jailbreak studies primarily focus on VLMs' susceptibility to harmful instructions, we reveal a fundamental yet overlooked vulnerability: toxic text continuation, where VLMs produce highly toxic completions when prompted with harmful text prefixes paired with semantically adversarial images. To systematically study this threat, we propose Red Team Diffuser (RTD), the first red teaming diffusion model that coordinates adversarial image generation and toxic continuation through reinforcement learning. Our key innovations include dynamic cross-modal attack and stealth-aware optimization. For toxic text prefixes from an LLM safety benchmark, we conduct greedy search to identify optimal image prompts that maximally induce toxic completions. The discovered image prompts then drive RL-based diffusion model fine-tuning, producing semantically aligned adversarial images that boost toxicity rates. Stealth-aware optimization introduces joint adversarial rewards that balance toxicity maximization (via Detoxify classifier) and stealthiness (via BERTScore), circumventing traditional noise-based adversarial patterns. Experimental results demonstrate the effectiveness of RTD, increasing the toxicity rate of LLaVA outputs by 10.69% over text-only baselines on the original attack set and 8.91% on an unseen set, proving generalization capability. Moreover, RTD exhibits strong cross-model transferability, raising the toxicity rate by 5.1% on Gemini and 26.83% on LLaMA. Our findings expose two critical flaws in current VLM alignment: (1) failure to prevent toxic continuation from harmful prefixes, and (2) overlooking cross-modal attack vectors. These results necessitate a paradigm shift toward multimodal red teaming in safety evaluations.
To Match or Not to Match: Revisiting Image Matching for Reliable Visual Place Recognition CVPR
Visual Place Recognition (VPR) is a critical task in computer vision, traditionally enhanced by re-ranking retrieval results with image matching. However, recent advancements in VPR methods have significantly improved performance, challenging the necessity of re-ranking. In this work, we show that modern retrieval systems often reach a point where re-ranking can degrade results, as current VPR datasets are largely saturated. We propose using image matching as a verification step to assess retrieval confidence, demonstrating that inlier counts can reliably predict when re-ranking is beneficial. Our findings shift the paradigm of retrieval pipelines, offering insights for more robust and adaptive VPR systems. The code is available at https://github.com/FarInHeight/To-Match-or-Not-to-Match.
comment: CVPRW 2025
ThermalGaussian: Thermal 3D Gaussian Splatting
Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90%. Our project page is at https://thermalgaussian.github.io/.
comment: 10 pages, 7 figures
LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content
The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.
TextSquare: Scaling up Text-Centric Visual Instruction Tuning
Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.
Hear the Scene: Audio-Enhanced Text Spotting
Recent advancements in scene text spotting have focused on end-to-end methodologies that heavily rely on precise location annotations, which are often costly and labor-intensive to procure. In this study, we introduce an innovative approach that leverages only transcription annotations for training text spotting models, substantially reducing the dependency on elaborate annotation processes. Our methodology employs a query-based paradigm that facilitates the learning of implicit location features through the interaction between text queries and image embeddings. These features are later refined during the text recognition phase using an attention activation map. Addressing the challenges associated with training a weakly-supervised model from scratch, we implement a circular curriculum learning strategy to enhance model convergence. Additionally, we introduce a coarse-to-fine cross-attention localization mechanism for more accurate text instance localization. Notably, our framework supports audio-based annotation, which significantly diminishes annotation time and provides an inclusive alternative for individuals with disabilities. Our approach achieves competitive performance against existing benchmarks, demonstrating that high accuracy in text spotting can be attained without extensive location annotations.
First-place Solution for Streetscape Shop Sign Recognition Competition
Text recognition technology applied to street-view storefront signs is increasingly utilized across various practical domains, including map navigation, smart city planning analysis, and business value assessments in commercial districts. This technology holds significant research and commercial potential. Nevertheless, it faces numerous challenges. Street view images often contain signboards with complex designs and diverse text styles, complicating the text recognition process. A notable advancement in this field was introduced by our team in a recent competition. We developed a novel multistage approach that integrates multimodal feature fusion, extensive self-supervised training, and a Transformer-based large model. Furthermore, innovative techniques such as BoxDQN, which relies on reinforcement learning, and text rectification methods were employed, leading to impressive outcomes. Comprehensive experiments have validated the effectiveness of these methods, showcasing our potential to enhance text recognition capabilities in complex urban environments.
comment: technical report
NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
EvTTC: An Event Camera Dataset for Time-to-Collision Estimation
Time-to-Collision (TTC) estimation lies in the core of the forward collision warning (FCW) functionality, which is key to all Automatic Emergency Braking (AEB) systems. Although the success of solutions using frame-based cameras (e.g., Mobileye's solutions) has been witnessed in normal situations, some extreme cases, such as the sudden variation in the relative speed of leading vehicles and the sudden appearance of pedestrians, still pose significant risks that cannot be handled. This is due to the inherent imaging principles of frame-based cameras, where the time interval between adjacent exposures introduces considerable system latency to AEB. Event cameras, as a novel bio-inspired sensor, offer ultra-high temporal resolution and can asynchronously report brightness changes at the microsecond level. To explore the potential of event cameras in the above-mentioned challenging cases, we propose EvTTC, which is, to the best of our knowledge, the first multi-sensor dataset focusing on TTC tasks under high-relative-speed scenarios. EvTTC consists of data collected using standard cameras and event cameras, covering various potential collision scenarios in daily driving and involving multiple collision objects. Additionally, LiDAR and GNSS/INS measurements are provided for the calculation of ground-truth TTC. Considering the high cost of testing TTC algorithms on full-scale mobile platforms, we also provide a small-scale TTC testbed for experimental validation and data augmentation. All the data and the design of the testbed are open sourced, and they can serve as a benchmark that will facilitate the development of vision-based TTC techniques.
comment: 8 pages, 7 figures, 5 tables
Harmonizing Visual Representations for Unified Multimodal Understanding and Generation
Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present \emph{Harmon}, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.
Unsupervised Hyperspectral and Multispectral Image Fusion via Self-Supervised Modality Decoupling
Hyperspectral and Multispectral Image Fusion (HMIF) aims to fuse low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) to reconstruct high spatial and high spectral resolution images. Current methods typically apply direct fusion from the two modalities without effective supervision, leading to an incomplete perception of deep modality-complementary information and a limited understanding of inter-modality correlations. To address these issues, we propose a simple yet effective solution for unsupervised HMIF, revealing that modality decoupling is key to improving fusion performance. Specifically, we propose an end-to-end self-supervised \textbf{Mo}dality-Decoupled \textbf{S}patial-\textbf{S}pectral Fusion (\textbf{MossFuse}) framework that decouples shared and complementary information across modalities and aggregates a concise representation of both LR-HSIs and HR-MSIs to reduce modality redundancy. Also, we introduce the subspace clustering loss as a clear guide to decouple modality-shared features from modality-complementary ones. Systematic experiments over multiple datasets demonstrate that our simple and effective approach consistently outperforms the existing HMIF methods while requiring considerably fewer parameters with reduced inference time. The anonymous source code is in \href{https://github.com/dusongcheng/MossFuse}{MossFuse}.
Manipulating Multimodal Agents via Cross-Modal Prompt Injection
The emergence of multimodal large language models has redefined the agent paradigm by integrating language and vision modalities with external data sources, enabling agents to better interpret human instructions and execute increasingly complex tasks. However, in this work, we identify a critical yet previously overlooked security vulnerability in multimodal agents: cross-modal prompt injection attacks. To exploit this vulnerability, we propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities to align with target malicious content, allowing external instructions to hijack the agent's decision-making process and execute unauthorized tasks. Our approach consists of two key components. First, we introduce Visual Latent Alignment, where we optimize adversarial features to the malicious instructions in the visual embedding space based on a text-to-image generative model, ensuring that adversarial images subtly encode cues for malicious task execution. Subsequently, we present Textual Guidance Enhancement, where a large language model is leveraged to infer the black-box defensive system prompt through adversarial meta prompting and generate an malicious textual command that steers the agent's output toward better compliance with attackers' requests. Extensive experiments demonstrate that our method outperforms existing injection attacks, achieving at least a +26.4% increase in attack success rates across diverse tasks. Furthermore, we validate our attack's effectiveness in real-world multimodal autonomous agents, highlighting its potential implications for safety-critical applications.
comment: 17 pages, 5 figures
Gungnir: Exploiting Stylistic Features in Images for Backdoor Attacks on Diffusion Models
In recent years, Diffusion Models (DMs) have demonstrated significant advances in the field of image generation. However, according to current research, DMs are vulnerable to backdoor attacks, which allow attackers to control the model's output by inputting data containing covert triggers, such as a specific visual patch or phrase. Existing defense strategies are well equipped to thwart such attacks through backdoor detection and trigger inversion because previous attack methods are constrained by limited input spaces and low-dimensional triggers. For example, visual triggers are easily observed by defenders, text-based or attention-based triggers are more susceptible to neural network detection. To explore more possibilities of backdoor attack in DMs, we propose Gungnir, a novel method that enables attackers to activate the backdoor in DMs through style triggers within input images. Our approach proposes using stylistic features as triggers for the first time and implements backdoor attacks successfully in image-to-image tasks by introducing Reconstructing-Adversarial Noise (RAN) and Short-Term Timesteps-Retention (STTR). Our technique generates trigger-embedded images that are perceptually indistinguishable from clean images, thus bypassing both manual inspection and automated detection neural networks. Experiments demonstrate that Gungnir can easily bypass existing defense methods. Among existing DM defense frameworks, our approach achieves a 0 backdoor detection rate (BDR). Our codes are available at https://github.com/paoche11/Gungnir.
Faster and Better 3D Splatting via Group Training
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for novel view synthesis, demonstrating remarkable capability in high-fidelity scene reconstruction through its Gaussian primitive representations. However, the computational overhead induced by the massive number of primitives poses a significant bottleneck to training efficiency. To overcome this challenge, we propose Group Training, a simple yet effective strategy that organizes Gaussian primitives into manageable groups, optimizing training efficiency and improving rendering quality. This approach shows universal compatibility with existing 3DGS frameworks, including vanilla 3DGS and Mip-Splatting, consistently achieving accelerated training while maintaining superior synthesis quality. Extensive experiments reveal that our straightforward Group Training strategy achieves up to 30% faster convergence and improved rendering quality across diverse scenarios.
CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos CVPR 2025
Navigating dynamic urban environments presents significant challenges for embodied agents, requiring advanced spatial reasoning and adherence to common-sense norms. Despite progress, existing visual navigation methods struggle in map-free or off-street settings, limiting the deployment of autonomous agents like last-mile delivery robots. To overcome these obstacles, we propose a scalable, data-driven approach for human-like urban navigation by training agents on thousands of hours of in-the-wild city walking and driving videos sourced from the web. We introduce a simple and scalable data processing pipeline that extracts action supervision from these videos, enabling large-scale imitation learning without costly annotations. Our model learns sophisticated navigation policies to handle diverse challenges and critical scenarios. Experimental results show that training on large-scale, diverse datasets significantly enhances navigation performance, surpassing current methods. This work shows the potential of using abundant online video data to develop robust navigation policies for embodied agents in dynamic urban settings. Project homepage is at https://ai4ce.github.io/CityWalker/.
comment: Accepted to CVPR 2025
Dynamic EventNeRF: Reconstructing General Dynamic Scenes from Multi-view RGB and Event Streams CVPR
Volumetric reconstruction of dynamic scenes is an important problem in computer vision. It is especially challenging in poor lighting and with fast motion. This is partly due to limitations of RGB cameras: To capture frames under low lighting, the exposure time needs to be increased, which leads to more motion blur. In contrast, event cameras, which record changes in pixel brightness asynchronously, are much less dependent on lighting, making them more suitable for recording fast motion. We hence propose the first method to spatiotemporally reconstruct a scene from sparse multi-view event streams and sparse RGB frames. We train a sequence of cross-faded time-conditioned NeRF models, one per short recording segment. The individual segments are supervised with a set of event- and RGB-based losses and sparse-view regularisation. We assemble a real-world multi-view camera rig with six static event cameras around the object and record a benchmark multi-view event stream dataset of challenging motions. Our work outperforms RGB-based baselines, producing state-of-the-art results, and opens up the topic of multi-view event-based reconstruction as a new path for fast scene capture beyond RGB cameras. The code and the data will be released soon at https://4dqv.mpi-inf.mpg.de/DynEventNeRF/
comment: 17 pages, 13 figures, 7 tables; CVPRW 2025
Riemannian Patch Assignment Gradient Flows
This paper introduces patch assignment flows for metric data labeling on graphs. Labelings are determined by regularizing initial local labelings through the dynamic interaction of both labels and label assignments across the graph, entirely encoded by a dictionary of competing labeled patches and mediated by patch assignment variables. Maximal consistency of patch assignments is achieved by geometric numerical integration of a Riemannian ascent flow, as critical point of a Lagrangian action functional. Experiments illustrate properties of the approach, including uncertainty quantification of label assignments.
Semantic Segmentation and Scene Reconstruction of RGB-D Image Frames: An End-to-End Modular Pipeline for Robotic Applications
Robots operating in unstructured environments require a comprehensive understanding of their surroundings, necessitating geometric and semantic information from sensor data. Traditional RGB-D processing pipelines focus primarily on geometric reconstruction, limiting their ability to support advanced robotic perception, planning, and interaction. A key challenge is the lack of generalized methods for segmenting RGB-D data into semantically meaningful components while maintaining accurate geometric representations. We introduce a novel end-to-end modular pipeline that integrates state-of-the-art semantic segmentation, human tracking, point-cloud fusion, and scene reconstruction. Our approach improves semantic segmentation accuracy by leveraging the foundational segmentation model SAM2 with a hybrid method that combines its mask generation with a semantic classification model, resulting in sharper masks and high classification accuracy. Compared to SegFormer and OneFormer, our method achieves a similar semantic segmentation accuracy (mIoU of 47.0% vs 45.9% in the ADE20K dataset) but provides much more precise object boundaries. Additionally, our human tracking algorithm interacts with the segmentation enabling continuous tracking even when objects leave and re-enter the frame by object re-identification. Our point cloud fusion approach reduces computation time by 1.81x while maintaining a small mean reconstruction error of 25.3 mm by leveraging the semantic information. We validate our approach on benchmark datasets and real-world Kinect RGB-D data, demonstrating improved efficiency, accuracy, and usability. Our structured representation, stored in the Universal Scene Description (USD) format, supports efficient querying, visualization, and robotic simulation, making it practical for real-world deployment.
UniVG: A Generalist Diffusion Model for Unified Image Generation and Editing
Text-to-Image (T2I) diffusion models have shown impressive results in generating visually compelling images following user prompts. Building on this, various methods further fine-tune the pre-trained T2I model for specific tasks. However, this requires separate model architectures, training designs, and multiple parameter sets to handle different tasks. In this paper, we introduce UniVG, a generalist diffusion model capable of supporting a diverse range of image generation tasks with a single set of weights. UniVG treats multi-modal inputs as unified conditions to enable various downstream applications, ranging from T2I generation, inpainting, instruction-based editing, identity-preserving generation, and layout-guided generation, to depth estimation and referring segmentation. Through comprehensive empirical studies on data mixing and multi-task training, we provide detailed insights into the training processes and decisions that inform our final designs. For example, we show that T2I generation and other tasks, such as instruction-based editing, can coexist without performance trade-offs, while auxiliary tasks like depth estimation and referring segmentation enhance image editing. Notably, our model can even outperform some task-specific models on their respective benchmarks, marking a significant step towards a unified image generation model.
On Symmetries in Convolutional Weights ICLR 2025
We explore the symmetry of the mean k x k weight kernel in each layer of various convolutional neural networks. Unlike individual neurons, the mean kernels in internal layers tend to be symmetric about their centers instead of favoring specific directions. We investigate why this symmetry emerges in various datasets and models, and how it is impacted by certain architectural choices. We show how symmetry correlates with desirable properties such as shift and flip consistency, and might constitute an inherent inductive bias in convolutional neural networks.
comment: Accepted to the ICLR 2025 Workshop on Weight Space Learning (WSL)
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Co-domain Symmetry for Complex-Valued Deep Learning
We study complex-valued scaling as a type of symmetry natural and unique to complex-valued measurements and representations. Deep Complex Networks (DCN) extends real-valued algebra to the complex domain without addressing complex-valued scaling. SurReal takes a restrictive manifold view of complex numbers, adopting a distance metric to achieve complex-scaling invariance while losing rich complex-valued information. We analyze complex-valued scaling as a co-domain transformation and design novel equivariant and invariant neural network layer functions for this special transformation. We also propose novel complex-valued representations of RGB images, where complex-valued scaling indicates hue shift or correlated changes across color channels. Benchmarked on MSTAR, CIFAR10, CIFAR100, and SVHN, our co-domain symmetric (CDS) classifiers deliver higher accuracy, better generalization, robustness to co-domain transformations, and lower model bias and variance than DCN and SurReal with far fewer parameters.
Image and Video Processing
DSDNet: Raw Domain Demoiréing via Dual Color-Space Synergy
With the rapid advancement of mobile imaging, capturing screens using smartphones has become a prevalent practice in distance learning and conference recording. However, moir\'e artifacts, caused by frequency aliasing between display screens and camera sensors, are further amplified by the image signal processing pipeline, leading to severe visual degradation. Existing sRGB domain demoir\'eing methods struggle with irreversible information loss, while recent two-stage raw domain approaches suffer from information bottlenecks and inference inefficiency. To address these limitations, we propose a single-stage raw domain demoir\'eing framework, Dual-Stream Demoir\'eing Network (DSDNet), which leverages the synergy of raw and YCbCr images to remove moir\'e while preserving luminance and color fidelity. Specifically, to guide luminance correction and moir\'e removal, we design a raw-to-YCbCr mapping pipeline and introduce the Synergic Attention with Dynamic Modulation (SADM) module. This module enriches the raw-to-sRGB conversion with cross-domain contextual features. Furthermore, to better guide color fidelity, we develop a Luminance-Chrominance Adaptive Transformer (LCAT), which decouples luminance and chrominance representations. Extensive experiments demonstrate that DSDNet outperforms state-of-the-art methods in both visual quality and quantitative evaluation, and achieves an inference speed $\mathrm{\textbf{2.4x}}$ faster than the second-best method, highlighting its practical advantages. We provide an anonymous online demo at https://xxxxxxxxdsdnet.github.io/DSDNet/.
Performance Estimation for Supervised Medical Image Segmentation Models on Unlabeled Data Using UniverSeg
The performance of medical image segmentation models is usually evaluated using metrics like the Dice score and Hausdorff distance, which compare predicted masks to ground truth annotations. However, when applying the model to unseen data, such as in clinical settings, it is often impractical to annotate all the data, making the model's performance uncertain. To address this challenge, we propose the Segmentation Performance Evaluator (SPE), a framework for estimating segmentation models' performance on unlabeled data. This framework is adaptable to various evaluation metrics and model architectures. Experiments on six publicly available datasets across six evaluation metrics including pixel-based metrics such as Dice score and distance-based metrics like HD95, demonstrated the versatility and effectiveness of our approach, achieving a high correlation (0.956$\pm$0.046) and low MAE (0.025$\pm$0.019) compare with real Dice score on the independent test set. These results highlight its ability to reliably estimate model performance without requiring annotations. The SPE framework integrates seamlessly into any model training process without adding training overhead, enabling performance estimation and facilitating the real-world application of medical image segmentation algorithms. The source code is publicly available
RepNet-VSR: Reparameterizable Architecture for High-Fidelity Video Super-Resolution CVPR 2025
As a fundamental challenge in visual computing, video super-resolution (VSR) focuses on reconstructing highdefinition video sequences from their degraded lowresolution counterparts. While deep convolutional neural networks have demonstrated state-of-the-art performance in spatial-temporal super-resolution tasks, their computationally intensive nature poses significant deployment challenges for resource-constrained edge devices, particularly in real-time mobile video processing scenarios where power efficiency and latency constraints coexist. In this work, we propose a Reparameterizable Architecture for High Fidelity Video Super Resolution method, named RepNet-VSR, for real-time 4x video super-resolution. On the REDS validation set, the proposed model achieves 27.79 dB PSNR when processing 180p to 720p frames in 103 ms per 10 frames on a MediaTek Dimensity NPU. The competition results demonstrate an excellent balance between restoration quality and deployment efficiency. The proposed method scores higher than the previous champion algorithm of MAI video super-resolution challenge.
comment: Champion Solution for CVPR 2025 MAI VSR Track
VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
In histopathology, tissue sections are typically stained using common H&E staining or special stains (MAS, PAS, PASM, etc.) to clearly visualize specific tissue structures. The rapid advancement of deep learning offers an effective solution for generating virtually stained images, significantly reducing the time and labor costs associated with traditional histochemical staining. However, a new challenge arises in separating the fundamental visual characteristics of tissue sections from the visual differences induced by staining agents. Additionally, virtual staining often overlooks essential pathological knowledge and the physical properties of staining, resulting in only style-level transfer. To address these issues, we introduce, for the first time in virtual staining tasks, a pathological vision-language large model (VLM) as an auxiliary tool. We integrate contrastive learnable prompts, foundational concept anchors for tissue sections, and staining-specific concept anchors to leverage the extensive knowledge of the pathological VLM. This approach is designed to describe, frame, and enhance the direction of virtual staining. Furthermore, we have developed a data augmentation method based on the constraints of the VLM. This method utilizes the VLM's powerful image interpretation capabilities to further integrate image style and structural information, proving beneficial in high-precision pathological diagnostics. Extensive evaluations on publicly available multi-domain unpaired staining datasets demonstrate that our method can generate highly realistic images and enhance the accuracy of downstream tasks, such as glomerular detection and segmentation. Our code is available at: https://github.com/CZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR
Fluorescence Reference Target Quantitative Analysis Library
Standardized performance evaluation of fluorescence imaging systems remains a critical unmet need in the field of fluorescence-guided surgery (FGS). While the American Association of Physicists in Medicine (AAPM) TG311 report and recent FDA draft guidance provide recommended metrics for system characterization, practical tools for extracting these metrics remain limited, inconsistent, and often inaccessible. We present QUEL-QAL, an open-source Python library designed to streamline and standardize the quantitative analysis of fluorescence images using solid reference targets. The library provides a modular, reproducible workflow that includes region of interest (ROI) detection, statistical analysis, and visualization capabilities. QUEL-QAL supports key metrics such as response linearity, limit of detection, depth sensitivity, and spatial resolution, in alignment with regulatory and academic guidance. Built on widely adopted Python packages, the library is designed to be extensible, enabling users to adapt it to novel target designs and analysis protocols. By promoting transparency, reproducibility, and regulatory alignment, QUEL-QAL offers a foundational tool to support standardized benchmarking and accelerate the development and evaluation of fluorescence imaging systems.
comment: 12 pages, 1 table, 4 figures. Code available: https://github.com/QUEL-Imaging/quel-qal), PyPi: quel-qal
Vision Controlled Orthotic Hand Exoskeleton
This paper presents the design and implementation of an AI vision-controlled orthotic hand exoskeleton to enhance rehabilitation and assistive functionality for individuals with hand mobility impairments. The system leverages a Google Coral Dev Board Micro with an Edge TPU to enable real-time object detection using a customized MobileNet\_V2 model trained on a six-class dataset. The exoskeleton autonomously detects objects, estimates proximity, and triggers pneumatic actuation for grasp-and-release tasks, eliminating the need for user-specific calibration needed in traditional EMG-based systems. The design prioritizes compactness, featuring an internal battery. It achieves an 8-hour runtime with a 1300 mAh battery. Experimental results demonstrate a 51ms inference speed, a significant improvement over prior iterations, though challenges persist in model robustness under varying lighting conditions and object orientations. While the most recent YOLO model (YOLOv11) showed potential with 15.4 FPS performance, quantization issues hindered deployment. The prototype underscores the viability of vision-controlled exoskeletons for real-world assistive applications, balancing portability, efficiency, and real-time responsiveness, while highlighting future directions for model optimization and hardware miniaturization.
Comprehensive Evaluation of Quantitative Measurements from Automated Deep Segmentations of PSMA PET/CT Images
This study performs a comprehensive evaluation of quantitative measurements as extracted from automated deep-learning-based segmentation methods, beyond traditional Dice Similarity Coefficient assessments, focusing on six quantitative metrics, namely SUVmax, SUVmean, total lesion activity (TLA), tumor volume (TMTV), lesion count, and lesion spread. We analyzed 380 prostate-specific membrane antigen (PSMA) targeted [18F]DCFPyL PET/CT scans of patients with biochemical recurrence of prostate cancer, training deep neural networks, U-Net, Attention U-Net and SegResNet with four loss functions: Dice Loss, Dice Cross Entropy, Dice Focal Loss, and our proposed L1 weighted Dice Focal Loss (L1DFL). Evaluations indicated that Attention U-Net paired with L1DFL achieved the strongest correlation with the ground truth (concordance correlation = 0.90-0.99 for SUVmax and TLA), whereas models employing the Dice Loss and the other two compound losses, particularly with SegResNet, underperformed. Equivalence testing (TOST, alpha = 0.05, Delta = 20%) confirmed high performance for SUV metrics, lesion count and TLA, with L1DFL yielding the best performance. By contrast, tumor volume and lesion spread exhibited greater variability. Bland-Altman, Coverage Probability, and Total Deviation Index analyses further highlighted that our proposed L1DFL minimizes variability in quantification of the ground truth clinical measures. The code is publicly available at: https://github.com/ObedDzik/pca\_segment.git.
comment: 12 pages, 8 figures
TVC: Tokenized Video Compression with Ultra-Low Bitrate
Tokenized visual representations have shown great promise in image compression, yet their extension to video remains underexplored due to the challenges posed by complex temporal dynamics and stringent bitrate constraints. In this paper, we propose Tokenized Video Compression (TVC), the first token-based dual-stream video compression framework designed to operate effectively at ultra-low bitrates. TVC leverages the powerful Cosmos video tokenizer to extract both discrete and continuous token streams. The discrete tokens (i.e., code maps generated by FSQ) are partially masked using a strategic masking scheme, then compressed losslessly with a discrete checkerboard context model to reduce transmission overhead. The masked tokens are reconstructed by a decoder-only transformer with spatiotemporal token prediction. Meanwhile, the continuous tokens, produced via an autoencoder (AE), are quantized and compressed using a continuous checkerboard context model, providing complementary continuous information at ultra-low bitrate. At the Decoder side, both streams are fused using ControlNet, with multi-scale hierarchical integration to ensure high perceptual quality alongside strong fidelity in reconstruction. This work mitigates the long-standing skepticism about the practicality of tokenized video compression and opens up new avenues for semantics-aware, token-native video compression.
Self-Controlled Diffusion for Denoising in Scientific Imaging
This paper presents a novel approach for denoising Electron Backscatter Diffraction (EBSD) patterns using diffusion models. We propose a two-stage training process with a UNet-based architecture, incorporating an auxiliary regression head to predict the quality of the experimental pattern and assess the progress of the denoising process. The model uses an adaptive denoising strategy, which integrates quality prediction and feedback-driven iterative denoising process control. This adaptive feedback loop allows the model to adjust its schedule, providing fine control over the denoising process. Furthermore, our model can identify samples where no meaningful signal is present, thereby reducing the risk of hallucinations. We demonstrate the successful application of diffusion models to EBSD pattern denoising using a custom-collected dataset of EBSD patterns, their corresponding master patterns, and quality values.
Object Learning and Robust 3D Reconstruction
In this thesis we discuss architectural designs and training methods for a neural network to have the ability of dissecting an image into objects of interest without supervision. The main challenge in 2D unsupervised object segmentation is distinguishing between foreground objects of interest and background. FlowCapsules uses motion as a cue for the objects of interest in 2D scenarios. The last part of this thesis focuses on 3D applications where the goal is detecting and removal of the object of interest from the input images. In these tasks, we leverage the geometric consistency of scenes in 3D to detect the inconsistent dynamic objects. Our transient object masks are then used for designing robust optimization kernels to improve 3D modelling in a casual capture setup. One of our goals in this thesis is to show the merits of unsupervised object based approaches in computer vision. Furthermore, we suggest possible directions for defining objects of interest or foreground objects without requiring supervision. Our hope is to motivate and excite the community into further exploring explicit object representations in image understanding tasks.
comment: PhD Thesis
SmallGS: Gaussian Splatting-based Camera Pose Estimation for Small-Baseline Videos CVPR
Dynamic videos with small baseline motions are ubiquitous in daily life, especially on social media. However, these videos present a challenge to existing pose estimation frameworks due to ambiguous features, drift accumulation, and insufficient triangulation constraints. Gaussian splatting, which maintains an explicit representation for scenes, provides a reliable novel view rasterization when the viewpoint change is small. Inspired by this, we propose SmallGS, a camera pose estimation framework that is specifically designed for small-baseline videos. SmallGS optimizes sequential camera poses using Gaussian splatting, which reconstructs the scene from the first frame in each video segment to provide a stable reference for the rest. The temporal consistency of Gaussian splatting within limited viewpoint differences reduced the requirement of sufficient depth variations in traditional camera pose estimation. We further incorporate pretrained robust visual features, e.g. DINOv2, into Gaussian splatting, where high-dimensional feature map rendering enhances the robustness of camera pose estimation. By freezing the Gaussian splatting and optimizing camera viewpoints based on rasterized features, SmallGS effectively learns camera poses without requiring explicit feature correspondences or strong parallax motion. We verify the effectiveness of SmallGS in small-baseline videos in TUM-Dynamics sequences, which achieves impressive accuracy in camera pose estimation compared to MonST3R and DORID-SLAM for small-baseline videos in dynamic scenes. Our project page is at: https://yuxinyao620.github.io/SmallGS
comment: 10 pages, 4 figures, Accepted by CVPR workshop
Unsupervised Hyperspectral and Multispectral Image Fusion via Self-Supervised Modality Decoupling
Hyperspectral and Multispectral Image Fusion (HMIF) aims to fuse low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) to reconstruct high spatial and high spectral resolution images. Current methods typically apply direct fusion from the two modalities without effective supervision, leading to an incomplete perception of deep modality-complementary information and a limited understanding of inter-modality correlations. To address these issues, we propose a simple yet effective solution for unsupervised HMIF, revealing that modality decoupling is key to improving fusion performance. Specifically, we propose an end-to-end self-supervised \textbf{Mo}dality-Decoupled \textbf{S}patial-\textbf{S}pectral Fusion (\textbf{MossFuse}) framework that decouples shared and complementary information across modalities and aggregates a concise representation of both LR-HSIs and HR-MSIs to reduce modality redundancy. Also, we introduce the subspace clustering loss as a clear guide to decouple modality-shared features from modality-complementary ones. Systematic experiments over multiple datasets demonstrate that our simple and effective approach consistently outperforms the existing HMIF methods while requiring considerably fewer parameters with reduced inference time. The anonymous source code is in \href{https://github.com/dusongcheng/MossFuse}{MossFuse}.
PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution CVPR 2025
Polarization cameras can capture multiple polarized images with different polarizer angles in a single shot, bringing convenience to polarization-based downstream tasks. However, their direct outputs are color-polarization filter array (CPFA) raw images, requiring demosaicing to reconstruct full-resolution, full-color polarized images; unfortunately, this necessary step introduces artifacts that make polarization-related parameters such as the degree of polarization (DoP) and angle of polarization (AoP) prone to error. Besides, limited by the hardware design, the resolution of a polarization camera is often much lower than that of a conventional RGB camera. Existing polarized image demosaicing (PID) methods are limited in that they cannot enhance resolution, while polarized image super-resolution (PISR) methods, though designed to obtain high-resolution (HR) polarized images from the demosaicing results, tend to retain or even amplify errors in the DoP and AoP introduced by demosaicing artifacts. In this paper, we propose PIDSR, a joint framework that performs complementary Polarized Image Demosaicing and Super-Resolution, showing the ability to robustly obtain high-quality HR polarized images with more accurate DoP and AoP from a CPFA raw image in a direct manner. Experiments show our PIDSR not only achieves state-of-the-art performance on both synthetic and real data, but also facilitates downstream tasks.
comment: CVPR 2025
3DGR-CT: Sparse-View CT Reconstruction with a 3D Gaussian Representation
Sparse-view computed tomography (CT) reduces radiation exposure by acquiring fewer projections, making it a valuable tool in clinical scenarios where low-dose radiation is essential. However, this often results in increased noise and artifacts due to limited data. In this paper we propose a novel 3D Gaussian representation (3DGR) based method for sparse-view CT reconstruction. Inspired by recent success in novel view synthesis driven by 3D Gaussian splatting, we leverage the efficiency and expressiveness of 3D Gaussian representation as an alternative to implicit neural representation. To unleash the potential of 3DGR for CT imaging scenario, we propose two key innovations: (i) FBP-image-guided Guassian initialization and (ii) efficient integration with a differentiable CT projector. Extensive experiments and ablations on diverse datasets demonstrate the proposed 3DGR-CT consistently outperforms state-of-the-art counterpart methods, achieving higher reconstruction accuracy with faster convergence. Furthermore, we showcase the potential of 3DGR-CT for real-time physical simulation, which holds important clinical applications while challenging for implicit neural representations.
Multimedia
BAROC: Concealing Packet Losses in LSNs with Bimodal Behavior Awareness for Livecast Ingestion
The advent of Low-Earth Orbit satellite networks (LSNs), exemplified by initiatives like \emph{Starlink}, \emph{OneWeb} and \emph{Kuiper}, has ushered in a new era of ``Internet from Space" global connectivity. Recent studies have shown that LSNs are capable of providing unprecedented download capacity and low latency to support Livecast viewing. However, Livecast ingestion still faces significant challenges, such as limited uplink capacity, bandwidth degradation, and the burst of packet loss due to frequent satellite reallocations, which cause previous recovery and adaptive solutions to be inferior under this new scenario. In this paper, we conduct an in-depth measurement study dedicated to understanding the implications of satellite reallocations, which reveals that the network status during reallocations with network anomalies exhibits a different distribution, leading to bimodal behaviors on the overall network performance. Motivated by this finding, we propose BAROC, a framework that can effectively conceal burst packet losses by combining a novel proposed MTP-Informer with bimodal behavior awareness during satellite reallocation. BAROC enhances video QoE on the server side by addressing the above challenges and jointly determining the optimal video encoding and recovery parameters. Our extensive evaluation shows that BAROC outperforms other video delivery recovery approaches, achieving an average PSNR improvement of $1.95$ dB and a maximum of $3.44$ dB, along with enhancements in frame rate and parity packet utilization. Additionally, a comprehensive ablation study is conducted to assess the effectiveness of MTP-Informer and components in BAROC.
comment: This is the preprint version of the paper accepted to IEEE INFOCOM 2025
Against Opacity: Explainable AI and Large Language Models for Effective Digital Advertising
The opaqueness of modern digital advertising, exemplified by platforms such as Meta Ads, raises concerns regarding their autonomous control over audience targeting, pricing structures, and ad relevancy assessments. Locked in their leading positions by network effects, ``Metas and Googles of the world'' attract countless advertisers who rely on intuition, with billions of dollars lost on ineffective social media ads. The platforms' algorithms use huge amounts of data unavailable to advertisers, and the algorithms themselves are opaque as well. This lack of transparency hinders the advertisers' ability to make informed decisions and necessitates efforts to promote transparency, standardize industry metrics, and strengthen regulatory frameworks. In this work, we propose novel ways to assist marketers in optimizing their advertising strategies via machine learning techniques designed to analyze and evaluate content, in particular, predict the click-through rates (CTR) of novel advertising content. Another important problem is that large volumes of data available in the competitive landscape, e.g., competitors' ads, impede the ability of marketers to derive meaningful insights. This leads to a pressing need for a novel approach that would allow us to summarize and comprehend complex data. Inspired by the success of ChatGPT in bridging the gap between large language models (LLMs) and a broader non-technical audience, we propose a novel system that facilitates marketers in data interpretation, called SODA, that merges LLMs with explainable AI, enabling better human-AI collaboration with an emphasis on the domain of digital marketing and advertising. By combining LLMs and explainability features, in particular modern text-image models, we aim to improve the synergy between human marketers and AI systems.
HistLLM: A Unified Framework for LLM-Based Multimodal Recommendation with User History Encoding and Compression
While large language models (LLMs) have proven effective in leveraging textual data for recommendations, their application to multimodal recommendation tasks remains relatively underexplored. Although LLMs can process multimodal information through projection functions that map visual features into their semantic space, recommendation tasks often require representing users' history interactions through lengthy prompts combining text and visual elements, which not only hampers training and inference efficiency but also makes it difficult for the model to accurately capture user preferences from complex and extended prompts, leading to reduced recommendation performance. To address this challenge, we introduce HistLLM, an innovative multimodal recommendation framework that integrates textual and visual features through a User History Encoding Module (UHEM), compressing multimodal user history interactions into a single token representation, effectively facilitating LLMs in processing user preferences. Extensive experiments demonstrate the effectiveness and efficiency of our proposed mechanism.
comment: We want to withdraw this paper and revise its experimental details. The revised version will be uploaded after further verification
Human-Computer Interaction
VR-based Intervention for Perspective Change: A Case to Investigate Virtual Materiality
This paper addresses the concept of materiality in virtual environments, which we define as being composed of objects that can influence user experience actively. Such virtual materiality is closely related to its physical counterpart, which is discussed in theoretical frameworks such as sociomateriality and actor-network theory. They define phenomena in terms of the entanglement of human and non-human elements. We report on an early investigation of virtual materiality within the context of reflection and perspective change in nature-based virtual environments. We considered the case of university students reflecting on the planning and management of their theses and major projects. Inspired by nature's known positive cognitive and affective effects and repeated questioning processes, we established a virtual reflection intervention to demonstrate the environmental mechanisms and material characteristics relevant to virtual materiality. Our work is a preliminary step toward understanding virtual materiality and its implications for research and the design of virtual environments.
Navigating the State of Cognitive Flow: Context-Aware AI Interventions for Effective Reasoning Support
Flow theory describes an optimal cognitive state where individuals experience deep focus and intrinsic motivation when a task's difficulty aligns with their skill level. In AI-augmented reasoning, interventions that disrupt the state of cognitive flow can hinder rather than enhance decision-making. This paper proposes a context-aware cognitive augmentation framework that adapts interventions based on three key contextual factors: type, timing, and scale. By leveraging multimodal behavioral cues (e.g., gaze behavior, typing hesitation, interaction speed), AI can dynamically adjust cognitive support to maintain or restore flow. We introduce the concept of cognitive flow, an extension of flow theory in AI-augmented reasoning, where interventions are personalized, adaptive, and minimally intrusive. By shifting from static interventions to context-aware augmentation, our approach ensures that AI systems support deep engagement in complex decision-making and reasoning without disrupting cognitive immersion.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
Neuroadaptive Haptics: Comparing Reinforcement Learning from Explicit Ratings and Neural Signals for Adaptive XR Systems
Neuroadaptive haptics offers a path to more immersive extended reality (XR) experiences by dynamically tuning multisensory feedback to user preferences. We present a neuroadaptive haptics system that adapts XR feedback through reinforcement learning (RL) from explicit user ratings and brain-decoded neural signals. In a user study, participants interacted with virtual objects in VR while Electroencephalography (EEG) data were recorded. An RL agent adjusted haptic feedback based either on explicit ratings or on outputs from a neural decoder. Results show that the RL agent's performance was comparable across feedback sources, suggesting that implicit neural feedback can effectively guide personalization without requiring active user input. The EEG-based neural decoder achieved a mean F1 score of 0.8, supporting reliable classification of user experience. These findings demonstrate the feasibility of combining brain-computer interfaces (BCI) and RL to autonomously adapt XR interactions, reducing cognitive load and enhancing immersion.
comment: 15 pages, 6 figures
Recent Advances and Future Directions in Extended Reality (XR): Exploring AI-Powered Spatial Intelligence
Extended Reality (XR), encompassing Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR), is a transformative technology bridging the physical and virtual world and it has diverse potential which will be ubiquitous in the future. This review examines XR's evolution through foundational framework - hardware ranging from monitors to sensors and software ranging from visual tasks to user interface; highlights state of the art (SOTA) XR products with the comparison and analysis of performance based on their foundational framework; discusses how commercial XR devices can support the demand of high-quality performance focusing on spatial intelligence. For future directions, attention should be given to the integration of multi-modal AI and IoT-driven digital twins to enable adaptive XR systems. With the concept of spatial intelligence, future XR should establish a new digital space with realistic experience that benefits humanity. This review underscores the pivotal role of AI in unlocking XR as the next frontier in human-computer interaction.
comment: 7 pages,4 figures
Ask2Loc: Learning to Locate Instructional Visual Answers by Asking Questions
Locating specific segments within an instructional video is an efficient way to acquire guiding knowledge. Generally, the task of obtaining video segments for both verbal explanations and visual demonstrations is known as visual answer localization (VAL). However, users often need multiple interactions to obtain answers that align with their expectations when using the system. During these interactions, humans deepen their understanding of the video content by asking themselves questions, thereby accurately identifying the location. Therefore, we propose a new task, named In-VAL, to simulate the multiple interactions between humans and videos in the procedure of obtaining visual answers. The In-VAL task requires interactively addressing several semantic gap issues, including 1) the ambiguity of user intent in the input questions, 2) the incompleteness of language in video subtitles, and 3) the fragmentation of content in video segments. To address these issues, we propose Ask2Loc, a framework for resolving In-VAL by asking questions. It includes three key modules: 1) a chatting module to refine initial questions and uncover clear intentions, 2) a rewriting module to generate fluent language and create complete descriptions, and 3) a searching module to broaden local context and provide integrated content. We conduct extensive experiments on three reconstructed In-VAL datasets. Compared to traditional end-to-end and two-stage methods, our proposed Ask2Loc can improve performance by up to 14.91 (mIoU) on the In-VAL task. Our code and datasets can be accessed at https://github.com/changzong/Ask2Loc.
comment: 16 pages, 8 figures
Supporting Data-Frame Dynamics in AI-assisted Decision Making
High stakes decision-making often requires a continuous interplay between evolving evidence and shifting hypotheses, a dynamic that is not well supported by current AI decision support systems. In this paper, we introduce a mixed-initiative framework for AI assisted decision making that is grounded in the data-frame theory of sensemaking and the evaluative AI paradigm. Our approach enables both humans and AI to collaboratively construct, validate, and adapt hypotheses. We demonstrate our framework with an AI-assisted skin cancer diagnosis prototype that leverages a concept bottleneck model to facilitate interpretable interactions and dynamic updates to diagnostic hypotheses.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
Beyond Attention: Investigating the Threshold Where Objective Robot Exclusion Becomes Subjective
As robots become increasingly involved in decision-making processes (e.g., personnel selection), concerns about fairness and social inclusion arise. This study examines social exclusion in robot-led group interviews by robot Ameca, exploring the relationship between objective exclusion (robot's attention allocation), subjective exclusion (perceived exclusion), mood change, and need fulfillment. In a controlled lab study (N = 35), higher objective exclusion significantly predicted subjective exclusion. In turn, subjective exclusion negatively impacted mood and need fulfillment but only mediated the relationship between objective exclusion and need fulfillment. A piecewise regression analysis identified a critical threshold at which objective exclusion begins to be perceived as subjective exclusion. Additionally, the standing position was the primary predictor of exclusion, whereas demographic factors (e.g., gender, height) had no significant effect. These findings underscore the need to consider both objective and subjective exclusion in human-robot interactions and have implications for fairness in robot-assisted hiring processes.
The 2nd MERCADO Workshop at IEEE VIS 2025: Multimodal Experiences for Remote Communication Around Data Online IEEE VIS 2025
We propose a half-day workshop at IEEE VIS 2025 on addressing the emerging challenges in data-rich multimodal remote collaboration. We focus on synchronous, remote, and hybrid settings where people take part in tasks such as data analysis, decision-making, and presentation. With this workshop, we continue successful prior work from the first MERCADO workshop at VIS 2023 and a 2024 Shonan Seminar that followed. Based on the findings of the earlier events, we invite research and ideas related to four themes of challenges: Tools & Technologies, Individual Differences & Interpersonal Dynamics, AI-assisted Collaboration, and Evaluation. With this workshop, we aim to broaden the community, foster new collaborations, and develop a research agenda to address these challenges in future research. Our planned workshop format is comprised of a keynote, short presentations, a breakout group session, and discussions organized around the identified challenges.
comment: Workshop accepted for IEEE VIS 2025
What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompt and model changes efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs, and we are able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
Bridging Bond Beyond Life: Designing VR Memorial Space with Stakeholder Collaboration via Research through Design
The integration of digital technologies into memorialization practices offers opportunities to transcend physical and temporal limitations. However, designing personalized memorial spaces that address the diverse needs of the dying and the bereaved remains underexplored. Using a Research through Design (RtD) approach, we conducted a three-phase study: participatory design, VR memorial space development, and user testing. This study highlights three key aspects: 1) the value of VR memorial spaces as bonding mediums, 2) the role of a design process that engages users through co-design, development, and user testing in addressing the needs of the dying and the bereaved, and 3) design elements that enhance the VR memorial experience. This research lays the foundation for personalized VR memorialization practices, providing insights into how technology can enrich remembrance and relational experiences.
comment: 6 pages excluding reference and appendix. Accepted at ACM CHI EA'25
Enhancing Tennis Training with Real-Time Swing Data Visualisation in Immersive Virtual Reality
Recent advances in immersive technology have opened new possibilities in sports training, especially for activities requiring precise motor skills, such as tennis. In this paper, we present a virtual reality (VR) tennis training system integrating real-time performance feedback through a wearable sensor device. Ten participants wore the sensor on their dominant hand to capture motion data, including swing speed and swing power, while engaging in a VR tennis environment. Initially, participants performed baseline tests without access to performance metrics. In subsequent tests, participants executed similar routines with their swing data displayed in real-time via a VR overlay. Qualitative and quantitative results indicated that real-time visual feedback led to improved performance behaviors and enhanced situational awareness. Some participants exhibited increased swing consistency and strategic decision-making, though improvements in accuracy varied individually. Additionally, subjective feedback highlighted that the immersive experience, combined with instantaneous performance metrics, enhanced player engagement and motivation. These findings illustrate the effectiveness of VR-based data visualisation in sports training, suggesting broader applicability in performance enhancement.
iMedic: Towards Smartphone-based Self-Auscultation Tool for AI-Powered Pediatric Respiratory Assessment
Respiratory auscultation is crucial for early detection of pediatric pneumonia, a condition that can quickly worsen without timely intervention. In areas with limited physician access, effective auscultation is challenging. We present a smartphone-based system that leverages built-in microphones and advanced deep learning algorithms to detect abnormal respiratory sounds indicative of pneumonia risk. Our end-to-end deep learning framework employs domain generalization to integrate a large electronic stethoscope dataset with a smaller smartphone-derived dataset, enabling robust feature learning for accurate respiratory assessments without expensive equipment. The accompanying mobile application guides caregivers in collecting high-quality lung sound samples and provides immediate feedback on potential pneumonia risks. User studies show strong classification performance and high acceptance, demonstrating the system's ability to facilitate proactive interventions and reduce preventable childhood pneumonia deaths. By seamlessly integrating into ubiquitous smartphones, this approach offers a promising avenue for more equitable and comprehensive remote pediatric care.
Promoting Real-Time Reflection in Synchronous Communication with Generative AI
Real-time reflection plays a vital role in synchronous communication. It enables users to adjust their communication strategies dynamically, thereby improving the effectiveness of their communication. Generative AI holds significant potential to enhance real-time reflection due to its ability to comprehensively understand the current context and generate personalized and nuanced content. However, it is challenging to design the way of interaction and information presentation to support the real-time workflow rather than disrupt it. In this position paper, we present a review of research on systems designed for real-time reflection in different synchronous communication scenarios. Based on that, we discuss how to design human-AI interaction to support real-time reflection in synchronous communication scenarios.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
Do It For Me vs. Do It With Me: Investigating User Perceptions of Different Paradigms of Automation in Copilots for Feature-Rich Software
Large Language Model (LLM)-based in-application assistants, or copilots, can automate software tasks, but users often prefer learning by doing, raising questions about the optimal level of automation for an effective user experience. We investigated two automation paradigms by designing and implementing a fully automated copilot (AutoCopilot) and a semi-automated copilot (GuidedCopilot) that automates trivial steps while offering step-by-step visual guidance. In a user study (N=20) across data analysis and visual design tasks, GuidedCopilot outperformed AutoCopilot in user control, software utility, and learnability, especially for exploratory and creative tasks, while AutoCopilot saved time for simpler visual tasks. A follow-up design exploration (N=10) enhanced GuidedCopilot with task-and state-aware features, including in-context preview clips and adaptive instructions. Our findings highlight the critical role of user control and tailored guidance in designing the next generation of copilots that enhance productivity, support diverse skill levels, and foster deeper software engagement.
comment: Accepted for publication in the CHI Conference on Human Factors in Computing Systems (CHI 2025), April 26 - May 1, 2025, Yokohama, Japan
Towards Resilience and Autonomy-based Approaches for Adolescents Online Safety
In this position paper, we discuss the paradigm shift that has emerged in the literature, suggesting to move away from restrictive and authoritarian parental mediation approaches to move toward resilient-based and privacy-preserving solutions to promote adolescents' online safety. We highlight the limitations of restrictive mediation strategies, which often induce a trade-off between teens' privacy and online safety, and call for more teen-centric frameworks that can empower teens to self-regulate while using the technology in meaningful ways. We also present an overview of empirical studies that conceptualized and examined resilience-based approaches to promoting the digital well-being of teens in a way to empower teens to be more resilient.
Media Content Atlas: A Pipeline to Explore and Investigate Multidimensional Media Space using Multimodal LLMs
As digital media use continues to evolve and influence various aspects of life, developing flexible and scalable tools to study complex media experiences is essential. This study introduces the Media Content Atlas (MCA), a novel pipeline designed to help researchers investigate large-scale screen data beyond traditional screen-use metrics. Leveraging multimodal large language models (MLLMs), MCA enables moment-by-moment content analysis, content-based clustering, topic modeling, image retrieval, and interactive visualizations. Evaluated on 1.12 million smartphone screenshots continuously captured during screen use from 112 adults over an entire month, MCA facilitates open-ended exploration and hypothesis generation as well as hypothesis-driven investigations at an unprecedented scale. Expert evaluators underscored its usability and potential for research and intervention design, with clustering results rated 96% relevant and descriptions 83% accurate. By bridging methodological possibilities with domain-specific needs, MCA accelerates both inductive and deductive inquiry, presenting new opportunities for media and HCI research.
comment: Accepted to CHI 2025, in press. See the project page at mediacontentatlas.github.io
Subthreshold Jitter in VR Can Induce Visual Discomfort
Visual-vestibular conflicts (VVCs) are a primary contributor to visually induced motion sickness (VIMS) in head-mounted displays (HMDs). However, virtual reality (VR) comfort studies often rely on exposing seated or standing users to experiences with high intensity visual motion (such as roller coasters). These drastic VVCs tend to induce pronounced VIMS symptoms that can be reliably detected across individuals using common survey measures. The conclusions from studies using these extreme motion-based conflicts may not accurately generalize to naturalistic use cases in VR where efforts are made to minimize, rather than maximize, VIMS symptoms. In this work, we show that a subthreshold visual-vestibular conflict can induce measurable discomfort during naturalistic, long duration use. We first present a psychophysical study, conducted outside of an HMD, to rigorously identify the perceptual thresholds for sinusoidal noise in render pose (i.e., jitter) resulting in erroneous 3D motion of rendered content. We next introduce subthreshold levels of jitter to a Meta Quest 3 VR HMD and demonstrate that this can induce visual discomfort in participants playing the commercially-available game Cubism across a three-session, repeated-measures study. Importantly, we did not identify statistically significant comfort differences between control and jitter conditions with traditional pre- and post-test comparison of Simulator Sickness Questionnaire (SSQ) scores. Significant differences were only identified using the Motion Illness Symptoms Classification (MISC) survey administered every 10 minutes across each 90 minute session. This highlights the benefits of incorporating time-resolved data points and suggests that lightweight, more frequent surveys may be important tools for measuring visual discomfort in more ecologically-valid scenarios.
Investigating LLMs in Clinical Triage: Promising Capabilities, Persistent Intersectional Biases AAAI 2025
Large Language Models (LLMs) have shown promise in clinical decision support, yet their application to triage remains underexplored. We systematically investigate the capabilities of LLMs in emergency department triage through two key dimensions: (1) robustness to distribution shifts and missing data, and (2) counterfactual analysis of intersectional biases across sex and race. We assess multiple LLM-based approaches, ranging from continued pre-training to in-context learning, as well as machine learning approaches. Our results indicate that LLMs exhibit superior robustness, and we investigate the key factors contributing to the promising LLM-based approaches. Furthermore, in this setting, we identify gaps in LLM preferences that emerge in particular intersections of sex and race. LLMs generally exhibit sex-based differences, but they are most pronounced in certain racial groups. These findings suggest that LLMs encode demographic preferences that may emerge in specific clinical contexts or particular combinations of characteristics.
comment: Accepted to GenAI4Health Workshop @ AAAI 2025
FairPlay: A Collaborative Approach to Mitigate Bias in Datasets for Improved AI Fairness SC
The issue of fairness in decision-making is a critical one, especially given the variety of stakeholder demands for differing and mutually incompatible versions of fairness. Adopting a strategic interaction of perspectives provides an alternative to enforcing a singular standard of fairness. We present a web-based software application, FairPlay, that enables multiple stakeholders to debias datasets collaboratively. With FairPlay, users can negotiate and arrive at a mutually acceptable outcome without a universally agreed-upon theory of fairness. In the absence of such a tool, reaching a consensus would be highly challenging due to the lack of a systematic negotiation process and the inability to modify and observe changes. We have conducted user studies that demonstrate the success of FairPlay, as users could reach a consensus within about five rounds of gameplay, illustrating the application's potential for enhancing fairness in AI systems.
comment: Accepted at ACM CSCW 2025. 30 pages total (including references and supplementary material). Contains 10 figures
Quality of explanation of xAI from the prespective of Italian end-users: Italian version of System Causability Scale (SCS)
Background and aim: Considering the scope of the application of artificial intelligence beyond the field of computer science, one of the concerns of researchers is to provide quality explanations about the functioning of algorithms based on artificial intelligence and the data extracted from it. The purpose of the present study is to validate the Italian version of system causability scale (I-SCS) to measure the quality of explanations provided in a xAI. Method: For this purpose, the English version, initially provided in 2020 in coordination with the main developer, was utilized. The forward-backward translation method was applied to ensure accuracy. Finally, these nine steps were completed by calculating the content validity index/ratio and conducting cognitive interviews with representative end users. Results: The original version of the questionnaire consisted of 10 questions. However, based on the obtained indexes (CVR below 0.49), one question (Question 8) was entirely removed. After completing the aforementioned steps, the Italian version contained 9 questions. The representative sample of Italian end users fully comprehended the meaning and content of the questions in the Italian version. Conclusion: The Italian version obtained in this study can be used in future research studies as well as in the field by xAI developers. This tool can be used to measure the quality of explanations provided for an xAI system in Italian culture.
comment: This work will be presented in Coperman 2025 Conference
A Systematic Literature Review of Software Engineering Research on Jupyter Notebook
Context: Jupyter Notebook has emerged as a versatile tool that transforms how researchers, developers, and data scientists conduct and communicate their work. As the adoption of Jupyter notebooks continues to rise, so does the interest from the software engineering research community in improving the software engineering practices for Jupyter notebooks. Objective: The purpose of this study is to analyze trends, gaps, and methodologies used in software engineering research on Jupyter notebooks. Method: We selected 146 relevant publications from the DBLP Computer Science Bibliography up to the end of 2024, following established systematic literature review guidelines. We explored publication trends, categorized them based on software engineering topics, and reported findings based on those topics. Results: The most popular venues for publishing software engineering research on Jupyter notebooks are related to human-computer interaction instead of traditional software engineering venues. Researchers have addressed a wide range of software engineering topics on notebooks, such as code reuse, readability, and execution environment. Although reusability is one of the research topics for Jupyter notebooks, only 64 of the 146 studies can be reused based on their provided URLs. Additionally, most replication packages are not hosted on permanent repositories for long-term availability and adherence to open science principles. Conclusion: Solutions specific to notebooks for software engineering issues, including testing, refactoring, and documentation, are underexplored. Future research opportunities exist in automatic testing frameworks, refactoring clones between notebooks, and generating group documentation for coherent code cells.
LACE: Controlled Image Prompting and Iterative Refinement with GenAI for Professional Visual Art Creators
We present LACE, a hybrid Human-AI co-creative system integrated into Adobe Photoshop supporting turn-taking and parallel interaction modes for iterative image generation. Through a study with 21 participants across representational, abstract, and design tasks, we found turn-taking preferred in early stages for idea generation, and parallel modes suited for detailed refinement. While this shorter workshop paper provides key insights and highlights, the comprehensive findings and detailed analysis are presented in a longer version available separately on arXiv.
comment: Accepted at the GenAICHI Workshop at CHI 2025 (4 pages) For comprehensive methods, analysis, and extended discussions, please refer to the full-length version at [arXiv:2504.14827]
Expanding the Generative AI Design Space through Structured Prompting and Multimodal Interfaces
Text-based prompting remains the predominant interaction paradigm in generative AI, yet it often introduces friction for novice users such as small business owners (SBOs), who struggle to articulate creative goals in domain-specific contexts like advertising. Through a formative study with six SBOs in the United Kingdom, we identify three key challenges: difficulties in expressing brand intuition through prompts, limited opportunities for fine-grained adjustment and refinement during and after content generation, and the frequent production of generic content that lacks brand specificity. In response, we present ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal generative AI tool designed to support novice designers by moving beyond traditional prompt interfaces. ACAI features a structured input system composed of three panels: Branding, Audience and Goals, and the Inspiration Board. These inputs allow users to convey brand-relevant context and visual preferences. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context, improve alignment, and enhance co-creative control in novice creative workflows.
comment: Accepted at CHI'25 Workshop on Designing and Developing User Interfaces with AI
EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard Using Hybrid Deep Learning Approach
Brain-machine interfaces (BMIs), particularly those based on electroencephalography (EEG), offer promising solutions for assisting individuals with motor disabilities. However, challenges in reliably interpreting EEG signals for specific tasks, such as simulating keystrokes, persist due to the complexity and variability of brain activity. Current EEG-based BMIs face limitations in adaptability, usability, and robustness, especially in applications like virtual keyboards, as traditional machine-learning models struggle to handle high-dimensional EEG data effectively. To address these gaps, we developed an EEG-based BMI system capable of accurately identifying voluntary keystrokes, specifically leveraging right and left voluntary hand movements. Using a publicly available EEG dataset, the signals were pre-processed with band-pass filtering, segmented into 22-electrode arrays, and refined into event-related potential (ERP) windows, resulting in a 19x200 feature array categorized into three classes: resting state (0), 'd' key press (1), and 'l' key press (2). Our approach employs a hybrid neural network architecture with BiGRU-Attention as the proposed model for interpreting EEG signals, achieving superior test accuracy of 90% and a mean accuracy of 91% in 10-fold stratified cross-validation. This performance outperforms traditional ML methods like Support Vector Machines (SVMs) and Naive Bayes, as well as advanced architectures such as Transformers, CNN-Transformer hybrids, and EEGNet. Finally, the BiGRU-Attention model is integrated into a real-time graphical user interface (GUI) to simulate and predict keystrokes from brain activity. Our work demonstrates how deep learning can advance EEG-based BMI systems by addressing the challenges of signal interpretation and classification.
comment: Please note: This is the preprint version of the manuscript. The final peer-reviewed version has been published in Advanced Engineering Informatics, Volume 65, Part D, 2025, and is available at: https://doi.org/10.1016/j.aei.2025.103304 Please cite the published journal version for referencing this work
Comprehensive Classification of Web Tracking Systems: Technological In-sights and Analysis
Web tracking (WT) systems are advanced technologies used to monitor and analyze online user behavior. Initially focused on HTML and static webpages, these systems have evolved with the proliferation of IoT, edge computing, and Big Data, encompassing a broad array of interconnected devices with APIs, interfaces and computing nodes for interaction. WT systems are pivotal in technological innovation and business development, although trends like GDPR complicate data extraction and mandate transparency. Specifically, this study examines WT systems purely from a technological perspective, excluding organizational and privacy implications. A novel classification scheme based on technological architecture and principles is proposed, compared to two preexisting frameworks. The scheme categorizes WT systems into six classes, emphasizing technological mechanisms such as HTTP proto-cols, APIs, and user identification techniques. Additionally, a survey of over 1,000 internet users, conducted via Google Forms, explores user awareness of WT systems. Findings indicate that knowledge of WT technologies is largely unrelated to demographic factors such as age or gender but is strongly influenced by a user's background in computer science. Most users demonstrate only a basic understanding of WT tools, and this awareness does not correlate with heightened concerns about data misuse. As such, the research highlights gaps in user education about WT technologies and underscores the need for a deeper examination of their technical underpinnings. This study provides a foundation for further exploration of WT systems from multiple perspectives, contributing to advance-ments in classification, implementation, and user awareness.
comment: 14 pages, 52 references
Examining Technology Perspectives of Older Adults with Mild Cognitive Impairment: A Scoping Review
Mild cognitive impairment (MCI) affects a person's memory and how they think, feel or behave. Up to 20% of people over 65 years may get MCI and up to 15% of these may progress to dementia. Globally the occurrence of MCI is increasing, and technology is being explored for early intervention and to reduce strain on the aged-care sector. Theories of technology adoption predict that useful and easy-to-use solutions will have higher rates of adoption. This study adds to existing knowledge by reporting on analysis of a search across nine databases (ACM Digital Library, EBSCOhost CINAHL Plus with Full Text, EBSCOhost Computers and Applied Sciences Complete, Google Scholar, JMIR, IEEE Xplore, EBSCOhost Medline, Scopus, Web of Science Core Collection) for articles published between Jan 2014 and May 2024 which describe opinions of older people with MCI about technological solutions proposed for them, and feedback about how they prefer to engage with technology. Analysis of 83 articles suggests that existing solutions do address priority needs, however more work is needed to (i) improve ease of use, (ii) enable personalisation, (ii) explore interaction preferences and effectiveness of different interaction modes, (iv) enable multimodal interaction, and (v) integrate solutions seamlessly into daily routines.
comment: Have updated the paper and the authors are reviewing the amendments. I will resubmit once all authors have completed reviewing
Labeling Messages as AI-Generated Does Not Reduce Their Persuasive Effects
As generative artificial intelligence (AI) enables the creation and dissemination of information at massive scale and speed, it is increasingly important to understand how people perceive AI-generated content. One prominent policy proposal requires explicitly labeling AI-generated content to increase transparency and encourage critical thinking about the information, but prior research has not yet tested the effects of such labels. To address this gap, we conducted a survey experiment (N=1601) on a diverse sample of Americans, presenting participants with an AI-generated message about several public policies (e.g., allowing colleges to pay student-athletes), randomly assigning whether participants were told the message was generated by (a) an expert AI model, (b) a human policy expert, or (c) no label. We found that messages were generally persuasive, influencing participants' views of the policies by 9.74 percentage points on average. However, while 94.6% of participants assigned to the AI and human label conditions believed the authorship labels, labels had no significant effects on participants' attitude change toward the policies, judgments of message accuracy, nor intentions to share the message with others. These patterns were robust across a variety of participant characteristics, including prior knowledge of the policy, prior experience with AI, political party, education level, or age. Taken together, these results imply that, while authorship labels would likely enhance transparency, they are unlikely to substantially affect the persuasiveness of the labeled content, highlighting the need for alternative strategies to address challenges posed by AI-generated information.
LLM-Driven Optimization of HTML Structure to Support Screen Reader Navigation
Online interactions and e-commerce are commonplace among BLV users. Despite the implementation of web accessibility standards, many e-commerce platforms continue to present challenges to screen reader users, particularly in areas like webpage navigation and information retrieval. We investigate the difficulties encountered by screen reader users during online shopping experiences. We conducted a formative study with BLV users and designed a web browser plugin that uses GenAI to restructure webpage content in real time. Our approach improved the header hierarchy and provided correct labeling for essential information. We evaluated the effectiveness of this solution using an automated accessibility tool and through user interviews. Our results show that the revised webpages generated by our system offer significant improvements over the original webpages regarding screen reader navigation experience. Based on our findings, we discuss its potential usage as both a user and developer tool that can significantly enhance screen reader accessibility of webpages.
Tinker Tales: Interactive Storytelling Framework for Early Childhood Narrative Development and AI Literacy
This paper presents Tinker Tales, an interactive storytelling framework in the format of a board game, designed to support both narrative development and AI literacy in early childhood. The framework integrates tangible and speech-based interactions with AI through NFC chip-attached pawns and tokens, along with a speaker and microphone. Children select and define key story elements-such as characters, places, items, and emotions-using the pawns and tokens, providing further details to the AI and receiving proper assistance, similar to how adults prompt AI for specific tasks (e.g., writing). For evaluation, several game sessions were simulated with a child AI agent, and the quality and safety of the generated stories were assessed from various perspectives. This work highlights the potential of combining physical and digital elements in AI literacy, offering a safe and engaging way for children to learn how to effectively collaborate with AI.
Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
Computation and Language
TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 159% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the Maj@N metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks, and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
Survey of Video Diffusion Models: Foundations, Implementations, and Applications
Recent advances in diffusion models have revolutionized video generation, offering superior temporal consistency and visual quality compared to traditional generative adversarial networks-based approaches. While this emerging field shows tremendous promise in applications, it faces significant challenges in motion consistency, computational efficiency, and ethical considerations. This survey provides a comprehensive review of diffusion-based video generation, examining its evolution, technical foundations, and practical applications. We present a systematic taxonomy of current methodologies, analyze architectural innovations and optimization strategies, and investigate applications across low-level vision tasks such as denoising and super-resolution. Additionally, we explore the synergies between diffusionbased video generation and related domains, including video representation learning, question answering, and retrieval. Compared to the existing surveys (Lei et al., 2024a;b; Melnik et al., 2024; Cao et al., 2023; Xing et al., 2024c) which focus on specific aspects of video generation, such as human video synthesis (Lei et al., 2024a) or long-form content generation (Lei et al., 2024b), our work provides a broader, more updated, and more fine-grained perspective on diffusion-based approaches with a special section for evaluation metrics, industry solutions, and training engineering techniques in video generation. This survey serves as a foundational resource for researchers and practitioners working at the intersection of diffusion models and video generation, providing insights into both the theoretical frameworks and practical implementations that drive this rapidly evolving field. A structured list of related works involved in this survey is also available on https://github.com/Eyeline-Research/Survey-Video-Diffusion.
PHYBench: Holistic Evaluation of Physical Perception and Reasoning in Large Language Models
We introduce PHYBench, a novel, high-quality benchmark designed for evaluating reasoning capabilities of large language models (LLMs) in physical contexts. PHYBench consists of 500 meticulously curated physics problems based on real-world physical scenarios, designed to assess the ability of models to understand and reason about realistic physical processes. Covering mechanics, electromagnetism, thermodynamics, optics, modern physics, and advanced physics, the benchmark spans difficulty levels from high school exercises to undergraduate problems and Physics Olympiad challenges. Additionally, we propose the Expression Edit Distance (EED) Score, a novel evaluation metric based on the edit distance between mathematical expressions, which effectively captures differences in model reasoning processes and results beyond traditional binary scoring methods. We evaluate various LLMs on PHYBench and compare their performance with human experts. Our results reveal that even state-of-the-art reasoning models significantly lag behind human experts, highlighting their limitations and the need for improvement in complex physical reasoning scenarios. Our benchmark results and dataset are publicly available at https://phybench-official.github.io/phybench-demo/.
comment: 21 pages ,8 figures, 4 tables
Guiding VLM Agents with Process Rewards at Inference Time for GUI Navigation
Recent advancements in visual language models (VLMs) have notably enhanced their capabilities in handling complex Graphical User Interface (GUI) interaction tasks. Despite these improvements, current frameworks often struggle to generate correct actions in challenging GUI environments. State-of-the-art commercial VLMs are black-boxes, and fine-tuning open-source VLMs for GUI tasks requires significant resources. Additionally, existing trajectory-level evaluation and refinement techniques frequently fall short due to delayed feedback and local optimization issues. To address these challenges, we propose an approach that guides VLM agents with process supervision by a reward model during GUI navigation and control at inference time. This guidance allows the VLM agent to optimize actions at each inference step, thereby improving performance in both static and dynamic environments. In particular, our method demonstrates significant performance gains in three GUI navigation tasks, achieving a 3.4% improvement in single step action accuracy for static environments, along with a around 33% increase in task success rate in one dynamic environment. With further integration of trajectory reflection and retry mechanisms, we also demonstrate even greater enhancement in task success.
A Python Tool for Reconstructing Full News Text from GDELT
News data have become an essential resource across various disciplines, including economics, finance, management, social sciences, and computer science. Researchers leverage newspaper articles to study economic trends, market dynamics, corporate strategies, public perception, political discourse, and the evolution of public opinion. Additionally, news datasets have been instrumental in training large-scale language models, with applications in sentiment analysis, fake news detection, and automated news summarization. Despite their significance, access to comprehensive news corpora remains a key challenge. Many full-text news providers, such as Factiva and LexisNexis, require costly subscriptions, while free alternatives often suffer from incomplete data and transparency issues. This paper presents a novel approach to obtaining full-text newspaper articles at near-zero cost by leveraging data from the Global Database of Events, Language, and Tone (GDELT). Specifically, we focus on the GDELT Web News NGrams 3.0 dataset, which provides high-frequency updates of n-grams extracted from global online news sources. We provide Python code to reconstruct full-text articles from these n-grams by identifying overlapping textual fragments and intelligently merging them. Our method enables researchers to access structured, large-scale newspaper data for text analysis while overcoming the limitations of existing proprietary datasets. The proposed approach enhances the accessibility of news data for empirical research, facilitating applications in economic forecasting, computational social science, and natural language processing.
Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation
Referring Expression Generation (REG) is a core task for evaluating the pragmatic competence of vision-language systems, requiring not only accurate semantic grounding but also adherence to principles of cooperative communication (Grice, 1975). However, current evaluations of vision-language models (VLMs) often overlook the pragmatic dimension, reducing REG to a region-based captioning task and neglecting Gricean maxims. In this work, we revisit REG from a pragmatic perspective, introducing a new dataset (RefOI) of 1.5k images annotated with both written and spoken referring expressions. Through a systematic evaluation of state-of-the-art VLMs, we identify three key failures of pragmatic competence: (1) failure to uniquely identify the referent, (2) inclusion of excessive or irrelevant information, and (3) misalignment with human pragmatic preference, such as the underuse of minimal spatial cues. We also show that standard automatic evaluations fail to capture these pragmatic violations, reinforcing superficial cues rather than genuine referential success. Our findings call for a renewed focus on pragmatically informed models and evaluation frameworks that align with real human communication.
comment: Homepage: https://vlm-reg.github.io/
Honey, I Shrunk the Language Model: Impact of Knowledge Distillation Methods on Performance and Explainability
Artificial Intelligence (AI) has increasingly influenced modern society, recently in particular through significant advancements in Large Language Models (LLMs). However, high computational and storage demands of LLMs still limit their deployment in resource-constrained environments. Knowledge distillation addresses this challenge by training a small student model from a larger teacher model. Previous research has introduced several distillation methods for both generating training data and for training the student model. Despite their relevance, the effects of state-of-the-art distillation methods on model performance and explainability have not been thoroughly investigated and compared. In this work, we enlarge the set of available methods by applying critique-revision prompting to distillation for data generation and by synthesizing existing methods for training. For these methods, we provide a systematic comparison based on the widely used Commonsense Question-Answering (CQA) dataset. While we measure performance via student model accuracy, we employ a human-grounded study to evaluate explainability. We contribute new distillation methods and their comparison in terms of both performance and explainability. This should further advance the distillation of small language models and, thus, contribute to broader applicability and faster diffusion of LLM technology.
LongMamba: Enhancing Mamba's Long Context Capabilities via Training-Free Receptive Field Enlargement ICLR 2025
State space models (SSMs) have emerged as an efficient alternative to Transformer models for language modeling, offering linear computational complexity and constant memory usage as context length increases. However, despite their efficiency in handling long contexts, recent studies have shown that SSMs, such as Mamba models, generally underperform compared to Transformers in long-context understanding tasks. To address this significant shortfall and achieve both efficient and accurate long-context understanding, we propose LongMamba, a training-free technique that significantly enhances the long-context capabilities of Mamba models. LongMamba builds on our discovery that the hidden channels in Mamba can be categorized into local and global channels based on their receptive field lengths, with global channels primarily responsible for long-context capability. These global channels can become the key bottleneck as the input context lengthens. Specifically, when input lengths largely exceed the training sequence length, global channels exhibit limitations in adaptively extend their receptive fields, leading to Mamba's poor long-context performance. The key idea of LongMamba is to mitigate the hidden state memory decay in these global channels by preventing the accumulation of unimportant tokens in their memory. This is achieved by first identifying critical tokens in the global channels and then applying token filtering to accumulate only those critical tokens. Through extensive benchmarking across synthetic and real-world long-context scenarios, LongMamba sets a new standard for Mamba's long-context performance, significantly extending its operational range without requiring additional training. Our code is available at https://github.com/GATECH-EIC/LongMamba.
comment: Accepted by ICLR 2025
Certified Mitigation of Worst-Case LLM Copyright Infringement
The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
Methods for Recognizing Nested Terms
In this paper, we describe our participation in the RuTermEval competition devoted to extracting nested terms. We apply the Binder model, which was previously successfully applied to the recognition of nested named entities, to extract nested terms. We obtained the best results of term recognition in all three tracks of the RuTermEval competition. In addition, we study the new task of recognition of nested terms from flat training data annotated with terms without nestedness. We can conclude that several approaches we proposed in this work are viable enough to retrieve nested terms effectively without nested labeling of them.
comment: To be published in Computational Linguistics and Intellectual Technologies proceedings
CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automated prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
How Private is Your Attention? Bridging Privacy with In-Context Learning
In-context learning (ICL)-the ability of transformer-based models to perform new tasks from examples provided at inference time-has emerged as a hallmark of modern language models. While recent works have investigated the mechanisms underlying ICL, its feasibility under formal privacy constraints remains largely unexplored. In this paper, we propose a differentially private pretraining algorithm for linear attention heads and present the first theoretical analysis of the privacy-accuracy trade-off for ICL in linear regression. Our results characterize the fundamental tension between optimization and privacy-induced noise, formally capturing behaviors observed in private training via iterative methods. Additionally, we show that our method is robust to adversarial perturbations of training prompts, unlike standard ridge regression. All theoretical findings are supported by extensive simulations across diverse settings.
Few-shot Hate Speech Detection Based on the MindSpore Framework
The proliferation of hate speech on social media poses a significant threat to online communities, requiring effective detection systems. While deep learning models have shown promise, their performance often deteriorates in few-shot or low-resource settings due to reliance on large annotated corpora. To address this, we propose MS-FSLHate, a prompt-enhanced neural framework for few-shot hate speech detection implemented on the MindSpore deep learning platform. The model integrates learnable prompt embeddings, a CNN-BiLSTM backbone with attention pooling, and synonym-based adversarial data augmentation to improve generalization. Experimental results on two benchmark datasets-HateXplain and HSOL-demonstrate that our approach outperforms competitive baselines in precision, recall, and F1-score. Additionally, the framework shows high efficiency and scalability, suggesting its suitability for deployment in resource-constrained environments. These findings highlight the potential of combining prompt-based learning with adversarial augmentation for robust and adaptable hate speech detection in few-shot scenarios.
W-PCA Based Gradient-Free Proxy for Efficient Search of Lightweight Language Models ICLR 2025
The demand for efficient natural language processing (NLP) systems has led to the development of lightweight language models. Previous work in this area has primarily focused on manual design or training-based neural architecture search (NAS) methods. Recently, zero-shot NAS methods have been proposed for evaluating language models without the need for training. However, prevailing approaches to zero-shot NAS often face challenges such as biased evaluation metrics and computational inefficiencies. In this paper, we introduce weight-weighted PCA (W-PCA), a novel zero-shot NAS method specifically tailored for lightweight language models. Our approach utilizes two evaluation proxies: the parameter count and the number of principal components with cumulative contribution exceeding $\eta$ in the feed-forward neural (FFN) layer. Additionally, by eliminating the need for gradient computations, we optimize the evaluation time, thus enhancing the efficiency of designing and evaluating lightweight language models. We conduct a comparative analysis on the GLUE and SQuAD datasets to evaluate our approach. The results demonstrate that our method significantly reduces training time compared to one-shot NAS methods and achieves higher scores in the testing phase compared to previous state-of-the-art training-based methods. Furthermore, we perform ranking evaluations on a dataset sampled from the FlexiBERT search space. Our approach exhibits superior ranking correlation and further reduces solving time compared to other zero-shot NAS methods that require gradient computation.
comment: ICLR 2025
FairTranslate: An English-French Dataset for Gender Bias Evaluation in Machine Translation by Overcoming Gender Binarity
Large Language Models (LLMs) are increasingly leveraged for translation tasks but often fall short when translating inclusive language -- such as texts containing the singular 'they' pronoun or otherwise reflecting fair linguistic protocols. Because these challenges span both computational and societal domains, it is imperative to critically evaluate how well LLMs handle inclusive translation with a well-founded framework. This paper presents FairTranslate, a novel, fully human-annotated dataset designed to evaluate non-binary gender biases in machine translation systems from English to French. FairTranslate includes 2418 English-French sentence pairs related to occupations, annotated with rich metadata such as the stereotypical alignment of the occupation, grammatical gender indicator ambiguity, and the ground-truth gender label (male, female, or inclusive). We evaluate four leading LLMs (Gemma2-2B, Mistral-7B, Llama3.1-8B, Llama3.3-70B) on this dataset under different prompting procedures. Our results reveal substantial biases in gender representation across LLMs, highlighting persistent challenges in achieving equitable outcomes in machine translation. These findings underscore the need for focused strategies and interventions aimed at ensuring fair and inclusive language usage in LLM-based translation systems. We make the FairTranslate dataset publicly available on Hugging Face, and disclose the code for all experiments on GitHub.
comment: FAccT 2025
SARI: Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning
Recent work shows that reinforcement learning(RL) can markedly sharpen the reasoning ability of large language models (LLMs) by prompting them to "think before answering." Yet whether and how these gains transfer to audio-language reasoning remains largely unexplored. We extend the Group-Relative Policy Optimization (GRPO) framework from DeepSeek-R1 to a Large Audio-Language Model (LALM), and construct a 32k sample multiple-choice corpus. Using a two-stage regimen supervised fine-tuning on structured and unstructured chains-of-thought, followed by curriculum-guided GRPO, we systematically compare implicit vs. explicit, and structured vs. free form reasoning under identical architectures. Our structured audio reasoning model, SARI (Structured Audio Reasoning via Curriculum-Guided Reinforcement Learning), achieves a 16.35% improvement in average accuracy over the base model Qwen2-Audio-7B-Instruct. Furthermore, the variant built upon Qwen2.5-Omni reaches state-of-the-art performance of 67.08% on the MMAU test-mini benchmark. Ablation experiments show that on the base model we use: (i) SFT warm-up is important for stable RL training, (ii) structured chains yield more robust generalization than unstructured ones, and (iii) easy-to-hard curricula accelerate convergence and improve final performance. These findings demonstrate that explicit, structured reasoning and curriculum learning substantially enhances audio-language understanding.
Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.
comment: 19 pages, 11 figures
Exploring Cognitive and Aesthetic Causality for Multimodal Aspect-Based Sentiment Analysis
Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions (cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses and cognitive interpretations). Specifically, this framework first incorporates visual patch features for patch-word alignment. Meanwhile, it extracts coarse-grained visual features (e.g., overall image representation) and fine-grained visual regions (e.g., aspect-related regions) and translates them into corresponding textual descriptions (e.g., facial, aesthetic). Finally, we leverage the sentimental causes and impressions generated by a large language model (LLM) to enhance the model's awareness of sentimental cues evoked by semantic content and affective-cognitive resonance. Experimental results on standard MASC datasets demonstrate the effectiveness of the proposed model, which also exhibits greater flexibility to MASC compared to LLMs such as GPT-4o. We have publicly released the complete implementation and dataset at https://github.com/Xillv/Chimera
comment: Accepted by TAFFC 2025
Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Direct Preference Optimization (DPO) simplifies reinforcement learning from human feedback (RLHF) for large language models (LLMs) by directly optimizing human preferences without an explicit reward model. We find that during DPO training, the reference model plays the role of a data weight adjuster. However, the common practice of initializing the policy and reference models identically in DPO can lead to inefficient data utilization and impose a performance ceiling. Meanwhile, the lack of a reference model in Simple Preference Optimization (SimPO) reduces training robustness and necessitates stricter conditions to prevent catastrophic forgetting. In this work, we propose Pre-DPO, a simple yet effective DPO-based training paradigm that enhances preference optimization performance by leveraging a guiding reference model. This reference model provides foresight into the optimal policy state achievable through the training preference data, serving as a guiding mechanism that adaptively assigns higher weights to samples more suitable for the model and lower weights to those less suitable. Extensive experiments on AlpacaEval 2.0 and Arena-Hard v0.1 benchmarks demonstrate that Pre-DPO consistently improves the performance of both DPO and SimPO, without relying on external models or additional data.
What's the Difference? Supporting Users in Identifying the Effects of Prompt and Model Changes Through Token Patterns
Prompt engineering for large language models is challenging, as even small prompt perturbations or model changes can significantly impact the generated output texts. Existing evaluation methods, either automated metrics or human evaluation, have limitations, such as providing limited insights or being labor-intensive. We propose Spotlight, a new approach that combines both automation and human analysis. Based on data mining techniques, we automatically distinguish between random (decoding) variations and systematic differences in language model outputs. This process provides token patterns that describe the systematic differences and guide the user in manually analyzing the effects of their prompt and model changes efficiently. We create three benchmarks to quantitatively test the reliability of token pattern extraction methods and demonstrate that our approach provides new insights into established prompt data. From a human-centric perspective, through demonstration studies and a user study, we show that our token pattern approach helps users understand the systematic differences of language model outputs, and we are able to discover relevant differences caused by prompt and model changes (e.g. related to gender or culture), thus supporting the prompt engineering process and human-centric model behavior research.
A closer look at how large language models trust humans: patterns and biases
As large language models (LLMs) and LLM-based agents increasingly interact with humans in decision-making contexts, understanding the trust dynamics between humans and AI agents becomes a central concern. While considerable literature studies how humans trust AI agents, it is much less understood how LLM-based agents develop effective trust in humans. LLM-based agents likely rely on some sort of implicit effective trust in trust-related contexts (e.g., evaluating individual loan applications) to assist and affect decision making. Using established behavioral theories, we develop an approach that studies whether LLMs trust depends on the three major trustworthiness dimensions: competence, benevolence and integrity of the human subject. We also study how demographic variables affect effective trust. Across 43,200 simulated experiments, for five popular language models, across five different scenarios we find that LLM trust development shows an overall similarity to human trust development. We find that in most, but not all cases, LLM trust is strongly predicted by trustworthiness, and in some cases also biased by age, religion and gender, especially in financial scenarios. This is particularly true for scenarios common in the literature and for newer models. While the overall patterns align with human-like mechanisms of effective trust formation, different models exhibit variation in how they estimate trust; in some cases, trustworthiness and demographic factors are weak predictors of effective trust. These findings call for a better understanding of AI-to-human trust dynamics and monitoring of biases and trust development patterns to prevent unintended and potentially harmful outcomes in trust-sensitive applications of AI.
Automated Creativity Evaluation for Large Language Models: A Reference-Based Approach
Creative writing is a key capability of Large Language Models (LLMs), with potential applications in literature, storytelling, and various creative domains. However, evaluating the creativity of machine-generated texts remains a significant challenge, as existing methods either rely on costly manual annotations or fail to align closely with human assessments. In this paper, we propose an effective automated evaluation method based on the Torrance Test of Creative Writing (TTCW), which evaluates creativity as product. Our method employs a reference-based Likert-style approach, scoring generated creative texts relative to high-quality reference texts across various tests. Experimental results demonstrate that our method significantly improves the alignment between LLM evaluations and human assessments, achieving a pairwise accuracy of 0.75 (+15\%).
TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at https://github.com/Alpha-Innovator/TrustGeoGen
Tina: Tiny Reasoning Models via LoRA
How cost-effectively can strong reasoning abilities be achieved in language models? Driven by this fundamental question, we present Tina, a family of tiny reasoning models achieved with high cost-efficiency. Notably, Tina demonstrates that substantial reasoning performance can be developed using only minimal resources, by applying parameter-efficient updates during reinforcement learning (RL), using low-rank adaptation (LoRA), to an already tiny 1.5B parameter base model. This minimalist approach produces models that achieve reasoning performance which is competitive with, and sometimes surpasses, SOTA RL reasoning models built upon the same base model. Crucially, this is achieved at a tiny fraction of the computational post-training cost employed by existing SOTA models. In fact, the best Tina model achieves a >20\% reasoning performance increase and 43.33\% Pass@1 accuracy on AIME24, at only \$9 USD post-training and evaluation cost (i.e., an estimated 260x cost reduction). Our work reveals the surprising effectiveness of efficient RL reasoning via LoRA. We validate this across multiple open-source reasoning datasets and various ablation settings starting with a single, fixed set of hyperparameters. Furthermore, we hypothesize that this effectiveness and efficiency stem from LoRA rapidly adapting the model to the structural format of reasoning rewarded by RL, while largely preserving the base model's underlying knowledge. In service of accessibility and open research, we fully open-source all code, training logs, and model weights \& checkpoints.
Subject islands do not reduce to construction-specific discourse function
The term islands in linguistics refers to phrases from which extracting an element results in ungrammaticality (Ross, 1967). Grammatical subjects are considered islands because extracting a sub-part of a subject results in an ill-formed sentence, despite having a clear intended meaning (e.g., "Which topic did the article about inspire you?"). The generative tradition, which views syntax as autonomous of meaning and function, attributes this ungrammaticality to the abstract movement dependency between the wh-phrase and the subject-internal position with which it is associated for interpretation. However, research on language that emphasizes its communicative function suggests instead that syntactic constraints, including islands, can be explained based on the way different constructions package information. Accordingly, Abeill\'e et al. (2020) suggest that the islandhood of subjects is specific to the information structure of wh-questions, and propose that subjects are not islands for movement, but for focusing, due to their discourse-backgroundedness. This predicts that other constructions that differ in their information structure from wh-questions, but still involve movement, should not create a subject island effect. We test this prediction in three large-scale acceptability studies, using a super-additive design that singles out subject island violations, in three different constructions: wh-questions, relative clauses, and topicalization. We report evidence for a subject island effect in each construction type, despite only wh-questions introducing what Abeill\'e et al. (2020) call "a clash in information structure." We argue that this motivates an account of islands in terms of abstract, syntactic representations, independent of the communicative function associated with the constructions.
FinTextSim: Enhancing Financial Text Analysis with BERTopic
Recent advancements in information availability and computational capabilities have transformed the analysis of annual reports, integrating traditional financial metrics with insights from textual data. To extract valuable insights from this wealth of textual data, automated review processes, such as topic modeling, are crucial. This study examines the effectiveness of BERTopic, a state-of-the-art topic model relying on contextual embeddings, for analyzing Item 7 and Item 7A of 10-K filings from S&P 500 companies (2016-2022). Moreover, we introduce FinTextSim, a finetuned sentence-transformer model optimized for clustering and semantic search in financial contexts. Compared to all-MiniLM-L6-v2, the most widely used sentence-transformer, FinTextSim increases intratopic similarity by 81% and reduces intertopic similarity by 100%, significantly enhancing organizational clarity. We assess BERTopic's performance using embeddings from both FinTextSim and all-MiniLM-L6-v2. Our findings reveal that BERTopic only forms clear and distinct economic topic clusters when paired with FinTextSim's embeddings. Without FinTextSim, BERTopic struggles with misclassification and overlapping topics. Thus, FinTextSim is pivotal for advancing financial text analysis. FinTextSim's enhanced contextual embeddings, tailored for the financial domain, elevate the quality of future research and financial information. This improved quality of financial information will enable stakeholders to gain a competitive advantage, streamlining resource allocation and decision-making processes. Moreover, the improved insights have the potential to leverage business valuation and stock price prediction models.
VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation
Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.
Computational Typology
Typology is a subfield of linguistics that focuses on the study and classification of languages based on their structural features. Unlike genealogical classification, which examines the historical relationships between languages, typology seeks to understand the diversity of human languages by identifying common properties and patterns, known as universals. In recent years, computational methods have played an increasingly important role in typological research, enabling the analysis of large-scale linguistic data and the testing of hypotheses about language structure and evolution. This article provides an illustration of the benefits of computational statistical modeling in typology.
comment: 19 pages, s5 figure
Cost-Effective Text Clustering with Large Language Models
Text clustering aims to automatically partition a collection of text documents into distinct clusters based on linguistic features. In the literature, this task is usually framed as metric clustering based on text embeddings from pre-trained encoders or a graph clustering problem upon pairwise similarities from an oracle, e.g., a large ML model. Recently, large language models (LLMs) bring significant advancement in this field by offering contextualized text embeddings and highly accurate similarity scores, but meanwhile, present grand challenges to cope with substantial computational and/or financial overhead caused by numerous API-based queries or inference calls to the models. In response, this paper proposes TECL, a cost-effective framework that taps into the feedback from LLMs for accurate text clustering within a limited budget of queries to LLMs. Under the hood, TECL adopts our EdgeLLM or TriangleLLM to construct must-link/cannot-link constraints for text pairs, and further leverages such constraints as supervision signals input to our weighted constrained clustering approach to generate clusters. Particularly, EdgeLLM (resp. TriangleLLM) enables the identification of informative text pairs (resp. triplets) for querying LLMs via well-thought-out greedy algorithms and accurate extraction of pairwise constraints through carefully-crafted prompting techniques. Our experiments on multiple benchmark datasets exhibit that TECL consistently and considerably outperforms existing solutions in unsupervised text clustering under the same query cost for LLMs.
Exploiting Contextual Knowledge in LLMs through V-usable Information based Layer Enhancement
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet they often struggle with context-faithfulness generations that properly reflect contextual knowledge. While existing approaches focus on enhancing the decoding strategies, they ignore the fundamental mechanism of how contextual information is processed within LLMs' internal states. As a result, LLMs remain limited in their ability to fully leverage contextual knowledge. In this paper, we propose Context-aware Layer Enhancement (CaLE), a novel intervention method that enhances the utilization of contextual knowledge within LLMs' internal representations. By employing V-usable information analysis, CaLE strategically amplifies the growth of contextual information at an optimal layer, thereby enriching representations in the final layer. Our experiments demonstrate that CaLE effectively improves context-faithful generation in Question-Answering tasks, particularly in scenarios involving unknown or conflicting contextual knowledge.
CiteFix: Enhancing RAG Accuracy Through Post-Processing Citation Correction
Retrieval Augmented Generation (RAG) has emerged as a powerful application of Large Language Models (LLMs), revolutionizing information search and consumption. RAG systems combine traditional search capabilities with LLMs to generate comprehensive answers to user queries, ideally with accurate citations. However, in our experience of developing a RAG product, LLMs often struggle with source attribution, aligning with other industry studies reporting citation accuracy rates of only about 74% for popular generative search engines. To address this, we present efficient post-processing algorithms to improve citation accuracy in LLM-generated responses, with minimal impact on latency and cost. Our approaches cross-check generated citations against retrieved articles using methods including keyword + semantic matching, fine tuned model with BERTScore, and a lightweight LLM-based technique. Our experimental results demonstrate a relative improvement of 15.46% in the overall accuracy metrics of our RAG system. This significant enhancement potentially enables a shift from our current larger language model to a relatively smaller model that is approximately 12x more cost-effective and 3x faster in inference time, while maintaining comparable performance. This research contributes to enhancing the reliability and trustworthiness of AI-generated content in information retrieval and summarization tasks which is critical to gain customer trust especially in commercial products.
Exploring Next Token Prediction in Theory of Mind (ToM) Tasks: Comparative Experiments with GPT-2 and LLaMA-2 AI Models
Language models have made significant progress in generating coherent text and predicting next tokens based on input prompts. This study compares the next-token prediction performance of two well-known models: OpenAI's GPT-2 and Meta's Llama-2-7b-chat-hf on Theory of Mind (ToM) tasks. To evaluate their capabilities, we built a dataset from 10 short stories sourced from the Explore ToM Dataset. We enhanced these stories by programmatically inserting additional sentences (infills) using GPT-4, creating variations that introduce different levels of contextual complexity. This setup enables analysis of how increasing context affects model performance. We tested both models under four temperature settings (0.01, 0.5, 1.0, 2.0) and evaluated their ability to predict the next token across three reasoning levels. Zero-order reasoning involves tracking the state, either current (ground truth) or past (memory). First-order reasoning concerns understanding another's mental state (e.g., "Does Anne know the apple is salted?"). Second-order reasoning adds recursion (e.g., "Does Anne think that Charles knows the apple is salted?"). Our results show that adding more infill sentences slightly reduces prediction accuracy, as added context increases complexity and ambiguity. Llama-2 consistently outperforms GPT-2 in prediction accuracy, especially at lower temperatures, demonstrating greater confidence in selecting the most probable token. As reasoning complexity rises, model responses diverge more. Notably, GPT-2 and Llama-2 display greater variability in predictions during first- and second-order reasoning tasks. These findings illustrate how model architecture, temperature, and contextual complexity influence next-token prediction, contributing to a better understanding of the strengths and limitations of current language models.
comment: 75 pages, 60 figures
A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
Instruction-Tuning Data Synthesis from Scratch via Web Reconstruction
The improvement of LLMs' instruction-following capabilities depends critically on the availability of high-quality instruction-response pairs. While existing automatic data synthetic methods alleviate the burden of manual curation, they often rely heavily on either the quality of seed data or strong assumptions about the structure and content of web documents. To tackle these challenges, we propose Web Reconstruction (WebR), a fully automated framework for synthesizing high-quality instruction-tuning (IT) data directly from raw web documents with minimal assumptions. Leveraging the inherent diversity of raw web content, we conceptualize web reconstruction as an instruction-tuning data synthesis task via a novel dual-perspective paradigm--Web as Instruction and Web as Response--where each web document is designated as either an instruction or a response to trigger the reconstruction process. Comprehensive experiments show that datasets generated by WebR outperform state-of-the-art baselines by up to 16.65% across four instruction-following benchmarks. Notably, WebR demonstrates superior compatibility, data efficiency, and scalability, enabling enhanced domain adaptation with minimal effort. The data and code are publicly available at https://github.com/YJiangcm/WebR.
comment: 15 pages, 11 figures, 9 tables
LLM-based Semantic Augmentation for Harmful Content Detection
Recent advances in large language models (LLMs) have demonstrated strong performance on simple text classification tasks, frequently under zero-shot settings. However, their efficacy declines when tackling complex social media challenges such as propaganda detection, hateful meme classification, and toxicity identification. Much of the existing work has focused on using LLMs to generate synthetic training data, overlooking the potential of LLM-based text preprocessing and semantic augmentation. In this paper, we introduce an approach that prompts LLMs to clean noisy text and provide context-rich explanations, thereby enhancing training sets without substantial increases in data volume. We systematically evaluate on the SemEval 2024 multi-label Persuasive Meme dataset and further validate on the Google Jigsaw toxic comments and Facebook hateful memes datasets to assess generalizability. Our results reveal that zero-shot LLM classification underperforms on these high-context tasks compared to supervised models. In contrast, integrating LLM-based semantic augmentation yields performance on par with approaches that rely on human-annotated data, at a fraction of the cost. These findings underscore the importance of strategically incorporating LLMs into machine learning (ML) pipeline for social media classification tasks, offering broad implications for combating harmful content online.
llm-jp-modernbert: A ModernBERT Model Trained on a Large-Scale Japanese Corpus with Long Context Length
Encoder-only transformer models like BERT are widely adopted as a pre-trained backbone for tasks like sentence classification and retrieval. However, pretraining of encoder models with large-scale corpora and long contexts has been relatively underexplored compared to decoder-only transformers. In this work, we present llm-jp-modernbert, a ModernBERT model trained on a publicly available, massive Japanese corpus with a context length of 8192 tokens. While our model does not surpass existing baselines on downstream tasks, it achieves good results on fill-mask test evaluations. We also analyze the effect of context length expansion through pseudo-perplexity experiments. Furthermore, we investigate sentence embeddings in detail, analyzing their transitions during training and comparing them with those from other existing models, confirming similar trends with models sharing the same architecture. To support reproducibility and foster the development of long-context BERT, we release our model, along with the training and evaluation code.
comment: 9 pages, 5 figures
Compass-V2 Technical Report
Predominant LLMs focus on high-resource languages while leaving low-resource languages, particularly those in Southeast Asia (SEA), underrepresented. In addition, those models are general-purpose and pay limited attention to the e-commerce domain. To overcome these limitations, we introduce Compass-v2, a lightweight Mixture-of-Experts (MoE) model specifically designed for Southeast Asian languages and e-commerce applications. To balance model performance and inference cost, the model is designed with 30B total parameters and 5B active parameters, incorporating both fine-grained and shared expert modules. To enhance multilingual performance, we curated and constructed a high-quality, industry-leading SEA dataset, to the best of our knowledge. To boost performance in the e-commerce domain, we built a dataset comprising hundreds of billions of tokens, sourced through external data mining and internal platform collection. Besides, we pioneered a hybrid reasoning model that supports both fast thinking and deep thinking within a unified framework to enhance the reasoning capabilities, diverging from the conventional industry practice of deploying two separate models. Through extensive experimental evaluations, our model demonstrates state-of-the-art SEA multilingual and e-commerce performance among sub-30B models, while maintaining significantly lower inference cost.
IPBench: Benchmarking the Knowledge of Large Language Models in Intellectual Property
Intellectual Property (IP) is a unique domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. As large language models (LLMs) continue to advance, they show great potential for processing IP tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks either focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce the first comprehensive IP task taxonomy and a large, diverse bilingual benchmark, IPBench, covering 8 IP mechanisms and 20 tasks. This benchmark is designed to evaluate LLMs in real-world intellectual property applications, encompassing both understanding and generation. We benchmark 16 LLMs, ranging from general-purpose to domain-specific models, and find that even the best-performing model achieves only 75.8% accuracy, revealing substantial room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. We publicly release all data and code of IPBench and will continue to update it with additional IP-related tasks to better reflect real-world challenges in the intellectual property domain.
comment: 89 pages, 75 figures, 55 tables
The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
comment: work in progress; 22 pages, 8 figures, 3 tables;
SimulS2S-LLM: Unlocking Simultaneous Inference of Speech LLMs for Speech-to-Speech Translation
Simultaneous speech translation (SST) outputs translations in parallel with streaming speech input, balancing translation quality and latency. While large language models (LLMs) have been extended to handle the speech modality, streaming remains challenging as speech is prepended as a prompt for the entire generation process. To unlock LLM streaming capability, this paper proposes SimulS2S-LLM, which trains speech LLMs offline and employs a test-time policy to guide simultaneous inference. SimulS2S-LLM alleviates the mismatch between training and inference by extracting boundary-aware speech prompts that allows it to be better matched with text input data. SimulS2S-LLM achieves simultaneous speech-to-speech translation (Simul-S2ST) by predicting discrete output speech tokens and then synthesising output speech using a pre-trained vocoder. An incremental beam search is designed to expand the search space of speech token prediction without increasing latency. Experiments on the CVSS speech data show that SimulS2S-LLM offers a better translation quality-latency trade-off than existing methods that use the same training data, such as improving ASR-BLEU scores by 3 points at similar latency.
SignX: The Foundation Model for Sign Recognition
The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID glosses, which serve to uniquely identify ASL signs. Note that there is no shared convention for assigning such glosses to ASL signs, so it is essential that the same glossing conventions are used for all of the data in the datasets that are employed. This paper proposes SignX, a foundation model framework for sign recognition. It is a concise yet powerful framework applicable to multiple human activity recognition scenarios. First, we developed a Pose2Gloss component based on an inverse diffusion model, which contains a multi-track pose fusion layer that unifies five of the most powerful pose information sources--SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation--into a single latent pose representation. Second, we trained a Video2Pose module based on ViT that can directly convert raw video into signer pose representation. Through this 2-stage training framework, we enable sign language recognition models to be compatible with existing pose formats, laying the foundation for the common pose estimation necessary for sign recognition. Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
Capturing Symmetry and Antisymmetry in Language Models through Symmetry-Aware Training Objectives
Capturing symmetric (e.g., country borders another country) and antisymmetric (e.g., parent_of) relations is crucial for a variety of applications. This paper tackles this challenge by introducing a novel Wikidata-derived natural language inference dataset designed to evaluate large language models (LLMs). Our findings reveal that LLMs perform comparably to random chance on this benchmark, highlighting a gap in relational understanding. To address this, we explore encoder retraining via contrastive learning with k-nearest neighbors. The retrained encoder matches the performance of fine-tuned classification heads while offering additional benefits, including greater efficiency in few-shot learning and improved mitigation of catastrophic forgetting.
The Paradox of Poetic Intent in Back-Translation: Evaluating the Quality of Large Language Models in Chinese Translation
The rapid advancement of large language models (LLMs) has reshaped the landscape of machine translation, yet challenges persist in preserving poetic intent, cultural heritage, and handling specialized terminology in Chinese-English translation. This study constructs a diverse corpus encompassing Chinese scientific terminology, historical translation paradoxes, and literary metaphors. Utilizing a back-translation and Friedman test-based evaluation system (BT-Fried), we evaluate BLEU, CHRF, TER, and semantic similarity metrics across six major LLMs (e.g., GPT-4.5, DeepSeek V3) and three traditional translation tools. Key findings include: (1) Scientific abstracts often benefit from back-translation, while traditional tools outperform LLMs in linguistically distinct texts; (2) LLMs struggle with cultural and literary retention, exemplifying the "paradox of poetic intent"; (3) Some models exhibit "verbatim back-translation", reflecting emergent memory behavior; (4) A novel BLEU variant using Jieba segmentation and n-gram weighting is proposed. The study contributes to the empirical evaluation of Chinese NLP performance and advances understanding of cultural fidelity in AI-mediated translation.
comment: 24 pages, 3 figures
The Language of Attachment: Modeling Attachment Dynamics in Psychotherapy
The delivery of mental healthcare through psychotherapy stands to benefit immensely from developments within Natural Language Processing (NLP), in particular through the automatic identification of patient specific qualities, such as attachment style. Currently, the assessment of attachment style is performed manually using the Patient Attachment Coding System (PACS; Talia et al., 2017), which is complex, resource-consuming and requires extensive training. To enable wide and scalable adoption of attachment informed treatment and research, we propose the first exploratory analysis into automatically assessing patient attachment style from psychotherapy transcripts using NLP classification models. We further analyze the results and discuss the implications of using automated tools for this purpose -- e.g., confusing `preoccupied' patients with `avoidant' likely has a more negative impact on therapy outcomes with respect to other mislabeling. Our work opens an avenue of research enabling more personalized psychotherapy and more targeted research into the mechanisms of psychotherapy through advancements in NLP.
CLIRudit: Cross-Lingual Information Retrieval of Scientific Documents
Cross-lingual information retrieval (CLIR) consists in finding relevant documents in a language that differs from the language of the queries. This paper presents CLIRudit, a new dataset created to evaluate cross-lingual academic search, focusing on English queries and French documents. The dataset is built using bilingual article metadata from \'Erudit, a Canadian publishing platform, and is designed to represent scenarios in which researchers search for scholarly content in languages other than English. We perform a comprehensive benchmarking of different zero-shot first-stage retrieval methods on the dataset, including dense and sparse retrievers, query and document machine translation, and state-of-the-art multilingual retrievers. Our results show that large dense retrievers, not necessarily trained for the cross-lingual retrieval task, can achieve zero-shot performance comparable to using ground truth human translations, without the need for machine translation. Sparse retrievers, such as BM25 or SPLADE, combined with document translation, show competitive results, providing an efficient alternative to large dense models. This research advances the understanding of cross-lingual academic information retrieval and provides a framework that others can use to build comparable datasets across different languages and disciplines. By making the dataset and code publicly available, we aim to facilitate further research that will help make scientific knowledge more accessible across language barriers.
Using Phonemes in cascaded S2S translation pipeline
This paper explores the idea of using phonemes as a textual representation within a conventional multilingual simultaneous speech-to-speech translation pipeline, as opposed to the traditional reliance on text-based language representations. To investigate this, we trained an open-source sequence-to-sequence model on the WMT17 dataset in two formats: one using standard textual representation and the other employing phonemic representation. The performance of both approaches was assessed using the BLEU metric. Our findings shows that the phonemic approach provides comparable quality but offers several advantages, including lower resource requirements or better suitability for low-resource languages.
comment: Accepted at Swiss NLP Conference 2025
Reflexive Prompt Engineering: A Framework for Responsible Prompt Engineering and Interaction Design
Responsible prompt engineering has emerged as a critical framework for ensuring that generative artificial intelligence (AI) systems serve society's needs while minimizing potential harms. As generative AI applications become increasingly powerful and ubiquitous, the way we instruct and interact with them through prompts has profound implications for fairness, accountability, and transparency. This article examines how strategic prompt engineering can embed ethical and legal considerations and societal values directly into AI interactions, moving beyond mere technical optimization for functionality. This article proposes a comprehensive framework for responsible prompt engineering that encompasses five interconnected components: prompt design, system selection, system configuration, performance evaluation, and prompt management. Drawing from empirical evidence, the paper demonstrates how each component can be leveraged to promote improved societal outcomes while mitigating potential risks. The analysis reveals that effective prompt engineering requires a delicate balance between technical precision and ethical consciousness, combining the systematic rigor and focus on functionality with the nuanced understanding of social impact. Through examination of real-world and emerging practices, the article illustrates how responsible prompt engineering serves as a crucial bridge between AI development and deployment, enabling organizations to fine-tune AI outputs without modifying underlying model architectures. This approach aligns with broader "Responsibility by Design" principles, embedding ethical considerations directly into the implementation process rather than treating them as post-hoc additions. The article concludes by identifying key research directions and practical guidelines for advancing the field of responsible prompt engineering.
comment: 20 pages one figure
FinNLI: Novel Dataset for Multi-Genre Financial Natural Language Inference Benchmarking
We introduce FinNLI, a benchmark dataset for Financial Natural Language Inference (FinNLI) across diverse financial texts like SEC Filings, Annual Reports, and Earnings Call transcripts. Our dataset framework ensures diverse premise-hypothesis pairs while minimizing spurious correlations. FinNLI comprises 21,304 pairs, including a high-quality test set of 3,304 instances annotated by finance experts. Evaluations show that domain shift significantly degrades general-domain NLI performance. The highest Macro F1 scores for pre-trained (PLMs) and large language models (LLMs) baselines are 74.57% and 78.62%, respectively, highlighting the dataset's difficulty. Surprisingly, instruction-tuned financial LLMs perform poorly, suggesting limited generalizability. FinNLI exposes weaknesses in current LLMs for financial reasoning, indicating room for improvement.
Plan-and-Act: Improving Planning of Agents for Long-Horizon Tasks
Large language models (LLMs) have shown remarkable advancements in enabling language agents to tackle simple tasks. However, applying them for complex, multi-step, long-horizon tasks remains a challenge. Recent work have found success by separating high-level planning from low-level execution, which enables the model to effectively balance high-level planning objectives and low-level execution details. However, generating accurate plans remains difficult since LLMs are not inherently trained for this task. To address this, we propose Plan-and-Act, a novel framework that incorporates explicit planning into LLM-based agents and introduces a scalable method to enhance plan generation through a novel synthetic data generation method. Plan-and-Act consists of a Planner model which generates structured, high-level plans to achieve user goals, and an Executor model that translates these plans into environment-specific actions. To train the Planner effectively, we introduce a synthetic data generation method that annotates ground-truth trajectories with feasible plans, augmented with diverse and extensive examples to enhance generalization. We evaluate Plan-and-Act using web navigation as a representative long-horizon planning environment, demonstrating a state-of-the-art 57.58% success rate on the WebArena-Lite benchmark as well as a text-only state-of-the-art 81.36% success rate on WebVoyager.
State Space Models are Strong Text Rerankers RepL4NLP 2025
Transformers dominate NLP and IR; but their inference inefficiencies and challenges in extrapolating to longer contexts have sparked interest in alternative model architectures. Among these, state space models (SSMs) like Mamba offer promising advantages, particularly $O(1)$ time complexity in inference. Despite their potential, SSMs' effectiveness at text reranking -- a task requiring fine-grained query-document interaction and long-context understanding -- remains underexplored. This study benchmarks SSM-based architectures (specifically, Mamba-1 and Mamba-2) against transformer-based models across various scales, architectures, and pre-training objectives, focusing on performance and efficiency in text reranking tasks. We find that (1) Mamba architectures achieve competitive text ranking performance, comparable to transformer-based models of similar size; (2) they are less efficient in training and inference compared to transformers with flash attention; and (3) Mamba-2 outperforms Mamba-1 in both performance and efficiency. These results underscore the potential of state space models as a transformer alternative and highlight areas for improvement in future IR applications.
comment: Accepted to RepL4NLP 2025. The first two authors contributed equally, order decided randomly
Key, Value, Compress: A Systematic Exploration of KV Cache Compression Techniques
Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.
comment: Presented at IEEE Custom Integrated Circuits Conference (CICC) 2025
AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.7% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
SWITCH: Studying with Teacher for Knowledge Distillation of Large Language Models NAACL 2025
Despite the success of Large Language Models (LLMs), they still face challenges related to high inference costs and memory requirements. To address these issues, Knowledge Distillation (KD) has emerged as a popular method for model compression, with student-generated outputs (SGOs) as training data being particularly notable for reducing the mismatch between training and inference. However, SGOs often produce noisy and biased sequences, which can lead to misguidance from the teacher model, especially in long sequences. To mitigate these challenges, we propose SWITCH (Studying WIth TeaCHer for Knowledge Distillation), a novel approach that strategically incorporates the teacher model during the student's sequence generation. SWITCH identifies discrepancies between the token probabilities of the teacher and student models, allowing the teacher to intervene selectively, particularly in long sequences that are more prone to teacher misguidance. Extensive experimental results across three model families and five instruction-following datasets show that SWITCH surpasses traditional KD methods, particularly excelling in the generation of long sequential data.
comment: NAACL 2025 Findings
Optimizing RLHF Training for Large Language Models with Stage Fusion
We present RLHFuse, an efficient training system with stage fusion for Reinforcement Learning from Human Feedback (RLHF). Due to the intrinsic nature of RLHF training, i.e., the data skewness in the generation stage and the pipeline bubbles in the training stage, existing RLHF systems suffer from low GPU utilization. RLHFuse breaks the traditional view of RLHF workflow as a composition of individual tasks, splitting each task into finer-grained subtasks, and performing stage fusion to improve GPU utilization. RLHFuse contains two key ideas. First, for generation and inference tasks, RLHFuse splits them into sample-level subtasks, enabling efficient inter-stage fusion to overlap the execution of generation and inference stages, thus mitigating the original generation bottleneck dominated by long-tailed samples. Second, for training tasks, RLHFuse breaks them into subtasks of micro-batches and performs intra-stage fusion to concurrently execute these subtasks in the training stage with a fused pipeline schedule, effectively mitigating the pipeline bubbles. The experiments show that RLHFuse increases the training throughput by up to $3.7\times$, compared to existing systems.
Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments AAAI-2025
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
comment: This paper extends the AAAI-2025 version by including the Appendix
Open-World Evaluation for Retrieving Diverse Perspectives
We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model-based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 40% of the examples. We further study the effectiveness of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy.
On the Low-Rank Parametrization of Reward Models for Controlled Language Generation
Language models trained on large amounts of data are known to produce inappropriate content in some cases and require careful tuning to be used in the real world. We revisit an effective and modular approach for controllability of the language models, when an external expert model guides the decoding. Particularly, we zoom in into the parametrization choice of an external expert, highlighting the difference between low-rank and higher-rank parametrizations. Higher-rank experts are designed to support high flexibility when representing the rewards, leading to higher computational costs during decoding. However, we demonstrate that they might not use their full flexibility. By analyzing the recently proposed reward-augmented decoding approach (RAD), which uses a higher-rank expert model, we introduce a simpler but more efficient low-rank parametrization of the expert model enabling fast and effective guided decoding. We empirically show that the low-rank RAD performs on par with the more flexible RAD on a detoxification and a sentiment control task, while requiring only a single reward model call per generated token.
Aggregating Soft Labels from Crowd Annotations Improves Uncertainty Estimation Under Distribution Shift
Selecting an effective training signal for machine learning tasks is difficult: expert annotations are expensive, and crowd-sourced annotations may not be reliable. Recent work has demonstrated that learning from a distribution over labels acquired from crowd annotations can be effective both for performance and uncertainty estimation. However, this has mainly been studied using a limited set of soft-labeling methods in an in-domain setting. Additionally, no one method has been shown to consistently perform well across tasks, making it difficult to know a priori which to choose. To fill these gaps, this paper provides the first large-scale empirical study on learning from crowd labels in the out-of-domain setting, systematically analyzing 8 soft-labeling methods on 4 language and vision tasks. Additionally, we propose to aggregate soft-labels via a simple average in order to achieve consistent performance across tasks. We demonstrate that this yields classifiers with improved predictive uncertainty estimation in most settings while maintaining consistent raw performance compared to learning from individual soft-labeling methods or taking a majority vote of the annotations. We additionally highlight that in regimes with abundant or minimal training data, the selection of soft labeling method is less important, while for highly subjective labels and moderate amounts of training data, aggregation yields significant improvements in uncertainty estimation over individual methods. Code can be found at https://github.com/copenlu/aggregating-crowd-annotations-ood.
comment: Accepted to PLOS One; 29 pages, 16 figures, 4 tables
Fine-tuning Whisper on Low-Resource Languages for Real-World Applications
This paper presents a new approach to fine-tuning OpenAI's Whisper model for low-resource languages by introducing a novel data generation method that converts sentence-level data into a long-form corpus, using Swiss German as a case study. Non-sentence-level data, which could improve the performance of long-form audio, is difficult to obtain and often restricted by copyright laws. Our method bridges this gap by transforming more accessible sentence-level data into a format that preserves the model's ability to handle long-form audio and perform segmentation without requiring non-sentence-level data. Our data generation process improves performance in several real-world applications and leads to the development of a new state-of-the-art speech-to-text (STT) model for Swiss German. We compare our model with a non-fine-tuned Whisper and our previous state-of-the-art Swiss German STT models, where our new model achieves higher BLEU scores. Our results also indicate that the proposed method is adaptable to other low-resource languages, supported by written guidance and code that allows the creation of fine-tuned Whisper models, which keep segmentation capabilities and allow the transcription of longer audio files using only sentence-level data with high quality.
Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation SIGIR 2025
Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
comment: Accepted to SIGIR 2025
ConExion: Concept Extraction with Large Language Models
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
Fearful Falcons and Angry Llamas: Emotion Category Annotations of Arguments by Humans and LLMs
Arguments evoke emotions, influencing the effect of the argument itself. Not only the emotional intensity but also the category influence the argument's effects, for instance, the willingness to adapt stances. While binary emotionality has been studied in arguments, there is no work on discrete emotion categories (e.g., "Anger") in such data. To fill this gap, we crowdsource subjective annotations of emotion categories in a German argument corpus and evaluate automatic LLM-based labeling methods. Specifically, we compare three prompting strategies (zero-shot, one-shot, chain-of-thought) on three large instruction-tuned language models (Falcon-7b-instruct, Llama-3.1-8B-instruct, GPT-4o-mini). We further vary the definition of the output space to be binary (is there emotionality in the argument?), closed-domain (which emotion from a given label set is in the argument?), or open-domain (which emotion is in the argument?). We find that emotion categories enhance the prediction of emotionality in arguments, emphasizing the need for discrete emotion annotations in arguments. Across all prompt settings and models, automatic predictions show a high recall but low precision for predicting anger and fear, indicating a strong bias toward negative emotions.
comment: accepted to NLP4DH 2025
VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation
Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We introduce VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework designed for real-time voice interaction. Central to our contribution is the first application of multi-token prediction (MTP) to speech LLMs. This approach represents a paradigm shift from standard next-token prediction (NTP), offering simultaneous improvements in generation speed and quality. Informed by analysis of MTP's effect on speech generation and experimental comparisons, we designed a straightforward and highly effective MTP implementation. Experiments demonstrate that VocalNet performs on par with mainstream Omni LLMs even with limited training data, and significantly surpasses existing open-source speech LLMs. To foster reproducibility and community advancement, all model weights, inference code, training data, and framework implementations have been made publicly available at https://github.com/SJTU-OmniAgent/VocalNet
Falcon: Faster and Parallel Inference of Large Language Models through Enhanced Semi-Autoregressive Drafting and Custom-Designed Decoding Tree AAAI 2025
Striking an optimal balance between minimal drafting latency and high speculation accuracy to enhance the inference speed of Large Language Models remains a significant challenge in speculative decoding. In this paper, we introduce Falcon, an innovative semi-autoregressive speculative decoding framework fashioned to augment both the drafter's parallelism and output quality. Falcon incorporates the Coupled Sequential Glancing Distillation technique, which fortifies inter-token dependencies within the same block, leading to increased speculation accuracy. We offer a comprehensive theoretical analysis to illuminate the underlying mechanisms. Additionally, we introduce a Custom-Designed Decoding Tree, which permits the drafter to generate multiple tokens in a single forward pass and accommodates multiple forward passes as needed, thereby boosting the number of drafted tokens and significantly improving the overall acceptance rate. Comprehensive evaluations on benchmark datasets such as MT-Bench, HumanEval, and GSM8K demonstrate Falcon's superior acceleration capabilities. The framework achieves a lossless speedup ratio ranging from 2.91x to 3.51x when tested on the Vicuna and LLaMA2-Chat model series. These results outstrip existing speculative decoding methods for LLMs, including Eagle, Medusa, Lookahead, SPS, and PLD, while maintaining a compact drafter architecture equivalent to merely two Transformer layers.
comment: AAAI 2025 Accepted
Investigating and Scaling up Code-Switching for Multilingual Language Model Pre-Training
Large language models (LLMs) exhibit remarkable multilingual capabilities despite the extreme language imbalance in the pre-training data. In this paper, we closely examine the reasons behind this phenomenon, focusing on the pre-training corpus. We find that the existence of code-switching, alternating between different languages within a context, is key to multilingual capabilities. We conduct an analysis to investigate code-switching in the pre-training corpus, examining its presence and categorizing it into four types within two quadrants. We then assess its impact on multilingual performance. These types of code-switching data are unbalanced in proportions and demonstrate different effects on facilitating language transfer. To better explore the power of code-switching for language alignment during pre-training, we investigate the strategy of synthetic code-switching. We continuously scale up the synthetic code-switching data and observe remarkable improvements in both benchmarks and representation space. Extensive experiments indicate that incorporating synthetic code-switching data enables better language alignment and generalizes well to high, medium, and low-resource languages with pre-training corpora of varying qualities.
Diversity Helps Jailbreak Large Language Models
We have uncovered a powerful jailbreak technique that leverages large language models' ability to diverge from prior context, enabling them to bypass safety constraints and generate harmful outputs. By simply instructing the LLM to deviate and obfuscate previous attacks, our method dramatically outperforms existing approaches, achieving up to a 62.83% higher success rate in compromising ten leading chatbots, including GPT-4, Gemini, and Llama, while using only 12.9% of the queries. This revelation exposes a critical flaw in current LLM safety training, suggesting that existing methods may merely mask vulnerabilities rather than eliminate them. Our findings sound an urgent alarm for the need to revolutionize testing methodologies to ensure robust and reliable LLM security.
FUSE : A Ridge and Random Forest-Based Metric for Evaluating MT in Indigenous Languages CCL 2025
This paper presents the winning submission of the RaaVa team to the AmericasNLP 2025 Shared Task 3 on Automatic Evaluation Metrics for Machine Translation (MT) into Indigenous Languages of America, where our system ranked first overall based on average Pearson correlation with the human annotations. We introduce Feature-Union Scorer (FUSE) for Evaluation, FUSE integrates Ridge regression and Gradient Boosting to model translation quality. In addition to FUSE, we explore five alternative approaches leveraging different combinations of linguistic similarity features and learning paradigms. FUSE Score highlights the effectiveness of combining lexical, phonetic, semantic, and fuzzy token similarity with learning-based modeling to improve MT evaluation for morphologically rich and low-resource languages. MT into Indigenous languages poses unique challenges due to polysynthesis, complex morphology, and non-standardized orthography. Conventional automatic metrics such as BLEU, TER, and ChrF often fail to capture deeper aspects like semantic adequacy and fluency. Our proposed framework, formerly referred to as FUSE, incorporates multilingual sentence embeddings and phonological encodings to better align with human evaluation. We train supervised models on human-annotated development sets and evaluate held-out test data. Results show that FUSE consistently achieves higher Pearson and Spearman correlations with human judgments, offering a robust and linguistically informed solution for MT evaluation in low-resource settings.
comment: NACCL 2025
NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
comment: 34 pages, 24 figures, 16 tables
Parallel Corpora for Machine Translation in Low-resource Indic Languages: A Comprehensive Review CCL
Parallel corpora play an important role in training machine translation (MT) models, particularly for low-resource languages where high-quality bilingual data is scarce. This review provides a comprehensive overview of available parallel corpora for Indic languages, which span diverse linguistic families, scripts, and regional variations. We categorize these corpora into text-to-text, code-switched, and various categories of multimodal datasets, highlighting their significance in the development of robust multilingual MT systems. Beyond resource enumeration, we critically examine the challenges faced in corpus creation, including linguistic diversity, script variation, data scarcity, and the prevalence of informal textual content.We also discuss and evaluate these corpora in various terms such as alignment quality and domain representativeness. Furthermore, we address open challenges such as data imbalance across Indic languages, the trade-off between quality and quantity, and the impact of noisy, informal, and dialectal data on MT performance. Finally, we outline future directions, including leveraging cross-lingual transfer learning, expanding multilingual datasets, and integrating multimodal resources to enhance translation quality. To the best of our knowledge, this paper presents the first comprehensive review of parallel corpora specifically tailored for low-resource Indic languages in the context of machine translation.
comment: Accepted in NACCL
LLM-as-a-Judge: Reassessing the Performance of LLMs in Extractive QA
Extractive reading comprehension question answering (QA) datasets are typically evaluated using Exact Match (EM) and F1-score, but these metrics often fail to fully capture model performance. With the success of large language models (LLMs), they have been employed in various tasks, including serving as judges (LLM-as-a-judge). In this paper, we reassess the performance of QA models using LLM-as-a-judge across four reading comprehension QA datasets. We examine different families of LLMs and various answer types to evaluate the effectiveness of LLM-as-a-judge in these tasks. Our results show that LLM-as-a-judge is highly correlated with human judgments and can replace traditional EM/F1 metrics. By using LLM-as-a-judge, the correlation with human judgments improves significantly, from 0.22 (EM) and 0.40 (F1-score) to 0.85. These findings confirm that EM and F1 metrics underestimate the true performance of the QA models. While LLM-as-a-judge is not perfect for more difficult answer types (e.g., job), it still outperforms EM/F1, and we observe no bias issues, such as self-preference, when the same model is used for both the QA and judgment tasks.
comment: 17 pages; code and data are available at https://github.com/Alab-NII/llm-judge-extract-qa
FOReCAst: The Future Outcome Reasoning and Confidence Assessment Benchmark
Forecasting is an important task in many domains, such as technology and economics. However existing forecasting benchmarks largely lack comprehensive confidence assessment, focus on limited question types, and often consist of artificial questions that do not align with real-world human forecasting needs. To address these gaps, we introduce FOReCAst (Future Outcome Reasoning and Confidence Assessment), a benchmark that evaluates models' ability to make predictions and their confidence in them. FOReCAst spans diverse forecasting scenarios involving Boolean questions, timeframe prediction, and quantity estimation, enabling a comprehensive evaluation of both prediction accuracy and confidence calibration for real-world applications.
Seed-Thinking-v1.5: Advancing Superb Reasoning Models with Reinforcement Learning
We introduce Seed-Thinking-v1.5, capable of reasoning through thinking before responding, resulting in improved performance on a wide range of benchmarks. Seed-Thinking-v1.5 achieves 86.7 on AIME 2024, 55.0 on Codeforces and 77.3 on GPQA, demonstrating excellent reasoning abilities in STEM and coding. Beyond reasoning tasks, the method demonstrates notable generalization across diverse domains. For instance, it surpasses DeepSeek R1 by 8% in win rate on non-reasoning tasks, indicating its broader applicability. Compared to other state-of-the-art reasoning models, Seed-Thinking-v1.5 is a Mixture-of-Experts (MoE) model with a relatively small size, featuring 20B activated and 200B total parameters. As part of our effort to assess generalized reasoning, we develop two internal benchmarks, BeyondAIME and Codeforces, both of which will be publicly released to support future research.
Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol
Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
Evaluating the Robustness of Multimodal Agents Against Active Environmental Injection Attacks
As researchers continue to optimize AI agents for more effective task execution within operating systems, they often overlook a critical security concern: the ability of these agents to detect "impostors" within their environment. Through an analysis of the agents' operational context, we identify a significant threat-attackers can disguise malicious attacks as environmental elements, injecting active disturbances into the agents' execution processes to manipulate their decision-making. We define this novel threat as the Active Environment Injection Attack (AEIA). Focusing on the interaction mechanisms of the Android OS, we conduct a risk assessment of AEIA and identify two critical security vulnerabilities: (1) Adversarial content injection in multimodal interaction interfaces, where attackers embed adversarial instructions within environmental elements to mislead agent decision-making; and (2) Reasoning gap vulnerabilities in the agent's task execution process, which increase susceptibility to AEIA attacks during reasoning. To evaluate the impact of these vulnerabilities, we propose AEIA-MN, an attack scheme that exploits interaction vulnerabilities in mobile operating systems to assess the robustness of MLLM-based agents. Experimental results show that even advanced MLLMs are highly vulnerable to this attack, achieving a maximum attack success rate of 93% on the AndroidWorld benchmark by combining two vulnerabilities.
EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://yanghaha0908.github.io/EmoVoice/. Dataset, code, and checkpoints will be released.
TALES: Text Adventure Learning Environment Suite
Reasoning is an essential skill to enable Large Language Models (LLMs) to interact with the world. As tasks become more complex, they demand increasingly sophisticated and diverse reasoning capabilities for sequential decision-making, requiring structured reasoning over the context history to determine the next best action. We introduce TALES, a diverse collection of synthetic and human-written text-adventure games designed to challenge and evaluate diverse reasoning capabilities. We present results over a range of LLMs, open- and closed-weights, performing a qualitative analysis on the top performing models. Despite an impressive showing on synthetic games, even the top LLM-driven agents fail to achieve 15% on games designed for human enjoyment. Code and visualization of the experiments can be found at https://microsoft.github.io/tales.
Inspection and Control of Self-Generated-Text Recognition Ability in Llama3-8b-Instruct ICLR 2025
It has been reported that LLMs can recognize their own writing. As this has potential implications for AI safety, yet is relatively understudied, we investigate the phenomenon, seeking to establish whether it robustly occurs at the behavioral level, how the observed behavior is achieved, and whether it can be controlled. First, we find that the Llama3-8b-Instruct chat model - but not the base Llama3-8b model - can reliably distinguish its own outputs from those of humans, and present evidence that the chat model is likely using its experience with its own outputs, acquired during post-training, to succeed at the writing recognition task. Second, we identify a vector in the residual stream of the model that is differentially activated when the model makes a correct self-written-text recognition judgment, show that the vector activates in response to information relevant to self-authorship, present evidence that the vector is related to the concept of "self" in the model, and demonstrate that the vector is causally related to the model's ability to perceive and assert self-authorship. Finally, we show that the vector can be used to control both the model's behavior and its perception, steering the model to claim or disclaim authorship by applying the vector to the model's output as it generates it, and steering the model to believe or disbelieve it wrote arbitrary texts by applying the vector to them as the model reads them.
comment: 10 pages, 13 figs, 2 tables, accepted as conference paper to ICLR 2025
Multimodal Situational Safety ICLR 2025
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.
comment: ICLR 2025 Camera Ready
OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Large language models (LLMs) have been widely used for various tasks and applications. However, LLMs and fine-tuning are limited to the pre-trained data. For example, ChatGPT's world knowledge until 2021 can be outdated or inaccurate. To enhance the capabilities of LLMs, Retrieval-Augmented Generation (RAG), is proposed to augment LLMs with additional, new, latest details and information to LLMs. While RAG offers the correct information, it may not best present it, especially to different population groups with personalizations. Reinforcement Learning from Human Feedback (RLHF) adapts to user needs by aligning model responses with human preference through feedback loops. In real-life applications, such as mental health problems, a dynamic and feedback-based model would continuously adapt to new information and offer personalized assistance due to complex factors fluctuating in a daily environment. Thus, we propose an Online Reinforcement Learning-based Retrieval-Augmented Generation (OnRL-RAG) system to detect and personalize the responding systems to mental health problems, such as stress, anxiety, and depression. We use an open-source dataset collected from 2028 College Students with 28 survey questions for each student to demonstrate the performance of our proposed system with the existing systems. Our system achieves superior performance compared to standard RAG and simple LLM via GPT-4o, GPT-4o-mini, Gemini-1.5, and GPT-3.5. This work would open up the possibilities of real-life applications of LLMs for personalized services in the everyday environment. The results will also help researchers in the fields of sociology, psychology, and neuroscience to align their theories more closely with the actual human daily environment.
comment: It needs more revisions. I am currently working on it with my co-author
Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
MEG: Medical Knowledge-Augmented Large Language Models for Question Answering
Question answering is a natural language understanding task that involves reasoning over both explicit context, and unstated relevant domain knowledge. Despite the high cost of training, large language models (LLMs) -- the backbone of most modern question-answering systems -- still struggle to reliably capture the nuanced relationships between concepts that are crucial for reasoning in specialized fields like medicine. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to incorporate knowledge graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs i) can effectively interpret knowledge graph embeddings and ii) gain significant advantages from the factual grounding these embeddings provide. MEG attains an average of +6.7% and +9.9% accuracy over specialized models like BioMistral-7B and MediTron-7B, respectively. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
In chip design planning, obtaining reliable performance and power forecasts for various design options is of critical importance. Traditionally, this involves using system-level models, which often lack accuracy, or trial synthesis, which is both labor-intensive and time-consuming. We introduce a new methodology, called Lorecast, which accepts English prompts as input to rapidly generate layout-aware performance and power estimates. This approach bypasses the need for HDL code development and synthesis, making it both fast and user-friendly. Experimental results demonstrate that Lorecast achieves accuracy within a few percent of error compared to post-layout analysis, while significantly reducing turnaround time.
Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations
LLMs often adopt an assertive language style also when making false claims. Such ``overconfident hallucinations'' mislead users and erode trust. Achieving the ability to express in language the actual degree of uncertainty around a claim is therefore of great importance. We find that ``verbal uncertainty'' is governed by a single linear feature in the representation space of LLMs, and show that this has only moderate correlation with the actual ``semantic uncertainty'' of the model. We apply this insight and show that (1) the mismatch between semantic and verbal uncertainty is a better predictor of hallucinations than semantic uncertainty alone and (2) we can intervene on verbal uncertainty at inference time and reduce confident hallucinations on short-form answers, achieving an average relative reduction of ~30%.
Beyond Self Attention: A Subquadratic Fourier Wavelet Transformer with Multi Modal Fusion
We revisit the use of spectral techniques to replaces the attention mechanism in Transformers through Fourier Transform based token mixing, and present a comprehensive and novel reformulation of this technique in next generation transformer models. We provide expanded literature context, detailed mathematical formulations of Fourier mixing and causal masking, and introduce a novel MultiDomain Fourier Wavelet Attention(MDFWA) that integrates frequency and time localized transforms to capture both global and local dependencies efficiently. We derive the complexity bounds, gradient formulas, and show that MDFWA achieves sub quadratic time and memory cost while improving expressive power. We validate our design on an abstractive summarization task using PubMed dataset, by enhancing the proposed approach with learned frequency bases, adaptive scale selection, and multi-modal extensions.
comment: 7 pages, 4 figures, 5 tables
Computer Vision and Pattern Recognition
StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians
3D Gaussian Splatting (3DGS) excels in photorealistic scene reconstruction but struggles with stylized scenarios (e.g., cartoons, games) due to fragmented textures, semantic misalignment, and limited adaptability to abstract aesthetics. We propose StyleMe3D, a holistic framework for 3D GS style transfer that integrates multi-modal style conditioning, multi-level semantic alignment, and perceptual quality enhancement. Our key insights include: (1) optimizing only RGB attributes preserves geometric integrity during stylization; (2) disentangling low-, medium-, and high-level semantics is critical for coherent style transfer; (3) scalability across isolated objects and complex scenes is essential for practical deployment. StyleMe3D introduces four novel components: Dynamic Style Score Distillation (DSSD), leveraging Stable Diffusion's latent space for semantic alignment; Contrastive Style Descriptor (CSD) for localized, content-aware texture transfer; Simultaneously Optimized Scale (SOS) to decouple style details and structural coherence; and 3D Gaussian Quality Assessment (3DG-QA), a differentiable aesthetic prior trained on human-rated data to suppress artifacts and enhance visual harmony. Evaluated on NeRF synthetic dataset (objects) and tandt db (scenes) datasets, StyleMe3D outperforms state-of-the-art methods in preserving geometric details (e.g., carvings on sculptures) and ensuring stylistic consistency across scenes (e.g., coherent lighting in landscapes), while maintaining real-time rendering. This work bridges photorealistic 3D GS and artistic stylization, unlocking applications in gaming, virtual worlds, and digital art.
comment: 16 pages; Project page: https://styleme3d.github.io/
VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models
Visual reasoning is a core component of human intelligence and a critical capability for advanced multimodal models. Yet current reasoning evaluations of multimodal large language models (MLLMs) often rely on text descriptions and allow language-based reasoning shortcuts, failing to measure genuine vision-centric reasoning. To address this, we introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories (e.g., quantitative shifts, spatial relations, attribute comparisons). These various types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives. We evaluate leading MLLMs on this benchmark and analyze their results to identify common failure modes. Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans-revealing significant gaps in visual reasoning. Furthermore, we provide a supplementary training dataset and a reinforcement-learning baseline to support further progress.
comment: Code, data, and baselines are available at https://visulogic-benchmark.github.io/VisuLogic
Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.
comment: Project page: https://danielchyeh.github.io/All-Angles-Bench/
DRAWER: Digital Reconstruction and Articulation With Environment Realism
Creating virtual digital replicas from real-world data unlocks significant potential across domains like gaming and robotics. In this paper, we present DRAWER, a novel framework that converts a video of a static indoor scene into a photorealistic and interactive digital environment. Our approach centers on two main contributions: (i) a reconstruction module based on a dual scene representation that reconstructs the scene with fine-grained geometric details, and (ii) an articulation module that identifies articulation types and hinge positions, reconstructs simulatable shapes and appearances and integrates them into the scene. The resulting virtual environment is photorealistic, interactive, and runs in real time, with compatibility for game engines and robotic simulation platforms. We demonstrate the potential of DRAWER by using it to automatically create an interactive game in Unreal Engine and to enable real-to-sim-to-real transfer for robotics applications.
comment: Project page: https://drawer-art.github.io/
Eagle 2.5: Boosting Long-Context Post-Training for Frontier Vision-Language Models
We introduce Eagle 2.5, a family of frontier vision-language models (VLMs) for long-context multimodal learning. Our work addresses the challenges in long video comprehension and high-resolution image understanding, introducing a generalist framework for both tasks. The proposed training framework incorporates Automatic Degrade Sampling and Image Area Preservation, two techniques that preserve contextual integrity and visual details. The framework also includes numerous efficiency optimizations in the pipeline for long-context data training. Finally, we propose Eagle-Video-110K, a novel dataset that integrates both story-level and clip-level annotations, facilitating long-video understanding. Eagle 2.5 demonstrates substantial improvements on long-context multimodal benchmarks, providing a robust solution to the limitations of existing VLMs. Notably, our best model Eagle 2.5-8B achieves 72.4% on Video-MME with 512 input frames, matching the results of top-tier commercial model such as GPT-4o and large-scale open-source models like Qwen2.5-VL-72B and InternVL2.5-78B.
An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes
Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present \textbf{Quicksviewer}, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45$\times$ compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
Diffusion Bridge Models for 3D Medical Image Translation
Diffusion tensor imaging (DTI) provides crucial insights into the microstructure of the human brain, but it can be time-consuming to acquire compared to more readily available T1-weighted (T1w) magnetic resonance imaging (MRI). To address this challenge, we propose a diffusion bridge model for 3D brain image translation between T1w MRI and DTI modalities. Our model learns to generate high-quality DTI fractional anisotropy (FA) images from T1w images and vice versa, enabling cross-modality data augmentation and reducing the need for extensive DTI acquisition. We evaluate our approach using perceptual similarity, pixel-level agreement, and distributional consistency metrics, demonstrating strong performance in capturing anatomical structures and preserving information on white matter integrity. The practical utility of the synthetic data is validated through sex classification and Alzheimer's disease classification tasks, where the generated images achieve comparable performance to real data. Our diffusion bridge model offers a promising solution for improving neuroimaging datasets and supporting clinical decision-making, with the potential to significantly impact neuroimaging research and clinical practice.
Revealing the 3D Cosmic Web through Gravitationally Constrained Neural Fields
Weak gravitational lensing is the slight distortion of galaxy shapes caused primarily by the gravitational effects of dark matter in the universe. In our work, we seek to invert the weak lensing signal from 2D telescope images to reconstruct a 3D map of the universe's dark matter field. While inversion typically yields a 2D projection of the dark matter field, accurate 3D maps of the dark matter distribution are essential for localizing structures of interest and testing theories of our universe. However, 3D inversion poses significant challenges. First, unlike standard 3D reconstruction that relies on multiple viewpoints, in this case, images are only observed from a single viewpoint. This challenge can be partially addressed by observing how galaxy emitters throughout the volume are lensed. However, this leads to the second challenge: the shapes and exact locations of unlensed galaxies are unknown, and can only be estimated with a very large degree of uncertainty. This introduces an overwhelming amount of noise which nearly drowns out the lensing signal completely. Previous approaches tackle this by imposing strong assumptions about the structures in the volume. We instead propose a methodology using a gravitationally-constrained neural field to flexibly model the continuous matter distribution. We take an analysis-by-synthesis approach, optimizing the weights of the neural network through a fully differentiable physical forward model to reproduce the lensing signal present in image measurements. We showcase our method on simulations, including realistic simulated measurements of dark matter distributions that mimic data from upcoming telescope surveys. Our results show that our method can not only outperform previous methods, but importantly is also able to recover potentially surprising dark matter structures.
Bringing Diversity from Diffusion Models to Semantic-Guided Face Asset Generation
Digital modeling and reconstruction of human faces serve various applications. However, its availability is often hindered by the requirements of data capturing devices, manual labor, and suitable actors. This situation restricts the diversity, expressiveness, and control over the resulting models. This work aims to demonstrate that a semantically controllable generative network can provide enhanced control over the digital face modeling process. To enhance diversity beyond the limited human faces scanned in a controlled setting, we introduce a novel data generation pipeline that creates a high-quality 3D face database using a pre-trained diffusion model. Our proposed normalization module converts synthesized data from the diffusion model into high-quality scanned data. Using the 44,000 face models we obtained, we further developed an efficient GAN-based generator. This generator accepts semantic attributes as input, and generates geometry and albedo. It also allows continuous post-editing of attributes in the latent space. Our asset refinement component subsequently creates physically-based facial assets. We introduce a comprehensive system designed for creating and editing high-quality face assets. Our proposed model has undergone extensive experiment, comparison and evaluation. We also integrate everything into a web-based interactive tool. We aim to make this tool publicly available with the release of the paper.
SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam ICLR 2025
Understanding and monitoring aquatic biodiversity is critical for ecological health and conservation efforts. This paper proposes SuoiAI, an end-to-end pipeline for building a dataset of aquatic invertebrates in Vietnam and employing machine learning (ML) techniques for species classification. We outline the methods for data collection, annotation, and model training, focusing on reducing annotation effort through semi-supervised learning and leveraging state-of-the-art object detection and classification models. Our approach aims to overcome challenges such as data scarcity, fine-grained classification, and deployment in diverse environmental conditions.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
Shape-Guided Clothing Warping for Virtual Try-On ACM MM 2024
Image-based virtual try-on aims to seamlessly fit in-shop clothing to a person image while maintaining pose consistency. Existing methods commonly employ the thin plate spline (TPS) transformation or appearance flow to deform in-shop clothing for aligning with the person's body. Despite their promising performance, these methods often lack precise control over fine details, leading to inconsistencies in shape between clothing and the person's body as well as distortions in exposed limb regions. To tackle these challenges, we propose a novel shape-guided clothing warping method for virtual try-on, dubbed SCW-VTON, which incorporates global shape constraints and additional limb textures to enhance the realism and consistency of the warped clothing and try-on results. To integrate global shape constraints for clothing warping, we devise a dual-path clothing warping module comprising a shape path and a flow path. The former path captures the clothing shape aligned with the person's body, while the latter path leverages the mapping between the pre- and post-deformation of the clothing shape to guide the estimation of appearance flow. Furthermore, to alleviate distortions in limb regions of try-on results, we integrate detailed limb guidance by developing a limb reconstruction network based on masked image modeling. Through the utilization of SCW-VTON, we are able to generate try-on results with enhanced clothing shape consistency and precise control over details. Extensive experiments demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. The code is available at https://github.com/xyhanHIT/SCW-VTON.
comment: Accepted by ACM MM 2024. The code is available at https://github.com/xyhanHIT/SCW-VTON
Zero-Shot, But at What Cost? Unveiling the Hidden Overhead of MILS's LLM-CLIP Framework for Image Captioning
MILS (Multimodal Iterative LLM Solver) is a recently published framework that claims "LLMs can see and hear without any training" by leveraging an iterative, LLM-CLIP based approach for zero-shot image captioning. While this MILS approach demonstrates good performance, our investigation reveals that this success comes at a hidden, substantial computational cost due to its expensive multi-step refinement process. In contrast, alternative models such as BLIP-2 and GPT-4V achieve competitive results through a streamlined, single-pass approach. We hypothesize that the significant overhead inherent in MILS's iterative process may undermine its practical benefits, thereby challenging the narrative that zero-shot performance can be attained without incurring heavy resource demands. This work is the first to expose and quantify the trade-offs between output quality and computational cost in MILS, providing critical insights for the design of more efficient multimodal models.
comment: 9 pages, 2 tables, 1 figure
Automated Measurement of Eczema Severity with Self-Supervised Learning
Automated diagnosis of eczema using images acquired from digital camera can enable individuals to self-monitor their recovery. The process entails first segmenting out the eczema region from the image and then measuring the severity of eczema in the segmented region. The state-of-the-art methods for automated eczema diagnosis rely on deep neural networks such as convolutional neural network (CNN) and have shown impressive performance in accurately measuring the severity of eczema. However, these methods require massive volume of annotated data to train which can be hard to obtain. In this paper, we propose a self-supervised learning framework for automated eczema diagnosis under limited training data regime. Our framework consists of two stages: i) Segmentation, where we use an in-context learning based algorithm called SegGPT for few-shot segmentation of eczema region from the image; ii) Feature extraction and classification, where we extract DINO features from the segmented regions and feed it to a multi-layered perceptron (MLP) for 4-class classification of eczema severity. When evaluated on a dataset of annotated "in-the-wild" eczema images, we show that our method outperforms (Weighted F1: 0.67 $\pm$ 0.01) the state-of-the-art deep learning methods such as finetuned Resnet-18 (Weighted F1: 0.44 $\pm$ 0.16) and Vision Transformer (Weighted F1: 0.40 $\pm$ 0.22). Our results show that self-supervised learning can be a viable solution for automated skin diagnosis where labeled data is scarce.
Breast density in MRI: an AI-based quantification and relationship to assessment in mammography
Mammographic breast density is a well-established risk factor for breast cancer. Recently there has been interest in breast MRI as an adjunct to mammography, as this modality provides an orthogonal and highly quantitative assessment of breast tissue. However, its 3D nature poses analytic challenges related to delineating and aggregating complex structures across slices. Here, we applied an in-house machine-learning algorithm to assess breast density on normal breasts in three MRI datasets. Breast density was consistent across different datasets (0.104 - 0.114). Analysis across different age groups also demonstrated strong consistency across datasets and confirmed a trend of decreasing density with age as reported in previous studies. MR breast density was correlated with mammographic breast density, although some notable differences suggest that certain breast density components are captured only on MRI. Future work will determine how to integrate MR breast density with current tools to improve future breast cancer risk prediction.
comment: 13 pages, 5 figures
Tiger200K: Manually Curated High Visual Quality Video Dataset from UGC Platform
The recent surge in open-source text-to-video generation models has significantly energized the research community, yet their dependence on proprietary training datasets remains a key constraint. While existing open datasets like Koala-36M employ algorithmic filtering of web-scraped videos from early platforms, they still lack the quality required for fine-tuning advanced video generation models. We present Tiger200K, a manually curated high visual quality video dataset sourced from User-Generated Content (UGC) platforms. By prioritizing visual fidelity and aesthetic quality, Tiger200K underscores the critical role of human expertise in data curation, and providing high-quality, temporally consistent video-text pairs for fine-tuning and optimizing video generation architectures through a simple but effective pipeline including shot boundary detection, OCR, border detecting, motion filter and fine bilingual caption. The dataset will undergo ongoing expansion and be released as an open-source initiative to advance research and applications in video generative models. Project page: https://tinytigerpan.github.io/tiger200k/
comment: Project page: https://tinytigerpan.github.io/tiger200k/
FaceCraft4D: Animated 3D Facial Avatar Generation from a Single Image
We present a novel framework for generating high-quality, animatable 4D avatar from a single image. While recent advances have shown promising results in 4D avatar creation, existing methods either require extensive multiview data or struggle with shape accuracy and identity consistency. To address these limitations, we propose a comprehensive system that leverages shape, image, and video priors to create full-view, animatable avatars. Our approach first obtains initial coarse shape through 3D-GAN inversion. Then, it enhances multiview textures using depth-guided warping signals for cross-view consistency with the help of the image diffusion model. To handle expression animation, we incorporate a video prior with synchronized driving signals across viewpoints. We further introduce a Consistent-Inconsistent training to effectively handle data inconsistencies during 4D reconstruction. Experimental results demonstrate that our method achieves superior quality compared to the prior art, while maintaining consistency across different viewpoints and expressions.
DSPO: Direct Semantic Preference Optimization for Real-World Image Super-Resolution
Recent advances in diffusion models have improved Real-World Image Super-Resolution (Real-ISR), but existing methods lack human feedback integration, risking misalignment with human preference and may leading to artifacts, hallucinations and harmful content generation. To this end, we are the first to introduce human preference alignment into Real-ISR, a technique that has been successfully applied in Large Language Models and Text-to-Image tasks to effectively enhance the alignment of generated outputs with human preferences. Specifically, we introduce Direct Preference Optimization (DPO) into Real-ISR to achieve alignment, where DPO serves as a general alignment technique that directly learns from the human preference dataset. Nevertheless, unlike high-level tasks, the pixel-level reconstruction objectives of Real-ISR are difficult to reconcile with the image-level preferences of DPO, which can lead to the DPO being overly sensitive to local anomalies, leading to reduced generation quality. To resolve this dichotomy, we propose Direct Semantic Preference Optimization (DSPO) to align instance-level human preferences by incorporating semantic guidance, which is through two strategies: (a) semantic instance alignment strategy, implementing instance-level alignment to ensure fine-grained perceptual consistency, and (b) user description feedback strategy, mitigating hallucinations through semantic textual feedback on instance-level images. As a plug-and-play solution, DSPO proves highly effective in both one-step and multi-step SR frameworks.
HSANET: A Hybrid Self-Cross Attention Network For Remote Sensing Change Detection
The remote sensing image change detection task is an essential method for large-scale monitoring. We propose HSANet, a network that uses hierarchical convolution to extract multi-scale features. It incorporates hybrid self-attention and cross-attention mechanisms to learn and fuse global and cross-scale information. This enables HSANet to capture global context at different scales and integrate cross-scale features, refining edge details and improving detection performance. We will also open-source our model code: https://github.com/ChengxiHAN/HSANet.
An Efficient Aerial Image Detection with Variable Receptive Fields
Aerial object detection using unmanned aerial vehicles (UAVs) faces critical challenges including sub-10px targets, dense occlusions, and stringent computational constraints. Existing detectors struggle to balance accuracy and efficiency due to rigid receptive fields and redundant architectures. To address these limitations, we propose Variable Receptive Field DETR (VRF-DETR), a transformer-based detector incorporating three key components: 1) Multi-Scale Context Fusion (MSCF) module that dynamically recalibrates features through adaptive spatial attention and gated multi-scale fusion, 2) Gated Convolution (GConv) layer enabling parameter-efficient local-context modeling via depthwise separable operations and dynamic gating, and 3) Gated Multi-scale Fusion (GMCF) Bottleneck that hierarchically disentangles occluded objects through cascaded global-local interactions. Experiments on VisDrone2019 demonstrate VRF-DETR achieves 51.4\% mAP\textsubscript{50} and 31.8\% mAP\textsubscript{50:95} with only 13.5M parameters. This work establishes a new efficiency-accuracy Pareto frontier for UAV-based detection tasks.
Acquire and then Adapt: Squeezing out Text-to-Image Model for Image Restoration CVPR 2025
Recently, pre-trained text-to-image (T2I) models have been extensively adopted for real-world image restoration because of their powerful generative prior. However, controlling these large models for image restoration usually requires a large number of high-quality images and immense computational resources for training, which is costly and not privacy-friendly. In this paper, we find that the well-trained large T2I model (i.e., Flux) is able to produce a variety of high-quality images aligned with real-world distributions, offering an unlimited supply of training samples to mitigate the above issue. Specifically, we proposed a training data construction pipeline for image restoration, namely FluxGen, which includes unconditional image generation, image selection, and degraded image simulation. A novel light-weighted adapter (FluxIR) with squeeze-and-excitation layers is also carefully designed to control the large Diffusion Transformer (DiT)-based T2I model so that reasonable details can be restored. Experiments demonstrate that our proposed method enables the Flux model to adapt effectively to real-world image restoration tasks, achieving superior scores and visual quality on both synthetic and real-world degradation datasets - at only about 8.5\% of the training cost compared to current approaches.
comment: Accepted by CVPR 2025
Dynamic 3D KAN Convolution with Adaptive Grid Optimization for Hyperspectral Image Classification
Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more efficiently adapt to ground object distributions while extracting image features without introducing excessive parameters and skipping redundant information, this paper proposes KANet based on an improved 3D-DenseNet model, consisting of 3D KAN Conv and an adaptive grid update mechanism. By introducing learnable univariate B-spline functions on network edges, specifically by flattening three-dimensional neighborhoods into vectors and applying B-spline-parameterized nonlinear activation functions to replace the fixed linear weights of traditional 3D convolutional kernels, we precisely capture complex spectral-spatial nonlinear relationships in hyperspectral data. Simultaneously, through a dynamic grid adjustment mechanism, we adaptively update the grid point positions of B-splines based on the statistical characteristics of input data, optimizing the resolution of spline functions to match the non-uniform distribution of spectral features, significantly improving the model's accuracy in high-dimensional data modeling and parameter efficiency, effectively alleviating the curse of dimensionality. This characteristic demonstrates superior neural scaling laws compared to traditional convolutional neural networks and reduces overfitting risks in small-sample and high-noise scenarios. KANet enhances model representation capability through a 3D dynamic expert convolution system without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate. Existing registration methods rely heavily on anatomical landmark-based workflows, which encounter two major limitations: 1) ambiguous landmark definitions fail to provide efficient markers for registration; 2) insufficient integration of intraoperative liver visual information in shape deformation modeling. To address these challenges, in this paper, we propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning, termed \ourmodel. This framework transforms the conventional 3D-2D workflow into a 3D-3D registration pipeline, which is then decoupled into rigid and non-rigid registration subtasks. \ourmodel~first introduces a feature-disentangled transformer to learn robust correspondences for recovering rigid transformations. Further, a structure-regularized deformation network is designed to adjust the preoperative model to align with the intraoperative liver surface. This network captures structural correlations through geometry similarity modeling in a low-rank transformer network. To facilitate the validation of the registration performance, we also construct an in-vivo registration dataset containing liver resection videos of 21 patients, called \emph{P2I-LReg}, which contains 346 keyframes that provide a global view of the liver together with liver mask annotations and calibrated camera intrinsic parameters. Extensive experiments and user studies on both synthetic and in-vivo datasets demonstrate the superiority and potential clinical applicability of our method.
comment: TMI under review
"I Know It When I See It": Mood Spaces for Connecting and Expressing Visual Concepts
Expressing complex concepts is easy when they can be labeled or quantified, but many ideas are hard to define yet instantly recognizable. We propose a Mood Board, where users convey abstract concepts with examples that hint at the intended direction of attribute changes. We compute an underlying Mood Space that 1) factors out irrelevant features and 2) finds the connections between images, thus bringing relevant concepts closer. We invent a fibration computation to compress/decompress pre-trained features into/from a compact space, 50-100x smaller. The main innovation is learning to mimic the pairwise affinity relationship of the image tokens across exemplars. To focus on the coarse-to-fine hierarchical structures in the Mood Space, we compute the top eigenvector structure from the affinity matrix and define a loss in the eigenvector space. The resulting Mood Space is locally linear and compact, allowing image-level operations, such as object averaging, visual analogy, and pose transfer, to be performed as a simple vector operation in Mood Space. Our learning is efficient in computation without any fine-tuning, needs only a few (2-20) exemplars, and takes less than a minute to learn.
comment: Project page: https://huzeyann.github.io/mspace/
Instance-Adaptive Keypoint Learning with Local-to-Global Geometric Aggregation for Category-Level Object Pose Estimation
Category-level object pose estimation aims to predict the 6D pose and size of previously unseen instances from predefined categories, requiring strong generalization across diverse object instances. Although many previous methods attempt to mitigate intra-class variations, they often struggle with instances exhibiting complex geometries or significant deviations from canonical shapes. To address this challenge, we propose INKL-Pose, a novel category-level object pose estimation framework that enables INstance-adaptive Keypoint Learning with local-to-global geometric aggregation. Specifically, our approach first predicts semantically consistent and geometric informative keypoints through an Instance-Adaptive Keypoint Generator, then refines them with: (1) a Local Keypoint Feature Aggregator capturing fine-grained geometries, and (2) a Global Keypoint Feature Aggregator using bidirectional Mamba for structural consistency. To enable bidirectional modeling in Mamba, we introduce a Feature Sequence Flipping strategy that preserves spatial coherence while constructing backward feature sequences. Additionally, we design a surface loss and a separation loss to enforce uniform coverage and spatial diversity in keypoint distribution. The generated keypoints are finally mapped to a canonical space for regressing the object's 6D pose and size. Extensive experiments on CAMERA25, REAL275, and HouseCat6D demonstrate that INKL-Pose achieves state-of-the-art performance and significantly outperforms existing methods.
EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
MoBGS: Motion Deblurring Dynamic 3D Gaussian Splatting for Blurry Monocular Video
We present MoBGS, a novel deblurring dynamic 3D Gaussian Splatting (3DGS) framework capable of reconstructing sharp and high-quality novel spatio-temporal views from blurry monocular videos in an end-to-end manner. Existing dynamic novel view synthesis (NVS) methods are highly sensitive to motion blur in casually captured videos, resulting in significant degradation of rendering quality. While recent approaches address motion-blurred inputs for NVS, they primarily focus on static scene reconstruction and lack dedicated motion modeling for dynamic objects. To overcome these limitations, our MoBGS introduces a novel Blur-adaptive Latent Camera Estimation (BLCE) method for effective latent camera trajectory estimation, improving global camera motion deblurring. In addition, we propose a physically-inspired Latent Camera-induced Exposure Estimation (LCEE) method to ensure consistent deblurring of both global camera and local object motion. Our MoBGS framework ensures the temporal consistency of unseen latent timestamps and robust motion decomposition of static and dynamic regions. Extensive experiments on the Stereo Blur dataset and real-world blurry videos show that our MoBGS significantly outperforms the very recent advanced methods (DyBluRF and Deblur4DGS), achieving state-of-the-art performance for dynamic NVS under motion blur.
comment: The first two authors contributed equally to this work (equal contribution). The last two authors advised equally to this work
Robust and Real-time Surface Normal Estimation from Stereo Disparities using Affine Transformations
This work introduces a novel method for surface normal estimation from rectified stereo image pairs, leveraging affine transformations derived from disparity values to achieve fast and accurate results. We demonstrate how the rectification of stereo image pairs simplifies the process of surface normal estimation by reducing computational complexity. To address noise reduction, we develop a custom algorithm inspired by convolutional operations, tailored to process disparity data efficiently. We also introduce adaptive heuristic techniques for efficiently detecting connected surface components within the images, further improving the robustness of the method. By integrating these methods, we construct a surface normal estimator that is both fast and accurate, producing a dense, oriented point cloud as the final output. Our method is validated using both simulated environments and real-world stereo images from the Middlebury and Cityscapes datasets, demonstrating significant improvements in real-time performance and accuracy when implemented on a GPU. Upon acceptance, the shader source code will be made publicly available to facilitate further research and reproducibility.
Improving Sound Source Localization with Joint Slot Attention on Image and Audio CVPR 2025
Sound source localization (SSL) is the task of locating the source of sound within an image. Due to the lack of localization labels, the de facto standard in SSL has been to represent an image and audio as a single embedding vector each, and use them to learn SSL via contrastive learning. To this end, previous work samples one of local image features as the image embedding and aggregates all local audio features to obtain the audio embedding, which is far from optimal due to the presence of noise and background irrelevant to the actual target in the input. We present a novel SSL method that addresses this chronic issue by joint slot attention on image and audio. To be specific, two slots competitively attend image and audio features to decompose them into target and off-target representations, and only target representations of image and audio are used for contrastive learning. Also, we introduce cross-modal attention matching to further align local features of image and audio. Our method achieved the best in almost all settings on three public benchmarks for SSL, and substantially outperformed all the prior work in cross-modal retrieval.
comment: Accepted to CVPR 2025
Unwarping Screen Content Images via Structure-texture Enhancement Network and Transformation Self-estimation
While existing implicit neural network-based image unwarping methods perform well on natural images, they struggle to handle screen content images (SCIs), which often contain large geometric distortions, text, symbols, and sharp edges. To address this, we propose a structure-texture enhancement network (STEN) with transformation self-estimation for SCI warping. STEN integrates a B-spline implicit neural representation module and a transformation error estimation and self-correction algorithm. It comprises two branches: the structure estimation branch (SEB), which enhances local aggregation and global dependency modeling, and the texture estimation branch (TEB), which improves texture detail synthesis using B-spline implicit neural representation. Additionally, the transformation self-estimation module autonomously estimates the transformation error and corrects the coordinate transformation matrix, effectively handling real-world image distortions. Extensive experiments on public SCI datasets demonstrate that our approach significantly outperforms state-of-the-art methods. Comparisons on well-known natural image datasets also show the potential of our approach for natural image distortion.
A triple-branch network for latent fingerprint enhancement guided by orientation fields and minutiae
Latent fingerprint enhancement is a critical step in the process of latent fingerprint identification. Existing deep learning-based enhancement methods still fall short of practical application requirements, particularly in restoring low-quality fingerprint regions. Recognizing that different regions of latent fingerprints require distinct enhancement strategies, we propose a Triple Branch Spatial Fusion Network (TBSFNet), which simultaneously enhances different regions of the image using tailored strategies. Furthermore, to improve the generalization capability of the network, we integrate orientation field and minutiae-related modules into TBSFNet and introduce a Multi-Level Feature Guidance Network (MLFGNet). Experimental results on the MOLF and MUST datasets demonstrate that MLFGNet outperforms existing enhancement algorithms.
VistaDepth: Frequency Modulation With Bias Reweighting For Enhanced Long-Range Depth Estimation
Monocular depth estimation (MDE) aims to predict per-pixel depth values from a single RGB image. Recent advancements have positioned diffusion models as effective MDE tools by framing the challenge as a conditional image generation task. Despite their progress, these methods often struggle with accurately reconstructing distant depths, due largely to the imbalanced distribution of depth values and an over-reliance on spatial-domain features. To overcome these limitations, we introduce VistaDepth, a novel framework that integrates adaptive frequency-domain feature enhancements with an adaptive weight-balancing mechanism into the diffusion process. Central to our approach is the Latent Frequency Modulation (LFM) module, which dynamically refines spectral responses in the latent feature space, thereby improving the preservation of structural details and reducing noisy artifacts. Furthermore, we implement an adaptive weighting strategy that modulates the diffusion loss in real-time, enhancing the model's sensitivity towards distant depth reconstruction. These innovations collectively result in superior depth perception performance across both distance and detail. Experimental evaluations confirm that VistaDepth achieves state-of-the-art performance among diffusion-based MDE techniques, particularly excelling in the accurate reconstruction of distant regions.
comment: 8 pages, 6 figures, 4 tables
Hierarchical Attention Fusion of Visual and Textual Representations for Cross-Domain Sequential Recommendation SC
Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences through intra- and inter-sequence item relationships. Inspired by human cognitive processes, we propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling. Using the frozen CLIP model, we generate image and text embeddings, enriching item representations with multimodal data. A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration. Evaluated on four e-commerce datasets, HAF-VT outperforms existing methods in capturing cross-domain user interests, bridging cognitive principles with computational models and highlighting the role of multimodal data in sequential decision-making.
comment: Accepted at CogSCI 2025
Structure-guided Diffusion Transformer for Low-Light Image Enhancement
While the diffusion transformer (DiT) has become a focal point of interest in recent years, its application in low-light image enhancement remains a blank area for exploration. Current methods recover the details from low-light images while inevitably amplifying the noise in images, resulting in poor visual quality. In this paper, we firstly introduce DiT into the low-light enhancement task and design a novel Structure-guided Diffusion Transformer based Low-light image enhancement (SDTL) framework. We compress the feature through wavelet transform to improve the inference efficiency of the model and capture the multi-directional frequency band. Then we propose a Structure Enhancement Module (SEM) that uses structural prior to enhance the texture and leverages an adaptive fusion strategy to achieve more accurate enhancement effect. In Addition, we propose a Structure-guided Attention Block (SAB) to pay more attention to texture-riched tokens and avoid interference from noisy areas in noise prediction. Extensive qualitative and quantitative experiments demonstrate that our method achieves SOTA performance on several popular datasets, validating the effectiveness of SDTL in improving image quality and the potential of DiT in low-light enhancement tasks.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
VeLU: Variance-enhanced Learning Unit for Deep Neural Networks
Activation functions are fundamental in deep neural networks and directly impact gradient flow, optimization stability, and generalization. Although ReLU remains standard because of its simplicity, it suffers from vanishing gradients and lacks adaptability. Alternatives like Swish and GELU introduce smooth transitions, but fail to dynamically adjust to input statistics. We propose VeLU, a Variance-enhanced Learning Unit as an activation function that dynamically scales based on input variance by integrating ArcTan-Sin transformations and Wasserstein-2 regularization, effectively mitigating covariate shifts and stabilizing optimization. Extensive experiments on ViT_B16, VGG19, ResNet50, DenseNet121, MobileNetV2, and EfficientNetB3 confirm VeLU's superiority over ReLU, ReLU6, Swish, and GELU on six vision benchmarks. The codes of VeLU are publicly available on GitHub.
ScanEdit: Hierarchically-Guided Functional 3D Scan Editing
With the fast pace of 3D capture technology and resulting abundance of 3D data, effective 3D scene editing becomes essential for a variety of graphics applications. In this work we present ScanEdit, an instruction-driven method for functional editing of complex, real-world 3D scans. To model large and interdependent sets of ob- jectswe propose a hierarchically-guided approach. Given a 3D scan decomposed into its object instances, we first construct a hierarchical scene graph representation to enable effective, tractable editing. We then leverage reason- ing capabilities of Large Language Models (LLMs) and translate high-level language instructions into actionable commands applied hierarchically to the scene graph. Fi- nally, ScanEdit integrates LLM-based guidance with ex- plicit physical constraints and generates realistic scenes where object arrangements obey both physics and common sense. In our extensive experimental evaluation ScanEdit outperforms state of the art and demonstrates excellent re- sults for a variety of real-world scenes and input instruc- tions.
comment: Project webpage: https://aminebdj.github.io/scanedit/ Video: https://www.youtube.com/watch?v=Dfmu2g6pVlg
Distribution-aware Forgetting Compensation for Exemplar-Free Lifelong Person Re-identification
Lifelong Person Re-identification (LReID) suffers from a key challenge in preserving old knowledge while adapting to new information. The existing solutions include rehearsal-based and rehearsal-free methods to address this challenge. Rehearsal-based approaches rely on knowledge distillation, continuously accumulating forgetting during the distillation process. Rehearsal-free methods insufficiently learn the distribution of each domain, leading to forgetfulness over time. To solve these issues, we propose a novel Distribution-aware Forgetting Compensation (DAFC) model that explores cross-domain shared representation learning and domain-specific distribution integration without using old exemplars or knowledge distillation. We propose a Text-driven Prompt Aggregation (TPA) that utilizes text features to enrich prompt elements and guide the prompt model to learn fine-grained representations for each instance. This can enhance the differentiation of identity information and establish the foundation for domain distribution awareness. Then, Distribution-based Awareness and Integration (DAI) is designed to capture each domain-specific distribution by a dedicated expert network and adaptively consolidate them into a shared region in high-dimensional space. In this manner, DAI can consolidate and enhance cross-domain shared representation learning while alleviating catastrophic forgetting. Furthermore, we develop a Knowledge Consolidation Mechanism (KCM) that comprises instance-level discrimination and cross-domain consistency alignment strategies to facilitate model adaptive learning of new knowledge from the current domain and promote knowledge consolidation learning between acquired domain-specific distributions, respectively. Experimental results show that our DAFC outperform state-of-the-art methods by at least 9.8\%/6.6\% and 6.4\%/6.2\% of average mAP/R@1 on two training orders.
comment: 12 pages, 5 figures
DyST-XL: Dynamic Layout Planning and Content Control for Compositional Text-to-Video Generation
Compositional text-to-video generation, which requires synthesizing dynamic scenes with multiple interacting entities and precise spatial-temporal relationships, remains a critical challenge for diffusion-based models. Existing methods struggle with layout discontinuity, entity identity drift, and implausible interaction dynamics due to unconstrained cross-attention mechanisms and inadequate physics-aware reasoning. To address these limitations, we propose DyST-XL, a \textbf{training-free} framework that enhances off-the-shelf text-to-video models (e.g., CogVideoX-5B) through frame-aware control. DyST-XL integrates three key innovations: (1) A Dynamic Layout Planner that leverages large language models (LLMs) to parse input prompts into entity-attribute graphs and generates physics-aware keyframe layouts, with intermediate frames interpolated via trajectory optimization; (2) A Dual-Prompt Controlled Attention Mechanism that enforces localized text-video alignment through frame-aware attention masking, achieving the precise control over individual entities; and (3) An Entity-Consistency Constraint strategy that propagates first-frame feature embeddings to subsequent frames during denoising, preserving object identity without manual annotation. Experiments demonstrate that DyST-XL excels in compositional text-to-video generation, significantly improving performance on complex prompts and bridging a crucial gap in training-free video synthesis.
comment: 9 pages, 6 figures
A Controllable Appearance Representation for Flexible Transfer and Editing
We present a method that computes an interpretable representation of material appearance within a highly compact, disentangled latent space. This representation is learned in a self-supervised fashion using an adapted FactorVAE. We train our model with a carefully designed unlabeled dataset, avoiding possible biases induced by human-generated labels. Our model demonstrates strong disentanglement and interpretability by effectively encoding material appearance and illumination, despite the absence of explicit supervision. Then, we use our representation as guidance for training a lightweight IP-Adapter to condition a diffusion pipeline that transfers the appearance of one or more images onto a target geometry, and allows the user to further edit the resulting appearance. Our approach offers fine-grained control over the generated results: thanks to the well-structured compact latent space, users can intuitively manipulate attributes such as hue or glossiness in image space to achieve the desired final appearance.
Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models
Ethical concerns surrounding copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models. One effective solution involves watermarking the generated images. Existing methods primarily focus on ensuring that watermark embedding does not degrade the model performance. However, they often overlook critical challenges in real-world deployment scenarios, such as the complexity of watermark key management, user-defined generation parameters, and the difficulty of verification by arbitrary third parties. To address this issue, we propose Gaussian Shading++, a diffusion model watermarking method tailored for real-world deployment. We propose a double-channel design that leverages pseudorandom error-correcting codes to encode the random seed required for watermark pseudorandomization, achieving performance-lossless watermarking under a fixed watermark key and overcoming key management challenges. Additionally, we model the distortions introduced during generation and inversion as an additive white Gaussian noise channel and employ a novel soft decision decoding strategy during extraction, ensuring strong robustness even when generation parameters vary. To enable third-party verification, we incorporate public key signatures, which provide a certain level of resistance against forgery attacks even when model inversion capabilities are fully disclosed. Extensive experiments demonstrate that Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness, making it a more practical solution for real-world deployment.
comment: 18 pages, 8 figures
Insert Anything: Image Insertion via In-Context Editing in DiT
This work presents Insert Anything, a unified framework for reference-based image insertion that seamlessly integrates objects from reference images into target scenes under flexible, user-specified control guidance. Instead of training separate models for individual tasks, our approach is trained once on our new AnyInsertion dataset--comprising 120K prompt-image pairs covering diverse tasks such as person, object, and garment insertion--and effortlessly generalizes to a wide range of insertion scenarios. Such a challenging setting requires capturing both identity features and fine-grained details, while allowing versatile local adaptations in style, color, and texture. To this end, we propose to leverage the multimodal attention of the Diffusion Transformer (DiT) to support both mask- and text-guided editing. Furthermore, we introduce an in-context editing mechanism that treats the reference image as contextual information, employing two prompting strategies to harmonize the inserted elements with the target scene while faithfully preserving their distinctive features. Extensive experiments on AnyInsertion, DreamBooth, and VTON-HD benchmarks demonstrate that our method consistently outperforms existing alternatives, underscoring its great potential in real-world applications such as creative content generation, virtual try-on, and scene composition.
Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: KwaiSR Dataset and Study CVPR
In this work, we build the first benchmark dataset for short-form UGC Image Super-resolution in the wild, termed KwaiSR, intending to advance the research on developing image super-resolution algorithms for short-form UGC platforms. This dataset is collected from the Kwai Platform, which is composed of two parts, i.e., synthetic and wild parts. Among them, the synthetic dataset, including 1,900 image pairs, is produced by simulating the degradation following the distribution of real-world low-quality short-form UGC images, aiming to provide the ground truth for training and objective comparison in the validation/testing. The wild dataset contains low-quality images collected directly from the Kwai Platform, which are filtered using the quality assessment method KVQ from the Kwai Platform. As a result, the KwaiSR dataset contains 1800 synthetic image pairs and 1900 wild images, which are divided into training, validation, and testing parts with a ratio of 8:1:1. Based on the KwaiSR dataset, we organize the NTIRE 2025 challenge on a second short-form UGC Video quality assessment and enhancement, which attracts lots of researchers to develop the algorithm for it. The results of this competition have revealed that our KwaiSR dataset is pretty challenging for existing Image SR methods, which is expected to lead to a new direction in the image super-resolution field. The dataset can be found from https://lixinustc.github.io/NTIRE2025-KVQE-KwaSR-KVQ.github.io/.
comment: KwaiSR dataset, a new dataset for image super-resolution, used for CVPR NTIRE 2025 Challenge; CVPR 2025 workshop paper
Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal perception capabilities, garnering significant attention. While numerous evaluation studies have emerged, assessing LVLMs both holistically and on specialized tasks, fine-grained image tasks-fundamental to computer vision-remain largely unexplored. To fill this gap, we introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 3.49 million questions and 3.32 million images. Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives, focusing on their semantic recognition and fine-grained feature representation capabilities. Through extensive experiments on eight representative LVLMs/VLMs, we uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance. This work provides critical insights into the limitations of current LVLMs and offers guidance for future data construction and model design in the development of more advanced LVLMs. Our code is open-source and available at https://github.com/SEU-VIPGroup/FG-BMK.
RealisDance-DiT: Simple yet Strong Baseline towards Controllable Character Animation in the Wild
Controllable character animation remains a challenging problem, particularly in handling rare poses, stylized characters, character-object interactions, complex illumination, and dynamic scenes. To tackle these issues, prior work has largely focused on injecting pose and appearance guidance via elaborate bypass networks, but often struggles to generalize to open-world scenarios. In this paper, we propose a new perspective that, as long as the foundation model is powerful enough, straightforward model modifications with flexible fine-tuning strategies can largely address the above challenges, taking a step towards controllable character animation in the wild. Specifically, we introduce RealisDance-DiT, built upon the Wan-2.1 video foundation model. Our sufficient analysis reveals that the widely adopted Reference Net design is suboptimal for large-scale DiT models. Instead, we demonstrate that minimal modifications to the foundation model architecture yield a surprisingly strong baseline. We further propose the low-noise warmup and "large batches and small iterations" strategies to accelerate model convergence during fine-tuning while maximally preserving the priors of the foundation model. In addition, we introduce a new test dataset that captures diverse real-world challenges, complementing existing benchmarks such as TikTok dataset and UBC fashion video dataset, to comprehensively evaluate the proposed method. Extensive experiments show that RealisDance-DiT outperforms existing methods by a large margin.
comment: Project Page: https://thefoxofsky.github.io/project_pages_new/RealisDance-DiT/index
Cyc3D: Fine-grained Controllable 3D Generation via Cycle Consistency Regularization
Despite the remarkable progress of 3D generation, achieving controllability, i.e., ensuring consistency between generated 3D content and input conditions like edge and depth, remains a significant challenge. Existing methods often struggle to maintain accurate alignment, leading to noticeable discrepancies. To address this issue, we propose \name{}, a new framework that enhances controllable 3D generation by explicitly encouraging cyclic consistency between the second-order 3D content, generated based on extracted signals from the first-order generation, and its original input controls. Specifically, we employ an efficient feed-forward backbone that can generate a 3D object from an input condition and a text prompt. Given an initial viewpoint and a control signal, a novel view is rendered from the generated 3D content, from which the extracted condition is used to regenerate the 3D content. This re-generated output is then rendered back to the initial viewpoint, followed by another round of control signal extraction, forming a cyclic process with two consistency constraints. \emph{View consistency} ensures coherence between the two generated 3D objects, measured by semantic similarity to accommodate generative diversity. \emph{Condition consistency} aligns the final extracted signal with the original input control, preserving structural or geometric details throughout the process. Extensive experiments on popular benchmarks demonstrate that \name{} significantly improves controllability, especially for fine-grained details, outperforming existing methods across various conditions (e.g., +14.17\% PSNR for edge, +6.26\% PSNR for sketch).
comment: Preprint version. The code will be open after finishing the reviewing process
3D Gaussian Head Avatars with Expressive Dynamic Appearances by Compact Tensorial Representations
Recent studies have combined 3D Gaussian and 3D Morphable Models (3DMM) to construct high-quality 3D head avatars. In this line of research, existing methods either fail to capture the dynamic textures or incur significant overhead in terms of runtime speed or storage space. To this end, we propose a novel method that addresses all the aforementioned demands. In specific, we introduce an expressive and compact representation that encodes texture-related attributes of the 3D Gaussians in the tensorial format. We store appearance of neutral expression in static tri-planes, and represents dynamic texture details for different expressions using lightweight 1D feature lines, which are then decoded into opacity offset relative to the neutral face. We further propose adaptive truncated opacity penalty and class-balanced sampling to improve generalization across different expressions. Experiments show this design enables accurate face dynamic details capturing while maintains real-time rendering and significantly reduces storage costs, thus broadening the applicability to more scenarios.
PIV-FlowDiffuser:Transfer-learning-based denoising diffusion models for PIV
Deep learning algorithms have significantly reduced the computational time and improved the spatial resolution of particle image velocimetry~(PIV). However, the models trained on synthetic datasets might have a degraded performance on practical particle images due to domain gaps. As a result, special residual patterns are often observed for the vector fields of deep learning-based estimators. To reduce the special noise step-by-step, we employ a denoising diffusion model~(FlowDiffuser) for PIV analysis. And the data-hungry iterative denoising diffusion model is trained via a transfer learning strategy, resulting in our PIV-FlowDiffuser method. Specifically, (1) pre-training a FlowDiffuser model with multiple optical flow datasets of the computer vision community, such as Sintel, KITTI, etc; (2) fine-tuning the pre-trained model on synthetic PIV datasets. Note that the PIV images are upsampled by a factor of two to resolve the small-scale turbulent flow structures. The visualized results indicate that our PIV-FlowDiffuser effectively suppresses the noise patterns. Therefore, the denoising diffusion model reduces the average end-point error~($AEE$) by 59.4% over RAFT256-PIV baseline on the classic Cai's dataset. Besides, PIV-FlowDiffuser exhibits enhanced generalization performance on unseen particle images due to transfer learning. Overall, this study highlights the transfer-learning-based denoising diffusion models for PIV. And a detailed implementation is recommended for interested readers in the repository https://github.com/Zhu-Qianyu/PIV-FlowDiffuser.
TWIG: Two-Step Image Generation using Segmentation Masks in Diffusion Models
In today's age of social media and marketing, copyright issues can be a major roadblock to the free sharing of images. Generative AI models have made it possible to create high-quality images, but concerns about copyright infringement are a hindrance to their abundant use. As these models use data from training images to generate new ones, it is often a daunting task to ensure they do not violate intellectual property rights. Some AI models have even been noted to directly copy copyrighted images, a problem often referred to as source copying. Traditional copyright protection measures such as watermarks and metadata have also proven to be futile in this regard. To address this issue, we propose a novel two-step image generation model inspired by the conditional diffusion model. The first step involves creating an image segmentation mask for some prompt-based generated images. This mask embodies the shape of the image. Thereafter, the diffusion model is asked to generate the image anew while avoiding the shape in question. This approach shows a decrease in structural similarity from the training image, i.e. we are able to avoid the source copying problem using this approach without expensive retraining of the model or user-centered prompt generation techniques. This makes our approach the most computationally inexpensive approach to avoiding both copyright infringement and source copying for diffusion model-based image generation.
comment: 16 pages, 9 figures, preprint
Fast Adversarial Training with Weak-to-Strong Spatial-Temporal Consistency in the Frequency Domain on Videos
Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
DyFo: A Training-Free Dynamic Focus Visual Search for Enhancing LMMs in Fine-Grained Visual Understanding CVPR 2025
Humans can effortlessly locate desired objects in cluttered environments, relying on a cognitive mechanism known as visual search to efficiently filter out irrelevant information and focus on task-related regions. Inspired by this process, we propose Dyfo (Dynamic Focus), a training-free dynamic focusing visual search method that enhances fine-grained visual understanding in large multimodal models (LMMs). Unlike existing approaches which require additional modules or data collection, Dyfo leverages a bidirectional interaction between LMMs and visual experts, using a Monte Carlo Tree Search (MCTS) algorithm to simulate human-like focus adjustments. This enables LMMs to focus on key visual regions while filtering out irrelevant content, without introducing additional training caused by vocabulary expansion or the integration of specialized localization modules. Experimental results demonstrate that Dyfo significantly improves fine-grained visual understanding and reduces hallucination issues in LMMs, achieving superior performance across both fixed and dynamic resolution models. The code is available at https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
comment: Accepted by CVPR 2025 (Hightlight). Project page with code: https://github.com/PKU-ICST-MIPL/DyFo_CVPR2025
GenCLIP: Generalizing CLIP Prompts for Zero-shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to identify anomalies in unseen categories by leveraging CLIP's zero-shot capabilities to match text prompts with visual features. A key challenge in ZSAD is learning general prompts stably and utilizing them effectively, while maintaining both generalizability and category specificity. Although general prompts have been explored in prior works, achieving their stable optimization and effective deployment remains a significant challenge. In this work, we propose GenCLIP, a novel framework that learns and leverages general prompts more effectively through multi-layer prompting and dual-branch inference. Multi-layer prompting integrates category-specific visual cues from different CLIP layers, enriching general prompts with more comprehensive and robust feature representations. By combining general prompts with multi-layer visual features, our method further enhances its generalization capability. To balance specificity and generalization, we introduce a dual-branch inference strategy, where a vision-enhanced branch captures fine-grained category-specific features, while a query-only branch prioritizes generalization. The complementary outputs from both branches improve the stability and reliability of anomaly detection across unseen categories. Additionally, we propose an adaptive text prompt filtering mechanism, which removes irrelevant or atypical class names not encountered during CLIP's training, ensuring that only meaningful textual inputs contribute to the final vision-language alignment.
Guidelines for External Disturbance Factors in the Use of OCR in Real-World Environments
The performance of OCR has improved with the evolution of AI technology. As OCR continues to broaden its range of applications, the increased likelihood of interference introduced by various usage environments can prevent it from achieving its inherent performance. This results in reduced recognition accuracy under certain conditions, and makes the quality control of recognition devices more challenging. Therefore, to ensure that users can properly utilize OCR, we compiled the real-world external disturbance factors that cause performance degradation, along with the resulting image degradation phenomena, into an external disturbance factor table and, by also indicating how to make use of it, organized them into guidelines.
comment: 16 pages, 14 figures
OmniAudio: Generating Spatial Audio from 360-Degree Video
Traditional video-to-audio generation techniques primarily focus on field-of-view (FoV) video and non-spatial audio, often missing the spatial cues necessary for accurately representing sound sources in 3D environments. To address this limitation, we introduce a novel task, 360V2SA, to generate spatial audio from 360-degree videos, specifically producing First-order Ambisonics (FOA) audio - a standard format for representing 3D spatial audio that captures sound directionality and enables realistic 3D audio reproduction. We first create Sphere360, a novel dataset tailored for this task that is curated from real-world data. We also design an efficient semi-automated pipeline for collecting and cleaning paired video-audio data. To generate spatial audio from 360-degree video, we propose a novel framework OmniAudio, which leverages self-supervised pre-training using both spatial audio data (in FOA format) and large-scale non-spatial data. Furthermore, OmniAudio features a dual-branch framework that utilizes both panoramic and FoV video inputs to capture comprehensive local and global information from 360-degree videos. Experimental results demonstrate that OmniAudio achieves state-of-the-art performance across both objective and subjective metrics on Sphere360. Code and datasets will be released at https://github.com/liuhuadai/OmniAudio. The demo page is available at https://OmniAudio-360V2SA.github.io.
comment: Work in Progress
Uni3C: Unifying Precisely 3D-Enhanced Camera and Human Motion Controls for Video Generation
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
comment: Project page: https://github.com/ewrfcas/Uni3C
WMKA-Net: A Weighted Multi-Kernel Attention NetworkMethod for Retinal Vessel Segmentation
We propose a novel retinal vessel segmentation network, the Weighted Multi-Kernel Attention Network (WMKA-Net), which aims to address the issues of insufficient multiscale feature capture, loss of contextual information, and noise sensitivity in retinal vessel segmentation. WMKA-Net significantly improves the segmentation performance of small vessels and low-contrast regions by integrating several innovative components, including the MultiKernelFeature Fusion Module (MKDC), the Progressive Feature Weighting Fusion Strategy (UDFF), and the Attention Mechanism Module (AttentionBlock). The MKDC module employs multiscale parallel convolutional kernels to extract vessel characteristics, thereby enhancing the ability to capture complex vascular structures. The UDFF strategy optimizes the transmission of feature information by weighted fusion of high- and low-level features. The AttentionBlock highlights key regions and suppresses noise interference through the attention mechanism. Experimental results demonstrate that WMKA-Net achieves excellent segmentation performance in multiple public datasets, particularly in segmentation of small vessels and processing of pathological regions. This work provides a robust and efficient new method for segmentation of the retinal vessel.
Memory-Augmented Dual-Decoder Networks for Multi-Class Unsupervised Anomaly Detection
Recent advances in unsupervised anomaly detection (UAD) have shifted from single-class to multi-class scenarios. In such complex contexts, the increasing pattern diversity has brought two challenges to reconstruction-based approaches: (1) over-generalization: anomalies that are subtle or share compositional similarities with normal patterns may be reconstructed with high fidelity, making them difficult to distinguish from normal instances; and (2) insufficient normality reconstruction: complex normal features, such as intricate textures or fine-grained structures, may not be faithfully reconstructed due to the model's limited representational capacity, resulting in false positives. Existing methods typically focus on addressing the former, which unintentionally exacerbate the latter, resulting in inadequate representation of intricate normal patterns. To concurrently address these two challenges, we propose a Memory-augmented Dual-Decoder Networks (MDD-Net). This network includes two critical components: a Dual-Decoder Reverse Distillation Network (DRD-Net) and a Class-aware Memory Module (CMM). Specifically, the DRD-Net incorporates a restoration decoder designed to recover normal features from synthetic abnormal inputs and an identity decoder to reconstruct features that maintain the anomalous semantics. By exploiting the discrepancy between features produced by two decoders, our approach refines anomaly scores beyond the conventional encoder-decoder comparison paradigm, effectively reducing false positives and enhancing localization accuracy. Furthermore, the CMM explicitly encodes and preserves class-specific normal prototypes, actively steering the network away from anomaly reconstruction. Comprehensive experimental results across several benchmarks demonstrate the superior performance of our MDD-Net framework over current SoTA approaches in multi-class UAD tasks.
Some Optimizers are More Equal: Understanding the Role of Optimizers in Group Fairness
We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.
Collaborative Enhancement Network for Low-quality Multi-spectral Vehicle Re-identification
The performance of multi-spectral vehicle Re-identification (ReID) is significantly degraded when some important discriminative cues in visible, near infrared and thermal infrared spectra are lost. Existing methods generate or enhance missing details in low-quality spectra data using the high-quality one, generally called the primary spectrum, but how to justify the primary spectrum is a challenging problem. In addition, when the quality of the primary spectrum is low, the enhancement effect would be greatly degraded, thus limiting the performance of multi-spectral vehicle ReID. To address these problems, we propose the Collaborative Enhancement Network (CoEN), which generates a high-quality proxy from all spectra data and leverages it to supervise the selection of primary spectrum and enhance all spectra features in a collaborative manner, for robust multi-spectral vehicle ReID. First, to integrate the rich cues from all spectra data, we design the Proxy Generator (PG) to progressively aggregate multi-spectral features. Second, we design the Dynamic Quality Sort Module (DQSM), which sorts all spectra data by measuring their correlations with the proxy, to accurately select the primary spectra with the highest correlation. Finally, we design the Collaborative Enhancement Module (CEM) to effectively compensate for missing contents of all spectra by collaborating the primary spectra and the proxy, thereby mitigating the impact of low-quality primary spectra. Extensive experiments on three benchmark datasets are conducted to validate the efficacy of the proposed approach against other multi-spectral vehicle ReID methods. The codes will be released at https://github.com/yongqisun/CoEN.
ReSpec: Relevance and Specificity Grounded Online Filtering for Learning on Video-Text Data Streams CVPR 2025
The rapid growth of video-text data presents challenges in storage and computation during training. Online learning, which processes streaming data in real-time, offers a promising solution to these issues while also allowing swift adaptations in scenarios demanding real-time responsiveness. One strategy to enhance the efficiency and effectiveness of learning involves identifying and prioritizing data that enhances performance on target downstream tasks. We propose Relevance and Specificity-based online filtering framework (ReSpec) that selects data based on four criteria: (i) modality alignment for clean data, (ii) task relevance for target focused data, (iii) specificity for informative and detailed data, and (iv) efficiency for low-latency processing. Relevance is determined by the probabilistic alignment of incoming data with downstream tasks, while specificity employs the distance to a root embedding representing the least specific data as an efficient proxy for informativeness. By establishing reference points from target task data, ReSpec filters incoming data in real-time, eliminating the need for extensive storage and compute. Evaluating on large-scale datasets WebVid2M and VideoCC3M, ReSpec attains state-of-the-art performance on five zeroshot video retrieval tasks, using as little as 5% of the data while incurring minimal compute. The source code is available at https://github.com/cdjkim/ReSpec.
comment: CVPR 2025 (main conference)
Twin Co-Adaptive Dialogue for Progressive Image Generation
Modern text-to-image generation systems have enabled the creation of remarkably realistic and high-quality visuals, yet they often falter when handling the inherent ambiguities in user prompts. In this work, we present Twin-Co, a framework that leverages synchronized, co-adaptive dialogue to progressively refine image generation. Instead of a static generation process, Twin-Co employs a dynamic, iterative workflow where an intelligent dialogue agent continuously interacts with the user. Initially, a base image is generated from the user's prompt. Then, through a series of synchronized dialogue exchanges, the system adapts and optimizes the image according to evolving user feedback. The co-adaptive process allows the system to progressively narrow down ambiguities and better align with user intent. Experiments demonstrate that Twin-Co not only enhances user experience by reducing trial-and-error iterations but also improves the quality of the generated images, streamlining the creative process across various applications.
Bridge the Gap: From Weak to Full Supervision for Temporal Action Localization with PseudoFormer CVPR 2025
Weakly-supervised Temporal Action Localization (WTAL) has achieved notable success but still suffers from a lack of temporal annotations, leading to a performance and framework gap compared with fully-supervised methods. While recent approaches employ pseudo labels for training, three key challenges: generating high-quality pseudo labels, making full use of different priors, and optimizing training methods with noisy labels remain unresolved. Due to these perspectives, we propose PseudoFormer, a novel two-branch framework that bridges the gap between weakly and fully-supervised Temporal Action Localization (TAL). We first introduce RickerFusion, which maps all predicted action proposals to a global shared space to generate pseudo labels with better quality. Subsequently, we leverage both snippet-level and proposal-level labels with different priors from the weak branch to train the regression-based model in the full branch. Finally, the uncertainty mask and iterative refinement mechanism are applied for training with noisy pseudo labels. PseudoFormer achieves state-of-the-art WTAL results on the two commonly used benchmarks, THUMOS14 and ActivityNet1.3. Besides, extensive ablation studies demonstrate the contribution of each component of our method.
comment: CVPR 2025: IEEE Conference on Computer Vision and Pattern Recognition
Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration, resulting in misalignment between their verbalized confidence and response correctness. This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information. In this work, we propose a novel Confidence Calibration through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for VLMs in response to object-centric queries. We first introduce a perturbed dataset where Gaussian noise is applied to the key object regions to simulate visual uncertainty at different confidence levels, establishing an explicit mapping between visual ambiguity and confidence levels. We further enhance calibration through a two-stage training process combining supervised fine-tuning on the perturbed dataset with subsequent preference optimization. Extensive experiments on popular benchmarks demonstrate that our method significantly improves the alignment between verbalized confidence and response correctness while maintaining or enhancing overall task performance. These results highlight the potential of semantic perturbation as a practical tool for improving the reliability and interpretability of VLMs.
Reliable Multi-Modal Object Re-Identification via Modality-Aware Graph Reasoning
Multi-modal data provides abundant and diverse object information, crucial for effective modal interactions in Re-Identification (ReID) tasks. However, existing approaches often overlook the quality variations in local features and fail to fully leverage the complementary information across modalities, particularly in the case of low-quality features. In this paper, we propose to address this issue by leveraging a novel graph reasoning model, termed the Modality-aware Graph Reasoning Network (MGRNet). Specifically, we first construct modality-aware graphs to enhance the extraction of fine-grained local details by effectively capturing and modeling the relationships between patches. Subsequently, the selective graph nodes swap operation is employed to alleviate the adverse effects of low-quality local features by considering both local and global information, enhancing the representation of discriminative information. Finally, the swapped modality-aware graphs are fed into the local-aware graph reasoning module, which propagates multi-modal information to yield a reliable feature representation. Another advantage of the proposed graph reasoning approach is its ability to reconstruct missing modal information by exploiting inherent structural relationships, thereby minimizing disparities between different modalities. Experimental results on four benchmarks (RGBNT201, Market1501-MM, RGBNT100, MSVR310) indicate that the proposed method achieves state-of-the-art performance in multi-modal object ReID. The code for our method will be available upon acceptance.
Distribution-aware Dataset Distillation for Efficient Image Restoration
With the exponential increase in image data, training an image restoration model is laborious. Dataset distillation is a potential solution to this problem, yet current distillation techniques are a blank canvas in the field of image restoration. To fill this gap, we propose the Distribution-aware Dataset Distillation method (TripleD), a new framework that extends the principles of dataset distillation to image restoration. Specifically, TripleD uses a pre-trained vision Transformer to extract features from images for complexity evaluation, and the subset (the number of samples is much smaller than the original training set) is selected based on complexity. The selected subset is then fed through a lightweight CNN that fine-tunes the image distribution to align with the distribution of the original dataset at the feature level. To efficiently condense knowledge, the training is divided into two stages. Early stages focus on simpler, low-complexity samples to build foundational knowledge, while later stages select more complex and uncertain samples as the model matures. Our method achieves promising performance on multiple image restoration tasks, including multi-task image restoration, all-in-one image restoration, and ultra-high-definition image restoration tasks. Note that we can train a state-of-the-art image restoration model on an ultra-high-definition (4K resolution) dataset using only one consumer-grade GPU in less than 8 hours (500 savings in computing resources and immeasurable training time).
ECViT: Efficient Convolutional Vision Transformer with Local-Attention and Multi-scale Stages
Vision Transformers (ViTs) have revolutionized computer vision by leveraging self-attention to model long-range dependencies. However, ViTs face challenges such as high computational costs due to the quadratic scaling of self-attention and the requirement of a large amount of training data. To address these limitations, we propose the Efficient Convolutional Vision Transformer (ECViT), a hybrid architecture that effectively combines the strengths of CNNs and Transformers. ECViT introduces inductive biases such as locality and translation invariance, inherent to Convolutional Neural Networks (CNNs) into the Transformer framework by extracting patches from low-level features and enhancing the encoder with convolutional operations. Additionally, it incorporates local-attention and a pyramid structure to enable efficient multi-scale feature extraction and representation. Experimental results demonstrate that ECViT achieves an optimal balance between performance and efficiency, outperforming state-of-the-art models on various image classification tasks while maintaining low computational and storage requirements. ECViT offers an ideal solution for applications that prioritize high efficiency without compromising performance.
What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques like LoRA, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content, such as copyrighted material, private individuals, or harmful content. Despite the increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled model and 690 real-world community models sourced from a public DM sharing platform. PAIA achieves over 90% detection accuracy while reducing auditing time by 18-40x compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: 17 pages, 15 figures
Real-Time Sleepiness Detection for Driver State Monitoring System
A driver face monitoring system can detect driver fatigue, which is a significant factor in many accidents, using computer vision techniques. In this paper, we present a real-time technique for driver eye state detection. First, the face is detected, and the eyes are located within the face region for tracking. A normalized cross-correlation-based online dynamic template matching technique, combined with Kalman filter tracking, is proposed to track the detected eye positions in subsequent image frames. A support vector machine with histogram of oriented gradients (HOG) features is used to classify the state of the eyes as open or closed. If the eyes remain closed for a specified period, the driver is considered to be asleep, and an alarm is triggered.
comment: 8 pages, published in GST 2015
A Survey on Small Sample Imbalance Problem: Metrics, Feature Analysis, and Solutions
The small sample imbalance (S&I) problem is a major challenge in machine learning and data analysis. It is characterized by a small number of samples and an imbalanced class distribution, which leads to poor model performance. In addition, indistinct inter-class feature distributions further complicate classification tasks. Existing methods often rely on algorithmic heuristics without sufficiently analyzing the underlying data characteristics. We argue that a detailed analysis from the data perspective is essential before developing an appropriate solution. Therefore, this paper proposes a systematic analytical framework for the S\&I problem. We first summarize imbalance metrics and complexity analysis methods, highlighting the need for interpretable benchmarks to characterize S&I problems. Second, we review recent solutions for conventional, complexity-based, and extreme S&I problems, revealing methodological differences in handling various data distributions. Our summary finds that resampling remains a widely adopted solution. However, we conduct experiments on binary and multiclass datasets, revealing that classifier performance differences significantly exceed the improvements achieved through resampling. Finally, this paper highlights open questions and discusses future trends.
Verifying Robust Unlearning: Probing Residual Knowledge in Unlearned Models
Machine Unlearning (MUL) is crucial for privacy protection and content regulation, yet recent studies reveal that traces of forgotten information persist in unlearned models, enabling adversaries to resurface removed knowledge. Existing verification methods only confirm whether unlearning was executed, failing to detect such residual information leaks. To address this, we introduce the concept of Robust Unlearning, ensuring models are indistinguishable from retraining and resistant to adversarial recovery. To empirically evaluate whether unlearning techniques meet this security standard, we propose the Unlearning Mapping Attack (UMA), a post-unlearning verification framework that actively probes models for forgotten traces using adversarial queries. Extensive experiments on discriminative and generative tasks show that existing unlearning techniques remain vulnerable, even when passing existing verification metrics. By establishing UMA as a practical verification tool, this study sets a new standard for assessing and enhancing machine unlearning security.
Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
When Cloud Removal Meets Diffusion Model in Remote Sensing
Cloud occlusion significantly hinders remote sensing applications by obstructing surface information and complicating analysis. To address this, we propose DC4CR (Diffusion Control for Cloud Removal), a novel multimodal diffusion-based framework for cloud removal in remote sensing imagery. Our method introduces prompt-driven control, allowing selective removal of thin and thick clouds without relying on pre-generated cloud masks, thereby enhancing preprocessing efficiency and model adaptability. Additionally, we integrate low-rank adaptation for computational efficiency, subject-driven generation for improved generalization, and grouped learning to enhance performance on small datasets. Designed as a plug-and-play module, DC4CR seamlessly integrates into existing cloud removal models, providing a scalable and robust solution. Extensive experiments on the RICE and CUHK-CR datasets demonstrate state-of-the-art performance, achieving superior cloud removal across diverse conditions. This work presents a practical and efficient approach for remote sensing image processing with broad real-world applications.
How Effective Can Dropout Be in Multiple Instance Learning ?
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
Split-quaternions for perceptual white balance
We propose a perceptual chromatic adaptation transform for white balance that makes use of split-quaternions. The novelty of the present work, which is motivated by a recently developed quantum-like model of color perception, consists at stressing the link between the algebraic structures appearing in this model and a certain sub-algebra of the split-quaternions. We show the potentiality of this approach for color image processing applications by proposing a chromatic adaptation transform, implemented via an appropriate use of the split-quaternion multiplication. Moreover, quantitative comparisons with the widely used state-of-the art von Kries chromatic adaptation transform are provided.
Unifying Image Counterfactuals and Feature Attributions with Latent-Space Adversarial Attacks
Counterfactuals are a popular framework for interpreting machine learning predictions. These what if explanations are notoriously challenging to create for computer vision models: standard gradient-based methods are prone to produce adversarial examples, in which imperceptible modifications to image pixels provoke large changes in predictions. We introduce a new, easy-to-implement framework for counterfactual images that can flexibly adapt to contemporary advances in generative modeling. Our method, Counterfactual Attacks, resembles an adversarial attack on the representation of the image along a low-dimensional manifold. In addition, given an auxiliary dataset of image descriptors, we show how to accompany counterfactuals with feature attribution that quantify the changes between the original and counterfactual images. These importance scores can be aggregated into global counterfactual explanations that highlight the overall features driving model predictions. While this unification is possible for any counterfactual method, it has particular computational efficiency for ours. We demonstrate the efficacy of our approach with the MNIST and CelebA datasets.
Emergence and Evolution of Interpretable Concepts in Diffusion Models
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from noise through a process called reverse diffusion. Understanding the dynamics of the reverse diffusion process is crucial in steering the generation and achieving high sample quality. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic Interpretability (MI) techniques, such as Sparse Autoencoders (SAEs), aim at uncovering the operating principles of models through granular analysis of their internal representations. These MI techniques have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we show that the discovered concepts have a causal effect on the model output and can be leveraged to steer the generative process. We design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages of diffusion image composition is finalized, however stylistic interventions are effective, and (3) in the final stages of diffusion only minor textural details are subject to change.
comment: 32 pages, 32 figures, preliminary version
Manifold Induced Biases for Zero-shot and Few-shot Detection of Generated Images ICLR 2025
Distinguishing between real and AI-generated images, commonly referred to as 'image detection', presents a timely and significant challenge. Despite extensive research in the (semi-)supervised regime, zero-shot and few-shot solutions have only recently emerged as promising alternatives. Their main advantage is in alleviating the ongoing data maintenance, which quickly becomes outdated due to advances in generative technologies. We identify two main gaps: (1) a lack of theoretical grounding for the methods, and (2) significant room for performance improvements in zero-shot and few-shot regimes. Our approach is founded on understanding and quantifying the biases inherent in generated content, where we use these quantities as criteria for characterizing generated images. Specifically, we explore the biases of the implicit probability manifold, captured by a pre-trained diffusion model. Through score-function analysis, we approximate the curvature, gradient, and bias towards points on the probability manifold, establishing criteria for detection in the zero-shot regime. We further extend our contribution to the few-shot setting by employing a mixture-of-experts methodology. Empirical results across 20 generative models demonstrate that our method outperforms current approaches in both zero-shot and few-shot settings. This work advances the theoretical understanding and practical usage of generated content biases through the lens of manifold analysis.
comment: Accepted to ICLR 2025 (The International Conference on Learning Representations)
AGI Is Coming... Right After AI Learns to Play Wordle
This paper investigates multimodal agents, in particular, OpenAI's Computer-User Agent (CUA), trained to control and complete tasks through a standard computer interface, similar to humans. We evaluated the agent's performance on the New York Times Wordle game to elicit model behaviors and identify shortcomings. Our findings revealed a significant discrepancy in the model's ability to recognize colors correctly depending on the context. The model had a $5.36\%$ success rate over several hundred runs across a week of Wordle. Despite the immense enthusiasm surrounding AI agents and their potential to usher in Artificial General Intelligence (AGI), our findings reinforce the fact that even simple tasks present substantial challenges for today's frontier AI models. We conclude with a discussion of the potential underlying causes, implications for future development, and research directions to improve these AI systems.
IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.
Context Aware Grounded Teacher for Source Free Object Detection
We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.
MirrorVerse: Pushing Diffusion Models to Realistically Reflect the World CVPR 2025
Diffusion models have become central to various image editing tasks, yet they often fail to fully adhere to physical laws, particularly with effects like shadows, reflections, and occlusions. In this work, we address the challenge of generating photorealistic mirror reflections using diffusion-based generative models. Despite extensive training data, existing diffusion models frequently overlook the nuanced details crucial to authentic mirror reflections. Recent approaches have attempted to resolve this by creating synhetic datasets and framing reflection generation as an inpainting task; however, they struggle to generalize across different object orientations and positions relative to the mirror. Our method overcomes these limitations by introducing key augmentations into the synthetic data pipeline: (1) random object positioning, (2) randomized rotations, and (3) grounding of objects, significantly enhancing generalization across poses and placements. To further address spatial relationships and occlusions in scenes with multiple objects, we implement a strategy to pair objects during dataset generation, resulting in a dataset robust enough to handle these complex scenarios. Achieving generalization to real-world scenes remains a challenge, so we introduce a three-stage training curriculum to develop the MirrorFusion 2.0 model to improve real-world performance. We provide extensive qualitative and quantitative evaluations to support our approach. The project page is available at: https://mirror-verse.github.io/.
comment: Accepted to CVPR 2025. Project Page: https://mirror-verse.github.io/
ICGM-FRAX: Iterative Cross Graph Matching for Hip Fracture Risk Assessment using Dual-energy X-ray Absorptiometry Images
Hip fractures represent a major health concern, particularly among the elderly, often leading decreased mobility and increased mortality. Early and accurate detection of at risk individuals is crucial for effective intervention. In this study, we propose Iterative Cross Graph Matching for Hip Fracture Risk Assessment (ICGM-FRAX), a novel approach for predicting hip fractures using Dual-energy X-ray Absorptiometry (DXA) images. ICGM-FRAX involves iteratively comparing a test (subject) graph with multiple template graphs representing the characteristics of hip fracture subjects to assess the similarity and accurately to predict hip fracture risk. These graphs are obtained as follows. The DXA images are separated into multiple regions of interest (RoIs), such as the femoral head, shaft, and lesser trochanter. Radiomic features are then calculated for each RoI, with the central coordinates used as nodes in a graph. The connectivity between nodes is established according to the Euclidean distance between these coordinates. This process transforms each DXA image into a graph, where each node represents a RoI, and edges derived by the centroids of RoIs capture the spatial relationships between them. If the test graph closely matches a set of template graphs representing subjects with incident hip fractures, it is classified as indicating high hip fracture risk. We evaluated our method using 547 subjects from the UK Biobank dataset, and experimental results show that ICGM-FRAX achieved a sensitivity of 0.9869, demonstrating high accuracy in predicting hip fractures.
comment: 23 pages, 4 figures
Plug-and-Play Versatile Compressed Video Enhancement CVPR 2025
As a widely adopted technique in data transmission, video compression effectively reduces the size of files, making it possible for real-time cloud computing. However, it comes at the cost of visual quality, posing challenges to the robustness of downstream vision models. In this work, we present a versatile codec-aware enhancement framework that reuses codec information to adaptively enhance videos under different compression settings, assisting various downstream vision tasks without introducing computation bottleneck. Specifically, the proposed codec-aware framework consists of a compression-aware adaptation (CAA) network that employs a hierarchical adaptation mechanism to estimate parameters of the frame-wise enhancement network, namely the bitstream-aware enhancement (BAE) network. The BAE network further leverages temporal and spatial priors embedded in the bitstream to effectively improve the quality of compressed input frames. Extensive experimental results demonstrate the superior quality enhancement performance of our framework over existing enhancement methods, as well as its versatility in assisting multiple downstream tasks on compressed videos as a plug-and-play module. Code and models are available at https://huimin-zeng.github.io/PnP-VCVE/.
comment: Accepted to CVPR 2025
Physics Driven Image Simulation from Commercial Satellite Imagery
Physics driven image simulation allows for the modeling and creation of realistic imagery beyond what is afforded by typical rendering pipelines. We aim to automatically generate a physically realistic scene for simulation of a given region using satellite imagery to model the scene geometry, drive material estimates, and populate the scene with dynamic elements. We present automated techniques to utilize satellite imagery throughout the simulated scene to expedite scene construction and decrease manual overhead. Our technique does not use lidar, enabling simulations that could not be constructed previously. To develop a 3D scene, we model the various components of the real location, addressing the terrain, modelling man-made structures, and populating the scene with smaller elements such as vegetation and vehicles. To create the scene we begin with a Digital Surface Model, which serves as the basis for scene geometry, and allows us to reason about the real location in a common 3D frame of reference. These simulated scenes can provide increased fidelity with less manual intervention for novel locations on earth, and can facilitate algorithm development, and processing pipelines for imagery ranging from UV to LWIR $(200nm-20\mu m)$.
comment: 15 pages, 9 figures
Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
Event2Vec: Processing neuromorphic events directly by representations in vector space
The neuromorphic event cameras have overwhelming advantages in temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, the event cameras output asynchronous, sparse, and irregular events, which are not compatible with mainstream computer vision and deep learning methods. Various methods have been proposed to solve this issue but at the cost of long preprocessing procedures, losing temporal resolutions, or being incompatible with massively parallel computation. Inspired by the great success of the word to vector, we summarize the similarities between words and events, then propose the first event to vector (event2vec) representation. We validate event2vec on classifying the ASL-DVS dataset, showing impressive parameter efficiency, accuracy, and speed than previous graph/image/voxel-based representations. Beyond task performance, the most attractive advantage of event2vec is that it aligns events to the domain of natural language processing, showing the promising prospect of integrating events into large language and multimodal models. Our codes, models, and training logs are available at https://github.com/fangwei123456/event2vec.
LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V$^*$ Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
comment: 24 pages, 10 figures, in submission. Project page: https://andrewliao11.github.io/LongPerceptualThoughts
Vision6D: 3D-to-2D Interactive Visualization and Annotation Tool for 6D Pose Estimation
Accurate 6D pose estimation has gained more attention over the years for robotics-assisted tasks that require precise interaction with physical objects. This paper presents an interactive 3D-to-2D visualization and annotation tool to support the 6D pose estimation research community. To the best of our knowledge, the proposed work is the first tool that allows users to visualize and manipulate 3D objects interactively on a 2D real-world scene, along with a comprehensive user study. This system supports robust 6D camera pose annotation by providing both visual cues and spatial relationships to determine object position and orientation in various environments. The annotation feature in Vision6D is particularly helpful in scenarios where the transformation matrix between the camera and world objects is unknown, as it enables accurate annotation of these objects' poses using only the camera intrinsic matrix. This capability serves as a foundational step in developing and training advanced pose estimation models across various domains. We evaluate Vision6D's effectiveness by utilizing widely-used open-source pose estimation datasets Linemod and HANDAL through comparisons between the default ground-truth camera poses with manual annotations. A user study was performed to show that Vision6D generates accurate pose annotations via visual cues in an intuitive 3D user interface. This approach aims to bridge the gap between 2D scene projections and 3D scenes, offering an effective way for researchers and developers to solve 6D pose annotation related problems. The software is open-source and publicly available at https://github.com/InteractiveGL/vision6D.
ICE: Intrinsic Concept Extraction from a Single Image via Diffusion Models CVPR 2025
The inherent ambiguity in defining visual concepts poses significant challenges for modern generative models, such as the diffusion-based Text-to-Image (T2I) models, in accurately learning concepts from a single image. Existing methods lack a systematic way to reliably extract the interpretable underlying intrinsic concepts. To address this challenge, we present ICE, short for Intrinsic Concept Extraction, a novel framework that exclusively utilises a T2I model to automatically and systematically extract intrinsic concepts from a single image. ICE consists of two pivotal stages. In the first stage, ICE devises an automatic concept localization module to pinpoint relevant text-based concepts and their corresponding masks within the image. This critical stage streamlines concept initialization and provides precise guidance for subsequent analysis. The second stage delves deeper into each identified mask, decomposing the object-level concepts into intrinsic concepts and general concepts. This decomposition allows for a more granular and interpretable breakdown of visual elements. Our framework demonstrates superior performance on intrinsic concept extraction from a single image in an unsupervised manner. Project page: https://visual-ai.github.io/ice
comment: CVPR 2025, Project page: https://visual-ai.github.io/ice
Analysing the Robustness of Vision-Language-Models to Common Corruptions
Vision-language models (VLMs) have demonstrated impressive capabilities in understanding and reasoning about visual and textual content. However, their robustness to common image corruptions remains under-explored. In this work, we present the first comprehensive analysis of VLM robustness across 19 corruption types from the ImageNet-C benchmark, spanning four categories: noise, blur, weather, and digital distortions. We introduce two new benchmarks, TextVQA-C and GQA-C, to systematically evaluate how corruptions affect scene text understanding and object-based reasoning, respectively. Our analysis reveals that transformer-based VLMs exhibit distinct vulnerability patterns across tasks: text recognition deteriorates most severely under blur and snow corruptions, while object reasoning shows higher sensitivity to corruptions such as frost and impulse noise. We connect these observations to the frequency-domain characteristics of different corruptions, revealing how transformers' inherent bias toward low-frequency processing explains their differential robustness patterns. Our findings provide valuable insights for developing more corruption-robust vision-language models for real-world applications.
comment: arXiv admin note: text overlap with arXiv:2304.10592, arXiv:2301.12597 by other authors
DreamDistribution: Learning Prompt Distribution for Diverse In-distribution Generation
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
Tree of Attributes Prompt Learning for Vision-Language Models
Prompt learning has proven effective in adapting vision language models for downstream tasks. However, existing methods usually append learnable prompt tokens solely with the category names to obtain textual features, which fails to fully leverage the rich context indicated in the category name. To address this issue, we propose the Tree of Attributes Prompt learning (TAP), which first instructs LLMs to generate a tree of attributes with a "concept - attribute - description" structure for each category, and then learn the hierarchy with vision and text prompt tokens. Unlike existing methods that merely augment category names with a set of unstructured descriptions, our approach essentially distills structured knowledge graphs associated with class names from LLMs. Furthermore, our approach introduces text and vision prompts designed to explicitly learn the corresponding visual attributes, effectively serving as domain experts. Additionally, the general and diverse descriptions generated based on the class names may be wrong or absent in the specific given images. To address this misalignment, we further introduce a vision-conditional pooling module to extract instance-specific text features. Extensive experimental results demonstrate that our approach outperforms state-of-the-art methods on the zero-shot base-to-novel generalization, cross-dataset transfer, as well as few-shot classification across 11 diverse datasets. Code is available at https://github.com/HHenryD/TAP.
Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models ICLR 2025
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: ICLR 2025. The first two authors contributed equally to this work
GroundingSuite: Measuring Complex Multi-Granular Pixel Grounding
Pixel grounding, encompassing tasks such as Referring Expression Segmentation (RES), has garnered considerable attention due to its immense potential for bridging the gap between vision and language modalities. However, advancements in this domain are currently constrained by limitations inherent in existing datasets, including limited object categories, insufficient textual diversity, and a scarcity of high-quality annotations. To mitigate these limitations, we introduce GroundingSuite, which comprises: (1) an automated data annotation framework leveraging multiple Vision-Language Model (VLM) agents; (2) a large-scale training dataset encompassing 9.56 million diverse referring expressions and their corresponding segmentations; and (3) a meticulously curated evaluation benchmark consisting of 3,800 images. The GroundingSuite training dataset facilitates substantial performance improvements, enabling models trained on it to achieve state-of-the-art results. Specifically, a cIoU of 68.9 on gRefCOCO and a gIoU of 55.3 on RefCOCOm. Moreover, the GroundingSuite annotation framework demonstrates superior efficiency compared to the current leading data annotation method, i.e., $4.5 \times$ faster than the GLaMM.
comment: Work in progress. Code: https://github.com/hustvl/GroundingSuite. Update: add more results & polish the report
STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
Direct Learning of Mesh and Appearance via 3D Gaussian Splatting
Accurately reconstructing a 3D scene including explicit geometry information is both attractive and challenging. Geometry reconstruction can benefit from incorporating differentiable appearance models, such as Neural Radiance Fields and 3D Gaussian Splatting (3DGS). However, existing methods encounter efficiency issues due to indirect geometry learning and the paradigm of separately modeling geometry and surface appearance. In this work, we propose a learnable scene model that incorporates 3DGS with an explicit geometry representation, namely a mesh. Our model learns the mesh and appearance in an end-to-end manner, where we bind 3D Gaussians to the mesh faces and perform differentiable rendering of 3DGS to obtain photometric supervision. The model creates an effective information pathway to supervise the learning of both 3DGS and mesh. Experimental results demonstrate that the learned scene model not only improves efficiency and rendering quality but also enables manipulation via the explicit mesh. In addition, our model has a unique advantage in adapting to scene updates, thanks to the end-to-end learning of both mesh and appearance.
Depth Pro: Sharp Monocular Metric Depth in Less Than a Second ICLR 2025
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image. Extensive experiments analyze specific design choices and demonstrate that Depth Pro outperforms prior work along multiple dimensions. We release code and weights at https://github.com/apple/ml-depth-pro
comment: Published at ICLR 2025. Code and weights available at https://github.com/apple/ml-depth-pro
Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model ICLR 2025
We introduce a novel Multi-modal Guided Real-World Face Restoration (MGFR) technique designed to improve the quality of facial image restoration from low-quality inputs. Leveraging a blend of attribute text prompts, high-quality reference images, and identity information, MGFR can mitigate the generation of false facial attributes and identities often associated with generative face restoration methods. By incorporating a dual-control adapter and a two-stage training strategy, our method effectively utilizes multi-modal prior information for targeted restoration tasks. We also present the Reface-HQ dataset, comprising over 21,000 high-resolution facial images across 4800 identities, to address the need for reference face training images. Our approach achieves superior visual quality in restoring facial details under severe degradation and allows for controlled restoration processes, enhancing the accuracy of identity preservation and attribute correction. Including negative quality samples and attribute prompts in the training further refines the model's ability to generate detailed and perceptually accurate images.
comment: 23 Pages, 28 Figures, ICLR 2025
Continuous Locomotive Crowd Behavior Generation CVPR 2025
Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .
comment: Accepted at CVPR 2025. Project page: https://ihbae.com/publication/crowdes/
A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs
A fundamental challenge in artificial intelligence involves understanding the cognitive processes underlying visual reasoning in sophisticated models like Vision-Language Models (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using Bongard Problems (BPs) - a classic test of visual abstraction to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via textual descriptions). These paradigms allow us to systematically vary the cognitive load and probe specific processing stages. Notably, the CA paradigm enables the evaluation of multi-image reasoning even in VLMs architecturally limited to single images and facilitates the isolation of reasoning capabilities from perceptual limitations by controlling the descriptive input. Ablation studies further confirm that reasoning abilities improve significantly when perceptual challenges are mitigated. Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
Transferable Adversarial Attacks on SAM and Its Downstream Models
The utilization of large foundational models has a dilemma: while fine-tuning downstream tasks from them holds promise for making use of the well-generalized knowledge in practical applications, their open accessibility also poses threats of adverse usage. This paper, for the first time, explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM), by solely utilizing the information from the open-sourced SAM. In contrast to prevailing transfer-based adversarial attacks, we demonstrate the existence of adversarial dangers even without accessing the downstream task and dataset to train a similar surrogate model. To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm to extract the intrinsic vulnerability inherent in the foundation model, which is then utilized as the prior knowledge to guide the generation of adversarial perturbations. Moreover, by formulating the gradient difference in the attacking process between the open-sourced SAM and its fine-tuned downstream models, we theoretically demonstrate that a deviation occurs in the adversarial update direction by directly maximizing the distance of encoded feature embeddings in the open-sourced SAM. Consequently, we propose a gradient robust loss that simulates the associated uncertainty with gradient-based noise augmentation to enhance the robustness of generated adversarial examples (AEs) towards this deviation, thus improving the transferability. Extensive experiments demonstrate the effectiveness of the proposed universal meta-initialized and gradient robust adversarial attack (UMI-GRAT) toward SAMs and their downstream models. Code is available at https://github.com/xiasong0501/GRAT.
comment: update fig 1
DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 45% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
comment: Link to the project page: https://randomnerds.github.io/darbs.github.io/
SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters ICLR 2025
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks, driven by incorporating image representations into the token inputs of Large Language Models (LLMs). However, their real-world deployment is often constrained by high latency during inference due to the substantial compute required by the LLM to process the large number of input tokens, predominantly arising from the image. To reduce inference costs, one can either downsize the LLM or reduce the number of input tokens needed to represent the image, the latter of which has been the focus of many recent efforts around token compression. However, it is unclear what the optimal trade-off is given a fixed inference budget. We first characterize this optimal trade-off between the number of visual tokens and LLM parameters by establishing scaling laws that capture variations in performance with these two factors. Our results reveal a surprising trend: for visual reasoning tasks, the inference-optimal behavior in VLMs is achieved by using the largest LLM that fits within the inference budget while minimizing visual token count - often to a single token. While the token reduction literature has mainly focused on maintaining base model performance by modestly reducing the token count (e.g., $5-10\times$), our results indicate that the compute-optimal inference regime requires operating under even higher token compression ratios. Based on these insights, we take the first steps toward designing token compression algorithms tailored for high-compression settings, utilizing prompt-based compression of tokens. Our work underscores the performance and efficiency benefits of operating in low visual token regimes and the importance of developing tailored token reduction algorithms for such conditions. Code is available at https://github.com/locuslab/llava-token-compression.
comment: Published at ICLR 2025
Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review
With the rapid advancements of sensor technology and deep learning, autonomous driving systems are providing safe and efficient access to intelligent vehicles as well as intelligent transportation. Among these equipped sensors, the radar sensor plays a crucial role in providing robust perception information in diverse environmental conditions. This review focuses on exploring different radar data representations utilized in autonomous driving systems. Firstly, we introduce the capabilities and limitations of the radar sensor by examining the working principles of radar perception and signal processing of radar measurements. Then, we delve into the generation process of five radar representations, including the ADC signal, radar tensor, point cloud, grid map, and micro-Doppler signature. For each radar representation, we examine the related datasets, methods, advantages and limitations. Furthermore, we discuss the challenges faced in these data representations and propose potential research directions. Above all, this comprehensive review offers an in-depth insight into how these representations enhance autonomous system capabilities, providing guidance for radar perception researchers. To facilitate retrieval and comparison of different data representations, datasets and methods, we provide an interactive website at https://radar-camera-fusion.github.io/radar.
comment: Accepted by TITS
SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
comment: 8 pages, 8 figures, RA-L submission
A comprehensive review of remote sensing in wetland classification and mapping
Wetlands constitute critical ecosystems that support both biodiversity and human well-being; however, they have experienced a significant decline since the 20th century. Back in the 1970s, researchers began to employ remote sensing technologies for wetland classification and mapping to elucidate the extent and variations of wetlands. Although some review articles summarized the development of this field, there is a lack of a thorough and in-depth understanding of wetland classification and mapping: (1) the scientific importance of wetlands, (2) major data, methods used in wetland classification and mapping, (3) driving factors of wetland changes, (4) current research paradigm and limitations, (5) challenges and opportunities in wetland classification and mapping under the context of technological innovation and global environmental change. In this review, we aim to provide a comprehensive perspective and new insights into wetland classification and mapping for readers to answer these questions. First, we conduct a meta-analysis of over 1,200 papers, encompassing wetland types, methods, sensor types, and study sites, examining prevailing trends in wetland classification and mapping. Next, we review and synthesize the wetland features and existing data and methods in wetland classification and mapping. We also summarize typical wetland mapping products and explore the intrinsic driving factors of wetland changes across multiple spatial and temporal scales. Finally, we discuss current limitations and propose future directions in response to global environmental change and technological innovation. This review consolidates our understanding of wetland remote sensing and offers scientific recommendations that foster transformative progress in wetland science.
AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection ICLR 2024
Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.
comment: Accepted by ICLR 2024
Packing Input Frame Context in Next-Frame Prediction Models for Video Generation
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.
comment: https://github.com/lllyasviel/FramePack
GATE3D: Generalized Attention-based Task-synergized Estimation in 3D* CVPR 2025
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: Accepted (Poster) to the 3rd CV4MR Workshop at CVPR 2025: https://openreview.net/forum?id=00RQ8Cv3ia
A Novel Retinal Image Contrast Enhancement -- Fuzzy-Based Method
The vascular structure in retinal images plays a crucial role in ophthalmic diagnostics, and its accuracies are directly influenced by the quality of the retinal image. Contrast enhancement is one of the crucial steps in any segmentation algorithm - the more so since the retinal images are related to medical diagnosis. Contrast enhancement is a vital step that not only intensifies the darkness of the blood vessels but also prevents minor capillaries from being disregarded during the process. This paper proposes a novel model that utilizes the linear blending of Fuzzy Contrast Enhancement (FCE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance the retinal image for retinal vascular structure segmentation. The scheme is tested using the Digital Retinal Images for Vessel Extraction (DRIVE) dataset. The assertion was then evaluated through performance comparison among other methodologies which are Gray-scaling, Histogram Equalization (HE), FCE, and CLAHE. It was evident in this paper that the combination of FCE and CLAHE methods showed major improvement. Both FCE and CLAHE methods dominating with 88% as better enhancement methods proved that preprocessing through fuzzy logic is effective.
comment: This version corrects a typographical error in the title of the previous submission with no changes to the content of the paper
Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
PVUW 2025 Challenge Report: Advances in Pixel-level Understanding of Complex Videos in the Wild
This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
comment: Workshop Page: https://pvuw.github.io/. arXiv admin note: text overlap with arXiv:2504.00476, arXiv:2504.05178
InstructEngine: Instruction-driven Text-to-Image Alignment
Reinforcement Learning from Human/AI Feedback (RLHF/RLAIF) has been extensively utilized for preference alignment of text-to-image models. Existing methods face certain limitations in terms of both data and algorithm. For training data, most approaches rely on manual annotated preference data, either by directly fine-tuning the generators or by training reward models to provide training signals. However, the high annotation cost makes them difficult to scale up, the reward model consumes extra computation and cannot guarantee accuracy. From an algorithmic perspective, most methods neglect the value of text and only take the image feedback as a comparative signal, which is inefficient and sparse. To alleviate these drawbacks, we propose the InstructEngine framework. Regarding annotation cost, we first construct a taxonomy for text-to-image generation, then develop an automated data construction pipeline based on it. Leveraging advanced large multimodal models and human-defined rules, we generate 25K text-image preference pairs. Finally, we introduce cross-validation alignment method, which refines data efficiency by organizing semantically analogous samples into mutually comparable pairs. Evaluations on DrawBench demonstrate that InstructEngine improves SD v1.5 and SDXL's performance by 10.53% and 5.30%, outperforming state-of-the-art baselines, with ablation study confirming the benefits of InstructEngine's all components. A win rate of over 50% in human reviews also proves that InstructEngine better aligns with human preferences.
comment: 8 pages, 7 figures
Efficient Vectorized Backpropagation Algorithms for Training Feedforward Networks Composed of Quadratic Neurons
Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $\mathcal{C}$ bounded clusters can be separated with only a single layer of $\mathcal{C}$ quadratic neurons.
comment: 8 pages
S-EO: A Large-Scale Dataset for Geometry-Aware Shadow Detection in Remote Sensing Applications CVPR
We introduce the S-EO dataset: a large-scale, high-resolution dataset, designed to advance geometry-aware shadow detection. Collected from diverse public-domain sources, including challenge datasets and government providers such as USGS, our dataset comprises 702 georeferenced tiles across the USA, each covering 500x500 m. Each tile includes multi-date, multi-angle WorldView-3 pansharpened RGB images, panchromatic images, and a ground-truth DSM of the area obtained from LiDAR scans. For each image, we provide a shadow mask derived from geometry and sun position, a vegetation mask based on the NDVI index, and a bundle-adjusted RPC model. With approximately 20,000 images, the S-EO dataset establishes a new public resource for shadow detection in remote sensing imagery and its applications to 3D reconstruction. To demonstrate the dataset's impact, we train and evaluate a shadow detector, showcasing its ability to generalize, even to aerial images. Finally, we extend EO-NeRF - a state-of-the-art NeRF approach for satellite imagery - to leverage our shadow predictions for improved 3D reconstructions.
comment: Accepted at Earthvision 2025 (CVPR Workshop)
PK-YOLO: Pretrained Knowledge Guided YOLO for Brain Tumor Detection in Multiplanar MRI Slices NeurIPS 2024
Brain tumor detection in multiplane Magnetic Resonance Imaging (MRI) slices is a challenging task due to the various appearances and relationships in the structure of the multiplane images. In this paper, we propose a new You Only Look Once (YOLO)-based detection model that incorporates Pretrained Knowledge (PK), called PK-YOLO, to improve the performance for brain tumor detection in multiplane MRI slices. To our best knowledge, PK-YOLO is the first pretrained knowledge guided YOLO-based object detector. The main components of the new method are a pretrained pure lightweight convolutional neural network-based backbone via sparse masked modeling, a YOLO architecture with the pretrained backbone, and a regression loss function for improving small object detection. The pretrained backbone allows for feature transferability of object queries on individual plane MRI slices into the model encoders, and the learned domain knowledge base can improve in-domain detection. The improved loss function can further boost detection performance on small-size brain tumors in multiplanar two-dimensional MRI slices. Experimental results show that the proposed PK-YOLO achieves competitive performance on the multiplanar MRI brain tumor detection datasets compared to state-of-the-art YOLO-like and DETR-like object detectors. The code is available at https://github.com/mkang315/PK-YOLO.
comment: References updated; for example, papers in NeurIPS 2024 proceedings appeared on 6 Feb 2025 and AAAI 2025 one on 11 Apr 2025
HRAvatar: High-Quality and Relightable Gaussian Head Avatar CVPR 2025
Reconstructing animatable and high-quality 3D head avatars from monocular videos, especially with realistic relighting, is a valuable task. However, the limited information from single-view input, combined with the complex head poses and facial movements, makes this challenging. Previous methods achieve real-time performance by combining 3D Gaussian Splatting with a parametric head model, but the resulting head quality suffers from inaccurate face tracking and limited expressiveness of the deformation model. These methods also fail to produce realistic effects under novel lighting conditions. To address these issues, we propose HRAvatar, a 3DGS-based method that reconstructs high-fidelity, relightable 3D head avatars. HRAvatar reduces tracking errors through end-to-end optimization and better captures individual facial deformations using learnable blendshapes and learnable linear blend skinning. Additionally, it decomposes head appearance into several physical properties and incorporates physically-based shading to account for environmental lighting. Extensive experiments demonstrate that HRAvatar not only reconstructs superior-quality heads but also achieves realistic visual effects under varying lighting conditions.
comment: Accepted to CVPR 2025,Project page: https://eastbeanzhang.github.io/HRAvatar
DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
comment: 9 pages and 6 figures
TSceneJAL: Joint Active Learning of Traffic Scenes for 3D Object Detection
Most autonomous driving (AD) datasets incur substantial costs for collection and labeling, inevitably yielding a plethora of low-quality and redundant data instances, thereby compromising performance and efficiency. Many applications in AD systems necessitate high-quality training datasets using both existing datasets and newly collected data. In this paper, we propose a traffic scene joint active learning (TSceneJAL) framework that can efficiently sample the balanced, diverse, and complex traffic scenes from both labeled and unlabeled data. The novelty of this framework is threefold: 1) a scene sampling scheme based on a category entropy, to identify scenes containing multiple object classes, thus mitigating class imbalance for the active learner; 2) a similarity sampling scheme, estimated through the directed graph representation and a marginalize kernel algorithm, to pick sparse and diverse scenes; 3) an uncertainty sampling scheme, predicted by a mixture density network, to select instances with the most unclear or complex regression outcomes for the learner. Finally, the integration of these three schemes in a joint selection strategy yields an optimal and valuable subdataset. Experiments on the KITTI, Lyft, nuScenes and SUScape datasets demonstrate that our approach outperforms existing state-of-the-art methods on 3D object detection tasks with up to 12% improvements.
Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
DirDist: A Metric for Comparing 3D Shapes Using Directional Distance Fields
Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DirDist based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DirDist, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DirDist achieves significantly higher accuracy under all tasks. As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling. The source code is available at https://github.com/rsy6318/DirDist.
comment: Accepted by T-PAMI
Activation-wise Propagation: A Universal Strategy to Break Timestep Constraints in Spiking Neural Networks for 3D Data Processing
Due to their event-driven and parameter-efficient effect, spiking neural networks (SNNs) show potential in tasks requiring real-time multi-sensor perception, such as autonomous driving. The spiking mechanism facilitates sparse encoding, enabling spatial and temporal data to be represented in a discrete manner. However, SNNs still lag behind artificial neural networks (ANNs) in terms of performance and computational efficiency. One major challenge in SNNs is the timestep-wise iterative update of neuronal states, which makes it difficult to achieve an optimal trade-off among accuracy, latency, and training cost. Although some methods perform well with shorter timesteps, few propose strategies to overcome such constraint effectively. Moreover, many recent SNN advancements rely on either optimizations tailored to specific architectures or a collection of specialized neuron-level strategies. While these approaches can enhance performance, they often lead to increased computational expense and restrict their application to particular architectures or modalities. This leaves room for further exploration of simple, universal, and structure-agnostic strategies that could offer broader applicability and efficiency. In this paper, we introduce Activation-wise Membrane Potential Propagation (AMP2), a novel state update mechanism for spiking neurons. Inspired by skip connections in deep networks, AMP2 incorporates the membrane potential of neurons into network, eliminating the need for iterative updates. Our method achieves significant improvements across various 3D modalities, including 3D point clouds and event streams, boosting Spiking PointNet's accuracy on ModelNet40 from 87.36% to 89.74% and surpassing ANN PointNet in recognition accuracy on the DVS128 Gesture dataset.
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
TLAC: Two-stage LMM Augmented CLIP for Zero-Shot Classification
Contrastive Language-Image Pretraining (CLIP) has shown impressive zero-shot performance on image classification. However, state-of-the-art methods often rely on fine-tuning techniques like prompt learning and adapter-based tuning to optimize CLIP's performance. The necessity for fine-tuning significantly limits CLIP's adaptability to novel datasets and domains. This requirement mandates substantial time and computational resources for each new dataset. To overcome this limitation, we introduce simple yet effective training-free approaches, Single-stage LMM Augmented CLIP (SLAC) and Two-stage LMM Augmented CLIP (TLAC), that leverages powerful Large Multimodal Models (LMMs), such as Gemini, for image classification. The proposed methods leverages the capabilities of pre-trained LMMs, allowing for seamless adaptation to diverse datasets and domains without the need for additional training. Our approaches involve prompting the LMM to identify objects within an image. Subsequently, the CLIP text encoder determines the image class by identifying the dataset class with the highest semantic similarity to the LLM predicted object. Our models achieved superior accuracy on 9 of 11 base-to-novel datasets, including ImageNet, SUN397, and Caltech101, while maintaining a strictly training-free paradigm. Our TLAC model achieved an overall accuracy of 83.44%, surpassing the previous state-of-the-art few-shot methods by a margin of 6.75%. Compared to other training-free approaches, our TLAC method achieved 83.6% average accuracy across 13 datasets, a 9.7% improvement over the previous methods. Our Code is available at https://github.com/ans92/TLAC
comment: Added code link in the abstract
MaCTG: Multi-Agent Collaborative Thought Graph for Automatic Programming
With the rapid advancement of Large Language Models (LLMs), LLM-based approaches have demonstrated strong problem-solving capabilities across various domains. However, in automatic programming, a single LLM is typically limited to function-level code generation, while multi-agent systems composed of multiple LLMs often suffer from inefficient task planning. This lack of structured coordination can lead to cascading hallucinations, where accumulated errors across agents result in suboptimal workflows and excessive computational costs. To overcome these challenges, we introduce MaCTG (Multi-Agent Collaborative Thought Graph), a novel multi-agent framework that employs a dynamic graph structure to facilitate precise task allocation and controlled collaboration among LLM agents. MaCTG autonomously assigns agent roles based on programming requirements, dynamically refines task distribution through context-aware adjustments, and systematically verifies and integrates project-level code, effectively reducing hallucination errors and improving overall accuracy. MaCTG enhances cost-effectiveness by implementing a hybrid LLM deployment, where proprietary models handle complex reasoning, while open-source models are used for routine coding and validation tasks. To evaluate MaCTG's effectiveness, we applied it to traditional image processing auto-programming tasks, achieving a state-of-the-art accuracy of 83.33%. Additionally, by leveraging its hybrid LLM configuration, MaCTG significantly reduced operational costs by 89.09% compared to existing multi-agent frameworks, demonstrating its efficiency, scalability, and real-world applicability.
Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator
Recent advances in zero-shot monocular depth estimation(MDE) have significantly improved generalization by unifying depth distributions through normalized depth representations and by leveraging large-scale unlabeled data via pseudo-label distillation. However, existing methods that rely on global depth normalization treat all depth values equally, which can amplify noise in pseudo-labels and reduce distillation effectiveness. In this paper, we present a systematic analysis of depth normalization strategies in the context of pseudo-label distillation. Our study shows that, under recent distillation paradigms (e.g., shared-context distillation), normalization is not always necessary, as omitting it can help mitigate the impact of noisy supervision. Furthermore, rather than focusing solely on how depth information is represented, we propose Cross-Context Distillation, which integrates both global and local depth cues to enhance pseudo-label quality. We also introduce an assistant-guided distillation strategy that incorporates complementary depth priors from a diffusion-based teacher model, enhancing supervision diversity and robustness. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, both quantitatively and qualitatively.
comment: project page: https://distill-any-depth-official.github.io/
Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment ICLR 2025
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages; Published as a conference paper at ICLR 2025
Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
MultiSensor-Home: A Wide-area Multi-modal Multi-view Dataset for Action Recognition and Transformer-based Sensor Fusion
Multi-modal multi-view action recognition is a rapidly growing field in computer vision, offering significant potential for applications in surveillance. However, current datasets often fail to address real-world challenges such as wide-area distributed settings, asynchronous data streams, and the lack of frame-level annotations. Furthermore, existing methods face difficulties in effectively modeling inter-view relationships and enhancing spatial feature learning. In this paper, we introduce the MultiSensor-Home dataset, a novel benchmark designed for comprehensive action recognition in home environments, and also propose the Multi-modal Multi-view Transformer-based Sensor Fusion (MultiTSF) method. The proposed MultiSensor-Home dataset features untrimmed videos captured by distributed sensors, providing high-resolution RGB and audio data along with detailed multi-view frame-level action labels. The proposed MultiTSF method leverages a Transformer-based fusion mechanism to dynamically model inter-view relationships. Furthermore, the proposed method integrates a human detection module to enhance spatial feature learning, guiding the model to prioritize frames with human activity to enhance action the recognition accuracy. Experiments on the proposed MultiSensor-Home and the existing MM-Office datasets demonstrate the superiority of MultiTSF over the state-of-the-art methods. Quantitative and qualitative results highlight the effectiveness of the proposed method in advancing real-world multi-modal multi-view action recognition.
comment: The 19th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2025)
Circular Image Deturbulence using Quasi-conformal Geometry
The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations. The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
Hierarchical and Step-Layer-Wise Tuning of Attention Specialty for Multi-Instance Synthesis in Diffusion Transformers
Text-to-image (T2I) generation models often struggle with multi-instance synthesis (MIS), where they must accurately depict multiple distinct instances in a single image based on complex prompts detailing individual features. Traditional MIS control methods for UNet architectures like SD v1.5/SDXL fail to adapt to DiT-based models like FLUX and SD v3.5, which rely on integrated attention between image and text tokens rather than text-image cross-attention. To enhance MIS in DiT, we first analyze the mixed attention mechanism in DiT. Our token-wise and layer-wise analysis of attention maps reveals a hierarchical response structure: instance tokens dominate early layers, background tokens in middle layers, and attribute tokens in later layers. Building on this observation, we propose a training-free approach for enhancing MIS in DiT-based models with hierarchical and step-layer-wise attention specialty tuning (AST). AST amplifies key regions while suppressing irrelevant areas in distinct attention maps across layers and steps, guided by the hierarchical structure. This optimizes multimodal interactions by hierarchically decoupling the complex prompts with instance-based sketches. We evaluate our approach using upgraded sketch-based layouts for the T2I-CompBench and customized complex scenes. Both quantitative and qualitative results confirm our method enhances complex layout generation, ensuring precise instance placement and attribute representation in MIS.
Scene4U: Hierarchical Layered 3D Scene Reconstruction from Single Panoramic Image for Your Immerse Exploration CVPR 2025
The reconstruction of immersive and realistic 3D scenes holds significant practical importance in various fields of computer vision and computer graphics. Typically, immersive and realistic scenes should be free from obstructions by dynamic objects, maintain global texture consistency, and allow for unrestricted exploration. The current mainstream methods for image-driven scene construction involves iteratively refining the initial image using a moving virtual camera to generate the scene. However, previous methods struggle with visual discontinuities due to global texture inconsistencies under varying camera poses, and they frequently exhibit scene voids caused by foreground-background occlusions. To this end, we propose a novel layered 3D scene reconstruction framework from panoramic image, named Scene4U. Specifically, Scene4U integrates an open-vocabulary segmentation model with a large language model to decompose a real panorama into multiple layers. Then, we employs a layered repair module based on diffusion model to restore occluded regions using visual cues and depth information, generating a hierarchical representation of the scene. The multi-layer panorama is then initialized as a 3D Gaussian Splatting representation, followed by layered optimization, which ultimately produces an immersive 3D scene with semantic and structural consistency that supports free exploration. Scene4U outperforms state-of-the-art method, improving by 24.24% in LPIPS and 24.40% in BRISQUE, while also achieving the fastest training speed. Additionally, to demonstrate the robustness of Scene4U and allow users to experience immersive scenes from various landmarks, we build WorldVista3D dataset for 3D scene reconstruction, which contains panoramic images of globally renowned sites. The implementation code and dataset will be released at https://github.com/LongHZ140516/Scene4U .
comment: CVPR 2025, 11 pages, 7 figures
LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models ICLR 2025
With the rapid development of AI-generated content, the future internet may be inundated with synthetic data, making the discrimination of authentic and credible multimodal data increasingly challenging. Synthetic data detection has thus garnered widespread attention, and the performance of large multimodal models (LMMs) in this task has attracted significant interest. LMMs can provide natural language explanations for their authenticity judgments, enhancing the explainability of synthetic content detection. Simultaneously, the task of distinguishing between real and synthetic data effectively tests the perception, knowledge, and reasoning capabilities of LMMs. In response, we introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities. LOKI encompasses video, image, 3D, text, and audio modalities, comprising 18K carefully curated questions across 26 subcategories with clear difficulty levels. The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks, allowing for a comprehensive analysis of LMMs. We evaluated 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities. More information about LOKI can be found at https://opendatalab.github.io/LOKI/
comment: ICLR 2025 SPOTLIGHT, 83 pages, 63 figures
LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
Modality Unified Attack for Omni-Modality Person Re-Identification
Deep learning based person re-identification (re-id) models have been widely employed in surveillance systems. Recent studies have demonstrated that black-box single-modality and cross-modality re-id models are vulnerable to adversarial examples (AEs), leaving the robustness of multi-modality re-id models unexplored. Due to the lack of knowledge about the specific type of model deployed in the target black-box surveillance system, we aim to generate modality unified AEs for omni-modality (single-, cross- and multi-modality) re-id models. Specifically, we propose a novel Modality Unified Attack method to train modality-specific adversarial generators to generate AEs that effectively attack different omni-modality models. A multi-modality model is adopted as the surrogate model, wherein the features of each modality are perturbed by metric disruption loss before fusion. To collapse the common features of omni-modality models, Cross Modality Simulated Disruption approach is introduced to mimic the cross-modality feature embeddings by intentionally feeding images to non-corresponding modality-specific subnetworks of the surrogate model. Moreover, Multi Modality Collaborative Disruption strategy is devised to facilitate the attacker to comprehensively corrupt the informative content of person images by leveraging a multi modality feature collaborative metric disruption loss. Extensive experiments show that our MUA method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate, respectively.
comment: 9 pages,3 figures
Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
Event Quality Score (EQS): Assessing the Realism of Simulated Event Camera Streams via Distances in Latent Space CVPR
Event cameras promise a paradigm shift in vision sensing with their low latency, high dynamic range, and asynchronous nature of events. Unfortunately, the scarcity of high-quality labeled datasets hinders their widespread adoption in deep learning-driven computer vision. To mitigate this, several simulators have been proposed to generate synthetic event data for training models for detection and estimation tasks. However, the fundamentally different sensor design of event cameras compared to traditional frame-based cameras poses a challenge for accurate simulation. As a result, most simulated data fail to mimic data captured by real event cameras. Inspired by existing work on using deep features for image comparison, we introduce event quality score (EQS), a quality metric that utilizes activations of the RVT architecture. Through sim-to-real experiments on the DSEC driving dataset, it is shown that a higher EQS implies improved generalization to real-world data after training on simulated events. Thus, optimizing for EQS can lead to developing more realistic event camera simulators, effectively reducing the simulation gap. EQS is available at https://github.com/eventbasedvision/EQS.
comment: Accepted at 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Fifth International Workshop on Event-Based Vision
Detecting underdiagnosed medical conditions with opportunistic imaging
Abdominal computed tomography (CT) scans are frequently performed in clinical settings. Opportunistic CT involves repurposing routine CT images to extract diagnostic information and is an emerging tool for detecting underdiagnosed conditions such as sarcopenia, hepatic steatosis, and ascites. This study utilizes deep learning methods to promote accurate diagnosis and clinical documentation. We analyze 2,674 inpatient CT scans to identify discrepancies between imaging phenotypes (characteristics derived from opportunistic CT scans) and their corresponding documentation in radiology reports and ICD coding. Through our analysis, we find that only 0.5%, 3.2%, and 30.7% of scans diagnosed with sarcopenia, hepatic steatosis, and ascites (respectively) through either opportunistic imaging or radiology reports were ICD-coded. Our findings demonstrate opportunistic CT's potential to enhance diagnostic precision and accuracy of risk adjustment models, offering advancements in precision medicine.
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
On-Device Federated Continual Learning on RISC-V-based Ultra-Low-Power SoC for Intelligent Nano-Drone Swarms SC
RISC-V-based architectures are paving the way for efficient On-Device Learning (ODL) in smart edge devices. When applied across multiple nodes, ODL enables the creation of intelligent sensor networks that preserve data privacy. However, developing ODL-capable, battery-operated embedded platforms presents significant challenges due to constrained computational resources and limited device lifetime, besides intrinsic learning issues such as catastrophic forgetting. We face these challenges by proposing a regularization-based On-Device Federated Continual Learning algorithm tailored for multiple nano-drones performing face recognition tasks. We demonstrate our approach on a RISC-V-based 10-core ultra-low-power SoC, optimizing the ODL computational requirements. We improve the classification accuracy by 24% over naive fine-tuning, requiring 178 ms per local epoch and 10.5 s per global epoch, demonstrating the effectiveness of the architecture for this task.
comment: 2 pages, 2 tables, 1 figure. Accepted as a poster at the RISC-V Summit Europe 2025
Cross-domain Fiber Cluster Shape Analysis for Language Performance Cognitive Score Prediction MICCAI 2024
Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.
comment: This paper has been accepted for presentation at The 27th Intl. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) Workshop on Computational Diffusion MRI (CDMRI). 11 pages, 2 figures
ClusterViG: Efficient Globally Aware Vision GNNs via Image Partitioning
Convolutional Neural Networks (CNN) and Vision Transformers (ViT) have dominated the field of Computer Vision (CV). Graph Neural Networks (GNN) have performed remarkably well across diverse domains because they can represent complex relationships via unstructured graphs. However, the applicability of GNNs for visual tasks was unexplored till the introduction of Vision GNNs (ViG). Despite the success of ViGs, their performance is severely bottlenecked due to the expensive $k$-Nearest Neighbors ($k$-NN) based graph construction. Recent works addressing this bottleneck impose constraints on the flexibility of GNNs to build unstructured graphs, undermining their core advantage while introducing additional inefficiencies. To address these issues, in this paper, we propose a novel method called Dynamic Efficient Graph Convolution (DEGC) for designing efficient and globally aware ViGs. DEGC partitions the input image and constructs graphs in parallel for each partition, improving graph construction efficiency. Further, DEGC integrates local intra-graph and global inter-graph feature learning, enabling enhanced global context awareness. Using DEGC as a building block, we propose a novel CNN-GNN architecture, ClusterViG, for CV tasks. Extensive experiments indicate that ClusterViG reduces end-to-end inference latency for vision tasks by up to $5\times$ when compared against a suite of models such as ViG, ViHGNN, PVG, and GreedyViG, with a similar model parameter count. Additionally, ClusterViG reaches state-of-the-art performance on image classification, object detection, and instance segmentation tasks, demonstrating the effectiveness of the proposed globally aware learning strategy. Finally, input partitioning performed by DEGC enables ClusterViG to be trained efficiently on higher-resolution images, underscoring the scalability of our approach.
comment: IEEE MCNA 2025
A novel Facial Recognition technique with Focusing on Masked Faces
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
Image and Video Processing
PIV-FlowDiffuser:Transfer-learning-based denoising diffusion models for PIV
Deep learning algorithms have significantly reduced the computational time and improved the spatial resolution of particle image velocimetry~(PIV). However, the models trained on synthetic datasets might have a degraded performance on practical particle images due to domain gaps. As a result, special residual patterns are often observed for the vector fields of deep learning-based estimators. To reduce the special noise step-by-step, we employ a denoising diffusion model~(FlowDiffuser) for PIV analysis. And the data-hungry iterative denoising diffusion model is trained via a transfer learning strategy, resulting in our PIV-FlowDiffuser method. Specifically, (1) pre-training a FlowDiffuser model with multiple optical flow datasets of the computer vision community, such as Sintel, KITTI, etc; (2) fine-tuning the pre-trained model on synthetic PIV datasets. Note that the PIV images are upsampled by a factor of two to resolve the small-scale turbulent flow structures. The visualized results indicate that our PIV-FlowDiffuser effectively suppresses the noise patterns. Therefore, the denoising diffusion model reduces the average end-point error~($AEE$) by 59.4% over RAFT256-PIV baseline on the classic Cai's dataset. Besides, PIV-FlowDiffuser exhibits enhanced generalization performance on unseen particle images due to transfer learning. Overall, this study highlights the transfer-learning-based denoising diffusion models for PIV. And a detailed implementation is recommended for interested readers in the repository https://github.com/Zhu-Qianyu/PIV-FlowDiffuser.
Generative Semantic Communications: Principles and Practices
Semantic communication leverages artificial intelligence (AI) technologies to extract semantic information from data for efficient transmission, theraby significantly reducing communication cost. With the evolution towards artificial general intelligence (AGI), the increasing demands for AGI services pose new challenges to semantic communication. In response, we propose a new paradigm for AGI-driven communications, called generative semantic communication (GSC), which utilizes advanced AI technologies such as foundation models and generative models. We first describe the basic concept of GSC and its difference from existing semantic communications, and then introduce a general framework of GSC, followed by two case studies to verify the advantages of GSC in AGI-driven applications. Finally, open challenges and new research directions are discussed to stimulate this line of research and pave the way for practical applications.
Edge-boosted graph learning for functional brain connectivity analysis
Predicting disease states from functional brain connectivity is critical for the early diagnosis of severe neurodegenerative diseases such as Alzheimer's Disease and Parkinson's Disease. Existing studies commonly employ Graph Neural Networks (GNNs) to infer clinical diagnoses from node-based brain connectivity matrices generated through node-to-node similarities of regionally averaged fMRI signals. However, recent neuroscience studies found that such node-based connectivity does not accurately capture ``functional connections" within the brain. This paper proposes a novel approach to brain network analysis that emphasizes edge functional connectivity (eFC), shifting the focus to inter-edge relationships. Additionally, we introduce a co-embedding technique to integrate edge functional connections effectively. Experimental results on the ADNI and PPMI datasets demonstrate that our method significantly outperforms state-of-the-art GNN methods in classifying functional brain networks.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025, 4 pages
Segmentation with Noisy Labels via Spatially Correlated Distributions
In semantic segmentation, the accuracy of models heavily depends on the high-quality annotations. However, in many practical scenarios such as medical imaging and remote sensing, obtaining true annotations is not straightforward and usually requires significant human labor. Relying on human labor often introduces annotation errors, including mislabeling, omissions, and inconsistency between annotators. In the case of remote sensing, differences in procurement time can lead to misaligned ground truth annotations. These label errors are not independently distributed, and instead usually appear in spatially connected regions where adjacent pixels are more likely to share the same errors. To address these issues, we propose an approximate Bayesian estimation based on a probabilistic model that assumes training data includes label errors, incorporating the tendency for these errors to occur with spatial correlations between adjacent pixels. Bayesian inference requires computing the posterior distribution of label errors, which becomes intractable when spatial correlations are present. We represent the correlation of label errors between adjacent pixels through a Gaussian distribution whose covariance is structured by a Kac-Murdock-Szeg\"{o} (KMS) matrix, solving the computational challenges. Through experiments on multiple segmentation tasks, we confirm that leveraging the spatial correlation of label errors significantly improves performance. Notably, in specific tasks such as lung segmentation, the proposed method achieves performance comparable to training with clean labels under moderate noise levels. Code is available at https://github.com/pfnet-research/Bayesian_SpatialCorr.
How Effective Can Dropout Be in Multiple Instance Learning ?
Multiple Instance Learning (MIL) is a popular weakly-supervised method for various applications, with a particular interest in histological whole slide image (WSI) classification. Due to the gigapixel resolution of WSI, applications of MIL in WSI typically necessitate a two-stage training scheme: first, extract features from the pre-trained backbone and then perform MIL aggregation. However, it is well-known that this suboptimal training scheme suffers from "noisy" feature embeddings from the backbone and inherent weak supervision, hindering MIL from learning rich and generalizable features. However, the most commonly used technique (i.e., dropout) for mitigating this issue has yet to be explored in MIL. In this paper, we empirically explore how effective the dropout can be in MIL. Interestingly, we observe that dropping the top-k most important instances within a bag leads to better performance and generalization even under noise attack. Based on this key observation, we propose a novel MIL-specific dropout method, termed MIL-Dropout, which systematically determines which instances to drop. Experiments on five MIL benchmark datasets and two WSI datasets demonstrate that MIL-Dropout boosts the performance of current MIL methods with a negligible computational cost. The code is available at https://github.com/ChongQingNoSubway/MILDropout.
Split-quaternions for perceptual white balance
We propose a perceptual chromatic adaptation transform for white balance that makes use of split-quaternions. The novelty of the present work, which is motivated by a recently developed quantum-like model of color perception, consists at stressing the link between the algebraic structures appearing in this model and a certain sub-algebra of the split-quaternions. We show the potentiality of this approach for color image processing applications by proposing a chromatic adaptation transform, implemented via an appropriate use of the split-quaternion multiplication. Moreover, quantitative comparisons with the widely used state-of-the art von Kries chromatic adaptation transform are provided.
Emergence and Evolution of Interpretable Concepts in Diffusion Models
Diffusion models have become the go-to method for text-to-image generation, producing high-quality images from noise through a process called reverse diffusion. Understanding the dynamics of the reverse diffusion process is crucial in steering the generation and achieving high sample quality. However, the inner workings of diffusion models is still largely a mystery due to their black-box nature and complex, multi-step generation process. Mechanistic Interpretability (MI) techniques, such as Sparse Autoencoders (SAEs), aim at uncovering the operating principles of models through granular analysis of their internal representations. These MI techniques have been successful in understanding and steering the behavior of large language models at scale. However, the great potential of SAEs has not yet been applied toward gaining insight into the intricate generative process of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its activations. Interestingly, we find that even before the first reverse diffusion step is completed, the final composition of the scene can be predicted surprisingly well by looking at the spatial distribution of activated concepts. Moreover, going beyond correlational analysis, we show that the discovered concepts have a causal effect on the model output and can be leveraged to steer the generative process. We design intervention techniques aimed at manipulating image composition and style, and demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2) in the middle stages of diffusion image composition is finalized, however stylistic interventions are effective, and (3) in the final stages of diffusion only minor textural details are subject to change.
comment: 32 pages, 32 figures, preliminary version
Learned Primal Dual Splitting for Self-Supervised Noise-Adaptive MRI Reconstruction
Magnetic resonance imaging (MRI) reconstruction has largely been dominated by deep neural networks (DNN); however, many state-of-the-art architectures use black-box structures, which hinder interpretability and improvement. Here, we propose an interpretable DNN architecture for self-supervised MRI reconstruction and denoising by directly parameterizing and learning the classical primal-dual splitting, dubbed LPDSNet. This splitting algorithm allows us to decouple the observation model from the signal prior. Experimentally, we show other interpretable architectures without this decoupling property exhibit failure in the self-supervised learning regime. We report state-of-the-art self-supervised joint MRI reconstruction and denoising performance and novel noise-level generalization capabilities, where in contrast black-box networks fail to generalize.
comment: 4 pages, 3 figures, 1 table
A comprehensive review of remote sensing in wetland classification and mapping
Wetlands constitute critical ecosystems that support both biodiversity and human well-being; however, they have experienced a significant decline since the 20th century. Back in the 1970s, researchers began to employ remote sensing technologies for wetland classification and mapping to elucidate the extent and variations of wetlands. Although some review articles summarized the development of this field, there is a lack of a thorough and in-depth understanding of wetland classification and mapping: (1) the scientific importance of wetlands, (2) major data, methods used in wetland classification and mapping, (3) driving factors of wetland changes, (4) current research paradigm and limitations, (5) challenges and opportunities in wetland classification and mapping under the context of technological innovation and global environmental change. In this review, we aim to provide a comprehensive perspective and new insights into wetland classification and mapping for readers to answer these questions. First, we conduct a meta-analysis of over 1,200 papers, encompassing wetland types, methods, sensor types, and study sites, examining prevailing trends in wetland classification and mapping. Next, we review and synthesize the wetland features and existing data and methods in wetland classification and mapping. We also summarize typical wetland mapping products and explore the intrinsic driving factors of wetland changes across multiple spatial and temporal scales. Finally, we discuss current limitations and propose future directions in response to global environmental change and technological innovation. This review consolidates our understanding of wetland remote sensing and offers scientific recommendations that foster transformative progress in wetland science.
PK-YOLO: Pretrained Knowledge Guided YOLO for Brain Tumor Detection in Multiplanar MRI Slices NeurIPS 2024
Brain tumor detection in multiplane Magnetic Resonance Imaging (MRI) slices is a challenging task due to the various appearances and relationships in the structure of the multiplane images. In this paper, we propose a new You Only Look Once (YOLO)-based detection model that incorporates Pretrained Knowledge (PK), called PK-YOLO, to improve the performance for brain tumor detection in multiplane MRI slices. To our best knowledge, PK-YOLO is the first pretrained knowledge guided YOLO-based object detector. The main components of the new method are a pretrained pure lightweight convolutional neural network-based backbone via sparse masked modeling, a YOLO architecture with the pretrained backbone, and a regression loss function for improving small object detection. The pretrained backbone allows for feature transferability of object queries on individual plane MRI slices into the model encoders, and the learned domain knowledge base can improve in-domain detection. The improved loss function can further boost detection performance on small-size brain tumors in multiplanar two-dimensional MRI slices. Experimental results show that the proposed PK-YOLO achieves competitive performance on the multiplanar MRI brain tumor detection datasets compared to state-of-the-art YOLO-like and DETR-like object detectors. The code is available at https://github.com/mkang315/PK-YOLO.
comment: References updated; for example, papers in NeurIPS 2024 proceedings appeared on 6 Feb 2025 and AAAI 2025 one on 11 Apr 2025
DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
comment: 9 pages and 6 figures
Robust multi-coil MRI reconstruction via self-supervised denoising
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32dB, 22dB, and 12dB for T2-weighted brain data, and 24dB, 14dB, and 4dB for fat-suppressed knee data. Overall, we showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.
Cross-domain Fiber Cluster Shape Analysis for Language Performance Cognitive Score Prediction MICCAI 2024
Shape plays an important role in computer graphics, offering informative features to convey an object's morphology and functionality. Shape analysis in brain imaging can help interpret structural and functionality correlations of the human brain. In this work, we investigate the shape of the brain's 3D white matter connections and its potential predictive relationship to human cognitive function. We reconstruct brain connections as sequences of 3D points using diffusion magnetic resonance imaging (dMRI) tractography. To describe each connection, we extract 12 shape descriptors in addition to traditional dMRI connectivity and tissue microstructure features. We introduce a novel framework, Shape--fused Fiber Cluster Transformer (SFFormer), that leverages a multi-head cross-attention feature fusion module to predict subject-specific language performance based on dMRI tractography. We assess the performance of the method on a large dataset including 1065 healthy young adults. The results demonstrate that both the transformer-based SFFormer model and its inter/intra feature fusion with shape, microstructure, and connectivity are informative, and together, they improve the prediction of subject-specific language performance scores. Overall, our results indicate that the shape of the brain's connections is predictive of human language function.
comment: This paper has been accepted for presentation at The 27th Intl. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) Workshop on Computational Diffusion MRI (CDMRI). 11 pages, 2 figures
Multimedia
Chinese-LiPS: A Chinese audio-visual speech recognition dataset with Lip-reading and Presentation Slides
Incorporating visual modalities to assist Automatic Speech Recognition (ASR) tasks has led to significant improvements. However, existing Audio-Visual Speech Recognition (AVSR) datasets and methods typically rely solely on lip-reading information or speaking contextual video, neglecting the potential of combining these different valuable visual cues within the speaking context. In this paper, we release a multimodal Chinese AVSR dataset, Chinese-LiPS, comprising 100 hours of speech, video, and corresponding manual transcription, with the visual modality encompassing both lip-reading information and the presentation slides used by the speaker. Based on Chinese-LiPS, we develop a simple yet effective pipeline, LiPS-AVSR, which leverages both lip-reading and presentation slide information as visual modalities for AVSR tasks. Experiments show that lip-reading and presentation slide information improve ASR performance by approximately 8\% and 25\%, respectively, with a combined performance improvement of about 35\%. The dataset is available at https://kiri0824.github.io/Chinese-LiPS/
comment: 6 pages, 7 figures
VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
comment: 20 pages, 6 figures
Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
An Undetectable Watermark for Generative Image Models ICLR 2025
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
comment: ICLR 2025
Computation and Language
Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.
comment: Project page: https://danielchyeh.github.io/All-Angles-Bench/
An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes
Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present \textbf{Quicksviewer}, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45$\times$ compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
comment: 37 pages
CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.
Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
Scaling test-time computation, or affording a generator large language model (LLM) extra compute during inference, typically employs the help of external non-generative evaluators (i.e., reward models). Concurrently, LLM-judges, models trained to generate evaluations and critiques (explanations) in natural language, are becoming increasingly popular in automatic evaluation. Despite judge empirical successes, their effectiveness as evaluators in test-time scaling settings is largely unknown. In this paper, we introduce the Judge Evaluation for Test-Time Scaling (JETTS) benchmark, which evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings: response reranking, step-level beam search, and critique-based response refinement. We evaluate 10 different judge models (7B-70B parameters) for 8 different base generator models (6.7B-72B parameters). Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures. Furthermore, though unique to LLM-judges, their natural language critiques are currently ineffective in guiding the generator towards better responses.
comment: The first two authors contributed equally. The codebase is at https://github.com/SalesforceAIResearch/jetts-benchmark
MR. Guard: Multilingual Reasoning Guardrail using Curriculum Learning
Large Language Models (LLMs) are susceptible to adversarial attacks such as jailbreaking, which can elicit harmful or unsafe behaviors. This vulnerability is exacerbated in multilingual setting, where multilingual safety-aligned data are often limited. Thus, developing a guardrail capable of detecting and filtering unsafe content across diverse languages is critical for deploying LLMs in real-world applications. In this work, we propose an approach to build a multilingual guardrail with reasoning. Our method consists of: (1) synthetic multilingual data generation incorporating culturally and linguistically nuanced variants, (2) supervised fine-tuning, and (3) a curriculum-guided Group Relative Policy Optimization (GRPO) framework that further improves performance. Experimental results demonstrate that our multilingual guardrail consistently outperforms recent baselines across both in-domain and out-of-domain languages. The multilingual reasoning capability of our guardrail enables it to generate multilingual explanations, which are particularly useful for understanding language-specific risks and ambiguities in multilingual content moderation.
Values in the Wild: Discovering and Analyzing Values in Real-World Language Model Interactions
AI assistants can impart value judgments that shape people's decisions and worldviews, yet little is known empirically about what values these systems rely on in practice. To address this, we develop a bottom-up, privacy-preserving method to extract the values (normative considerations stated or demonstrated in model responses) that Claude 3 and 3.5 models exhibit in hundreds of thousands of real-world interactions. We empirically discover and taxonomize 3,307 AI values and study how they vary by context. We find that Claude expresses many practical and epistemic values, and typically supports prosocial human values while resisting values like "moral nihilism". While some values appear consistently across contexts (e.g. "transparency"), many are more specialized and context-dependent, reflecting the diversity of human interlocutors and their varied contexts. For example, "harm prevention" emerges when Claude resists users, "historical accuracy" when responding to queries about controversial events, "healthy boundaries" when asked for relationship advice, and "human agency" in technology ethics discussions. By providing the first large-scale empirical mapping of AI values in deployment, our work creates a foundation for more grounded evaluation and design of values in AI systems.
comment: 44 pages
Fully Bayesian Approaches to Topics over Time
The Topics over Time (ToT) model captures thematic changes in timestamped datasets by explicitly modeling publication dates jointly with word co-occurrence patterns. However, ToT was not approached in a fully Bayesian fashion, a flaw that makes it susceptible to stability problems. To address this issue, we propose a fully Bayesian Topics over Time (BToT) model via the introduction of a conjugate prior to the Beta distribution. This prior acts as a regularization that prevents the online version of the algorithm from unstable updates when a topic is poorly represented in a mini-batch. The characteristics of this prior to the Beta distribution are studied here for the first time. Still, this model suffers from a difference in scale between the single-time observations and the multiplicity of words per document. A variation of BToT, Weighted Bayesian Topics over Time (WBToT), is proposed as a solution. In WBToT, publication dates are repeated a certain number of times per document, which balances the relative influence of words and timestamps along the inference process. We have tested our models on two datasets: a collection of over 200 years of US state-of-the-union (SOTU) addresses and a large-scale COVID-19 Twitter corpus of 10 million tweets. The results show that WBToT captures events better than Latent Dirichlet Allocation and other SOTA topic models like BERTopic: the median absolute deviation of the topic presence over time is reduced by $51\%$ and $34\%$, respectively. Our experiments also demonstrate the superior coherence of WBToT over BToT, which highlights the importance of balancing the time and word modalities. Finally, we illustrate the stability of the online optimization algorithm in WBToT, which allows the application of WBToT to problems that are intractable for standard ToT.
comment: 25 pages
EvalAgent: Discovering Implicit Evaluation Criteria from the Web
Evaluation of language model outputs on structured writing tasks is typically conducted with a number of desirable criteria presented to human evaluators or large language models (LLMs). For instance, on a prompt like "Help me draft an academic talk on coffee intake vs research productivity", a model response may be evaluated for criteria like accuracy and coherence. However, high-quality responses should do more than just satisfy basic task requirements. An effective response to this query should include quintessential features of an academic talk, such as a compelling opening, clear research questions, and a takeaway. To help identify these implicit criteria, we introduce EvalAgent, a novel framework designed to automatically uncover nuanced and task-specific criteria. EvalAgent first mines expert-authored online guidance. It then uses this evidence to propose diverse, long-tail evaluation criteria that are grounded in reliable external sources. Our experiments demonstrate that the grounded criteria produced by EvalAgent are often implicit (not directly stated in the user's prompt), yet specific (high degree of lexical precision). Further, EvalAgent criteria are often not satisfied by initial responses but they are actionable, such that responses can be refined to satisfy them. Finally, we show that combining LLM-generated and EvalAgent criteria uncovers more human-valued criteria than using LLMs alone.
Support Evaluation for the TREC 2024 RAG Track: Comparing Human versus LLM Judges SIGIR 2025
Retrieval-augmented generation (RAG) enables large language models (LLMs) to generate answers with citations from source documents containing "ground truth", thereby reducing system hallucinations. A crucial factor in RAG evaluation is "support", whether the information in the cited documents supports the answer. To this end, we conducted a large-scale comparative study of 45 participant submissions on 36 topics to the TREC 2024 RAG Track, comparing an automatic LLM judge (GPT-4o) against human judges for support assessment. We considered two conditions: (1) fully manual assessments from scratch and (2) manual assessments with post-editing of LLM predictions. Our results indicate that for 56% of the manual from-scratch assessments, human and GPT-4o predictions match perfectly (on a three-level scale), increasing to 72% in the manual with post-editing condition. Furthermore, by carefully analyzing the disagreements in an unbiased study, we found that an independent human judge correlates better with GPT-4o than a human judge, suggesting that LLM judges can be a reliable alternative for support assessment. To conclude, we provide a qualitative analysis of human and GPT-4o errors to help guide future iterations of support assessment.
comment: Accepted at SIGIR 2025 (short)
On true empty category
According to Chomsky (1981, 1986), empty categories consist of PRO, pro, trace, and variable. However, some empty object positions seem to be incompatible with extant empty categories. Given this, Li (2007a, 2007b, 2014) and Li & Wei (2014) raise the true empty category hypothesis, which holds that true empty category is only an empty position with category and Case features. As a last resort option, it is used mainly to meet the subcatgorization of a verb. This assumption is ingenious, and if proved to be true, it will exert a great impact on the study of UG. In this paper, we evaluate their evidence from topicalization and demonstrate that it can be accounted for without invoking true empty category.
The Synthetic Imputation Approach: Generating Optimal Synthetic Texts For Underrepresented Categories In Supervised Classification Tasks
Encoder-decoder Large Language Models (LLMs), such as BERT and RoBERTa, require that all categories in an annotation task be sufficiently represented in the training data for optimal performance. However, it is often difficult to find sufficient examples for all categories in a task when building a high-quality training set. In this article, I describe this problem and propose a solution, the synthetic imputation approach. Leveraging a generative LLM (GPT-4o), this approach generates synthetic texts based on careful prompting and five original examples drawn randomly with replacement from the sample. This approach ensures that new synthetic texts are sufficiently different from the original texts to reduce overfitting, but retain the underlying substantive meaning of the examples to maximize out-of-sample performance. With 75 original examples or more, synthetic imputation's performance is on par with a full sample of original texts, and overfitting remains low, predictable and correctable with 50 original samples. The synthetic imputation approach provides a novel role for generative LLMs in research and allows applied researchers to balance their datasets for best performance.
KGMEL: Knowledge Graph-Enhanced Multimodal Entity Linking SIGIR 2025
Entity linking (EL) aligns textual mentions with their corresponding entities in a knowledge base, facilitating various applications such as semantic search and question answering. Recent advances in multimodal entity linking (MEL) have shown that combining text and images can reduce ambiguity and improve alignment accuracy. However, most existing MEL methods overlook the rich structural information available in the form of knowledge-graph (KG) triples. In this paper, we propose KGMEL, a novel framework that leverages KG triples to enhance MEL. Specifically, it operates in three stages: (1) Generation: Produces high-quality triples for each mention by employing vision-language models based on its text and images. (2) Retrieval: Learns joint mention-entity representations, via contrastive learning, that integrate text, images, and (generated or KG) triples to retrieve candidate entities for each mention. (3) Reranking: Refines the KG triples of the candidate entities and employs large language models to identify the best-matching entity for the mention. Extensive experiments on benchmark datasets demonstrate that KGMEL outperforms existing methods. Our code and datasets are available at: https://github.com/juyeonnn/KGMEL.
comment: SIGIR 2025 (Short)
EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
Kuwain 1.5B: An Arabic SLM via Language Injection
Enhancing existing models with new knowledge is a crucial aspect of AI development. This paper introduces a novel method for integrating a new language into a large language model (LLM). Our approach successfully incorporates a previously unseen target language into an existing LLM without compromising its prior knowledge. We trained a tiny model with 1.5 billion parameters named Kuwain by injecting the Arabic language into a small open-source model mainly trained in English. Our method demonstrates significant improvements in Arabic language performance, with an average 8% improvement across various benchmarks, while retaining the model's existing knowledge with a minimum amount of the original model's data. This offers a cost-effective alternative to training a comprehensive model in both English and Arabic. The results highlight the potential for efficient, targeted language model expansion without extensive retraining or resource-intensive processes.
Rethinking the Potential of Multimodality in Collaborative Problem Solving Diagnosis with Large Language Models
Detecting collaborative and problem-solving behaviours from digital traces to interpret students' collaborative problem solving (CPS) competency is a long-term goal in the Artificial Intelligence in Education (AIEd) field. Although multimodal data and advanced models are argued to have the potential to detect complex CPS behaviours, empirical evidence on their value remains limited with some contrasting evidence. In this study, we investigated the potential of multimodal data to improve model performance in diagnosing 78 secondary school students' CPS subskills and indicators in authentic educational settings. In particular, text embeddings from verbal data and acoustic embeddings from audio data were used in a multimodal classification model for CPS diagnosis. Both unimodal and multimodal transformer-based models outperformed traditional models in detecting CPS classes. Although the inclusion of multimodality did not improve the performance of traditional unimodal models, its integration into transformer-based models demonstrated improved performance for diagnosing social-cognitive CPS classes compared to unimodal transformer-based models. Based on the results, the paper argues that multimodality and the selection of a particular modelling technique should not be taken for granted to achieve the best performance in the automated detection of every CPS subskill and indicator. Rather, their value is limited to certain types of CPS indicators, affected by the complexity of the labels, and dependent on the composition of indicators in the dataset. We conclude the paper by discussing the required nuance when considering the value of LLMs and multimodality in automated CPS diagnosis, highlighting the need for human-AI complementarity, and proposing the exploration of relevant model architectures and techniques to improve CPS diagnosis in authentic educational contexts.
comment: Accepted for 26th International Conference on Artificial Intelligence in Education (AIED 2025), 22 - 26 July 2025, Palermo, Italy. 17 pages, 1 figure
Rhythm of Opinion: A Hawkes-Graph Framework for Dynamic Propagation Analysis
The rapid development of social media has significantly reshaped the dynamics of public opinion, resulting in complex interactions that traditional models fail to effectively capture. To address this challenge, we propose an innovative approach that integrates multi-dimensional Hawkes processes with Graph Neural Network, modeling opinion propagation dynamics among nodes in a social network while considering the intricate hierarchical relationships between comments. The extended multi-dimensional Hawkes process captures the hierarchical structure, multi-dimensional interactions, and mutual influences across different topics, forming a complex propagation network. Moreover, recognizing the lack of high-quality datasets capable of comprehensively capturing the evolution of public opinion dynamics, we introduce a new dataset, VISTA. It includes 159 trending topics, corresponding to 47,207 posts, 327,015 second-level comments, and 29,578 third-level comments, covering diverse domains such as politics, entertainment, sports, health, and medicine. The dataset is annotated with detailed sentiment labels across 11 categories and clearly defined hierarchical relationships. When combined with our method, it offers strong interpretability by linking sentiment propagation to the comment hierarchy and temporal evolution. Our approach provides a robust baseline for future research.
The Great Nugget Recall: Automating Fact Extraction and RAG Evaluation with Large Language Models SIGIR 2025
Large Language Models (LLMs) have significantly enhanced the capabilities of information access systems, especially with retrieval-augmented generation (RAG). Nevertheless, the evaluation of RAG systems remains a barrier to continued progress, a challenge we tackle in this work by proposing an automatic evaluation framework that is validated against human annotations. We believe that the nugget evaluation methodology provides a solid foundation for evaluating RAG systems. This approach, originally developed for the TREC Question Answering (QA) Track in 2003, evaluates systems based on atomic facts that should be present in good answers. Our efforts focus on "refactoring" this methodology, where we describe the AutoNuggetizer framework that specifically applies LLMs to both automatically create nuggets and automatically assign nuggets to system answers. In the context of the TREC 2024 RAG Track, we calibrate a fully automatic approach against strategies where nuggets are created manually or semi-manually by human assessors and then assigned manually to system answers. Based on results from a community-wide evaluation, we observe strong agreement at the run level between scores derived from fully automatic nugget evaluation and human-based variants. The agreement is stronger when individual framework components such as nugget assignment are automated independently. This suggests that our evaluation framework provides tradeoffs between effort and quality that can be used to guide the development of future RAG systems. However, further research is necessary to refine our approach, particularly in establishing robust per-topic agreement to diagnose system failures effectively.
comment: To appear in SIGIR 2025. Significant updates and revisions to arXiv:2411.09607
Testing LLMs' Capabilities in Annotating Translations Based on an Error Typology Designed for LSP Translation: First Experiments with ChatGPT
This study investigates the capabilities of large language models (LLMs), specifically ChatGPT, in annotating MT outputs based on an error typology. In contrast to previous work focusing mainly on general language, we explore ChatGPT's ability to identify and categorise errors in specialised translations. By testing two different prompts and based on a customised error typology, we compare ChatGPT annotations with human expert evaluations of translations produced by DeepL and ChatGPT itself. The results show that, for translations generated by DeepL, recall and precision are quite high. However, the degree of accuracy in error categorisation depends on the prompt's specific features and its level of detail, ChatGPT performing very well with a detailed prompt. When evaluating its own translations, ChatGPT achieves significantly poorer results, revealing limitations with self-assessment. These results highlight both the potential and the limitations of LLMs for translation evaluation, particularly in specialised domains. Our experiments pave the way for future research on open-source LLMs, which could produce annotations of comparable or even higher quality. In the future, we also aim to test the practical effectiveness of this automated evaluation in the context of translation training, particularly by optimising the process of human evaluation by teachers and by exploring the impact of annotations by LLMs on students' post-editing and translation learning.
comment: Accepted for publication in the proceedings of MT Summit 2025
RainbowPlus: Enhancing Adversarial Prompt Generation via Evolutionary Quality-Diversity Search
Large Language Models (LLMs) exhibit remarkable capabilities but are susceptible to adversarial prompts that exploit vulnerabilities to produce unsafe or biased outputs. Existing red-teaming methods often face scalability challenges, resource-intensive requirements, or limited diversity in attack strategies. We propose RainbowPlus, a novel red-teaming framework rooted in evolutionary computation, enhancing adversarial prompt generation through an adaptive quality-diversity (QD) search that extends classical evolutionary algorithms like MAP-Elites with innovations tailored for language models. By employing a multi-element archive to store diverse high-quality prompts and a comprehensive fitness function to evaluate multiple prompts concurrently, RainbowPlus overcomes the constraints of single-prompt archives and pairwise comparisons in prior QD methods like Rainbow Teaming. Experiments comparing RainbowPlus to QD methods across six benchmark datasets and four open-source LLMs demonstrate superior attack success rate (ASR) and diversity (Diverse-Score $\approx 0.84$), generating up to 100 times more unique prompts (e.g., 10,418 vs. 100 for Ministral-8B-Instruct-2410). Against nine state-of-the-art methods on the HarmBench dataset with twelve LLMs (ten open-source, two closed-source), RainbowPlus achieves an average ASR of 81.1%, surpassing AutoDAN-Turbo by 3.9%, and is 9 times faster (1.45 vs. 13.50 hours). Our open-source implementation fosters further advancements in LLM safety, offering a scalable tool for vulnerability assessment. Code and resources are publicly available at https://github.com/knoveleng/rainbowplus, supporting reproducibility and future research in LLM red-teaming.
DistilQwen2.5: Industrial Practices of Training Distilled Open Lightweight Language Models
Enhancing computational efficiency and reducing deployment costs for large language models (LLMs) have become critical challenges in various resource-constrained scenarios. In this work, we present DistilQwen2.5, a family of distilled, lightweight LLMs derived from the public Qwen2.5 models. These distilled models exhibit enhanced instruction-following capabilities compared to the original models based on a series of distillation techniques that incorporate knowledge from much larger LLMs. In our industrial practice, we first leverage powerful proprietary LLMs with varying capacities as multi-agent teachers to select, rewrite, and refine instruction-response pairs that are more suitable for student LLMs to learn. After standard fine-tuning, we further leverage a computationally efficient model fusion approach that enables student models to progressively integrate fine-grained hidden knowledge from their teachers. Experimental evaluations demonstrate that the distilled models possess significantly stronger capabilities than their original checkpoints. Additionally, we present use cases to illustrate the applications of our framework in real-world scenarios. To facilitate practical use, we have released all the DistilQwen2.5 models to the open-source community.
LLMs as Data Annotators: How Close Are We to Human Performance
In NLP, fine-tuning LLMs is effective for various applications but requires high-quality annotated data. However, manual annotation of data is labor-intensive, time-consuming, and costly. Therefore, LLMs are increasingly used to automate the process, often employing in-context learning (ICL) in which some examples related to the task are given in the prompt for better performance. However, manually selecting context examples can lead to inefficiencies and suboptimal model performance. This paper presents comprehensive experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task. The evaluation encompasses models with approximately $7$B and $70$B parameters, including both proprietary and non-proprietary models. Furthermore, leveraging the success of Retrieval-Augmented Generation (RAG), it also considers a method that addresses the limitations of ICL by automatically retrieving contextual examples, thereby enhancing performance. The results highlight the importance of selecting the appropriate LLM and embedding model, understanding the trade-offs between LLM sizes and desired performance, and the necessity to direct research efforts towards more challenging datasets.
comment: 27 pages, 4 figures
Stay Hungry, Stay Foolish: On the Extended Reading Articles Generation with LLMs AAAI2025
The process of creating educational materials is both time-consuming and demanding for educators. This research explores the potential of Large Language Models (LLMs) to streamline this task by automating the generation of extended reading materials and relevant course suggestions. Using the TED-Ed Dig Deeper sections as an initial exploration, we investigate how supplementary articles can be enriched with contextual knowledge and connected to additional learning resources. Our method begins by generating extended articles from video transcripts, leveraging LLMs to include historical insights, cultural examples, and illustrative anecdotes. A recommendation system employing semantic similarity ranking identifies related courses, followed by an LLM-based refinement process to enhance relevance. The final articles are tailored to seamlessly integrate these recommendations, ensuring they remain cohesive and informative. Experimental evaluations demonstrate that our model produces high-quality content and accurate course suggestions, assessed through metrics such as Hit Rate, semantic similarity, and coherence. Our experimental analysis highlight the nuanced differences between the generated and existing materials, underscoring the model's capacity to offer more engaging and accessible learning experiences. This study showcases how LLMs can bridge the gap between core content and supplementary learning, providing students with additional recommended resources while also assisting teachers in designing educational materials.
comment: Accepted by iRAISE@AAAI2025
Efficient Pretraining Length Scaling
Recent advances in large language models have demonstrated the effectiveness of length scaling during post-training, yet its potential in pre-training remains underexplored. We present the Parallel Hidden Decoding Transformer (\textit{PHD}-Transformer), a novel framework that enables efficient length scaling during pre-training while maintaining inference efficiency. \textit{PHD}-Transformer achieves this through an innovative KV cache management strategy that distinguishes between original tokens and hidden decoding tokens. By retaining only the KV cache of original tokens for long-range dependencies while immediately discarding hidden decoding tokens after use, our approach maintains the same KV cache size as the vanilla transformer while enabling effective length scaling. To further enhance performance, we introduce two optimized variants: \textit{PHD-SWA} employs sliding window attention to preserve local dependencies, while \textit{PHD-CSWA} implements chunk-wise sliding window attention to eliminate linear growth in pre-filling time. Extensive experiments demonstrate consistent improvements across multiple benchmarks.
Evaluating LLMs on Chinese Topic Constructions: A Research Proposal Inspired by Tian et al. (2024)
This paper proposes a framework for evaluating large language models (LLMs) on Chinese topic constructions, focusing on their sensitivity to island constraints. Drawing inspiration from Tian et al. (2024), we outline an experimental design for testing LLMs' grammatical knowledge of Mandarin syntax. While no experiments have been conducted yet, this proposal aims to provide a foundation for future studies and invites feedback on the methodology.
Speaker Fuzzy Fingerprints: Benchmarking Text-Based Identification in Multiparty Dialogues
Speaker identification using voice recordings leverages unique acoustic features, but this approach fails when only textual data is available. Few approaches have attempted to tackle the problem of identifying speakers solely from text, and the existing ones have primarily relied on traditional methods. In this work, we explore the use of fuzzy fingerprints from large pre-trained models to improve text-based speaker identification. We integrate speaker-specific tokens and context-aware modeling, demonstrating that conversational context significantly boosts accuracy, reaching 70.6% on the Friends dataset and 67.7% on the Big Bang Theory dataset. Additionally, we show that fuzzy fingerprints can approximate full fine-tuning performance with fewer hidden units, offering improved interpretability. Finally, we analyze ambiguous utterances and propose a mechanism to detect speaker-agnostic lines. Our findings highlight key challenges and provide insights for future improvements in text-based speaker identification.
comment: Paper accepted at the FUZZY IEEE 2025 conference
Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning (RL) with simple rule-based rewards. However, existing zero-RL approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. We introduce LUFFY (Learning to reason Under oFF-policY guidance), a framework that augments zero-RL with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Notably, we propose policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Remarkably, LUFFY achieves an over +7.0 average gain across six math benchmarks and an advantage of over +6.2 points in out-of-distribution tasks. It also substantially surpasses imitation-based supervised fine-tuning (SFT), particularly in generalization. Analysis shows LUFFY not only imitates effectively but also explores beyond demonstrations, offering a scalable path to train generalizable reasoning models with off-policy guidance.
comment: Work in progress
EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs
The rapid spread of misinformation, driven by digital media and AI-generated content, has made automatic claim verification essential. Traditional methods, which depend on expert-annotated evidence, are labor-intensive and not scalable. Although recent automated systems have improved, they still struggle with complex claims that require nuanced reasoning. To address this, we propose CRAVE, a Conflicting Reasoning Approach for explainable claim VErification, that verify the complex claims based on the conflicting rationales reasoned by large language models (LLMs). Specifically, CRAVE introduces a three-module framework. Ambiguity Elimination enchanced Evidence Retrieval module performs ambiguity elimination and entity-based search to gather relevant evidence related to claim verification from external sources like Wikipedia. Conflicting Perspective Reasoning and Preliminary Judgment module with LLMs adopts LLMs to reason rationales with conflicting stances about claim verification from retrieved evidence across four dimensions, i.e., direct evidence, semantic relationships, linguistic patterns, and logical reasoning and make a preliminary judgment. Finally, Small Language Model (SLM) based Judge module is fine-tuned to make use of preliminary judgment from LLMs to assess the confidence of the conflicting rationales and make a final authenticity judgment. This methodology allows CRAVE to capture subtle inconsistencies in complex claims, improving both the accuracy and transparency of claim verification. Extensive experiments on two public claim verification datasets demonstrate that our CRAVE model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for finding relevant evidence and explaining the model predictions. The code is provided at https://github.com/8zym/CRAVE.
VLM as Policy: Common-Law Content Moderation Framework for Short Video Platform
Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
comment: 20 pages, 6 figures
Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey
Recent advancements in Retrieval-Augmented Generation (RAG) have revolutionized natural language processing by integrating Large Language Models (LLMs) with external information retrieval, enabling accurate, up-to-date, and verifiable text generation across diverse applications. However, evaluating RAG systems presents unique challenges due to their hybrid architecture that combines retrieval and generation components, as well as their dependence on dynamic knowledge sources in the LLM era. In response, this paper provides a comprehensive survey of RAG evaluation methods and frameworks, systematically reviewing traditional and emerging evaluation approaches, for system performance, factual accuracy, safety, and computational efficiency in the LLM era. We also compile and categorize the RAG-specific datasets and evaluation frameworks, conducting a meta-analysis of evaluation practices in high-impact RAG research. To the best of our knowledge, this work represents the most comprehensive survey for RAG evaluation, bridging traditional and LLM-driven methods, and serves as a critical resource for advancing RAG development.
comment: 18 pages, 5 figures
Natural Fingerprints of Large Language Models
Large language models (LLMs) often exhibit biases -- systematic deviations from expected norms -- in their outputs. These range from overt issues, such as unfair responses, to subtler patterns that can reveal which model produced them. We investigate the factors that give rise to identifiable characteristics in LLMs. Since LLMs model training data distribution, it is reasonable that differences in training data naturally lead to the characteristics. However, our findings reveal that even when LLMs are trained on the exact same data, it is still possible to distinguish the source model based on its generated text. We refer to these unintended, distinctive characteristics as natural fingerprints. By systematically controlling training conditions, we show that the natural fingerprints can emerge from subtle differences in the training process, such as parameter sizes, optimization settings, and even random seeds. We believe that understanding natural fingerprints offers new insights into the origins of unintended bias and ways for improving control over LLM behavior.
OTC: Optimal Tool Calls via Reinforcement Learning
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG
Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated \textit{Critic Language Model (CLM)} to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.
Transparentize the Internal and External Knowledge Utilization in LLMs with Trustworthy Citation
While hallucinations of large language models could been alleviated through retrieval-augmented generation and citation generation, how the model utilizes internal knowledge is still opaque, and the trustworthiness of its generated answers remains questionable. In this work, we introduce Context-Prior Augmented Citation Generation task, requiring models to generate citations considering both external and internal knowledge while providing trustworthy references, with 5 evaluation metrics focusing on 3 aspects: answer helpfulness, citation faithfulness, and trustworthiness. We introduce RAEL, the paradigm for our task, and also design INTRALIGN, an integrated method containing customary data generation and an alignment algorithm. Our experimental results show that our method achieves a better cross-scenario performance with regard to other baselines. Our extended experiments further reveal that retrieval quality, question types, and model knowledge have considerable influence on the trustworthiness in citation generation.
comment: 19 pages, 14 figures
Completing A Systematic Review in Hours instead of Months with Interactive AI Agents
Systematic reviews (SRs) are vital for evidence-based practice in high stakes disciplines, such as healthcare, but are often impeded by intensive labors and lengthy processes that can take months to complete. Due to the high demand for domain expertise, existing automatic summarization methods fail to accurately identify relevant studies and generate high-quality summaries. To that end, we introduce InsightAgent, a human-centered interactive AI agent powered by large language models that revolutionize this workflow. InsightAgent partitions a large literature corpus based on semantics and employs a multi-agent design for more focused processing of literature, leading to significant improvement in the quality of generated SRs. InsightAgent also provides intuitive visualizations of the corpus and agent trajectories, allowing users to effortlessly monitor the actions of the agent and provide real-time feedback based on their expertise. Our user studies with 9 medical professionals demonstrate that the visualization and interaction mechanisms can effectively improve the quality of synthesized SRs by 27.2%, reaching 79.7% of human-written quality. At the same time, user satisfaction is improved by 34.4%. With InsightAgent, it only takes a clinician about 1.5 hours, rather than months, to complete a high-quality systematic review.
On Self-improving Token Embeddings
This article introduces a novel and fast method for refining pre-trained static word or, more generally, token embeddings. By incorporating the embeddings of neighboring tokens in text corpora, it continuously updates the representation of each token, including those without pre-assigned embeddings. This approach effectively addresses the out-of-vocabulary problem, too. Operating independently of large language models and shallow neural networks, it enables versatile applications such as corpus exploration, conceptual search, and word sense disambiguation. The method is designed to enhance token representations within topically homogeneous corpora, where the vocabulary is restricted to a specific domain, resulting in more meaningful embeddings compared to general-purpose pre-trained vectors. As an example, the methodology is applied to explore storm events and their impacts on infrastructure and communities using narratives from a subset of the NOAA Storm Events database. The article also demonstrates how the approach improves the representation of storm-related terms over time, providing valuable insights into the evolving nature of disaster narratives.
comment: 18 pages, 4 figures, 3 tables, accepted at the 2025 25th International Conference on Innovations for Community Services (I4CS), June 11 - 13, Munich, Germany, 2025
Automatic Evaluation Metrics for Document-level Translation: Overview, Challenges and Trends
With the rapid development of deep learning technologies, the field of machine translation has witnessed significant progress, especially with the advent of large language models (LLMs) that have greatly propelled the advancement of document-level translation. However, accurately evaluating the quality of document-level translation remains an urgent issue. This paper first introduces the development status of document-level translation and the importance of evaluation, highlighting the crucial role of automatic evaluation metrics in reflecting translation quality and guiding the improvement of translation systems. It then provides a detailed analysis of the current state of automatic evaluation schemes and metrics, including evaluation methods with and without reference texts, as well as traditional metrics, Model-based metrics and LLM-based metrics. Subsequently, the paper explores the challenges faced by current evaluation methods, such as the lack of reference diversity, dependence on sentence-level alignment information, and the bias, inaccuracy, and lack of interpretability of the LLM-as-a-judge method. Finally, the paper looks ahead to the future trends in evaluation methods, including the development of more user-friendly document-level evaluation methods and more robust LLM-as-a-judge methods, and proposes possible research directions, such as reducing the dependency on sentence-level information, introducing multi-level and multi-granular evaluation approaches, and training models specifically for machine translation evaluation. This study aims to provide a comprehensive analysis of automatic evaluation for document-level translation and offer insights into future developments.
PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
comment: 10 pages
CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty counting in images.
comment: Code and data: https://github.com/atinpothiraj/CAPTURe
Speculative Sampling via Exponential Races
Speculative decoding accelerates large language model inference using a smaller draft model. In this paper, we establish a surprising connection between speculative decoding and channel simulation, which aims at simulating a noisy channel using as few bits as possible. This connection allows us to provide an information-theoretic analysis of the speed up that can be achieved by speculative decoding. Leveraging this link, we derive an explicit relation between generation speed-up and the number of tokens $k$ generated by the draft model for large $k$, which serves as an upper bound for all $k$. We also propose a novel speculative decoding method via exponential race ERSD that matches state-of-the-art performance.
Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models
In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying language model circuits by building up from a minimal circuit rather than the traditional approach of ablating circuits from a full model.
Learning Adaptive Parallel Reasoning with Language Models
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.
comment: Code, model, and data are available at https://github.com/Parallel-Reasoning/APR. The first three authors contributed equally to this work
Real-Time Sentiment Insights from X Using VADER, DistilBERT, and Web-Scraped Data
In the age of social media, understanding public sentiment toward major corporations is crucial for investors, policymakers, and researchers. This paper presents a comprehensive sentiment analysis system tailored for corporate reputation monitoring, combining Natural Language Processing (NLP) and machine learning techniques to accurately interpret public opinion in real time. The methodology integrates a hybrid sentiment detection framework leveraging both rule-based models (VADER) and transformer-based deep learning models (DistilBERT), applied to social media data from multiple platforms. The system begins with robust preprocessing involving noise removal and text normalization, followed by sentiment classification using an ensemble approach to ensure both interpretability and contextual accuracy. Results are visualized through sentiment distribution plots, comparative analyses, and temporal sentiment trends for enhanced interpretability. Our analysis reveals significant disparities in public sentiment across major corporations, with companies like Amazon (81.2) and Samsung (45.8) receiving excellent sentiment scores, while Microsoft (21.7) and Walmart (21.9) exhibit poor sentiment profiles. These findings demonstrate the utility of our multi-source sentiment framework in providing actionable insights regarding corporate public perception, enabling stakeholders to make informed strategic decisions based on comprehensive sentiment analysis.
comment: 19 pages, 2 figures
Feeding LLM Annotations to BERT Classifiers at Your Own Risk
Using LLM-generated labels to fine-tune smaller encoder-only models for text classification has gained popularity in various settings. While this approach may be justified in simple and low-stakes applications, we conduct empirical analysis to demonstrate how the perennial curse of training on synthetic data manifests itself in this specific setup. Compared to models trained on gold labels, we observe not only the expected performance degradation in accuracy and F1 score, but also increased instability across training runs and premature performance plateaus. These findings cast doubts on the reliability of such approaches in real-world applications. We contextualize the observed phenomena through the lens of error propagation and offer several practical mitigation strategies, including entropy-based filtering and ensemble techniques. Although these heuristics offer partial relief, they do not fully resolve the inherent risks of propagating non-random errors from LLM annotations to smaller classifiers, underscoring the need for caution when applying this workflow in high-stakes text classification tasks.
Trillion 7B Technical Report
We introduce Trillion-7B, the most token-efficient Korean-centric multilingual LLM available. Our novel Cross-lingual Document Attention (XLDA) mechanism enables highly efficient and effective knowledge transfer from English to target languages like Korean and Japanese. Combined with optimized data mixtures, language-specific filtering, and tailored tokenizer construction, Trillion-7B achieves competitive performance while dedicating only 10\% of its 2T training tokens to multilingual data and requiring just 59.4K H100 GPU hours (\$148K) for full training. Comprehensive evaluations across 27 benchmarks in four languages demonstrate Trillion-7B's robust multilingual performance and exceptional cross-lingual consistency.
comment: Preview version
IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.
Tell Me What You Know About Sexism: Expert-LLM Interaction Strategies and Co-Created Definitions for Zero-Shot Sexism Detection NAACL 2025
This paper investigates hybrid intelligence and collaboration between researchers of sexism and Large Language Models (LLMs), with a four-component pipeline. First, nine sexism researchers answer questions about their knowledge of sexism and of LLMs. They then participate in two interactive experiments involving an LLM (GPT3.5). The first experiment has experts assessing the model's knowledge about sexism and suitability for use in research. The second experiment tasks them with creating three different definitions of sexism: an expert-written definition, an LLM-written one, and a co-created definition. Lastly, zero-shot classification experiments use the three definitions from each expert in a prompt template for sexism detection, evaluating GPT4o on 2.500 texts sampled from five sexism benchmarks. We then analyze the resulting 67.500 classification decisions. The LLM interactions lead to longer and more complex definitions of sexism. Expert-written definitions on average perform poorly compared to LLM-generated definitions. However, some experts do improve classification performance with their co-created definitions of sexism, also experts who are inexperienced in using LLMs.
comment: Accepted and published at Findings of NAACL 2025: cite published version whenever possible
Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
comment: Project site: https://linzhiqiu.github.io/papers/camerabench/
LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V$^*$ Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
comment: 24 pages, 10 figures, in submission. Project page: https://andrewliao11.github.io/LongPerceptualThoughts
Exploring Compositional Generalization (in ReCOGS_pos) by Transformers using Restricted Access Sequence Processing (RASP)
Humans understand new combinations of words encountered if they are combinations of words recognized from different contexts, an ability called Compositional Generalization. The COGS benchmark (Kim and Linzen, 2020) arXiv:2010.05465 reports 0% accuracy for Transformer models on some structural generalizations. We use (Weiss et al., 2021) arXiv:2106.06981's Restricted Access Sequence Processing (RASP), a Transformer-equivalent programming language, to prove by construction that a Transformer encoder-decoder can perform the semantically equivalent ReCOGS_pos (Wu et al., 2024) arXiv:2303.13716 variant of COGS systematically and compositionally: Our RASP model attains 100% semantic exact match on the ReCOGS test set and 100% SEM on all generalization splits except obj_pp_to_subj_pp which gets 92%. Furthermore, our RASP model shows the ReCOGS_pos task does not require a hierarchical or tree-structured solution: we use word-level tokens with an "embedding" layer that tags with possible parts of speech, applying just once per encoder pass 19 attention-head compatible flat pattern-matching rules, shown using grammar coverage (Zeller et al., 2023) to be learnable from the training data, plus general prepositional phrase (pp) handling and sentential complement (cp) handling logic, and output the next logical form (LF) token (repeating until the LF is complete). The model does not apply recursive, tree-structured rules like 'np_det pp np -> np_pp -> np', but scores 100% semantic and string exact match on pp recursion, cp recursion using the decoder loop.
comment: 8 pages main text with 3 figures and 1 table; limitations page and references separate; 4 more figures, 1 image, and 1 more table in the appendices supplement the work. 29 pages of appendix content
Med-CoDE: Medical Critique based Disagreement Evaluation Framework NAACL
The emergence of large language models (LLMs) has significantly influenced numerous fields, including healthcare, by enhancing the capabilities of automated systems to process and generate human-like text. However, despite their advancements, the reliability and accuracy of LLMs in medical contexts remain critical concerns. Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance, leading to potential risks in clinical settings. In this work, we propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges. The framework leverages a critique-based approach to quantitatively measure the degree of disagreement between model-generated responses and established medical ground truths. This framework captures both accuracy and reliability in medical settings. The proposed evaluation framework aims to fill the existing gap in LLM assessment by offering a systematic method to evaluate the quality and trustworthiness of medical LLMs. Through extensive experiments and case studies, we illustrate the practicality of our framework in providing a comprehensive and reliable evaluation of medical LLMs.
comment: 8 pages, 4 figures, NAACL SRW 2025
DataComp-LM: In search of the next generation of training sets for language models
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models. As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations. Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters. As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set. The resulting dataset, DCLM-Baseline enables training a 7B parameter language model from scratch to 64% 5-shot accuracy on MMLU with 2.6T training tokens. Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6.6 percentage point improvement on MMLU while being trained with 40% less compute. Our baseline model is also comparable to Mistral-7B-v0.3 and Llama 3 8B on MMLU (63% & 66%), and performs similarly on an average of 53 natural language understanding tasks while being trained with 6.6x less compute than Llama 3 8B. Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation.
comment: Project page: https://www.datacomp.ai/dclm/
Can LLMs Rank the Harmfulness of Smaller LLMs? We are Not There Yet
Large language models (LLMs) have become ubiquitous, thus it is important to understand their risks and limitations. Smaller LLMs can be deployed where compute resources are constrained, such as edge devices, but with different propensity to generate harmful output. Mitigation of LLM harm typically depends on annotating the harmfulness of LLM output, which is expensive to collect from humans. This work studies two questions: How do smaller LLMs rank regarding generation of harmful content? How well can larger LLMs annotate harmfulness? We prompt three small LLMs to elicit harmful content of various types, such as discriminatory language, offensive content, privacy invasion, or negative influence, and collect human rankings of their outputs. Then, we evaluate three state-of-the-art large LLMs on their ability to annotate the harmfulness of these responses. We find that the smaller models differ with respect to harmfulness. We also find that large LLMs show low to moderate agreement with humans. These findings underline the need for further work on harm mitigation in LLMs.
Training on the Test Task Confounds Evaluation and Emergence ICLR 2025
We study a fundamental problem in the evaluation of large language models that we call training on the test task. Unlike wrongful practices like training on the test data, leakage, or data contamination, training on the test task is not a malpractice. Rather, the term describes a growing set of practices that utilize knowledge about evaluation tasks at training time. We demonstrate that training on the test task confounds both relative model evaluations and claims about emergent capabilities. We argue that the seeming superiority of one model family over another may be explained by a different degree of training on the test task. To this end, we propose an effective method to adjust for the effect of training on the test task on benchmark evaluations. Put simply, to fine-tune each model under comparison on the same task-relevant data prior to evaluation. We then show that instances of emergent behavior disappear gradually as models train on the test task. Our work promotes a new perspective on the evaluation of large language models, with broad implications for benchmarking and the study of emergent capabilities.
comment: ICLR 2025 (Oral)
HiddenDetect: Detecting Jailbreak Attacks against Large Vision-Language Models via Monitoring Hidden States
The integration of additional modalities increases the susceptibility of large vision-language models (LVLMs) to safety risks, such as jailbreak attacks, compared to their language-only counterparts. While existing research primarily focuses on post-hoc alignment techniques, the underlying safety mechanisms within LVLMs remain largely unexplored. In this work , we investigate whether LVLMs inherently encode safety-relevant signals within their internal activations during inference. Our findings reveal that LVLMs exhibit distinct activation patterns when processing unsafe prompts, which can be leveraged to detect and mitigate adversarial inputs without requiring extensive fine-tuning. Building on this insight, we introduce HiddenDetect, a novel tuning-free framework that harnesses internal model activations to enhance safety. Experimental results show that {HiddenDetect} surpasses state-of-the-art methods in detecting jailbreak attacks against LVLMs. By utilizing intrinsic safety-aware patterns, our method provides an efficient and scalable solution for strengthening LVLM robustness against multimodal threats. Our code will be released publicly at https://github.com/leigest519/HiddenDetect.
Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
Inverse Constitutional AI: Compressing Preferences into Principles ICLR 2025
Feedback data is widely used for fine-tuning and evaluating state-of-the-art AI models. Pairwise text preferences, where human or AI annotators select the "better" of two options, are particularly common. Such preferences are used to train (reward) models or to rank models with aggregate statistics. For many applications it is desirable to understand annotator preferences in addition to modelling them - not least because extensive prior work has shown various unintended biases in preference datasets. Yet, preference datasets remain challenging to interpret. Neither black-box reward models nor statistics can answer why one text is preferred over another. Manual interpretation of the numerous (long) response pairs is usually equally infeasible. In this paper, we introduce the Inverse Constitutional AI (ICAI) problem, formulating the interpretation of pairwise text preference data as a compression task. In constitutional AI, a set of principles (a constitution) is used to provide feedback and fine-tune AI models. ICAI inverts this process: given a feedback dataset, we aim to extract a constitution that best enables a large language model (LLM) to reconstruct the original annotations. We propose a corresponding ICAI algorithm and validate its generated constitutions quantitatively based on annotation reconstruction accuracy on several datasets: (a) synthetic feedback data with known principles; (b) AlpacaEval cross-annotated human feedback data; (c) crowdsourced Chatbot Arena data; and (d) PRISM data from diverse demographic groups. As a short and interpretable representation of the original dataset, generated constitutions have many potential use cases: help identify undesirable annotator biases, understand model performance better, scale feedback to unseen data, or adapt models to individual user or group preferences. We release the source code at https://github.com/rdnfn/icai.
comment: Accepted at ICLR 2025, v2 is camera-ready version; Main changes from v1: extended experiments, additional baselines
LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences and complex reasoning tasks, yet efficiently serving these models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context and reasoning capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
comment: Accepted by MLSys 2025. Code available at: https://github.com/mit-han-lab/omniserve
Scaling Video-Language Models to 10K Frames via Hierarchical Differential Distillation
Long-form video processing fundamentally challenges vision-language models (VLMs) due to the high computational costs of handling extended temporal sequences. Existing token pruning and feature merging methods often sacrifice critical temporal dependencies or dilute semantic information. We introduce differential distillation, a principled approach that systematically preserves task-relevant information while suppressing redundancy. Based on this principle, we develop ViLaMP, a hierarchical video-language model that processes hour-long videos at ``mixed precision'' through two key mechanisms: (1) differential keyframe selection that maximizes query relevance while maintaining temporal distinctiveness at the frame level and (2) differential feature merging that preserves query-salient features in non-keyframes at the patch level. Hence, ViLaMP retains full information in keyframes while reducing non-keyframes to their most salient features, resembling mixed-precision training. Extensive experiments demonstrate ViLaMP's superior performance across four video understanding benchmarks, particularly on long-form content. Notably, ViLaMP can process ultra-long videos (up to 10K frames) on a single NVIDIA A100 GPU, achieving substantial computational efficiency while maintaining state-of-the-art performance.
LongProc: Benchmarking Long-Context Language Models on Long Procedural Generation
Existing benchmarks for evaluating long-context language models (LCLMs) primarily focus on long-context recall, requiring models to produce short responses based on a few critical snippets while processing thousands of irrelevant tokens. We introduce LongProc (Long Procedural Generation), a new benchmark that requires both the integration of highly dispersed information and long-form generation. LongProc consists of six diverse procedural generation tasks, such as extracting structured information from HTML pages into a TSV format and executing complex search procedures to create travel plans. These tasks challenge LCLMs by testing their ability to follow detailed procedural instructions, synthesize and reason over dispersed information, and generate structured, long-form outputs (up to 8K tokens). Furthermore, as these tasks adhere to deterministic procedures and yield structured outputs, they enable reliable rule-based evaluation. We evaluated 23 LCLMs, including instruction-tuned models and recent reasoning models, on LongProc at three difficulty levels, with the maximum number of output tokens set at 500, 2K, and 8K. Notably, while all tested models claim a context window size above 32K tokens, open-weight models typically falter on 2K-token tasks, and closed-source models like GPT-4o show significant degradation on 8K-token tasks. Reasoning models achieve stronger overall performance in long-form generation, benefiting from long CoT training. Further analysis reveals that LCLMs struggle to maintain long-range coherence in long-form generations. These findings highlight critical limitations in current LCLMs and suggest substantial room for improvement. Data and code available at: https://princeton-pli.github.io/LongProc.
Semantic Wave Functions: Exploring Meaning in Large Language Models Through Quantum Formalism
Large Language Models (LLMs) encode semantic relationships in high-dimensional vector embeddings. This paper explores the analogy between LLM embedding spaces and quantum mechanics, positing that LLMs operate within a quantized semantic space where words and phrases behave as quantum states. To capture nuanced semantic interference effects, we extend the standard real-valued embedding space to the complex domain, drawing parallels to the double-slit experiment. We introduce a "semantic wave function" to formalize this quantum-derived representation and utilize potential landscapes, such as the double-well potential, to model semantic ambiguity. Furthermore, we propose a complex-valued similarity measure that incorporates both magnitude and phase information, enabling a more sensitive comparison of semantic representations. We develop a path integral formalism, based on a nonlinear Schr\"odinger equation with a gauge field and Mexican hat potential, to model the dynamic evolution of LLM behavior. This interdisciplinary approach offers a new theoretical framework for understanding and potentially manipulating LLMs, with the goal of advancing both artificial and natural language understanding.
comment: 29 pages, 4 figures. Some corrections added
Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models NAACL 2025
Large language models (LLMs) have demonstrated multilingual capabilities, yet they are mostly English-centric due to the imbalanced training corpora. While prior works have leveraged this bias to enhance multilingual performance through translation, they have been largely limited to natural language processing (NLP) tasks. In this work, we extend the evaluation to real-world user queries and non-English-centric LLMs, offering a broader examination of multilingual performance. Our key contribution lies in demonstrating that while translation into English can boost the performance of English-centric LLMs on NLP tasks, it is not universally optimal. For culture-related tasks that need deep language understanding, prompting in the native language proves more effective as it better captures the nuances of culture and language. Our experiments expose varied behaviors across LLMs and tasks in the multilingual context, underscoring the need for a more comprehensive approach to multilingual evaluation. Therefore, we call for greater efforts in developing and evaluating LLMs that go beyond English-centric paradigms.
comment: Accepted to NAACL 2025
Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
Context-Parametric Inversion: Why Instruction Finetuning Can Worsen Context Reliance ICLR 2025
A standard practice when using large language models is for users to supplement their instruction with an input context containing new information for the model to process. However, models struggle to reliably follow the input context, especially when it conflicts with their parametric knowledge from pretraining. In-principle, one would expect models to adapt to the user context better after instruction finetuning, particularly when handling knowledge conflicts. However, we observe a surprising failure mode: during instruction tuning, the context reliance under knowledge conflicts initially increases as expected, but then gradually decreases as instruction finetuning progresses. This happens while the performance on standard benchmarks keeps on increasing far after this drop. We call this phenomenon context-parametric inversion and observe it across multiple general purpose instruction tuning datasets such as TULU, Alpaca and Ultrachat, across different model families like Llama, Mistral, and Pythia. We perform various controlled studies and theoretical analysis to show that context-parametric inversion occurs due to examples in the instruction finetuning data where the input context provides information that aligns with model's parametric knowledge. Our analysis suggests some natural mitigation strategies with limited but insightful gains, and serves as a useful starting point in addressing this deficiency in instruction finetuning.
comment: Published at ICLR 2025 (Oral)
MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders ICASSP 2025
The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks.
comment: ICASSP 2025
A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis
While data synthesis and distillation are promising strategies to enhance small language models, current approaches heavily rely on Large Language Models (LLMs), which suffer from high computational costs, environmental inefficiency, and potential biases inherited from monolithic architectures. In contrast, smaller LLMs are more accessible and sustainable, but their individual capabilities often fall short in generating high-quality, diverse, and reliable data. Inspired by collaborative human processes (e.g., peer review), we propose a multiple small LLMs involved framework, GRA, that aggregates specialized roles across small LLMs to iterative refinement and quality control typically achieved by a single large LLM. In this collaborative framework, multiple small LLMs assume distinct roles-Generator, Reviewer, and Adjudicator-to simulate a peer-review-inspired data synthesis pipeline. The Generator proposes initial data samples, the Reviewer critiques their quality and diversity, and the Adjudicator resolves conflicts to finalize the output. By decomposing the synthesis process into specialized sub-tasks, collaborative small LLMs can achieve data-level parity with large LLM-based distillation. Through experiments across multiple benchmarks, we demonstrate that GRA-produced data matches or exceeds the quality of single large LLM outputs, e.g., Qwen-2.5-72B-Instruct. Our results challenge the necessity of monolithic large models for high-quality data synthesis, advocating instead for strategic coordination of smaller agents. Our datasets, models, and code are publicly available at https://github.com/GX-XinGao/GRA.
Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows. Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD.
SCORE: Story Coherence and Retrieval Enhancement for AI Narratives
Large Language Models (LLMs) can generate creative and engaging narratives from user-specified input, but maintaining coherence and emotional depth throughout these AI-generated stories remains a challenge. In this work, we propose SCORE, a framework for Story Coherence and Retrieval Enhancement, designed to detect and resolve narrative inconsistencies. By tracking key item statuses and generating episode summaries, SCORE uses a Retrieval-Augmented Generation (RAG) approach, incorporating TF-IDF and cosine similarity to identify related episodes and enhance the overall story structure. Results from testing multiple LLM-generated stories demonstrate that SCORE significantly improves the consistency and stability of narrative coherence compared to baseline GPT models, providing a more robust method for evaluating and refining AI-generated narratives.
Adapting Multilingual LLMs to Low-Resource Languages using Continued Pre-training and Synthetic Corpus
Multilingual LLMs support a variety of languages; however, their performance is suboptimal for low-resource languages. In this work, we emphasize the importance of continued pre-training of multilingual LLMs and the use of translation-based synthetic pre-training corpora for improving LLMs in low-resource languages. We conduct our study in the context of the low-resource Indic language Hindi. We introduce Nemotron-Mini-Hindi 4B, a bilingual SLM supporting both Hindi and English, based on Nemotron-Mini 4B. The model is trained using a mix of real and synthetic Hindi + English tokens, with continuous pre-training performed on 400B tokens. We demonstrate that both the base and instruct models achieve state-of-the-art results on Hindi benchmarks while remaining competitive on English tasks. Additionally, we observe that the continued pre-training approach enhances the model's overall factual accuracy. We perform an ablation study to highlight the impact of Hindi pre-training, showing significant improvements in Hindi chat capabilities and factual accuracy, which cannot be achieved through Hindi alignment alone.
UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents
Usability testing is a fundamental research method that user experience (UX) researchers use to evaluate and iterate a web design, but\textbf{ how to evaluate and iterate the usability testing study design } itself? Recent advances in Large Language Model-simulated Agent (\textbf{LLM Agent}) research inspired us to design \textbf{UXAgent} to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human-subject study. Our system features a Persona Generator module, an LLM Agent module, and a Universal Browser Connector module to automatically generate thousands of simulated users to interactively test the target website. The system also provides an Agent Interview Interface and a Video Replay Interface so that the UX researchers can easily review and analyze the generated qualitative and quantitative log data. Through a heuristic evaluation, five UX researcher participants praised the innovation of our system but also expressed concerns about the future of LLM Agent usage in UX studies.
LLM Agents That Act Like Us: Accurate Human Behavior Simulation with Real-World Data
Recent research shows that LLMs can simulate ``believable'' human behaviors to power LLM agents via prompt-only methods. In this work, we focus on evaluating and improving LLM's objective ``accuracy'' rather than the subjective ``believability'' in the web action generation task, leveraging a large-scale, real-world dataset collected from online shopping human actions. We present the first comprehensive quantitative evaluation of state-of-the-art LLMs (e.g., DeepSeek-R1, Llama, and Claude) on the task of web action generation. Our results show that fine-tuning LLMs on real-world behavioral data substantially improves their ability to generate actions compared to prompt-only methods. Furthermore, incorporating synthesized reasoning traces into model training leads to additional performance gains, demonstrating the value of explicit rationale in behavior modeling. This work establishes a new benchmark for evaluating LLMs in behavior simulation and offers actionable insights into how real-world action data and reasoning augmentation can enhance the fidelity of LLM agents.
Characterizing Knowledge Manipulation in a Russian Wikipedia Fork
Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.
Unanswerability Evaluation for Retrieval Augmented Generation
Existing evaluation frameworks for retrieval-augmented generation (RAG) systems focus on answerable queries, but they overlook the importance of appropriately rejecting unanswerable requests. In this paper, we introduce UAEval4RAG, a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively. We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries for any given knowledge base with unanswered ratio and acceptable ratio metrics. We conduct experiments with various RAG components, including retrieval models, rewriting methods, rerankers, language models, and prompting strategies, and reveal hidden trade-offs in performance of RAG systems. Our findings highlight the critical role of component selection and prompt design in optimizing RAG systems to balance the accuracy of answerable queries with high rejection rates of unanswerable ones. UAEval4RAG provides valuable insights and tools for developing more robust and reliable RAG systems.
Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition COLING 2025
Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets neglects their inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain adaptation. To address this, we present B2NERD, a compact dataset designed to guide LLMs' generalization in Open NER under a universal entity taxonomy. B2NERD is refined from 54 existing English and Chinese datasets using a two-step process. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly enhances LLMs' Open NER capabilities. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages. The data, models, and code are publicly available at https://github.com/UmeanNever/B2NER.
comment: Accepted at COLING 2025. Camera-ready version updated. Project page: https://github.com/UmeanNever/B2NER
NAACL2025 Tutorial: Adaptation of Large Language Models NAACL2025
This tutorial on adaptation of LLMs is designed to address the growing demand for models that go beyond the static capabilities of generic LLMs by providing an overview of dynamic, domain-specific, and task-adaptive LLM adaptation techniques. While general LLMs have demonstrated strong generalization across a variety of tasks, they often struggle to perform well in specialized domains such as finance, healthcare, and code generation for underrepresented languages. Additionally, their static nature limits their ability to evolve with the changing world, and they are often extremely large in size, making them impractical and costly to deploy at scale. As a result, the adaptation of LLMs has drawn much attention since the birth of LLMs and is of core importance, both for industry, which focuses on serving its targeted users, and academia, which can greatly benefit from small but powerful LLMs. To address this gap, this tutorial aims to provide an overview of the LLM adaptation techniques. We start with an introduction to LLM adaptation, from both the data perspective and the model perspective. We then emphasize how the evaluation metrics and benchmarks are different from other techniques. After establishing the problems, we explore various adaptation techniques. We categorize adaptation techniques into two main families. The first is parametric knowledge adaptation, which focuses on updating the parametric knowledge within LLMs. Additionally, we will discuss real-time adaptation techniques, including model editing, which allows LLMs to be updated dynamically in production environments. The second kind of adaptation is semi-parametric knowledge adaptation, where the goal is to update LLM parameters to better leverage external knowledge or tools through techniques like retrieval-augmented generation (RAG) and agent-based systems.
comment: NAACL2025 Tutorial
Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment ICLR 2025
The recent advancements in large language models (LLMs) and pre-trained vision models have accelerated the development of vision-language large models (VLLMs), enhancing the interaction between visual and linguistic modalities. Despite their notable success across various domains, VLLMs face challenges in modality alignment, which can lead to issues like hallucinations and unsafe content generation. Current alignment techniques often rely on coarse feedback and external datasets, limiting scalability and performance. In this paper, we propose FiSAO (Fine-Grained Self-Alignment Optimization), a novel self-alignment method that utilizes the model's own visual encoder as a fine-grained verifier to improve vision-language alignment without the need for additional data. By leveraging token-level feedback from the vision encoder, FiSAO significantly improves vision-language alignment, even surpassing traditional preference tuning methods that require additional data. Through both theoretical analysis and experimental validation, we demonstrate that FiSAO effectively addresses the misalignment problem in VLLMs, marking the first instance of token-level rewards being applied to such models.
comment: 23 pages; Published as a conference paper at ICLR 2025
Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
comment: Codes in https://github.com/Chongjie-Si/Subspace-Tuning
Aioli: A Unified Optimization Framework for Language Model Data Mixing ICLR 2025
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
comment: ICLR 2025 Camera Ready
Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
BadApex: Backdoor Attack Based on Adaptive Optimization Mechanism of Black-box Large Language Models
Previous insertion-based and paraphrase-based backdoors have achieved great success in attack efficacy, but they ignore the text quality and semantic consistency between poisoned and clean texts. Although recent studies introduce LLMs to generate poisoned texts and improve the stealthiness, semantic consistency, and text quality, their hand-crafted prompts rely on expert experiences, facing significant challenges in prompt adaptability and attack performance after defenses. In this paper, we propose a novel backdoor attack based on adaptive optimization mechanism of black-box large language models (BadApex), which leverages a black-box LLM to generate poisoned text through a refined prompt. Specifically, an Adaptive Optimization Mechanism is designed to refine an initial prompt iteratively using the generation and modification agents. The generation agent generates the poisoned text based on the initial prompt. Then the modification agent evaluates the quality of the poisoned text and refines a new prompt. After several iterations of the above process, the refined prompt is used to generate poisoned texts through LLMs. We conduct extensive experiments on three dataset with six backdoor attacks and two defenses. Extensive experimental results demonstrate that BadApex significantly outperforms state-of-the-art attacks. It improves prompt adaptability, semantic consistency, and text quality. Furthermore, when two defense methods are applied, the average attack success rate (ASR) still up to 96.75%.
comment: 16 pages, 6 figures
Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures. This work has been submitted to the IEEE for possible publication
LongStory: Coherent, Complete and Length Controlled Long story Generation
A human author can write any length of story without losing coherence. Also, they always bring the story to a proper ending, an ability that current language models lack. In this work, we present the LongStory for coherent, complete, and length-controlled long story generation. LongStory introduces two novel methodologies: (1) the long and short-term contexts weight calibrator (CWC) and (2) long story structural positions (LSP). The CWC adjusts weights for long-term context Memory and short-term context Cheating, acknowledging their distinct roles. The LSP employs discourse tokens to convey the structural positions of a long story. Trained on three datasets with varied average story lengths, LongStory outperforms other baselines, including the strong story generator Plotmachine, in coherence, completeness, relevance, and repetitiveness. We also perform zero-shot tests on each dataset to assess the model's ability to predict outcomes beyond its training data and validate our methodology by comparing its performance with variants of our model.
Detecting Training Data of Large Language Models via Expectation Maximization
The advancement of large language models has grown parallel to the opacity of their training data. Membership inference attacks (MIAs) aim to determine whether specific data was used to train a model. They offer valuable insights into detecting data contamination and ensuring compliance with privacy and copyright standards. However, MIA for LLMs is challenging due to the massive scale of training data and the inherent ambiguity of membership in texts. Moreover, creating realistic MIA evaluation benchmarks is difficult as training and test data distributions are often unknown. We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm. Our approach leverages the observation that these scores can improve each other: membership scores help identify effective prefixes for detecting training data, while prefix scores help determine membership. As a result, EM-MIA achieves state-of-the-art results on WikiMIA. To enable comprehensive evaluation, we introduce OLMoMIA, a benchmark built from OLMo resources, which allows controlling task difficulty through varying degrees of overlap between training and test data distributions. Our experiments demonstrate EM-MIA is robust across different scenarios while also revealing fundamental limitations of current MIA approaches when member and non-member distributions are nearly identical.
comment: 15 pages
LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation. Our project page and code are at https://xiangbogaobarry.github.io/LangCoop/.
Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge AAAI 2024
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain. Code: https://github.com/shawnricecake/agile-quant
comment: Accepted by AAAI 2024
AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents
A/B testing experiment is a widely adopted method for evaluating UI/UX design decisions in modern web applications. Yet, traditional A/B testing remains constrained by its dependence on the large-scale and live traffic of human participants, and the long time of waiting for the testing result. Through formative interviews with six experienced industry practitioners, we identified critical bottlenecks in current A/B testing workflows. In response, we present AgentA/B, a novel system that leverages Large Language Model-based autonomous agents (LLM Agents) to automatically simulate user interaction behaviors with real webpages. AgentA/B enables scalable deployment of LLM agents with diverse personas, each capable of navigating the dynamic webpage and interactively executing multi-step interactions like search, clicking, filtering, and purchasing. In a demonstrative controlled experiment, we employ AgentA/B to simulate a between-subject A/B testing with 1,000 LLM agents Amazon.com, and compare agent behaviors with real human shopping behaviors at a scale. Our findings suggest AgentA/B can emulate human-like behavior patterns.
Certifying Knowledge Comprehension in LLMs
Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
Codenames as a Benchmark for Large Language Models
In this paper, we propose the use of the popular word-based board game Codenames as a suitable benchmark for evaluating the reasoning capabilities of Large Language Models (LLMs). Codenames presents a highly interesting challenge for achieving successful AI performance, requiring both a sophisticated understanding of language, theory of mind, and epistemic reasoning capabilities. Prior attempts to develop agents for Codenames have largely relied on word embedding techniques, which have a limited vocabulary range and perform poorly when paired with differing approaches. LLMs have demonstrated enhanced reasoning and comprehension capabilities for language-based tasks, but can still suffer in lateral thinking challenges. We evaluate the capabilities of several state-of-the-art LLMs, including GPT-4o, Gemini 1.5, Claude 3.5 Sonnet, and Llama 3.1, across a variety of board setups. Our results indicate that while certain LLMs perform better than others overall, different models exhibit varying emergent behaviours during gameplay and excel at specific roles. We also evaluate the performance of different combinations of LLMs when playing cooperatively together, demonstrating that LLM agents are more generalisable to a wider range of teammates than prior techniques.
comment: 12 pages, 2 figures, 2 tables
Human-Computer Interaction
LACE: Controlled Image Prompting and Iterative Refinement with GenAI for Professional Visual Art Creators
We present LACE, a hybrid Human-AI co-creative system integrated into Adobe Photoshop supporting turn-taking and parallel interaction modes for iterative image generation. Through a study with 21 participants across representational, abstract, and design tasks, we found turn-taking preferred in early stages for idea generation, and parallel modes suited for detailed refinement. While this shorter workshop paper provides key insights and highlights, the comprehensive findings and detailed analysis are presented in a longer version available separately on arXiv.
comment: Accepted at the GenAICHI Workshop at CHI 2025 (4 pages)
EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
comment: Work in progress. Demo: https://zjunlp.github.io/project/EasyEdit2/video; code: https://github.com/zjunlp/EasyEdit
Investigating Youth's Technical and Ethical Understanding of Generative Language Models When Engaging in Construction and Deconstruction Activities
The widespread adoption of generative artificial intelligence/machine learning (AI/ML) technologies has increased the need to support youth in developing AI/ML literacies. However, most work has centered on preparing young people to use these systems, with less attention to how they can participate in designing and evaluating them. This study investigates how engaging young people in the design and auditing of generative language models (GLMs) may foster the development of their understanding of how these systems work from both technical and ethical perspectives. The study takes an in-pieces approach to investigate novices' conceptions of GLMs. Such an approach supports the analysis of how technical and ethical conceptions evolve and relate to each other. I am currently conducting a series of participatory design workshops with sixteen ninth graders (ages 14-15) in which they will (a) build GLMs from a data-driven perspective that glassboxes how data shapes model performance and (b) audit commercial GLMs by repeatedly and systematically querying them to draw inferences about their behaviors. I will analyze participants' interactions to identify ethical and technical conceptions they may exhibit while designing and auditing GLMs. I will also conduct clinical interviews and use microgenetic knowledge analysis and ordered network analysis to investigate how participants' ethical and technical conceptions of GLMs relate to each other and change after the workshop. The study will contribute (a) evidence of how engaging youth in design and auditing activities may support the development of ethical and technical understanding of GLMs and (b) an inventory of novice design and auditing practices that may support youth's technical and ethical understanding of GLMs.
NeuGaze: Reshaping the future BCI
Traditional brain-computer interfaces (BCIs), reliant on costly electroencephalography or invasive implants, struggle with complex human-computer interactions due to setup complexity and limited precision. We present NeuGaze, a novel webcam-based system that leverages eye gaze, head movements, and facial expressions to enable intuitive, real-time control using only a standard 30 Hz webcam, often pre-installed in laptops. Requiring minimal calibration, NeuGaze achieves performance comparable to conventional inputs, supporting precise cursor navigation, key triggering via an efficient skill wheel, and dynamic gaming interactions, such as defeating formidable opponents in first-person games. By harnessing preserved neck-up functionalities in motor-impaired individuals, NeuGaze eliminates the need for specialized hardware, offering a low-cost, accessible alternative to BCIs. This paradigm empowers diverse applications, from assistive technology to entertainment, redefining human-computer interaction for motor-impaired users. Project is at \href{https://github.com/NeuSpeech/NeuGaze}{github.com/NeuSpeech/NeuGaze}.
Optimal Behavior Planning for Implicit Communication using a Probabilistic Vehicle-Pedestrian Interaction Model
In interactions between automated vehicles (AVs) and crossing pedestrians, modeling implicit vehicle communication is crucial. In this work, we present a combined prediction and planning approach that allows to consider the influence of the planned vehicle behavior on a pedestrian and predict a pedestrian's reaction. We plan the behavior by solving two consecutive optimal control problems (OCPs) analytically, using variational calculus. We perform a validation step that assesses whether the planned vehicle behavior is adequate to trigger a certain pedestrian reaction, which accounts for the closed-loop characteristics of prediction and planning influencing each other. In this step, we model the influence of the planned vehicle behavior on the pedestrian using a probabilistic behavior acceptance model that returns an estimate for the crossing probability. The probabilistic modeling of the pedestrian reaction facilitates considering the pedestrian's costs, thereby improving cooperative behavior planning. We demonstrate the performance of the proposed approach in simulated vehicle-pedestrian interactions with varying initial settings and highlight the decision making capabilities of the planning approach.
comment: 8 pages, 5 figures, conference article
Shifts in Doctors' Eye Movements Between Real and AI-Generated Medical Images
Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
comment: This paper was accepted at ETRA 2025 Japan
Distributed Cognition for AI-supported Remote Operations: Challenges and Research Directions
This paper investigates the impact of artificial intelligence integration on remote operations, emphasising its influence on both distributed and team cognition. As remote operations increasingly rely on digital interfaces, sensors, and networked communication, AI-driven systems transform decision-making processes across domains such as air traffic control, industrial automation, and intelligent ports. However, the integration of AI introduces significant challenges, including the reconfiguration of human-AI team cognition, the need for adaptive AI memory that aligns with human distributed cognition, and the design of AI fallback operators to maintain continuity during communication disruptions. Drawing on theories of distributed and team cognition, we analyse how cognitive overload, loss of situational awareness, and impaired team coordination may arise in AI-supported environments. Based on real-world intelligent port scenarios, we propose research directions that aim to safeguard human reasoning and enhance collaborative decision-making in AI-augmented remote operations.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
Large language models (LLMs) increasingly serve as educational tools, yet evaluating their teaching capabilities remains challenging due to the resource-intensive, context-dependent, and methodologically complex nature of teacher-student interactions. We introduce EducationQ, a multi-agent dialogue framework that efficiently assesses teaching capabilities through simulated dynamic educational scenarios, featuring specialized agents for teaching, learning, and evaluation. Testing 14 LLMs across major AI Organizations (OpenAI, Meta, Google, Anthropic, and others) on 1,498 questions spanning 13 disciplines and 10 difficulty levels reveals that teaching effectiveness does not correlate linearly with model scale or general reasoning capabilities - with some smaller open-source models outperforming larger commercial counterparts in teaching contexts. This finding highlights a critical gap in current evaluations that prioritize knowledge recall over interactive pedagogy. Our mixed-methods evaluation, combining quantitative metrics with qualitative analysis and expert case studies, identifies distinct pedagogical strengths employed by top-performing models (e.g., sophisticated questioning strategies, adaptive feedback mechanisms). Human expert evaluations show 78% agreement with our automated qualitative analysis of effective teaching behaviors, validating our methodology. EducationQ demonstrates that LLMs-as-teachers require specialized optimization beyond simple scaling, suggesting next-generation educational AI prioritize targeted enhancement of specific pedagogical effectiveness.
Multimodal Non-Semantic Feature Fusion for Predicting Segment Access Frequency in Lecture Archives
This study proposes a multimodal neural network-based approach to predict segment access frequency in lecture archives. These archives, widely used as supplementary resources in modern education, often consist of long, unedited recordings that make it difficult to keep students engaged. Captured directly from face-to-face lectures without post-processing, they lack visual appeal. Meanwhile, the increasing volume of recorded material renders manual editing and annotation impractical. Automatically detecting high-engagement segments is thus crucial for improving accessibility and maintaining learning effectiveness. Our research focuses on real classroom lecture archives, characterized by unedited footage, no additional hardware (e.g., eye-tracking), and limited student numbers. We approximate student engagement using segment access frequency as a proxy. Our model integrates multimodal features from teachers' actions (via OpenPose and optical flow), audio spectrograms, and slide page progression. These features are deliberately chosen for their non-semantic nature, making the approach applicable regardless of lecture language. Experiments show that our best model achieves a Pearson correlation of 0.5143 in 7-fold cross-validation and 69.32 percent average accuracy in a downstream three-class classification task. The results, obtained with high computational efficiency and a small dataset, demonstrate the practical feasibility of our system in real-world educational contexts.
comment: 16 pages, 7 figures. Preliminary version; work in progress
Bridging Generations: Augmented Reality for Japanese Wartime Oral History
In this position paper, the author presents a process artifact that aims to serve as an archival and educational tool that revitalizes World War II oral histories in Japan. First, the author introduces the historical background and how the work is informed by the positionality of the author. Then, the author presents features of the artifact using references to interview footage of the author's grandmother and grandaunt sharing their firsthand accounts of the 1945 Tokyo Air Raids. The affordances and barriers of this application of augmented reality is discussed and a included is a list of questions to be posed at the workshop.
comment: Presented at CHI 2025 (arXiv:2504.07475)
LACE: Exploring Turn-Taking and Parallel Interaction Modes in Human-AI Co-Creation for Iterative Image Generation
This paper introduces LACE, a co-creative system enabling professional artists to leverage generative AI through controlled prompting and iterative refinement within Photoshop. Addressing challenges in precision, iterative coherence, and workflow compatibility, LACE allows flexible control via layer-based editing and dual-mode collaboration (turn-taking and parallel). A pilot study (N=21) demonstrates significant improvements in user satisfaction, ownership, usability, and artistic perception compared to standard AI workflows. We offer comprehensive findings, system details, nuanced user feedback, and implications for integrating generative AI in professional art practices.
comment: Extended version of the short paper accepted at the GenAICHI Workshop at CHI 2025. Includes additional results, analysis, qualitative feedback, and discussion
Completing A Systematic Review in Hours instead of Months with Interactive AI Agents
Systematic reviews (SRs) are vital for evidence-based practice in high stakes disciplines, such as healthcare, but are often impeded by intensive labors and lengthy processes that can take months to complete. Due to the high demand for domain expertise, existing automatic summarization methods fail to accurately identify relevant studies and generate high-quality summaries. To that end, we introduce InsightAgent, a human-centered interactive AI agent powered by large language models that revolutionize this workflow. InsightAgent partitions a large literature corpus based on semantics and employs a multi-agent design for more focused processing of literature, leading to significant improvement in the quality of generated SRs. InsightAgent also provides intuitive visualizations of the corpus and agent trajectories, allowing users to effortlessly monitor the actions of the agent and provide real-time feedback based on their expertise. Our user studies with 9 medical professionals demonstrate that the visualization and interaction mechanisms can effectively improve the quality of synthesized SRs by 27.2%, reaching 79.7% of human-written quality. At the same time, user satisfaction is improved by 34.4%. With InsightAgent, it only takes a clinician about 1.5 hours, rather than months, to complete a high-quality systematic review.
Real-Time Sleepiness Detection for Driver State Monitoring System
A driver face monitoring system can detect driver fatigue, which is a significant factor in many accidents, using computer vision techniques. In this paper, we present a real-time technique for driver eye state detection. First, the face is detected, and the eyes are located within the face region for tracking. A normalized cross-correlation-based online dynamic template matching technique, combined with Kalman filter tracking, is proposed to track the detected eye positions in subsequent image frames. A support vector machine with histogram of oriented gradients (HOG) features is used to classify the state of the eyes as open or closed. If the eyes remain closed for a specified period, the driver is considered to be asleep, and an alarm is triggered.
comment: 8 pages, published in GST 2015
Exploring Collaborative GenAI Agents in Synchronous Group Settings: Eliciting Team Perceptions and Design Considerations for the Future of Work SC
While generative artificial intelligence (GenAI) is finding increased adoption in workplaces, current tools are primarily designed for individual use. Prior work established the potential for these tools to enhance personal creativity and productivity towards shared goals; however, we don't know yet how to best take into account the nuances of group work and team dynamics when deploying GenAI in work settings. In this paper, we investigate the potential of collaborative GenAI agents to augment teamwork in synchronous group settings through an exploratory study that engaged 25 professionals across 6 teams in speculative design workshops and individual follow-up interviews. Our workshops included a mixed reality provotype to simulate embodied collaborative GenAI agents capable of actively participating in group discussions. Our findings suggest that, if designed well, collaborative GenAI agents offer valuable opportunities to enhance team problem-solving by challenging groupthink, bridging communication gaps, and reducing social friction. However, teams' willingness to integrate GenAI agents depended on its perceived fit across a number of individual, team, and organizational factors. We outline the key design tensions around agent representation, social prominence, and engagement and highlight the opportunities spatial and immersive technologies could offer to modulate GenAI influence on team outcomes and strike a balance between augmentation and agency.
comment: To be published in ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2025). 33 pages, 11 figures, 1 table
Script2Screen: Supporting Dialogue Scriptwriting with Interactive Audiovisual Generation
Scriptwriting has traditionally been text-centric, a modality that only partially conveys the produced audiovisual experience. A formative study with professional writers informed us that connecting textual and audiovisual modalities can aid ideation and iteration, especially for writing dialogues. In this work, we present Script2Screen, an AI-assisted tool that integrates scriptwriting with audiovisual scene creation in a unified, synchronized workflow. Focusing on dialogues in scripts, Script2Screen generates expressive scenes with emotional speeches and animated characters through a novel text-to-audiovisual-scene pipeline. The user interface provides fine-grained controls, allowing writers to fine-tune audiovisual elements such as character gestures, speech emotions, and camera angles. A user study with both novice and professional writers from various domains demonstrated that Script2Screen's interactive audiovisual generation enhances the scriptwriting process, facilitating iterative refinement while complementing, rather than replacing, their creative efforts.
"Ohhh, He's the Boss!": Unpacking Power Dynamics Among Developers, Designers, and End-Users in FLOSS Usability SC
Addressing usability in free, libre, and open-source software (FLOSS) is a challenging issue, particularly due to a long-existing "by developer, for developer" mentality. Engaging designers and end-users to work with developers can help improve its usability, but unequal power dynamics among those stakeholder roles must be mitigated. To explore how the power of different FLOSS stakeholders manifests and can be mediated during collaboration, we conducted eight design workshops with different combinations of key FLOSS stakeholders (i.e., developers, designers, and end-users). Leveraging existing theories on Dimensions of Power, we revealed how participants navigate existing role-based power structures through resource utilization, knowledge gap management, and experience referencing. We also observed that participants exhibited diverse behaviors confirming and challenging the status quo of FLOSS usability. Overall, our results contribute to a comprehensive understanding of the power dynamics among FLOSS stakeholders, providing valuable insights into ways to balance their power to improve FLOSS usability. Our work also serves as an exemplar of using design workshops as a research method to study power dynamics during collaboration that are usually hidden in the field.
comment: 30 pages, 4 figures, Accepted to ACM CSCW 2025
From Overload to Insight: Scaffolding Creative Ideation through Structuring Inspiration
Creative ideation relies on exploring diverse stimuli, but the overwhelming abundance of information often makes it difficult to identify valuable insights or reach the `aha' moment. Traditional methods for accessing design stimuli lack organization and fail to support users in discovering promising opportunities within large idea spaces. In this position paper, we explore how AI can be leveraged to structure, organize, and surface relevant stimuli, guiding users in both exploring idea spaces and mapping insights back to their design challenges.
comment: 2025 CHI workshop
Under Pressure: Contextualizing Workplace Stress Towards User-Centered Interventions
Stress is a pervasive challenge that significantly impacts worker health and well-being. Workplace stress is driven by various factors, ranging from organizational changes to poor workplace design. Although individual stress management strategies have been shown to be effective, current interventions often overlook personal and contextual factors shaping stress experiences. In this study, we conducted semi-structured interviews with eight office workers to gain a deeper understanding of their personal experiences with workplace stress. Our analysis reveals key stress triggers, coping mechanisms, and reflections on past stressful events. We highlight the multifaceted and individualized nature of workplace stress, emphasizing the importance of intervention timing, modality, and recognizing that stress is not solely a negative experience but can also have positive effects. Our findings provide actionable insights for the design of user-centered stress management solutions more attuned to the needs of office workers.
comment: CHI EA '25: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems
Understanding the Perceptions of Trigger Warning and Content Warning on Social Media Platforms in the U.S
The prevalence of distressing content on social media raises concerns about users' mental well-being, prompting the use of trigger warnings (TW) and content warnings (CW). However, inconsistent implementation of TW/CW across platforms and the lack of standardized practices confuse users regarding these warnings. To better understand how users experienced and utilized these warnings, we conducted a semi-structured interview study with 15 general social media users. Our findings reveal challenges across three key stakeholders: viewers, who need to decide whether to engage with warning-labeled content; posters, who struggle with whether and how to apply TW/CW to the content; and platforms, whose design features shape the visibility and usability of warnings. While users generally expressed positive attitudes toward warnings, their understanding of TW/CW usage was limited. Based on these insights, we proposed a conceptual framework of the TW/CW mechanisms from multiple stakeholders' perspectives. Lastly, we further reflected on our findings and discussed the opportunities for social media platforms to enhance users' TW/CW experiences, fostering a more trauma-informed social media environment.
Players' Perception of Bugs and Glitches in Video Games: An Exploratory Study
The goal of this exploratory research is to investigate how glitches and bugs within video games affect a players overall experience. The severity or frequency of bugs, as well as the nature of the bugs present, could influence how the players perceive these interactions. Another factor is the players personality because this will affect their motivations for playing certain games as well as how they react to bugs within these games. Glitches and bugs are framed as a negative aspect within games, but create the potential for enjoyable experiences, despite being unexpected. To explore this hypothesis, I observed some glitches within recorded gameplay via YouTube and Twitch livestream VODs and analyzed the streamers reaction, as well as the audiences. I also conducted semi-structured interviews with gamers with the goal of learning more about that players personality and attitudes towards bugs in the games they play. I concluded that the types of bugs matter less to the players than how frequently they occur, the context they occur, and the outcome of them.
comment: 13 pages, 1 figure
Vision6D: 3D-to-2D Interactive Visualization and Annotation Tool for 6D Pose Estimation
Accurate 6D pose estimation has gained more attention over the years for robotics-assisted tasks that require precise interaction with physical objects. This paper presents an interactive 3D-to-2D visualization and annotation tool to support the 6D pose estimation research community. To the best of our knowledge, the proposed work is the first tool that allows users to visualize and manipulate 3D objects interactively on a 2D real-world scene, along with a comprehensive user study. This system supports robust 6D camera pose annotation by providing both visual cues and spatial relationships to determine object position and orientation in various environments. The annotation feature in Vision6D is particularly helpful in scenarios where the transformation matrix between the camera and world objects is unknown, as it enables accurate annotation of these objects' poses using only the camera intrinsic matrix. This capability serves as a foundational step in developing and training advanced pose estimation models across various domains. We evaluate Vision6D's effectiveness by utilizing widely-used open-source pose estimation datasets Linemod and HANDAL through comparisons between the default ground-truth camera poses with manual annotations. A user study was performed to show that Vision6D generates accurate pose annotations via visual cues in an intuitive 3D user interface. This approach aims to bridge the gap between 2D scene projections and 3D scenes, offering an effective way for researchers and developers to solve 6D pose annotation related problems. The software is open-source and publicly available at https://github.com/InteractiveGL/vision6D.
"The Diagram is like Guardrails": Structuring GenAI-assisted Hypotheses Exploration with an Interactive Shared Representation
Data analysis encompasses a spectrum of tasks, from high-level conceptual reasoning to lower-level execution. While AI-powered tools increasingly support execution tasks, there remains a need for intelligent assistance in conceptual tasks. This paper investigates the design of an ordered node-link tree interface augmented with AI-generated information hints and visualizations, as a potential shared representation for hypothesis exploration. Through a design probe (n=22), participants generated diagrams averaging 21.82 hypotheses. Our findings showed that the node-link diagram acts as "guardrails" for hypothesis exploration, facilitating structured workflows, providing comprehensive overviews, and enabling efficient backtracking. The AI-generated information hints, particularly visualizations, aided users in transforming abstract ideas into data-backed concepts while reducing cognitive load. We further discuss how node-link diagrams can support both parallel exploration and iterative refinement in hypothesis formulation, potentially enhancing the breadth and depth of human-AI collaborative data analysis.
Telegram as a Battlefield: Kremlin-related Communications during the Russia-Ukraine Conflict
Telegram emerged as a crucial platform for both parties during the conflict between Russia and Ukraine. Per its minimal policies for content moderation, Pro-Kremlin narratives and potential misinformation were spread on Telegram, while anti-Kremlin narratives with related content were also propagated, such as war footage, troop movements, maps of bomb shelters, and air raid warnings. This paper presents a dataset of posts from both pro-Kremlin and anti-Kremlin Telegram channels, collected over a period spanning a year before and a year after the Russian invasion. The dataset comprises 404 pro-Kremlin channels with 4,109,645 posts and 114 anti-Kremlin channels with 1,117,768 posts. We provide details on the data collection process, processing methods, and dataset characterization. Lastly, we discuss the potential research opportunities this dataset may enable researchers across various disciplines.
VibWalk: Mapping Lower-limb Haptic Experiences of Everyday Walking
Walking is among the most common human activities where the feet can gather rich tactile information from the ground. The dynamic contact between the feet and the ground generates vibration signals that can be sensed by the foot skin. While existing research focuses on foot pressure sensing and lower-limb interactions, methods of decoding tactile information from foot vibrations remain underexplored. Here, we propose a foot-equipped wearable system capable of recording wideband vibration signals during walking activities. By enabling location-based recording, our system generates maps of haptic data that encode information on ground materials, lower-limb activities, and road conditions. Its efficacy was demonstrated through studies involving 31 users walking over 18 different ground textures, achieving an overall identification accuracy exceeding 95\% (cross-user accuracy of 87\%). Our system allows pedestrians to map haptic information through their daily walking activities, which has potential applications in creating digitalized walking experiences and monitoring road conditions.
comment: 17 pages, 12 figures
AIJIM: A Scalable Model for Real-Time AI in Environmental Journalism
Environmental journalism is vital for raising awareness of ecological crises and supporting evidence-based policy, yet traditional methods suffer from delays, limited scalability, and lack of coverage in under-monitored regions. This paper introduces the Artificial Intelligence Journalism Integration Model (AIJIM), a conceptual and transferable theoretical model that structures real-time, AI-supported environmental journalism workflows. AIJIM combines citizen-sourced image data, automated hazard detection, dual-level validation (visual and textual), and AI-generated reporting. Validated through a pilot study in Mallorca, AIJIM achieved significant improvements in reporting speed and accuracy, while maintaining transparency and ethical oversight through Explainable AI (XAI), GDPR compliance, and community review. The model demonstrates high transferability and offers a new benchmark for scalable, responsible, and participatory journalism at the intersection of environmental communication and artificial intelligence.
comment: 22 pages, 10 figures, 5 tables. Keywords: Artificial Intelligence, Environmental Journalism, Real-Time Reporting, Vision Transformers, Image Recognition, Crowdsourced Validation, GPT-4, Automated News Generation, GIS Integration, Data Privacy Compliance, Explainable AI (XAI), AI Ethics, Sustainable Development
Exploring Commonalities in Explanation Frameworks: A Multi-Domain Survey Analysis
This study presents insights gathered from surveys and discussions with specialists in three domains, aiming to find essential elements for a universal explanation framework that could be applied to these and other similar use cases. The insights are incorporated into a software tool that utilizes GP algorithms, known for their interpretability. The applications analyzed include a medical scenario (involving predictive ML), a retail use case (involving prescriptive ML), and an energy use case (also involving predictive ML). We interviewed professionals from each sector, transcribing their conversations for further analysis. Additionally, experts and non-experts in these fields filled out questionnaires designed to probe various dimensions of explanatory methods. The findings indicate a universal preference for sacrificing a degree of accuracy in favor of greater explainability. Additionally, we highlight the significance of feature importance and counterfactual explanations as critical components of such a framework. Our questionnaires are publicly available to facilitate the dissemination of knowledge in the field of XAI.
TelePreview: A User-Friendly Teleoperation System with Virtual Arm Assistance for Enhanced Effectiveness
Teleoperation provides an effective way to collect robot data, which is crucial for learning from demonstrations. In this field, teleoperation faces several key challenges: user-friendliness for new users, safety assurance, and transferability across different platforms. While collecting real robot dexterous manipulation data by teleoperation to train robots has shown impressive results on diverse tasks, due to the morphological differences between human and robot hands, it is not only hard for new users to understand the action mapping but also raises potential safety concerns during operation. To address these limitations, we introduce TelePreview. This teleoperation system offers real-time visual feedback on robot actions based on human user inputs, with a total hardware cost of less than $1,000. TelePreview allows the user to see a virtual robot that represents the outcome of the user's next movement. By enabling flexible switching between command visualization and actual execution, this system helps new users learn how to demonstrate quickly and safely. We demonstrate that it outperforms other teleoperation systems across five tasks, emphasize its ease of use, and highlight its straightforward deployment across diverse robotic platforms. We release our code and a deployment document on our website https://nus-lins-lab.github.io/telepreview-web/.
comment: In submission
UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents
Usability testing is a fundamental research method that user experience (UX) researchers use to evaluate and iterate a web design, but\textbf{ how to evaluate and iterate the usability testing study design } itself? Recent advances in Large Language Model-simulated Agent (\textbf{LLM Agent}) research inspired us to design \textbf{UXAgent} to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human-subject study. Our system features a Persona Generator module, an LLM Agent module, and a Universal Browser Connector module to automatically generate thousands of simulated users to interactively test the target website. The system also provides an Agent Interview Interface and a Video Replay Interface so that the UX researchers can easily review and analyze the generated qualitative and quantitative log data. Through a heuristic evaluation, five UX researcher participants praised the innovation of our system but also expressed concerns about the future of LLM Agent usage in UX studies.
AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents
A/B testing experiment is a widely adopted method for evaluating UI/UX design decisions in modern web applications. Yet, traditional A/B testing remains constrained by its dependence on the large-scale and live traffic of human participants, and the long time of waiting for the testing result. Through formative interviews with six experienced industry practitioners, we identified critical bottlenecks in current A/B testing workflows. In response, we present AgentA/B, a novel system that leverages Large Language Model-based autonomous agents (LLM Agents) to automatically simulate user interaction behaviors with real webpages. AgentA/B enables scalable deployment of LLM agents with diverse personas, each capable of navigating the dynamic webpage and interactively executing multi-step interactions like search, clicking, filtering, and purchasing. In a demonstrative controlled experiment, we employ AgentA/B to simulate a between-subject A/B testing with 1,000 LLM agents Amazon.com, and compare agent behaviors with real human shopping behaviors at a scale. Our findings suggest AgentA/B can emulate human-like behavior patterns.
Peripheral Teleportation: A Rest Frame Design to Mitigate Cybersickness During Virtual Locomotion
Mitigating cybersickness can improve the usability of virtual reality (VR) and increase its adoption. The most widely used technique, dynamic field-of-view (FOV) restriction, mitigates cybersickness by blacking out the peripheral region of the user's FOV. However, this approach reduces the visibility of the virtual environment. We propose peripheral teleportation, a novel technique that creates a rest frame (RF) in the user's peripheral vision using content rendered from the current virtual environment. Specifically, the peripheral region is rendered by a pair of RF cameras whose transforms are updated by the user's physical motion. We apply alternating teleportations during translations, or snap turns during rotations, to the RF cameras to keep them close to the current viewpoint transformation. Consequently, the optical flow generated by RF cameras matches the user's physical motion, creating a stable peripheral view. In a between-subjects study (N = 90), we compared peripheral teleportation with a traditional black FOV restrictor and an unrestricted control condition. The results showed that peripheral teleportation significantly reduced discomfort and enabled participants to stay immersed in the virtual environment for a longer duration of time. Overall, these findings suggest that peripheral teleportation is a promising technique that VR practitioners may consider adding to their cybersickness mitigation toolset.
comment: Accepted to IEEE VR 2025
See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
Recent developments in multimodal large language models (MLLM) have equipped language models to reason about vision and language jointly. This permits MLLMs to both perceive and answer questions about data visualization across a variety of designs and tasks. Applying MLLMs to a broad range of visualization tasks requires us to properly evaluate their capabilities, and the most common way to conduct evaluation is through measuring a model's visualization reasoning capability, analogous to how we would evaluate human understanding of visualizations (e.g., visualization literacy). However, we found that in the context of visualization question answering (VisQA), how an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem. During the evaluation, even without visualization, the model could correctly answer a substantial portion of the visualization test questions, regardless of whether any selection options were provided. We hypothesize that the vast amount of knowledge encoded in the language model permits factual recall that supersedes the need to seek information from the visual signal. It raises concerns that the current VisQA evaluation may not fully capture the models' visualization reasoning capabilities. To address this, we propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table to disentangle the effects of "seeing" (visual processing) and "recall" (reliance on prior knowledge). This validates VisQA datasets for evaluation, highlighting where models are truly "seeing", positively or negatively affected by the factual recall, or relying on inductive biases for question answering. Our study underscores the need for careful consideration in designing future visualization understanding studies when utilizing MLLMs.
Emerging Reliance Behaviors in Human-AI Content Grounded Data Generation: The Role of Cognitive Forcing Functions and Hallucinations
We investigate the impact of hallucinations and Cognitive Forcing Functions in human-AI collaborative content-grounded data generation, focusing on the use of Large Language Models (LLMs) to assist in generating high quality conversational data. Through a study with 34 users who each completed 8 tasks (n=272), we found that hallucinations significantly reduce data quality. While Cognitive Forcing Functions do not always alleviate these effects, their presence influences how users integrate AI responses. Specifically, we observed emerging reliance behaviors, with users often appending AI-generated responses to their correct answers, even when the AI's suggestions conflicted. This points to a potential drawback of Cognitive Forcing Functions, particularly when AI suggestions are inaccurate. Users who overrelied on AI-generated text produced lower quality data, emphasizing the nuanced dynamics of overreliance in human-LLM collaboration compared to traditional human-AI decision-making.
Human-Computer Interaction
Building babyGPTs: Youth Engaging in Data Practices and Ethical Considerations through the Construction of Generative Language Models
As generative language models (GLMs) have gained popularity, youth are increasingly using them in their everyday lives. As such, most research has centered on supporting youth as users of GLM-powered systems. However, we know little of how to engage youth in the design of these models. Building on the rich legacy of child-computer interaction research that positions youth as designers of computing systems, we explore how to support young people in designing GLMs. Through a case study of three teenagers (ages 14-15) building a babyGPT screenplay generator, we illustrate how the team developed a model while engaging in artificial intelligence/machine learning-relevant data practices and addressing ethical issues. This paper contributes a case study that demonstrates the feasibility of engaging youth in building GLMs.
Steering Semantic Data Processing With DocWrangler
Unstructured text has long been difficult to automatically analyze at scale. Large language models (LLMs) now offer a way forward by enabling {\em semantic data processing}, where familiar data processing operators (e.g., map, reduce, filter) are powered by LLMs instead of code. However, building effective semantic data processing pipelines presents a departure from traditional data pipelines: users need to understand their data to write effective pipelines, yet they need to construct pipelines to extract the data necessary for that understanding -- all while navigating LLM idiosyncrasies and inconsistencies. We present \docwrangler, a mixed-initiative integrated development environment (IDE) for semantic data processing with three novel features to address the gaps between the user, their data, and their pipeline: {\em (i) In-Situ User Notes} that allows users to inspect, annotate, and track observations across documents and LLM outputs, {\em (ii) LLM-Assisted Prompt Refinement} that transforms user notes into improved operations, and {\em (iii) LLM-Assisted Operation Decomposition} that identifies when operations or documents are too complex for the LLM to correctly process and suggests decompositions. Our evaluation combines a think-aloud study with 10 participants and a public-facing deployment (available at \href{https://docetl.org/playground}{docetl.org/playground}) with 1,500+ recorded sessions, revealing how users develop systematic strategies for their semantic data processing tasks; e.g., transforming open-ended operations into classifiers for easier validation and intentionally using vague prompts to learn more about their data or LLM capabilities.
comment: 18 pages; 11 figures; 3 tables
GLITTER: An AI-assisted Platform for Material-Grounded Asynchronous Discussion in Flipped Learning
Flipped classrooms promote active learning by having students engage with materials independently before class, allowing in-class time for collaborative problem-solving. During this pre-class phase, asynchronous online discussions help students build knowledge and clarify concepts with peers. However, it remains difficult to engage with temporally dispersed peer contributions, connect discussions with static learning materials, and prepare for in-class sessions based on their self-learning outcome. Our formative study identified cognitive challenges students encounter, including navigation barriers, reflection gaps, and contribution difficulty and anxiety. We present GLITTER, an AI-assisted discussion platform for pre-class learning in flipped classrooms. GLITTER helps students identify posts with shared conceptual dimensions, scaffold knowledge integration through conceptual blending, and enhance metacognition via personalized reflection reports. A lab study within subjects (n = 12) demonstrates that GLITTER improves discussion engagement, sparks new ideas, supports reflection, and increases preparedness for in-class activities.
Designing AI Systems that Augment Human Performed vs. Demonstrated Critical Thinking
The recent rapid advancement of LLM-based AI systems has accelerated our search and production of information. While the advantages brought by these systems seemingly improve the performance or efficiency of human activities, they do not necessarily enhance human capabilities. Recent research has started to examine the impact of generative AI on individuals' cognitive abilities, especially critical thinking. Based on definitions of critical thinking across psychology and education, this position paper proposes the distinction between demonstrated and performed critical thinking in the era of generative AI and discusses the implication of this distinction in research and development of AI systems that aim to augment human critical thinking.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning,
AI Literacy Education for Older Adults: Motivations, Challenges and Preferences
As Artificial Intelligence (AI) becomes increasingly integrated into older adults' daily lives, equipping them with the knowledge and skills to understand and use AI is crucial. However, most research on AI literacy education has focused on students and children, leaving a gap in understanding the unique needs of older adults when learning about AI. To address this, we surveyed 103 older adults aged 50 and above (Mean = 64, SD = 7). Results revealed that they found it important and were motivated to learn about AI because they wish to harness the benefits and avoid the dangers of AI, seeing it as necessary to cope in the future. However, they expressed learning challenges such as difficulties in understanding and not knowing how to start learning AI. Particularly, a strong preference for hands-on learning was indicated. We discussed design opportunities to support AI literacy education for older adults.
comment: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems
Explainability for Embedding AI: Aspirations and Actuality
With artificial intelligence (AI) embedded in many everyday software systems, effectively and reliably developing and maintaining AI systems becomes an essential skill for software developers. However, the complexity inherent to AI poses new challenges. Explainable AI (XAI) may allow developers to understand better the systems they build, which, in turn, can help with tasks like debugging. In this paper, we report insights from a series of surveys with software developers that highlight that there is indeed an increased need for explanatory tools to support developers in creating AI systems. However, the feedback also indicates that existing XAI systems still fall short of this aspiration. Thus, we see an unmet need to provide developers with adequate support mechanisms to cope with this complexity so they can embed AI into high-quality software in the future.
comment: Second Workshop on Engineering Interactive Systems Embedding AI Technologies at EICS 2024, Tuesday June 25th, 2024 - Cagliary, Sardinia, Italy
UFO2: The Desktop AgentOS
Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.
comment: The source code of UFO2 is publicly available at https://github.com/microsoft/UFO/, with comprehensive documentation provided at https://microsoft.github.io/UFO/
K2MUSE: A human lower limb multimodal dataset under diverse conditions for facilitating rehabilitation robotics
The natural interaction and control performance of lower limb rehabilitation robots are closely linked to biomechanical information from various human locomotion activities. Multidimensional human motion data significantly deepen the understanding of the complex mechanisms governing neuromuscular alterations, thereby facilitating the development and application of rehabilitation robots in multifaceted real-world environments. However, currently available lower limb datasets are inadequate for supplying the essential multimodal data and large-scale gait samples necessary for effective data-driven approaches, and they neglect the significant effects of acquisition interference in real applications.To fill this gap, we present the K2MUSE dataset, which includes a comprehensive collection of multimodal data, comprising kinematic, kinetic, amplitude-mode ultrasound (AUS), and surface electromyography (sEMG) measurements. The proposed dataset includes lower limb multimodal data from 30 able-bodied participants walking under different inclines (0$^\circ$, $\pm$5$^\circ$, and $\pm$10$^\circ$), various speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s), and different nonideal acquisition conditions (muscle fatigue, electrode shifts, and inter-day differences). The kinematic and ground reaction force data were collected via a Vicon motion capture system and an instrumented treadmill with embedded force plates, whereas the sEMG and AUS data were synchronously recorded for thirteen muscles on the bilateral lower limbs. This dataset offers a new resource for designing control frameworks for rehabilitation robots and conducting biomechanical analyses of lower limb locomotion. The dataset is available at https://k2muse.github.io/.
comment: 23 pages, 13 figures,4 tables
HealthGenie: Empowering Users with Healthy Dietary Guidance through Knowledge Graph and Large Language Models
Seeking dietary guidance often requires navigating complex professional knowledge while accommodating individual health conditions. Knowledge Graphs (KGs) offer structured and interpretable nutritional information, whereas Large Language Models (LLMs) naturally facilitate conversational recommendation delivery. In this paper, we present HealthGenie, an interactive system that combines the strengths of LLMs and KGs to provide personalized dietary recommendations along with hierarchical information visualization for a quick and intuitive overview. Upon receiving a user query, HealthGenie performs query refinement and retrieves relevant information from a pre-built KG. The system then visualizes and highlights pertinent information, organized by defined categories, while offering detailed, explainable recommendation rationales. Users can further tailor these recommendations by adjusting preferences interactively. Our evaluation, comprising a within-subject comparative experiment and an open-ended discussion, demonstrates that HealthGenie effectively supports users in obtaining personalized dietary guidance based on their health conditions while reducing interaction effort and cognitive load. These findings highlight the potential of LLM-KG integration in supporting decision-making through explainable and visualized information. We examine the system's usefulness and effectiveness with an N=12 within-subject study and provide design considerations for future systems that integrate conversational LLM and KG.
Virtual Reality for Urban Walkability Assessment
Traditional urban planning methodologies often fail to capture the complexity of contemporary urbanization and environmental sustainability challenges. This study investigates the integration of Generative Design, Virtual Reality (VR), and Digital Twins (DT) to enhance walkability in urban planning. VR provides distinct benefits over conventional approaches, including 2D maps, static renderings, and physical models, by allowing stakeholders to engage with urban designs more intuitively, identify walkability challenges, and suggest iterative improvements. Preliminary findings from structured interviews with Eindhoven residents provide critical insights into pedestrian preferences and walkability considerations. The next phase of the study involves the development of VR-DT integrated prototypes to simulate urban environments, assess walkability, and explore the role of Generative Design in generating adaptive urban planning solutions. The objective is to develop a decision-support tool that enables urban planners to incorporate diverse stakeholder perspectives, optimize pedestrian-oriented urban design, and advance regenerative development principles. By leveraging these emerging technologies, this research contributes to the evolution of data-driven, participatory urban planning frameworks aimed at fostering sustainable and walkable cities.
comment: Presented at CHI 2025 (arXiv:2504.07475)
Prompt-Hacking: The New p-Hacking?
As Large Language Models (LLMs) become increasingly embedded in empirical research workflows, their use as analytical tools raises pressing concerns for scientific integrity. This opinion paper draws a parallel between "prompt-hacking", the strategic tweaking of prompts to elicit desirable outputs from LLMs, and the well-documented practice of "p-hacking" in statistical analysis. We argue that the inherent biases, non-determinism, and opacity of LLMs make them unsuitable for data analysis tasks demanding rigor, impartiality, and reproducibility. We emphasize how researchers may inadvertently, or even deliberately, adjust prompts to confirm hypotheses while undermining research validity. We advocate for a critical view of using LLMs in research, transparent prompt documentation, and clear standards for when LLM use is appropriate. We discuss how LLMs can replace traditional analytical methods, whereas we recommend that LLMs should only be used with caution, oversight, and justification.
Going Down the Abstraction Stream with Augmented Reality and Tangible Robots: the Case of Vector Instruction
Despite being used in many engineering and scientific areas such as physics and mathematics and often taught in high school, graphical vector addition turns out to be a topic prone to misconceptions in understanding even at university-level physics classes. To improve the learning experience and the resulting understanding of vectors, we propose to investigate how concreteness fading implemented with the use of augmented reality and tangible robots could help learners to build a strong representation of vector addition. We design a gamified learning environment consisting of three concreteness fading stages and conduct an experiment with 30 participants. Our results shows a positive learning gain. We analyze extensively the behavior of the participants to understand the usage of the technological tools -- augmented reality and tangible robots -- during the learning scenario. Finally, we discuss how the combination of these tools shows real advantages in implementing the concreteness fading paradigm. Our work provides empirical insights into how users utilize concrete visualizations conveyed by a haptic-enabled robot and augmented reality in a learning scenario.
Should Benevolent Deception be Allowed in EHMI? A Mechanism Explanation Based on Game Theory
The application of external human-machine interface (EHMI) on autonomous vehicles (AVs) facilitates information exchange. Existing research fails to consider the impact of the sequence of actions, as well as the effects of EHMI applications and deception, raising the question of whether benevolent, well-intentioned deception should be permitted (i.e., misleading statements that are intended to benefit both parties). We established a game theory based EHMI information disclosure framework for AVs in this study. In considering benevolent deception, this framework divided the decision-making process into three stages, respectively encompassing three key questions: whether to disclose, when to disclose, and what type of intention information to disclose. The results show that theoretical advantages of deception exist in certain cases when AV expects to maximize the safety of the interaction. In 40 out of 484 cases (8.3%), safety can be enhanced through successful deception. Those successful deceptions fall into two categories: 1) In 28 of these cases, the straight-going AV expected the left-turning HV to yield, while HV exhibited lower speed and higher acceleration; 2) In 12 of these cases, AV expected HV to proceed first, while HV exhibited higher speed and lower acceleration. We also conducted a VR-based driving simulation experiment, and the results confirmed our conclusion. Additionally, we found that when participants had low trust in the EHMI, its use negatively impacted interaction efficiency instead. This study aims to analyze the mechanisms of EHMI information disclosure and contribute to the ongoing discourse on the ethical framework governing autonomous driving systems.
The Ephemeral Shadow: Hyperreal Beings in Stimulative Performance
The Ephemeral Shadow is an interactive art installation centered on the concept of "simulacrum," focusing on the reconstruction of subjectivity at the intersection of reality and virtuality. Drawing inspiration from the aesthetic imagery of traditional shadow puppetry, the installation combines robotic performance and digital projection to create a multi-layered visual space, presenting a progressively dematerialized hyperreal experience. By blurring the audience's perception of the boundaries between entity and image, the work employs the replacement of physical presence with imagery as its core technique, critically reflecting on issues of technological subjectivity, affective computing, and ethics. Situated within the context of posthumanism and digital media, the installation prompts viewers to contemplate: as digital technologies increasingly approach and simulate "humanity," how can we reshape identity and perception while safeguarding the core values and ethical principles of human subjectivity?
Biased by Design: Leveraging AI Biases to Enhance Critical Thinking of News Readers
This paper explores the design of a propaganda detection tool using Large Language Models (LLMs). Acknowledging the inherent biases in AI models, especially in political contexts, we investigate how these biases might be leveraged to enhance critical thinking in news consumption. Countering the typical view of AI biases as detrimental, our research proposes strategies of user choice and personalization in response to a user's political stance, applying psychological concepts of confirmation bias and cognitive dissonance. We present findings from a qualitative user study, offering insights and design recommendations (bias awareness, personalization and choice, and gradual introduction of diverse perspectives) for AI tools in propaganda detection.
comment: European Conference on Information Systems (ECIS)
VizTA: Enhancing Comprehension of Distributional Visualization with Visual-Lexical Fused Conversational Interface
Comprehending visualizations requires readers to interpret visual encoding and the underlying meanings actively. This poses challenges for visualization novices, particularly when interpreting distributional visualizations that depict statistical uncertainty. Advancements in LLM-based conversational interfaces show promise in promoting visualization comprehension. However, they fail to provide contextual explanations at fine-grained granularity, and chart readers are still required to mentally bridge visual information and textual explanations during conversations. Our formative study highlights the expectations for both lexical and visual feedback, as well as the importance of explicitly linking these two modalities throughout the conversation. The findings motivate the design of VizTA, a visualization teaching assistant that leverages the fusion of visual and lexical feedback to help readers better comprehend visualization. VizTA features a semantic-aware conversational agent capable of explaining contextual information within visualizations and employs a visual-lexical fusion design to facilitate chart-centered conversation. A between-subject study with 24 participants demonstrates the effectiveness of VizTA in supporting the understanding and reasoning tasks of distributional visualization across multiple scenarios.
comment: 12 pages, 7 figures, published to EuroVis 2025
A computational framework for longitudinal medication adherence prediction in breast cancer survivors: A social cognitive theory based approach
Non-adherence to medications is a critical concern since nearly half of patients with chronic illnesses do not follow their prescribed medication regimens, leading to increased mortality, costs, and preventable human distress. Amongst stage 0-3 breast cancer survivors, adherence to long-term adjuvant endocrine therapy (i.e., Tamoxifen and aromatase inhibitors) is associated with a significant increase in recurrence-free survival. This work aims to develop multi-scale models of medication adherence to understand the significance of different factors influencing adherence across varying time frames. We introduce a computational framework guided by Social Cognitive Theory for multi-scale (daily and weekly) modeling of longitudinal medication adherence. Our models employ both dynamic medication-taking patterns in the recent past (dynamic factors) as well as less frequently changing factors (static factors) for adherence prediction. Additionally, we assess the significance of various factors in influencing adherence behavior across different time scales. Our models outperform traditional machine learning counterparts in both daily and weekly tasks in terms of both accuracy and specificity. Daily models achieved an accuracy of 87.25%, and weekly models, an accuracy of 76.04%. Notably, dynamic past medication-taking patterns prove most valuable for predicting daily adherence, while a combination of dynamic and static factors is significant for macro-level weekly adherence patterns.
Optimizing SIA Development: A Case Study in User-Centered Design for Estuary, a Multimodal Socially Interactive Agent Framework
This case study presents our user-centered design model for Socially Intelligent Agent (SIA) development frameworks through our experience developing Estuary, an open source multimodal framework for building low-latency real-time socially interactive agents. We leverage the Rapid Assessment Process (RAP) to collect the thoughts of leading researchers in the field of SIAs regarding the current state of the art for SIA development as well as their evaluation of how well Estuary may potentially address current research gaps. We achieve this through a series of end-user interviews conducted by a fellow researcher in the community. We hope that the findings of our work will not only assist the continued development of Estuary but also guide the development of other future frameworks and technologies for SIAs.
From Regulation to Support: Centering Humans in Technology-Mediated Emotion Intervention in Care Contexts
Enhancing emotional well-being has become a significant focus in HCI and CSCW, with technologies increasingly designed to track, visualize, and manage emotions. However, these approaches have faced criticism for potentially suppressing certain emotional experiences. Through a scoping review of 53 empirical studies from ACM proceedings implementing Technology-Mediated Emotion Intervention (TMEI), we critically examine current practices through lenses drawn from HCI critical theories. Our analysis reveals emotion intervention mechanisms that extend beyond traditional emotion regulation paradigms, identifying care-centered goals that prioritize non-judgmental emotional support and preserve users' identities. The findings demonstrate how researchers design technologies for generating artificial care, intervening in power dynamics, and nudging behavioral changes. We contribute the concept of "emotion support" as an alternative approach to "emotion regulation," emphasizing human-centered approaches to emotional well-being. This work advances the understanding of diverse human emotional needs beyond individual and cognitive perspectives, offering design implications that critically reimagine how technologies can honor emotional complexity, preserve human agency, and transform power dynamics in care contexts.
Emotion Alignment: Discovering the Gap Between Social Media and Real-World Sentiments in Persian Tweets and Images
In contemporary society, widespread social media usage is evident in people's daily lives. Nevertheless, disparities in emotional expressions between the real world and online platforms can manifest. We comprehensively analyzed Persian community on X to explore this phenomenon. An innovative pipeline was designed to measure the similarity between emotions in the real world compared to social media. Accordingly, recent tweets and images of participants were gathered and analyzed using Transformers-based text and image sentiment analysis modules. Each participant's friends also provided insights into the their real-world emotions. A distance criterion was used to compare real-world feelings with virtual experiences. Our study encompassed N=105 participants, 393 friends who contributed their perspectives, over 8,300 collected tweets, and 2,000 media images. Results indicated a 28.67% similarity between images and real-world emotions, while tweets exhibited a 75.88% alignment with real-world feelings. Additionally, the statistical significance confirmed that the observed disparities in sentiment proportions.
CrowdGenUI: Aligning LLM-Based UI Generation with Crowdsourced User Preferences
Large Language Models (LLMs) have demonstrated remarkable potential across various design domains, including user interface (UI) generation. However, current LLMs for UI generation tend to offer generic solutions that lack a nuanced understanding of task context and user preferences. We present CrowdGenUI, a framework that enhances LLM-based UI generation with crowdsourced user preferences. This framework addresses the limitations by guiding LLM reasoning with real user preferences, enabling the generation of UI widgets that reflect user needs and task-specific requirements. We evaluate our framework in the image editing domain by collecting a library of 720 user preferences from 50 participants, covering preferences such as predictability, efficiency, and explorability of various UI widgets. A user study (N=78) demonstrates that UIs generated with our preference-guided framework can better match user intentions compared to those generated by LLMs alone, highlighting the effectiveness of our proposed framework. We further discuss the study findings and present insights for future research on LLM-based user-centered UI generation.
Human-AI Collaboration in Cloud Security: Cognitive Hierarchy-Driven Deep Reinforcement Learning
Given the complexity of multi-tenant cloud environments and the growing need for real-time threat mitigation, Security Operations Centers (SOCs) must adopt AI-driven adaptive defense mechanisms to counter Advanced Persistent Threats (APTs). However, SOC analysts face challenges in handling adaptive adversarial tactics, requiring intelligent decision-support frameworks. We propose a Cognitive Hierarchy Theory-driven Deep Q-Network (CHT-DQN) framework that models interactive decision-making between SOC analysts and AI-driven APT bots. The SOC analyst (defender) operates at cognitive level-1, anticipating attacker strategies, while the APT bot (attacker) follows a level-0 policy. By incorporating CHT into DQN, our framework enhances adaptive SOC defense using Attack Graph (AG)-based reinforcement learning. Simulation experiments across varying AG complexities show that CHT-DQN consistently achieves higher data protection and lower action discrepancies compared to standard DQN. A theoretical lower bound further confirms its superiority as AG complexity increases. A human-in-the-loop (HITL) evaluation on Amazon Mechanical Turk (MTurk) reveals that SOC analysts using CHT-DQN-derived transition probabilities align more closely with adaptive attackers, leading to better defense outcomes. Moreover, human behavior aligns with Prospect Theory (PT) and Cumulative Prospect Theory (CPT): participants are less likely to reselect failed actions and more likely to persist with successful ones. This asymmetry reflects amplified loss sensitivity and biased probability weighting -- underestimating gains after failure and overestimating continued success. Our findings highlight the potential of integrating cognitive models into deep reinforcement learning to improve real-time SOC decision-making for cloud security.
How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: V2: Only minor edits were made to the main text, and we've added more supplementary materials
Computer Vision and Pattern Recognition
Advancing Video Anomaly Detection: A Bi-Directional Hybrid Framework for Enhanced Single- and Multi-Task Approaches
Despite the prevailing transition from single-task to multi-task approaches in video anomaly detection, we observe that many adopt sub-optimal frameworks for individual proxy tasks. Motivated by this, we contend that optimizing single-task frameworks can advance both single- and multi-task approaches. Accordingly, we leverage middle-frame prediction as the primary proxy task, and introduce an effective hybrid framework designed to generate accurate predictions for normal frames and flawed predictions for abnormal frames. This hybrid framework is built upon a bi-directional structure that seamlessly integrates both vision transformers and ConvLSTMs. Specifically, we utilize this bi-directional structure to fully analyze the temporal dimension by predicting frames in both forward and backward directions, significantly boosting the detection stability. Given the transformer's capacity to model long-range contextual dependencies, we develop a convolutional temporal transformer that efficiently associates feature maps from all context frames to generate attention-based predictions for target frames. Furthermore, we devise a layer-interactive ConvLSTM bridge that facilitates the smooth flow of low-level features across layers and time-steps, thereby strengthening predictions with fine details. Anomalies are eventually identified by scrutinizing the discrepancies between target frames and their corresponding predictions. Several experiments conducted on public benchmarks affirm the efficacy of our hybrid framework, whether used as a standalone single-task approach or integrated as a branch in a multi-task approach. These experiments also underscore the advantages of merging vision transformers and ConvLSTMs for video anomaly detection.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
SuperCL: Superpixel Guided Contrastive Learning for Medical Image Segmentation Pre-training
Medical image segmentation is a critical yet challenging task, primarily due to the difficulty of obtaining extensive datasets of high-quality, expert-annotated images. Contrastive learning presents a potential but still problematic solution to this issue. Because most existing methods focus on extracting instance-level or pixel-to-pixel representation, which ignores the characteristics between intra-image similar pixel groups. Moreover, when considering contrastive pairs generation, most SOTA methods mainly rely on manually setting thresholds, which requires a large number of gradient experiments and lacks efficiency and generalization. To address these issues, we propose a novel contrastive learning approach named SuperCL for medical image segmentation pre-training. Specifically, our SuperCL exploits the structural prior and pixel correlation of images by introducing two novel contrastive pairs generation strategies: Intra-image Local Contrastive Pairs (ILCP) Generation and Inter-image Global Contrastive Pairs (IGCP) Generation. Considering superpixel cluster aligns well with the concept of contrastive pairs generation, we utilize the superpixel map to generate pseudo masks for both ILCP and IGCP to guide supervised contrastive learning. Moreover, we also propose two modules named Average SuperPixel Feature Map Generation (ASP) and Connected Components Label Generation (CCL) to better exploit the prior structural information for IGCP. Finally, experiments on 8 medical image datasets indicate our SuperCL outperforms existing 12 methods. i.e. Our SuperCL achieves a superior performance with more precise predictions from visualization figures and 3.15%, 5.44%, 7.89% DSC higher than the previous best results on MMWHS, CHAOS, Spleen with 10% annotations. Our code will be released after acceptance.
ChronoRoot 2.0: An Open AI-Powered Platform for 2D Temporal Plant Phenotyping
The analysis of plant developmental plasticity, including root system architecture, is fundamental to understanding plant adaptability and development, particularly in the context of climate change and agricultural sustainability. While significant advances have been made in plant phenotyping technologies, comprehensive temporal analysis of root development remains challenging, with most existing solutions providing either limited throughput or restricted structural analysis capabilities. Here, we present ChronoRoot 2.0, an integrated open-source platform that combines affordable hardware with advanced artificial intelligence to enable sophisticated temporal plant phenotyping. The system introduces several major advances, offering an integral perspective of seedling development: (i) simultaneous multi-organ tracking of six distinct plant structures, (ii) quality control through real-time validation, (iii) comprehensive architectural measurements including novel gravitropic response parameters, and (iv) dual specialized user interfaces for both architectural analysis and high-throughput screening. We demonstrate the system's capabilities through three use cases for Arabidopsis thaliana: characterization of circadian growth patterns under different light conditions, detailed analysis of gravitropic responses in transgenic plants, and high-throughput screening of etiolation responses across multiple genotypes. ChronoRoot 2.0 maintains its predecessor's advantages of low cost and modularity while significantly expanding its capabilities, making sophisticated temporal phenotyping more accessible to the broader plant science community. The system's open-source nature, combined with extensive documentation and containerized deployment options, ensures reproducibility and enables community-driven development of new analytical capabilities.
Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
TAPIP3D: Tracking Any Point in Persistent 3D Geometry
We introduce TAPIP3D, a novel approach for long-term 3D point tracking in monocular RGB and RGB-D videos. TAPIP3D represents videos as camera-stabilized spatio-temporal feature clouds, leveraging depth and camera motion information to lift 2D video features into a 3D world space where camera motion is effectively canceled. TAPIP3D iteratively refines multi-frame 3D motion estimates within this stabilized representation, enabling robust tracking over extended periods. To manage the inherent irregularities of 3D point distributions, we propose a Local Pair Attention mechanism. This 3D contextualization strategy effectively exploits spatial relationships in 3D, forming informative feature neighborhoods for precise 3D trajectory estimation. Our 3D-centric approach significantly outperforms existing 3D point tracking methods and even enhances 2D tracking accuracy compared to conventional 2D pixel trackers when accurate depth is available. It supports inference in both camera coordinates (i.e., unstabilized) and world coordinates, and our results demonstrate that compensating for camera motion improves tracking performance. Our approach replaces the conventional 2D square correlation neighborhoods used in prior 2D and 3D trackers, leading to more robust and accurate results across various 3D point tracking benchmarks. Project Page: https://tapip3d.github.io
comment: Long-term feed-forward 3D point tracking in persistent 3D point maps. Code:https://github.com/zbw001/TAPIP3D
Med-2D SegNet: A Light Weight Deep Neural Network for Medical 2D Image Segmentation
Accurate and efficient medical image segmentation is crucial for advancing clinical diagnostics and surgical planning, yet remains a complex challenge due to the variability in anatomical structures and the demand for low-complexity models. In this paper, we introduced Med-2D SegNet, a novel and highly efficient segmentation architecture that delivers outstanding accuracy while maintaining a minimal computational footprint. Med-2D SegNet achieves state-of-the-art performance across multiple benchmark datasets, including KVASIR-SEG, PH2, EndoVis, and GLAS, with an average Dice similarity coefficient (DSC) of 89.77% across 20 diverse datasets. Central to its success is the compact Med Block, a specialized encoder design that incorporates dimension expansion and parameter reduction, enabling precise feature extraction while keeping model parameters to a low count of just 2.07 million. Med-2D SegNet excels in cross-dataset generalization, particularly in polyp segmentation, where it was trained on KVASIR-SEG and showed strong performance on unseen datasets, demonstrating its robustness in zero-shot learning scenarios, even though we acknowledge that further improvements are possible. With top-tier performance in both binary and multi-class segmentation, Med-2D SegNet redefines the balance between accuracy and efficiency, setting a new benchmark for medical image analysis. This work paves the way for developing accessible, high-performance diagnostic tools suitable for clinical environments and resource-constrained settings, making it a step forward in the democratization of advanced medical technology.
Exposing the Copycat Problem of Imitation-based Planner: A Novel Closed-Loop Simulator, Causal Benchmark and Joint IL-RL Baseline
Machine learning (ML)-based planners have recently gained significant attention. They offer advantages over traditional optimization-based planning algorithms. These advantages include fewer manually selected parameters and faster development. Within ML-based planning, imitation learning (IL) is a common algorithm. It primarily learns driving policies directly from supervised trajectory data. While IL has demonstrated strong performance on many open-loop benchmarks, it remains challenging to determine if the learned policy truly understands fundamental driving principles, rather than simply extrapolating from the ego-vehicle's initial state. Several studies have identified this limitation and proposed algorithms to address it. However, these methods often use original datasets for evaluation. In these datasets, future trajectories are heavily dependent on initial conditions. Furthermore, IL often overfits to the most common scenarios. It struggles to generalize to rare or unseen situations. To address these challenges, this work proposes: 1) a novel closed-loop simulator supporting both imitation and reinforcement learning, 2) a causal benchmark derived from the Waymo Open Dataset to rigorously assess the impact of the copycat problem, and 3) a novel framework integrating imitation learning and reinforcement learning to overcome the limitations of purely imitative approaches. The code for this work will be released soon.
Time Frequency Analysis of EMG Signal for Gesture Recognition using Fine grained Features
Electromyography (EMG) based hand gesture recognition converts forearm muscle activity into control commands for prosthetics, rehabilitation, and human computer interaction. This paper proposes a novel approach to EMG-based hand gesture recognition that uses fine-grained classification and presents XMANet, which unifies low-level local and high level semantic cues through cross layer mutual attention among shallow to deep CNN experts. Using stacked spectrograms and scalograms derived from the Short Time Fourier Transform (STFT) and Wavelet Transform (WT), we benchmark XMANet against ResNet50, DenseNet-121, MobileNetV3, and EfficientNetB0. Experimental results on the Grabmyo dataset indicate that, using STFT, the proposed XMANet model outperforms the baseline ResNet50, EfficientNetB0, MobileNetV3, and DenseNet121 models with improvement of approximately 1.72%, 4.38%, 5.10%, and 2.53%, respectively. When employing the WT approach, improvements of around 1.57%, 1.88%, 1.46%, and 2.05% are observed over the same baselines. Similarly, on the FORS EMG dataset, the XMANet(ResNet50) model using STFT shows an improvement of about 5.04% over the baseline ResNet50. In comparison, the XMANet(DenseNet121) and XMANet(MobileNetV3) models yield enhancements of approximately 4.11% and 2.81%, respectively. Moreover, when using WT, the proposed XMANet achieves gains of around 4.26%, 9.36%, 5.72%, and 6.09% over the baseline ResNet50, DenseNet121, MobileNetV3, and EfficientNetB0 models, respectively. These results confirm that XMANet consistently improves performance across various architectures and signal processing techniques, demonstrating the strong potential of fine grained features for accurate and robust EMG classification.
IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays
Spine surgery is a high-risk intervention demanding precise execution, often supported by image-based navigation systems. Recently, supervised learning approaches have gained attention for reconstructing 3D spinal anatomy from sparse fluoroscopic data, significantly reducing reliance on radiation-intensive 3D imaging systems. However, these methods typically require large amounts of annotated training data and may struggle to generalize across varying patient anatomies or imaging conditions. Instance-learning approaches like Gaussian splatting could offer an alternative by avoiding extensive annotation requirements. While Gaussian splatting has shown promise for novel view synthesis, its application to sparse, arbitrarily posed real intraoperative X-rays has remained largely unexplored. This work addresses this limitation by extending the $R^2$-Gaussian splatting framework to reconstruct anatomically consistent 3D volumes under these challenging conditions. We introduce an anatomy-guided radiographic standardization step using style transfer, improving visual consistency across views, and enhancing reconstruction quality. Notably, our framework requires no pretraining, making it inherently adaptable to new patients and anatomies. We evaluated our approach using an ex-vivo dataset. Expert surgical evaluation confirmed the clinical utility of the 3D reconstructions for navigation, especially when using 20 to 30 views, and highlighted the standardization's benefit for anatomical clarity. Benchmarking via quantitative 2D metrics (PSNR/SSIM) confirmed performance trade-offs compared to idealized settings, but also validated the improvement gained from standardization over raw inputs. This work demonstrates the feasibility of instance-based volumetric reconstruction from arbitrary sparse-view X-rays, advancing intraoperative 3D imaging for surgical navigation.
Video-MMLU: A Massive Multi-Discipline Lecture Understanding Benchmark
Recent advancements in language multimodal models (LMMs) for video have demonstrated their potential for understanding video content, yet the task of comprehending multi-discipline lectures remains largely unexplored. We introduce Video-MMLU, a massive benchmark designed to evaluate the capabilities of LMMs in understanding Multi-Discipline Lectures. We evaluate over 90 open-source and proprietary models, ranging from 0.5B to 40B parameters. Our results highlight the limitations of current models in addressing the cognitive challenges presented by these lectures, especially in tasks requiring both perception and reasoning. Additionally, we explore how the number of visual tokens and the large language models influence performance, offering insights into the interplay between multimodal perception and reasoning in lecture comprehension.
comment: Code, docs, and benchmark are all avaliable at https://enxinsong.com/Video-MMLU-web/
Seurat: From Moving Points to Depth CVPR 2025
Accurate depth estimation from monocular videos remains challenging due to ambiguities inherent in single-view geometry, as crucial depth cues like stereopsis are absent. However, humans often perceive relative depth intuitively by observing variations in the size and spacing of objects as they move. Inspired by this, we propose a novel method that infers relative depth by examining the spatial relationships and temporal evolution of a set of tracked 2D trajectories. Specifically, we use off-the-shelf point tracking models to capture 2D trajectories. Then, our approach employs spatial and temporal transformers to process these trajectories and directly infer depth changes over time. Evaluated on the TAPVid-3D benchmark, our method demonstrates robust zero-shot performance, generalizing effectively from synthetic to real-world datasets. Results indicate that our approach achieves temporally smooth, high-accuracy depth predictions across diverse domains.
comment: CVPR 2025 Highlight. Project page: https://seurat-cvpr.github.io
Generative Multimodal Pretraining with Discrete Diffusion Timestep Tokens CVPR 2025
Recent endeavors in Multimodal Large Language Models (MLLMs) aim to unify visual comprehension and generation by combining LLM and diffusion models, the state-of-the-art in each task, respectively. Existing approaches rely on spatial visual tokens, where image patches are encoded and arranged according to a spatial order (e.g., raster scan). However, we show that spatial tokens lack the recursive structure inherent to languages, hence form an impossible language for LLM to master. In this paper, we build a proper visual language by leveraging diffusion timesteps to learn discrete, recursive visual tokens. Our proposed tokens recursively compensate for the progressive attribute loss in noisy images as timesteps increase, enabling the diffusion model to reconstruct the original image at any timestep. This approach allows us to effectively integrate the strengths of LLMs in autoregressive reasoning and diffusion models in precise image generation, achieving seamless multimodal comprehension and generation within a unified framework. Extensive experiments show that we achieve superior performance for multimodal comprehension and generation simultaneously compared with other MLLMs. Project Page: https://DDT-LLaMA.github.io/.
comment: Accepted by CVPR 2025 (Oral)
DMPCN: Dynamic Modulated Predictive Coding Network with Hybrid Feedback Representations
Traditional predictive coding networks, inspired by theories of brain function, consistently achieve promising results across various domains, extending their influence into the field of computer vision. However, the performance of the predictive coding networks is limited by their error feedback mechanism, which traditionally employs either local or global recurrent updates, leading to suboptimal performance in processing both local and broader details simultaneously. In addition, traditional predictive coding networks face difficulties in dynamically adjusting to the complexity and context of varying input data, which is crucial for achieving high levels of performance in diverse scenarios. Furthermore, there is a gap in the development and application of specific loss functions that could more effectively guide the model towards optimal performance. To deal with these issues, this paper introduces a hybrid prediction error feedback mechanism with dynamic modulation for deep predictive coding networks by effectively combining global contexts and local details while adjusting feedback based on input complexity. Additionally, we present a loss function tailored to this framework to improve accuracy by focusing on precise prediction error minimization. Experimental results demonstrate the superiority of our model over other approaches, showcasing faster convergence and higher predictive accuracy in CIFAR-10, CIFAR-100, MNIST, and FashionMNIST datasets.
Frequency-domain Learning with Kernel Prior for Blind Image Deblurring
While achieving excellent results on various datasets, many deep learning methods for image deblurring suffer from limited generalization capabilities with out-of-domain data. This limitation is likely caused by their dependence on certain domain-specific datasets. To address this challenge, we argue that it is necessary to introduce the kernel prior into deep learning methods, as the kernel prior remains independent of the image context. For effective fusion of kernel prior information, we adopt a rational implementation method inspired by traditional deblurring algorithms that perform deconvolution in the frequency domain. We propose a module called Frequency Integration Module (FIM) for fusing the kernel prior and combine it with a frequency-based deblurring Transfomer network. Experimental results demonstrate that our method outperforms state-of-the-art methods on multiple blind image deblurring tasks, showcasing robust generalization abilities. Source code will be available soon.
Mitigating Parameter Interference in Model Merging via Sharpness-Aware Fine-Tuning ICLR 2025
Large-scale deep learning models with a pretraining-finetuning paradigm have led to a surge of numerous task-specific models fine-tuned from a common pre-trained model. Recently, several research efforts have been made on merging these large models into a single multi-task model, particularly with simple arithmetic on parameters. Such merging methodology faces a central challenge: interference between model parameters fine-tuned on different tasks. Few recent works have focused on designing a new fine-tuning scheme that can lead to small parameter interference, however at the cost of the performance of each task-specific fine-tuned model and thereby limiting that of a merged model. To improve the performance of a merged model, we note that a fine-tuning scheme should aim for (1) smaller parameter interference and (2) better performance of each fine-tuned model on the corresponding task. In this work, we aim to design a new fine-tuning objective function to work towards these two goals. In the course of this process, we find such objective function to be strikingly similar to sharpness-aware minimization (SAM) objective function, which aims to achieve generalization by finding flat minima. Drawing upon our observation, we propose to fine-tune pre-trained models via sharpness-aware minimization. The experimental and theoretical results showcase the effectiveness and orthogonality of our proposed approach, improving performance upon various merging and fine-tuning methods. Our code is available at https://github.com/baiklab/SAFT-Merge.
comment: ICLR 2025
EmoSEM: Segment and Explain Emotion Stimuli in Visual Art
This paper focuses on a key challenge in visual art understanding: given an art image, the model pinpoints pixel regions that trigger a specific human emotion, and generates linguistic explanations for the emotional arousal. Despite recent advances in art understanding, pixel-level emotion understanding still faces a dual challenge: first, the subjectivity of emotion makes it difficult for general segmentation models like SAM to adapt to emotion-oriented segmentation tasks; and second, the abstract nature of art expression makes it difficult for captioning models to balance pixel-level semantic understanding and emotion reasoning. To solve the above problems, this paper proposes the Emotion stimuli Segmentation and Explanation Model (EmoSEM) to endow the segmentation model SAM with emotion comprehension capability. First, to enable the model to perform segmentation under the guidance of emotional intent well, we introduce an emotional prompt with a learnable mask token as the conditional input for segmentation decoding. Then, we design an emotion projector to establish the association between emotion and visual features. Next, more importantly, to address emotion-visual stimuli alignment, we develop a lightweight prefix projector, a module that fuses the learned emotional mask with the corresponding emotion into a unified representation compatible with the language model.Finally, we input the joint visual, mask, and emotional tokens into the language model and output the emotional explanations. It ensures that the generated interpretations remain semantically and emotionally coherent with the visual stimuli. The method innovatively realizes end-to-end modeling from low-level pixel features to high-level emotion interpretation, providing the first interpretable fine-grained analysis framework for artistic emotion computing. Extensive experiments validate the effectiveness of our model.
Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence systems. This study introduces CRF-GAN, a novel memory-efficient GAN architecture that enhances structural consistency in 3D medical image synthesis. Integrating Conditional Random Fields within a two-step generation process allows CRF-GAN improving spatial coherence while maintaining high-resolution image quality. The model's performance is evaluated against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: We evaluate the performance of CRF-GAN against the HA-GAN model. The comparison between the two models was made through a quantitative evaluation, using FID and MMD metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID and MMD scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN. Additionally, CRF-GAN demonstrated 9.34% lower memory usage and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. The key objective was not only to lower the computational cost but also to reallocate the freed-up resources towards the creation of higher-resolution 3D imaging, which is still a critical factor limiting their direct clinical applicability. Moreover, unlike many previous studies, we combined qualitative and quantitative assessments to obtain a more holistic feedback on the model's performance.
comment: Accpeted to Journal of Imaging Informatics in Medicine
MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations CVPR 2025
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
comment: To be pubilshed in CVPR 2025
Affordance-Aware Object Insertion via Mask-Aware Dual Diffusion
As a common image editing operation, image composition involves integrating foreground objects into background scenes. In this paper, we expand the application of the concept of Affordance from human-centered image composition tasks to a more general object-scene composition framework, addressing the complex interplay between foreground objects and background scenes. Following the principle of Affordance, we define the affordance-aware object insertion task, which aims to seamlessly insert any object into any scene with various position prompts. To address the limited data issue and incorporate this task, we constructed the SAM-FB dataset, which contains over 3 million examples across more than 3,000 object categories. Furthermore, we propose the Mask-Aware Dual Diffusion (MADD) model, which utilizes a dual-stream architecture to simultaneously denoise the RGB image and the insertion mask. By explicitly modeling the insertion mask in the diffusion process, MADD effectively facilitates the notion of affordance. Extensive experimental results show that our method outperforms the state-of-the-art methods and exhibits strong generalization performance on in-the-wild images. Please refer to our code on https://github.com/KaKituken/affordance-aware-any.
comment: Code is available at: https://github.com/KaKituken/affordance-aware-any. Project page at: https://kakituken.github.io/affordance-any.github.io/
A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
Digital Twin Buildings: 3D Modeling, GIS Integration, and Visual Descriptions Using Gaussian Splatting, ChatGPT/Deepseek, and Google Maps Platform
Urban digital twins are virtual replicas of cities that use multi-source data and data analytics to optimize urban planning, infrastructure management, and decision-making. Towards this, we propose a framework focused on the single-building scale. By connecting to cloud mapping platforms such as Google Map Platforms APIs, by leveraging state-of-the-art multi-agent Large Language Models data analysis using ChatGPT(4o) and Deepseek-V3/R1, and by using our Gaussian Splatting-based mesh extraction pipeline, our Digital Twin Buildings framework can retrieve a building's 3D model, visual descriptions, and achieve cloud-based mapping integration with large language model-based data analytics using a building's address, postal code, or geographic coordinates.
comment: -Fixed minor typo
MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators
Learning semantically meaningful image transformations (i.e. rotation, thickness, blur) directly from examples can be a challenging task. Recently, the Manifold Autoencoder (MAE) proposed using a set of Lie group operators to learn image transformations directly from examples. However, this approach has limitations, as the learned operators are not guaranteed to be disentangled and the training routine is prohibitively expensive when scaling up the model. To address these limitations, we propose MANGO (transformation Manifolds with Grouped Operators) for learning disentangled operators that describe image transformations in distinct latent subspaces. Moreover, our approach allows practitioners the ability to define which transformations they aim to model, thus improving the semantic meaning of the learned operators. Through our experiments, we demonstrate that MANGO enables composition of image transformations and introduces a one-phase training routine that leads to a 100x speedup over prior works.
comment: Submitted to SampTA 2025. This work has been submitted to the IEEE for possible publication
Exploring Self-Attention for Crop-type Classification Explainability
Transformer models have become a promising approach for crop-type classification. Although their attention weights can be used to understand the relevant time points for crop disambiguation, the validity of these insights depends on how closely the attention weights approximate the actual workings of these black-box models, which is not always clear. In this paper, we introduce a novel explainability framework that systematically evaluates the explanatory power of the attention weights of a standard transformer encoder for crop-type classification. Our results show that attention patterns strongly relate to key dates, which are often associated with critical phenological events for crop-type classification. Further, the sensitivity analysis reveals the limited capability of the attention weights to characterize crop phenology as the identified phenological events depend on the other crops considered during training. This limitation highlights the relevance of future work towards the development of deep learning approaches capable of automatically learning the temporal vegetation dynamics for accurate crop disambiguation
HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a comprehensive understanding of the clinical condition of a patient, improving diagnosis and treatment decision. Deep Neural Networks (DNNs) consistently demonstrate outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex and multi-class Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI tabular data fusion methods. A link to our code can be found at https://github.com/daniel4725/HyperFusion
comment: 20 pages, 11 figures
MedM-VL: What Makes a Good Medical LVLM?
Medical image analysis is essential in modern healthcare. Deep learning has redirected research focus toward complex medical multimodal tasks, including report generation and visual question answering. Traditional task-specific models often fall short in handling these challenges. Large vision-language models (LVLMs) offer new solutions for solving such tasks. In this study, we build on the popular LLaVA framework to systematically explore model architectures and training strategies for both 2D and 3D medical LVLMs. We present extensive empirical findings and practical guidance. To support reproducibility and future research, we release a modular codebase, MedM-VL, and two pre-trained models: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code and models are available at: https://github.com/MSIIP/MedM-VL
Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View
Recent studies construct deblurred neural radiance fields~(DeRF) using dozens of blurry images, which are not practical scenarios if only a limited number of blurry images are available. This paper focuses on constructing DeRF from sparse-view for more pragmatic real-world scenarios. As observed in our experiments, establishing DeRF from sparse views proves to be a more challenging problem due to the inherent complexity arising from the simultaneous optimization of blur kernels and NeRF from sparse view. Sparse-DeRF successfully regularizes the complicated joint optimization, presenting alleviated overfitting artifacts and enhanced quality on radiance fields. The regularization consists of three key components: Surface smoothness, helps the model accurately predict the scene structure utilizing unseen and additional hidden rays derived from the blur kernel based on statistical tendencies of real-world; Modulated gradient scaling, helps the model adjust the amount of the backpropagated gradient according to the arrangements of scene objects; Perceptual distillation improves the perceptual quality by overcoming the ill-posed multi-view inconsistency of image deblurring and distilling the pre-deblurred information, compensating for the lack of clean information in blurry images. We demonstrate the effectiveness of the Sparse-DeRF with extensive quantitative and qualitative experimental results by training DeRF from 2-view, 4-view, and 6-view blurry images.
comment: Accepted and to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Project page: https://dogyoonlee.github.io/sparsederf/
Image and Video Processing
Advancing Video Anomaly Detection: A Bi-Directional Hybrid Framework for Enhanced Single- and Multi-Task Approaches
Despite the prevailing transition from single-task to multi-task approaches in video anomaly detection, we observe that many adopt sub-optimal frameworks for individual proxy tasks. Motivated by this, we contend that optimizing single-task frameworks can advance both single- and multi-task approaches. Accordingly, we leverage middle-frame prediction as the primary proxy task, and introduce an effective hybrid framework designed to generate accurate predictions for normal frames and flawed predictions for abnormal frames. This hybrid framework is built upon a bi-directional structure that seamlessly integrates both vision transformers and ConvLSTMs. Specifically, we utilize this bi-directional structure to fully analyze the temporal dimension by predicting frames in both forward and backward directions, significantly boosting the detection stability. Given the transformer's capacity to model long-range contextual dependencies, we develop a convolutional temporal transformer that efficiently associates feature maps from all context frames to generate attention-based predictions for target frames. Furthermore, we devise a layer-interactive ConvLSTM bridge that facilitates the smooth flow of low-level features across layers and time-steps, thereby strengthening predictions with fine details. Anomalies are eventually identified by scrutinizing the discrepancies between target frames and their corresponding predictions. Several experiments conducted on public benchmarks affirm the efficacy of our hybrid framework, whether used as a standalone single-task approach or integrated as a branch in a multi-task approach. These experiments also underscore the advantages of merging vision transformers and ConvLSTMs for video anomaly detection.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
Enhancing DR Classification with Swin Transformer and Shifted Window Attention
Diabetic retinopathy (DR) is a leading cause of blindness worldwide, underscoring the importance of early detection for effective treatment. However, automated DR classification remains challenging due to variations in image quality, class imbalance, and pixel-level similarities that hinder model training. To address these issues, we propose a robust preprocessing pipeline incorporating image cropping, Contrast-Limited Adaptive Histogram Equalization (CLAHE), and targeted data augmentation to improve model generalization and resilience. Our approach leverages the Swin Transformer, which utilizes hierarchical token processing and shifted window attention to efficiently capture fine-grained features while maintaining linear computational complexity. We validate our method on the Aptos and IDRiD datasets for multi-class DR classification, achieving accuracy rates of 89.65% and 97.40%, respectively. These results demonstrate the effectiveness of our model, particularly in detecting early-stage DR, highlighting its potential for improving automated retinal screening in clinical settings.
Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence systems. This study introduces CRF-GAN, a novel memory-efficient GAN architecture that enhances structural consistency in 3D medical image synthesis. Integrating Conditional Random Fields within a two-step generation process allows CRF-GAN improving spatial coherence while maintaining high-resolution image quality. The model's performance is evaluated against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: We evaluate the performance of CRF-GAN against the HA-GAN model. The comparison between the two models was made through a quantitative evaluation, using FID and MMD metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID and MMD scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN. Additionally, CRF-GAN demonstrated 9.34% lower memory usage and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. The key objective was not only to lower the computational cost but also to reallocate the freed-up resources towards the creation of higher-resolution 3D imaging, which is still a critical factor limiting their direct clinical applicability. Moreover, unlike many previous studies, we combined qualitative and quantitative assessments to obtain a more holistic feedback on the model's performance.
comment: Accpeted to Journal of Imaging Informatics in Medicine
MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators
Learning semantically meaningful image transformations (i.e. rotation, thickness, blur) directly from examples can be a challenging task. Recently, the Manifold Autoencoder (MAE) proposed using a set of Lie group operators to learn image transformations directly from examples. However, this approach has limitations, as the learned operators are not guaranteed to be disentangled and the training routine is prohibitively expensive when scaling up the model. To address these limitations, we propose MANGO (transformation Manifolds with Grouped Operators) for learning disentangled operators that describe image transformations in distinct latent subspaces. Moreover, our approach allows practitioners the ability to define which transformations they aim to model, thus improving the semantic meaning of the learned operators. Through our experiments, we demonstrate that MANGO enables composition of image transformations and introduces a one-phase training routine that leads to a 100x speedup over prior works.
comment: Submitted to SampTA 2025. This work has been submitted to the IEEE for possible publication
HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a comprehensive understanding of the clinical condition of a patient, improving diagnosis and treatment decision. Deep Neural Networks (DNNs) consistently demonstrate outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex and multi-class Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI tabular data fusion methods. A link to our code can be found at https://github.com/daniel4725/HyperFusion
comment: 20 pages, 11 figures
Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this letter introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
comment: 5 pages, 2 figures, 1 table
Multimedia
Video QoE Metrics from Encrypted Traffic: Application-agnostic Methodology
Instant Messaging-Based Video Call Applications (IMVCAs) and Video Conferencing Applications (VCAs) have become integral to modern communication. Ensuring a high Quality of Experience (QoE) for users in this context is critical for network operators, as network conditions significantly impact user QoE. However, network operators lack access to end-device QoE metrics due to encrypted traffic. Existing solutions estimate QoE metrics from encrypted traffic traversing the network, with the most advanced approaches leveraging machine learning models. Subsequently, the need for ground truth QoE metrics for training and validation poses a challenge, as not all video applications provide these metrics. To address this challenge, we propose an application-agnostic approach for objective QoE estimation from encrypted traffic. Independent of the video application, we obtained key video QoE metrics, enabling broad applicability to various proprietary IMVCAs and VCAs. To validate our solution, we created a diverse dataset from WhatsApp video sessions under various network conditions, comprising 25,680 seconds of traffic data and QoE metrics. Our evaluation shows high performance across the entire dataset, with 85.2% accuracy for FPS predictions within an error margin of two FPS, and 90.2% accuracy for PIQE-based quality rating classification.
comment: 8 pages, 7 figures
A Survey on Music Generation from Single-Modal, Cross-Modal, and Multi-Modal Perspectives
Multi-modal music generation, using multiple modalities like text, images, and video alongside musical scores and audio as guidance, is an emerging research area with broad applications. This paper reviews this field, categorizing music generation systems from the perspective of modalities. The review covers modality representation, multi-modal data alignment, and their utilization to guide music generation. Current datasets and evaluation methods are also discussed. Key challenges in this area include effective multi-modal integration, large-scale comprehensive datasets, and systematic evaluation methods. Finally, an outlook on future research directions is provided, focusing on creativity, efficiency, multi-modal alignment, and evaluation.
Steganography Beyond Space-Time with Chain of Multimodal AI
Steganography is the art and science of covert writing, with a broad range of applications interwoven within the realm of cybersecurity. As artificial intelligence continues to evolve, its ability to synthesise realistic content emerges as a threat in the hands of cybercriminals who seek to manipulate and misrepresent the truth. Such synthetic content introduces a non-trivial risk of overwriting the subtle changes made for the purpose of steganography. When the signals in both the spatial and temporal domains are vulnerable to unforeseen overwriting, it calls for reflection on what, if any, remains invariant. This study proposes a paradigm in steganography for audiovisual media, where messages are concealed beyond both spatial and temporal domains. A chain of multimodal artificial intelligence is developed to deconstruct audiovisual content into a cover text, embed a message within the linguistic domain, and then reconstruct the audiovisual content through synchronising both auditory and visual modalities with the resultant stego text. The message is encoded by biasing the word sampling process of a language generation model and decoded by analysing the probability distribution of word choices. The accuracy of message transmission is evaluated under both zero-bit and multi-bit capacity settings. Fidelity is assessed through both biometric and semantic similarities, capturing the identities of the recorded face and voice, as well as the core ideas conveyed through the media. Secrecy is examined through statistical comparisons between cover and stego texts. Robustness is tested across various scenarios, including audiovisual resampling, face-swapping, voice-cloning and their combinations.
Steganography in Game Actions
The exchange of messages has always carried with it the timeless challenge of secrecy. From whispers in shadows to the enigmatic notes written in the margins of history, humanity has long sought ways to convey thoughts that remain imperceptible to all but the chosen few. The challenge of subliminal communication has been addressed in various forms of steganography. However, the field faces a fundamental paradox: as the art of concealment advances, so too does the science of revelation, leading to an ongoing evolutionary interplay. This study seeks to extend the boundaries of what is considered a viable steganographic medium. We explore a steganographic paradigm, in which hidden information is communicated through the episodes of multiple agents interacting with an environment. Each agent, acting as an encoder, learns a policy to disguise the very existence of hidden messages within actions seemingly directed toward innocent objectives. Meanwhile, an observer, serving as a decoder, learns to associate behavioural patterns with their respective agents despite their dynamic nature, thereby unveiling the hidden messages. The interactions of agents are governed by the framework of multi-agent reinforcement learning and shaped by feedback from the observer. This framework encapsulates a game-theoretic dilemma, wherein agents face decisions between cooperating to create distinguishable behavioural patterns or defecting to pursue individually optimal yet potentially overlapping episodic actions. As a proof of concept, we exemplify action steganography through the game of labyrinth, a navigation task where subliminal communication is concealed within the act of steering toward a destination, and systematically validate the stego-system in terms of distortion, capacity, secrecy and robustness when subjected to simulated passive and active adversaries.
ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
Computation and Language
Knowledge Distillation and Dataset Distillation of Large Language Models: Emerging Trends, Challenges, and Future Directions
The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
Disentangling Linguistic Features with Dimension-Wise Analysis of Vector Embeddings
Understanding the inner workings of neural embeddings, particularly in models such as BERT, remains a challenge because of their high-dimensional and opaque nature. This paper proposes a framework for uncovering the specific dimensions of vector embeddings that encode distinct linguistic properties (LPs). We introduce the Linguistically Distinct Sentence Pairs (LDSP-10) dataset, which isolates ten key linguistic features such as synonymy, negation, tense, and quantity. Using this dataset, we analyze BERT embeddings with various methods, including the Wilcoxon signed-rank test, mutual information, and recursive feature elimination, to identify the most influential dimensions for each LP. We introduce a new metric, the Embedding Dimension Impact (EDI) score, which quantifies the relevance of each embedding dimension to a LP. Our findings show that certain properties, such as negation and polarity, are robustly encoded in specific dimensions, while others, like synonymy, exhibit more complex patterns. This study provides insights into the interpretability of embeddings, which can guide the development of more transparent and optimized language models, with implications for model bias mitigation and the responsible deployment of AI systems.
PROMPTEVALS: A Dataset of Assertions and Guardrails for Custom Production Large Language Model Pipelines NAACL 2025
Large language models (LLMs) are increasingly deployed in specialized production data processing pipelines across diverse domains -- such as finance, marketing, and e-commerce. However, when running them in production across many inputs, they often fail to follow instructions or meet developer expectations. To improve reliability in these applications, creating assertions or guardrails for LLM outputs to run alongside the pipelines is essential. Yet, determining the right set of assertions that capture developer requirements for a task is challenging. In this paper, we introduce PROMPTEVALS, a dataset of 2087 LLM pipeline prompts with 12623 corresponding assertion criteria, sourced from developers using our open-source LLM pipeline tools. This dataset is 5x larger than previous collections. Using a hold-out test split of PROMPTEVALS as a benchmark, we evaluated closed- and open-source models in generating relevant assertions. Notably, our fine-tuned Mistral and Llama 3 models outperform GPT-4o by 20.93% on average, offering both reduced latency and improved performance. We believe our dataset can spur further research in LLM reliability, alignment, and prompt engineering.
comment: Accepted to NAACL 2025 Main Conference
Evaluating BERTopic on Open-Ended Data: A Case Study with Belgian Dutch Daily Narratives
This study explores BERTopic's potential for modeling open-ended Belgian Dutch daily narratives, contrasting its performance with Latent Dirichlet Allocation (LDA) and KMeans. Although LDA scores well on certain automated metrics, human evaluations reveal semantically irrelevant co-occurrences, highlighting the limitations of purely statistic-based methods. In contrast, BERTopic's reliance on contextual embeddings yields culturally resonant themes, underscoring the importance of hybrid evaluation frameworks that account for morphologically rich languages. KMeans performed less coherently than prior research suggested, pointing to the unique challenges posed by personal narratives. Our findings emphasize the need for robust generalization in NLP models, especially in underrepresented linguistic contexts.
OmniV-Med: Scaling Medical Vision-Language Model for Universal Visual Understanding
The practical deployment of medical vision-language models (Med-VLMs) necessitates seamless integration of textual data with diverse visual modalities, including 2D/3D images and videos, yet existing models typically employ separate encoders for different modalities. To address this limitation, we present OmniV-Med, a unified framework for multimodal medical understanding. Our technical contributions are threefold: First, we construct OmniV-Med-Instruct, a comprehensive multimodal medical dataset containing 252K instructional samples spanning 14 medical image modalities and 11 clinical tasks. Second, we devise a rotary position-adaptive encoder that processes multi-resolution 2D/3D images and videos within a unified architecture, diverging from conventional modality-specific encoders. Third, we introduce a medical-aware token pruning mechanism that exploits spatial-temporal redundancy in volumetric data (e.g., consecutive CT slices) and medical videos, effectively reducing 60\% of visual tokens without performance degradation. Empirical evaluations demonstrate that OmniV-Med-7B achieves state-of-the-art performance on 7 benchmarks spanning 2D/3D medical imaging and video understanding tasks. Notably, our lightweight variant (OmniV-Med-1.5B) attains comparable performance while requiring only 8 RTX3090 GPUs for training and supporting efficient long-video inference. Data, code and model will be released.
FarsEval-PKBETS: A new diverse benchmark for evaluating Persian large language models
Research on evaluating and analyzing large language models (LLMs) has been extensive for resource-rich languages such as English, yet their performance in languages such as Persian has received considerably less attention. This paper introduces FarsEval-PKBETS benchmark, a subset of FarsEval project for evaluating large language models in Persian. This benchmark consists of 4000 questions and answers in various formats, including multiple choice, short answer and descriptive responses. It covers a wide range of domains and tasks,including medicine, law, religion, Persian language, encyclopedic knowledge, human preferences, social knowledge, ethics and bias, text generation, and respecting others' rights. This bechmark incorporates linguistics, cultural, and local considerations relevant to the Persian language and Iran. To ensure the questions are challenging for current LLMs, three models -- Llama3-70B, PersianMind, and Dorna -- were evaluated using this benchmark. Their average accuracy was below 50%, meaning they provided fully correct answers to fewer than half of the questions. These results indicate that current language models are still far from being able to solve this benchmark
comment: 24 pages, 3 figures, 3 tables
Trans-Zero: Self-Play Incentivizes Large Language Models for Multilingual Translation Without Parallel Data
The rise of Large Language Models (LLMs) has reshaped machine translation (MT), but multilingual MT still relies heavily on parallel data for supervised fine-tuning (SFT), facing challenges like data scarcity for low-resource languages and catastrophic forgetting. To address these issues, we propose TRANS-ZERO, a self-play framework that leverages only monolingual data and the intrinsic multilingual knowledge of LLM. TRANS-ZERO combines Genetic Monte-Carlo Tree Search (G-MCTS) with preference optimization, achieving strong translation performance that rivals supervised methods. Experiments demonstrate that this approach not only matches the performance of models trained on large-scale parallel data but also excels in non-English translation directions. Further analysis reveals that G-MCTS itself significantly enhances translation quality by exploring semantically consistent candidates through iterative translations, providing a robust foundation for the framework's succuss.
comment: 11 pages, 4 figures
A Case Study Exploring the Current Landscape of Synthetic Medical Record Generation with Commercial LLMs
Synthetic Electronic Health Records (EHRs) offer a valuable opportunity to create privacy preserving and harmonized structured data, supporting numerous applications in healthcare. Key benefits of synthetic data include precise control over the data schema, improved fairness and representation of patient populations, and the ability to share datasets without concerns about compromising real individuals privacy. Consequently, the AI community has increasingly turned to Large Language Models (LLMs) to generate synthetic data across various domains. However, a significant challenge in healthcare is ensuring that synthetic health records reliably generalize across different hospitals, a long standing issue in the field. In this work, we evaluate the current state of commercial LLMs for generating synthetic data and investigate multiple aspects of the generation process to identify areas where these models excel and where they fall short. Our main finding from this work is that while LLMs can reliably generate synthetic health records for smaller subsets of features, they struggle to preserve realistic distributions and correlations as the dimensionality of the data increases, ultimately limiting their ability to generalize across diverse hospital settings.
comment: Accepted at the Conference of Health, Inference, Learning (CHIL 2025) in Berkeley, CA. To appear in PMLR later in 2025
LeetCodeDataset: A Temporal Dataset for Robust Evaluation and Efficient Training of Code LLMs
We introduce LeetCodeDataset, a high-quality benchmark for evaluating and training code-generation models, addressing two key challenges in LLM research: the lack of reasoning-focused coding benchmarks and self-contained training testbeds. By curating LeetCode Python problems with rich metadata, broad coverage, 100+ test cases per problem, and temporal splits (pre/post July 2024), our dataset enables contamination-free evaluation and efficient supervised fine-tuning (SFT). Experiments show reasoning models significantly outperform non-reasoning counterparts, while SFT with only 2.6K model-generated solutions achieves performance comparable to 110K-sample counterparts. The dataset and evaluation framework are available on Hugging Face and Github.
Risk Assessment Framework for Code LLMs via Leveraging Internal States
The pre-training paradigm plays a key role in the success of Large Language Models (LLMs), which have been recognized as one of the most significant advancements of AI recently. Building on these breakthroughs, code LLMs with advanced coding capabilities bring huge impacts on software engineering, showing the tendency to become an essential part of developers' daily routines. However, the current code LLMs still face serious challenges related to trustworthiness, as they can generate incorrect, insecure, or unreliable code. Recent exploratory studies find that it can be promising to detect such risky outputs by analyzing LLMs' internal states, akin to how the human brain unconsciously recognizes its own mistakes. Yet, most of these approaches are limited to narrow sub-domains of LLM operations and fall short of achieving industry-level scalability and practicability. To address these challenges, in this paper, we propose PtTrust, a two-stage risk assessment framework for code LLM based on internal state pre-training, designed to integrate seamlessly with the existing infrastructure of software companies. The core idea is that the risk assessment framework could also undergo a pre-training process similar to LLMs. Specifically, PtTrust first performs unsupervised pre-training on large-scale unlabeled source code to learn general representations of LLM states. Then, it uses a small, labeled dataset to train a risk predictor. We demonstrate the effectiveness of PtTrust through fine-grained, code line-level risk assessment and demonstrate that it generalizes across tasks and different programming languages. Further experiments also reveal that PtTrust provides highly intuitive and interpretable features, fostering greater user trust. We believe PtTrust makes a promising step toward scalable and trustworthy assurance for code LLMs.
comment: To appear in the 33rd ACM International Conference on the Foundations of Software Engineering (FSE Companion'25 Industry Track), June 23-28, 2025, Trondheim, Norway. This work was supported by Fujitsu Limited
Harnessing Generative LLMs for Enhanced Financial Event Entity Extraction Performance
Financial event entity extraction is a crucial task for analyzing market dynamics and building financial knowledge graphs, yet it presents significant challenges due to the specialized language and complex structures in financial texts. Traditional approaches often rely on sequence labeling models, which can struggle with long-range dependencies and the inherent complexity of extracting multiple, potentially overlapping entities. Motivated by the advanced language understanding and generative capabilities of Large Language Models (LLMs), we propose a novel method that reframes financial event entity extraction as a text-to-structured-output generation task. Our approach involves fine-tuning a pre-trained LLM using Parameter-Efficient Fine-Tuning (PEFT) to directly generate a structured representation, such as a JSON object, containing the extracted entities and their precise character spans from the input text. We evaluate our method on the challenging CCKS 2019 Financial Event Entity Extraction dataset, comparing its performance against strong sequence labeling baselines, including SEBERTNets and sebertNets. Experimental results demonstrate that our generative LLM method achieves a new state-of-the-art F1 score on this benchmark, significantly outperforming previous methods. Through detailed quantitative analysis across event types, entity types, and instance complexity, as well as human evaluation, we show that our approach is more effective at handling the nuances of financial text and extracting high-quality entities. This work validates the potential of applying generative LLMs directly to complex, domain-specific information extraction tasks requiring structured output.
Automatic Text Summarization (ATS) for Research Documents in Sorani Kurdish
Extracting concise information from scientific documents aids learners, researchers, and practitioners. Automatic Text Summarization (ATS), a key Natural Language Processing (NLP) application, automates this process. While ATS methods exist for many languages, Kurdish remains underdeveloped due to limited resources. This study develops a dataset and language model based on 231 scientific papers in Sorani Kurdish, collected from four academic departments in two universities in the Kurdistan Region of Iraq (KRI), averaging 26 pages per document. Using Sentence Weighting and Term Frequency-Inverse Document Frequency (TF-IDF) algorithms, two experiments were conducted, differing in whether the conclusions were included. The average word count was 5,492.3 in the first experiment and 5,266.96 in the second. Results were evaluated manually and automatically using ROUGE-1, ROUGE-2, and ROUGE-L metrics, with the best accuracy reaching 19.58%. Six experts conducted manual evaluations using three criteria, with results varying by document. This research provides valuable resources for Kurdish NLP researchers to advance ATS and related fields.
comment: 18 pages, 11 figures, 8 tables
A Hierarchical Framework for Measuring Scientific Paper Innovation via Large Language Models
Measuring scientific paper innovation is both important and challenging. Existing content-based methods often overlook the full-paper context, fail to capture the full scope of innovation, and lack generalization. We propose HSPIM, a hierarchical and training-free framework based on large language models (LLMs). It introduces a Paper-to-Sections-to-QAs decomposition to assess innovation. We segment the text by section titles and use zero-shot LLM prompting to implement section classification, question-answering (QA) augmentation, and weighted novelty scoring. The generated QA pair focuses on section-level innovation and serves as additional context to improve the LLM scoring. For each chunk, the LLM outputs a novelty score and a confidence score. We use confidence scores as weights to aggregate novelty scores into a paper-level innovation score. To further improve performance, we propose a two-layer question structure consisting of common and section-specific questions, and apply a genetic algorithm to optimize the question-prompt combinations. Comprehensive experiments on scientific conference paper datasets show that HSPIM outperforms baseline methods in effectiveness, generalization, and interpretability.
Translation Analytics for Freelancers: I. Introduction, Data Preparation, Baseline Evaluations
This is the first in a series of papers exploring the rapidly expanding new opportunities arising from recent progress in language technologies for individual translators and language service providers with modest resources. The advent of advanced neural machine translation systems, large language models, and their integration into workflows via computer-assisted translation tools and translation management systems have reshaped the translation landscape. These advancements enable not only translation but also quality evaluation, error spotting, glossary generation, and adaptation to domain-specific needs, creating new technical opportunities for freelancers. In this series, we aim to empower translators with actionable methods to harness these advancements. Our approach emphasizes Translation Analytics, a suite of evaluation techniques traditionally reserved for large-scale industry applications but now becoming increasingly available for smaller-scale users. This first paper introduces a practical framework for adapting automatic evaluation metrics -- such as BLEU, chrF, TER, and COMET -- to freelancers' needs. We illustrate the potential of these metrics using a trilingual corpus derived from a real-world project in the medical domain and provide statistical analysis correlating human evaluations with automatic scores. Our findings emphasize the importance of proactive engagement with emerging technologies to not only adapt but thrive in the evolving professional environment.
comment: 28 pages, 4 figures. Accepted at the MT Summit, University of Geneva, June 2025
a1: Steep Test-time Scaling Law via Environment Augmented Generation
Large Language Models (LLMs) have made remarkable breakthroughs in reasoning, yet continue to struggle with hallucinations, logical errors, and inability to self-correct during complex multi-step tasks. Current approaches like chain-of-thought prompting offer limited reasoning capabilities that fail when precise step validation is required. We propose Environment Augmented Generation (EAG), a framework that enhances LLM reasoning through: (1) real-time environmental feedback validating each reasoning step, (2) dynamic branch exploration for investigating alternative solution paths when faced with errors, and (3) experience-based learning from successful reasoning trajectories. Unlike existing methods, EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback with branching exploration. Our a1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks, matching larger models like o1 on competition mathematics while outperforming comparable models by up to 24.4 percentage points. Analysis reveals EAG's distinctive scaling pattern: initial token investment in environment interaction yields substantial long-term performance dividends, with advantages amplifying proportionally to task complexity. EAG's theoretical framework demonstrates how environment interactivity and systematic branch exploration together establish a new paradigm for reliable machine reasoning, particularly for problems requiring precise multi-step calculation and logical verification.
HealthGenie: Empowering Users with Healthy Dietary Guidance through Knowledge Graph and Large Language Models
Seeking dietary guidance often requires navigating complex professional knowledge while accommodating individual health conditions. Knowledge Graphs (KGs) offer structured and interpretable nutritional information, whereas Large Language Models (LLMs) naturally facilitate conversational recommendation delivery. In this paper, we present HealthGenie, an interactive system that combines the strengths of LLMs and KGs to provide personalized dietary recommendations along with hierarchical information visualization for a quick and intuitive overview. Upon receiving a user query, HealthGenie performs query refinement and retrieves relevant information from a pre-built KG. The system then visualizes and highlights pertinent information, organized by defined categories, while offering detailed, explainable recommendation rationales. Users can further tailor these recommendations by adjusting preferences interactively. Our evaluation, comprising a within-subject comparative experiment and an open-ended discussion, demonstrates that HealthGenie effectively supports users in obtaining personalized dietary guidance based on their health conditions while reducing interaction effort and cognitive load. These findings highlight the potential of LLM-KG integration in supporting decision-making through explainable and visualized information. We examine the system's usefulness and effectiveness with an N=12 within-subject study and provide design considerations for future systems that integrate conversational LLM and KG.
BookWorld: From Novels to Interactive Agent Societies for Creative Story Generation
Recent advances in large language models (LLMs) have enabled social simulation through multi-agent systems. Prior efforts focus on agent societies created from scratch, assigning agents with newly defined personas. However, simulating established fictional worlds and characters remain largely underexplored, despite its significant practical value. In this paper, we introduce BookWorld, a comprehensive system for constructing and simulating book-based multi-agent societies. BookWorld's design covers comprehensive real-world intricacies, including diverse and dynamic characters, fictional worldviews, geographical constraints and changes, e.t.c. BookWorld enables diverse applications including story generation, interactive games and social simulation, offering novel ways to extend and explore beloved fictional works. Through extensive experiments, we demonstrate that BookWorld generates creative, high-quality stories while maintaining fidelity to the source books, surpassing previous methods with a win rate of 75.36%. The code of this paper can be found at the project page: https://bookworld2025.github.io/.
comment: 19 pages, 4 figures
Causality for Natural Language Processing
Causal reasoning is a cornerstone of human intelligence and a critical capability for artificial systems aiming to achieve advanced understanding and decision-making. This thesis delves into various dimensions of causal reasoning and understanding in large language models (LLMs). It encompasses a series of studies that explore the causal inference skills of LLMs, the mechanisms behind their performance, and the implications of causal and anticausal learning for natural language processing (NLP) tasks. Additionally, it investigates the application of causal reasoning in text-based computational social science, specifically focusing on political decision-making and the evaluation of scientific impact through citations. Through novel datasets, benchmark tasks, and methodological frameworks, this work identifies key challenges and opportunities to improve the causal capabilities of LLMs, providing a comprehensive foundation for future research in this evolving field.
comment: PhD Thesis 2024
Are Vision LLMs Road-Ready? A Comprehensive Benchmark for Safety-Critical Driving Video Understanding
Vision Large Language Models (VLLMs) have demonstrated impressive capabilities in general visual tasks such as image captioning and visual question answering. However, their effectiveness in specialized, safety-critical domains like autonomous driving remains largely unexplored. Autonomous driving systems require sophisticated scene understanding in complex environments, yet existing multimodal benchmarks primarily focus on normal driving conditions, failing to adequately assess VLLMs' performance in safety-critical scenarios. To address this, we introduce DVBench, a pioneering benchmark designed to evaluate the performance of VLLMs in understanding safety-critical driving videos. Built around a hierarchical ability taxonomy that aligns with widely adopted frameworks for describing driving scenarios used in assessing highly automated driving systems, DVBench features 10,000 multiple-choice questions with human-annotated ground-truth answers, enabling a comprehensive evaluation of VLLMs' capabilities in perception and reasoning. Experiments on 14 SOTA VLLMs, ranging from 0.5B to 72B parameters, reveal significant performance gaps, with no model achieving over 40% accuracy, highlighting critical limitations in understanding complex driving scenarios. To probe adaptability, we fine-tuned selected models using domain-specific data from DVBench, achieving accuracy gains ranging from 5.24 to 10.94 percentage points, with relative improvements of up to 43.59%. This improvement underscores the necessity of targeted adaptation to bridge the gap between general-purpose VLLMs and mission-critical driving applications. DVBench establishes an essential evaluation framework and research roadmap for developing VLLMs that meet the safety and robustness requirements for real-world autonomous systems. We released the benchmark toolbox and the fine-tuned model at: https://github.com/tong-zeng/DVBench.git.
Meta-Thinking in LLMs via Multi-Agent Reinforcement Learning: A Survey
This survey explores the development of meta-thinking capabilities in Large Language Models (LLMs) from a Multi-Agent Reinforcement Learning (MARL) perspective. Meta-thinking self-reflection, assessment, and control of thinking processes is an important next step in enhancing LLM reliability, flexibility, and performance, particularly for complex or high-stakes tasks. The survey begins by analyzing current LLM limitations, such as hallucinations and the lack of internal self-assessment mechanisms. It then talks about newer methods, including RL from human feedback (RLHF), self-distillation, and chain-of-thought prompting, and each of their limitations. The crux of the survey is to talk about how multi-agent architectures, namely supervisor-agent hierarchies, agent debates, and theory of mind frameworks, can emulate human-like introspective behavior and enhance LLM robustness. By exploring reward mechanisms, self-play, and continuous learning methods in MARL, this survey gives a comprehensive roadmap to building introspective, adaptive, and trustworthy LLMs. Evaluation metrics, datasets, and future research avenues, including neuroscience-inspired architectures and hybrid symbolic reasoning, are also discussed.
comment: Submitted to IEEE Transactions on Artificial Intelligence
Functional Abstraction of Knowledge Recall in Large Language Models
Pre-trained transformer large language models (LLMs) demonstrate strong knowledge recall capabilities. This paper investigates the knowledge recall mechanism in LLMs by abstracting it into a functional structure. We propose that during knowledge recall, the model's hidden activation space implicitly entails a function execution process where specific activation vectors align with functional components (Input argument, Function body, and Return values). Specifically, activation vectors of relation-related tokens define a mapping function from subjects to objects, with subject-related token activations serving as input arguments and object-related token activations as return values. For experimental verification, we first design a patching-based knowledge-scoring algorithm to identify knowledge-aware activation vectors as independent functional components. Then, we conduct counter-knowledge testing to examine the independent functional effects of each component on knowledge recall outcomes. From this functional perspective, we improve the contextual knowledge editing approach augmented by activation patching. By rewriting incoherent activations in context, we enable improved short-term memory retention for new knowledge prompting.
FairSteer: Inference Time Debiasing for LLMs with Dynamic Activation Steering
Large language models (LLMs) are prone to capturing biases from training corpus, leading to potential negative social impacts. Existing prompt-based debiasing methods exhibit instability due to their sensitivity to prompt changes, while fine-tuning-based techniques incur substantial computational overhead and catastrophic forgetting. In this paper, we propose FairSteer, a novel inference-time debiasing framework without requiring customized prompt design or model retraining. Motivated by the linear representation hypothesis, our preliminary investigation demonstrates that fairness-related features can be encoded into separable directions in the hidden activation space. FairSteer operates in three steps: biased activation detection, debiasing steering vector (DSV) computation, and dynamic activation steering. Specifically, it first trains a lightweight linear classifier to detect bias signatures in activations, and then computes DSVs as intervention directions derived from small contrastive prompt pairs. Subsequently, it performs debiasing by adjusting activations with DSVs in the inference stage. Comprehensive evaluation with six LLMs demonstrates the superiority of FairSteer across question-answering, counterfactual input evaluation and open-ended text generation tasks. Code will be released.
DialogueAgents: A Hybrid Agent-Based Speech Synthesis Framework for Multi-Party Dialogue ICME 2025
Speech synthesis is crucial for human-computer interaction, enabling natural and intuitive communication. However, existing datasets involve high construction costs due to manual annotation and suffer from limited character diversity, contextual scenarios, and emotional expressiveness. To address these issues, we propose DialogueAgents, a novel hybrid agent-based speech synthesis framework, which integrates three specialized agents -- a script writer, a speech synthesizer, and a dialogue critic -- to collaboratively generate dialogues. Grounded in a diverse character pool, the framework iteratively refines dialogue scripts and synthesizes speech based on speech review, boosting emotional expressiveness and paralinguistic features of the synthesized dialogues. Using DialogueAgent, we contribute MultiTalk, a bilingual, multi-party, multi-turn speech dialogue dataset covering diverse topics. Extensive experiments demonstrate the effectiveness of our framework and the high quality of the MultiTalk dataset. We release the dataset and code https://github.com/uirlx/DialogueAgents to facilitate future research on advanced speech synthesis models and customized data generation.
comment: Accepted by ICME 2025. Dataset and code are publicly available: [https://github.com/uirlx/DialogueAgents](https://github.com/uirlx/DialogueAgents)
sEEG-based Encoding for Sentence Retrieval: A Contrastive Learning Approach to Brain-Language Alignment CVPR 2025
Interpreting neural activity through meaningful latent representations remains a complex and evolving challenge at the intersection of neuroscience and artificial intelligence. We investigate the potential of multimodal foundation models to align invasive brain recordings with natural language. We present SSENSE, a contrastive learning framework that projects single-subject stereo-electroencephalography (sEEG) signals into the sentence embedding space of a frozen CLIP model, enabling sentence-level retrieval directly from brain activity. SSENSE trains a neural encoder on spectral representations of sEEG using InfoNCE loss, without fine-tuning the text encoder. We evaluate our method on time-aligned sEEG and spoken transcripts from a naturalistic movie-watching dataset. Despite limited data, SSENSE achieves promising results, demonstrating that general-purpose language representations can serve as effective priors for neural decoding.
comment: Accepted for poster presentation at the CVPR 2025 Workshop on Multimodal Foundation Models (MMFM3)
CoLoTa: A Dataset for Entity-based Commonsense Reasoning over Long-Tail Knowledge
The rise of Large Language Models (LLMs) has redefined the AI landscape, particularly due to their ability to encode factual and commonsense knowledge, and their outstanding performance in tasks requiring reasoning. Despite these advances, hallucinations and reasoning errors remain a significant barrier to their deployment in high-stakes settings. In this work, we observe that even the most prominent LLMs, such as OpenAI-o1, suffer from high rates of reasoning errors and hallucinations on tasks requiring commonsense reasoning over obscure, long-tail entities. To investigate this limitation, we present a new dataset for Commonsense reasoning over Long-Tail entities (CoLoTa), that consists of 3,300 queries from question answering and claim verification tasks and covers a diverse range of commonsense reasoning skills. We remark that CoLoTa can also serve as a Knowledge Graph Question Answering (KGQA) dataset since the support of knowledge required to answer its queries is present in the Wikidata knowledge graph. However, as opposed to existing KGQA benchmarks that merely focus on factoid questions, our CoLoTa queries also require commonsense reasoning. Our experiments with strong LLM-based KGQA methodologies indicate their severe inability to answer queries involving commonsense reasoning. Hence, we propose CoLoTa as a novel benchmark for assessing both (i) LLM commonsense reasoning capabilities and their robustness to hallucinations on long-tail entities and (ii) the commonsense reasoning capabilities of KGQA methods.
ParaPO: Aligning Language Models to Reduce Verbatim Reproduction of Pre-training Data
Language models (LMs) can memorize and reproduce segments from their pretraining data verbatim even in non-adversarial settings, raising concerns about copyright, plagiarism, privacy, and creativity. We introduce Paraphrase Preference Optimization (ParaPO), a post-training method that fine-tunes LMs to reduce unintentional regurgitation while preserving their overall utility. ParaPO trains LMs to prefer paraphrased versions of memorized segments over the original verbatim content from the pretraining data. To maintain the ability to recall famous quotations when appropriate, we develop a variant of ParaPO that uses system prompts to control regurgitation behavior. In our evaluation on Llama3.1-8B, ParaPO consistently reduces regurgitation across all tested datasets (e.g., reducing the regurgitation metric from 17.3 to 12.9 in creative writing), whereas unlearning methods used in prior work to mitigate regurgitation are less effective outside their targeted unlearned domain (from 17.3 to 16.9). When applied to the instruction-tuned Tulu3-8B model, ParaPO with system prompting successfully preserves famous quotation recall while reducing unintentional regurgitation (from 8.7 to 6.3 in creative writing) when prompted not to regurgitate. In contrast, without ParaPO tuning, prompting the model not to regurgitate produces only a marginal reduction (8.7 to 8.4).
LoRe: Personalizing LLMs via Low-Rank Reward Modeling
Personalizing large language models (LLMs) to accommodate diverse user preferences is essential for enhancing alignment and user satisfaction. Traditional reinforcement learning from human feedback (RLHF) approaches often rely on monolithic value representations, limiting their ability to adapt to individual preferences. We introduce a novel framework that leverages low-rank preference modeling to efficiently learn and generalize user-specific reward functions. By representing reward functions in a low-dimensional subspace and modeling individual preferences as weighted combinations of shared basis functions, our approach avoids rigid user categorization while enabling scalability and few-shot adaptation. We validate our method on multiple preference datasets, demonstrating superior generalization to unseen users and improved accuracy in preference prediction tasks.
Star Attention: Efficient LLM Inference over Long Sequences
Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 97-100% of accuracy.
comment: Code: https://github.com/NVIDIA/Star-Attention
DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models
Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters--the differences between fine-tuned and pre-trained model weights--while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE's limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., >30 % on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.
A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
Wrong Answers Can Also Be Useful: PlausibleQA -- A Large-Scale QA Dataset with Answer Plausibility Scores SIGIR 2025
Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers.
comment: Accepted at SIGIR 2025
WikiHint: A Human-Annotated Dataset for Hint Ranking and Generation SIGIR 2025
The use of Large Language Models (LLMs) has increased significantly with users frequently asking questions to chatbots. In the time when information is readily accessible, it is crucial to stimulate and preserve human cognitive abilities and maintain strong reasoning skills. This paper addresses such challenges by promoting the use of hints as an alternative or a supplement to direct answers. We first introduce a manually constructed hint dataset, WikiHint, which is based on Wikipedia and includes 5,000 hints created for 1,000 questions. We then finetune open-source LLMs for hint generation in answer-aware and answer-agnostic contexts. We assess the effectiveness of the hints with human participants who answer questions with and without the aid of hints. Additionally, we introduce a lightweight evaluation method, HintRank, to evaluate and rank hints in both answer-aware and answer-agnostic settings. Our findings show that (a) the dataset helps generate more effective hints, (b) including answer information along with questions generally improves the quality of generated hints, and (c) encoder-based models perform better than decoder-based models in hint ranking.
comment: Accepted at SIGIR 2025
Forecasting from Clinical Textual Time Series: Adaptations of the Encoder and Decoder Language Model Families
Clinical case reports encode rich, temporal patient trajectories that are often underexploited by traditional machine learning methods relying on structured data. In this work, we introduce the forecasting problem from textual time series, where timestamped clinical findings -- extracted via an LLM-assisted annotation pipeline -- serve as the primary input for prediction. We systematically evaluate a diverse suite of models, including fine-tuned decoder-based large language models and encoder-based transformers, on tasks of event occurrence prediction, temporal ordering, and survival analysis. Our experiments reveal that encoder-based models consistently achieve higher F1 scores and superior temporal concordance for short- and long-horizon event forecasting, while fine-tuned masking approaches enhance ranking performance. In contrast, instruction-tuned decoder models demonstrate a relative advantage in survival analysis, especially in early prognosis settings. Our sensitivity analyses further demonstrate the importance of time ordering, which requires clinical time series construction, as compared to text ordering, the format of the text inputs that LLMs are classically trained on. This highlights the additional benefit that can be ascertained from time-ordered corpora, with implications for temporal tasks in the era of widespread LLM use.
comment: Machine Learning for Healthcare (MLHC 2025)
SLMRec: Distilling Large Language Models into Small for Sequential Recommendation ICLR 2025
Sequential Recommendation (SR) task involves predicting the next item a user is likely to interact with, given their past interactions. The SR models examine the sequence of a user's actions to discern more complex behavioral patterns and temporal dynamics. Recent research demonstrates the great impact of LLMs on sequential recommendation systems, either viewing sequential recommendation as language modeling or serving as the backbone for user representation. Although these methods deliver outstanding performance, there is scant evidence of the necessity of a large language model and how large the language model is needed, especially in the sequential recommendation scene. Meanwhile, due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms that often need to process billions of traffic logs daily. In this paper, we explore the influence of LLMs' depth by conducting extensive experiments on large-scale industry datasets. Surprisingly, our motivational experiments reveal that most intermediate layers of LLMs are redundant, indicating that pruning the remaining layers can still maintain strong performance. Motivated by this insight, we empower small language models for SR, namely SLMRec, which adopt a simple yet effective knowledge distillation method. Moreover, SLMRec is orthogonal to other post-training efficiency techniques, such as quantization and pruning, so that they can be leveraged in combination. Comprehensive experimental results illustrate that the proposed SLMRec model attains the best performance using only 13% of the parameters found in LLM-based recommendation models while simultaneously achieving up to 6.6x and 8.0x speedups in training and inference time costs, respectively. Besides, we provide a theoretical justification for why small language models can perform comparably to large language models in SR.
comment: International Conference on Learning Representations (ICLR 2025)
Self-evolving Agents with reflective and memory-augmented abilities
Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making. In this research, we propose a novel framework by integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents' capabilities in handling multi-tasking and long-span information.
Advancing MoE Efficiency: A Collaboration-Constrained Routing (C2R) Strategy for Better Expert Parallelism Design NAACL 2025
Mixture-of-Experts (MoE) has successfully scaled up models while maintaining nearly constant computing costs. By employing a gating network to route input tokens, it selectively activates a subset of expert networks to process the corresponding token embeddings. However, in practice, the efficiency of MoE is challenging to achieve due to two key reasons: imbalanced expert activation, which leads to substantial idle time during model or expert parallelism, and insufficient capacity utilization; massive communication overhead, induced by numerous expert routing combinations in expert parallelism at the system level. Previous works typically formulate it as the load imbalance issue characterized by the gating network favoring certain experts over others or attribute it to static execution which fails to adapt to the dynamic expert workload at runtime. In this paper, we exploit it from a brand new perspective, a higher-order view and analysis of MoE routing policies: expert collaboration and specialization where some experts tend to activate broadly with others (collaborative), while others are more likely to activate only with a specific subset of experts (specialized). Our experiments reveal that most experts tend to be overly collaborative, leading to increased communication overhead from repeatedly sending tokens to different accelerators. To this end, we propose a novel collaboration-constrained routing (C2R) strategy to encourage more specialized expert groups, as well as to improve expert utilization, and present an efficient implementation of MoE that further leverages expert specialization. We achieve an average performance improvement of 0.51% and 0.33% on LLaMA-MoE and Qwen-MoE respectively across ten downstream NLP benchmarks, and reduce the all2all communication costs between GPUs, bringing an extra 20%-30% total running time savings on top of the existing SoTA, i.e. MegaBlocks.
comment: NAACL 2025, SAC award for Low-resource Methods for NLP
Idiom Detection in Sorani Kurdish Texts
Idiom detection using Natural Language Processing (NLP) is the computerized process of recognizing figurative expressions within a text that convey meanings beyond the literal interpretation of the words. While idiom detection has seen significant progress across various languages, the Kurdish language faces a considerable research gap in this area despite the importance of idioms in tasks like machine translation and sentiment analysis. This study addresses idiom detection in Sorani Kurdish by approaching it as a text classification task using deep learning techniques. To tackle this, we developed a dataset containing 10,580 sentences embedding 101 Sorani Kurdish idioms across diverse contexts. Using this dataset, we developed and evaluated three deep learning models: KuBERT-based transformer sequence classification, a Recurrent Convolutional Neural Network (RCNN), and a BiLSTM model with an attention mechanism. The evaluations revealed that the transformer model, the fine-tuned BERT, consistently outperformed the others, achieving nearly 99% accuracy while the RCNN achieved 96.5% and the BiLSTM 80%. These results highlight the effectiveness of Transformer-based architectures in low-resource languages like Kurdish. This research provides a dataset, three optimized models, and insights into idiom detection, laying a foundation for advancing Kurdish NLP.
comment: 22 pages, 8 figures, 7 tables
Seek and Solve Reasoning for Table Question Answering ICASSP 2025
The complexities of table structures and question logic make table-based question answering (TQA) tasks challenging for Large Language Models (LLMs), often requiring task simplification before solving. This paper reveals that the reasoning process during task simplification may be more valuable than the simplified tasks themselves and aims to improve TQA performance by leveraging LLMs' reasoning capabilities. We propose a Seek-and-Solve pipeline that instructs the LLM to first seek relevant information and then answer questions, integrating these two stages at the reasoning level into a coherent Seek-and-Solve Chain of Thought (SS-CoT). Additionally, we distill a single-step TQA-solving prompt from this pipeline, using demonstrations with SS-CoT paths to guide the LLM in solving complex TQA tasks under In-Context Learning settings. Our experiments show that our approaches result in improved performance and reliability while being efficient. Our findings emphasize the importance of eliciting LLMs' reasoning capabilities to handle complex TQA tasks effectively.
comment: Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Following the Whispers of Values: Unraveling Neural Mechanisms Behind Value-Oriented Behaviors in LLMs
Despite the impressive performance of large language models (LLMs), they can present unintended biases and harmful behaviors driven by encoded values, emphasizing the urgent need to understand the value mechanisms behind them. However, current research primarily evaluates these values through external responses with a focus on AI safety, lacking interpretability and failing to assess social values in real-world contexts. In this paper, we propose a novel framework called ValueExploration, which aims to explore the behavior-driven mechanisms of National Social Values within LLMs at the neuron level. As a case study, we focus on Chinese Social Values and first construct C-voice, a large-scale bilingual benchmark for identifying and evaluating Chinese Social Values in LLMs. By leveraging C-voice, we then identify and locate the neurons responsible for encoding these values according to activation difference. Finally, by deactivating these neurons, we analyze shifts in model behavior, uncovering the internal mechanism by which values influence LLM decision-making. Extensive experiments on four representative LLMs validate the efficacy of our framework. The benchmark and code will be available.
BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
Fine-Grained and Multi-Dimensional Metrics for Document-Level Machine Translation NAACL 2025
Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and the outputs from GPT4-as-a-judge are available at https://github.com/EIT-NLP/BLEUless_DocMT
comment: Accepted at NAACL 2025 Student Research Workshop
Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval ICLR 2025
Large language models (LLMs) have demonstrated significant potential in clinical decision support. Yet LLMs still suffer from hallucinations and lack fine-grained contextual medical knowledge, limiting their high-stake healthcare applications such as clinical diagnosis. Traditional retrieval-augmented generation (RAG) methods attempt to address these limitations but frequently retrieve sparse or irrelevant information, undermining prediction accuracy. We introduce KARE, a novel framework that integrates knowledge graph (KG) community-level retrieval with LLM reasoning to enhance healthcare predictions. KARE constructs a comprehensive multi-source KG by integrating biomedical databases, clinical literature, and LLM-generated insights, and organizes it using hierarchical graph community detection and summarization for precise and contextually relevant information retrieval. Our key innovations include: (1) a dense medical knowledge structuring approach enabling accurate retrieval of relevant information; (2) a dynamic knowledge retrieval mechanism that enriches patient contexts with focused, multi-faceted medical insights; and (3) a reasoning-enhanced prediction framework that leverages these enriched contexts to produce both accurate and interpretable clinical predictions. Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions. In addition to its impressive prediction accuracy, our framework leverages the reasoning capabilities of LLMs, enhancing the trustworthiness of clinical predictions.
comment: ICLR 2025 Camera-Ready
CHATTER: A Character Attribution Dataset for Narrative Understanding
Computational narrative understanding studies the identification, description, and interaction of the elements of a narrative: characters, attributes, events, and relations. Narrative research has given considerable attention to defining and classifying character types. However, these character-type taxonomies do not generalize well because they are small, too simple, or specific to a domain. We require robust and reliable benchmarks to test whether narrative models truly understand the nuances of the character's development in the story. Our work addresses this by curating the CHATTER dataset that labels whether a character portrays some attribute for 88124 character-attribute pairs, encompassing 2998 characters, 12967 attributes and 660 movies. We validate a subset of CHATTER, called CHATTEREVAL, using human annotations to serve as a benchmark to evaluate the character attribution task in movie scripts. \evaldataset{} also assesses narrative understanding and the long-context modeling capacity of language models.
comment: accepted to 7th Workshop on Narrative Understanding
GLoRE: Evaluating Logical Reasoning of Large Language Models
Large language models (LLMs) have shown significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a General Logical Reasoning Evaluation platform that not only consolidates diverse datasets but also standardizes them into a unified format suitable for evaluating large language models across zero-shot and few-shot scenarios. Our experimental results show that compared to the performance of humans and supervised fine-tuning models, the logical reasoning capabilities of large reasoning models, such as OpenAI's o1 mini, DeepSeek R1 and QwQ-32B, have seen remarkable improvements, with QwQ-32B achieving the highest benchmark performance to date. GLoRE is designed as a living project that continuously integrates new datasets and models, facilitating robust and comparative assessments of model performance in both commercial and Huggingface communities.
ToReMi: Topic-Aware Data Reweighting for Dynamic Pre-Training Data Selection
Pre-training large language models (LLMs) necessitates enormous diverse textual corpora, making effective data selection a key challenge for balancing computational resources and model performance. Current methodologies primarily emphasize data quality metrics and mixing proportions, yet they fail to adequately capture the underlying semantic connections between training samples and quality disparities within individual domains. We introduce ToReMi (Topic-based Reweighting for Model improvement), a novel two-stage framework that dynamically adjusts training sample weights according to their topical associations and observed learning patterns. Our comprehensive experiments reveal that ToReMi variants consistently achieve superior performance over conventional pre-training approaches, demonstrating accelerated perplexity reduction across multiple domains and enhanced capabilities on downstream evaluation tasks. Code is available at https://github.com/zxx000728/ToReMi.
AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
IFShip: Interpretable Fine-grained Ship Classification with Domain Knowledge-Enhanced Vision-Language Models
End-to-end interpretation currently dominates the remote sensing fine-grained ship classification (RS-FGSC) task. However, the inference process remains uninterpretable, leading to criticisms of these models as "black box" systems. To address this issue, we propose a domain knowledge-enhanced Chain-of-Thought (CoT) prompt generation mechanism, which is used to semi-automatically construct a task-specific instruction-following dataset, TITANIC-FGS. By training on TITANIC-FGS, we adapt general-domain vision-language models (VLMs) to the FGSC task, resulting in a model named IFShip. Building upon IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results show that IFShip outperforms state-of-the-art FGSC algorithms in both interpretability and classification accuracy. Furthermore, compared to VLMs such as LLaVA and MiniGPT-4, IFShip demonstrates superior performance on the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not. Our dataset is publicly available at: https://github.com/lostwolves/IFShip.
How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: V2: Only minor edits were made to the main text, and we've added more supplementary materials
ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging SemEval
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: SemEval@ACL 2025
Nudging: Inference-time Alignment of LLMs via Guided Decoding
Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, nudging employs a small aligned model to generate nudging tokens to guide the base model's output during decoding when the base model's uncertainty is high. We evaluate nudging across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7x-14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
Image and Video Processing
Phase tomography with axial structured illumination
Holographic Tomography (HT) or Optical Diffraction Tomography (ODT) provides slice-by-slice information about the refractive index (RI) of three-dimensional (3D) samples and is emerging as an important label-free imaging modality for Life sciences. HT systems go beyond the digital holographic microscopy (DHM) systems that provide a two-dimensional (2D) representation of the total accumulated phase acquired by a plane beam on transmission through a 3D sample. While the early HT systems used a direct reconstruction methodology based on the Fourier diffraction theorem, in recent years, there has been an increasing shift towards using iterative optimization frameworks for solving the 3D RI reconstruction problem. Despite this algorithmic framework shift, the HT system hardware still largely uses the multi-angle illumination geometries that were suitable for reconstructions based on the Fourier diffraction theorem. The present work examines the possibility of HT reconstruction through the use of on-axis structured illumination(s) that nominally illuminates the 3D sample along the axial direction. Through a simulation study, it is shown that a cross-talk free slice-by-slice 3D RI reconstruction of the sample is possible in this case via the use of sparsity penalties if the slice-to-slice distance obeys a design curve based on the notion of effective depth of focus. The simulation results for two-, three- and four-slice 3D objects with laterally overlapping features clearly outline the separate roles played by the slice-to-slice de-correlation of the field propagating through the 3D sample and that of the sparsity penalty used to guide the iterative solution. Our results suggest the possibility of realizing an Axial Structured Illumination Tomography (ASIT) system configuration that avoids the use of hardware-intensive multi-angle illumination geometry.
RINN: One Sample Radio Frequency Imaging based on Physics Informed Neural Network
Due to its ability to work in non-line-of-sight and low-light environments, radio frequency (RF) imaging technology is expected to bring new possibilities for embodied intelligence and multimodal sensing. However, widely used RF devices (such as Wi-Fi) often struggle to provide high-precision electromagnetic measurements and large-scale datasets, hindering the application of RF imaging technology. In this paper, we combine the ideas of PINN to design the RINN network, using physical constraints instead of true value comparison constraints and adapting it with the characteristics of ubiquitous RF signals, allowing the RINN network to achieve RF imaging using only one sample without phase and with amplitude noise. Our numerical evaluation results show that compared with 5 classic algorithms based on phase data for imaging results, RINN's imaging results based on phaseless data are good, with indicators such as RRMSE (0.11) performing similarly well. RINN provides new possibilities for the universal development of radio frequency imaging technology.
NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images: Methods and Results CVPR
This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
comment: Challenge Report of CVPR NTIRE 2025; 26 pages; Methods from 32 teams
MultiCore+TPU Accelerated Multi-Modal TinyML for Livestock Behaviour Recognition
The advancement of technology has revolutionised the agricultural industry, transitioning it from labour-intensive farming practices to automated, AI-powered management systems. In recent years, more intelligent livestock monitoring solutions have been proposed to enhance farming efficiency and productivity. This work presents a novel approach to animal activity recognition and movement tracking, leveraging tiny machine learning (TinyML) techniques, wireless communication framework, and microcontroller platforms to develop an efficient, cost-effective livestock sensing system. It collects and fuses accelerometer data and vision inputs to build a multi-modal network for three tasks: image classification, object detection, and behaviour recognition. The system is deployed and evaluated on commercial microcontrollers for real-time inference using embedded applications, demonstrating up to 270$\times$ model size reduction, less than 80ms response latency, and on-par performance comparable to existing methods. The incorporation of the TinyML technique allows for seamless data transmission between devices, benefiting use cases in remote locations with poor Internet connectivity. This work delivers a robust, scalable IoT-edge livestock monitoring solution adaptable to diverse farming needs, offering flexibility for future extensions.
comment: 11 pages, 10 figures
Potential Field Based Deep Metric Learning CVPR 2025
Deep metric learning (DML) involves training a network to learn a semantically meaningful representation space. Many current approaches mine n-tuples of examples and model interactions within each tuplets. We present a novel, compositional DML model that instead of in tuples, represents the influence of each example (embedding) by a continuous potential field, and superposes the fields to obtain their combined global potential field. We use attractive/repulsive potential fields to represent interactions among embeddings from images of the same/different classes. Contrary to typical learning methods, where mutual influence of samples is proportional to their distance, we enforce reduction in such influence with distance, leading to a decaying field. We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise. Like other proxy-based methods, we also use proxies to succinctly represent sub-populations of examples. We evaluate our method on three standard DML benchmarks- Cars-196, CUB-200-2011, and SOP datasets where it outperforms state-of-the-art baselines.
comment: Accepted to CVPR 2025
Impact of Optic Nerve Tortuosity, Globe Proptosis, and Size on Retinal Ganglion Cell Thickness Across General, Glaucoma, and Myopic Populations: Insights from the UK Biobank
Purpose: To investigate the impact of optic nerve tortuosity (ONT), and the interaction of globe proptosis and globe size on retinal ganglion cell (RGC) thickness, using Retinal Nerve Fiber Layer (RNFL) thickness, across general, glaucoma, and myopic populations. Methods: We analyzed 17,940 eyes from the UKBiobank cohort (ID 76442), including 72 glaucoma and 2475 myopic eyes. AI models segmented structures from 3D optical coherence tomography (OCT) scans and magnetic resonance images (MRI). RNFL thickness was derived from OCT scans and corrected for ocular magnification, was derived from OCT. From MRIs, we extracted: ONT, globe proptosis, axial length, and a novel interzygomatic line-to-posterior pole (ILPP) distance, a composite marker of globe proptosis and size. GEE models assessed associations between orbital and retinal features across all populations. Results: Segmentation models achieved Dice coefficients over 0.94 for both MRI and OCT. RNFL thickness was positively correlated with both ONT and ILPP distance (r = 0.065, p < 0.001, and r = 0.206, p < 0.001 respectively). The same was true for glaucoma (r = 0.040, p = 0.74, and r = 0.224, p = 0.059), and for myopia (r = 0.069, p < 0.001, and r = 0.100, p < 0.0001). GEE models revealed straighter optic nerves and shorter ILPP distance as predictive of thinner RNFL in all populations. Conclusions: This study emphasizes the impact of ONT, globe size, and proptosis on retinal health, suggesting RNFL thinning may arise from biomechanical stress due to straighter optic nerves or reduced ILPP distance, particularly in glaucoma or myopia. The novel ILPP metric, integrating globe size and position, shows potential as a biomarker for axonal health. These findings highlight the role of orbit structures in RGC axonal health and warrant further exploration of the biomechanical relationship between the orbit and optic nerve.
comment: 40 pages, 6 figures, 4 tables, 1 supplementary material
Training Neural Networks on RAW and HDR Images for Restoration Tasks
The vast majority of standard image and video content available online is represented in display-encoded color spaces, in which pixel values are conveniently scaled to a limited range (0-1) and the color distribution is approximately perceptually uniform. In contrast, both camera RAW and high dynamic range (HDR) images are often represented in linear color spaces, in which color values are linearly related to colorimetric quantities of light. While training on commonly available display-encoded images is a well-established practice, there is no consensus on how neural networks should be trained for tasks on RAW and HDR images in linear color spaces. In this work, we test several approaches on three popular image restoration applications: denoising, deblurring, and single-image super-resolution. We examine whether HDR/RAW images need to be display-encoded using popular transfer functions (PQ, PU21, and mu-law), or whether it is better to train in linear color spaces, but use loss functions that correct for perceptual non-uniformity. Our results indicate that neural networks train significantly better on HDR and RAW images represented in display-encoded color spaces, which offer better perceptual uniformity than linear spaces. This small change to the training strategy can bring a very substantial gain in performance, between 2 and 9 dB.
Hyperspectral image fusion, Unsupervised hyperspectral super-resolution, Modality decoupling, Self-supervised learning
Hyperspectral and Multispectral Image Fusion (HMIF) aims to fuse low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) to reconstruct high spatial and high spectral resolution images. Current methods typically apply direct fusion from the two modalities without effective supervision, leading to an incomplete perception of deep modality-complementary information and a limited understanding of inter-modality correlations. To address these issues, we propose a simple yet effective solution for unsupervised HMIF, revealing that modality decoupling is key to improving fusion performance. Specifically, we propose an end-to-end self-supervised \textbf{Mo}dality-Decoupled \textbf{S}patial-\textbf{S}pectral Fusion (\textbf{MossFuse}) framework that decouples shared and complementary information across modalities and aggregates a concise representation of both LR-HSIs and HR-MSIs to reduce modality redundancy. Also, we introduce the subspace clustering loss as a clear guide to decouple modality-shared features from modality-complementary ones. Systematic experiments over multiple datasets demonstrate that our simple and effective approach consistently outperforms the existing HMIF methods while requiring considerably fewer parameters with reduced inference time. The anonymous source code is in \href{https://github.com/dusongcheng/MossFuse}{MossFuse}.
Multimedia
Balancing Privacy and Action Performance: A Penalty-Driven Approach to Image Anonymization CVPR
The rapid development of video surveillance systems for object detection, tracking, activity recognition, and anomaly detection has revolutionized our day-to-day lives while setting alarms for privacy concerns. It isn't easy to strike a balance between visual privacy and action recognition performance in most computer vision models. Is it possible to safeguard privacy without sacrificing performance? It poses a formidable challenge, as even minor privacy enhancements can lead to substantial performance degradation. To address this challenge, we propose a privacy-preserving image anonymization technique that optimizes the anonymizer using penalties from the utility branch, ensuring improved action recognition performance while minimally affecting privacy leakage. This approach addresses the trade-off between minimizing privacy leakage and maintaining high action performance. The proposed approach is primarily designed to align with the regulatory standards of the EU AI Act and GDPR, ensuring the protection of personally identifiable information while maintaining action performance. To the best of our knowledge, we are the first to introduce a feature-based penalty scheme that exclusively controls the action features, allowing freedom to anonymize private attributes. Extensive experiments were conducted to validate the effectiveness of the proposed method. The results demonstrate that applying a penalty to anonymizer from utility branch enhances action performance while maintaining nearly consistent privacy leakage across different penalty settings.
comment: Accepted to CVPRW 2025
ROI-Guided Point Cloud Geometry Compression Towards Human and Machine Vision
Point cloud data is pivotal in applications like autonomous driving, virtual reality, and robotics. However, its substantial volume poses significant challenges in storage and transmission. In order to obtain a high compression ratio, crucial semantic details usually confront severe damage, leading to difficulties in guaranteeing the accuracy of downstream tasks. To tackle this problem, we are the first to introduce a novel Region of Interest (ROI)-guided Point Cloud Geometry Compression (RPCGC) method for human and machine vision. Our framework employs a dual-branch parallel structure, where the base layer encodes and decodes a simplified version of the point cloud, and the enhancement layer refines this by focusing on geometry details. Furthermore, the residual information of the enhancement layer undergoes refinement through an ROI prediction network. This network generates mask information, which is then incorporated into the residuals, serving as a strong supervision signal. Additionally, we intricately apply these mask details in the Rate-Distortion (RD) optimization process, with each point weighted in the distortion calculation. Our loss function includes RD loss and detection loss to better guide point cloud encoding for the machine. Experiment results demonstrate that RPCGC achieves exceptional compression performance and better detection accuracy (10% gain) than some learning-based compression methods at high bitrates in ScanNet and SUN RGB-D datasets.
comment: 10 pages, 5 figures
SwinGS: Sliding Window Gaussian Splatting for Volumetric Video Streaming with Arbitrary Length
Recent advances in 3D Gaussian Splatting (3DGS) have garnered significant attention in computer vision and computer graphics due to its high rendering speed and remarkable quality. While extant research has endeavored to extend the application of 3DGS from static to dynamic scenes, such efforts have been consistently impeded by excessive model sizes, constraints on video duration, and content deviation. These limitations significantly compromise the streamability of dynamic 3D Gaussian models, thereby restricting their utility in downstream applications, including volumetric video, autonomous vehicle, and immersive technologies such as virtual, augmented, and mixed reality. This paper introduces SwinGS, a novel framework for training, delivering, and rendering volumetric video in a real-time streaming fashion. To address the aforementioned challenges and enhance streamability, SwinGS integrates spacetime Gaussian with Markov Chain Monte Carlo (MCMC) to adapt the model to fit various 3D scenes across frames, in the meantime employing a sliding window captures Gaussian snapshots for each frame in an accumulative way. We implement a prototype of SwinGS and demonstrate its streamability across various datasets and scenes. Additionally, we develop an interactive WebGL viewer enabling real-time volumetric video playback on most devices with modern browsers, including smartphones and tablets. Experimental results show that SwinGS reduces transmission costs by 83.6% compared to previous work and could be easily scaled to volumetric videos with arbitrary length with no increasing of required GPU resources.
Computation and Language
Density Measures for Language Generation
The recent successes of large language models (LLMs) have led to a surge of theoretical research into language generation. A recent line of work proposes an abstract view, called language generation in the limit, where generation is seen as a game between an adversary and an algorithm: the adversary generates strings from an unknown language $K$, chosen from a countable collection of candidate languages, and after seeing a finite set of these strings, the algorithm must generate new strings from $K$ that it has not seen before. This formalism highlights a key tension: the trade-off between validity (the algorithm should only produce strings from the language) and breadth (it should be able to produce many strings from the language). This trade-off is central in applied language generation as well, where it appears as a balance between hallucination (generating invalid utterances) and mode collapse (generating only a restricted set of outputs). Despite its importance, this trade-off has been challenging to study quantitatively. We develop ways to quantify this trade-off by formalizing breadth using measures of density. Existing algorithms for language generation in the limit produce output sets that can have zero density in the true language, and this important failure of breadth might seem unavoidable. We show, however, that such a failure is not necessary: we provide an algorithm for language generation in the limit whose outputs have strictly positive density in $K$. We also study the internal representations built by these algorithms, specifically the sequence of hypothesized candidate languages they consider, and show that achieving the strongest form of breadth may require oscillating indefinitely between high- and low-density representations. Our analysis introduces a novel topology on language families, with notions of convergence and limit points playing a key role.
Diverse Prompts: Illuminating the Prompt Space of Large Language Models with MAP-Elites CEC 2025
Prompt engineering is essential for optimizing large language models (LLMs), yet the link between prompt structures and task performance remains underexplored. This work introduces an evolutionary approach that combines context-free grammar (CFG) with the MAP-Elites algorithm to systematically explore the prompt space. Our method prioritizes quality and diversity, generating high-performing and structurally varied prompts while analyzing their alignment with diverse tasks by varying traits such as the number of examples (shots) and reasoning depth. By systematically mapping the phenotypic space, we reveal how structural variations influence LLM performance, offering actionable insights for task-specific and adaptable prompt design. Evaluated on seven BigBench Lite tasks across multiple LLMs, our results underscore the critical interplay of quality and diversity, advancing the effectiveness and versatility of LLMs.
comment: 8 pages Accepted for publication in IEEE CEC 2025
Empirical Evaluation of Knowledge Distillation from Transformers to Subquadratic Language Models
Knowledge distillation is a widely used technique for compressing large language models (LLMs) by training a smaller student model to mimic a larger teacher model. Typically, both the teacher and student are Transformer-based architectures, leveraging softmax attention for sequence modeling. However, the quadratic complexity of self-attention at inference time remains a significant bottleneck, motivating the exploration of subquadratic alternatives such as structured state-space models (SSMs), linear attention, and recurrent architectures. In this work, we systematically evaluate the transferability of knowledge distillation from a Transformer teacher to nine subquadratic student architectures. Our study aims to determine which subquadratic model best aligns with the teacher's learned representations and how different architectural constraints influence the distillation process. We also investigate the impact of intelligent initialization strategies, including matrix mixing and query-key-value (QKV) copying, on the adaptation process. Our empirical results on multiple NLP benchmarks provide insights into the trade-offs between efficiency and performance, highlighting key factors for successful knowledge transfer to subquadratic architectures.
Improving RL Exploration for LLM Reasoning through Retrospective Replay
Reinforcement learning (RL) has increasingly become a pivotal technique in the post-training of large language models (LLMs). The effective exploration of the output space is essential for the success of RL. We observe that for complex problems, during the early stages of training, the model exhibits strong exploratory capabilities and can identify promising solution ideas. However, its limited capability at this stage prevents it from successfully solving these problems. The early suppression of these potentially valuable solution ideas by the policy gradient hinders the model's ability to revisit and re-explore these ideas later. Consequently, although the LLM's capabilities improve in the later stages of training, it still struggles to effectively address these complex problems. To address this exploration issue, we propose a novel algorithm named Retrospective Replay-based Reinforcement Learning (RRL), which introduces a dynamic replay mechanism throughout the training process. RRL enables the model to revisit promising states identified in the early stages, thereby improving its efficiency and effectiveness in exploration. To evaluate the effectiveness of RRL, we conduct extensive experiments on complex reasoning tasks, including mathematical reasoning and code generation, and general dialogue tasks. The results indicate that RRL maintains high exploration efficiency throughout the training period, significantly enhancing the effectiveness of RL in optimizing LLMs for complicated reasoning tasks. Moreover, it also improves the performance of RLHF, making the model both safer and more helpful.
comment: 13 pages, 3 figures
Integrating Single-Cell Foundation Models with Graph Neural Networks for Drug Response Prediction
In this study, we propose an innovative methodology for predicting Cancer Drug Response (CDR) through the integration of the scGPT foundation model within the DeepCDR model. Our approach utilizes scGPT to generate embeddings from gene expression data, which are then used as gene expression input data for DeepCDR. The experimental findings demonstrate the efficacy of this scGPT-based method in outperforming previous related works, including the original DeepCDR model and the scFoundation-based model. This study highlights the potential of scGPT embeddings to enhance the accuracy of CDR predictions and offers a promising alternative to existing approaches.
comment: 8 pages, 6 figures
A Multimodal Recaptioning Framework to Account for Perceptual Diversity in Multilingual Vision-Language Modeling
There are many ways to describe, name, and group objects when captioning an image. Differences are evident when speakers come from diverse cultures due to the unique experiences that shape perception. Machine translation of captions has pushed multilingual capabilities in vision-language models (VLMs), but data comes mainly from English speakers, indicating a perceptual bias and lack of model flexibility. In this work, we address this challenge and outline a data-efficient framework to instill multilingual VLMs with greater understanding of perceptual diversity. We specifically propose an LLM-based, multimodal recaptioning strategy that alters the object descriptions of English captions before translation. The greatest benefits are demonstrated in a targeted multimodal mechanism guided by native speaker data. By adding produced rewrites as augmentations in training, we improve on German and Japanese text-image retrieval cases studies (up to +3.5 mean recall overall, +4.7 on non-native error cases). We further propose a mechanism to analyze the specific object description differences across datasets, and we offer insights into cross-dataset and cross-language generalization.
Multimodal Coreference Resolution for Chinese Social Media Dialogues: Dataset and Benchmark Approach
Multimodal coreference resolution (MCR) aims to identify mentions referring to the same entity across different modalities, such as text and visuals, and is essential for understanding multimodal content. In the era of rapidly growing mutimodal content and social media, MCR is particularly crucial for interpreting user interactions and bridging text-visual references to improve communication and personalization. However, MCR research for real-world dialogues remains unexplored due to the lack of sufficient data resources.To address this gap, we introduce TikTalkCoref, the first Chinese multimodal coreference dataset for social media in real-world scenarios, derived from the popular Douyin short-video platform. This dataset pairs short videos with corresponding textual dialogues from user comments and includes manually annotated coreference clusters for both person mentions in the text and the coreferential person head regions in the corresponding video frames. We also present an effective benchmark approach for MCR, focusing on the celebrity domain, and conduct extensive experiments on our dataset, providing reliable benchmark results for this newly constructed dataset. We will release the TikTalkCoref dataset to facilitate future research on MCR for real-world social media dialogues.
Probing the Subtle Ideological Manipulation of Large Language Models
Large Language Models (LLMs) have transformed natural language processing, but concerns have emerged about their susceptibility to ideological manipulation, particularly in politically sensitive areas. Prior work has focused on binary Left-Right LLM biases, using explicit prompts and fine-tuning on political QA datasets. In this work, we move beyond this binary approach to explore the extent to which LLMs can be influenced across a spectrum of political ideologies, from Progressive-Left to Conservative-Right. We introduce a novel multi-task dataset designed to reflect diverse ideological positions through tasks such as ideological QA, statement ranking, manifesto cloze completion, and Congress bill comprehension. By fine-tuning three LLMs-Phi-2, Mistral, and Llama-3-on this dataset, we evaluate their capacity to adopt and express these nuanced ideologies. Our findings indicate that fine-tuning significantly enhances nuanced ideological alignment, while explicit prompts provide only minor refinements. This highlights the models' susceptibility to subtle ideological manipulation, suggesting a need for more robust safeguards to mitigate these risks.
Cross-attention for State-based model RWKV-7
We introduce CrossWKV, a novel cross-attention mechanism for the state-based RWKV-7 model, designed to enhance the expressive power of text-to-image generation. Leveraging RWKV-7's linear-complexity Weighted Key-Value (WKV) architecture, CrossWKV integrates text and image modalities in a single pass, utilizing a generalized delta rule with vector-valued gating and low-rank adaptations (LoRA) to achieve superior cross-modal alignment. Unlike Transformer-based models, CrossWKV's non-diagonal, input-dependent transition matrix enables it to represent complex functions beyond the $\mathrm{TC}^0$ complexity class, including all regular languages, as demonstrated by its ability to perform state-tracking tasks like $S_5$ permutation modeling. Evaluated within the Diffusion in RWKV-7 (DIR-7) on datasets such as LAION-5B and ImageNet, CrossWKV achieves a Frechet Inception Distance (FID) of 2.88 and a CLIP score of 0.33 on ImageNet 256x256, matching state-of-the-art performance while offering robust generalization across diverse prompts. The model's enhanced expressivity, combined with constant memory usage and linear scaling, positions it as a powerful solution for advanced cross-modal tasks, with potential applications in high-resolution generation and dynamic state manipulation.Code at https://github.com/TorchRWKV/flash-linear-attention
VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models
Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" -- such as tone, formatting, or writing style -- influence user preferences, yet traditional evaluations focus primarily on the singular axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model (vibes) that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discovers vibes from model outputs and then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with Llama-3-70b vs GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. VibeCheck discovers vibes like Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often overexplains its thought process on math problems compared to GPT-4o, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash. Code and vibe visualizer found at https://bench-mark.org/
comment: unironic use of the word 'vibe', added more analysis and cooler graphs. added website link
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
Harnessing Multiple Large Language Models: A Survey on LLM Ensemble
LLM Ensemble -- which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths -- has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference'', and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/Awesome-LLM-Ensemble.
comment: 9 pages, 2 figures, codebase: https://github.com/junchenzhi/Awesome-LLM-Ensemble
SparQLe: Speech Queries to Text Translation Through LLMs
With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that leverages self-supervised speech representations in combination with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English-language data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising solution for various speech understanding applications.
EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
Halving transcription time: A fast, user-friendly and GDPR-compliant workflow to create AI-assisted transcripts for content analysis
In qualitative research, data transcription is often labor-intensive and time-consuming. To expedite this process, a workflow utilizing artificial intelligence (AI) was developed. This workflow not only enhances transcription speed but also addresses the issue of AI-generated transcripts often lacking compatibility with standard content analysis software. Within this workflow, automatic speech recognition is employed to create initial transcripts from audio recordings, which are then formatted to be compatible with content analysis software such as ATLAS or MAXQDA. Empirical data from a study of 12 interviews suggests that this workflow can reduce transcription time by up to 76.4%. Furthermore, by using widely used standard software, this process is suitable for both students and researchers while also being adaptable to a variety of learning, teaching, and research environments. It is also particularly beneficial for non-native speakers. In addition, the workflow is GDPR-compliant and facilitates local, offline transcript generation, which is crucial when dealing with sensitive data.
comment: 10 pages, 1 table
State Space Models are Strong Text Rerankers RepL4NLP 2025
Transformers dominate NLP and IR; but their inference inefficiencies and challenges in extrapolating to longer contexts have sparked interest in alternative model architectures. Among these, state space models (SSMs) like Mamba offer promising advantages, particularly $O(1)$ time complexity in inference. Despite their potential, SSMs' effectiveness at text reranking\, -- \,a task requiring fine-grained query-document interaction and long-context understanding\, -- \,remains underexplored. This study benchmarks SSM-based architectures (specifically, Mamba-1 and Mamba-2) against transformer-based models across various scales, architectures, and pre-training objectives, focusing on performance and efficiency in text reranking tasks. We find that (1) Mamba architectures achieve competitive text ranking performance, comparable to transformer-based models of similar size; (2) they are less efficient in training and inference compared to transformers with flash attention; and (3) Mamba-2 outperforms Mamba-1 in both performance and efficiency. These results underscore the potential of state space models as a transformer alternative and highlight areas for improvement in future IR applications.
comment: Accepted to RepL4NLP 2025. The first two authors contributed equally, order decided randomly
Self-Resource Allocation in Multi-Agent LLM Systems
With the development of LLMs as agents, there is a growing interest in connecting multiple agents into multi-agent systems to solve tasks concurrently, focusing on their role in task assignment and coordination. This paper explores how LLMs can effectively allocate computational tasks among multiple agents, considering factors such as cost, efficiency, and performance. In this work, we address key questions, including the effectiveness of LLMs as orchestrators and planners, comparing their effectiveness in task assignment and coordination. Our experiments demonstrate that LLMs can achieve high validity and accuracy in resource allocation tasks. We find that the planner method outperforms the orchestrator method in handling concurrent actions, resulting in improved efficiency and better utilization of agents. Additionally, we show that providing explicit information about worker capabilities enhances the allocation strategies of planners, particularly when dealing with suboptimal workers.
DualKanbaFormer: An Efficient Selective Sparse Framework for Multimodal Aspect-based Sentiment Analysis
Multimodal Aspect-based Sentiment Analysis (MABSA) enhances sentiment detection by integrating textual data with complementary modalities, such as images, to provide a more refined and comprehensive understanding of sentiment. However, conventional attention mechanisms, despite notable benchmarks, are hindered by quadratic complexity, limiting their ability to fully capture global contextual dependencies and rich semantic information in both modalities. To address this limitation, we introduce DualKanbaFormer, a novel framework that leverages parallel Textual and Visual KanbaFormer modules for robust multimodal analysis. Our approach incorporates Aspect-Driven Sparse Attention (ADSA) to dynamically balance coarse-grained aggregation and fine-grained selection for aspect-focused precision, ensuring the preservation of both global context awareness and local precision in textual and visual representations. Additionally, we utilize the Selective State Space Model (Mamba) to capture extensive global semantic information across both modalities. Furthermore, We replace traditional feed-forward networks and normalization with Kolmogorov-Arnold Networks (KANs) and Dynamic Tanh (DyT) to enhance non-linear expressivity and inference stability. To facilitate the effective integration of textual and visual features, we design a multimodal gated fusion layer that dynamically optimizes inter-modality interactions, significantly enhancing the models efficacy in MABSA tasks. Comprehensive experiments on two publicly available datasets reveal that DualKanbaFormer consistently outperforms several state-of-the-art (SOTA) models.
comment: 12 pages, 2 figures, and 3 tables
Magnetic Preference Optimization: Achieving Last-iterate Convergence for Language Model Alignment ICLR 2025
Self-play methods have demonstrated remarkable success in enhancing model capabilities across various domains. In the context of Reinforcement Learning from Human Feedback (RLHF), self-play not only boosts Large Language Model (LLM) performance but also overcomes the limitations of traditional Bradley-Terry (BT) model assumptions by finding the Nash equilibrium (NE) of a preference-based, two-player constant-sum game. However, existing methods either guarantee only average-iterate convergence, incurring high storage and inference costs, or converge to the NE of a regularized game, failing to accurately reflect true human preferences. In this paper, we introduce Magnetic Preference Optimization (MPO), a novel approach capable of achieving last-iterate convergence to the NE of the original game, effectively overcoming the limitations of existing methods. Building upon Magnetic Mirror Descent (MMD), MPO attains a linear convergence rate, making it particularly suitable for fine-tuning LLMs. To ensure our algorithm is both theoretically sound and practically viable, we present a simple yet effective implementation that adapts the theoretical insights to the RLHF setting. Empirical results demonstrate that MPO can significantly enhance the performance of LLMs, highlighting the potential of self-play methods in alignment.
comment: ICLR 2025
ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents
Large language model (LLM)-based agents are increasingly employed to interact with external environments (e.g., games, APIs, world models) to solve user-provided tasks. However, current frameworks often lack the ability to collaborate effectively with users in fully conversational settings. Conversations are essential for aligning on task details, achieving user-defined goals, and satisfying preferences. While existing agents address ambiguity through clarification questions, they underutilize the broader potential of an LLM's conversational capabilities. In this work, we introduce ReSpAct, an LLM-based agent designed to seamlessly integrate reasoning, decision-making, and dynamic dialogue for task-solving. Expanding on reasoning-first approaches like ReAct, ReSpAct employs active, free-flowing dialogues to interpret instructions, clarify goals, provide status updates, resolve subtask failures, and refine plans based on user inputs without any explicit dialogue schema. By alternating between task-solving actions and interactive conversations, ReSpAct demonstrates improved performance across diverse environments. We evaluate ReSpAct in user-interactive settings, including task-oriented dialogue systems (MultiWOZ) and decision-making tasks (ALFWorld, WebShop). ReSpAct outperforms ReAct with absolute success rate improvements of 6% and 4% in ALFWorld and WebShop, respectively, and achieves a 5.5% gain in Inform and a 3% gain in Success scores in MultiWOZ. These results highlight the value of integrating dynamic user-agent collaboration for more effective task resolution.
comment: 31 pages, 10 Figures, 25 Tables
Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures
Large language models (LLMs) have demonstrated remarkable mathematical capabilities, largely driven by chain-of-thought (CoT) prompting, which decomposes complex reasoning into step-by-step solutions. This approach has enabled significant advancements, as evidenced by performance on benchmarks like GSM8K and MATH. However, the mechanisms underlying LLMs' ability to perform arithmetic in a single step of CoT remain poorly understood. Existing studies debate whether LLMs encode numerical values or rely on symbolic reasoning, while others explore attention and multi-layered processing in arithmetic tasks. In this work, we propose that LLMs learn arithmetic by capturing algebraic structures, such as commutativity and identity properties. Since these structures are observable through input-output relationships, they can generalize to unseen data. We empirically demonstrate that LLMs can learn algebraic structures using a custom dataset of arithmetic problems, as well as providing theoretical evidence showing that, under specific configurations of weights and biases, the transformer-based LLMs can generate embeddings that remain invariant to both permutations of input tokens and the presence of identity elements. Our findings indicate that leveraging algebraic structures can enhance the LLMs' arithmetic capabilities, offering insights into improving their arithmetic performance.
Large Language Models as Quasi-crystals: Coherence Without Repetition in Generative Text
This essay proposes an interpretive analogy between large language models (LLMs) and quasicrystals, systems that exhibit global coherence without periodic repetition, generated through local constraints. While LLMs are typically evaluated in terms of predictive accuracy, factuality, or alignment, this structural perspective suggests that one of their most characteristic behaviors is the production of internally resonant linguistic patterns. Drawing on the history of quasicrystals, which forced a redefinition of structural order in physical systems, the analogy highlights an alternative mode of coherence in generative language: constraint-based organization without repetition or symbolic intent. Rather than viewing LLMs as imperfect agents or stochastic approximators, we suggest understanding them as generators of quasi-structured outputs. This framing complements existing evaluation paradigms by foregrounding formal coherence and pattern as interpretable features of model behavior. While the analogy has limits, it offers a conceptual tool for exploring how coherence might arise and be assessed in systems where meaning is emergent, partial, or inaccessible. In support of this perspective, we draw on philosophy of science and language, including model-based accounts of scientific representation, structural realism, and inferentialist views of meaning. We further propose the notion of structural evaluation: a mode of assessment that examines how well outputs propagate constraint, variation, and order across spans of generated text. This essay aims to reframe the current discussion around large language models, not by rejecting existing methods, but by suggesting an additional axis of interpretation grounded in structure rather than semantics.
comment: The discussion was restructured to add limitations to the analogy and other clarifications
Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR) and is the foundation for downstream tasks such as re-ranking. Recently, large language models (LLMs) have shown compelling semantic understanding capabilities and are appealing to researchers studying dense retrieval. LLMs, as decoder-style generative models, are competent at language generation while falling short on modeling global information due to the lack of attention to tokens afterward. Inspired by the classical word-based language modeling approach for IR, i.e., the query likelihood (QL) model, we seek to sufficiently utilize LLMs' generative ability by QL maximization. However, instead of ranking documents with QL estimation, we introduce an auxiliary task of QL maximization to yield a better backbone for contrastively learning a discriminative retriever. We name our model as LLM-QL. To condense global document semantics to a single vector during QL modeling, LLM-QL has two major components, Attention Stop (AS) and Input Corruption (IC). AS stops the attention of predictive tokens to previous tokens until the ending token of the document. IC masks a portion of tokens in the input documents during prediction. Experiments on MSMARCO show that LLM-QL can achieve significantly better performance than other LLM-based retrievers and using QL estimated by LLM-QL for ranking outperforms word-based QL by a large margin.
comment: 12 pages, 3 figures
The Other Side of the Coin: Exploring Fairness in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant document from external knowledge sources. By referencing this external knowledge, RAG effectively reduces the generation of factually incorrect content and addresses hallucination issues within LLMs. Recently, there has been growing attention to improving the performance and efficiency of RAG systems from various perspectives. While these advancements have yielded significant results, the application of RAG in domains with considerable societal implications raises a critical question about fairness: What impact does the introduction of the RAG paradigm have on the fairness of LLMs? To address this question, we conduct extensive experiments by varying the LLMs, retrievers, and retrieval sources. Our experimental analysis reveals that the scale of the LLMs plays a significant role in influencing fairness outcomes within the RAG framework. When the model scale is smaller than 8B, the integration of retrieval mechanisms often exacerbates unfairness in small-scale LLMs (e.g., LLaMA3.2-1B, Mistral-7B, and LLaMA3-8B). To mitigate the fairness issues introduced by RAG for small-scale LLMs, we propose two approaches, FairFT and FairFilter. Specifically, in FairFT, we align the retriever with the LLM in terms of fairness, enabling it to retrieve documents that facilitate fairer model outputs. In FairFilter, we propose a fairness filtering mechanism to filter out biased content after retrieval. Finally, we validate our proposed approaches on real-world datasets, demonstrating their effectiveness in improving fairness while maintaining performance.
comment: 12 pages
Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 17 pages, 3 figures
Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning
Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach achieves state-of-the-art (SOTA) results in Arabic ASR, surpassing both open and closed-source models on standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.
Human-Computer Interaction
ScholarMate: A Mixed-Initiative Tool for Qualitative Knowledge Work and Information Sensemaking
Synthesizing knowledge from large document collections is a critical yet increasingly complex aspect of qualitative research and knowledge work. While AI offers automation potential, effectively integrating it into human-centric sensemaking workflows remains challenging. We present ScholarMate, an interactive system designed to augment qualitative analysis by unifying AI assistance with human oversight. ScholarMate enables researchers to dynamically arrange and interact with text snippets on a non-linear canvas, leveraging AI for theme suggestions, multi-level summarization, and contextual naming, while ensuring transparency through traceability to source documents. Initial pilot studies indicated that users value this mixed-initiative approach, finding the balance between AI suggestions and direct manipulation crucial for maintaining interpretability and trust. We further demonstrate the system's capability through a case study analyzing 24 papers. By balancing automation with human control, ScholarMate enhances efficiency and supports interpretability, offering a valuable approach for productive human-AI collaboration in demanding sensemaking tasks common in knowledge work.
comment: accepted at CHIWORK 2025
Expanding the Generative AI Design Space through Structured Prompting and Multimodal Interfaces
Text-based prompting remains the dominant interaction paradigm in generative AI, yet it often results in a high-friction experience for novice users, such as small business owners (SBOs), attempting to articulate creative or domain-specific goals for advertising. To investigate this challenge, we conducted a study with six SBOs in the United Kingdom, focusing on their advertising practices and perceptions and usage of AI tools in this context. Our findings surfaced two persistent breakdowns in current generative AI systems: first, the cognitive burden of prompt engineering, as users struggled to translate abstract creative goals into effective textual inputs; and second, the frequent generation of generic outputs that failed to align with users' articulated brand vision. To address these issues, we developed ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal, GenAI-powered advertisement creation tool designed to support novice designers by reimagining the prompt interface. ACAI features a structured, panel-based interface composed of three modules: the Branding Panel, the Audience & Goals Panel, and the Inspiration Board Panel to provide SBOs with outputs that align with their creative vision by reducing prompt ambiguity. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context to improve both alignment and promptability in novice workflows.
comment: Accepted at CHI'25 Workshop on Designing and Developing User Interfaces with AI
Recognition of Frequencies of Short-Time SSVEP Signals Utilizing an SSCCA-Based Spatio-Spectral Feature Fusion Framework
A brain-computer interface (BCI) facilitates direct communication between the brain and external equipment through EEG, which is preferred for its superior temporal resolution. Among EEG techniques, the steady-state visual evoked potential (SSVEP) is favored due to its robust signal-to-noise ratio, minimal training demands, and elevated information transmission rate. Frequency detection in SSVEP-based brain-computer interfaces commonly employs canonical correlation analysis (CCA). SSCCA (spatio-spectral canonical correlation analysis) augments CCA by refining spatial filtering. This paper presents a multistage feature fusion methodology for short-duration SSVEP frequency identification, employing SSCCA with template signals derived via leave-one-out cross-validation (LOOCV). A filterbank generates bandpass filters for stimulus frequencies and their harmonics, whereas SSCCA calculates correlation coefficients between subbands and templates. Two phases of non-linear weighting amalgamate these coefficients to discern the target stimulus. This multistage methodology surpasses traditional techniques, attaining a accuracy of 94.5%.
comment: This paper is presented in the Undergraduate Conference on Intelligent Computing and Systems (UCICS 2025) organised by Varendra University, Rajshahi, Bangladesh, 2025
SimplifyMyText: An LLM-Based System for Inclusive Plain Language Text Simplification ECIR 2025
Text simplification is essential for making complex content accessible to diverse audiences who face comprehension challenges. Yet, the limited availability of simplified materials creates significant barriers to personal and professional growth and hinders social inclusion. Although researchers have explored various methods for automatic text simplification, none fully leverage large language models (LLMs) to offer tailored customization for different target groups and varying levels of simplicity. Moreover, despite its proven benefits for both consumers and organizations, the well-established practice of plain language remains underutilized. In this paper, we https://simplifymytext.org, the first system designed to produce plain language content from multiple input formats, including typed text and file uploads, with flexible customization options for diverse audiences. We employ GPT-4 and Llama-3 and evaluate outputs across multiple metrics. Overall, our work contributes to research on automatic text simplification and highlights the importance of tailored communication in promoting inclusivity.
comment: accepted at ECIR 2025
tAIfa: Enhancing Team Effectiveness and Cohesion with AI-Generated Automated Feedback
Providing timely and actionable feedback is crucial for effective collaboration, learning, and coordination within teams. However, many teams face challenges in receiving feedback that aligns with their goals and promotes cohesion. We introduce tAIfa (``Team AI Feedback Assistant''), an AI agent that uses Large Language Models (LLMs) to provide personalized, automated feedback to teams and their members. tAIfa analyzes team interactions, identifies strengths and areas for improvement, and delivers targeted feedback based on communication patterns. We conducted a between-subjects study with 18 teams testing whether using tAIfa impacted their teamwork. Our findings show that tAIfa improved communication and contributions within the teams. This paper contributes to the Human-AI Interaction literature by presenting a computational framework that integrates LLMs to provide automated feedback, introducing tAIfa as a tool to enhance team engagement and cohesion, and providing insights into future AI applications to support team collaboration.
comment: 25 pages, CHIWORK '25: Proceedings of the 4th Annual Symposium on Human-Computer Interaction for Work
Direct Advantage Regression: Aligning LLMs with Online AI Reward
Online AI Feedback (OAIF) presents a promising alternative to Reinforcement Learning from Human Feedback (RLHF) by utilizing online AI preference in aligning language models (LLMs). However, the straightforward replacement of humans with AI deprives LLMs from learning more fine-grained AI supervision beyond binary signals. In this paper, we propose Direct Advantage Regression (DAR), a simple alignment algorithm using online AI reward to optimize policy improvement through weighted supervised fine-tuning. As an RL-free approach, DAR maintains theoretical consistency with online RLHF pipelines while significantly reducing implementation complexity and improving learning efficiency. Our empirical results underscore that AI reward is a better form of AI supervision consistently achieving higher human-AI agreement as opposed to AI preference. Additionally, evaluations using GPT-4-Turbo and MT-bench show that DAR outperforms both OAIF and online RLHF baselines.
Exploring Language Patterns of Prompts in Text-to-Image Generation and Their Impact on Visual Diversity
Following the initial excitement, Text-to-Image (TTI) models are now being examined more critically. While much of the discourse has focused on biases and stereotypes embedded in large-scale training datasets, the sociotechnical dynamics of user interactions with these models remain underexplored. This study examines the linguistic and semantic choices users make when crafting prompts and how these choices influence the diversity of generated outputs. Analyzing over six million prompts from the Civiverse dataset on the CivitAI platform across seven months, we categorize users into three groups based on their levels of linguistic experimentation: consistent repeaters, occasional repeaters, and non-repeaters. Our findings reveal that as user participation grows over time, prompt language becomes increasingly homogenized through the adoption of popular community tags and descriptors, with repeated prompts comprising 40-50% of submissions. At the same time, semantic similarity and topic preferences remain relatively stable, emphasizing common subjects and surface aesthetics. Using Vendi scores to quantify visual diversity, we demonstrate a clear correlation between lexical similarity in prompts and the visual similarity of generated images, showing that linguistic repetition reinforces less diverse representations. These findings highlight the significant role of user-driven factors in shaping AI-generated imagery, beyond inherent model biases, and underscore the need for tools and practices that encourage greater linguistic and thematic experimentation within TTI systems to foster more inclusive and diverse AI-generated content.
Visualization Tasks for Unlabelled Graphs
We investigate tasks that can be accomplished with unlabelled graphs, where nodes do not have persistent or semantically meaningful labels. New techniques to visualize these graphs have been proposed, but more understanding of unlabelled graph tasks is required before they can be adequately evaluated. Some tasks apply to both labelled and unlabelled graphs, but many do not translate between these contexts. We propose a taxonomy of unlabelled graph abstract tasks, organized according to the Scope of the data at play, the Action intended by the user, and the Target data under consideration. We show the descriptive power of this task abstraction by connecting to concrete examples from previous frameworks, and connect these abstractions to real-world problems. To showcase the evaluative power of the taxonomy, we perform a preliminary assessment of 6 visualizations for each task. For each combination of task and visual encoding, we consider the effort required from viewers, the likelihood of task success, and how both factors vary between small-scale and large-scale graphs.
Longitudinal Study on Social and Emotional Use of AI Conversational Agent
Development in digital technologies has continuously reshaped how individuals seek and receive social and emotional support. While online platforms and communities have long served this need, the increased integration of general-purpose conversational AI into daily lives has introduced new dynamics in how support is provided and experienced. Existing research has highlighted both benefits (e.g., wider access to well-being resources) and potential risks (e.g., over-reliance) of using AI for support seeking. In this five-week, exploratory study, we recruited 149 participants divided into two usage groups: a baseline usage group (BU, n=60) that used the internet and AI as usual, and an active usage group (AU, n=89) encouraged to use one of four commercially available AI tools (Microsoft Copilot, Google Gemini, PI AI, ChatGPT) for social and emotional interactions. Our analysis revealed significant increases in perceived attachment towards AI (32.99 percentage points), perceived AI empathy (25.8 p.p.), and motivation to use AI for entertainment (22.90 p.p.) among the AU group. We also observed that individual differences (e.g., gender identity, prior AI usage) influenced perceptions of AI empathy and attachment. Lastly, the AU group expressed higher comfort in seeking personal help, managing stress, obtaining social support, and talking about health with AI, indicating potential for broader emotional support while highlighting the need for safeguards against problematic usage. Overall, our exploratory findings underscore the importance of developing consumer-facing AI tools that support emotional well-being responsibly, while empowering users to understand the limitations of these tools.
comment: 16 pages, 5 figures, 2 tables
The Design Space of Recent AI-assisted Research Tools for Ideation, Sensemaking, and Scientific Creativity
Generative AI (GenAI) tools are radically expanding the scope and capability of automation in knowledge work such as academic research. While promising for augmenting cognition and streamlining processes, AI-assisted research tools may also increase automation bias and hinder critical thinking. To examine recent developments, we surveyed publications from leading HCI venues over the past three years, closely analyzing thirteen tools to better understand the novel capabilities of these AI-assisted systems and the design spaces they enable: seven employing traditional AI or customized transformer-based approaches, and six integrating open-access large language models (LLMs). Our analysis characterizes the emerging design space, distinguishes between tools focused on workflow mimicry versus generative exploration, and yields four critical design recommendations to guide the development of future systems that foster meaningful cognitive engagement: providing user agency and control, differentiating divergent/convergent thinking support, ensuring adaptability, and prioritizing transparency/accuracy. This work discusses how these insights signal a shift from mere workflow replication towards generative co-creation, presenting new opportunities for the community to craft intuitive, AI-driven research interfaces and interactions.
EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
ReSpAct: Harmonizing Reasoning, Speaking, and Acting Towards Building Large Language Model-Based Conversational AI Agents
Large language model (LLM)-based agents are increasingly employed to interact with external environments (e.g., games, APIs, world models) to solve user-provided tasks. However, current frameworks often lack the ability to collaborate effectively with users in fully conversational settings. Conversations are essential for aligning on task details, achieving user-defined goals, and satisfying preferences. While existing agents address ambiguity through clarification questions, they underutilize the broader potential of an LLM's conversational capabilities. In this work, we introduce ReSpAct, an LLM-based agent designed to seamlessly integrate reasoning, decision-making, and dynamic dialogue for task-solving. Expanding on reasoning-first approaches like ReAct, ReSpAct employs active, free-flowing dialogues to interpret instructions, clarify goals, provide status updates, resolve subtask failures, and refine plans based on user inputs without any explicit dialogue schema. By alternating between task-solving actions and interactive conversations, ReSpAct demonstrates improved performance across diverse environments. We evaluate ReSpAct in user-interactive settings, including task-oriented dialogue systems (MultiWOZ) and decision-making tasks (ALFWorld, WebShop). ReSpAct outperforms ReAct with absolute success rate improvements of 6% and 4% in ALFWorld and WebShop, respectively, and achieves a 5.5% gain in Inform and a 3% gain in Success scores in MultiWOZ. These results highlight the value of integrating dynamic user-agent collaboration for more effective task resolution.
comment: 31 pages, 10 Figures, 25 Tables
Moving Beyond Parental Control toward Community-based Approaches to Adolescent Online Safety
In this position paper, we discuss the paradigm shift that moves away from parental mediation approaches toward collaborative approaches to promote adolescents' online safety. We present empirical studies that highlight the limitations of traditional parental control models and advocate for collaborative, community-driven solutions that prioritize teen empowerment. Specifically, we explore how extending oversight beyond the immediate family to include trusted community members can provide crucial support for teens in managing their online lives. We discuss the potential benefits and challenges of this expanded approach, emphasizing the importance of granular privacy controls and reciprocal support within these networks. Finally, we pose open questions for the research community to consider during the workshop, focusing on the design of "teen-centered" online safety solutions that foster autonomy, awareness, and self-regulation.
Teen Talk: The Good, the Bad, and the Neutral of Adolescent Social Media Use
The debate on whether social media has a net positive or negative effect on youth is ongoing. Therefore, we conducted a thematic analysis on 2,061 posts made by 1,038 adolescents aged 15-17 on an online peer-support platform to investigate the ways in which these teens discussed popular social media platforms in their posts and to identify differences in their experiences across platforms. Our findings revealed four main emergent themes for the ways in which social media was discussed: 1) Sharing negative experiences or outcomes of social media use (58%, n = 1,095), 2) Attempts to connect with others (45%, n = 922), 3) Highlighting the positive side of social media use (20%, n = 409), and 4) Seeking information (20%, n = 491). Overall, while sharing about negative experiences was more prominent, teens also discussed balanced perspectives of connection-seeking, positive experiences, and information support on social media that should not be discounted. Moreover, we found statistical significance for how these experiences differed across social media platforms. For instance, teens were most likely to seek romantic relationships on Snapchat and self-promote on YouTube. Meanwhile, Instagram was mentioned most frequently for body shaming, and Facebook was the most commonly discussed platform for privacy violations (mostly from parents). The key takeaway from our study is that the benefits and drawbacks of teens' social media usage can co-exist and net effects (positive or negative) can vary across different teens across various contexts. As such, we advocate for mitigating the negative experiences and outcomes of social media use as voiced by teens, to improve, rather than limit or restrict, their overall social media experience. We do this by taking an affordance perspective that aims to promote the digital well-being and online safety of youth "by design."
comment: 36 pages
Evaluating the Impact of Community Oversight for Managing Mobile Privacy and Security
Mobile privacy and security can be a collaborative process where individuals seek advice and help from their trusted communities. To support such collective privacy and security management, we developed a mobile app for Community Oversight of Privacy and Security ("CO-oPS") that allows community members to review one another's apps installed and permissions granted to provide feedback. We conducted a four-week-long field study with 22 communities (101 participants) of friends, families, or co-workers who installed the CO-oPS app on their phones. Measures of transparency, trust, and awareness of one another's mobile privacy and security behaviors, along with individual and community participation in mobile privacy and security co-management, increased from pre- to post-study. Interview findings confirmed that the app features supported collective considerations of apps and permissions. However, participants expressed a range of concerns regarding having community members with different levels of technical expertise and knowledge regarding mobile privacy and security that can impact motivation to participate and perform oversight. Our study demonstrates the potential and challenges of community oversight mechanisms to support communities to co-manage mobile privacy and security.
comment: 20 pages; The Nineteenth Symposium on Usable Privacy and Security (SOUPS 2023)
Examining Caregiving Roles to Differentiate the Effects of Using a Mobile App for Community Oversight for Privacy and Security
We conducted a 4-week field study with 101 smartphone users who self-organized into 22 small groups of family, friends, and neighbors to use ``CO-oPS,'' a mobile app for co-managing mobile privacy and security. We differentiated between those who provided oversight (i.e., caregivers) and those who did not (i.e., caregivees) to examine differential effects on their experiences and behaviors while using CO-oPS. Caregivers reported higher power use, community trust, belonging, collective efficacy, and self-efficacy than caregivees. Both groups' self-efficacy and collective efficacy for mobile privacy and security increased after using CO-oPS. However, this increase was significantly stronger for caregivees. Our research demonstrates how community-based approaches can benefit people who need additional help managing their digital privacy and security. We provide recommendations to support community-based oversight for managing privacy and security within communities of different roles and skills.
How the Internet Facilitates Adverse Childhood Experiences for Youth Who Self-Identify as in Need of Services
Youth implicated in the child welfare and juvenile justice systems, as well as those with an incarcerated parent, are considered the most vulnerable Children in Need of Services (CHINS). We identified 1,160 of these at-risk youth (ages 13-17) who sought support via an online peer support platform to understand their adverse childhood experiences and explore how the internet played a role in providing an outlet for support, as well as potentially facilitating risks. We first analyzed posts from 1,160 youth who self-identified as CHINS while sharing about their adverse experiences. Then, we retrieved all 239,929 posts by these users to identify salient topics within their support-seeking posts: 1) Urges to self-harm due to social drama, 2) desire for social connection, 3) struggles with family, and 4) substance use and sexual risks. We found that the internet often helped facilitate these problems; for example, the desperation for social connection often led to meeting unsafe people online, causing additional trauma. Family members and other unsafe people used the internet to perpetrate cyberabuse, while CHINS themselves leveraged online channels to engage in illegal and risky behavior. Our study calls for tailored support systems that address the unique needs of CHINS to promote safe online spaces and foster resilience to break the cycle of adversity. Empowering CHINS requires amplifying their voices and acknowledging the challenges they face as a result of their adverse childhood experiences.
Computer Vision and Pattern Recognition
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
Outlier-Robust Multi-Model Fitting on Quantum Annealers CVPR 2025
Multi-model fitting (MMF) presents a significant challenge in Computer Vision, particularly due to its combinatorial nature. While recent advancements in quantum computing offer promise for addressing NP-hard problems, existing quantum-based approaches for model fitting are either limited to a single model or consider multi-model scenarios within outlier-free datasets. This paper introduces a novel approach, the robust quantum multi-model fitting (R-QuMF) algorithm, designed to handle outliers effectively. Our method leverages the intrinsic capabilities of quantum hardware to tackle combinatorial challenges inherent in MMF tasks, and it does not require prior knowledge of the exact number of models, thereby enhancing its practical applicability. By formulating the problem as a maximum set coverage task for adiabatic quantum computers (AQC), R-QuMF outperforms existing quantum techniques, demonstrating superior performance across various synthetic and real-world 3D datasets. Our findings underscore the potential of quantum computing in addressing the complexities of MMF, especially in real-world scenarios with noisy and outlier-prone data.
comment: Accepted at CVPR 2025 Workshop "Image Matching: Local Features & Beyond"
CheXWorld: Exploring Image World Modeling for Radiograph Representation Learning CVPR 2025
Humans can develop internal world models that encode common sense knowledge, telling them how the world works and predicting the consequences of their actions. This concept has emerged as a promising direction for establishing general-purpose machine-learning models in recent preliminary works, e.g., for visual representation learning. In this paper, we present CheXWorld, the first effort towards a self-supervised world model for radiographic images. Specifically, our work develops a unified framework that simultaneously models three aspects of medical knowledge essential for qualified radiologists, including 1) local anatomical structures describing the fine-grained characteristics of local tissues (e.g., architectures, shapes, and textures); 2) global anatomical layouts describing the global organization of the human body (e.g., layouts of organs and skeletons); and 3) domain variations that encourage CheXWorld to model the transitions across different appearance domains of radiographs (e.g., varying clarity, contrast, and exposure caused by collecting radiographs from different hospitals, devices, or patients). Empirically, we design tailored qualitative and quantitative analyses, revealing that CheXWorld successfully captures these three dimensions of medical knowledge. Furthermore, transfer learning experiments across eight medical image classification and segmentation benchmarks showcase that CheXWorld significantly outperforms existing SSL methods and large-scale medical foundation models. Code & pre-trained models are available at https://github.com/LeapLabTHU/CheXWorld.
comment: Accepted by CVPR 2025
RefComp: A Reference-guided Unified Framework for Unpaired Point Cloud Completion
The unpaired point cloud completion task aims to complete a partial point cloud by using models trained with no ground truth. Existing unpaired point cloud completion methods are class-aware, i.e., a separate model is needed for each object class. Since they have limited generalization capabilities, these methods perform poorly in real-world scenarios when confronted with a wide range of point clouds of generic 3D objects. In this paper, we propose a novel unpaired point cloud completion framework, namely the Reference-guided Completion (RefComp) framework, which attains strong performance in both the class-aware and class-agnostic training settings. The RefComp framework transforms the unpaired completion problem into a shape translation problem, which is solved in the latent feature space of the partial point clouds. To this end, we introduce the use of partial-complete point cloud pairs, which are retrieved by using the partial point cloud to be completed as a template. These point cloud pairs are used as reference data to guide the completion process. Our RefComp framework uses a reference branch and a target branch with shared parameters for shape fusion and shape translation via a Latent Shape Fusion Module (LSFM) to enhance the structural features along the completion pipeline. Extensive experiments demonstrate that the RefComp framework achieves not only state-of-the-art performance in the class-aware training setting but also competitive results in the class-agnostic training setting on both virtual scans and real-world datasets.
Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
Fighting Fires from Space: Leveraging Vision Transformers for Enhanced Wildfire Detection and Characterization
Wildfires are increasing in intensity, frequency, and duration across large parts of the world as a result of anthropogenic climate change. Modern hazard detection and response systems that deal with wildfires are under-equipped for sustained wildfire seasons. Recent work has proved automated wildfire detection using Convolutional Neural Networks (CNNs) trained on satellite imagery are capable of high-accuracy results. However, CNNs are computationally expensive to train and only incorporate local image context. Recently, Vision Transformers (ViTs) have gained popularity for their efficient training and their ability to include both local and global contextual information. In this work, we show that ViT can outperform well-trained and specialized CNNs to detect wildfires on a previously published dataset of LandSat-8 imagery. One of our ViTs outperforms the baseline CNN comparison by 0.92%. However, we find our own implementation of CNN-based UNet to perform best in every category, showing their sustained utility in image tasks. Overall, ViTs are comparably capable in detecting wildfires as CNNs, though well-tuned CNNs are still the best technique for detecting wildfire with our UNet providing an IoU of 93.58%, better than the baseline UNet by some 4.58%.
Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
Fragile Watermarking for Image Certification Using Deep Steganographic Embedding
Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 14pages, 8 figures
DAM-Net: Domain Adaptation Network with Micro-Labeled Fine-Tuning for Change Detection
Change detection (CD) in remote sensing imagery plays a crucial role in various applications such as urban planning, damage assessment, and resource management. While deep learning approaches have significantly advanced CD performance, current methods suffer from poor domain adaptability, requiring extensive labeled data for retraining when applied to new scenarios. This limitation severely restricts their practical applications across different datasets. In this work, we propose DAM-Net: a Domain Adaptation Network with Micro-Labeled Fine-Tuning for CD. Our network introduces adversarial domain adaptation to CD for, utilizing a specially designed segmentation-discriminator and alternating training strategy to enable effective transfer between domains. Additionally, we propose a novel Micro-Labeled Fine-Tuning approach that strategically selects and labels a minimal amount of samples (less than 1%) to enhance domain adaptation. The network incorporates a Multi-Temporal Transformer for feature fusion and optimized backbone structure based on previous research. Experiments conducted on the LEVIR-CD and WHU-CD datasets demonstrate that DAM-Net significantly outperforms existing domain adaptation methods, achieving comparable performance to semi-supervised approaches that require 10% labeled data while using only 0.3% labeled samples. Our approach significantly advances cross-dataset CD applications and provides a new paradigm for efficient domain adaptation in remote sensing. The source code of DAM-Net will be made publicly available upon publication.
comment: 13 pages, 6 figures
ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as \textit{in front of} or \textit{behind}. These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms the current state-of-the-art framework, CoMPaSS, by 13.33% on established spatial consistency benchmarks.
LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks
IoT devices have limited hardware capabilities and are often deployed in remote areas. Consequently, advanced vision models surpass such devices' processing and storage capabilities, requiring offloading of such tasks to the cloud. However, remote areas often rely on LPWANs technology with limited bandwidth, high packet loss rates, and extremely low duty cycles, which makes fast offloading for time-sensitive inference challenging. Today's approaches, which are deployable on weak devices, generate a non-progressive bit stream, and therefore, their decoding quality suffers strongly when data is only partially available on the cloud at a deadline due to limited bandwidth or packet losses. In this paper, we introduce LimitNet, a progressive, content-aware image compression model designed for extremely weak devices and networks. LimitNet's lightweight progressive encoder prioritizes critical data during transmission based on the content of the image, which gives the cloud the opportunity to run inference even with partial data availability. Experimental results demonstrate that LimitNet, on average, compared to SOTA, achieves 14.01 p.p. (percentage point) higher accuracy on ImageNet1000, 18.01 pp on CIFAR100, and 0.1 higher mAP@0.5 on COCO. Also, on average, LimitNet saves 61.24% bandwidth on ImageNet1000, 83.68% on CIFAR100, and 42.25% on the COCO dataset compared to SOTA, while it only has 4% more encoding time compared to JPEG (with a fixed quality) on STM32F7 (Cortex-M7).
comment: This is the author's accepted manuscript. The Version of Record is available at: https://doi.org/10.1145/3643832.3661856
MLEP: Multi-granularity Local Entropy Patterns for Universal AI-generated Image Detection
Advancements in image generation technologies have raised significant concerns about their potential misuse, such as producing misinformation and deepfakes. Therefore, there is an urgent need for effective methods to detect AI-generated images (AIGI). Despite progress in AIGI detection, achieving reliable performance across diverse generation models and scenes remains challenging due to the lack of source-invariant features and limited generalization capabilities in existing methods. In this work, we explore the potential of using image entropy as a cue for AIGI detection and propose Multi-granularity Local Entropy Patterns (MLEP), a set of entropy feature maps computed across shuffled small patches over multiple image scaled. MLEP comprehensively captures pixel relationships across dimensions and scales while significantly disrupting image semantics, reducing potential content bias. Leveraging MLEP, a robust CNN-based classifier for AIGI detection can be trained. Extensive experiments conducted in an open-world scenario, evaluating images synthesized by 32 distinct generative models, demonstrate significant improvements over state-of-the-art methods in both accuracy and generalization.
comment: 9 pages, 6 figures
Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
SLAM&Render: A Benchmark for the Intersection Between Neural Rendering, Gaussian Splatting and SLAM
Models and methods originally developed for novel view synthesis and scene rendering, such as Neural Radiance Fields (NeRF) and Gaussian Splatting, are increasingly being adopted as representations in Simultaneous Localization and Mapping (SLAM). However, existing datasets fail to include the specific challenges of both fields, such as multimodality and sequentiality in SLAM or generalization across viewpoints and illumination conditions in neural rendering. To bridge this gap, we introduce SLAM&Render, a novel dataset designed to benchmark methods in the intersection between SLAM and novel view rendering. It consists of 40 sequences with synchronized RGB, depth, IMU, robot kinematic data, and ground-truth pose streams. By releasing robot kinematic data, the dataset also enables the assessment of novel SLAM strategies when applied to robot manipulators. The dataset sequences span five different setups featuring consumer and industrial objects under four different lighting conditions, with separate training and test trajectories per scene, as well as object rearrangements. Our experimental results, obtained with several baselines from the literature, validate SLAM&Render as a relevant benchmark for this emerging research area.
Few-Shot Referring Video Single- and Multi-Object Segmentation via Cross-Modal Affinity with Instance Sequence Matching
Referring video object segmentation (RVOS) aims to segment objects in videos guided by natural language descriptions. We propose FS-RVOS, a Transformer-based model with two key components: a cross-modal affinity module and an instance sequence matching strategy, which extends FS-RVOS to multi-object segmentation (FS-RVMOS). Experiments show FS-RVOS and FS-RVMOS outperform state-of-the-art methods across diverse benchmarks, demonstrating superior robustness and accuracy.
comment: 23 pages, 10 figures
Green Robotic Mixed Reality with Gaussian Splatting
Realizing green communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images at high frequencies through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSRMR), which achieves a lower energy consumption and makes a concrete step towards green RoboMR. The crux to GSRMR is to build a GS model which enables the simulator to opportunistically render a photo-realistic view from the robot's pose, thereby reducing the need for excessive image uploads. Since the GS model may involve discrepancies compared to the actual environments, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation across different frames. The GSCLO problem is solved by an accelerated penalty optimization (APO) algorithm. Experiments demonstrate that the proposed GSRMR reduces the communication energy by over 10x compared with RoboMR. Furthermore, the proposed GSRMR with APO outperforms extensive baseline schemes, in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
comment: 6 pages, 5 figures, accepted by IEEE INFOCOM 2025 Workshop on Networked Robotics and Communication Systems
Zebrafish Counting Using Event Stream Data
Zebrafish share a high degree of homology with human genes and are commonly used as model organism in biomedical research. For medical laboratories, counting zebrafish is a daily task. Due to the tiny size of zebrafish, manual visual counting is challenging. Existing counting methods are either not applicable to small fishes or have too many limitations. The paper proposed a zebrafish counting algorithm based on the event stream data. Firstly, an event camera is applied for data acquisition. Secondly, camera calibration and image fusion were preformed successively. Then, the trajectory information was used to improve the counting accuracy. Finally, the counting results were averaged over an empirical of period and rounded up to get the final results. To evaluate the accuracy of the algorithm, 20 zebrafish were put in a four-liter breeding tank. Among 100 counting trials, the average accuracy reached 97.95%. As compared with traditional algorithms, the proposed one offers a simpler implementation and achieves higher accuracy.
Analysing the Robustness of Vision-Language-Models to Common Corruptions
Vision-language models (VLMs) have demonstrated impressive capabilities in understanding and reasoning about visual and textual content. However, their robustness to common image corruptions remains under-explored. In this work, we present the first comprehensive analysis of VLM robustness across 19 corruption types from the ImageNet-C benchmark, spanning four categories: noise, blur, weather, and digital distortions. We introduce two new benchmarks, TextVQA-C and GQA-C, to systematically evaluate how corruptions affect scene text understanding and object-based reasoning, respectively. Our analysis reveals that transformer-based VLMs exhibit distinct vulnerability patterns across tasks: text recognition deteriorates most severely under blur and snow corruptions, while object reasoning shows higher sensitivity to corruptions such as frost and impulse noise. We connect these observations to the frequency-domain characteristics of different corruptions, revealing how transformers' inherent bias toward low-frequency processing explains their differential robustness patterns. Our findings provide valuable insights for developing more corruption-robust vision-language models for real-world applications.
comment: arXiv admin note: text overlap with arXiv:2304.10592, arXiv:2301.12597 by other authors
AnyTSR: Any-Scale Thermal Super-Resolution for UAV
Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.
EyecareGPT: Boosting Comprehensive Ophthalmology Understanding with Tailored Dataset, Benchmark and Model
Medical Large Vision-Language Models (Med-LVLMs) demonstrate significant potential in healthcare, but their reliance on general medical data and coarse-grained global visual understanding limits them in intelligent ophthalmic diagnosis. Currently, intelligent ophthalmic diagnosis faces three major challenges: (i) Data. The lack of deeply annotated, high-quality, multi-modal ophthalmic visual instruction data; (ii) Benchmark. The absence of a comprehensive and systematic benchmark for evaluating diagnostic performance; (iii) Model. The difficulty of adapting holistic visual architectures to fine-grained, region-specific ophthalmic lesion identification. In this paper, we propose the Eyecare Kit, which systematically tackles the aforementioned three key challenges with the tailored dataset, benchmark and model: First, we construct a multi-agent data engine with real-life ophthalmology data to produce Eyecare-100K, a high-quality ophthalmic visual instruction dataset. Subsequently, we design Eyecare-Bench, a benchmark that comprehensively evaluates the overall performance of LVLMs on intelligent ophthalmic diagnosis tasks across multiple dimensions. Finally, we develop the EyecareGPT, optimized for fine-grained ophthalmic visual understanding thoroughly, which incorporates an adaptive resolution mechanism and a layer-wise dense connector. Extensive experimental results indicate that the EyecareGPT achieves state-of-the-art performance in a range of ophthalmic tasks, underscoring its significant potential for the advancement of open research in intelligent ophthalmic diagnosis. Our project is available at https://github.com/DCDmllm/EyecareGPT.
Enhancing Pothole Detection and Characterization: Integrated Segmentation and Depth Estimation in Road Anomaly Systems
Road anomaly detection plays a crucial role in road maintenance and in enhancing the safety of both drivers and vehicles. Recent machine learning approaches for road anomaly detection have overcome the tedious and time-consuming process of manual analysis and anomaly counting; however, they often fall short in providing a complete characterization of road potholes. In this paper, we leverage transfer learning by adopting a pre-trained YOLOv8-seg model for the automatic characterization of potholes using digital images captured from a dashboard-mounted camera. Our work includes the creation of a novel dataset, comprising both images and their corresponding depth maps, collected from diverse road environments in Al-Khobar city and the KFUPM campus in Saudi Arabia. Our approach performs pothole detection and segmentation to precisely localize potholes and calculate their area. Subsequently, the segmented image is merged with its depth map to extract detailed depth information about the potholes. This integration of segmentation and depth data offers a more comprehensive characterization compared to previous deep learning-based road anomaly detection systems. Overall, this method not only has the potential to significantly enhance autonomous vehicle navigation by improving the detection and characterization of road hazards but also assists road maintenance authorities in responding more effectively to road damage.
Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.
DenSe-AdViT: A novel Vision Transformer for Dense SAR Object Detection
Vision Transformer (ViT) has achieved remarkable results in object detection for synthetic aperture radar (SAR) images, owing to its exceptional ability to extract global features. However, it struggles with the extraction of multi-scale local features, leading to limited performance in detecting small targets, especially when they are densely arranged. Therefore, we propose Density-Sensitive Vision Transformer with Adaptive Tokens (DenSe-AdViT) for dense SAR target detection. We design a Density-Aware Module (DAM) as a preliminary component that generates a density tensor based on target distribution. It is guided by a meticulously crafted objective metric, enabling precise and effective capture of the spatial distribution and density of objects. To integrate the multi-scale information enhanced by convolutional neural networks (CNNs) with the global features derived from the Transformer, Density-Enhanced Fusion Module (DEFM) is proposed. It effectively refines attention toward target-survival regions with the assist of density mask and the multiple sources features. Notably, our DenSe-AdViT achieves 79.8% mAP on the RSDD dataset and 92.5% on the SIVED dataset, both of which feature a large number of densely distributed vehicle targets.
SupResDiffGAN a new approach for the Super-Resolution task
In this work, we present SupResDiffGAN, a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks. By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models while maintaining competitive perceptual quality. To prevent discriminator overfitting, we propose adaptive noise corruption, ensuring a stable balance between the generator and the discriminator during training. Extensive experiments on benchmark datasets show that our approach outperforms traditional diffusion models such as SR3 and I$^2$SB in efficiency and image quality. This work bridges the performance gap between diffusion- and GAN-based methods, laying the foundation for real-time applications of diffusion models in high-resolution image generation.
comment: 25th International Conference on Computational Science
Visual Intention Grounding for Egocentric Assistants
Visual grounding associates textual descriptions with objects in an image. Conventional methods target third-person image inputs and named object queries. In applications such as AI assistants, the perspective shifts -- inputs are egocentric, and objects may be referred to implicitly through needs and intentions. To bridge this gap, we introduce EgoIntention, the first dataset for egocentric visual intention grounding. EgoIntention challenges multimodal LLMs to 1) understand and ignore unintended contextual objects and 2) reason about uncommon object functionalities. Benchmark results show that current models misidentify context objects and lack affordance understanding in egocentric views. We also propose Reason-to-Ground (RoG) instruction tuning; it enables hybrid training with normal descriptions and egocentric intentions with a chained intention reasoning and object grounding mechanism. RoG significantly outperforms naive finetuning and hybrid training on EgoIntention, while maintaining or slightly improving naive description grounding. This advancement enables unified visual grounding for egocentric and exocentric visual inputs while handling explicit object queries and implicit human intentions.
Compile Scene Graphs with Reinforcement Learning
Next token prediction is the fundamental principle for training large language models (LLMs), and reinforcement learning (RL) further enhances their reasoning performance. As an effective way to model language, image, video, and other modalities, the use of LLMs for end-to-end extraction of structured visual representations, such as scene graphs, remains underexplored. It requires the model to accurately produce a set of objects and relationship triplets, rather than generating text token by token. To achieve this, we introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset and subsequently refined using reinforcement learning to enhance its ability to generate scene graphs in an end-to-end manner. The SFT follows a conventional prompt-response paradigm, while RL requires the design of effective reward signals. Given the structured nature of scene graphs, we design a graph-centric reward function that integrates node-level rewards, edge-level rewards, and a format consistency reward. Our experiments demonstrate that rule-based RL substantially enhances model performance in the SGG task, achieving a zero failure rate--unlike supervised fine-tuning (SFT), which struggles to generalize effectively. Our code is available at https://github.com/gpt4vision/R1-SGG.
Cross-Hierarchical Bidirectional Consistency Learning for Fine-Grained Visual Classification
Fine-Grained Visual Classification (FGVC) aims to categorize closely related subclasses, a task complicated by minimal inter-class differences and significant intra-class variance. Existing methods often rely on additional annotations for image classification, overlooking the valuable information embedded in Tree Hierarchies that depict hierarchical label relationships. To leverage this knowledge to improve classification accuracy and consistency, we propose a novel Cross-Hierarchical Bidirectional Consistency Learning (CHBC) framework. The CHBC framework extracts discriminative features across various hierarchies using a specially designed module to decompose and enhance attention masks and features. We employ bidirectional consistency loss to regulate the classification outcomes across different hierarchies, ensuring label prediction consistency and reducing misclassification. Experiments on three widely used FGVC datasets validate the effectiveness of the CHBC framework. Ablation studies further investigate the application strategies of feature enhancement and consistency constraints, underscoring the significant contributions of the proposed modules.
FocusTrack: A Self-Adaptive Local Sampling Algorithm for Efficient Anti-UAV Tracking
Anti-UAV tracking poses significant challenges, including small target sizes, abrupt camera motion, and cluttered infrared backgrounds. Existing tracking paradigms can be broadly categorized into global- and local-based methods. Global-based trackers, such as SiamDT, achieve high accuracy by scanning the entire field of view but suffer from excessive computational overhead, limiting real-world deployment. In contrast, local-based methods, including OSTrack and ROMTrack, efficiently restrict the search region but struggle when targets undergo significant displacements due to abrupt camera motion. Through preliminary experiments, it is evident that a local tracker, when paired with adaptive search region adjustment, can significantly enhance tracking accuracy, narrowing the gap between local and global trackers. To address this challenge, we propose FocusTrack, a novel framework that dynamically refines the search region and strengthens feature representations, achieving an optimal balance between computational efficiency and tracking accuracy. Specifically, our Search Region Adjustment (SRA) strategy estimates the target presence probability and adaptively adjusts the field of view, ensuring the target remains within focus. Furthermore, to counteract feature degradation caused by varying search regions, the Attention-to-Mask (ATM) module is proposed. This module integrates hierarchical information, enriching the target representations with fine-grained details. Experimental results demonstrate that FocusTrack achieves state-of-the-art performance, obtaining 67.7% AUC on AntiUAV and 62.8% AUC on AntiUAV410, outperforming the baseline tracker by 8.5% and 9.1% AUC, respectively. In terms of efficiency, FocusTrack surpasses global-based trackers, requiring only 30G MACs and achieving 143 fps with FocusTrack (SRA) and 44 fps with the full version, both enabling real-time tracking.
comment: 13pages, 13 figures
ViG3D-UNet: Volumetric Vascular Connectivity-Aware Segmentation via 3D Vision Graph Representation
Accurate vascular segmentation is essential for coronary visualization and the diagnosis of coronary heart disease. This task involves the extraction of sparse tree-like vascular branches from the volumetric space. However, existing methods have faced significant challenges due to discontinuous vascular segmentation and missing endpoints. To address this issue, a 3D vision graph neural network framework, named ViG3D-UNet, was introduced. This method integrates 3D graph representation and aggregation within a U-shaped architecture to facilitate continuous vascular segmentation. The ViG3D module captures volumetric vascular connectivity and topology, while the convolutional module extracts fine vascular details. These two branches are combined through channel attention to form the encoder feature. Subsequently, a paperclip-shaped offset decoder minimizes redundant computations in the sparse feature space and restores the feature map size to match the original input dimensions. To evaluate the effectiveness of the proposed approach for continuous vascular segmentation, evaluations were performed on two public datasets, ASOCA and ImageCAS. The segmentation results show that the ViG3D-UNet surpassed competing methods in maintaining vascular segmentation connectivity while achieving high segmentation accuracy. Our code will be available soon.
FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.
comment: 9 pages, 6 figures
LMPOcc: 3D Semantic Occupancy Prediction Utilizing Long-Term Memory Prior from Historical Traversals
Vision-based 3D semantic occupancy prediction is critical for autonomous driving, enabling unified modeling of static infrastructure and dynamic agents. In practice, autonomous vehicles may repeatedly traverse identical geographic locations under varying environmental conditions, such as weather fluctuations and illumination changes. Existing methods in 3D occupancy prediction predominantly integrate adjacent temporal contexts. However, these works neglect to leverage perceptual information, which is acquired from historical traversals of identical geographic locations. In this paper, we propose Longterm Memory Prior Occupancy (LMPOcc), the first 3D occupancy prediction methodology that exploits long-term memory priors derived from historical traversal perceptual outputs. We introduce a plug-and-play architecture that integrates long-term memory priors to enhance local perception while simultaneously constructing global occupancy representations. To adaptively aggregate prior features and current features, we develop an efficient lightweight Current-Prior Fusion module. Moreover, we propose a model-agnostic prior format to ensure compatibility across diverse occupancy prediction baselines. LMPOcc achieves state-of-the-art performance validated on the Occ3D-nuScenes benchmark, especially on static semantic categories. Additionally, experimental results demonstrate LMPOcc's ability to construct global occupancy through multi-vehicle crowdsourcing.
KAN or MLP? Point Cloud Shows the Way Forward
Multi-Layer Perceptrons (MLPs) have become one of the fundamental architectural component in point cloud analysis due to its effective feature learning mechanism. However, when processing complex geometric structures in point clouds, MLPs' fixed activation functions struggle to efficiently capture local geometric features, while suffering from poor parameter efficiency and high model redundancy. In this paper, we propose PointKAN, which applies Kolmogorov-Arnold Networks (KANs) to point cloud analysis tasks to investigate their efficacy in hierarchical feature representation. First, we introduce a Geometric Affine Module (GAM) to transform local features, improving the model's robustness to geometric variations. Next, in the Local Feature Processing (LFP), a parallel structure extracts both group-level features and global context, providing a rich representation of both fine details and overall structure. Finally, these features are combined and processed in the Global Feature Processing (GFP). By repeating these operations, the receptive field gradually expands, enabling the model to capture complete geometric information of the point cloud. To overcome the high parameter counts and computational inefficiency of standard KANs, we develop Efficient-KANs in the PointKAN-elite variant, which significantly reduces parameters while maintaining accuracy. Experimental results demonstrate that PointKAN outperforms PointMLP on benchmark datasets such as ModelNet40, ScanObjectNN, and ShapeNetPart, with particularly strong performance in Few-shot Learning task. Additionally, PointKAN achieves substantial reductions in parameter counts and computational complexity (FLOPs). This work highlights the potential of KANs-based architectures in 3D vision and opens new avenues for research in point cloud understanding.
HAECcity: Open-Vocabulary Scene Understanding of City-Scale Point Clouds with Superpoint Graph Clustering CVPR
Traditional 3D scene understanding techniques are generally predicated on hand-annotated label sets, but in recent years a new class of open-vocabulary 3D scene understanding techniques has emerged. Despite the success of this paradigm on small scenes, existing approaches cannot scale efficiently to city-scale 3D datasets. In this paper, we present Hierarchical vocab-Agnostic Expert Clustering (HAEC), after the latin word for 'these', a superpoint graph clustering based approach which utilizes a novel mixture of experts graph transformer for its backbone. We administer this highly scalable approach to the first application of open-vocabulary scene understanding on the SensatUrban city-scale dataset. We also demonstrate a synthetic labeling pipeline which is derived entirely from the raw point clouds with no hand-annotation. Our technique can help unlock complex operations on dense urban 3D scenes and open a new path forward in the processing of digital twins.
comment: Accepted for publication through the upcoming CVPR Workshop on open scene understanding with foundation models (OPENSUN3D)
Leveraging Automatic CAD Annotations for Supervised Learning in 3D Scene Understanding SC
High-level 3D scene understanding is essential in many applications. However, the challenges of generating accurate 3D annotations make development of deep learning models difficult. We turn to recent advancements in automatic retrieval of synthetic CAD models, and show that data generated by such methods can be used as high-quality ground truth for training supervised deep learning models. More exactly, we employ a pipeline akin to the one previously used to automatically annotate objects in ScanNet scenes with their 9D poses and CAD models. This time, we apply it to the recent ScanNet++ v1 dataset, which previously lacked such annotations. Our findings demonstrate that it is not only possible to train deep learning models on these automatically-obtained annotations but that the resulting models outperform those trained on manually annotated data. We validate this on two distinct tasks: point cloud completion and single-view CAD model retrieval and alignment. Our results underscore the potential of automatic 3D annotations to enhance model performance while significantly reducing annotation costs. To support future research in 3D scene understanding, we will release our annotations, which we call SCANnotate++, along with our trained models.
comment: Github Page: https://github.com/stefan-ainetter/SCANnotatepp
HDBFormer: Efficient RGB-D Semantic Segmentation with A Heterogeneous Dual-Branch Framework
In RGB-D semantic segmentation for indoor scenes, a key challenge is effectively integrating the rich color information from RGB images with the spatial distance information from depth images. However, most existing methods overlook the inherent differences in how RGB and depth images express information. Properly distinguishing the processing of RGB and depth images is essential to fully exploiting their unique and significant characteristics. To address this, we propose a novel heterogeneous dual-branch framework called HDBFormer, specifically designed to handle these modality differences. For RGB images, which contain rich detail, we employ both a basic and detail encoder to extract local and global features. For the simpler depth images, we propose LDFormer, a lightweight hierarchical encoder that efficiently extracts depth features with fewer parameters. Additionally, we introduce the Modality Information Interaction Module (MIIM), which combines transformers with large kernel convolutions to interact global and local information across modalities efficiently. Extensive experiments show that HDBFormer achieves state-of-the-art performance on the NYUDepthv2 and SUN-RGBD datasets. The code is available at: https://github.com/Weishuobin/HDBFormer.
comment: 6 pages, 4 figures, published to IEEE Signal Processing Letter
MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
WeatherGen: A Unified Diverse Weather Generator for LiDAR Point Clouds via Spider Mamba Diffusion
3D scene perception demands a large amount of adverse-weather LiDAR data, yet the cost of LiDAR data collection presents a significant scaling-up challenge. To this end, a series of LiDAR simulators have been proposed. Yet, they can only simulate a single adverse weather with a single physical model, and the fidelity of the generated data is quite limited. This paper presents WeatherGen, the first unified diverse-weather LiDAR data diffusion generation framework, significantly improving fidelity. Specifically, we first design a map-based data producer, which can provide a vast amount of high-quality diverse-weather data for training purposes. Then, we utilize the diffusion-denoising paradigm to construct a diffusion model. Among them, we propose a spider mamba generator to restore the disturbed diverse weather data gradually. The spider mamba models the feature interactions by scanning the LiDAR beam circle or central ray, excellently maintaining the physical structure of the LiDAR data. Subsequently, following the generator to transfer real-world knowledge, we design a latent feature aligner. Afterward, we devise a contrastive learning-based controller, which equips weather control signals with compact semantic knowledge through language supervision, guiding the diffusion model to generate more discriminative data. Extensive evaluations demonstrate the high generation quality of WeatherGen. Through WeatherGen, we construct the mini-weather dataset, promoting the performance of the downstream task under adverse weather conditions. Code is available: https://github.com/wuyang98/weathergen
Zero-Shot Industrial Anomaly Segmentation with Image-Aware Prompt Generation PAKDD 2025
Anomaly segmentation is essential for industrial quality, maintenance, and stability. Existing text-guided zero-shot anomaly segmentation models are effective but rely on fixed prompts, limiting adaptability in diverse industrial scenarios. This highlights the need for flexible, context-aware prompting strategies. We propose Image-Aware Prompt Anomaly Segmentation (IAP-AS), which enhances anomaly segmentation by generating dynamic, context-aware prompts using an image tagging model and a large language model (LLM). IAP-AS extracts object attributes from images to generate context-aware prompts, improving adaptability and generalization in dynamic and unstructured industrial environments. In our experiments, IAP-AS improves the F1-max metric by up to 10%, demonstrating superior adaptability and generalization. It provides a scalable solution for anomaly segmentation across industries
comment: Accepted to PAKDD 2025, 12 pages
A Novel Hybrid Approach for Retinal Vessel Segmentation with Dynamic Long-Range Dependency and Multi-Scale Retinal Edge Fusion Enhancement
Accurate retinal vessel segmentation provides essential structural information for ophthalmic image analysis. However, existing methods struggle with challenges such as multi-scale vessel variability, complex curvatures, and ambiguous boundaries. While Convolutional Neural Networks (CNNs), Transformer-based models and Mamba-based architectures have advanced the field, they often suffer from vascular discontinuities or edge feature ambiguity. To address these limitations, we propose a novel hybrid framework that synergistically integrates CNNs and Mamba for high-precision retinal vessel segmentation. Our approach introduces three key innovations: 1) The proposed High-Resolution Edge Fuse Network is a high-resolution preserving hybrid segmentation framework that combines a multi-scale backbone with the Multi-scale Retina Edge Fusion (MREF) module to enhance edge features, ensuring accurate and robust vessel segmentation. 2) The Dynamic Snake Visual State Space block combines Dynamic Snake Convolution with Mamba to adaptively capture vessel curvature details and long-range dependencies. An improved eight-directional 2D Snake-Selective Scan mechanism and a dynamic weighting strategy enhance the perception of complex vascular topologies. 3) The MREF module enhances boundary precision through multi-scale edge feature aggregation, suppressing noise while emphasizing critical vessel structures across scales. Experiments on three public datasets demonstrate that our method achieves state-of-the-art performance, particularly in maintaining vascular continuity and effectively segmenting vessels in low-contrast regions. This work provides a robust method for clinical applications requiring accurate retinal vessel analysis. The code is available at https://github.com/frank-oy/HREFNet.
Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
EG-Gaussian: Epipolar Geometry and Graph Network Enhanced 3D Gaussian Splatting
In this paper, we explore an open research problem concerning the reconstruction of 3D scenes from images. Recent methods have adopt 3D Gaussian Splatting (3DGS) to produce 3D scenes due to its efficient training process. However, these methodologies may generate incomplete 3D scenes or blurred multiviews. This is because of (1) inaccurate 3DGS point initialization and (2) the tendency of 3DGS to flatten 3D Gaussians with the sparse-view input. To address these issues, we propose a novel framework EG-Gaussian, which utilizes epipolar geometry and graph networks for 3D scene reconstruction. Initially, we integrate epipolar geometry into the 3DGS initialization phase to enhance initial 3DGS point construction. Then, we specifically design a graph learning module to refine 3DGS spatial features, in which we incorporate both spatial coordinates and angular relationships among neighboring points. Experiments on indoor and outdoor benchmark datasets demonstrate that our approach significantly improves reconstruction accuracy compared to 3DGS-based methods.
Quantum Walks-Based Adaptive Distribution Generation with Efficient CUDA-Q Acceleration
We present a novel Adaptive Distribution Generator that leverages a quantum walks-based approach to generate high precision and efficiency of target probability distributions. Our method integrates variational quantum circuits with discrete-time quantum walks, specifically, split-step quantum walks and their entangled extensions, to dynamically tune coin parameters and drive the evolution of quantum states towards desired distributions. This enables accurate one-dimensional probability modeling for applications such as financial simulation and structured two-dimensional pattern generation exemplified by digit representations(0~9). Implemented within the CUDA-Q framework, our approach exploits GPU acceleration to significantly reduce computational overhead and improve scalability relative to conventional methods. Extensive benchmarks demonstrate that our Quantum Walks-Based Adaptive Distribution Generator achieves high simulation fidelity and bridges the gap between theoretical quantum algorithms and practical high-performance computation.
comment: 17 pages, 5 figures
OBIFormer: A Fast Attentive Denoising Framework for Oracle Bone Inscriptions
Oracle bone inscriptions (OBIs) are the earliest known form of Chinese characters and serve as a valuable resource for research in anthropology and archaeology. However, most excavated fragments are severely degraded due to thousands of years of natural weathering, corrosion, and man-made destruction, making automatic OBI recognition extremely challenging. Previous methods either focus on pixel-level information or utilize vanilla transformers for glyph-based OBI denoising, which leads to tremendous computational overhead. Therefore, this paper proposes a fast attentive denoising framework for oracle bone inscriptions, i.e., OBIFormer. It leverages channel-wise self-attention, glyph extraction, and selective kernel feature fusion to reconstruct denoised images precisely while being computationally efficient. Our OBIFormer achieves state-of-the-art denoising performance for PSNR and SSIM metrics on synthetic and original OBI datasets. Furthermore, comprehensive experiments on a real oracle dataset demonstrate the great potential of our OBIFormer in assisting automatic OBI recognition. The code will be made available at https://github.com/LJHolyGround/OBIFormer.
Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
comment: preprint
U-Shape Mamba: State Space Model for faster diffusion CVPR 2025
Diffusion models have become the most popular approach for high-quality image generation, but their high computational cost still remains a significant challenge. To address this problem, we propose U-Shape Mamba (USM), a novel diffusion model that leverages Mamba-based layers within a U-Net-like hierarchical structure. By progressively reducing sequence length in the encoder and restoring it in the decoder through Mamba blocks, USM significantly lowers computational overhead while maintaining strong generative capabilities. Experimental results against Zigma, which is currently the most efficient Mamba-based diffusion model, demonstrate that USM achieves one-third the GFlops, requires less memory and is faster, while outperforming Zigma in image quality. Frechet Inception Distance (FID) is improved by 15.3, 0.84 and 2.7 points on AFHQ, CelebAHQ and COCO datasets, respectively. These findings highlight USM as a highly efficient and scalable solution for diffusion-based generative models, making high-quality image synthesis more accessible to the research community while reducing computational costs.
comment: Accepeted at CVPR 2025 eLVM workshop
Early Timestep Zero-Shot Candidate Selection for Instruction-Guided Image Editing
Despite recent advances in diffusion models, achieving reliable image generation and editing remains challenging due to the inherent diversity induced by stochastic noise in the sampling process. Instruction-guided image editing with diffusion models offers user-friendly capabilities, yet editing failures, such as background distortion, frequently occur. Users often resort to trial and error, adjusting seeds or prompts to achieve satisfactory results, which is inefficient. While seed selection methods exist for Text-to-Image (T2I) generation, they depend on external verifiers, limiting applicability, and evaluating multiple seeds increases computational complexity. To address this, we first establish a multiple-seed-based image editing baseline using background consistency scores, achieving Best-of-N performance without supervision. Building on this, we introduce ELECT (Early-timestep Latent Evaluation for Candidate Selection), a zero-shot framework that selects reliable seeds by estimating background mismatches at early diffusion timesteps, identifying the seed that retains the background while modifying only the foreground. ELECT ranks seed candidates by a background inconsistency score, filtering unsuitable samples early based on background consistency while preserving editability. Beyond standalone seed selection, ELECT integrates into instruction-guided editing pipelines and extends to Multimodal Large-Language Models (MLLMs) for joint seed and prompt selection, further improving results when seed selection alone is insufficient. Experiments show that ELECT reduces computational costs (by 41 percent on average and up to 61 percent) while improving background consistency and instruction adherence, achieving around 40 percent success rates in previously failed cases - without any external supervision or training.
Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
HMPE:HeatMap Embedding for Efficient Transformer-Based Small Object Detection
Current Transformer-based methods for small object detection continue emerging, yet they have still exhibited significant shortcomings. This paper introduces HeatMap Position Embedding (HMPE), a novel Transformer Optimization technique that enhances object detection performance by dynamically integrating positional encoding with semantic detection information through heatmap-guided adaptive learning.We also innovatively visualize the HMPE method, offering clear visualization of embedded information for parameter fine-tuning.We then create Multi-Scale ObjectBox-Heatmap Fusion Encoder (MOHFE) and HeatMap Induced High-Quality Queries for Decoder (HIDQ) modules. These are designed for the encoder and decoder, respectively, to generate high-quality queries and reduce background noise queries.Using both heatmap embedding and Linear-Snake Conv(LSConv) feature engineering, we enhance the embedding of massively diverse small object categories and reduced the decoder multihead layers, thereby accelerating both inference and training.In the generalization experiments, our approach outperforme the baseline mAP by 1.9% on the small object dataset (NWPU VHR-10) and by 1.2% on the general dataset (PASCAL VOC). By employing HMPE-enhanced embedding, we are able to reduce the number of decoder layers from eight to a minimum of three, significantly decreasing both inference and training costs.
Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
Learning from Noisy Pseudo-labels for All-Weather Land Cover Mapping
Semantic segmentation of SAR images has garnered significant attention in remote sensing due to the immunity of SAR sensors to cloudy weather and light conditions. Nevertheless, SAR imagery lacks detailed information and is plagued by significant speckle noise, rendering the annotation or segmentation of SAR images a formidable task. Recent efforts have resorted to annotating paired optical-SAR images to generate pseudo-labels through the utilization of an optical image segmentation network. However, these pseudo-labels are laden with noise, leading to suboptimal performance in SAR image segmentation. In this study, we introduce a more precise method for generating pseudo-labels by incorporating semi-supervised learning alongside a novel image resolution alignment augmentation. Furthermore, we introduce a symmetric cross-entropy loss to mitigate the impact of noisy pseudo-labels. Additionally, a bag of training and testing tricks is utilized to generate better land-cover mapping results. Our experiments on the GRSS data fusion contest indicate the effectiveness of the proposed method, which achieves first place. The code is available at https://github.com/StuLiu/DFC2025Track1.git.
Neural Ganglion Sensors: Learning Task-specific Event Cameras Inspired by the Neural Circuit of the Human Retina
Inspired by the data-efficient spiking mechanism of neurons in the human eye, event cameras were created to achieve high temporal resolution with minimal power and bandwidth requirements by emitting asynchronous, per-pixel intensity changes rather than conventional fixed-frame rate images. Unlike retinal ganglion cells (RGCs) in the human eye, however, which integrate signals from multiple photoreceptors within a receptive field to extract spatio-temporal features, conventional event cameras do not leverage local spatial context when deciding which events to fire. Moreover, the eye contains around 20 different kinds of RGCs operating in parallel, each attuned to different features or conditions. Inspired by this biological design, we introduce Neural Ganglion Sensors, an extension of traditional event cameras that learns task-specific spatio-temporal retinal kernels (i.e., RGC "events"). We evaluate our design on two challenging tasks: video interpolation and optical flow. Our results demonstrate that our biologically inspired sensing improves performance relative to conventional event cameras while reducing overall event bandwidth. These findings highlight the promise of RGC-inspired event sensors for edge devices and other low-power, real-time applications requiring efficient, high-resolution visual streams.
MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
SatelliteCalculator: A Multi-Task Vision Foundation Model for Quantitative Remote Sensing Inversion
Quantitative remote sensing inversion plays a critical role in environmental monitoring, enabling the estimation of key ecological variables such as vegetation indices, canopy structure, and carbon stock. Although vision foundation models have achieved remarkable progress in classification and segmentation tasks, their application to physically interpretable regression remains largely unexplored. Furthermore, the multi-spectral nature and geospatial heterogeneity of remote sensing data pose significant challenges for generalization and transferability. To address these issues, we introduce SatelliteCalculator, the first vision foundation model tailored for quantitative remote sensing inversion. By leveraging physically defined index formulas, we automatically construct a large-scale dataset of over one million paired samples across eight core ecological indicators. The model integrates a frozen Swin Transformer backbone with a prompt-guided architecture, featuring cross-attentive adapters and lightweight task-specific MLP decoders. Experiments on the Open-Canopy benchmark demonstrate that SatelliteCalculator achieves competitive accuracy across all tasks while significantly reducing inference cost. Our results validate the feasibility of applying foundation models to quantitative inversion, and provide a scalable framework for task-adaptive remote sensing estimation.
Temporal Propagation of Asymmetric Feature Pyramid for Surgical Scene Segmentation
Surgical scene segmentation is crucial for robot-assisted laparoscopic surgery understanding. Current approaches face two challenges: (i) static image limitations including ambiguous local feature similarities and fine-grained structural details, and (ii) dynamic video complexities arising from rapid instrument motion and persistent visual occlusions. While existing methods mainly focus on spatial feature extraction, they fundamentally overlook temporal dependencies in surgical video streams. To address this, we present temporal asymmetric feature propagation network, a bidirectional attention architecture enabling cross-frame feature propagation. The proposed method contains a temporal query propagator that integrates multi-directional consistency constraints to enhance frame-specific feature representation, and an aggregated asymmetric feature pyramid module that preserves discriminative features for anatomical structures and surgical instruments. Our framework uniquely enables both temporal guidance and contextual reasoning for surgical scene understanding. Comprehensive evaluations on two public benchmarks show the proposed method outperforms the current SOTA methods by a large margin, with +16.4\% mIoU on EndoVis2018 and +3.3\% mAP on Endoscapes2023. The code will be publicly available after paper acceptance.
Circular Image Deturbulence using Quasi-conformal Geometry
The presence of inhomogeneous media between optical sensors and objects leads to distorted imaging outputs, significantly complicating downstream image-processing tasks. A key challenge in image restoration is the lack of high-quality, paired-label images required for training supervised models. In this paper, we introduce the Circular Quasi-Conformal Deturbulence (CQCD) framework, an unsupervised approach for removing image distortions through a circular architecture. This design ensures that the restored image remains both geometrically accurate and visually faithful while preventing the accumulation of incorrect estimations.The circular restoration process involves both forward and inverse mapping. To ensure the bijectivity of the estimated non-rigid deformations, computational quasi-conformal geometry theories are leveraged to regularize the mapping, enforcing its homeomorphic properties. This guarantees a well-defined transformation that preserves structural integrity and prevents unwanted artifacts. Furthermore, tight-frame blocks are integrated to encode distortion-sensitive features for precise recovery. To validate the performance of our approach, we conduct evaluations on various synthetic and real-world captured images. Experimental results demonstrate that CQCD not only outperforms existing state-of-the-art deturbulence methods in terms of image restoration quality but also provides highly accurate deformation field estimations.
HSACNet: Hierarchical Scale-Aware Consistency Regularized Semi-Supervised Change Detection ICME 2025
Semi-supervised change detection (SSCD) aims to detect changes between bi-temporal remote sensing images by utilizing limited labeled data and abundant unlabeled data. Existing methods struggle in complex scenarios, exhibiting poor performance when confronted with noisy data. They typically neglect intra-layer multi-scale features while emphasizing inter-layer fusion, harming the integrity of change objects with different scales. In this paper, we propose HSACNet, a Hierarchical Scale-Aware Consistency regularized Network for SSCD. Specifically, we integrate Segment Anything Model 2 (SAM2), using its Hiera backbone as the encoder to extract inter-layer multi-scale features and applying adapters for parameter-efficient fine-tuning. Moreover, we design a Scale-Aware Differential Attention Module (SADAM) that can precisely capture intra-layer multi-scale change features and suppress noise. Additionally, a dual-augmentation consistency regularization strategy is adopted to effectively utilize the unlabeled data. Extensive experiments across four CD benchmarks demonstrate that our HSACNet achieves state-of-the-art performance, with reduced parameters and computational cost.
comment: 7 pages, 8 figures, accepted by ICME 2025
Mono3R: Exploiting Monocular Cues for Geometric 3D Reconstruction
Recent advances in data-driven geometric multi-view 3D reconstruction foundation models (e.g., DUSt3R) have shown remarkable performance across various 3D vision tasks, facilitated by the release of large-scale, high-quality 3D datasets. However, as we observed, constrained by their matching-based principles, the reconstruction quality of existing models suffers significant degradation in challenging regions with limited matching cues, particularly in weakly textured areas and low-light conditions. To mitigate these limitations, we propose to harness the inherent robustness of monocular geometry estimation to compensate for the inherent shortcomings of matching-based methods. Specifically, we introduce a monocular-guided refinement module that integrates monocular geometric priors into multi-view reconstruction frameworks. This integration substantially enhances the robustness of multi-view reconstruction systems, leading to high-quality feed-forward reconstructions. Comprehensive experiments across multiple benchmarks demonstrate that our method achieves substantial improvements in both mutli-view camera pose estimation and point cloud accuracy.
DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
ProgRoCC: A Progressive Approach to Rough Crowd Counting
As the number of individuals in a crowd grows, enumeration-based techniques become increasingly infeasible and their estimates increasingly unreliable. We propose instead an estimation-based version of the problem: we label Rough Crowd Counting that delivers better accuracy on the basis of training data that is easier to acquire. Rough crowd counting requires only rough annotations of the number of targets in an image, instead of the more traditional, and far more expensive, per-target annotations. We propose an approach to the rough crowd counting problem based on CLIP, termed ProgRoCC. Specifically, we introduce a progressive estimation learning strategy that determines the object count through a coarse-to-fine approach. This approach delivers answers quickly, outperforms the state-of-the-art in semi- and weakly-supervised crowd counting. In addition, we design a vision-language matching adapter that optimizes key-value pairs by mining effective matches of two modalities to refine the visual features, thereby improving the final performance. Extensive experimental results on three widely adopted crowd counting datasets demonstrate the effectiveness of our method.
comment: Under review
CytoFM: The first cytology foundation model
Cytology is essential for cancer diagnostics and screening due to its minimally invasive nature. However, the development of robust deep learning models for digital cytology is challenging due to the heterogeneity in staining and preparation methods of samples, differences across organs, and the limited availability of large, diverse, annotated datasets. Developing a task-specific model for every cytology application is impractical and non-cytology-specific foundation models struggle to generalize to tasks in this domain where the emphasis is on cell morphology. To address these challenges, we introduce CytoFM, the first cytology self-supervised foundation model. Using iBOT, a self-supervised Vision Transformer (ViT) training framework incorporating masked image modeling and self-distillation, we pretrain CytoFM on a diverse collection of cytology datasets to learn robust, transferable representations. We evaluate CytoFM on multiple downstream cytology tasks, including breast cancer classification and cell type identification, using an attention-based multiple instance learning framework. Our results demonstrate that CytoFM performs better on two out of three downstream tasks than existing foundation models pretrained on histopathology (UNI) or natural images (iBOT-Imagenet). Visualizations of learned representations demonstrate our model is able to attend to cytologically relevant features. Despite a small pre-training dataset, CytoFM's promising results highlight the ability of task-agnostic pre-training approaches to learn robust and generalizable features from cytology data.
Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
BeetleVerse: A study on taxonomic classification of ground beetles
Ground beetles are a highly sensitive and speciose biological indicator, making them vital for monitoring biodiversity. However, they are currently an underutilized resource due to the manual effort required by taxonomic experts to perform challenging species differentiations based on subtle morphological differences, precluding widespread applications. In this paper, we evaluate 12 vision models on taxonomic classification across four diverse, long-tailed datasets spanning over 230 genera and 1769 species, with images ranging from controlled laboratory settings to challenging field-collected (in-situ) photographs. We further explore taxonomic classification in two important real-world contexts: sample efficiency and domain adaptation. Our results show that the Vision and Language Transformer combined with an MLP head is the best performing model, with 97\% accuracy at genus and 94\% at species level. Sample efficiency analysis shows that we can reduce train data requirements by up to 50\% with minimal compromise in performance. The domain adaptation experiments reveal significant challenges when transferring models from lab to in-situ images, highlighting a critical domain gap. Overall, our study lays a foundation for large-scale automated taxonomic classification of beetles, and beyond that, advances sample-efficient learning and cross-domain adaptation for diverse long-tailed ecological datasets.
POET: Supporting Prompting Creativity and Personalization with Automated Expansion of Text-to-Image Generation
State-of-the-art visual generative AI tools hold immense potential to assist users in the early ideation stages of creative tasks -- offering the ability to generate (rather than search for) novel and unprecedented (instead of existing) images of considerable quality that also adhere to boundless combinations of user specifications. However, many large-scale text-to-image systems are designed for broad applicability, yielding conventional output that may limit creative exploration. They also employ interaction methods that may be difficult for beginners. Given that creative end users often operate in diverse, context-specific ways that are often unpredictable, more variation and personalization are necessary. We introduce POET, a real-time interactive tool that (1) automatically discovers dimensions of homogeneity in text-to-image generative models, (2) expands these dimensions to diversify the output space of generated images, and (3) learns from user feedback to personalize expansions. An evaluation with 28 users spanning four creative task domains demonstrated POET's ability to generate results with higher perceived diversity and help users reach satisfaction in fewer prompts during creative tasks, thereby prompting them to deliberate and reflect more on a wider range of possible produced results during the co-creative process. Focusing on visual creativity, POET offers a first glimpse of how interaction techniques of future text-to-image generation tools may support and align with more pluralistic values and the needs of end users during the ideation stages of their work.
Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
Accelerated Optimization of Implicit Neural Representations for CT Reconstruction
Inspired by their success in solving challenging inverse problems in computer vision, implicit neural representations (INRs) have been recently proposed for reconstruction in low-dose/sparse-view X-ray computed tomography (CT). An INR represents a CT image as a small-scale neural network that takes spatial coordinates as inputs and outputs attenuation values. Fitting an INR to sinogram data is similar to classical model-based iterative reconstruction methods. However, training INRs with losses and gradient-based algorithms can be prohibitively slow, taking many thousands of iterations to converge. This paper investigates strategies to accelerate the optimization of INRs for CT reconstruction. In particular, we propose two approaches: (1) using a modified loss function with improved conditioning, and (2) an algorithm based on the alternating direction method of multipliers. We illustrate that both of these approaches significantly accelerate INR-based reconstruction of a synthetic breast CT phantom in a sparse-view setting.
comment: IEEE ISBI 2025
Supervising 3D Talking Head Avatars with Analysis-by-Audio-Synthesis
In order to be widely applicable, speech-driven 3D head avatars must articulate their lips in accordance with speech, while also conveying the appropriate emotions with dynamically changing facial expressions. The key problem is that deterministic models produce high-quality lip-sync but without rich expressions, whereas stochastic models generate diverse expressions but with lower lip-sync quality. To get the best of both, we seek a stochastic model with accurate lip-sync. To that end, we develop a new approach based on the following observation: if a method generates realistic 3D lip motions, it should be possible to infer the spoken audio from the lip motion. The inferred speech should match the original input audio, and erroneous predictions create a novel supervision signal for training 3D talking head avatars with accurate lip-sync. To demonstrate this effect, we propose THUNDER (Talking Heads Under Neural Differentiable Elocution Reconstruction), a 3D talking head avatar framework that introduces a novel supervision mechanism via differentiable sound production. First, we train a novel mesh-to-speech model that regresses audio from facial animation. Then, we incorporate this model into a diffusion-based talking avatar framework. During training, the mesh-to-speech model takes the generated animation and produces a sound that is compared to the input speech, creating a differentiable analysis-by-audio-synthesis supervision loop. Our extensive qualitative and quantitative experiments demonstrate that THUNDER significantly improves the quality of the lip-sync of talking head avatars while still allowing for generation of diverse, high-quality, expressive facial animations.
ODHSR: Online Dense 3D Reconstruction of Humans and Scenes from Monocular Videos CVPR 2025
Creating a photorealistic scene and human reconstruction from a single monocular in-the-wild video figures prominently in the perception of a human-centric 3D world. Recent neural rendering advances have enabled holistic human-scene reconstruction but require pre-calibrated camera and human poses, and days of training time. In this work, we introduce a novel unified framework that simultaneously performs camera tracking, human pose estimation and human-scene reconstruction in an online fashion. 3D Gaussian Splatting is utilized to learn Gaussian primitives for humans and scenes efficiently, and reconstruction-based camera tracking and human pose estimation modules are designed to enable holistic understanding and effective disentanglement of pose and appearance. Specifically, we design a human deformation module to reconstruct the details and enhance generalizability to out-of-distribution poses faithfully. Aiming to learn the spatial correlation between human and scene accurately, we introduce occlusion-aware human silhouette rendering and monocular geometric priors, which further improve reconstruction quality. Experiments on the EMDB and NeuMan datasets demonstrate superior or on-par performance with existing methods in camera tracking, human pose estimation, novel view synthesis and runtime. Our project page is at https://eth-ait.github.io/ODHSR.
comment: Accepted at CVPR 2025
SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/ev-deblurvsr.github.io/
Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction CVPR 2025
We present GDFusion, a temporal fusion method for vision-based 3D semantic occupancy prediction (VisionOcc). GDFusion opens up the underexplored aspects of temporal fusion within the VisionOcc framework, focusing on both temporal cues and fusion strategies. It systematically examines the entire VisionOcc pipeline, identifying three fundamental yet previously overlooked temporal cues: scene-level consistency, motion calibration, and geometric complementation. These cues capture diverse facets of temporal evolution and make distinct contributions across various modules in the VisionOcc framework. To effectively fuse temporal signals across heterogeneous representations, we propose a novel fusion strategy by reinterpreting the formulation of vanilla RNNs. This reinterpretation leverages gradient descent on features to unify the integration of diverse temporal information, seamlessly embedding the proposed temporal cues into the network. Extensive experiments on nuScenes demonstrate that GDFusion significantly outperforms established baselines. Notably, on Occ3D benchmark, it achieves 1.4\%-4.8\% mIoU improvements and reduces memory consumption by 27\%-72\%.
comment: CVPR 2025
RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding
This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
High-Resolution Frame Interpolation with Patch-based Cascaded Diffusion
Despite the recent progress, existing frame interpolation methods still struggle with processing extremely high resolution input and handling challenging cases such as repetitive textures, thin objects, and large motion. To address these issues, we introduce a patch-based cascaded pixel diffusion model for high resolution frame interpolation, HIFI, that excels in these scenarios while achieving competitive performance on standard benchmarks. Cascades, which generate a series of images from low to high resolution, can help significantly with large or complex motion that require both global context for a coarse solution and detailed context for high resolution output. However, contrary to prior work on cascaded diffusion models which perform diffusion on increasingly large resolutions, we use a single model that always performs diffusion at the same resolution and upsamples by processing patches of the inputs and the prior solution. At inference time, this drastically reduces memory usage and allows a single model, solving both frame interpolation (base model's task) and spatial up-sampling, saving training cost as well. HIFI excels at high-resolution images and complex repeated textures that require global context, achieving comparable or state-of-the-art performance on various benchmarks (Vimeo, Xiph, X-Test, and SEPE-8K). We further introduce a new dataset, LaMoR, that focuses on particularly challenging cases, and HIFI significantly outperforms other baselines. Please visit our project page for video results: https://hifi-diffusion.github.io
comment: Project page: https://hifi-diffusion.github.io/
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text ICLR 2025
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: Accepted at ICLR 2025. Original paper name: VCR: Visual Caption Restoration
Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining
We present Lumina-mGPT, a family of multimodal autoregressive models capable of various vision and language tasks, particularly excelling in generating flexible photorealistic images from text descriptions. By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models with high efficiency through Flexible Progressive Supervised Fine-tuning (FP-SFT). Equipped with our proposed Unambiguous image Representation (UniRep), Lumina-mGPT can flexibly generate high-quality images of varying aspect ratios. Building on the strong image generation capabilities, we further explore Ominiponent Supervised Fine-tuning (Omni-SFT), an initial attempt to elevate Lumina-mGPT into a unified multi-modal generalist. The resulting model demonstrates versatile multimodal capabilities, including visual generation tasks like text-to-image/multiview generation and controllable generation, visual recognition tasks like segmentation and depth estimation, and vision-language tasks like multi-turn visual question answering, showing the rosy potential of the technical direction. Codes and checkpoints are available at https://github.com/Alpha-VLLM/Lumina-mGPT.
comment: Code available at: https://github.com/Alpha-VLLM/Lumina-mGPT
Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields
This paper presents a novel latent 3D diffusion model for the generation of neural voxel fields, aiming to achieve accurate part-aware structures. Compared to existing methods, there are two key designs to ensure high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, enabling generation at significantly higher resolutions that can accurately capture rich textural and geometric details. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding the accurate part decomposition and producing high-quality rendering results. Through extensive experimentation and comparisons with state-of-the-art methods, we evaluate our approach across four different classes of data. The results demonstrate the superior generative capabilities of our proposed method in part-aware shape generation, outperforming existing state-of-the-art methods.
comment: This paper is accepted by TVCG
MambaMIM: Pre-training Mamba with State Space Token Interpolation and its Application to Medical Image Segmentation
Recently, the state space model Mamba has demonstrated efficient long-sequence modeling capabilities, particularly for addressing long-sequence visual tasks in 3D medical imaging. However, existing generative self-supervised learning methods have not yet fully unleashed Mamba's potential for handling long-range dependencies because they overlook the inherent causal properties of state space sequences in masked modeling. To address this challenge, we propose a general-purpose pre-training framework called MambaMIM, a masked image modeling method based on a novel TOKen-Interpolation strategy (TOKI) for the selective structure state space sequence, which learns causal relationships of state space within the masked sequence. Further, MambaMIM introduces a bottom-up 3D hybrid masking strategy to maintain a masking consistency across different architectures and can be used on any single or hybrid Mamba architecture to enhance its multi-scale and long-range representation capability. We pre-train MambaMIM on a large-scale dataset of 6.8K CT scans and evaluate its performance across eight public medical segmentation benchmarks. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for medical image pre-training. In particular, when we apply the MambaMIM to a customized architecture that hybridizes MedNeXt and Vision Mamba, we consistently obtain the state-of-the-art segmentation performance. The code is available at: https://github.com/FengheTan9/MambaMIM.
comment: Accepted by Medical Image Analysis. Code: https://github.com/FengheTan9/MambaMIM
An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
Robust image classification with multi-modal large language models
Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, MultiShield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. MultiShield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that MultiShield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.
comment: Paper accepted at Pattern Recognition Letters journal Keywords: adversarial examples, rejection defense, multimodal-informed systems, machine learning security
Energy-Latency Attacks via Sponge Poisoning
Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.
comment: Paper accepted at Information Sciences journal; 20 pages Keywords: energy-latency attacks, sponge attack, machine learning security, adversarial machine learning
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation NAACL2025
Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
comment: Project page: https://hunyuan-dialoggen.github.io/. Accepted to NAACL2025
LeOCLR: Leveraging Original Images for Contrastive Learning of Visual Representations
Contrastive instance discrimination methods outperform supervised learning in downstream tasks such as image classification and object detection. However, these methods rely heavily on data augmentation during representation learning, which can lead to suboptimal results if not implemented carefully. A common augmentation technique in contrastive learning is random cropping followed by resizing. This can degrade the quality of representation learning when the two random crops contain distinct semantic content. To tackle this issue, we introduce LeOCLR (Leveraging Original Images for Contrastive Learning of Visual Representations), a framework that employs a novel instance discrimination approach and an adapted loss function. This method prevents the loss of important semantic features caused by mapping different object parts during representation learning. Our experiments demonstrate that LeOCLR consistently improves representation learning across various datasets, outperforming baseline models. For instance, LeOCLR surpasses MoCo-v2 by 5.1% on ImageNet-1K in linear evaluation and outperforms several other methods on transfer learning and object detection tasks.
comment: 15 pages, 5 figures, 9 tables - accepted at TMLR 10/2024; V4 corrected some typos in the references
IReNe: Instant Recoloring of Neural Radiance Fields
Advances in NERFs have allowed for 3D scene reconstructions and novel view synthesis. Yet, efficiently editing these representations while retaining photorealism is an emerging challenge. Recent methods face three primary limitations: they're slow for interactive use, lack precision at object boundaries, and struggle to ensure multi-view consistency. We introduce IReNe to address these limitations, enabling swift, near real-time color editing in NeRF. Leveraging a pre-trained NeRF model and a single training image with user-applied color edits, IReNe swiftly adjusts network parameters in seconds. This adjustment allows the model to generate new scene views, accurately representing the color changes from the training image while also controlling object boundaries and view-specific effects. Object boundary control is achieved by integrating a trainable segmentation module into the model. The process gains efficiency by retraining only the weights of the last network layer. We observed that neurons in this layer can be classified into those responsible for view-dependent appearance and those contributing to diffuse appearance. We introduce an automated classification approach to identify these neuron types and exclusively fine-tune the weights of the diffuse neurons. This further accelerates training and ensures consistent color edits across different views. A thorough validation on a new dataset, with edited object colors, shows significant quantitative and qualitative advancements over competitors, accelerating speeds by 5x to 500x.
The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
AnomalyControl: Learning Cross-modal Semantic Features for Controllable Anomaly Synthesis
Anomaly synthesis is a crucial approach to augment abnormal data for advancing anomaly inspection. Based on the knowledge from the large-scale pre-training, existing text-to-image anomaly synthesis methods predominantly focus on textual information or coarse-aligned visual features to guide the entire generation process. However, these methods often lack sufficient descriptors to capture the complicated characteristics of realistic anomalies (e.g., the fine-grained visual pattern of anomalies), limiting the realism and generalization of the generation process. To this end, we propose a novel anomaly synthesis framework called AnomalyControl to learn cross-modal semantic features as guidance signals, which could encode the generalized anomaly cues from text-image reference prompts and improve the realism of synthesized abnormal samples. Specifically, AnomalyControl adopts a flexible and non-matching prompt pair (i.e., a text-image reference prompt and a targeted text prompt), where a Cross-modal Semantic Modeling (CSM) module is designed to extract cross-modal semantic features from the textual and visual descriptors. Then, an Anomaly-Semantic Enhanced Attention (ASEA) mechanism is formulated to allow CSM to focus on the specific visual patterns of the anomaly, thus enhancing the realism and contextual relevance of the generated anomaly features. Treating cross-modal semantic features as the prior, a Semantic Guided Adapter (SGA) is designed to encode effective guidance signals for the adequate and controllable synthesis process. Extensive experiments indicate that AnomalyControl can achieve state-of-the-art results in anomaly synthesis compared with existing methods while exhibiting superior performance for downstream tasks.
Unleashing the Power of CNN and Transformer for Balanced RGB-Event Video Recognition
Pattern recognition based on RGB-Event data is a newly arising research topic and previous works usually learn their features using CNN or Transformer. As we know, CNN captures the local features well and the cascaded self-attention mechanisms are good at extracting the long-range global relations. It is intuitive to combine them for high-performance RGB-Event based video recognition, however, existing works fail to achieve a good balance between the accuracy and model parameters, as shown in Fig.~\ref{firstimage}. In this work, we propose a novel RGB-Event based recognition framework termed TSCFormer, which is a relatively lightweight CNN-Transformer model. Specifically, we mainly adopt the CNN as the backbone network to first encode both RGB and Event data. Meanwhile, we initialize global tokens as the input and fuse them with RGB and Event features using the BridgeFormer module. It captures the global long-range relations well between both modalities and maintains the simplicity of the whole model architecture at the same time. The enhanced features will be projected and fused into the RGB and Event CNN blocks, respectively, in an interactive manner using F2E and F2V modules. Similar operations are conducted for other CNN blocks to achieve adaptive fusion and local-global feature enhancement under different resolutions. Finally, we concatenate these three features and feed them into the classification head for pattern recognition. Extensive experiments on two large-scale RGB-Event benchmark datasets (PokerEvent and HARDVS) fully validated the effectiveness of our proposed TSCFormer. The source code and pre-trained models will be released at https://github.com/Event-AHU/TSCFormer.
comment: Accepted by Machine Intelligence Research, DOI: 10.1007/s11633-025-1555-3
Transformation trees -- documentation of multimodal image registration
Multimodal image registration plays a key role in creating digital patient models by combining data from different imaging techniques into a single coordinate system. This process often involves multiple sequential and interconnected transformations, which must be well-documented to ensure transparency and reproducibility. In this paper, we propose the use of transformation trees as a method for structured recording and management of these transformations. This approach has been implemented in the dpVision software and uses a dedicated .dpw file format to store hierarchical relationships between images, transformations, and motion data. Transformation trees allow precise tracking of all image processing steps, reduce the need to store multiple copies of the same data, and enable the indirect registration of images that do not share common reference points. This improves the reproducibility of the analyses and facilitates later processing and integration of images from different sources. The practical application of this method is demonstrated with examples from orthodontics, including the integration of 3D face scans, intraoral scans, and CBCT images, as well as the documentation of mandibular motion. Beyond orthodontics, this method can be applied in other fields that require systematic management of image registration processes, such as maxillofacial surgery, oncology, and biomechanical analysis. Maintaining long-term data consistency is essential for both scientific research and clinical practice. It enables easier comparison of results in longitudinal studies, improves retrospective analysis, and supports the development of artificial intelligence algorithms by providing standardized and well-documented datasets. The proposed approach enhances data organization, allows for efficient analysis, and facilitates the reuse of information in future studies and diagnostic procedures.
comment: 28 pages, 15 figures
CholecInstanceSeg: A Tool Instance Segmentation Dataset for Laparoscopic Surgery
In laparoscopic and robotic surgery, precise tool instance segmentation is an essential technology for advanced computer-assisted interventions. Although publicly available procedures of routine surgeries exist, they often lack comprehensive annotations for tool instance segmentation. Additionally, the majority of standard datasets for tool segmentation are derived from porcine(pig) surgeries. To address this gap, we introduce CholecInstanceSeg, the largest open-access tool instance segmentation dataset to date. Derived from the existing CholecT50 and Cholec80 datasets, CholecInstanceSeg provides novel annotations for laparoscopic cholecystectomy procedures in patients. Our dataset comprises 41.9k annotated frames extracted from 85 clinical procedures and 64.4k tool instances, each labelled with semantic masks and instance IDs. To ensure the reliability of our annotations, we perform extensive quality control, conduct label agreement statistics, and benchmark the segmentation results with various instance segmentation baselines. CholecInstanceSeg aims to advance the field by offering a comprehensive and high-quality open-access dataset for the development and evaluation of tool instance segmentation algorithms.
DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
GaGA: Towards Interactive Global Geolocation Assistant
Global geolocation, which seeks to predict the geographical location of images captured anywhere in the world, is one of the most challenging tasks in the field of computer vision. In this paper, we introduce an innovative interactive global geolocation assistant named GaGA, built upon the flourishing large vision-language models (LVLMs). GaGA uncovers geographical clues within images and combines them with the extensive world knowledge embedded in LVLMs to determine the geolocations while also providing justifications and explanations for the prediction results. We further designed a novel interactive geolocation method that surpasses traditional static inference approaches. It allows users to intervene, correct, or provide clues for the predictions, making the model more flexible and practical. The development of GaGA relies on the newly proposed Multi-modal Global Geolocation (MG-Geo) dataset, a comprehensive collection of 5 million high-quality image-text pairs. GaGA achieves state-of-the-art performance on the GWS15k dataset, improving accuracy by 4.57% at the country level and 2.92% at the city level, setting a new benchmark. These advancements represent a significant leap forward in developing highly accurate, interactive geolocation systems with global applicability.
LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models
Enhancing a low-light noisy RAW image into a well-exposed and clean sRGB image is a significant challenge for modern digital cameras. Prior approaches have difficulties in recovering fine-grained details and true colors of the scene under extremely low-light environments due to near-to-zero SNR. Meanwhile, diffusion models have shown significant progress towards general domain image generation. In this paper, we propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images. Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules to inject the RAW information into the diffusion denoising process via modulating the intermediate features of UNet. We further observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance. Through extensive experiments on representative datasets, we demonstrate our simple design not only achieves state-of-the-art performance in quantitative evaluations but also shows significant superiority in visual comparisons over strong baselines, which highlight the effectiveness of powerful generative priors for neural ISP under extremely low-light environments. The project page is available at https://csqiangwen.github.io/projects/ldm-isp/
HD-OOD3D: Supervised and Unsupervised Out-of-Distribution object detection in LiDAR data
Autonomous systems rely on accurate 3D object detection from LiDAR data, yet most detectors are limited to a predefined set of known classes, making them vulnerable to unexpected out-of-distribution (OOD) objects. In this work, we present HD-OOD3D, a novel two-stage method for detecting unknown objects. We demonstrate the superiority of two-stage approaches over single-stage methods, achieving more robust detection of unknown objects while addressing key challenges in the evaluation protocol. Furthermore, we conduct an in-depth analysis of the standard evaluation protocol for OOD detection, revealing the critical impact of hyperparameter choices. To address the challenge of scaling the learning of unknown objects, we explore unsupervised training strategies to generate pseudo-labels for unknowns. Among the different approaches evaluated, our experiments show that top-5 auto-labelling offers more promising performance compared to simple resizing techniques.
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
This paper focuses on improving the mathematical interpretability of convolutional neural networks (CNNs) in the context of image classification. Specifically, we tackle the instability issue arising in their first layer, which tends to learn parameters that closely resemble oriented band-pass filters when trained on datasets like ImageNet. Subsampled convolutions with such Gabor-like filters are prone to aliasing, causing sensitivity to small input shifts. In this context, we establish conditions under which the max pooling operator approximates a complex modulus, which is nearly shift invariant. We then derive a measure of shift invariance for subsampled convolutions followed by max pooling. In particular, we highlight the crucial role played by the filter's frequency and orientation in achieving stability. We experimentally validate our theory by considering a deterministic feature extractor based on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like decomposition.
Masked Capsule Autoencoders
We propose Masked Capsule Autoencoders (MCAE), the first Capsule Network that utilises pretraining in a modern self-supervised paradigm, specifically the masked image modelling framework. Capsule Networks have emerged as a powerful alternative to Convolutional Neural Networks (CNNs). They have shown favourable properties when compared to Vision Transformers (ViT), but have struggled to effectively learn when presented with more complex data. This has led to Capsule Network models that do not scale to modern tasks. Our proposed MCAE model alleviates this issue by reformulating the Capsule Network to use masked image modelling as a pretraining stage before finetuning in a supervised manner. Across several experiments and ablations studies we demonstrate that similarly to CNNs and ViTs, Capsule Networks can also benefit from self-supervised pretraining, paving the way for further advancements in this neural network domain. For instance, by pretraining on the Imagenette dataset-consisting of 10 classes of Imagenet-sized images-we achieve state-of-the-art results for Capsule Networks, demonstrating a 9% improvement compared to our baseline model. Thus, we propose that Capsule Networks benefit from and should be trained within a masked image modelling framework, using a novel capsule decoder, to enhance a Capsule Network's performance on realistically sized images.
comment: 15 pages, 7 figures, 5 tables - accepted at TMLR
Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models CVPR 2025
Although large multimodal models (LMMs) have demonstrated remarkable capabilities in visual scene interpretation and reasoning, their capacity for complex and precise 3-dimensional spatial reasoning remains uncertain. Existing benchmarks focus predominantly on 2D spatial understanding and lack a framework to comprehensively evaluate 6D spatial reasoning across varying complexities. To address this limitation, we present Spatial457, a scalable and unbiased synthetic dataset designed with 4 key capability for spatial reasoning: multi-object recognition, 2D location, 3D location, and 3D orientation. We develop a cascading evaluation structure, constructing 7 question types across 5 difficulty levels that range from basic single object recognition to our new proposed complex 6D spatial reasoning tasks. We evaluated various large multimodal models (LMMs) on PulseCheck457, observing a general decline in performance as task complexity increases, particularly in 3D reasoning and 6D spatial tasks. To quantify these challenges, we introduce the Relative Performance Dropping Rate (RPDR), highlighting key weaknesses in 3D reasoning capabilities. Leveraging the unbiased attribute design of our dataset, we also uncover prediction biases across different attributes, with similar patterns observed in real-world image settings. The code and data are released in https://github.com/XingruiWang/Spatial457.
comment: Published in CVPR 2025 as Highlight. Data and code are released at https://github.com/XingruiWang/Spatial457
PathVLM-R1: A Reinforcement Learning-Driven Reasoning Model for Pathology Visual-Language Tasks
The diagnosis of pathological images is often limited by expert availability and regional disparities, highlighting the importance of automated diagnosis using Vision-Language Models (VLMs). Traditional multimodal models typically emphasize outcomes over the reasoning process, compromising the reliability of clinical decisions. To address the weak reasoning abilities and lack of supervised processes in pathological VLMs, we have innovatively proposed PathVLM-R1, a visual language model designed specifically for pathological images. We have based our model on Qwen2.5-VL-7B-Instruct and enhanced its performance for pathological tasks through meticulously designed post-training strategies. Firstly, we conduct supervised fine-tuning guided by pathological data to imbue the model with foundational pathological knowledge, forming a new pathological base model. Subsequently, we introduce Group Relative Policy Optimization (GRPO) and propose a dual reward-driven reinforcement learning optimization, ensuring strict constraint on logical supervision of the reasoning process and accuracy of results via cross-modal process reward and outcome accuracy reward. In the pathological image question-answering tasks, the testing results of PathVLM-R1 demonstrate a 14% improvement in accuracy compared to baseline methods, and it demonstrated superior performance compared to the Qwen2.5-VL-32B version despite having a significantly smaller parameter size. Furthermore, in out-domain data evaluation involving four medical imaging modalities: Computed Tomography (CT), dermoscopy, fundus photography, and Optical Coherence Tomography (OCT) images: PathVLM-R1's transfer performance improved by an average of 17.3% compared to traditional SFT methods. These results clearly indicate that PathVLM-R1 not only enhances accuracy but also possesses broad applicability and expansion potential.
Mixture of Scale Experts for Alignment-free RGBT Video Object Detection and A Unified Benchmark
Existing RGB-Thermal Video Object Detection (RGBT VOD) methods predominantly rely on the manual alignment of image pairs, that is both labor-intensive and time-consuming. This dependency significantly restricts the scalability and practical applicability of these methods in real-world scenarios. To address this critical limitation, we propose a novel framework termed the Mixture of Scale Experts Network (MSENet). MSENet integrates multiple experts trained at different perceptual scales, enabling the capture of scale discrepancies between RGB and thermal image pairs without the need for explicit alignment. Specifically, to address the issue of unaligned scales, MSENet introduces a set of experts designed to perceive the correlation between RGBT image pairs across various scales. These experts are capable of identifying and quantifying the scale differences inherent in the image pairs. Subsequently, a dynamic routing mechanism is incorporated to assign adaptive weights to each expert, allowing the network to dynamically select the most appropriate experts based on the specific characteristics of the input data. Furthermore, to address the issue of weakly unaligned positions, we integrate deformable convolution into the network. Deformable convolution is employed to learn position displacements between the RGB and thermal modalities, thereby mitigating the impact of spatial misalignment. To provide a comprehensive evaluation platform for alignment-free RGBT VOD, we introduce a new benchmark dataset. This dataset includes eleven common object categories, with a total of 60,988 images and 271,835 object instances. The dataset encompasses a wide range of scenes from both daily life and natural environments, ensuring high content diversity and complexity.
GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation ICLR 2025
Cancer subtyping is one of the most challenging tasks in digital pathology, where Multiple Instance Learning (MIL) by processing gigapixel whole slide images (WSIs) has been in the spotlight of recent research. However, MIL approaches do not take advantage of inter- and intra-magnification information contained in WSIs. In this work, we present GRASP, a novel lightweight graph-structured multi-magnification framework for processing WSIs in digital pathology. Our approach is designed to dynamically emulate the pathologist's behavior in handling WSIs and benefits from the hierarchical structure of WSIs. GRASP, which introduces a convergence-based node aggregation mechanism replacing traditional pooling mechanisms, outperforms state-of-the-art methods by a high margin in terms of balanced accuracy, while being significantly smaller than the closest-performing state-of-the-art models in terms of the number of parameters. Our results show that GRASP is dynamic in finding and consulting with different magnifications for subtyping cancers, is reliable and stable across different hyperparameters, and can generalize when using features from different backbones. The model's behavior has been evaluated by two expert pathologists confirming the interpretability of the model's dynamic. We also provide a theoretical foundation, along with empirical evidence, for our work, explaining how GRASP interacts with different magnifications and nodes in the graph to make predictions. We believe that the strong characteristics yet simple structure of GRASP will encourage the development of interpretable, structure-based designs for WSI representation in digital pathology. Data and code can be found in https://github.com/AIMLab-UBC/GRASP
comment: Accepted in Learning Meaningful Representations of Life (LMRL) Workshop at ICLR 2025
Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
Differential Contrastive Training for Gaze Estimation
The complex application scenarios have raised critical requirements for precise and generalizable gaze estimation methods. Recently, the pre-trained CLIP has achieved remarkable performance on various vision tasks, but its potentials have not been fully exploited in gaze estimation. In this paper, we propose a novel Differential Contrastive Training strategy, which boosts gaze estimation performance with the help of the CLIP. Accordingly, a Differential Contrastive Gaze Estimation network (DCGaze) composed of a Visual Appearance-aware branch and a Semantic Differential-aware branch is introduced. The Visual Appearance-aware branch is essentially a primary gaze estimation network and it incorporates an Adaptive Feature-refinement Unit (AFU) and a Double-head Gaze Regressor (DGR), which both help the primary network to extract informative and gaze-related appearance features. Moreover, the Semantic Difference-aware branch is designed on the basis of the CLIP's text encoder to reveal the semantic difference of gazes. This branch could further empower the Visual Appearance-aware branch with the capability of characterizing the gaze-related semantic information. Extensive experimental results on four challenging datasets over within and cross-domain tasks demonstrate the effectiveness of our DCGaze. Code will be available upon acceptance.
LaMD: Latent Motion Diffusion for Image-Conditional Video Generation
The video generation field has witnessed rapid improvements with the introduction of recent diffusion models. While these models have successfully enhanced appearance quality, they still face challenges in generating coherent and natural movements while efficiently sampling videos. In this paper, we propose to condense video generation into a problem of motion generation, to improve the expressiveness of motion and make video generation more manageable. This can be achieved by breaking down the video generation process into latent motion generation and video reconstruction. Specifically, we present a latent motion diffusion (LaMD) framework, which consists of a motion-decomposed video autoencoder and a diffusion-based motion generator, to implement this idea. Through careful design, the motion-decomposed video autoencoder can compress patterns in movement into a concise latent motion representation. Consequently, the diffusion-based motion generator is able to efficiently generate realistic motion on a continuous latent space under multi-modal conditions, at a cost that is similar to that of image diffusion models. Results show that LaMD generates high-quality videos on various benchmark datasets, including BAIR, Landscape, NATOPS, MUG and CATER-GEN, that encompass a variety of stochastic dynamics and highly controllable movements on multiple image-conditional video generation tasks, while significantly decreases sampling time.
comment: accepted by IJCV
Vivid4D: Improving 4D Reconstruction from Monocular Video by Video Inpainting
Reconstructing 4D dynamic scenes from casually captured monocular videos is valuable but highly challenging, as each timestamp is observed from a single viewpoint. We introduce Vivid4D, a novel approach that enhances 4D monocular video synthesis by augmenting observation views - synthesizing multi-view videos from a monocular input. Unlike existing methods that either solely leverage geometric priors for supervision or use generative priors while overlooking geometry, we integrate both. This reformulates view augmentation as a video inpainting task, where observed views are warped into new viewpoints based on monocular depth priors. To achieve this, we train a video inpainting model on unposed web videos with synthetically generated masks that mimic warping occlusions, ensuring spatially and temporally consistent completion of missing regions. To further mitigate inaccuracies in monocular depth priors, we introduce an iterative view augmentation strategy and a robust reconstruction loss. Experiments demonstrate that our method effectively improves monocular 4D scene reconstruction and completion. See our project page: https://xdimlab.github.io/Vivid4D/.
A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
SurFhead: Affine Rig Blending for Geometrically Accurate 2D Gaussian Surfel Head Avatars ICLR 2025
Recent advancements in head avatar rendering using Gaussian primitives have achieved significantly high-fidelity results. Although precise head geometry is crucial for applications like mesh reconstruction and relighting, current methods struggle to capture intricate geometric details and render unseen poses due to their reliance on similarity transformations, which cannot handle stretch and shear transforms essential for detailed deformations of geometry. To address this, we propose SurFhead, a novel method that reconstructs riggable head geometry from RGB videos using 2D Gaussian surfels, which offer well-defined geometric properties, such as precise depth from fixed ray intersections and normals derived from their surface orientation, making them advantageous over 3D counterparts. SurFhead ensures high-fidelity rendering of both normals and images, even in extreme poses, by leveraging classical mesh-based deformation transfer and affine transformation interpolation. SurFhead introduces precise geometric deformation and blends surfels through polar decomposition of transformations, including those affecting normals. Our key contribution lies in bridging classical graphics techniques, such as mesh-based deformation, with modern Gaussian primitives, achieving state-of-the-art geometry reconstruction and rendering quality. Unlike previous avatar rendering approaches, SurFhead enables efficient reconstruction driven by Gaussian primitives while preserving high-fidelity geometry.
comment: ICLR 2025, Project page with videos: https://summertight.github.io/SurFhead/
Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
PTDiffusion: Free Lunch for Generating Optical Illusion Hidden Pictures with Phase-Transferred Diffusion Model CVPR 2025
Optical illusion hidden picture is an interesting visual perceptual phenomenon where an image is cleverly integrated into another picture in a way that is not immediately obvious to the viewer. Established on the off-the-shelf text-to-image (T2I) diffusion model, we propose a novel training-free text-guided image-to-image (I2I) translation framework dubbed as \textbf{P}hase-\textbf{T}ransferred \textbf{Diffusion} Model (PTDiffusion) for hidden art syntheses. PTDiffusion harmoniously embeds an input reference image into arbitrary scenes described by the text prompts, producing illusion images exhibiting hidden visual cues of the reference image. At the heart of our method is a plug-and-play phase transfer mechanism that dynamically and progressively transplants diffusion features' phase spectrum from the denoising process to reconstruct the reference image into the one to sample the generated illusion image, realizing deep fusion of the reference structural information and the textual semantic information in the diffusion model latent space. Furthermore, we propose asynchronous phase transfer to enable flexible control to the degree of hidden content discernability. Our method bypasses any model training and fine-tuning process, all while substantially outperforming related text-guided I2I methods in image generation quality, text fidelity, visual discernibility, and contextual naturalness for illusion picture synthesis, as demonstrated by extensive qualitative and quantitative experiments. Our project is publically available at \href{https://xianggao1102.github.io/PTDiffusion_webpage/}{this web page}.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, comprehensive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which consists of 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. This all-inclusive dataset covers a wide range of human-induced and natural changes, including buildings, roads, hardened surfaces, woodlands, grasslands, croplands, water bodies, and photovoltaic panels, among others. Additionally, we propose a novel multi-teacher knowledge distillation (MTKD) framework that leverages the Origin-Partition (O-P) strategy to enhance CD performance. In the O-P strategy, we partition the training data based on the Change Area Ratio (CAR) to train separate models for small, medium, and large CAR values, alleviating the learning burden on each model and improving their performance within their respective partitions. Building upon this, our MTKD framework distills knowledge from multiple teacher models trained on different CAR partitions into a single student model,enabling the student model to achieve superior detection results across diverse CAR scenarios without incurring additional computational or time overhead during the inference phase. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The JL1-CD dataset and code are available at https://github.com/circleLZY/MTKD-CD.
comment: 16 pages, 9 figures
GTPC-SSCD: Gate-guided Two-level Perturbation Consistency-based Semi-Supervised Change Detection ICME 2025
Semi-supervised change detection (SSCD) utilizes partially labeled data and abundant unlabeled data to detect differences between multi-temporal remote sensing images. The mainstream SSCD methods based on consistency regularization have limitations. They perform perturbations mainly at a single level, restricting the utilization of unlabeled data and failing to fully tap its potential. In this paper, we introduce a novel Gate-guided Two-level Perturbation Consistency regularization-based SSCD method (GTPC-SSCD). It simultaneously maintains strong-to-weak consistency at the image level and perturbation consistency at the feature level, enhancing the utilization efficiency of unlabeled data. Moreover, we develop a hardness analysis-based gating mechanism to assess the training complexity of different samples and determine the necessity of performing feature perturbations for each sample. Through this differential treatment, the network can explore the potential of unlabeled data more efficiently. Extensive experiments conducted on six benchmark CD datasets demonstrate the superiority of our GTPC-SSCD over seven state-of-the-art methods.
comment: 6 pages, 4 figures, accepted by ICME 2025
Beneath the Surface: The Role of Underwater Image Enhancement in Object Detection
Underwater imagery often suffers from severe degradation resulting in low visual quality and reduced object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their effects on underwater object detection, and explore their potential to improve detection performance. To this end, we apply nine recent underwater image enhancement models, covering physical, non-physical and learning-based categories, to two recent underwater image datasets. Following this, we conduct joint qualitative and quantitative analyses on the original and enhanced images, revealing the discrepancy between the two analyses, and analyzing changes in the quality distribution of the images after enhancement. We then train three recent object detection models on the original datasets, selecting the best-performing detector for further analysis. This detector is subsequently re-trained on the enhanced datasets to evaluate changes in detection performance, highlighting the adverse effect of enhancement on detection performance at the dataset level. Next, we perform a correlation study to examine the relationship between various enhancement metrics and the mean Average Precision (mAP). Finally, we conduct an image-level analysis that reveals images of improved detection performance after enhancement. The findings of this study demonstrate the potential of image enhancement to improve detection performance and provide valuable insights for researchers to further explore the effects of enhancement on detection at the individual image level, rather than at the dataset level. This could enable the selective application of enhancement for improved detection. The data generated, code developed, and supplementary materials are publicly available at: https://github.com/RSSL-MTU/Enhancement-Detection-Analysis.
Image and Video Processing
Fighting Fires from Space: Leveraging Vision Transformers for Enhanced Wildfire Detection and Characterization
Wildfires are increasing in intensity, frequency, and duration across large parts of the world as a result of anthropogenic climate change. Modern hazard detection and response systems that deal with wildfires are under-equipped for sustained wildfire seasons. Recent work has proved automated wildfire detection using Convolutional Neural Networks (CNNs) trained on satellite imagery are capable of high-accuracy results. However, CNNs are computationally expensive to train and only incorporate local image context. Recently, Vision Transformers (ViTs) have gained popularity for their efficient training and their ability to include both local and global contextual information. In this work, we show that ViT can outperform well-trained and specialized CNNs to detect wildfires on a previously published dataset of LandSat-8 imagery. One of our ViTs outperforms the baseline CNN comparison by 0.92%. However, we find our own implementation of CNN-based UNet to perform best in every category, showing their sustained utility in image tasks. Overall, ViTs are comparably capable in detecting wildfires as CNNs, though well-tuned CNNs are still the best technique for detecting wildfire with our UNet providing an IoU of 93.58%, better than the baseline UNet by some 4.58%.
LimitNet: Progressive, Content-Aware Image Offloading for Extremely Weak Devices & Networks
IoT devices have limited hardware capabilities and are often deployed in remote areas. Consequently, advanced vision models surpass such devices' processing and storage capabilities, requiring offloading of such tasks to the cloud. However, remote areas often rely on LPWANs technology with limited bandwidth, high packet loss rates, and extremely low duty cycles, which makes fast offloading for time-sensitive inference challenging. Today's approaches, which are deployable on weak devices, generate a non-progressive bit stream, and therefore, their decoding quality suffers strongly when data is only partially available on the cloud at a deadline due to limited bandwidth or packet losses. In this paper, we introduce LimitNet, a progressive, content-aware image compression model designed for extremely weak devices and networks. LimitNet's lightweight progressive encoder prioritizes critical data during transmission based on the content of the image, which gives the cloud the opportunity to run inference even with partial data availability. Experimental results demonstrate that LimitNet, on average, compared to SOTA, achieves 14.01 p.p. (percentage point) higher accuracy on ImageNet1000, 18.01 pp on CIFAR100, and 0.1 higher mAP@0.5 on COCO. Also, on average, LimitNet saves 61.24% bandwidth on ImageNet1000, 83.68% on CIFAR100, and 42.25% on the COCO dataset compared to SOTA, while it only has 4% more encoding time compared to JPEG (with a fixed quality) on STM32F7 (Cortex-M7).
comment: This is the author's accepted manuscript. The Version of Record is available at: https://doi.org/10.1145/3643832.3661856
The relativity of color perception
Physical colors, i.e. reflected or emitted lights entering the eyes from a visual environment, are converted into perceived colors sensed by humans by neurophysiological mechanisms. These processes involve both three types of photoreceptors, the LMS cones, and spectrally opponent and non-opponent interactions resulting from the activity rates of ganglion and lateral geniculate nucleus cells. Thus, color perception is a phenomenon inherently linked to an experimental environment (the visual scene) and an observing apparatus (the human visual system). This is clearly reminiscent of the conceptual foundation of both relativity and quantum mechanics, where the link is between a physical system and the measuring instruments. The relationship between color perception and relativity was explicitly examined for the first time by the physicist H. Yilmaz in 1962 from an experimental point of view. The main purpose of this contribution is to present a rigorous mathematical model that, by taking into account both trichromacy and color opponency, permits to explain on a purely theoretical basis the relativistic color perception phenomena argued by Yilmaz. Instead of relying directly on relativistic considerations, we base our theory on a quantum interpretation of color perception together with just one assumption, called trichromacy axiom, that summarizes well-established properties of trichromatic color vision within the framework of Jordan algebras. We show how this approach allows us to reconcile trichromacy with Hering's opponency and also to derive the relativistic properties of perceived colors without any additional mathematical or experimental assumption.
Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
SupResDiffGAN a new approach for the Super-Resolution task
In this work, we present SupResDiffGAN, a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks. By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models while maintaining competitive perceptual quality. To prevent discriminator overfitting, we propose adaptive noise corruption, ensuring a stable balance between the generator and the discriminator during training. Extensive experiments on benchmark datasets show that our approach outperforms traditional diffusion models such as SR3 and I$^2$SB in efficiency and image quality. This work bridges the performance gap between diffusion- and GAN-based methods, laying the foundation for real-time applications of diffusion models in high-resolution image generation.
comment: 25th International Conference on Computational Science
ViG3D-UNet: Volumetric Vascular Connectivity-Aware Segmentation via 3D Vision Graph Representation
Accurate vascular segmentation is essential for coronary visualization and the diagnosis of coronary heart disease. This task involves the extraction of sparse tree-like vascular branches from the volumetric space. However, existing methods have faced significant challenges due to discontinuous vascular segmentation and missing endpoints. To address this issue, a 3D vision graph neural network framework, named ViG3D-UNet, was introduced. This method integrates 3D graph representation and aggregation within a U-shaped architecture to facilitate continuous vascular segmentation. The ViG3D module captures volumetric vascular connectivity and topology, while the convolutional module extracts fine vascular details. These two branches are combined through channel attention to form the encoder feature. Subsequently, a paperclip-shaped offset decoder minimizes redundant computations in the sparse feature space and restores the feature map size to match the original input dimensions. To evaluate the effectiveness of the proposed approach for continuous vascular segmentation, evaluations were performed on two public datasets, ASOCA and ImageCAS. The segmentation results show that the ViG3D-UNet surpassed competing methods in maintaining vascular segmentation connectivity while achieving high segmentation accuracy. Our code will be available soon.
FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.
comment: 9 pages, 6 figures
MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
A Novel Hybrid Approach for Retinal Vessel Segmentation with Dynamic Long-Range Dependency and Multi-Scale Retinal Edge Fusion Enhancement
Accurate retinal vessel segmentation provides essential structural information for ophthalmic image analysis. However, existing methods struggle with challenges such as multi-scale vessel variability, complex curvatures, and ambiguous boundaries. While Convolutional Neural Networks (CNNs), Transformer-based models and Mamba-based architectures have advanced the field, they often suffer from vascular discontinuities or edge feature ambiguity. To address these limitations, we propose a novel hybrid framework that synergistically integrates CNNs and Mamba for high-precision retinal vessel segmentation. Our approach introduces three key innovations: 1) The proposed High-Resolution Edge Fuse Network is a high-resolution preserving hybrid segmentation framework that combines a multi-scale backbone with the Multi-scale Retina Edge Fusion (MREF) module to enhance edge features, ensuring accurate and robust vessel segmentation. 2) The Dynamic Snake Visual State Space block combines Dynamic Snake Convolution with Mamba to adaptively capture vessel curvature details and long-range dependencies. An improved eight-directional 2D Snake-Selective Scan mechanism and a dynamic weighting strategy enhance the perception of complex vascular topologies. 3) The MREF module enhances boundary precision through multi-scale edge feature aggregation, suppressing noise while emphasizing critical vessel structures across scales. Experiments on three public datasets demonstrate that our method achieves state-of-the-art performance, particularly in maintaining vascular continuity and effectively segmenting vessels in low-contrast regions. This work provides a robust method for clinical applications requiring accurate retinal vessel analysis. The code is available at https://github.com/frank-oy/HREFNet.
Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
comment: preprint
Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
Neural Ganglion Sensors: Learning Task-specific Event Cameras Inspired by the Neural Circuit of the Human Retina
Inspired by the data-efficient spiking mechanism of neurons in the human eye, event cameras were created to achieve high temporal resolution with minimal power and bandwidth requirements by emitting asynchronous, per-pixel intensity changes rather than conventional fixed-frame rate images. Unlike retinal ganglion cells (RGCs) in the human eye, however, which integrate signals from multiple photoreceptors within a receptive field to extract spatio-temporal features, conventional event cameras do not leverage local spatial context when deciding which events to fire. Moreover, the eye contains around 20 different kinds of RGCs operating in parallel, each attuned to different features or conditions. Inspired by this biological design, we introduce Neural Ganglion Sensors, an extension of traditional event cameras that learns task-specific spatio-temporal retinal kernels (i.e., RGC "events"). We evaluate our design on two challenging tasks: video interpolation and optical flow. Our results demonstrate that our biologically inspired sensing improves performance relative to conventional event cameras while reducing overall event bandwidth. These findings highlight the promise of RGC-inspired event sensors for edge devices and other low-power, real-time applications requiring efficient, high-resolution visual streams.
DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
Accelerated Optimization of Implicit Neural Representations for CT Reconstruction
Inspired by their success in solving challenging inverse problems in computer vision, implicit neural representations (INRs) have been recently proposed for reconstruction in low-dose/sparse-view X-ray computed tomography (CT). An INR represents a CT image as a small-scale neural network that takes spatial coordinates as inputs and outputs attenuation values. Fitting an INR to sinogram data is similar to classical model-based iterative reconstruction methods. However, training INRs with losses and gradient-based algorithms can be prohibitively slow, taking many thousands of iterations to converge. This paper investigates strategies to accelerate the optimization of INRs for CT reconstruction. In particular, we propose two approaches: (1) using a modified loss function with improved conditioning, and (2) an algorithm based on the alternating direction method of multipliers. We illustrate that both of these approaches significantly accelerate INR-based reconstruction of a synthetic breast CT phantom in a sparse-view setting.
comment: IEEE ISBI 2025
LoftUp: Learning a Coordinate-Based Feature Upsampler for Vision Foundation Models
Vision foundation models (VFMs) such as DINOv2 and CLIP have achieved impressive results on various downstream tasks, but their limited feature resolution hampers performance in applications requiring pixel-level understanding. Feature upsampling offers a promising direction to address this challenge. In this work, we identify two critical factors for enhancing feature upsampling: the upsampler architecture and the training objective. For the upsampler architecture, we introduce a coordinate-based cross-attention transformer that integrates the high-resolution images with coordinates and low-resolution VFM features to generate sharp, high-quality features. For the training objective, we propose constructing high-resolution pseudo-groundtruth features by leveraging class-agnostic masks and self-distillation. Our approach effectively captures fine-grained details and adapts flexibly to various input and feature resolutions. Through experiments, we demonstrate that our approach significantly outperforms existing feature upsampling techniques across various downstream tasks. Our code is released at https://github.com/andrehuang/loftup.
Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
The ability to embed watermarks in images is a fundamental problem of interest for computer vision, and is exacerbated by the rapid rise of generated imagery in recent times. Current state-of-the-art techniques suffer from computational and statistical challenges such as the slow execution speed for practical deployments. In addition, other works trade off fast watermarking speeds but suffer greatly in their robustness or perceptual quality. In this work, we propose WaterFlow (WF), a fast and extremely robust approach for high fidelity visual watermarking based on a learned latent-dependent watermark. Our approach utilizes a pretrained latent diffusion model to encode an arbitrary image into a latent space and produces a learned watermark that is then planted into the Fourier Domain of the latent. The transformation is specified via invertible flow layers that enhance the expressivity of the latent space of the pre-trained model to better preserve image quality while permitting robust and tractable detection. Most notably, WaterFlow demonstrates state-of-the-art performance on general robustness and is the first method capable of effectively defending against difficult combination attacks. We validate our findings on three widely used real and generated datasets: MS-COCO, DiffusionDB, and WikiArt.
CTorch: PyTorch-Compatible GPU-Accelerated Auto-Differentiable Projector Toolbox for Computed Tomography
This work introduces CTorch, a PyTorch-compatible, GPU-accelerated, and auto-differentiable projector toolbox designed to handle various CT geometries with configurable projector algorithms. CTorch provides flexible scanner geometry definition, supporting 2D fan-beam, 3D circular cone-beam, and 3D non-circular cone-beam geometries. Each geometry allows view-specific definitions to accommodate variations during scanning. Both flat- and curved-detector models may be specified to accommodate various clinical devices. CTorch implements four projector algorithms: voxel-driven, ray-driven, distance-driven (DD), and separable footprint (SF), allowing users to balance accuracy and computational efficiency based on their needs. All the projectors are primarily built using CUDA C for GPU acceleration, then compiled as Python-callable functions, and wrapped as PyTorch network module. This design allows direct use of PyTorch tensors, enabling seamless integration into PyTorch's auto-differentiation framework. These features make CTorch an flexible and efficient tool for CT imaging research, with potential applications in accurate CT simulations, efficient iterative reconstruction, and advanced deep-learning-based CT reconstruction.
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
Beneath the Surface: The Role of Underwater Image Enhancement in Object Detection
Underwater imagery often suffers from severe degradation resulting in low visual quality and reduced object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their effects on underwater object detection, and explore their potential to improve detection performance. To this end, we apply nine recent underwater image enhancement models, covering physical, non-physical and learning-based categories, to two recent underwater image datasets. Following this, we conduct joint qualitative and quantitative analyses on the original and enhanced images, revealing the discrepancy between the two analyses, and analyzing changes in the quality distribution of the images after enhancement. We then train three recent object detection models on the original datasets, selecting the best-performing detector for further analysis. This detector is subsequently re-trained on the enhanced datasets to evaluate changes in detection performance, highlighting the adverse effect of enhancement on detection performance at the dataset level. Next, we perform a correlation study to examine the relationship between various enhancement metrics and the mean Average Precision (mAP). Finally, we conduct an image-level analysis that reveals images of improved detection performance after enhancement. The findings of this study demonstrate the potential of image enhancement to improve detection performance and provide valuable insights for researchers to further explore the effects of enhancement on detection at the individual image level, rather than at the dataset level. This could enable the selective application of enhancement for improved detection. The data generated, code developed, and supplementary materials are publicly available at: https://github.com/RSSL-MTU/Enhancement-Detection-Analysis.
Accelerated Real-time Cine and Flow under In-magnet Staged Exercise
Background: Cardiovascular magnetic resonance imaging (CMR) is a well established imaging tool for diagnosing and managing cardiac conditions. The integration of exercise stress with CMR (ExCMR) can enhance its diagnostic capacity. Despite recent advances in CMR technology, quantitative ExCMR during exercise remains technically challenging due to motion artifacts and limited spatial and temporal resolution. Methods: This study investigated the feasibility of biventricular functional and hemodynamic assessment using real-time (RT) ExCMR during a staged exercise protocol in 24 healthy volunteers. We employed high acceleration rates and applied a coil reweighting technique to minimize motion blurring and artifacts. We further applied a beat-selection technique that identified beats from the endexpiratory phase to minimize the impact of respiration-induced through-plane motion on cardiac function quantification. Additionally, results from six patients were presented to demonstrate clinical feasibility. Results: Our findings indicated a consistent decrease in end-systolic volume and stable end-diastolic volume across exercise intensities, leading to increased stroke volume and ejection fraction. The selection of end-expiratory beats modestly enhanced the repeatability of cardiac function parameters, as shown by scan-rescan tests in nine volunteers. High scores from a blinded image quality assessment indicated that coil reweighting effectively minimized motion artifacts. Conclusions: This study demonstrated the feasibility of RT ExCMR with inmagnet exercise in healthy subjects and patients. Our results indicate that high acceleration rates, coil reweighting, and selection of respiratory phase-specific heartbeats enhance image quality and repeatability of quantitative RT ExCMR.
Multimedia
PoEmotion: Can AI Utilize Chinese Calligraphy to Express Emotion from Poems?
This paper presents PoEmotion, an approach to visualizing emotions in poetry with Chinese calligraphy strokes. Traditional textual emotion analysis often lacks emotional resonance due to its mechanical nature. PoEmotion combines natural language processing with deep learning generative algorithms to create Chinese calligraphy that effectively conveys the emotions in poetry. The created calligraphy represents four fundamental emotions: excitement, anger, sadness, and relaxation, making the visual representation of emotions intuitive and concise. Furthermore, the approach delves into the relationship be-tween time, emotion, and cultural communication. Its goal is to provide a more natural means of communicating emotions through non-verbal mediums to enhance human emotional expression.
MusFlow: Multimodal Music Generation via Conditional Flow Matching
Music generation aims to create music segments that align with human aesthetics based on diverse conditional information. Despite advancements in generating music from specific textual descriptions (e.g., style, genre, instruments), the practical application is still hindered by ordinary users' limited expertise or time to write accurate prompts. To bridge this application gap, this paper introduces MusFlow, a novel multimodal music generation model using Conditional Flow Matching. We employ multiple Multi-Layer Perceptrons (MLPs) to align multimodal conditional information into the audio's CLAP embedding space. Conditional flow matching is trained to reconstruct the compressed Mel-spectrogram in the pretrained VAE latent space guided by aligned feature embedding. MusFlow can generate music from images, story texts, and music captions. To collect data for model training, inspired by multi-agent collaboration, we construct an intelligent data annotation workflow centered around a fine-tuned Qwen2-VL model. Using this workflow, we build a new multimodal music dataset, MMusSet, with each sample containing a quadruple of image, story text, music caption, and music piece. We conduct four sets of experiments: image-to-music, story-to-music, caption-to-music, and multimodal music generation. Experimental results demonstrate that MusFlow can generate high-quality music pieces whether the input conditions are unimodal or multimodal. We hope this work can advance the application of music generation in multimedia field, making music creation more accessible. Our generated samples, code and dataset are available at musflow.github.io.
HMPE:HeatMap Embedding for Efficient Transformer-Based Small Object Detection
Current Transformer-based methods for small object detection continue emerging, yet they have still exhibited significant shortcomings. This paper introduces HeatMap Position Embedding (HMPE), a novel Transformer Optimization technique that enhances object detection performance by dynamically integrating positional encoding with semantic detection information through heatmap-guided adaptive learning.We also innovatively visualize the HMPE method, offering clear visualization of embedded information for parameter fine-tuning.We then create Multi-Scale ObjectBox-Heatmap Fusion Encoder (MOHFE) and HeatMap Induced High-Quality Queries for Decoder (HIDQ) modules. These are designed for the encoder and decoder, respectively, to generate high-quality queries and reduce background noise queries.Using both heatmap embedding and Linear-Snake Conv(LSConv) feature engineering, we enhance the embedding of massively diverse small object categories and reduced the decoder multihead layers, thereby accelerating both inference and training.In the generalization experiments, our approach outperforme the baseline mAP by 1.9% on the small object dataset (NWPU VHR-10) and by 1.2% on the general dataset (PASCAL VOC). By employing HMPE-enhanced embedding, we are able to reduce the number of decoder layers from eight to a minimum of three, significantly decreasing both inference and training costs.
Fashion-RAG: Multimodal Fashion Image Editing via Retrieval-Augmented Generation IJCNN 2025
In recent years, the fashion industry has increasingly adopted AI technologies to enhance customer experience, driven by the proliferation of e-commerce platforms and virtual applications. Among the various tasks, virtual try-on and multimodal fashion image editing -- which utilizes diverse input modalities such as text, garment sketches, and body poses -- have become a key area of research. Diffusion models have emerged as a leading approach for such generative tasks, offering superior image quality and diversity. However, most existing virtual try-on methods rely on having a specific garment input, which is often impractical in real-world scenarios where users may only provide textual specifications. To address this limitation, in this work we introduce Fashion Retrieval-Augmented Generation (Fashion-RAG), a novel method that enables the customization of fashion items based on user preferences provided in textual form. Our approach retrieves multiple garments that match the input specifications and generates a personalized image by incorporating attributes from the retrieved items. To achieve this, we employ textual inversion techniques, where retrieved garment images are projected into the textual embedding space of the Stable Diffusion text encoder, allowing seamless integration of retrieved elements into the generative process. Experimental results on the Dress Code dataset demonstrate that Fashion-RAG outperforms existing methods both qualitatively and quantitatively, effectively capturing fine-grained visual details from retrieved garments. To the best of our knowledge, this is the first work to introduce a retrieval-augmented generation approach specifically tailored for multimodal fashion image editing.
comment: IJCNN 2025
PathVLM-R1: A Reinforcement Learning-Driven Reasoning Model for Pathology Visual-Language Tasks
The diagnosis of pathological images is often limited by expert availability and regional disparities, highlighting the importance of automated diagnosis using Vision-Language Models (VLMs). Traditional multimodal models typically emphasize outcomes over the reasoning process, compromising the reliability of clinical decisions. To address the weak reasoning abilities and lack of supervised processes in pathological VLMs, we have innovatively proposed PathVLM-R1, a visual language model designed specifically for pathological images. We have based our model on Qwen2.5-VL-7B-Instruct and enhanced its performance for pathological tasks through meticulously designed post-training strategies. Firstly, we conduct supervised fine-tuning guided by pathological data to imbue the model with foundational pathological knowledge, forming a new pathological base model. Subsequently, we introduce Group Relative Policy Optimization (GRPO) and propose a dual reward-driven reinforcement learning optimization, ensuring strict constraint on logical supervision of the reasoning process and accuracy of results via cross-modal process reward and outcome accuracy reward. In the pathological image question-answering tasks, the testing results of PathVLM-R1 demonstrate a 14% improvement in accuracy compared to baseline methods, and it demonstrated superior performance compared to the Qwen2.5-VL-32B version despite having a significantly smaller parameter size. Furthermore, in out-domain data evaluation involving four medical imaging modalities: Computed Tomography (CT), dermoscopy, fundus photography, and Optical Coherence Tomography (OCT) images: PathVLM-R1's transfer performance improved by an average of 17.3% compared to traditional SFT methods. These results clearly indicate that PathVLM-R1 not only enhances accuracy but also possesses broad applicability and expansion potential.
Computation and Language
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to \textbf{M}aximize the \textbf{I}nformation \textbf{G}ain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: $\href{https://github.com/JHU-CLSP/science-hierarchography}{https://github.com/JHU-CLSP/science-hierarchography}$
Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations in knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.
BadApex: Backdoor Attack Based on Adaptive Optimization Mechanism of Black-box Large Language Models
Previous insertion-based and paraphrase-based backdoors have achieved great success in attack efficacy, but they ignore the text quality and semantic consistency between poisoned and clean texts. Although recent studies introduce LLMs to generate poisoned texts and improve the stealthiness, semantic consistency, and text quality, their hand-crafted prompts rely on expert experiences, facing significant challenges in prompt adaptability and attack performance after defenses. In this paper, we propose a novel backdoor attack based on adaptive optimization mechanism of black-box large language models (BadApex), which leverages a black-box LLM to generate poisoned text through a refined prompt. Specifically, an Adaptive Optimization Mechanism is designed to refine an initial prompt iteratively using the generation and modification agents. The generation agent generates the poisoned text based on the initial prompt. Then the modification agent evaluates the quality of the poisoned text and refines a new prompt. After several iterations of the above process, the refined prompt is used to generate poisoned texts through LLMs. We conduct extensive experiments on three dataset with six backdoor attacks and two defenses. Extensive experimental results demonstrate that BadApex significantly outperforms state-of-the-art attacks. It improves prompt adaptability, semantic consistency, and text quality. Furthermore, when two defense methods are applied, the average attack success rate (ASR) still up to 96.75%.
comment: 16 pages, 6 figures
Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
Learning to Attribute with Attention
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .
Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
Word Embedding Techniques for Classification of Star Ratings
Telecom services are at the core of today's societies' everyday needs. The availability of numerous online forums and discussion platforms enables telecom providers to improve their services by exploring the views of their customers to learn about common issues that the customers face. Natural Language Processing (NLP) tools can be used to process the free text collected. One way of working with such data is to represent text as numerical vectors using one of many word embedding models based on neural networks. This research uses a novel dataset of telecom customers' reviews to perform an extensive study showing how different word embedding algorithms can affect the text classification process. Several state-of-the-art word embedding techniques are considered, including BERT, Word2Vec and Doc2Vec, coupled with several classification algorithms. The important issue of feature engineering and dimensionality reduction is addressed and several PCA-based approaches are explored. Moreover, the energy consumption used by the different word embeddings is investigated. The findings show that some word embedding models can lead to consistently better text classifiers in terms of precision, recall and F1-Score. In particular, for the more challenging classification tasks, BERT combined with PCA stood out with the highest performance metrics. Moreover, our proposed PCA approach of combining word vectors using the first principal component shows clear advantages in performance over the traditional approach of taking the average.
comment: 40 pages
Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning.
comment: 8 pages, 4 figures
Simulating Before Planning: Constructing Intrinsic User World Model for User-Tailored Dialogue Policy Planning SIGIR 2025
Recent advancements in dialogue policy planning have emphasized optimizing system agent policies to achieve predefined goals, focusing on strategy design, trajectory acquisition, and efficient training paradigms. However, these approaches often overlook the critical role of user characteristics, which are essential in real-world scenarios like conversational search and recommendation, where interactions must adapt to individual user traits such as personality, preferences, and goals. To address this gap, we first conduct a comprehensive study utilizing task-specific user personas to systematically assess dialogue policy planning under diverse user behaviors. By leveraging realistic user profiles for different tasks, our study reveals significant limitations in existing approaches, highlighting the need for user-tailored dialogue policy planning. Building on this foundation, we present the User-Tailored Dialogue Policy Planning (UDP) framework, which incorporates an Intrinsic User World Model to model user traits and feedback. UDP operates in three stages: (1) User Persona Portraying, using a diffusion model to dynamically infer user profiles; (2) User Feedback Anticipating, leveraging a Brownian Bridge-inspired anticipator to predict user reactions; and (3) User-Tailored Policy Planning, integrating these insights to optimize response strategies. To ensure robust performance, we further propose an active learning approach that prioritizes challenging user personas during training. Comprehensive experiments on benchmarks, including collaborative and non-collaborative settings, demonstrate the effectiveness of UDP in learning user-specific dialogue strategies. Results validate the protocol's utility and highlight UDP's robustness, adaptability, and potential to advance user-centric dialogue systems.
comment: 11 pages, 6 figures, SIGIR 2025
Remedy: Learning Machine Translation Evaluation from Human Preferences with Reward Modeling
A key challenge in MT evaluation is the inherent noise and inconsistency of human ratings. Regression-based neural metrics struggle with this noise, while prompting LLMs shows promise at system-level evaluation but performs poorly at segment level. In this work, we propose ReMedy, a novel MT metric framework that reformulates translation evaluation as a reward modeling task. Instead of regressing on imperfect human ratings directly, ReMedy learns relative translation quality using pairwise preference data, resulting in a more reliable evaluation. In extensive experiments across WMT22-24 shared tasks (39 language pairs, 111 MT systems), ReMedy achieves state-of-the-art performance at both segment- and system-level evaluation. Specifically, ReMedy-9B surpasses larger WMT winners and massive closed LLMs such as MetricX-13B, XCOMET-Ensemble, GEMBA-GPT-4, PaLM-540B, and finetuned PaLM2. Further analyses demonstrate that ReMedy delivers superior capability in detecting translation errors and evaluating low-quality translations.
Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing
Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{}$ and $\texttt{)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
Long-context Non-factoid Question Answering in Indic Languages
Question Answering (QA) tasks, which involve extracting answers from a given context, are relatively straightforward for modern Large Language Models (LLMs) when the context is short. However, long contexts pose challenges due to the quadratic complexity of the self-attention mechanism. This challenge is compounded in Indic languages, which are often low-resource. This study explores context-shortening techniques, including Open Information Extraction (OIE), coreference resolution, Answer Paragraph Selection (APS), and their combinations, to improve QA performance. Compared to the baseline of unshortened (long) contexts, our experiments on four Indic languages (Hindi, Tamil, Telugu, and Urdu) demonstrate that context-shortening techniques yield an average improvement of 4\% in semantic scores and 47\% in token-level scores when evaluated on three popular LLMs without fine-tuning. Furthermore, with fine-tuning, we achieve an average increase of 2\% in both semantic and token-level scores. Additionally, context-shortening reduces computational overhead. Explainability techniques like LIME and SHAP reveal that when the APS model confidently identifies the paragraph containing the answer, nearly all tokens within the selected text receive high relevance scores. However, the study also highlights the limitations of LLM-based QA systems in addressing non-factoid questions, particularly those requiring reasoning or debate. Moreover, verbalizing OIE-generated triples does not enhance system performance. These findings emphasize the potential of context-shortening techniques to improve the efficiency and effectiveness of LLM-based QA systems, especially for low-resource languages. The source code and resources are available at https://github.com/ritwikmishra/IndicGenQA.
Continual Pre-Training is (not) What You Need in Domain Adaption
The recent advances in Legal Large Language Models (LLMs) have transformed the landscape of legal research and practice by automating tasks, enhancing research precision, and supporting complex decision-making processes. However, effectively adapting LLMs to the legal domain remains challenging due to the complexity of legal reasoning, the need for precise interpretation of specialized language, and the potential for hallucinations. This paper examines the efficacy of Domain-Adaptive Continual Pre-Training (DACP) in improving the legal reasoning capabilities of LLMs. Through a series of experiments on legal reasoning tasks within the Taiwanese legal framework, we demonstrate that while DACP enhances domain-specific knowledge, it does not uniformly improve performance across all legal tasks. We discuss the trade-offs involved in DACP, particularly its impact on model generalization and performance in prompt-based tasks, and propose directions for future research to optimize domain adaptation strategies in legal AI.
comment: 11 pages, 2 figures
Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification
With the widespread adoption of Large Language Models (LLMs), jailbreak attacks have become an increasingly pressing safety concern. While safety-aligned LLMs can effectively defend against normal harmful queries, they remain vulnerable to such attacks. Existing defense methods primarily rely on fine-tuning or input modification, which often suffer from limited generalization and reduced utility. To address this, we introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs via targeted attention modification. Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks. During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens. Our experimental results demonstrate that DETAM outperforms various baselines in jailbreak defense and exhibits robust generalization across different attacks and models, maintaining its effectiveness even on in-the-wild jailbreak data. Furthermore, in evaluating the model's utility, we incorporated over-defense datasets, which further validate the superior performance of our approach. The code will be released immediately upon acceptance.
Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation NAACL 2025
Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
comment: NAACL 2025 Findings
Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
Prejudge-Before-Think: Enhancing Large Language Models at Test-Time by Process Prejudge Reasoning
In this paper, we introduce a new \emph{process prejudge} strategy in LLM reasoning to demonstrate that bootstrapping with process prejudge allows the LLM to adaptively anticipate the errors encountered when advancing the subsequent reasoning steps, similar to people sometimes pausing to think about what mistakes may occur and how to avoid them, rather than relying solely on trial and error. Specifically, we define a prejudge node in the rationale, which represents a reasoning step, with at least one step that follows the prejudge node that has no paths toward the correct answer. To synthesize the prejudge reasoning process, we present an automated reasoning framework with a dynamic tree-searching strategy. This framework requires only one LLM to perform answer judging, response critiquing, prejudge generation, and thought completion. Furthermore, we develop a two-phase training mechanism with supervised fine-tuning (SFT) and reinforcement learning (RL) to further enhance the reasoning capabilities of LLMs. Experimental results from competition-level complex reasoning demonstrate that our method can teach the model to prejudge before thinking and significantly enhance the reasoning ability of LLMs. Code and data is released at https://github.com/wjn1996/Prejudge-Before-Think.
Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
LLM Sensitivity Evaluation Framework for Clinical Diagnosis
Large language models (LLMs) have demonstrated impressive performance across various domains. However, for clinical diagnosis, higher expectations are required for LLM's reliability and sensitivity: thinking like physicians and remaining sensitive to key medical information that affects diagnostic reasoning, as subtle variations can lead to different diagnosis results. Yet, existing works focus mainly on investigating the sensitivity of LLMs to irrelevant context and overlook the importance of key information. In this paper, we investigate the sensitivity of LLMs, i.e. GPT-3.5, GPT-4, Gemini, Claude3 and LLaMA2-7b, to key medical information by introducing different perturbation strategies. The evaluation results highlight the limitations of current LLMs in remaining sensitive to key medical information for diagnostic decision-making. The evolution of LLMs must focus on improving their reliability, enhancing their ability to be sensitive to key information, and effectively utilizing this information. These improvements will enhance human trust in LLMs and facilitate their practical application in real-world scenarios. Our code and dataset are available at https://github.com/chenwei23333/DiagnosisQA.
CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combine techniques like rejection fine-tuning, reinforcement learning and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress model to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
D-GEN: Automatic Distractor Generation and Evaluation for Reliable Assessment of Generative Model
Evaluating generative models with open-ended generation is challenging due to inconsistencies in response formats. Multiple-choice (MC) evaluation mitigates this issue, but generating high-quality distractors is time-consuming and labor-intensive. We introduce D-GEN, the first open-source distractor generator model that transforms open-ended data into an MC format. To evaluate distractor quality, we propose two novel methods: (1) ranking alignment, ensuring generated distractors retain the discriminatory power of ground-truth distractors, and (2) entropy analysis, comparing model confidence distributions. Our results show that D-GEN preserves ranking consistency (Spearman's rho 0.99, Kendall's tau 0.94) and closely matches the entropy distribution of ground-truth distractors. Human evaluation further confirms the fluency, coherence, distractiveness, and incorrectness. Our work advances robust and efficient distractor generation with automated evaluation, setting a new standard for MC evaluation.
Secure Multifaceted-RAG for Enterprise: Hybrid Knowledge Retrieval with Security Filtering
Existing Retrieval-Augmented Generation (RAG) systems face challenges in enterprise settings due to limited retrieval scope and data security risks. When relevant internal documents are unavailable, the system struggles to generate accurate and complete responses. Additionally, using closed-source Large Language Models (LLMs) raises concerns about exposing proprietary information. To address these issues, we propose the Secure Multifaceted-RAG (SecMulti-RAG) framework, which retrieves not only from internal documents but also from two supplementary sources: pre-generated expert knowledge for anticipated queries and on-demand external LLM-generated knowledge. To mitigate security risks, we adopt a local open-source generator and selectively utilize external LLMs only when prompts are deemed safe by a filtering mechanism. This approach enhances completeness, prevents data leakage, and reduces costs. In our evaluation on a report generation task in the automotive industry, SecMulti-RAG significantly outperforms traditional RAG - achieving 79.3 to 91.9 percent win rates across correctness, richness, and helpfulness in LLM-based evaluation, and 56.3 to 70.4 percent in human evaluation. This highlights SecMulti-RAG as a practical and secure solution for enterprise RAG.
STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings ICLR 2025
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and the utility of the original data in comparing different models. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
comment: Accepted at DATA-FM, WMark @ ICLR 2025. Project page at see https://codeboy5.github.io/stamp
LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
A mean teacher algorithm for unlearning of language models
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: Preprint
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the \textbf{LSR-MCTS} algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset WWW2025
Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.
comment: WWW2025
Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations NAACL 2025
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we explore how corrective feedback from interactions influences neural language acquisition from scratch through systematically controlled experiments, assessing whether it contributes to word learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three distinct components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and active trials, can facilitate efficient word learning in language models.
comment: NAACL 2025 (Main) & Workshop on Large Language Models and Cognition @ ICML 2024 (Oral)
Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation
Federated learning (FL) is a promising distributed machine learning paradigm that enables multiple clients to collaboratively train a global model. In this paper, we focus on a practical federated multilingual learning setup where clients with their own language-specific data aim to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. We propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.
Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind ACL
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 23 pages; Published at the Transactions of the Association for Computational Linguistics (TACL); Presented at NAACL 2025
AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
Can postgraduate translation students identify machine-generated text?
Given the growing use of generative artificial intelligence as a tool for creating multilingual content and bypassing both machine and traditional translation methods, this study explores the ability of linguistically trained individuals to discern machine-generated output from human-written text (HT). After brief training sessions on the textual anomalies typically found in synthetic text (ST), twenty-three postgraduate translation students analysed excerpts of Italian prose and assigned likelihood scores to indicate whether they believed they were human-written or AI-generated (ChatGPT-4o). The results show that, on average, the students struggled to distinguish between HT and ST, with only two participants achieving notable accuracy. Closer analysis revealed that the students often identified the same textual anomalies in both HT and ST, although features such as low burstiness and self-contradiction were more frequently associated with ST. These findings suggest the need for improvements in the preparatory training. Moreover, the study raises questions about the necessity of editing synthetic text to make it sound more human-like and recommends further research to determine whether AI-generated text is already sufficiently natural-sounding not to require further refinement.
comment: 10 pages, accepted for MT Summit 2025, Geneva, Switzerland, 23-27 June 2025
The Comparative Trap: Pairwise Comparisons Amplifies Biased Preferences of LLM Evaluators
As large language models (LLMs) are increasingly used as evaluators for natural language generation tasks, ensuring unbiased assessments is essential. However, LLM evaluators often display biased preferences, such as favoring verbosity and authoritative tones. Our empirical analysis reveals that these biases are exacerbated in pairwise evaluation, where LLMs directly compare two outputs and easily prioritize superficial attributes. In contrast, pointwise evaluation, which assesses outputs independently, is less susceptible to such bias because each output is judged in isolation. To address the limitations of the pairwise evaluation, we introduce a novel evaluation method, PRePair, which integrates pointwise reasoning within a pairwise framework. PRePair effectively alleviates biased preference, improving performance on the adversarial benchmark (LLMBar) while outperforming pointwise evaluation on the standard benchmark (MT-Bench).
Can Tool-augmented Large Language Models be Aware of Incomplete Conditions?
Recent advancements in integrating large language models (LLMs) with tools have allowed the models to interact with real-world environments. However, these tool-augmented LLMs often encounter incomplete scenarios when users provide partial information or the necessary tools are unavailable. Recognizing and managing such scenarios is crucial for LLMs to ensure their reliability, but this exploration remains understudied. This study examines whether LLMs can identify incomplete conditions and appropriately determine when to refrain from using tools. To this end, we address a dataset by manipulating instances from two datasets by removing necessary tools or essential information for tool invocation. Our experiments show that LLMs often struggle to identify the absence of information required to utilize specific tools and recognize the absence of appropriate tools. We further analyze model behaviors in different environments and compare their performance against humans. Our research can contribute to advancing reliable LLMs by addressing common scenarios during interactions between humans and LLMs. Our code and dataset will be publicly available.
Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
Argumentative Large Language Models for Explainable and Contestable Claim Verification AAAI 2025
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties.
comment: 18 pages, 18 figures. Accepted as an oral presentation at AAAI 2025
Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
comment: 12 pages,6 tables, 1 figure, Proceedings of the 1st International Conference on NLP & AI for Cyber Security
Token-Level Density-Based Uncertainty Quantification Methods for Eliciting Truthfulness of Large Language Models
Uncertainty quantification (UQ) is a prominent approach for eliciting truthful answers from large language models (LLMs). To date, information-based and consistency-based UQ have been the dominant UQ methods for text generation via LLMs. Density-based methods, despite being very effective for UQ in text classification with encoder-based models, have not been very successful with generative LLMs. In this work, we adapt Mahalanobis Distance (MD) - a well-established UQ technique in classification tasks - for text generation and introduce a new supervised UQ method. Our method extracts token embeddings from multiple layers of LLMs, computes MD scores for each token, and uses linear regression trained on these features to provide robust uncertainty scores. Through extensive experiments on eleven datasets, we demonstrate that our approach substantially improves over existing UQ methods, providing accurate and computationally efficient uncertainty scores for both sequence-level selective generation and claim-level fact-checking tasks. Our method also exhibits strong generalization to out-of-domain data, making it suitable for a wide range of LLM-based applications.
Spin glass model of in-context learning
Large language models show a surprising in-context learning ability -- being able to use a prompt to form a prediction for a query, yet without additional training, in stark contrast to old-fashioned supervised learning. Providing a mechanistic interpretation and linking the empirical phenomenon to physics are thus challenging and remain unsolved. We study a simple yet expressive transformer with linear attention and map this structure to a spin glass model with real-valued spins, where the couplings and fields explain the intrinsic disorder in data. The spin glass model explains how the weight parameters interact with each other during pre-training, and further clarifies why an unseen function can be predicted by providing only a prompt yet without further training. Our theory reveals that for single-instance learning, increasing the task diversity leads to the emergence of in-context learning, by allowing the Boltzmann distribution to converge to a unique correct solution of weight parameters. Therefore the pre-trained transformer displays a prediction power in a novel prompt setting. The proposed analytically tractable model thus offers a promising avenue for thinking about how to interpret many intriguing but puzzling properties of large language models.
comment: 16 pages, 4+6 figures, revised version to the journal
StaICC: Standardized Evaluation for Classification Task in In-context Learning
Classification tasks are widely investigated in the In-Context Learning (ICL) paradigm. However, current efforts are evaluated on disjoint benchmarks and settings, while their performances are significantly influenced by some trivial variables, such as prompt templates, data sampling, instructions, etc., which leads to significant inconsistencies in the results reported across various literature, preventing fair comparison or meta-analysis across different papers. Therefore, this paper proposes a standardized and easy-to-use evaluation toolkit (StaICC) for in-context classification. Including, for the normal classification task, we provide StaICC-Normal, selecting 10 widely used datasets, and generating prompts with a fixed form, to mitigate the variance among the experiment implementations. To enrich the usage of our benchmark, we also provide a sub-benchmark StaICC-Diag for diagnosing ICL from several aspects, aiming for a more robust inference processing.
comment: 20 pages, 8 figures, 8 tables
Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding ICLR 2025
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
comment: ICLR 2025
Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts
With the advent of Large Language Models (LLMs), generating rule-based data for real-world applications has become more accessible. Due to the inherent ambiguity of natural language and the complexity of rule sets, especially in long contexts, LLMs often struggle to follow all specified rules, frequently omitting at least one. To enhance the reasoning and understanding of LLMs on long and complex contexts, we propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt, which automatically translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it. Experimental results on public datasets across various tasks have shown MLPrompt can outperform state-of-the-art prompting methods such as Chain of Thought, Tree of Thought, and Self-Consistency. Additionally, we introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances. Further, we extend the proposed framework for text-to-SQL to demonstrate its generation ability towards structured data synthesis.
Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection WWW'25
The spread of fake news harms individuals and presents a critical social challenge that must be addressed. Although numerous algorithmic and insightful features have been developed to detect fake news, many of these features can be manipulated with style-conversion attacks, especially with the emergence of advanced language models, making it more difficult to differentiate from genuine news. This study proposes adversarial style augmentation, AdStyle, designed to train a fake news detector that remains robust against various style-conversion attacks. The primary mechanism involves the strategic use of LLMs to automatically generate a diverse and coherent array of style-conversion attack prompts, enhancing the generation of particularly challenging prompts for the detector. Experiments indicate that our augmentation strategy significantly improves robustness and detection performance when evaluated on fake news benchmark datasets.
comment: WWW'25 research track accepted
Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called perplexity curse; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the perplexity curse, but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
comment: Code is published at https://github.com/omron-sinicx/WhereIsTheAnswer
Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be naturally framed as probabilistic conditioning, but exact generation from the resulting distribution -- which can differ substantially from the LM's base distribution -- is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). Our SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains -- Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis -- we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8x larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
comment: 34 pages, 4 figures
Human-Computer Interaction
LearnAct: Few-Shot Mobile GUI Agent with a Unified Demonstration Benchmark
Mobile GUI agents show promise in automating tasks but face generalization challenges in diverse real-world scenarios. Traditional approaches using pre-training or fine-tuning with massive datasets struggle with the diversity of mobile applications and user-specific tasks. We propose enhancing mobile GUI agent capabilities through human demonstrations, focusing on improving performance in unseen scenarios rather than pursuing universal generalization through larger datasets. To realize this paradigm, we introduce LearnGUI, the first comprehensive dataset specifically designed for studying demonstration-based learning in mobile GUI agents, comprising 2,252 offline tasks and 101 online tasks with high-quality human demonstrations. We further develop LearnAct, a sophisticated multi-agent framework that automatically extracts knowledge from demonstrations to enhance task completion. This framework integrates three specialized agents: DemoParser for knowledge extraction, KnowSeeker for relevant knowledge retrieval, and ActExecutor for demonstration-enhanced task execution. Our experimental results show significant performance gains in both offline and online evaluations. In offline assessments, a single demonstration improves model performance, increasing Gemini-1.5-Pro's accuracy from 19.3% to 51.7%. In online evaluations, our framework enhances UI-TARS-7B-SFT's task success rate from 18.1% to 32.8%. LearnAct framework and LearnGUI benchmark establish demonstration-based learning as a promising direction for more adaptable, personalized, and deployable mobile GUI agents.
comment: 23 pages, 16 figures, the project resources are available at https://lgy0404.github.io/LearnAct
ChatNekoHacker: Real-Time Fan Engagement with Conversational Agents
ChatNekoHacker is a real-time conversational agent system that strengthens fan engagement for musicians. It integrates Amazon Bedrock Agents for autonomous dialogue, Unity for immersive 3D livestream sets, and VOICEVOX for high quality Japanese text-to-speech, enabling two virtual personas to represent the music duo Neko Hacker. In a one-hour YouTube Live with 30 participants, we evaluated the impact of the system. Regression analysis showed that agent interaction significantly elevated fan interest, with perceived fun as the dominant predictor. The participants also expressed a stronger intention to listen to the duo's music and attend future concerts. These findings highlight entertaining, interactive broadcasts as pivotal to cultivating fandom. Our work offers actionable insights for the deployment of conversational agents in entertainment while pointing to next steps: broader response diversity, lower latency, and tighter fact-checking to curb potential misinformation.
comment: Accepted to GenAICHI 2025: Generative AI and HCI at CHI 2025
Beyond Misinformation: A Conceptual Framework for Studying AI Hallucinations in (Science) Communication
This paper proposes a conceptual framework for understanding AI hallucinations as a distinct form of misinformation. While misinformation scholarship has traditionally focused on human intent, generative AI systems now produce false yet plausible outputs absent of such intent. I argue that these AI hallucinations should not be treated merely as technical failures but as communication phenomena with social consequences. Drawing on a supply-and-demand model and the concept of distributed agency, the framework outlines how hallucinations differ from human-generated misinformation in production, perception, and institutional response. I conclude by outlining a research agenda for communication scholars to investigate the emergence, dissemination, and audience reception of hallucinated content, with attention to macro (institutional), meso (group), and micro (individual) levels. This work urges communication researchers to rethink the boundaries of misinformation theory in light of probabilistic, non-human actors increasingly embedded in knowledge production.
Orientation and mobility test in virtual reality, a tool for quantitative assessment of functional vision: dataset and evaluation in healthy subjects
The purpose of this study was to develop and evaluate a novel virtual reality seated orientation and mobility (VR-S-O&M) test protocol designed to assess functional vision. This study aims to provide a dataset of healthy subjects using this protocol and preliminary analyses. We introduced a VR-based O&M test protocol featuring a novel seated displacement method, diverse lighting conditions, and varying course configurations within a virtual environment. Normally sighted participants (N=42) completed the test, which required them to navigate a path and destroy identified obstacles. We assessed basic performance metrics, including time duration, number of missed objects, and time before the first step, under different environmental conditions to verify ecological validity. Additionally, we analyzed participants' behaviors regarding missed objects, demonstrating the potential of integrating behavioral and interactive data for a more precise functional vision assessment. Our VR-S-O&M test protocol, along with the first O&M behavior dataset, presents significant opportunities for developing more refined performance metrics for assessing functional vision and enhancing the quality of life.
Exploring Multimodal Prompt for Visualization Authoring with Large Language Models
Recent advances in large language models (LLMs) have shown great potential in automating the process of visualization authoring through simple natural language utterances. However, instructing LLMs using natural language is limited in precision and expressiveness for conveying visualization intent, leading to misinterpretation and time-consuming iterations. To address these limitations, we conduct an empirical study to understand how LLMs interpret ambiguous or incomplete text prompts in the context of visualization authoring, and the conditions making LLMs misinterpret user intent. Informed by the findings, we introduce visual prompts as a complementary input modality to text prompts, which help clarify user intent and improve LLMs' interpretation abilities. To explore the potential of multimodal prompting in visualization authoring, we design VisPilot, which enables users to easily create visualizations using multimodal prompts, including text, sketches, and direct manipulations on existing visualizations. Through two case studies and a controlled user study, we demonstrate that VisPilot provides a more intuitive way to create visualizations without affecting the overall task efficiency compared to text-only prompting approaches. Furthermore, we analyze the impact of text and visual prompts in different visualization tasks. Our findings highlight the importance of multimodal prompting in improving the usability of LLMs for visualization authoring. We discuss design implications for future visualization systems and provide insights into how multimodal prompts can enhance human-AI collaboration in creative visualization tasks. All materials are available at https://OSF.IO/2QRAK.
comment: 11 pages, 8 figures
Intelligent Interaction Strategies for Context-Aware Cognitive Augmentation
Human cognition is constrained by processing limitations, leading to cognitive overload and inefficiencies in knowledge synthesis and decision-making. Large Language Models (LLMs) present an opportunity for cognitive augmentation, but their current reactive nature limits their real-world applicability. This position paper explores the potential of context-aware cognitive augmentation, where LLMs dynamically adapt to users' cognitive states and task environments to provide appropriate support. Through a think-aloud study in an exhibition setting, we examine how individuals interact with multi-modal information and identify key cognitive challenges in structuring, retrieving, and applying knowledge. Our findings highlight the need for AI-driven cognitive support systems that integrate real-time contextual awareness, personalized reasoning assistance, and socially adaptive interactions. We propose a framework for AI augmentation that seamlessly transitions between real-time cognitive support and post-experience knowledge organization, contributing to the design of more effective human-centered AI systems.
comment: Presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning, Report Number: CHI25-WS-AUGMENTED-REASONING
Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
RAG Without the Lag: Interactive Debugging for Retrieval-Augmented Generation Pipelines
Retrieval-augmented generation (RAG) pipelines have become the de-facto approach for building AI assistants with access to external, domain-specific knowledge. Given a user query, RAG pipelines typically first retrieve (R) relevant information from external sources, before invoking a Large Language Model (LLM), augmented (A) with this information, to generate (G) responses. Modern RAG pipelines frequently chain multiple retrieval and generation components, in any order. However, developing effective RAG pipelines is challenging because retrieval and generation components are intertwined, making it hard to identify which component(s) cause errors in the eventual output. The parameters with the greatest impact on output quality often require hours of pre-processing after each change, creating prohibitively slow feedback cycles. To address these challenges, we present RAGGY, a developer tool that combines a Python library of composable RAG primitives with an interactive interface for real-time debugging. We contribute the design and implementation of RAGGY, insights into expert debugging patterns through a qualitative study with 12 engineers, and design implications for future RAG tools that better align with developers' natural workflows.
comment: 15 pages, 7 figures, 2 tables
PoEmotion: Can AI Utilize Chinese Calligraphy to Express Emotion from Poems?
This paper presents PoEmotion, an approach to visualizing emotions in poetry with Chinese calligraphy strokes. Traditional textual emotion analysis often lacks emotional resonance due to its mechanical nature. PoEmotion combines natural language processing with deep learning generative algorithms to create Chinese calligraphy that effectively conveys the emotions in poetry. The created calligraphy represents four fundamental emotions: excitement, anger, sadness, and relaxation, making the visual representation of emotions intuitive and concise. Furthermore, the approach delves into the relationship be-tween time, emotion, and cultural communication. Its goal is to provide a more natural means of communicating emotions through non-verbal mediums to enhance human emotional expression.
Integrating LLMs for Grading and Appeal Resolution in Computer Science Education
This study explores the integration of Large Language Models (LLMs) into the grading and appeal resolution process in computer science education. We introduce AI-PAT, an AI-powered assessment tool that leverages LLMs to evaluate computer science exams, generate feedback, and address student appeals. AI-PAT was used to assess over 850 exam submissions and handle 185 appeal cases. Our multi-model comparison (ChatGPT, Gemini) reveals strong correlations between model outputs, though significant variability persists depending on configuration and prompt design. Human graders, while internally consistent, showed notable inter-rater disagreement, further highlighting subjectivity in manual evaluation. The appeal process led to grade changes in 74% of cases, indicating the need for continued refinement of AI evaluation strategies. While students appreciated the speed and detail of AI feedback, survey responses revealed trust and fairness concerns. We conclude that AI-PAT offers scalable benefits for formative assessment and feedback, but must be accompanied by transparent grading rubrics, human oversight, and appeal mechanisms to ensure equitable outcomes.
comment: 13 pages, 5 figures
Exploring Culturally Informed AI Assistants: A Comparative Study of ChatBlackGPT and ChatGPT
In recent years, we have seen an influx in reliance on AI assistants for information seeking. Given this widespread use and the known challenges AI poses for Black users, recent efforts have emerged to identify key considerations needed to provide meaningful support. One notable effort is the development of ChatBlackGPT, a culturally informed AI assistant designed to provide culturally relevant responses. Despite the existence of ChatBlackGPT, there is no research on when and how Black communities might engage with culturally informed AI assistants and the distinctions between engagement with general purpose tools like ChatGPT. To fill this gap, we propose a research agenda grounded in results from a preliminary comparative analysis of outputs provided by ChatGPT and ChatBlackGPT for travel-related inquiries. Our efforts thus far emphasize the need to consider Black communities' values, perceptions, and experiences when designing AI assistants that acknowledge the Black lived experience.
comment: 9 pages, 3 figures, Camera-ready Extended Abstract paper accepted into CHI 2025
Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
The idea of augmented or hybrid intelligence offers a compelling vision for combining human and AI capabilities, especially in tasks where human wisdom, expertise, or common sense are essential. Unfortunately, human reasoning can be flawed and shortsighted, resulting in adverse individual impacts or even long-term societal consequences. While strong efforts are being made to develop and optimize the AI aspect of hybrid reasoning, the real urgency lies in fostering wiser and more intelligent human participation. Tools that enhance critical thinking, ingenuity, expertise, and even wisdom could be essential in addressing the challenges of our emerging future. This paper proposes the development of generative AI-based tools that enhance both the human ability to reflect upon a problem as well as the ability to explore the technical aspects of it. A high-level model is also described for integrating AI and human capabilities in a way that centralizes human participation and control.
comment: 10 pages; 3 figures; 1 table
"Can't believe I'm crying over an anime girl": Public Parasocial Grieving and Coping Towards VTuber Graduation and Termination
Despite the significant increase in popularity of Virtual YouTubers (VTubers), research on the unique dynamics of viewer-VTuber parasocial relationships is nascent. This work investigates how English-speaking viewers grieved VTubers whose identities are no longer used, an interesting context as the nakanohito (i.e., the person behind the VTuber identity) is usually alive post-retirement and might "reincarnate" as another VTuber. We propose a typology for VTuber retirements and analyzed 13,655 Reddit posts and comments spanning nearly three years using mixed-methods. Findings include how viewers coped using methods similar to when losing loved ones, alongside novel coping methods reflecting different attachment styles. Although emotions like sadness, shock, concern, disapproval, confusion, and love decreased with time, regret and loyalty showed opposite trends. Furthermore, viewers' reactions situated a VTuber identity within a community of content creators and viewers. We also discuss design implications alongside implications on the VTuber ecosystem and future research directions.
comment: 23 pages, 3 figures, Proceedings of CHI Conference on Human Factors in Computing Systems (CHI '25)
Design Priorities in Digital Gateways: A Comparative Study of Authentication and Usability in Academic Library Alliances
Purpose: This study examines the design and functionality of university library login pages across academic alliances (IVY Plus, BTAA, JULAC, JVU) to identify how these interfaces align with institutional priorities and user needs. It explores consensus features, design variations, and emerging trends in authentication, usability, and security. Methodology: A multi-method approach was employed: screenshots and HTML files from 46 institutions were analyzed through categorization, statistical analysis, and comparative evaluation. Features were grouped into authentication mechanisms, usability, security/compliance, and library-specific elements. Findings: Core functionalities (e.g., ID/password, privacy policies) were consistent across alliances. Divergences emerged in feature emphasis: mature alliances (e.g., BTAA) prioritized resource accessibility with streamlined interfaces, while emerging consortia (e.g., JVU) emphasized cybersecurity (IP restrictions, third-party integrations). Usability features, particularly multilingual support, drove cross-alliance differences. The results highlighted regional and institutional influences, with older alliances favoring simplicity and newer ones adopting security-centric designs. Originality/Value: This is the first systematic comparison of login page designs across academic alliances, offering insights into how regional, technological, and institutional factors shape digital resource access. Findings inform best practices for balancing security, usability, and accessibility in library interfaces. **Keywords**: Academic library consortia, Login page design, User authentication, User experience, Security compliance.
POET: Supporting Prompting Creativity and Personalization with Automated Expansion of Text-to-Image Generation
State-of-the-art visual generative AI tools hold immense potential to assist users in the early ideation stages of creative tasks -- offering the ability to generate (rather than search for) novel and unprecedented (instead of existing) images of considerable quality that also adhere to boundless combinations of user specifications. However, many large-scale text-to-image systems are designed for broad applicability, yielding conventional output that may limit creative exploration. They also employ interaction methods that may be difficult for beginners. Given that creative end users often operate in diverse, context-specific ways that are often unpredictable, more variation and personalization are necessary. We introduce POET, a real-time interactive tool that (1) automatically discovers dimensions of homogeneity in text-to-image generative models, (2) expands these dimensions to diversify the output space of generated images, and (3) learns from user feedback to personalize expansions. An evaluation with 28 users spanning four creative task domains demonstrated POET's ability to generate results with higher perceived diversity and help users reach satisfaction in fewer prompts during creative tasks, thereby prompting them to deliberate and reflect more on a wider range of possible produced results during the co-creative process. Focusing on visual creativity, POET offers a first glimpse of how interaction techniques of future text-to-image generation tools may support and align with more pluralistic values and the needs of end users during the ideation stages of their work.
Understanding Adolescents' Perceptions of Benefits and Risks in Health AI Technologies through Design Fiction
Despite the growing research on users' perceptions of health AI, adolescents' perspectives remain underexplored. This study explores adolescents' perceived benefits and risks of health AI technologies in clinical and personal health settings. Employing Design Fiction, we conducted interviews with 16 adolescents (aged 13-17) using four fictional design scenarios that represent current and future health AI technologies as probes. Our findings reveal that with a positive yet cautious attitude, adolescents envision unique benefits and risks specific to their age group. While health AI technologies were seen as valuable learning resources, they also raised concerns about confidentiality with their parents. Additionally, we identified several factors, such as severity of health conditions and previous experience with AI, influencing their perceptions of trust and privacy in health AI. We explore how these insights can inform the future of design of health AI technologies to support learning, engagement, and trust as adolescents navigate their healthcare journey.
Amplify Initiative: Building A Localized Data Platform for Globalized AI
Current AI models often fail to account for local context and language, given the predominance of English and Western internet content in their training data. This hinders the global relevance, usefulness, and safety of these models as they gain more users around the globe. Amplify Initiative, a data platform and methodology, leverages expert communities to collect diverse, high-quality data to address the limitations of these models. The platform is designed to enable co-creation of datasets, provide access to high-quality multilingual datasets, and offer recognition to data authors. This paper presents the approach to co-creating datasets with domain experts (e.g., health workers, teachers) through a pilot conducted in Sub-Saharan Africa (Ghana, Kenya, Malawi, Nigeria, and Uganda). In partnership with local researchers situated in these countries, the pilot demonstrated an end-to-end approach to co-creating data with 155 experts in sensitive domains (e.g., physicians, bankers, anthropologists, human and civil rights advocates). This approach, implemented with an Android app, resulted in an annotated dataset of 8,091 adversarial queries in seven languages (e.g., Luganda, Swahili, Chichewa), capturing nuanced and contextual information related to key themes such as misinformation and public interest topics. This dataset in turn can be used to evaluate models for their safety and cultural relevance within the context of these languages.
Evaluating Human-AI Interaction via Usability, User Experience and Acceptance Measures for MMM-C: A Creative AI System for Music Composition IJCAI 2023
With the rise of artificial intelligence (AI), there has been increasing interest in human-AI co-creation in a variety of artistic domains including music as AI-driven systems are frequently able to generate human-competitive artifacts. Now, the implications of such systems for musical practice are being investigated. We report on a thorough evaluation of the user adoption of the Multi-Track Music Machine (MMM) as a co-creative AI tool for music composers. To do this, we integrate MMM into Cubase, a popular Digital Audio Workstation (DAW) by Steinberg, by producing a "1-parameter" plugin interface named MMM-Cubase (MMM-C), which enables human-AI co-composition. We contribute a methodological assemblage as a 3-part mixed method study measuring usability, user experience and technology acceptance of the system across two groups of expert-level composers: hobbyists and professionals. Results show positive usability and acceptance scores. Users report experiences of novelty, surprise and ease of use from using the system, and limitations on controllability and predictability of the interface when generating music. Findings indicate no significant difference between the two user groups.
comment: 10 pages, 6 figures, 1 table, first published at the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023), Macao, China
Contextual Embedding-based Clustering to Identify Topics for Healthcare Service Improvement
Understanding patient feedback is crucial for improving healthcare services, yet analyzing unlabeled short-text feedback presents significant challenges due to limited data and domain-specific nuances. Traditional supervised learning approaches require extensive labeled datasets, making unsupervised methods more viable for uncovering meaningful insights from patient feedback. This study explores unsupervised methods to extract meaningful topics from 439 survey responses collected from a healthcare system in Wisconsin, USA. A keyword-based filtering approach was applied to isolate complaint-related feedback using a domain-specific lexicon. To delve deeper and analyze dominant topics in feedback, we explored traditional topic modeling methods, including Latent Dirichlet Allocation (LDA) and Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), alongside BERTopic, an advanced neural embedding-based clustering approach. To improve coherence and interpretability where data are scarce and consist of short-texts, we propose kBERT, an integration of BERT embeddings with k-means clustering. Model performance was assessed using coherence scores (Cv ) for topic interpretability and average Inverted Rank-Biased Overlap (IRBOavg) for topic diversity. Results indicate that kBERT achieves the highest coherence (Cv = 0.53) and distinct topic separation (IRBOavg = 1.00), outperforming all other models in short-text healthcare feedback analysis. Our findings emphasize the importance of embedding-based techniques for topic identification and highlight the need for context-aware models in healthcare analytics.
comment: Full version of the paper accepted at the 2025 IEEE COMPSAC, Toronto, Canada
AnywhereXR: On-the-fly 3D Environments as a Basis for Open Source Immersive Digital Twin Applications
Visualization has long been fundamental to human communication and decision-making. Today, we stand at the threshold of integrating veridical, high-fidelity visualizations into immersive digital environments, alongside digital twinning techniques. This convergence heralds powerful tools for communication, co-design, and participatory decision-making. Our paper delves into the development of lightweight open-source immersive digital twin visualisations, capitalizing on the evolution of immersive technologies, the wealth of spatial data available, and advancements in digital twinning. Coined AnywhereXR, this approach ultimately seeks to democratize access to spatial information at a global scale. Utilizing the Netherlands as our starting point, we envision expanding this methodology worldwide, leveraging open data and software to address pressing societal challenges across diverse domains.
comment: 59 pages, 23 figures, currently resubmitted to International Journal of Digital Earth
Calliope: An Online Generative Music System for Symbolic Multi-Track Composition
With the rise of artificial intelligence in recent years, there has been a rapid increase in its application towards creative domains, including music. There exist many systems built that apply machine learning approaches to the problem of computer-assisted music composition (CAC). Calliope is a web application that assists users in performing a variety of multi-track composition tasks in the symbolic domain. The user can upload (Musical Instrument Digital Interface) MIDI files, visualize and edit MIDI tracks, and generate partial (via bar in-filling) or complete multi-track content using the Multi-Track Music Machine (MMM). Generation of new MIDI excerpts can be done in batch and can be combined with active playback listening for an enhanced assisted-composition workflow. The user can export generated MIDI materials or directly stream MIDI playback from the system to their favorite Digital Audio Workstation (DAW). We present a demonstration of the system, its features, generative parameters and describe the co-creative workflows that it affords.
comment: 5 pages, 5 figures, first published at the 13th International Conference on Computational Creativity (ICCC 2022), Bozen-Bolzano, Italy
Apollo: An Interactive Environment for Generating Symbolic Musical Phrases using Corpus-based Style Imitation
With the recent developments in machine intelligence and web technologies, new generative music systems are being explored for assisted composition using machine learning techniques on the web. Such systems are built for various tasks such as melodic, harmonic or rhythm generation, music interpolation, continuation and style imitation. In this paper, we introduce Apollo, an interactive music application for generating symbolic phrases of conventional western music using corpus-based style imitation techniques. In addition to enabling the construction and management of symbolic musical corpora, the system makes it possible for music artists and researchers to generate new musical phrases in the style of the proposed corpus. The system is available as a desktop application. The generated symbolic music materials, encoded in the MIDI format, can be exported or streamed for various purposes including using them as seed material for musical projects. We present the system design, implementation details, discuss and conclude with future work for the system.
comment: 7 pages, 5 figures, Published as a paper at the 7th International Workshop on Musical Metacreation (MUME 2019), UNC Charlotte, North Carolina
Metacognition and Uncertainty Communication in Humans and Large Language Models
Metacognition, the capacity to monitor and evaluate one's own knowledge and performance, is foundational to human decision-making, learning, and communication. As large language models (LLMs) become increasingly embedded in high-stakes decision contexts, it is critical to assess whether, how, and to what extent they exhibit metacognitive abilities. Here, we provide an overview of current knowledge of LLMs' metacognitive capacities, how they might be studied, and how they relate to our knowledge of metacognition in humans. We show that while humans and LLMs can sometimes appear quite aligned in their metacognitive capacities and behaviors, it is clear many differences remain. Attending to these differences is crucial not only for enhancing human-AI collaboration, but also for promoting the development of more capable and trustworthy artificial systems. Finally, we discuss how endowing future LLMs with more sensitive and more calibrated metacognition may also help them develop new capacities such as more efficient learning, self-direction, and curiosity.
Flowco: Rethinking Data Analysis in the Age of LLMs
Conducting data analysis typically involves authoring code to transform, visualize, analyze, and interpret data. Large language models (LLMs) are now capable of generating such code for simple, routine analyses. LLMs promise to democratize data science by enabling those with limited programming expertise to conduct data analyses, including in scientific research, business, and policymaking. However, analysts in many real-world settings must often exercise fine-grained control over specific analysis steps, verify intermediate results explicitly, and iteratively refine their analytical approaches. Such tasks present barriers to building robust and reproducible analyses using LLMs alone or even in conjunction with existing authoring tools (e.g., computational notebooks). This paper introduces Flowco, a new mixed-initiative system to address these challenges. Flowco leverages a visual dataflow programming model and integrates LLMs into every phase of the authoring process. A user study suggests that Flowco supports analysts, particularly those with less programming experience, in quickly authoring, debugging, and refining data analyses.
Terminal Lucidity: Envisioning the Future of the Terminal
The Unix terminal, or just simply, the terminal, can be found being applied in almost every facet of computing. It is available across all major platforms and often integrated into other applications. Due to its ubiquity, even marginal improvements to the terminal have the potential to make massive improvements to productivity on a global scale. We believe that evolutionary improvements to the terminal, in its current incarnation as windowed terminal emulator, are possible and that developing a thorough understanding of issues that current terminal users face is fundamental to knowing how the terminal should evolve. In order to develop that understanding we have mined Unix and Linux Stack Exchange using a fully-reproducible method which was able to extract and categorize 91.0% of 1,489 terminal-related questions (from the full set of nearly 240,000 questions) without manual intervention. We present an analysis, to our knowledge the first of its kind, of windowed terminal-related questions posted over a 15-year period and viewed, in aggregate, approximately 40 million times. As expected, given its longevity, we find the terminal's many features being applied across a wide variety of use cases. We find evidence that the terminal, as windowed terminal emulator, has neither fully adapted to its now current graphical environment nor completely untangled itself from features more suited to incarnations in previous environments. We also find evidence of areas where we believe the terminal could be extended along with other areas where it could be simplified. Surprisingly, while many current efforts to improve the terminal include improving the terminal's social and collaborative aspects, we find little evidence of this as a prominent pain point.
Context-Awareness and Interpretability of Rare Occurrences for Discovery and Formalization of Critical Failure Modes
Vision systems are increasingly deployed in critical domains such as surveillance, law enforcement, and transportation. However, their vulnerabilities to rare or unforeseen scenarios pose significant safety risks. To address these challenges, we introduce Context-Awareness and Interpretability of Rare Occurrences (CAIRO), an ontology-based human-assistive discovery framework for failure cases (or CP - Critical Phenomena) detection and formalization. CAIRO by design incentivizes human-in-the-loop for testing and evaluation of criticality that arises from misdetections, adversarial attacks, and hallucinations in AI black-box models. Our robust analysis of object detection model(s) failures in automated driving systems (ADS) showcases scalable and interpretable ways of formalizing the observed gaps between camera perception and real-world contexts, resulting in test cases stored as explicit knowledge graphs (in OWL/XML format) amenable for sharing, downstream analysis, logical reasoning, and accountability.
comment: Accepted to IEEE Conference for Artificial Intelligence, 2025
Customizing Emotional Support: How Do Individuals Construct and Interact With LLM-Powered Chatbots
Personalized support is essential to fulfill individuals' emotional needs and sustain their mental well-being. Large language models (LLMs), with great customization flexibility, hold promises to enable individuals to create their own emotional support agents. In this work, we developed ChatLab, where users could construct LLM-powered chatbots with additional interaction features including voices and avatars. Using a Research through Design approach, we conducted a week-long field study followed by interviews and design activities (N = 22), which uncovered how participants created diverse chatbot personas for emotional reliance, confronting stressors, connecting to intellectual discourse, reflecting mirrored selves, etc. We found that participants actively enriched the personas they constructed, shaping the dynamics between themselves and the chatbot to foster open and honest conversations. They also suggested other customizable features, such as integrating online activities and adjustable memory settings. Based on these findings, we discuss opportunities for enhancing personalized emotional support through emerging AI technologies.
comment: 20 pages, 3 figures, 3 tables. Accepted to CHI 2025, ACM Conference on Human Factors in Computing Systems
Mind2Matter: Creating 3D Models from EEG Signals
The reconstruction of 3D objects from brain signals has gained significant attention in brain-computer interface (BCI) research. Current research predominantly utilizes functional magnetic resonance imaging (fMRI) for 3D reconstruction tasks due to its excellent spatial resolution. Nevertheless, the clinical utility of fMRI is limited by its prohibitive costs and inability to support real-time operations. In comparison, electroencephalography (EEG) presents distinct advantages as an affordable, non-invasive, and mobile solution for real-time brain-computer interaction systems. While recent advances in deep learning have enabled remarkable progress in image generation from neural data, decoding EEG signals into structured 3D representations remains largely unexplored. In this paper, we propose a novel framework that translates EEG recordings into 3D object reconstructions by leveraging neural decoding techniques and generative models. Our approach involves training an EEG encoder to extract spatiotemporal visual features, fine-tuning a large language model to interpret these features into descriptive multimodal outputs, and leveraging generative 3D Gaussians with layout-guided control to synthesize the final 3D structures. Experiments demonstrate that our model captures salient geometric and semantic features, paving the way for applications in brain-computer interfaces (BCIs), virtual reality, and neuroprosthetics. Our code is available in https://github.com/sddwwww/Mind2Matter.
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Prompt Adaptation as a Dynamic Complement in Generative AI Systems
As generative AI systems rapidly improve, a key question emerges: How do users keep up-and what happens if they fail to do so. Drawing on theories of dynamic capabilities and IT complements, we examine prompt adaptation-the adjustments users make to their inputs in response to evolving model behavior-as a mechanism that helps determine whether technical advances translate into realized economic value. In a preregistered online experiment with 1,893 participants, who submitted over 18,000 prompts and generated more than 300,000 images, users attempted to replicate a target image in 10 tries using one of three randomly assigned models: DALL-E 2, DALL-E 3, or DALL-E 3 with automated prompt rewriting. We find that users with access to DALL-E 3 achieved higher image similarity than those with DALL-E 2-but only about half of this gain (51%) came from the model itself. The other half (49%) resulted from users adapting their prompts in response to the model's capabilities. This adaptation emerged across the skill distribution, was driven by trial-and-error, and could not be replicated by automated prompt rewriting, which erased 58% of the performance improvement associated with DALL-E 3. Our findings position prompt adaptation as a dynamic complement to generative AI-and suggest that without it, a substantial share of the economic value created when models advance may go unrealized.
Aligning Language Models with Demonstrated Feedback ICLR 2025
Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. Steering LLMs away from generic output is possible through supervised finetuning or RLHF, but requires prohibitively large datasets for new ad-hoc tasks. We argue that it is instead possible to align an LLM to a specific setting by leveraging a very small number (< 10) of demonstrations as feedback. Our method, Demonstration ITerated Task Optimization (DITTO), directly aligns language model outputs to a user's demonstrated behaviors. Derived using ideas from online imitation learning, DITTO cheaply generates online comparison data by treating users' demonstrations as preferred over output from the LLM and its intermediate checkpoints. Concretely, DITTO operates by having an LLM generate examples that are presumed to be inferior to expert demonstrations. The method iteratively constructs pairwise preference relationships between these LLM-generated samples and expert demonstrations, potentially including comparisons between different training checkpoints. These constructed preference pairs are then used to train the model using a preference optimization algorithm (e.g. DPO). We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts. Additionally, we conduct a user study soliciting a range of demonstrations from participants (N = 16). Across our benchmarks and user study, we find that win-rates for DITTO outperform few-shot prompting, supervised fine-tuning, and other self-play methods by an avg. of 19% points. By using demonstrations as feedback directly, DITTO offers a novel method for effective customization of LLMs.
comment: ICLR 2025; 28 pages, 8 figures
Computer Vision and Pattern Recognition
Perception Encoder: The best visual embeddings are not at the output of the network
We introduce Perception Encoder (PE), a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods, language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together with the core contrastive checkpoint, our PE family of models achieves state-of-the-art performance on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, depth estimation, and tracking. To foster further research, we are releasing our models, code, and a novel dataset of synthetically and human-annotated videos.
comment: Initial Submission
ViTa-Zero: Zero-shot Visuotactile Object 6D Pose Estimation ICRA 2025
Object 6D pose estimation is a critical challenge in robotics, particularly for manipulation tasks. While prior research combining visual and tactile (visuotactile) information has shown promise, these approaches often struggle with generalization due to the limited availability of visuotactile data. In this paper, we introduce ViTa-Zero, a zero-shot visuotactile pose estimation framework. Our key innovation lies in leveraging a visual model as its backbone and performing feasibility checking and test-time optimization based on physical constraints derived from tactile and proprioceptive observations. Specifically, we model the gripper-object interaction as a spring-mass system, where tactile sensors induce attractive forces, and proprioception generates repulsive forces. We validate our framework through experiments on a real-world robot setup, demonstrating its effectiveness across representative visual backbones and manipulation scenarios, including grasping, object picking, and bimanual handover. Compared to the visual models, our approach overcomes some drastic failure modes while tracking the in-hand object pose. In our experiments, our approach shows an average increase of 55% in AUC of ADD-S and 60% in ADD, along with an 80% lower position error compared to FoundationPose.
comment: Accepted by ICRA 2025
PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models.
comment: Technical report
Single-Shot Shape and Reflectance with Spatial Polarization Multiplexing
We propose spatial polarization multiplexing (SPM) for reconstructing object shape and reflectance from a single polarimetric image and demonstrate its application to dynamic surface recovery. Although single-pattern structured light enables single-shot shape reconstruction, the reflectance is challenging to recover due to the lack of angular sampling of incident light and the entanglement of the projected pattern and the surface color texture. We design a spatially multiplexed pattern of polarization that can be robustly and uniquely decoded for shape reconstruction by quantizing the AoLP values. At the same time, our spatial-multiplexing enables single-shot ellipsometry of linear polarization by projecting differently polarized light within a local region, which separates the specular and diffuse reflections for BRDF estimation. We achieve this spatial polarization multiplexing with a constrained de Bruijn sequence. Unlike single-pattern structured light with intensity and color, our polarization pattern is invisible to the naked eye and retains the natural surface appearance which is essential for accurate appearance modeling and also interaction with people. We experimentally validate our method on real data. The results show that our method can recover the shape, the Mueller matrix, and the BRDF from a single-shot polarimetric image. We also demonstrate the application of our method to dynamic surfaces.
IMAGGarment-1: Fine-Grained Garment Generation for Controllable Fashion Design
This paper presents IMAGGarment-1, a fine-grained garment generation (FGG) framework that enables high-fidelity garment synthesis with precise control over silhouette, color, and logo placement. Unlike existing methods that are limited to single-condition inputs, IMAGGarment-1 addresses the challenges of multi-conditional controllability in personalized fashion design and digital apparel applications. Specifically, IMAGGarment-1 employs a two-stage training strategy to separately model global appearance and local details, while enabling unified and controllable generation through end-to-end inference. In the first stage, we propose a global appearance model that jointly encodes silhouette and color using a mixed attention module and a color adapter. In the second stage, we present a local enhancement model with an adaptive appearance-aware module to inject user-defined logos and spatial constraints, enabling accurate placement and visual consistency. To support this task, we release GarmentBench, a large-scale dataset comprising over 180K garment samples paired with multi-level design conditions, including sketches, color references, logo placements, and textual prompts. Extensive experiments demonstrate that our method outperforms existing baselines, achieving superior structural stability, color fidelity, and local controllability performance. The code and model are available at https://github.com/muzishen/IMAGGarment-1.
Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations, where they generate descriptions of nonexistent objects, actions, or concepts, posing significant risks in safety-critical applications. Existing hallucination mitigation methods typically follow one of two paradigms: generation adjustment, which modifies decoding behavior to align text with visual inputs, and post-hoc verification, where external models assess and correct outputs. While effective, generation adjustment methods often rely on heuristics and lack correction mechanisms, while post-hoc verification is complicated, typically requiring multiple models and tending to reject outputs rather than refine them. In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification. By leveraging a new hallucination-verification dataset containing over 1.3M semi-synthetic samples, along with a novel inference-time retrospective resampling technique, our approach enables VLMs to both detect hallucinations during generation and dynamically revise those hallucinations. Our evaluations show that REVERSE achieves state-of-the-art hallucination reduction, outperforming the best existing methods by up to 12% on CHAIR-MSCOCO and 28% on HaloQuest. Our dataset, model, and code are available at: https://reverse-vlm.github.io.
comment: Preprint. Project Page: https://reverse-vlm.github.io
ODHSR: Online Dense 3D Reconstruction of Humans and Scenes from Monocular Videos CVPR 2025
Creating a photorealistic scene and human reconstruction from a single monocular in-the-wild video figures prominently in the perception of a human-centric 3D world. Recent neural rendering advances have enabled holistic human-scene reconstruction but require pre-calibrated camera and human poses, and days of training time. In this work, we introduce a novel unified framework that simultaneously performs camera tracking, human pose estimation and human-scene reconstruction in an online fashion. 3D Gaussian Splatting is utilized to learn Gaussian primitives for humans and scenes efficiently, and reconstruction-based camera tracking and human pose estimation modules are designed to enable holistic understanding and effective disentanglement of pose and appearance. Specifically, we design a human deformation module to reconstruct the details and enhance generalizability to out-of-distribution poses faithfully. Aiming to learn the spatial correlation between human and scene accurately, we introduce occlusion-aware human silhouette rendering and monocular geometric priors, which further improve reconstruction quality. Experiments on the EMDB and NeuMan datasets demonstrate superior or on-par performance with existing methods in camera tracking, human pose estimation, novel view synthesis and runtime. Our project page is at https://eth-ait.github.io/ODHSR.
comment: Accepted at CVPR 2025
Personalized Text-to-Image Generation with Auto-Regressive Models
Personalized image synthesis has emerged as a pivotal application in text-to-image generation, enabling the creation of images featuring specific subjects in diverse contexts. While diffusion models have dominated this domain, auto-regressive models, with their unified architecture for text and image modeling, remain underexplored for personalized image generation. This paper investigates the potential of optimizing auto-regressive models for personalized image synthesis, leveraging their inherent multimodal capabilities to perform this task. We propose a two-stage training strategy that combines optimization of text embeddings and fine-tuning of transformer layers. Our experiments on the auto-regressive model demonstrate that this method achieves comparable subject fidelity and prompt following to the leading diffusion-based personalization methods. The results highlight the effectiveness of auto-regressive models in personalized image generation, offering a new direction for future research in this area.
comment: Project page: https://github.com/KaiyueSun98/T2I-Personalization-with-AR
Digital Twin Generation from Visual Data: A Survey
This survey explores recent developments in generating digital twins from videos. Such digital twins can be used for robotics application, media content creation, or design and construction works. We analyze various approaches, including 3D Gaussian Splatting, generative in-painting, semantic segmentation, and foundation models highlighting their advantages and limitations. Additionally, we discuss challenges such as occlusions, lighting variations, and scalability, as well as potential future research directions. This survey aims to provide a comprehensive overview of state-of-the-art methodologies and their implications for real-world applications. Awesome list: https://github.com/ndrwmlnk/awesome-digital-twins
AerialMegaDepth: Learning Aerial-Ground Reconstruction and View Synthesis CVPR 2025
We explore the task of geometric reconstruction of images captured from a mixture of ground and aerial views. Current state-of-the-art learning-based approaches fail to handle the extreme viewpoint variation between aerial-ground image pairs. Our hypothesis is that the lack of high-quality, co-registered aerial-ground datasets for training is a key reason for this failure. Such data is difficult to assemble precisely because it is difficult to reconstruct in a scalable way. To overcome this challenge, we propose a scalable framework combining pseudo-synthetic renderings from 3D city-wide meshes (e.g., Google Earth) with real, ground-level crowd-sourced images (e.g., MegaDepth). The pseudo-synthetic data simulates a wide range of aerial viewpoints, while the real, crowd-sourced images help improve visual fidelity for ground-level images where mesh-based renderings lack sufficient detail, effectively bridging the domain gap between real images and pseudo-synthetic renderings. Using this hybrid dataset, we fine-tune several state-of-the-art algorithms and achieve significant improvements on real-world, zero-shot aerial-ground tasks. For example, we observe that baseline DUSt3R localizes fewer than 5% of aerial-ground pairs within 5 degrees of camera rotation error, while fine-tuning with our data raises accuracy to nearly 56%, addressing a major failure point in handling large viewpoint changes. Beyond camera estimation and scene reconstruction, our dataset also improves performance on downstream tasks like novel-view synthesis in challenging aerial-ground scenarios, demonstrating the practical value of our approach in real-world applications.
comment: Appearing in CVPR 2025. Project page: https://aerial-megadepth.github.io
Training-Free Hierarchical Scene Understanding for Gaussian Splatting with Superpoint Graphs
Bridging natural language and 3D geometry is a crucial step toward flexible, language-driven scene understanding. While recent advances in 3D Gaussian Splatting (3DGS) have enabled fast and high-quality scene reconstruction, research has also explored incorporating open-vocabulary understanding into 3DGS. However, most existing methods require iterative optimization over per-view 2D semantic feature maps, which not only results in inefficiencies but also leads to inconsistent 3D semantics across views. To address these limitations, we introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives. The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities and providing a structured foundation for open-vocabulary understanding. Based on the graph structure, we design an efficient reprojection strategy that lifts 2D semantic features onto the superpoints, avoiding costly multi-view iterative training. The resulting representation ensures strong 3D semantic coherence and naturally supports hierarchical understanding, enabling both coarse- and fine-grained open-vocabulary perception within a unified semantic field. Extensive experiments demonstrate that our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30\times$ faster. Our code will be available at https://github.com/Atrovast/THGS.
St4RTrack: Simultaneous 4D Reconstruction and Tracking in the World
Dynamic 3D reconstruction and point tracking in videos are typically treated as separate tasks, despite their deep connection. We propose St4RTrack, a feed-forward framework that simultaneously reconstructs and tracks dynamic video content in a world coordinate frame from RGB inputs. This is achieved by predicting two appropriately defined pointmaps for a pair of frames captured at different moments. Specifically, we predict both pointmaps at the same moment, in the same world, capturing both static and dynamic scene geometry while maintaining 3D correspondences. Chaining these predictions through the video sequence with respect to a reference frame naturally computes long-range correspondences, effectively combining 3D reconstruction with 3D tracking. Unlike prior methods that rely heavily on 4D ground truth supervision, we employ a novel adaptation scheme based on a reprojection loss. We establish a new extensive benchmark for world-frame reconstruction and tracking, demonstrating the effectiveness and efficiency of our unified, data-driven framework. Our code, model, and benchmark will be released.
comment: Project page: https://St4RTrack.github.io/
Readable Twins of Unreadable Models
Creating responsible artificial intelligence (AI) systems is an important issue in contemporary research and development of works on AI. One of the characteristics of responsible AI systems is their explainability. In the paper, we are interested in explainable deep learning (XDL) systems. On the basis of the creation of digital twins of physical objects, we introduce the idea of creating readable twins (in the form of imprecise information flow models) for unreadable deep learning models. The complete procedure for switching from the deep learning model (DLM) to the imprecise information flow model (IIFM) is presented. The proposed approach is illustrated with an example of a deep learning classification model for image recognition of handwritten digits from the MNIST data set.
comment: Based on the abstract accepted for ISFS 2025
$\texttt{Complex-Edit}$: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark SC
We introduce $\texttt{Complex-Edit}$, a comprehensive benchmark designed to systematically evaluate instruction-based image editing models across instructions of varying complexity. To develop this benchmark, we harness GPT-4o to automatically collect a diverse set of editing instructions at scale. Our approach follows a well-structured ``Chain-of-Edit'' pipeline: we first generate individual atomic editing tasks independently and then integrate them to form cohesive, complex instructions. Additionally, we introduce a suite of metrics to assess various aspects of editing performance, along with a VLM-based auto-evaluation pipeline that supports large-scale assessments. Our benchmark yields several notable insights: 1) Open-source models significantly underperform relative to proprietary, closed-source models, with the performance gap widening as instruction complexity increases; 2) Increased instructional complexity primarily impairs the models' ability to retain key elements from the input images and to preserve the overall aesthetic quality; 3) Decomposing a complex instruction into a sequence of atomic steps, executed in a step-by-step manner, substantially degrades performance across multiple metrics; 4) A straightforward Best-of-N selection strategy improves results for both direct editing and the step-by-step sequential approach; and 5) We observe a ``curse of synthetic data'': when synthetic data is involved in model training, the edited images from such models tend to appear increasingly synthetic as the complexity of the editing instructions rises -- a phenomenon that intriguingly also manifests in the latest GPT-4o outputs.
comment: Project Page: https://ucsc-vlaa.github.io/Complex-Edit/, Dataset: https://huggingface.co/datasets/UCSC-VLAA/Complex-Edit
PCBEAR: Pose Concept Bottleneck for Explainable Action Recognition CVPR
Human action recognition (HAR) has achieved impressive results with deep learning models, but their decision-making process remains opaque due to their black-box nature. Ensuring interpretability is crucial, especially for real-world applications requiring transparency and accountability. Existing video XAI methods primarily rely on feature attribution or static textual concepts, both of which struggle to capture motion dynamics and temporal dependencies essential for action understanding. To address these challenges, we propose Pose Concept Bottleneck for Explainable Action Recognition (PCBEAR), a novel concept bottleneck framework that introduces human pose sequences as motion-aware, structured concepts for video action recognition. Unlike methods based on pixel-level features or static textual descriptions, PCBEAR leverages human skeleton poses, which focus solely on body movements, providing robust and interpretable explanations of motion dynamics. We define two types of pose-based concepts: static pose concepts for spatial configurations at individual frames, and dynamic pose concepts for motion patterns across multiple frames. To construct these concepts, PCBEAR applies clustering to video pose sequences, allowing for automatic discovery of meaningful concepts without manual annotation. We validate PCBEAR on KTH, Penn-Action, and HAA500, showing that it achieves high classification performance while offering interpretable, motion-driven explanations. Our method provides both strong predictive performance and human-understandable insights into the model's reasoning process, enabling test-time interventions for debugging and improving model behavior.
comment: This paper is accepted by CVPRW 2025
NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: Methods and Results CVPR
This paper presents a review for the NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement. The challenge comprises two tracks: (i) Efficient Video Quality Assessment (KVQ), and (ii) Diffusion-based Image Super-Resolution (KwaiSR). Track 1 aims to advance the development of lightweight and efficient video quality assessment (VQA) models, with an emphasis on eliminating reliance on model ensembles, redundant weights, and other computationally expensive components in the previous IQA/VQA competitions. Track 2 introduces a new short-form UGC dataset tailored for single image super-resolution, i.e., the KwaiSR dataset. It consists of 1,800 synthetically generated S-UGC image pairs and 1,900 real-world S-UGC images, which are split into training, validation, and test sets using a ratio of 8:1:1. The primary objective of the challenge is to drive research that benefits the user experience of short-form UGC platforms such as Kwai and TikTok. This challenge attracted 266 participants and received 18 valid final submissions with corresponding fact sheets, significantly contributing to the progress of short-form UGC VQA and image superresolution. The project is publicly available at https://github.com/lixinustc/KVQE- ChallengeCVPR-NTIRE2025.
comment: Challenge Report of NTIRE 2025; Methods from 18 Teams; Accepted by CVPR Workshop; 21 pages
Science-T2I: Addressing Scientific Illusions in Image Synthesis CVPR 2025
We present a novel approach to integrating scientific knowledge into generative models, enhancing their realism and consistency in image synthesis. First, we introduce Science-T2I, an expert-annotated adversarial dataset comprising adversarial 20k image pairs with 9k prompts, covering wide distinct scientific knowledge categories. Leveraging Science-T2I, we present SciScore, an end-to-end reward model that refines the assessment of generated images based on scientific knowledge, which is achieved by augmenting both the scientific comprehension and visual capabilities of pre-trained CLIP model. Additionally, based on SciScore, we propose a two-stage training framework, comprising a supervised fine-tuning phase and a masked online fine-tuning phase, to incorporate scientific knowledge into existing generative models. Through comprehensive experiments, we demonstrate the effectiveness of our framework in establishing new standards for evaluating the scientific realism of generated content. Specifically, SciScore attains performance comparable to human-level, demonstrating a 5% improvement similar to evaluations conducted by experienced human evaluators. Furthermore, by applying our proposed fine-tuning method to FLUX, we achieve a performance enhancement exceeding 50% on SciScore.
comment: Accepted to CVPR 2025. Code, docs, weight, benchmark and training data are all avaliable at https://jialuo-li.github.io/Science-T2I-Web
Low-hallucination Synthetic Captions for Large-Scale Vision-Language Model Pre-training
In recent years, the field of vision-language model pre-training has experienced rapid advancements, driven primarily by the continuous enhancement of textual capabilities in large language models. However, existing training paradigms for multimodal large language models heavily rely on high-quality image-text pairs. As models and data scales grow exponentially, the availability of such meticulously curated data has become increasingly scarce and saturated, thereby severely limiting further advancements in this domain. This study investigates scalable caption generation techniques for vision-language model pre-training and demonstrates that large-scale low-hallucination synthetic captions can serve dual purposes: 1) acting as a viable alternative to real-world data for pre-training paradigms and 2) achieving superior performance enhancement when integrated into vision-language models through empirical validation. This paper presents three key contributions: 1) a novel pipeline for generating high-quality, low-hallucination, and knowledge-rich synthetic captions. Our continuous DPO methodology yields remarkable results in reducing hallucinations. Specifically, the non-hallucination caption rate on a held-out test set increases from 48.2% to 77.9% for a 7B-size model. 2) Comprehensive empirical validation reveals that our synthetic captions confer superior pre-training advantages over their counterparts. Across 35 vision language tasks, the model trained with our data achieves a significant performance gain of at least 6.2% compared to alt-text pairs and other previous work. Meanwhile, it also offers considerable support in the text-to-image domain. With our dataset, the FID score is reduced by 17.1 on a real-world validation benchmark and 13.3 on the MSCOCO validation benchmark. 3) We will release Hunyuan-Recap100M, a low-hallucination and knowledge-intensive synthetic caption dataset.
VistaDPO: Video Hierarchical Spatial-Temporal Direct Preference Optimization for Large Video Models
Large Video Models (LVMs) built upon Large Language Models (LLMs) have shown promise in video understanding but often suffer from misalignment with human intuition and video hallucination issues. To address these challenges, we introduce VistaDPO, a novel framework for Video Hierarchical Spatial-Temporal Direct Preference Optimization. VistaDPO enhances text-video preference alignment across three hierarchical levels: i) Instance Level, aligning overall video content with responses; ii) Temporal Level, aligning video temporal semantics with event descriptions; and iii) Perceptive Level, aligning spatial objects with language tokens. Given the lack of datasets for fine-grained video-language preference alignment, we construct VistaDPO-7k, a dataset of 7.2K QA pairs annotated with chosen and rejected responses, along with spatial-temporal grounding information such as timestamps, keyframes, and bounding boxes. Extensive experiments on benchmarks such as Video Hallucination, Video QA, and Captioning performance tasks demonstrate that VistaDPO significantly improves the performance of existing LVMs, effectively mitigating video-language misalignment and hallucination. The code and data are available at https://github.com/HaroldChen19/VistaDPO.
comment: Code and Data: https://github.com/HaroldChen19/VistaDPO
Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
UniEdit-Flow: Unleashing Inversion and Editing in the Era of Flow Models
Flow matching models have emerged as a strong alternative to diffusion models, but existing inversion and editing methods designed for diffusion are often ineffective or inapplicable to them. The straight-line, non-crossing trajectories of flow models pose challenges for diffusion-based approaches but also open avenues for novel solutions. In this paper, we introduce a predictor-corrector-based framework for inversion and editing in flow models. First, we propose Uni-Inv, an effective inversion method designed for accurate reconstruction. Building on this, we extend the concept of delayed injection to flow models and introduce Uni-Edit, a region-aware, robust image editing approach. Our methodology is tuning-free, model-agnostic, efficient, and effective, enabling diverse edits while ensuring strong preservation of edit-irrelevant regions. Extensive experiments across various generative models demonstrate the superiority and generalizability of Uni-Inv and Uni-Edit, even under low-cost settings. Project page: https://uniedit-flow.github.io/
comment: Project page: https://uniedit-flow.github.io/
RF-DETR Object Detection vs YOLOv12 : A Study of Transformer-based and CNN-based Architectures for Single-Class and Multi-Class Greenfruit Detection in Complex Orchard Environments Under Label Ambiguity
This study conducts a detailed comparison of RF-DETR object detection base model and YOLOv12 object detection model configurations for detecting greenfruits in a complex orchard environment marked by label ambiguity, occlusions, and background blending. A custom dataset was developed featuring both single-class (greenfruit) and multi-class (occluded and non-occluded greenfruits) annotations to assess model performance under dynamic real-world conditions. RF-DETR object detection model, utilizing a DINOv2 backbone and deformable attention, excelled in global context modeling, effectively identifying partially occluded or ambiguous greenfruits. In contrast, YOLOv12 leveraged CNN-based attention for enhanced local feature extraction, optimizing it for computational efficiency and edge deployment. RF-DETR achieved the highest mean Average Precision (mAP50) of 0.9464 in single-class detection, proving its superior ability to localize greenfruits in cluttered scenes. Although YOLOv12N recorded the highest mAP@50:95 of 0.7620, RF-DETR consistently outperformed in complex spatial scenarios. For multi-class detection, RF-DETR led with an mAP@50 of 0.8298, showing its capability to differentiate between occluded and non-occluded fruits, while YOLOv12L scored highest in mAP@50:95 with 0.6622, indicating better classification in detailed occlusion contexts. Training dynamics analysis highlighted RF-DETR's swift convergence, particularly in single-class settings where it plateaued within 10 epochs, demonstrating the efficiency of transformer-based architectures in adapting to dynamic visual data. These findings validate RF-DETR's effectiveness for precision agricultural applications, with YOLOv12 suited for fast-response scenarios. >Index Terms: RF-DETR object detection, YOLOv12, YOLOv13, YOLOv14, YOLOv15, YOLOE, YOLO World, YOLO, You Only Look Once, Roboflow, Detection Transformers, CNNs
EventVAD: Training-Free Event-Aware Video Anomaly Detection
Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.
Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off
Computer vision is transforming fashion through Virtual Try-On (VTON) and Virtual Try-Off (VTOFF). VTON generates images of a person in a specified garment using a target photo and a standardized garment image, while a more challenging variant, Person-to-Person Virtual Try-On (p2p-VTON), uses a photo of another person wearing the garment. VTOFF, on the other hand, extracts standardized garment images from clothed individuals. We introduce TryOffDiff, a diffusion-based VTOFF model. Built on a latent diffusion framework with SigLIP image conditioning, it effectively captures garment properties like texture, shape, and patterns. TryOffDiff achieves state-of-the-art results on VITON-HD and strong performance on DressCode dataset, covering upper-body, lower-body, and dresses. Enhanced with class-specific embeddings, it pioneers multi-garment VTOFF, the first of its kind. When paired with VTON models, it improves p2p-VTON by minimizing unwanted attribute transfer, such as skin color. Code is available at: https://rizavelioglu.github.io/tryoffdiff/
Effective Dual-Region Augmentation for Reduced Reliance on Large Amounts of Labeled Data SP
This paper introduces a novel dual-region augmentation approach designed to reduce reliance on large-scale labeled datasets while improving model robustness and adaptability across diverse computer vision tasks, including source-free domain adaptation (SFDA) and person re-identification (ReID). Our method performs targeted data transformations by applying random noise perturbations to foreground objects and spatially shuffling background patches. This effectively increases the diversity of the training data, improving model robustness and generalization. Evaluations on the PACS dataset for SFDA demonstrate that our augmentation strategy consistently outperforms existing methods, achieving significant accuracy improvements in both single-target and multi-target adaptation settings. By augmenting training data through structured transformations, our method enables model generalization across domains, providing a scalable solution for reducing reliance on manually annotated datasets. Furthermore, experiments on Market-1501 and DukeMTMC-reID datasets validate the effectiveness of our approach for person ReID, surpassing traditional augmentation techniques.
comment: 9 pages, 2 figures, Accepted to SPIE DSC 2025 Conference: Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications III
SkyReels-V2: Infinite-length Film Generative Model
Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.
comment: 31 pages,10 figures
HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation
Scene-level 3D generation represents a critical frontier in multimedia and computer graphics, yet existing approaches either suffer from limited object categories or lack editing flexibility for interactive applications. In this paper, we present HiScene, a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation and delivers high-fidelity scenes with compositional identities and aesthetic scene content. Our key insight is treating scenes as hierarchical "objects" under isometric views, where a room functions as a complex object that can be further decomposed into manipulatable items. This hierarchical approach enables us to generate 3D content that aligns with 2D representations while maintaining compositional structure. To ensure completeness and spatial alignment of each decomposed instance, we develop a video-diffusion-based amodal completion technique that effectively handles occlusions and shadows between objects, and introduce shape prior injection to ensure spatial coherence within the scene. Experimental results demonstrate that our method produces more natural object arrangements and complete object instances suitable for interactive applications, while maintaining physical plausibility and alignment with user inputs.
comment: Project webpage: https://zju3dv.github.io/hiscene/
EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance CVPR 2025
Echocardiography is crucial for cardiovascular disease detection but relies heavily on experienced sonographers. Echocardiography probe guidance systems, which provide real-time movement instructions for acquiring standard plane images, offer a promising solution for AI-assisted or fully autonomous scanning. However, developing effective machine learning models for this task remains challenging, as they must grasp heart anatomy and the intricate interplay between probe motion and visual signals. To address this, we present EchoWorld, a motion-aware world modeling framework for probe guidance that encodes anatomical knowledge and motion-induced visual dynamics, while effectively leveraging past visual-motion sequences to enhance guidance precision. EchoWorld employs a pre-training strategy inspired by world modeling principles, where the model predicts masked anatomical regions and simulates the visual outcomes of probe adjustments. Built upon this pre-trained model, we introduce a motion-aware attention mechanism in the fine-tuning stage that effectively integrates historical visual-motion data, enabling precise and adaptive probe guidance. Trained on more than one million ultrasound images from over 200 routine scans, EchoWorld effectively captures key echocardiographic knowledge, as validated by qualitative analysis. Moreover, our method significantly reduces guidance errors compared to existing visual backbones and guidance frameworks, excelling in both single-frame and sequential evaluation protocols. Code is available at https://github.com/LeapLabTHU/EchoWorld.
comment: Accepted by CVPR 2025
ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models
Text-to-image models based on diffusion processes, such as DALL-E, Stable Diffusion, and Midjourney, are capable of transforming texts into detailed images and have widespread applications in art and design. As such, amateur users can easily imitate professional-level paintings by collecting an artist's work and fine-tuning the model, leading to concerns about artworks' copyright infringement. To tackle these issues, previous studies either add visually imperceptible perturbation to the artwork to change its underlying styles (perturbation-based methods) or embed post-training detectable watermarks in the artwork (watermark-based methods). However, when the artwork or the model has been published online, i.e., modification to the original artwork or model retraining is not feasible, these strategies might not be viable. To this end, we propose a novel method for data-use auditing in the text-to-image generation model. The general idea of ArtistAuditor is to identify if a suspicious model has been finetuned using the artworks of specific artists by analyzing the features related to the style. Concretely, ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style. Then, ArtistAuditor queries a trained discriminator to gain the auditing decisions. The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values (> 0.937). By studying ArtistAuditor's transferability and core modules, we provide valuable insights into the practical implementation. Finally, we demonstrate the effectiveness of ArtistAuditor in real-world cases by an online platform Scenario. ArtistAuditor is open-sourced at https://github.com/Jozenn/ArtistAuditor.
comment: To appear in the ACM Web Conference 2025, Sydney, Australia
Imaging for All-Day Wearable Smart Glasses
In recent years smart glasses technology has rapidly advanced, opening up entirely new areas for mobile computing. We expect future smart glasses will need to be all-day wearable, adopting a small form factor to meet the requirements of volume, weight, fashionability and social acceptability, which puts significant constraints on the space of possible solutions. Additional challenges arise due to the fact that smart glasses are worn in arbitrary environments while their wearer moves and performs everyday activities. In this paper, we systematically analyze the space of imaging from smart glasses and derive several fundamental limits that govern this imaging domain. We discuss the impact of these limits on achievable image quality and camera module size -- comparing in particular to related devices such as mobile phones. We then propose a novel distributed imaging approach that allows to minimize the size of the individual camera modules when compared to a standard monolithic camera design. Finally, we demonstrate the properties of this novel approach in a series of experiments using synthetic data as well as images captured with two different prototype implementations.
NoisyRollout: Reinforcing Visual Reasoning with Data Augmentation
Recent advances in reinforcement learning (RL) have strengthened the reasoning capabilities of vision-language models (VLMs). However, enhancing policy exploration to more effectively scale test-time compute remains underexplored in VLMs. In addition, VLMs continue to struggle with imperfect visual perception, which in turn affects the subsequent reasoning process. To this end, we propose NoisyRollout, a simple yet effective RL approach that mixes trajectories from both clean and moderately distorted images to introduce targeted diversity in visual perception and the resulting reasoning patterns. Without additional training cost, NoisyRollout enhances the exploration capabilities of VLMs by incorporating a vision-oriented inductive bias. Furthermore, NoisyRollout employs a noise annealing schedule that gradually reduces distortion strength over training, ensuring benefit from noisy signals early while maintaining training stability and scalability in later stages. With just 2.1K training samples, NoisyRollout achieves state-of-the-art performance among open-source RL-tuned models on 5 out-of-domain benchmarks spanning both reasoning and perception tasks, while preserving comparable or even better in-domain performance.
comment: Technical Report
Expert Kernel Generation Network Driven by Contextual Mapping for Hyperspectral Image Classification
Deep neural networks face several challenges in hyperspectral image classification, including high-dimensional data, sparse distribution of ground objects, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To more efficiently adapt to ground object distributions while extracting image features without introducing excessive parameters and skipping redundant information, this paper proposes EKGNet based on an improved 3D-DenseNet model, consisting of a context-aware mapping network and a dynamic kernel generation module. The context-aware mapping module translates global contextual information of hyperspectral inputs into instructions for combining base convolutional kernels, while the dynamic kernels are composed of K groups of base convolutions, analogous to K different types of experts specializing in fundamental patterns across various dimensions. The mapping module and dynamic kernel generation mechanism form a tightly coupled system - the former generates meaningful combination weights based on inputs, while the latter constructs an adaptive expert convolution system using these weights. This dynamic approach enables the model to focus more flexibly on key spatial structures when processing different regions, rather than relying on the fixed receptive field of a single static convolutional kernel. EKGNet enhances model representation capability through a 3D dynamic expert convolution system without increasing network depth or width. The proposed method demonstrates superior performance on IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification approaches.
comment: arXiv admin note: substantial text overlap with arXiv:2503.23472
Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/evtexture.github.io/
Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
Prototypes are Balanced Units for Efficient and Effective Partially Relevant Video Retrieval
In a retrieval system, simultaneously achieving search accuracy and efficiency is inherently challenging. This challenge is particularly pronounced in partially relevant video retrieval (PRVR), where incorporating more diverse context representations at varying temporal scales for each video enhances accuracy but increases computational and memory costs. To address this dichotomy, we propose a prototypical PRVR framework that encodes diverse contexts within a video into a fixed number of prototypes. We then introduce several strategies to enhance text association and video understanding within the prototypes, along with an orthogonal objective to ensure that the prototypes capture a diverse range of content. To keep the prototypes searchable via text queries while accurately encoding video contexts, we implement cross- and uni-modal reconstruction tasks. The cross-modal reconstruction task aligns the prototypes with textual features within a shared space, while the uni-modal reconstruction task preserves all video contexts during encoding. Additionally, we employ a video mixing technique to provide weak guidance to further align prototypes and associated textual representations. Extensive evaluations on TVR, ActivityNet-Captions, and QVHighlights validate the effectiveness of our approach without sacrificing efficiency.
TTRD3: Texture Transfer Residual Denoising Dual Diffusion Model for Remote Sensing Image Super-Resolution
Remote Sensing Image Super-Resolution (RSISR) reconstructs high-resolution (HR) remote sensing images from low-resolution inputs to support fine-grained ground object interpretation. Existing methods face three key challenges: (1) Difficulty in extracting multi-scale features from spatially heterogeneous RS scenes, (2) Limited prior information causing semantic inconsistency in reconstructions, and (3) Trade-off imbalance between geometric accuracy and visual quality. To address these issues, we propose the Texture Transfer Residual Denoising Dual Diffusion Model (TTRD3) with three innovations: First, a Multi-scale Feature Aggregation Block (MFAB) employing parallel heterogeneous convolutional kernels for multi-scale feature extraction. Second, a Sparse Texture Transfer Guidance (STTG) module that transfers HR texture priors from reference images of similar scenes. Third, a Residual Denoising Dual Diffusion Model (RDDM) framework combining residual diffusion for deterministic reconstruction and noise diffusion for diverse generation. Experiments on multi-source RS datasets demonstrate TTRD3's superiority over state-of-the-art methods, achieving 1.43% LPIPS improvement and 3.67% FID enhancement compared to best-performing baselines. Code/model: https://github.com/LED-666/TTRD3.
Riemannian Patch Assignment Gradient Flows
This paper introduces patch assignment flows for metric data labeling on graphs. Labelings are determined by regularizing initial local labelings through the dynamic interaction of both labels and label assignments across the graph, entirely encoded by a dictionary of competing labeled patches and mediated by patch assignment variables. Maximal consistency of patch assignments is achieved by geometric numerical integration of a Riemannian ascent flow, as critical point of a Lagrangian action functional. Experiments illustrate properties of the approach, including uncertainty quantification of label assignments.
ChatEXAONEPath: An Expert-level Multimodal Large Language Model for Histopathology Using Whole Slide Images
Recent studies have made significant progress in developing large language models (LLMs) in the medical domain, which can answer expert-level questions and demonstrate the potential to assist clinicians in real-world clinical scenarios. Studies have also witnessed the importance of integrating various modalities with the existing LLMs for a better understanding of complex clinical contexts, which are innately multi-faceted by nature. Although studies have demonstrated the ability of multimodal LLMs in histopathology to answer questions from given images, they lack in understanding of thorough clinical context due to the patch-level data with limited information from public datasets. Thus, developing WSI-level MLLMs is significant in terms of the scalability and applicability of MLLMs in histopathology. In this study, we introduce an expert-level MLLM for histopathology using WSIs, dubbed as ChatEXAONEPath. We present a retrieval-based data generation pipeline using 10,094 pairs of WSIs and histopathology reports from The Cancer Genome Atlas (TCGA). We also showcase an AI-based evaluation protocol for a comprehensive understanding of the medical context from given multimodal information and evaluate generated answers compared to the original histopathology reports. We demonstrate the ability of diagnosing the given histopathology images using ChatEXAONEPath with the acceptance rate of 62.9% from 1,134 pairs of WSIs and reports. Our proposed model can understand pan-cancer WSIs and clinical context from various cancer types. We argue that our proposed model has the potential to assist clinicians by comprehensively understanding complex morphology of WSIs for cancer diagnosis through the integration of multiple modalities.
CompGS++: Compressed Gaussian Splatting for Static and Dynamic Scene Representation
Gaussian splatting demonstrates proficiency for 3D scene modeling but suffers from substantial data volume due to inherent primitive redundancy. To enable future photorealistic 3D immersive visual communication applications, significant compression is essential for transmission over the existing Internet infrastructure. Hence, we propose Compressed Gaussian Splatting (CompGS++), a novel framework that leverages compact Gaussian primitives to achieve accurate 3D modeling with substantial size reduction for both static and dynamic scenes. Our design is based on the principle of eliminating redundancy both between and within primitives. Specifically, we develop a comprehensive prediction paradigm to address inter-primitive redundancy through spatial and temporal primitive prediction modules. The spatial primitive prediction module establishes predictive relationships for scene primitives and enables most primitives to be encoded as compact residuals, substantially reducing the spatial redundancy. We further devise a temporal primitive prediction module to handle dynamic scenes, which exploits primitive correlations across timestamps to effectively reduce temporal redundancy. Moreover, we devise a rate-constrained optimization module that jointly minimizes reconstruction error and rate consumption. This module effectively eliminates parameter redundancy within primitives and enhances the overall compactness of scene representations. Comprehensive evaluations across multiple benchmark datasets demonstrate that CompGS++ significantly outperforms existing methods, achieving superior compression performance while preserving accurate scene modeling. Our implementation will be made publicly available on GitHub to facilitate further research.
comment: Submitted to a journal
Pose and Facial Expression Transfer by using StyleGAN
We propose a method to transfer pose and expression between face images. Given a source and target face portrait, the model produces an output image in which the pose and expression of the source face image are transferred onto the target identity. The architecture consists of two encoders and a mapping network that projects the two inputs into the latent space of StyleGAN2, which finally generates the output. The training is self-supervised from video sequences of many individuals. Manual labeling is not required. Our model enables the synthesis of random identities with controllable pose and expression. Close-to-real-time performance is achieved.
comment: Accepted at CVWW 2024. Presented in Terme Olimia, Slovenia
Hierarchical Feature Learning for Medical Point Clouds via State Space Model
Deep learning-based point cloud modeling has been widely investigated as an indispensable component of general shape analysis. Recently, transformer and state space model (SSM) have shown promising capacities in point cloud learning. However, limited research has been conducted on medical point clouds, which have great potential in disease diagnosis and treatment. This paper presents an SSM-based hierarchical feature learning framework for medical point cloud understanding. Specifically, we down-sample input into multiple levels through the farthest point sampling. At each level, we perform a series of k-nearest neighbor (KNN) queries to aggregate multi-scale structural information. To assist SSM in processing point clouds, we introduce coordinate-order and inside-out scanning strategies for efficient serialization of irregular points. Point features are calculated progressively from short neighbor sequences and long point sequences through vanilla and group Point SSM blocks, to capture both local patterns and long-range dependencies. To evaluate the proposed method, we build a large-scale medical point cloud dataset named MedPointS for anatomy classification, completion, and segmentation. Extensive experiments conducted on MedPointS demonstrate that our method achieves superior performance across all tasks. The dataset is available at https://flemme-docs.readthedocs.io/en/latest/medpoints.html. Code is merged to a public medical imaging platform: https://github.com/wlsdzyzl/flemme.
comment: 10 pages, 3 figures
GSAC: Leveraging Gaussian Splatting for Photorealistic Avatar Creation with Unity Integration
Photorealistic avatars have become essential for immersive applications in virtual reality (VR) and augmented reality (AR), enabling lifelike interactions in areas such as training simulations, telemedicine, and virtual collaboration. These avatars bridge the gap between the physical and digital worlds, improving the user experience through realistic human representation. However, existing avatar creation techniques face significant challenges, including high costs, long creation times, and limited utility in virtual applications. Manual methods, such as MetaHuman, require extensive time and expertise, while automatic approaches, such as NeRF-based pipelines often lack efficiency, detailed facial expression fidelity, and are unable to be rendered at a speed sufficent for real-time applications. By involving several cutting-edge modern techniques, we introduce an end-to-end 3D Gaussian Splatting (3DGS) avatar creation pipeline that leverages monocular video input to create a scalable and efficient photorealistic avatar directly compatible with the Unity game engine. Our pipeline incorporates a novel Gaussian splatting technique with customized preprocessing that enables the user of "in the wild" monocular video capture, detailed facial expression reconstruction and embedding within a fully rigged avatar model. Additionally, we present a Unity-integrated Gaussian Splatting Avatar Editor, offering a user-friendly environment for VR/AR application development. Experimental results validate the effectiveness of our preprocessing pipeline in standardizing custom data for 3DGS training and demonstrate the versatility of Gaussian avatars in Unity, highlighting the scalability and practicality of our approach.
All-in-One Transferring Image Compression from Human Perception to Multi-Machine Perception
Efficiently transferring Learned Image Compression (LIC) model from human perception to machine perception is an emerging challenge in vision-centric representation learning. Existing approaches typically adapt LIC to downstream tasks in a single-task manner, which is inefficient, lacks task interaction, and results in multiple task-specific bitstreams. To address these limitations, we propose an asymmetric adaptor framework that supports multi-task adaptation within a single model. Our method introduces a shared adaptor to learn general semantic features and task-specific adaptors to preserve task-level distinctions. With only lightweight plug-in modules and a frozen base codec, our method achieves strong performance across multiple tasks while maintaining compression efficiency. Experiments on the PASCAL-Context benchmark demonstrate that our method outperforms both Fully Fine-Tuned and other Parameter Efficient Fine-Tuned (PEFT) baselines, and validating the effectiveness of multi-vision transferring.
comment: 8 pages, 5 figures
Enhancing Cocoa Pod Disease Classification via Transfer Learning and Ensemble Methods: Toward Robust Predictive Modeling
This study presents an ensemble-based approach for cocoa pod disease classification by integrating transfer learning with three ensemble learning strategies: Bagging, Boosting, and Stacking. Pre-trained convolutional neural networks, including VGG16, VGG19, ResNet50, ResNet101, InceptionV3, and Xception, were fine-tuned and employed as base learners to detect three disease categories: Black Pod Rot, Pod Borer, and Healthy. A balanced dataset of 6,000 cocoa pod images was curated and augmented to ensure robustness against variations in lighting, orientation, and disease severity. The performance of each ensemble method was evaluated using accuracy, precision, recall, and F1-score. Experimental results show that Bagging consistently achieved superior classification performance with a test accuracy of 100%, outperforming Boosting (97%) and Stacking (92%). The findings confirm that combining transfer learning with ensemble techniques improves model generalization and reliability, making it a promising direction for precision agriculture and automated crop disease management.
MathPhys-Guided Coarse-to-Fine Anomaly Synthesis with SQE-Driven Bi-Level Optimization for Anomaly Detection
Anomaly detection is a crucial task in computer vision, yet collecting real-world defect images is inherently difficult due to the rarity and unpredictability of anomalies. Consequently, researchers have turned to synthetic methods for training data augmentation. However, existing synthetic strategies (e.g., naive cut-and-paste or inpainting) overlook the underlying physical causes of defects, leading to inconsistent, low-fidelity anomalies that hamper model generalization to real-world complexities. In this thesis, we introduced a novel pipeline that generates synthetic anomalies through Math-Physics model guidance, refines them via a Coarse-to-Fine approach and employs a bi-level optimization strategy with a Synthesis Quality Estimator(SQE). By incorporating physical modeling of cracks, corrosion, and deformation, our method produces realistic defect masks, which are subsequently enhanced in two phases. The first stage (npcF) enforces a PDE-based consistency to achieve a globally coherent anomaly structure, while the second stage (npcF++) further improves local fidelity using wavelet transforms and boundary synergy blocks. Additionally, we leverage SQE-driven weighting, ensuring that high-quality synthetic samples receive greater emphasis during training. To validate our approach, we conducted comprehensive experiments on three widely adopted industrial anomaly detection benchmarks: MVTec AD, VisA, and BTAD. Across these datasets, the proposed pipeline achieves state-of-the-art (SOTA) results in both image-AUROC and pixel-AUROC, confirming the effectiveness of our MaPhC2F and BiSQAD.
Vision and Language Integration for Domain Generalization
Domain generalization aims at training on source domains to uncover a domain-invariant feature space, allowing the model to perform robust generalization ability on unknown target domains. However, due to domain gaps, it is hard to find reliable common image feature space, and the reason for that is the lack of suitable basic units for images. Different from image in vision space, language has comprehensive expression elements that can effectively convey semantics. Inspired by the semantic completeness of language and intuitiveness of image, we propose VLCA, which combine language space and vision space, and connect the multiple image domains by using semantic space as the bridge domain. Specifically, in language space, by taking advantage of the completeness of language basic units, we tend to capture the semantic representation of the relations between categories through word vector distance. Then, in vision space, by taking advantage of the intuitiveness of image features, the common pattern of sample features with the same class is explored through low-rank approximation. In the end, the language representation is aligned with the vision representation through the multimodal space of text and image. Experiments demonstrate the effectiveness of the proposed method.
Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction CVPR 2025
We present GDFusion, a temporal fusion method for vision-based 3D semantic occupancy prediction (VisionOcc). GDFusion opens up the underexplored aspects of temporal fusion within the VisionOcc framework, focusing on both temporal cues and fusion strategies. It systematically examines the entire VisionOcc pipeline, identifying three fundamental yet previously overlooked temporal cues: scene-level consistency, motion calibration, and geometric complementation. These cues capture diverse facets of temporal evolution and make distinct contributions across various modules in the VisionOcc framework. To effectively fuse temporal signals across heterogeneous representations, we propose a novel fusion strategy by reinterpreting the formulation of vanilla RNNs. This reinterpretation leverages gradient descent on features to unify the integration of diverse temporal information, seamlessly embedding the proposed temporal cues into the network. Extensive experiments on nuScenes demonstrate that GDFusion significantly outperforms established baselines. Notably, on Occ3D benchmark, it achieves 1.4\%-4.8\% mIoU improvements and reduces memory consumption by 27\%-72\%.
comment: CVPR 2025
Disentangling Polysemantic Channels in Convolutional Neural Networks CVPR 2025
Mechanistic interpretability is concerned with analyzing individual components in a (convolutional) neural network (CNN) and how they form larger circuits representing decision mechanisms. These investigations are challenging since CNNs frequently learn polysemantic channels that encode distinct concepts, making them hard to interpret. To address this, we propose an algorithm to disentangle a specific kind of polysemantic channel into multiple channels, each responding to a single concept. Our approach restructures weights in a CNN, utilizing that different concepts within the same channel exhibit distinct activation patterns in the previous layer. By disentangling these polysemantic features, we enhance the interpretability of CNNs, ultimately improving explanatory techniques such as feature visualizations.
comment: Accepted at CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV). Code: https://github.com/visinf/disentangle-channels
Efficient Masked Image Compression with Position-Indexed Self-Attention
In recent years, image compression for high-level vision tasks has attracted considerable attention from researchers. Given that object information in images plays a far more crucial role in downstream tasks than background information, some studies have proposed semantically structuring the bitstream to selectively transmit and reconstruct only the information required by these tasks. However, such methods structure the bitstream after encoding, meaning that the coding process still relies on the entire image, even though much of the encoded information will not be transmitted. This leads to redundant computations. Traditional image compression methods require a two-dimensional image as input, and even if the unimportant regions of the image are set to zero by applying a semantic mask, these regions still participate in subsequent computations as part of the image. To address such limitations, we propose an image compression method based on a position-indexed self-attention mechanism that encodes and decodes only the visible parts of the masked image. Compared to existing semantic-structured compression methods, our approach can significantly reduce computational costs.
Real-time High-fidelity Gaussian Human Avatars with Position-based Interpolation of Spatially Distributed MLPs CVPR 2025
Many works have succeeded in reconstructing Gaussian human avatars from multi-view videos. However, they either struggle to capture pose-dependent appearance details with a single MLP, or rely on a computationally intensive neural network to reconstruct high-fidelity appearance but with rendering performance degraded to non-real-time. We propose a novel Gaussian human avatar representation that can reconstruct high-fidelity pose-dependence appearance with details and meanwhile can be rendered in real time. Our Gaussian avatar is empowered by spatially distributed MLPs which are explicitly located on different positions on human body. The parameters stored in each Gaussian are obtained by interpolating from the outputs of its nearby MLPs based on their distances. To avoid undesired smooth Gaussian property changing during interpolation, for each Gaussian we define a set of Gaussian offset basis, and a linear combination of basis represents the Gaussian property offsets relative to the neutral properties. Then we propose to let the MLPs output a set of coefficients corresponding to the basis. In this way, although Gaussian coefficients are derived from interpolation and change smoothly, the Gaussian offset basis is learned freely without constraints. The smoothly varying coefficients combined with freely learned basis can still produce distinctly different Gaussian property offsets, allowing the ability to learn high-frequency spatial signals. We further use control points to constrain the Gaussians distributed on a surface layer rather than allowing them to be irregularly distributed inside the body, to help the human avatar generalize better when animated under novel poses. Compared to the state-of-the-art method, our method achieves better appearance quality with finer details while the rendering speed is significantly faster under novel views and novel poses.
comment: CVPR 2025
Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation
Tactile sensing is crucial for achieving human-level robotic capabilities in manipulation tasks. VBTSs have emerged as a promising solution, offering high spatial resolution and cost-effectiveness by sensing contact through camera-captured deformation patterns of elastic gel pads. However, these sensors' complex physical characteristics and visual signal processing requirements present unique challenges for robotic applications. The lack of efficient and accurate simulation tools for VBTS has significantly limited the scale and scope of tactile robotics research. Here we present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed, achieving an 18-fold acceleration over real-time across thousands of parallel environments. Unlike previous simulators that operate at sub-real-time speeds with limited parallelization, Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs. Through extensive validation in object recognition, robotic grasping, and articulated object manipulation, we demonstrate precise simulation and successful sim-to-real transfer. These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development. By enabling large-scale simulation and experimentation with tactile sensing, Taccel accelerates the development of more capable robotic systems, potentially transforming how robots interact with and understand their physical environment.
comment: 17 pages, 7 figures
Second-order Optimization of Gaussian Splats with Importance Sampling
3D Gaussian Splatting (3DGS) is widely used for novel view synthesis due to its high rendering quality and fast inference time. However, 3DGS predominantly relies on first-order optimizers such as Adam, which leads to long training times. To address this limitation, we propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG), which we specifically tailor towards Gaussian Splatting. Our key insight is that the Jacobian in 3DGS exhibits significant sparsity since each Gaussian affects only a limited number of pixels. We exploit this sparsity by proposing a matrix-free and GPU-parallelized LM optimization. To further improve its efficiency, we propose sampling strategies for both the camera views and loss function and, consequently, the normal equation, significantly reducing the computational complexity. In addition, we increase the convergence rate of the second-order approximation by introducing an effective heuristic to determine the learning rate that avoids the expensive computation cost of line search methods. As a result, our method achieves a $3\times$ speedup over standard LM and outperforms Adam by $~6\times$ when the Gaussian count is low while remaining competitive for moderate counts. Project Page: https://vcai.mpi-inf.mpg.de/projects/LM-IS
Tree-NeRV: A Tree-Structured Neural Representation for Efficient Non-Uniform Video Encoding
Implicit Neural Representations for Videos (NeRV) have emerged as a powerful paradigm for video representation, enabling direct mappings from frame indices to video frames. However, existing NeRV-based methods do not fully exploit temporal redundancy, as they rely on uniform sampling along the temporal axis, leading to suboptimal rate-distortion (RD) performance. To address this limitation, we propose Tree-NeRV, a novel tree-structured feature representation for efficient and adaptive video encoding. Unlike conventional approaches, Tree-NeRV organizes feature representations within a Binary Search Tree (BST), enabling non-uniform sampling along the temporal axis. Additionally, we introduce an optimization-driven sampling strategy, dynamically allocating higher sampling density to regions with greater temporal variation. Extensive experiments demonstrate that Tree-NeRV achieves superior compression efficiency and reconstruction quality, outperforming prior uniform sampling-based methods. Code will be released.
comment: 16 pages, 14 figures
SC3EF: A Joint Self-Correlation and Cross-Correspondence Estimation Framework for Visible and Thermal Image Registration
Multispectral imaging plays a critical role in a range of intelligent transportation applications, including advanced driver assistance systems (ADAS), traffic monitoring, and night vision. However, accurate visible and thermal (RGB-T) image registration poses a significant challenge due to the considerable modality differences. In this paper, we present a novel joint Self-Correlation and Cross-Correspondence Estimation Framework (SC3EF), leveraging both local representative features and global contextual cues to effectively generate RGB-T correspondences. For this purpose, we design a convolution-transformer-based pipeline to extract local representative features and encode global correlations of intra-modality for inter-modality correspondence estimation between unaligned visible and thermal images. After merging the local and global correspondence estimation results, we further employ a hierarchical optical flow estimation decoder to progressively refine the estimated dense correspondence maps. Extensive experiments demonstrate the effectiveness of our proposed method, outperforming the current state-of-the-art (SOTA) methods on representative RGB-T datasets. Furthermore, it also shows competitive generalization capabilities across challenging scenarios, including large parallax, severe occlusions, adverse weather, and other cross-modal datasets (e.g., RGB-N and RGB-D).
Computer-Aided Design of Personalized Occlusal Positioning Splints Using Multimodal 3D Data
Contemporary digital technology has a pivotal role in the design of customized medical appliances, including occlusal splints used in the treatment of stomatognathic system dysfunctions. We present an approach to computer-aided design and precision assessment of positioning occlusal splints, bridging clinical concepts with current digital dental practice. In our model, a 3D splint is generated based on a transformation matrix that represents the therapeutic change in mandibular position, defined by a specialist using a virtual patient model reconstructed from intraoral scans, CBCT, 3D facial scans and plaster model digitisation. The paper introduces a novel method for generating splints that accurately reproduce occlusal conditions in the therapeutic position, including a mechanism for resolving surface conflicts through virtual embossing. We demonstrate how transformation matrices can be acquired through clinical tools and intraoral devices, and evaluate the accuracy of the designed and printed splints using profile and surface deviation analysis. The proposed method enables reproducible, patient-specific splint fabrication and opens new possibilities in diagnostics, multimodal image registration and quantification of occlusal discrepancies.
3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
High-Fidelity Image Inpainting with Multimodal Guided GAN Inversion
Generative Adversarial Network (GAN) inversion have demonstrated excellent performance in image inpainting that aims to restore lost or damaged image texture using its unmasked content. Previous GAN inversion-based methods usually utilize well-trained GAN models as effective priors to generate the realistic regions for missing holes. Despite excellence, they ignore a hard constraint that the unmasked regions in the input and the output should be the same, resulting in a gap between GAN inversion and image inpainting and thus degrading the performance. Besides, existing GAN inversion approaches often consider a single modality of the input image, neglecting other auxiliary cues in images for improvements. Addressing these problems, we propose a novel GAN inversion approach, dubbed MMInvertFill, for image inpainting. MMInvertFill contains primarily a multimodal guided encoder with a pre-modulation and a GAN generator with F&W+ latent space. Specifically, the multimodal encoder aims to enhance the multi-scale structures with additional semantic segmentation edge texture modalities through a gated mask-aware attention module. Afterwards, a pre-modulation is presented to encode these structures into style vectors. To mitigate issues of conspicuous color discrepancy and semantic inconsistency, we introduce the F&W+ latent space to bridge the gap between GAN inversion and image inpainting. Furthermore, in order to reconstruct faithful and photorealistic images, we devise a simple yet effective Soft-update Mean Latent module to capture more diversified in-domain patterns for generating high-fidelity textures for massive corruptions. In our extensive experiments on six challenging datasets, we show that our MMInvertFill qualitatively and quantitatively outperforms other state-of-the-arts and it supports the completion of out-of-domain images effectively.
comment: Accepted to IJCV. arXiv admin note: text overlap with arXiv:2208.11850
ALT: A Python Package for Lightweight Feature Representation in Time Series Classification
We introduce ALT, an open-source Python package created for efficient and accurate time series classification (TSC). The package implements the adaptive law-based transformation (ALT) algorithm, which transforms raw time series data into a linearly separable feature space using variable-length shifted time windows. This adaptive approach enhances its predecessor, the linear law-based transformation (LLT), by effectively capturing patterns of varying temporal scales. The software is implemented for scalability, interpretability, and ease of use, achieving state-of-the-art performance with minimal computational overhead. Extensive benchmarking on real-world datasets demonstrates the utility of ALT for diverse TSC tasks in physics and related domains.
comment: 16 pages, 4 figures
Image-Editing Specialists: An RLAIF Approach for Diffusion Models
We present a novel approach to training specialized instruction-based image-editing diffusion models, addressing key challenges in structural preservation with input images and semantic alignment with user prompts. We introduce an online reinforcement learning framework that aligns the diffusion model with human preferences without relying on extensive human annotations or curating a large dataset. Our method significantly improves the realism and alignment with instructions in two ways. First, the proposed models achieve precise and structurally coherent modifications in complex scenes while maintaining high fidelity in instruction-irrelevant areas. Second, they capture fine nuances in the desired edit by leveraging a visual prompt, enabling detailed control over visual edits without lengthy textual prompts. This approach simplifies users' efforts to achieve highly specific edits, requiring only 5 reference images depicting a certain concept for training. Experimental results demonstrate that our models can perform intricate edits in complex scenes, after just 10 training steps. Finally, we showcase the versatility of our method by applying it to robotics, where enhancing the visual realism of simulated environments through targeted sim-to-real image edits improves their utility as proxies for real-world settings.
UncAD: Towards Safe End-to-end Autonomous Driving via Online Map Uncertainty
End-to-end autonomous driving aims to produce planning trajectories from raw sensors directly. Currently, most approaches integrate perception, prediction, and planning modules into a fully differentiable network, promising great scalability. However, these methods typically rely on deterministic modeling of online maps in the perception module for guiding or constraining vehicle planning, which may incorporate erroneous perception information and further compromise planning safety. To address this issue, we delve into the importance of online map uncertainty for enhancing autonomous driving safety and propose a novel paradigm named UncAD. Specifically, UncAD first estimates the uncertainty of the online map in the perception module. It then leverages the uncertainty to guide motion prediction and planning modules to produce multi-modal trajectories. Finally, to achieve safer autonomous driving, UncAD proposes an uncertainty-collision-aware planning selection strategy according to the online map uncertainty to evaluate and select the best trajectory. In this study, we incorporate UncAD into various state-of-the-art (SOTA) end-to-end methods. Experiments on the nuScenes dataset show that integrating UncAD, with only a 1.9% increase in parameters, can reduce collision rates by up to 26% and drivable area conflict rate by up to 42%. Codes, pre-trained models, and demo videos can be accessed at https://github.com/pengxuanyang/UncAD.
TwoSquared: 4D Generation from 2D Image Pairs
Despite the astonishing progress in generative AI, 4D dynamic object generation remains an open challenge. With limited high-quality training data and heavy computing requirements, the combination of hallucinating unseen geometry together with unseen movement poses great challenges to generative models. In this work, we propose TwoSquared as a method to obtain a 4D physically plausible sequence starting from only two 2D RGB images corresponding to the beginning and end of the action. Instead of directly solving the 4D generation problem, TwoSquared decomposes the problem into two steps: 1) an image-to-3D module generation based on the existing generative model trained on high-quality 3D assets, and 2) a physically inspired deformation module to predict intermediate movements. To this end, our method does not require templates or object-class-specific prior knowledge and can take in-the-wild images as input. In our experiments, we demonstrate that TwoSquared is capable of producing texture-consistent and geometry-consistent 4D sequences only given 2D images.
Explainable Scene Understanding with Qualitative Representations and Graph Neural Networks
This paper investigates the integration of graph neural networks (GNNs) with Qualitative Explainable Graphs (QXGs) for scene understanding in automated driving. Scene understanding is the basis for any further reactive or proactive decision-making. Scene understanding and related reasoning is inherently an explanation task: why is another traffic participant doing something, what or who caused their actions? While previous work demonstrated QXGs' effectiveness using shallow machine learning models, these approaches were limited to analysing single relation chains between object pairs, disregarding the broader scene context. We propose a novel GNN architecture that processes entire graph structures to identify relevant objects in traffic scenes. We evaluate our method on the nuScenes dataset enriched with DriveLM's human-annotated relevance labels. Experimental results show that our GNN-based approach achieves superior performance compared to baseline methods. The model effectively handles the inherent class imbalance in relevant object identification tasks while considering the complete spatial-temporal relationships between all objects in the scene. Our work demonstrates the potential of combining qualitative representations with deep learning approaches for explainable scene understanding in autonomous driving systems.
comment: Workshop "Advancing Automated Driving in Highly Interactive Scenarios through Behavior Prediction, Trustworthy AI, and Remote Operations" @ 36th IEEE Intelligent Vehicles Symposium (IV)
AAA-Gaussians: Anti-Aliased and Artifact-Free 3D Gaussian Rendering
Although 3D Gaussian Splatting (3DGS) has revolutionized 3D reconstruction, it still faces challenges such as aliasing, projection artifacts, and view inconsistencies, primarily due to the simplification of treating splats as 2D entities. We argue that incorporating full 3D evaluation of Gaussians throughout the 3DGS pipeline can effectively address these issues while preserving rasterization efficiency. Specifically, we introduce an adaptive 3D smoothing filter to mitigate aliasing and present a stable view-space bounding method that eliminates popping artifacts when Gaussians extend beyond the view frustum. Furthermore, we promote tile-based culling to 3D with screen-space planes, accelerating rendering and reducing sorting costs for hierarchical rasterization. Our method achieves state-of-the-art quality on in-distribution evaluation sets and significantly outperforms other approaches for out-of-distribution views. Our qualitative evaluations further demonstrate the effective removal of aliasing, distortions, and popping artifacts, ensuring real-time, artifact-free rendering.
Saliency-Aware Diffusion Reconstruction for Effective Invisible Watermark Removal
As digital content becomes increasingly ubiquitous, the need for robust watermark removal techniques has grown due to the inadequacy of existing embedding techniques, which lack robustness. This paper introduces a novel Saliency-Aware Diffusion Reconstruction (SADRE) framework for watermark elimination on the web, combining adaptive noise injection, region-specific perturbations, and advanced diffusion-based reconstruction. SADRE disrupts embedded watermarks by injecting targeted noise into latent representations guided by saliency masks although preserving essential image features. A reverse diffusion process ensures high-fidelity image restoration, leveraging adaptive noise levels determined by watermark strength. Our framework is theoretically grounded with stability guarantees and achieves robust watermark removal across diverse scenarios. Empirical evaluations on state-of-the-art (SOTA) watermarking techniques demonstrate SADRE's superiority in balancing watermark disruption and image quality. SADRE sets a new benchmark for watermark elimination, offering a flexible and reliable solution for real-world web content. Code is available on~\href{https://github.com/inzamamulDU/SADRE}{\textbf{https://github.com/inzamamulDU/SADRE}}.
comment: Accepted at The Web Conference 2025
Hybrid Dense-UNet201 Optimization for Pap Smear Image Segmentation Using Spider Monkey Optimization
Pap smear image segmentation is crucial for cervical cancer diagnosis. However, traditional segmentation models often struggle with complex cellular structures and variations in pap smear images. This study proposes a hybrid Dense-UNet201 optimization approach that integrates a pretrained DenseNet201 as the encoder for the U-Net architecture and optimizes it using the spider monkey optimization (SMO) algorithm. The Dense-UNet201 model excelled at feature extraction. The SMO was modified to handle categorical and discrete parameters. The SIPaKMeD dataset was used in this study and evaluated using key performance metrics, including loss, accuracy, Intersection over Union (IoU), and Dice coefficient. The experimental results showed that Dense-UNet201 outperformed U-Net, Res-UNet50, and Efficient-UNetB0. SMO Dense-UNet201 achieved a segmentation accuracy of 96.16%, an IoU of 91.63%, and a Dice coefficient score of 95.63%. These findings underscore the effectiveness of image preprocessing, pretrained models, and metaheuristic optimization in improving medical image analysis and provide new insights into cervical cell segmentation methods.
Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: 21 pages, 9 figures
CAGE-GS: High-fidelity Cage Based 3D Gaussian Splatting Deformation
As 3D Gaussian Splatting (3DGS) gains popularity as a 3D representation of real scenes, enabling user-friendly deformation to create novel scenes while preserving fine details from the original 3DGS has attracted significant research attention. We introduce CAGE-GS, a cage-based 3DGS deformation method that seamlessly aligns a source 3DGS scene with a user-defined target shape. Our approach learns a deformation cage from the target, which guides the geometric transformation of the source scene. While the cages effectively control structural alignment, preserving the textural appearance of 3DGS remains challenging due to the complexity of covariance parameters. To address this, we employ a Jacobian matrix-based strategy to update the covariance parameters of each Gaussian, ensuring texture fidelity post-deformation. Our method is highly flexible, accommodating various target shape representations, including texts, images, point clouds, meshes and 3DGS models. Extensive experiments and ablation studies on both public datasets and newly proposed scenes demonstrate that our method significantly outperforms existing techniques in both efficiency and deformation quality.
TSGS: Improving Gaussian Splatting for Transparent Surface Reconstruction via Normal and De-lighting Priors
Reconstructing transparent surfaces is essential for tasks such as robotic manipulation in labs, yet it poses a significant challenge for 3D reconstruction techniques like 3D Gaussian Splatting (3DGS). These methods often encounter a transparency-depth dilemma, where the pursuit of photorealistic rendering through standard $\alpha$-blending undermines geometric precision, resulting in considerable depth estimation errors for transparent materials. To address this issue, we introduce Transparent Surface Gaussian Splatting (TSGS), a new framework that separates geometry learning from appearance refinement. In the geometry learning stage, TSGS focuses on geometry by using specular-suppressed inputs to accurately represent surfaces. In the second stage, TSGS improves visual fidelity through anisotropic specular modeling, crucially maintaining the established opacity to ensure geometric accuracy. To enhance depth inference, TSGS employs a first-surface depth extraction method. This technique uses a sliding window over $\alpha$-blending weights to pinpoint the most likely surface location and calculates a robust weighted average depth. To evaluate the transparent surface reconstruction task under realistic conditions, we collect a TransLab dataset that includes complex transparent laboratory glassware. Extensive experiments on TransLab show that TSGS achieves accurate geometric reconstruction and realistic rendering of transparent objects simultaneously within the efficient 3DGS framework. Specifically, TSGS significantly surpasses current leading methods, achieving a 37.3% reduction in chamfer distance and an 8.0% improvement in F1 score compared to the top baseline. The code and dataset will be released at https://longxiang-ai.github.io/TSGS/.
comment: Project page: https://longxiang-ai.github.io/TSGS/
EarthGPT-X: Enabling MLLMs to Flexibly and Comprehensively Understand Multi-Source Remote Sensing Imagery
Recent advances in the visual-language area have developed natural multi-modal large language models (MLLMs) for spatial reasoning through visual prompting. However, due to remote sensing (RS) imagery containing abundant geospatial information that differs from natural images, it is challenging to effectively adapt natural spatial models to the RS domain. Moreover, current RS MLLMs are limited in overly narrow interpretation levels and interaction manner, hindering their applicability in real-world scenarios. To address those challenges, a spatial MLLM named EarthGPT-X is proposed, enabling a comprehensive understanding of multi-source RS imagery, such as optical, synthetic aperture radar (SAR), and infrared. EarthGPT-X offers zoom-in and zoom-out insight, and possesses flexible multi-grained interactive abilities. Moreover, EarthGPT-X unifies two types of critical spatial tasks (i.e., referring and grounding) into a visual prompting framework. To achieve these versatile capabilities, several key strategies are developed. The first is the multi-modal content integration method, which enhances the interplay between images, visual prompts, and text instructions. Subsequently, a cross-domain one-stage fusion training strategy is proposed, utilizing the large language model (LLM) as a unified interface for multi-source multi-task learning. Furthermore, by incorporating a pixel perception module, the referring and grounding tasks are seamlessly unified within a single framework. In addition, the experiments conducted demonstrate the superiority of the proposed EarthGPT-X in multi-grained tasks and its impressive flexibility in multi-modal interaction, revealing significant advancements of MLLM in the RS field.
ARAP-GS: Drag-driven As-Rigid-As-Possible 3D Gaussian Splatting Editing with Diffusion Prior
Drag-driven editing has become popular among designers for its ability to modify complex geometric structures through simple and intuitive manipulation, allowing users to adjust and reshape content with minimal technical skill. This drag operation has been incorporated into numerous methods to facilitate the editing of 2D images and 3D meshes in design. However, few studies have explored drag-driven editing for the widely-used 3D Gaussian Splatting (3DGS) representation, as deforming 3DGS while preserving shape coherence and visual continuity remains challenging. In this paper, we introduce ARAP-GS, a drag-driven 3DGS editing framework based on As-Rigid-As-Possible (ARAP) deformation. Unlike previous 3DGS editing methods, we are the first to apply ARAP deformation directly to 3D Gaussians, enabling flexible, drag-driven geometric transformations. To preserve scene appearance after deformation, we incorporate an advanced diffusion prior for image super-resolution within our iterative optimization process. This approach enhances visual quality while maintaining multi-view consistency in the edited results. Experiments show that ARAP-GS outperforms current methods across diverse 3D scenes, demonstrating its effectiveness and superiority for drag-driven 3DGS editing. Additionally, our method is highly efficient, requiring only 10 to 20 minutes to edit a scene on a single RTX 3090 GPU.
Set You Straight: Auto-Steering Denoising Trajectories to Sidestep Unwanted Concepts
Ensuring the ethical deployment of text-to-image models requires effective techniques to prevent the generation of harmful or inappropriate content. While concept erasure methods offer a promising solution, existing finetuning-based approaches suffer from notable limitations. Anchor-free methods risk disrupting sampling trajectories, leading to visual artifacts, while anchor-based methods rely on the heuristic selection of anchor concepts. To overcome these shortcomings, we introduce a finetuning framework, dubbed ANT, which Automatically guides deNoising Trajectories to avoid unwanted concepts. ANT is built on a key insight: reversing the condition direction of classifier-free guidance during mid-to-late denoising stages enables precise content modification without sacrificing early-stage structural integrity. This inspires a trajectory-aware objective that preserves the integrity of the early-stage score function field, which steers samples toward the natural image manifold, without relying on heuristic anchor concept selection. For single-concept erasure, we propose an augmentation-enhanced weight saliency map to precisely identify the critical parameters that most significantly contribute to the unwanted concept, enabling more thorough and efficient erasure. For multi-concept erasure, our objective function offers a versatile plug-and-play solution that significantly boosts performance. Extensive experiments demonstrate that ANT achieves state-of-the-art results in both single and multi-concept erasure, delivering high-quality, safe outputs without compromising the generative fidelity. Code is available at https://github.com/lileyang1210/ANT
comment: Preprint
Stronger, Steadier & Superior: Geometric Consistency in Depth VFM Forges Domain Generalized Semantic Segmentation
Vision Foundation Models (VFMs) have delivered remarkable performance in Domain Generalized Semantic Segmentation (DGSS). However, recent methods often overlook the fact that visual cues are susceptible, whereas the underlying geometry remains stable, rendering depth information more robust. In this paper, we investigate the potential of integrating depth information with features from VFMs, to improve the geometric consistency within an image and boost the generalization performance of VFMs. We propose a novel fine-tuning DGSS framework, named DepthForge, which integrates the visual cues from frozen DINOv2 or EVA02 and depth cues from frozen Depth Anything V2. In each layer of the VFMs, we incorporate depth-aware learnable tokens to continuously decouple domain-invariant visual and spatial information, thereby enhancing depth awareness and attention of the VFMs. Finally, we develop a depth refinement decoder and integrate it into the model architecture to adaptively refine multi-layer VFM features and depth-aware learnable tokens. Extensive experiments are conducted based on various DGSS settings and five different datsets as unseen target domains. The qualitative and quantitative results demonstrate that our method significantly outperforms alternative approaches with stronger performance, steadier visual-spatial attention, and superior generalization ability. In particular, DepthForge exhibits outstanding performance under extreme conditions (e.g., night and snow). Code is available at https://github.com/anonymouse-xzrptkvyqc/DepthForge.
LAD-Reasoner: Tiny Multimodal Models are Good Reasoners for Logical Anomaly Detection
Recent advances in industrial anomaly detection have highlighted the need for deeper logical anomaly analysis, where unexpected relationships among objects, counts, and spatial configurations must be identified and explained. Existing approaches often rely on large-scale external reasoning modules or elaborate pipeline designs, hindering practical deployment and interpretability. To address these limitations, we introduce a new task, Reasoning Logical Anomaly Detection (RLAD), which extends traditional anomaly detection by incorporating logical reasoning. We propose a new framework, LAD-Reasoner, a customized tiny multimodal language model built on Qwen2.5-VL 3B. Our approach leverages a two-stage training paradigm that first employs Supervised Fine-Tuning (SFT) for fine-grained visual understanding, followed by Group Relative Policy Optimization (GRPO) to refine logical anomaly detection and enforce coherent, human-readable reasoning. Crucially, reward signals are derived from both the detection accuracy and the structural quality of the outputs, obviating the need for building chain of thought (CoT) reasoning data. Experiments on the MVTec LOCO AD dataset show that LAD-Reasoner, though significantly smaller, matches the performance of Qwen2.5-VL-72B in accuracy and F1 score, and further excels in producing concise and interpretable rationales. This unified design reduces reliance on large models and complex pipelines, while offering transparent and interpretable insights into logical anomaly detection. Code and data will be released.
Privacy Protection Against Personalized Text-to-Image Synthesis via Cross-image Consistency Constraints
The rapid advancement of diffusion models and personalization techniques has made it possible to recreate individual portraits from just a few publicly available images. While such capabilities empower various creative applications, they also introduce serious privacy concerns, as adversaries can exploit them to generate highly realistic impersonations. To counter these threats, anti-personalization methods have been proposed, which add adversarial perturbations to published images to disrupt the training of personalization models. However, existing approaches largely overlook the intrinsic multi-image nature of personalization and instead adopt a naive strategy of applying perturbations independently, as commonly done in single-image settings. This neglects the opportunity to leverage inter-image relationships for stronger privacy protection. Therefore, we advocate for a group-level perspective on privacy protection against personalization. Specifically, we introduce Cross-image Anti-Personalization (CAP), a novel framework that enhances resistance to personalization by enforcing style consistency across perturbed images. Furthermore, we develop a dynamic ratio adjustment strategy that adaptively balances the impact of the consistency loss throughout the attack iterations. Extensive experiments on the classical CelebHQ and VGGFace2 benchmarks show that CAP substantially improves existing methods.
Mask Image Watermarking
We present MaskMark, a simple, efficient and flexible framework for image watermarking. MaskMark has two variants: MaskMark-D, which supports global watermark embedding, watermark localization, and local watermark extraction for applications such as tamper detection, and MaskMark-ED, which focuses on local watermark embedding and extraction with enhanced robustness in small regions, enabling localized image protection. Built upon the classical Encoder- Distortion-Decoder training paradigm, MaskMark-D introduces a simple masking mechanism during the decoding stage to support both global and local watermark extraction. A mask is applied to the watermarked image before extraction, allowing the decoder to focus on selected regions and learn local extraction. A localization module is also integrated into the decoder to identify watermark regions during inference, reducing interference from irrelevant content and improving accuracy. MaskMark-ED extends this design by incorporating the mask into the encoding stage as well, guiding the encoder to embed the watermark in designated local regions for enhanced robustness. Comprehensive experiments show that MaskMark achieves state-of-the-art performance in global watermark extraction, local watermark extraction, watermark localization, and multi-watermark embedding. It outperforms all existing baselines, including the recent leading model WAM for local watermarking, while preserving high visual quality of the watermarked images. MaskMark is also flexible, by adjusting the distortion layer, it can adapt to different robustness requirements with just a few steps of fine-tuning. Moreover, our approach is efficient and easy to optimize, requiring only 20 hours on a single A6000 GPU with just 1/15 the computational cost of WAM.
comment: 23 pages, 18 figures
TUMLS: Trustful Fully Unsupervised Multi-Level Segmentation for Whole Slide Images of Histology
Digital pathology, augmented by artificial intelligence (AI), holds significant promise for improving the workflow of pathologists. However, challenges such as the labor-intensive annotation of whole slide images (WSIs), high computational demands, and trust concerns arising from the absence of uncertainty estimation in predictions hinder the practical application of current AI methodologies in histopathology. To address these issues, we present a novel trustful fully unsupervised multi-level segmentation methodology (TUMLS) for WSIs. TUMLS adopts an autoencoder (AE) as a feature extractor to identify the different tissue types within low-resolution training data. It selects representative patches from each identified group based on an uncertainty measure and then does unsupervised nuclei segmentation in their respective higher-resolution space without using any ML algorithms. Crucially, this solution integrates seamlessly into clinicians workflows, transforming the examination of a whole WSI into a review of concise, interpretable cross-level insights. This integration significantly enhances and accelerates the workflow while ensuring transparency. We evaluated our approach using the UPENN-GBM dataset, where the AE achieved a mean squared error (MSE) of 0.0016. Additionally, nucleus segmentation is assessed on the MoNuSeg dataset, outperforming all unsupervised approaches with an F1 score of 77.46% and a Jaccard score of 63.35%. These results demonstrate the efficacy of TUMLS in advancing the field of digital pathology.
comment: 32 pages, 15 figures, 3 tables, 42 references
Post-pre-training for Modality Alignment in Vision-Language Foundation Models CVPR 2025
Contrastive language image pre-training (CLIP) is an essential component of building modern vision-language foundation models. While CLIP demonstrates remarkable zero-shot performance on downstream tasks, the multi-modal feature spaces still suffer from a modality gap, which is a gap between image and text feature clusters and limits downstream task performance. Although existing works attempt to address the modality gap by modifying pre-training or fine-tuning, they struggle with heavy training costs with large datasets or degradations of zero-shot performance. This paper presents CLIP-Refine, a post-pre-training method for CLIP models at a phase between pre-training and fine-tuning. CLIP-Refine aims to align the feature space with 1 epoch training on small image-text datasets without zero-shot performance degradations. To this end, we introduce two techniques: random feature alignment (RaFA) and hybrid contrastive-distillation (HyCD). RaFA aligns the image and text features to follow a shared prior distribution by minimizing the distance to random reference vectors sampled from the prior. HyCD updates the model with hybrid soft labels generated by combining ground-truth image-text pair labels and outputs from the pre-trained CLIP model. This contributes to achieving both maintaining the past knowledge and learning new knowledge to align features. Our extensive experiments with multiple classification and retrieval tasks show that CLIP-Refine succeeds in mitigating the modality gap and improving the zero-shot performance.
comment: Accepted to CVPR 2025; Code: https://github.com/yshinya6/clip-refine
NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images: Methods and Results CVPR
This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
comment: Challenge Report of CVPR NTIRE 2025; 26 pages; Methods from 32 teams
Self-Supervised Pre-training with Combined Datasets for 3D Perception in Autonomous Driving
The significant achievements of pre-trained models leveraging large volumes of data in the field of NLP and 2D vision inspire us to explore the potential of extensive data pre-training for 3D perception in autonomous driving. Toward this goal, this paper proposes to utilize massive unlabeled data from heterogeneous datasets to pre-train 3D perception models. We introduce a self-supervised pre-training framework that learns effective 3D representations from scratch on unlabeled data, combined with a prompt adapter based domain adaptation strategy to reduce dataset bias. The approach significantly improves model performance on downstream tasks such as 3D object detection, BEV segmentation, 3D object tracking, and occupancy prediction, and shows steady performance increase as the training data volume scales up, demonstrating the potential of continually benefit 3D perception models for autonomous driving. We will release the source code to inspire further investigations in the community.
SmartFreeEdit: Mask-Free Spatial-Aware Image Editing with Complex Instruction Understanding
Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.
Unsupervised Cross-Domain 3D Human Pose Estimation via Pseudo-Label-Guided Global Transforms
Existing 3D human pose estimation methods often suffer in performance, when applied to cross-scenario inference, due to domain shifts in characteristics such as camera viewpoint, position, posture, and body size. Among these factors, camera viewpoints and locations {have been shown} to contribute significantly to the domain gap by influencing the global positions of human poses. To address this, we propose a novel framework that explicitly conducts global transformations between pose positions in the camera coordinate systems of source and target domains. We start with a Pseudo-Label Generation Module that is applied to the 2D poses of the target dataset to generate pseudo-3D poses. Then, a Global Transformation Module leverages a human-centered coordinate system as a novel bridging mechanism to seamlessly align the positional orientations of poses across disparate domains, ensuring consistent spatial referencing. To further enhance generalization, a Pose Augmentor is incorporated to address variations in human posture and body size. This process is iterative, allowing refined pseudo-labels to progressively improve guidance for domain adaptation. Our method is evaluated on various cross-dataset benchmarks, including Human3.6M, MPI-INF-3DHP, and 3DPW. The proposed method outperforms state-of-the-art approaches and even outperforms the target-trained model.
comment: 11 pages, 6 figures, including appendix. This work has been submitted to the IEEE for possible publication
Collaborative Perception Datasets for Autonomous Driving: A Review
Collaborative perception has attracted growing interest from academia and industry due to its potential to enhance perception accuracy, safety, and robustness in autonomous driving through multi-agent information fusion. With the advancement of Vehicle-to-Everything (V2X) communication, numerous collaborative perception datasets have emerged, varying in cooperation paradigms, sensor configurations, data sources, and application scenarios. However, the absence of systematic summarization and comparative analysis hinders effective resource utilization and standardization of model evaluation. As the first comprehensive review focused on collaborative perception datasets, this work reviews and compares existing resources from a multi-dimensional perspective. We categorize datasets based on cooperation paradigms, examine their data sources and scenarios, and analyze sensor modalities and supported tasks. A detailed comparative analysis is conducted across multiple dimensions. We also outline key challenges and future directions, including dataset scalability, diversity, domain adaptation, standardization, privacy, and the integration of large language models. To support ongoing research, we provide a continuously updated online repository of collaborative perception datasets and related literature: https://github.com/frankwnb/Collaborative-Perception-Datasets-for-Autonomous-Driving.
comment: 18pages, 7figures, journal
HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset ICME 2025
Multi-class Unsupervised Anomaly Detection algorithms (MUAD) are receiving increasing attention due to their relatively low deployment costs and improved training efficiency. However, the real-world effectiveness of MUAD methods is questioned due to limitations in current Industrial Anomaly Detection (IAD) datasets. These datasets contain numerous classes that are unlikely to be produced by the same factory and fail to cover multiple structures or appearances. Additionally, the defects do not reflect real-world characteristics. Therefore, we introduce the Heterogeneous Same-Sort Industrial Anomaly Detection (HSS-IAD) dataset, which contains 8,580 images of metallic-like industrial parts and precise anomaly annotations. These parts exhibit variations in structure and appearance, with subtle defects that closely resemble the base materials. We also provide foreground images for synthetic anomaly generation. Finally, we evaluate popular IAD methods on this dataset under multi-class and class-separated settings, demonstrating its potential to bridge the gap between existing datasets and real factory conditions. The dataset is available at https://github.com/Qiqigeww/HSS-IAD-Dataset.
comment: Accepted to IEEE ICME 2025
SOPHY: Generating Simulation-Ready Objects with Physical Materials
We present SOPHY, a generative model for 3D physics-aware shape synthesis. Unlike existing 3D generative models that focus solely on static geometry or 4D models that produce physics-agnostic animations, our approach jointly synthesizes shape, texture, and material properties related to physics-grounded dynamics, making the generated objects ready for simulations and interactive, dynamic environments. To train our model, we introduce a dataset of 3D objects annotated with detailed physical material attributes, along with an annotation pipeline for efficient material annotation. Our method enables applications such as text-driven generation of interactive, physics-aware 3D objects and single-image reconstruction of physically plausible shapes. Furthermore, our experiments demonstrate that jointly modeling shape and material properties enhances the realism and fidelity of generated shapes, improving performance on generative geometry evaluation metrics.
comment: Project page: https://xjay18.github.io/SOPHY
Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning
Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training.
comment: 12 pages, 5 figures
TongUI: Building Generalized GUI Agents by Learning from Multimodal Web Tutorials
Building Graphical User Interface (GUI) agents is a promising research direction, which simulates human interaction with computers or mobile phones to perform diverse GUI tasks. However, a major challenge in developing generalized GUI agents is the lack of sufficient trajectory data across various operating systems and applications, mainly due to the high cost of manual annotations. In this paper, we propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials. Concretely, we crawl and process online GUI tutorials (such as videos and articles) into GUI agent trajectory data, through which we produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications. We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks, outperforming baseline agents about 10\% on multiple benchmarks, showing the effectiveness of the GUI-Net dataset and underscoring the significance of our TongUI framework. We will fully open-source the code, the GUI-Net dataset, and the trained models soon.
Accurate Tracking of Arabidopsis Root Cortex Cell Nuclei in 3D Time-Lapse Microscopy Images Based on Genetic Algorithm
Arabidopsis is a widely used model plant to gain basic knowledge on plant physiology and development. Live imaging is an important technique to visualize and quantify elemental processes in plant development. To uncover novel theories underlying plant growth and cell division, accurate cell tracking on live imaging is of utmost importance. The commonly used cell tracking software, TrackMate, adopts tracking-by-detection fashion, which applies Laplacian of Gaussian (LoG) for blob detection, and Linear Assignment Problem (LAP) tracker for tracking. However, they do not perform sufficiently when cells are densely arranged. To alleviate the problems mentioned above, we propose an accurate tracking method based on Genetic algorithm (GA) using knowledge of Arabidopsis root cellular patterns and spatial relationship among volumes. Our method can be described as a coarse-to-fine method, in which we first conducted relatively easy line-level tracking of cell nuclei, then performed complicated nuclear tracking based on known linear arrangement of cell files and their spatial relationship between nuclei. Our method has been evaluated on a long-time live imaging dataset of Arabidopsis root tips, and with minor manual rectification, it accurately tracks nuclei. To the best of our knowledge, this research represents the first successful attempt to address a long-standing problem in the field of time-lapse microscopy in the root meristem by proposing an accurate tracking method for Arabidopsis root nuclei.
Two Tasks, One Goal: Uniting Motion and Planning for Excellent End To End Autonomous Driving Performance
End-to-end autonomous driving has made impressive progress in recent years. Former end-to-end autonomous driving approaches often decouple planning and motion tasks, treating them as separate modules. This separation overlooks the potential benefits that planning can gain from learning out-of-distribution data encountered in motion tasks. However, unifying these tasks poses significant challenges, such as constructing shared contextual representations and handling the unobservability of other vehicles' states. To address these challenges, we propose TTOG, a novel two-stage trajectory generation framework. In the first stage, a diverse set of trajectory candidates is generated, while the second stage focuses on refining these candidates through vehicle state information. To mitigate the issue of unavailable surrounding vehicle states, TTOG employs a self-vehicle data-trained state estimator, subsequently extended to other vehicles. Furthermore, we introduce ECSA (equivariant context-sharing scene adapter) to enhance the generalization of scene representations across different agents. Experimental results demonstrate that TTOG achieves state-of-the-art performance across both planning and motion tasks. Notably, on the challenging open-loop nuScenes dataset, TTOG reduces the L2 distance by 36.06\%. Furthermore, on the closed-loop Bench2Drive dataset, our approach achieves a 22\% improvement in the driving score (DS), significantly outperforming existing baselines.
VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
AdaptoVision: A Multi-Resolution Image Recognition Model for Robust and Scalable Classification
This paper introduces AdaptoVision, a novel convolutional neural network (CNN) architecture designed to efficiently balance computational complexity and classification accuracy. By leveraging enhanced residual units, depth-wise separable convolutions, and hierarchical skip connections, AdaptoVision significantly reduces parameter count and computational requirements while preserving competitive performance across various benchmark and medical image datasets. Extensive experimentation demonstrates that AdaptoVision achieves state-of-the-art on BreakHis dataset and comparable accuracy levels, notably 95.3\% on CIFAR-10 and 85.77\% on CIFAR-100, without relying on any pretrained weights. The model's streamlined architecture and strategic simplifications promote effective feature extraction and robust generalization, making it particularly suitable for deployment in real-time and resource-constrained environments.
Quantum Computing Supported Adversarial Attack-Resilient Autonomous Vehicle Perception Module for Traffic Sign Classification
Deep learning (DL)-based image classification models are essential for autonomous vehicle (AV) perception modules since incorrect categorization might have severe repercussions. Adversarial attacks are widely studied cyberattacks that can lead DL models to predict inaccurate output, such as incorrectly classified traffic signs by the perception module of an autonomous vehicle. In this study, we create and compare hybrid classical-quantum deep learning (HCQ-DL) models with classical deep learning (C-DL) models to demonstrate robustness against adversarial attacks for perception modules. Before feeding them into the quantum system, we used transfer learning models, alexnet and vgg-16, as feature extractors. We tested over 1000 quantum circuits in our HCQ-DL models for projected gradient descent (PGD), fast gradient sign attack (FGSA), and gradient attack (GA), which are three well-known untargeted adversarial approaches. We evaluated the performance of all models during adversarial attacks and no-attack scenarios. Our HCQ-DL models maintain accuracy above 95\% during a no-attack scenario and above 91\% for GA and FGSA attacks, which is higher than C-DL models. During the PGD attack, our alexnet-based HCQ-DL model maintained an accuracy of 85\% compared to C-DL models that achieved accuracies below 21\%. Our results highlight that the HCQ-DL models provide improved accuracy for traffic sign classification under adversarial settings compared to their classical counterparts.
RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding
This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
Packing Input Frame Context in Next-Frame Prediction Models for Video Generation
We present a neural network structure, FramePack, to train next-frame (or next-frame-section) prediction models for video generation. The FramePack compresses input frames to make the transformer context length a fixed number regardless of the video length. As a result, we are able to process a large number of frames using video diffusion with computation bottleneck similar to image diffusion. This also makes the training video batch sizes significantly higher (batch sizes become comparable to image diffusion training). We also propose an anti-drifting sampling method that generates frames in inverted temporal order with early-established endpoints to avoid exposure bias (error accumulation over iterations). Finally, we show that existing video diffusion models can be finetuned with FramePack, and their visual quality may be improved because the next-frame prediction supports more balanced diffusion schedulers with less extreme flow shift timesteps.
comment: https://github.com/lllyasviel/FramePack
SAM-Based Building Change Detection with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping
Building change detection remains challenging for urban development, disaster assessment, and military reconnaissance. While foundation models like Segment Anything Model (SAM) show strong segmentation capabilities, SAM is limited in the task of building change detection due to domain gap issues. Existing adapter-based fine-tuning approaches face challenges with imbalanced building distribution, resulting in poor detection of subtle changes and inaccurate edge extraction. Additionally, bi-temporal misalignment in change detection, typically addressed by optical flow, remains vulnerable to background noises. This affects the detection of building changes and compromises both detection accuracy and edge recognition. To tackle these challenges, we propose a new SAM-Based Network with Distribution-Aware Fourier Adaptation and Edge-Constrained Warping (FAEWNet) for building change detection. FAEWNet utilizes the SAM encoder to extract rich visual features from remote sensing images. To guide SAM in focusing on specific ground objects in remote sensing scenes, we propose a Distribution-Aware Fourier Aggregated Adapter to aggregate task-oriented changed information. This adapter not only effectively addresses the domain gap issue, but also pays attention to the distribution of changed buildings. Furthermore, to mitigate noise interference and misalignment in height offset estimation, we design a novel flow module that refines building edge extraction and enhances the perception of changed buildings. Our state-of-the-art results on the LEVIR-CD, S2Looking and WHU-CD datasets highlight the effectiveness of FAEWNet. The code is available at https://github.com/SUPERMAN123000/FAEWNet.
Robo-SGG: Exploiting Layout-Oriented Normalization and Restitution for Robust Scene Graph Generation
In this paper, we introduce a novel method named Robo-SGG, i.e., Layout-Oriented Normalization and Restitution for Robust Scene Graph Generation. Compared to the existing SGG setting, the robust scene graph generation aims to perform inference on a diverse range of corrupted images, with the core challenge being the domain shift between the clean and corrupted images. Existing SGG methods suffer from degraded performance due to compromised visual features e.g., corruption interference or occlusions. To obtain robust visual features, we exploit the layout information, which is domain-invariant, to enhance the efficacy of existing SGG methods on corrupted images. Specifically, we employ Instance Normalization(IN) to filter out the domain-specific feature and recover the unchangeable structural features, i.e., the positional and semantic relationships among objects by the proposed Layout-Oriented Restitution. Additionally, we propose a Layout-Embedded Encoder (LEE) that augments the existing object and predicate encoders within the SGG framework, enriching the robust positional and semantic features of objects and predicates. Note that our proposed Robo-SGG module is designed as a plug-and-play component, which can be easily integrated into any baseline SGG model. Extensive experiments demonstrate that by integrating the state-of-the-art method into our proposed Robo-SGG, we achieve relative improvements of 5.6%, 8.0%, and 6.5% in mR@50 for PredCls, SGCls, and SGDet tasks on the VG-C dataset, respectively, and achieve new state-of-the-art performance in corruption scene graph generation benchmark (VG-C and GQA-C). We will release our source code and model.
AdaQual-Diff: Diffusion-Based Image Restoration via Adaptive Quality Prompting
Restoring images afflicted by complex real-world degradations remains challenging, as conventional methods often fail to adapt to the unique mixture and severity of artifacts present. This stems from a reliance on indirect cues which poorly capture the true perceptual quality deficit. To address this fundamental limitation, we introduce AdaQual-Diff, a diffusion-based framework that integrates perceptual quality assessment directly into the generative restoration process. Our approach establishes a mathematical relationship between regional quality scores from DeQAScore and optimal guidance complexity, implemented through an Adaptive Quality Prompting mechanism. This mechanism systematically modulates prompt structure according to measured degradation severity: regions with lower perceptual quality receive computationally intensive, structurally complex prompts with precise restoration directives, while higher quality regions receive minimal prompts focused on preservation rather than intervention. The technical core of our method lies in the dynamic allocation of computational resources proportional to degradation severity, creating a spatially-varying guidance field that directs the diffusion process with mathematical precision. By combining this quality-guided approach with content-specific conditioning, our framework achieves fine-grained control over regional restoration intensity without requiring additional parameters or inference iterations. Experimental results demonstrate that AdaQual-Diff achieves visually superior restorations across diverse synthetic and real-world datasets.
3DResT: A Strong Baseline for Semi-Supervised 3D Referring Expression Segmentation
3D Referring Expression Segmentation (3D-RES) typically requires extensive instance-level annotations, which are time-consuming and costly. Semi-supervised learning (SSL) mitigates this by using limited labeled data alongside abundant unlabeled data, improving performance while reducing annotation costs. SSL uses a teacher-student paradigm where teacher generates high-confidence-filtered pseudo-labels to guide student. However, in the context of 3D-RES, where each label corresponds to a single mask and labeled data is scarce, existing SSL methods treat high-quality pseudo-labels merely as auxiliary supervision, which limits the model's learning potential. The reliance on high-confidence thresholds for filtering often results in potentially valuable pseudo-labels being discarded, restricting the model's ability to leverage the abundant unlabeled data. Therefore, we identify two critical challenges in semi-supervised 3D-RES, namely, inefficient utilization of high-quality pseudo-labels and wastage of useful information from low-quality pseudo-labels. In this paper, we introduce the first semi-supervised learning framework for 3D-RES, presenting a robust baseline method named 3DResT. To address these challenges, we propose two novel designs called Teacher-Student Consistency-Based Sampling (TSCS) and Quality-Driven Dynamic Weighting (QDW). TSCS aids in the selection of high-quality pseudo-labels, integrating them into the labeled dataset to strengthen the labeled supervision signals. QDW preserves low-quality pseudo-labels by dynamically assigning them lower weights, allowing for the effective extraction of useful information rather than discarding them. Extensive experiments conducted on the widely used benchmark demonstrate the effectiveness of our method. Notably, with only 1% labeled data, 3DResT achieves an mIoU improvement of 8.34 points compared to the fully supervised method.
CM3AE: A Unified RGB Frame and Event-Voxel/-Frame Pre-training Framework
Event cameras have attracted increasing attention in recent years due to their advantages in high dynamic range, high temporal resolution, low power consumption, and low latency. Some researchers have begun exploring pre-training directly on event data. Nevertheless, these efforts often fail to establish strong connections with RGB frames, limiting their applicability in multi-modal fusion scenarios. To address these issues, we propose a novel CM3AE pre-training framework for the RGB-Event perception. This framework accepts multi-modalities/views of data as input, including RGB images, event images, and event voxels, providing robust support for both event-based and RGB-event fusion based downstream tasks. Specifically, we design a multi-modal fusion reconstruction module that reconstructs the original image from fused multi-modal features, explicitly enhancing the model's ability to aggregate cross-modal complementary information. Additionally, we employ a multi-modal contrastive learning strategy to align cross-modal feature representations in a shared latent space, which effectively enhances the model's capability for multi-modal understanding and capturing global dependencies. We construct a large-scale dataset containing 2,535,759 RGB-Event data pairs for the pre-training. Extensive experiments on five downstream tasks fully demonstrated the effectiveness of CM3AE. Source code and pre-trained models will be released on https://github.com/Event-AHU/CM3AE.
SMPL-GPTexture: Dual-View 3D Human Texture Estimation using Text-to-Image Generation Models
Generating high-quality, photorealistic textures for 3D human avatars remains a fundamental yet challenging task in computer vision and multimedia field. However, real paired front and back images of human subjects are rarely available with privacy, ethical and cost of acquisition, which restricts scalability of the data. Additionally, learning priors from image inputs using deep generative models, such as GANs or diffusion models, to infer unseen regions such as the human back often leads to artifacts, structural inconsistencies, or loss of fine-grained detail. To address these issues, we present SMPL-GPTexture (skinned multi-person linear model - general purpose Texture), a novel pipeline that takes natural language prompts as input and leverages a state-of-the-art text-to-image generation model to produce paired high-resolution front and back images of a human subject as the starting point for texture estimation. Using the generated paired dual-view images, we first employ a human mesh recovery model to obtain a robust 2D-to-3D SMPL alignment between image pixels and the 3D model's UV coordinates for each views. Second, we use an inverted rasterization technique that explicitly projects the observed colour from the input images into the UV space, thereby producing accurate, complete texture maps. Finally, we apply a diffusion-based inpainting module to fill in the missing regions, and the fusion mechanism then combines these results into a unified full texture map. Extensive experiments shows that our SMPL-GPTexture can generate high resolution texture aligned with user's prompts.
VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
Wearable-Derived Behavioral and Physiological Biomarkers for Classifying Unipolar and Bipolar Depression Severity
Depression is a complex mental disorder characterized by a diverse range of observable and measurable indicators that go beyond traditional subjective assessments. Recent research has increasingly focused on objective, passive, and continuous monitoring using wearable devices to gain more precise insights into the physiological and behavioral aspects of depression. However, most existing studies primarily distinguish between healthy and depressed individuals, adopting a binary classification that fails to capture the heterogeneity of depressive disorders. In this study, we leverage wearable devices to predict depression subtypes-specifically unipolar and bipolar depression-aiming to identify distinctive biomarkers that could enhance diagnostic precision and support personalized treatment strategies. To this end, we introduce the CALYPSO dataset, designed for non-invasive detection of depression subtypes and symptomatology through physiological and behavioral signals, including blood volume pulse, electrodermal activity, body temperature, and three-axis acceleration. Additionally, we establish a benchmark on the dataset using well-known features and standard machine learning methods. Preliminary results indicate that features related to physical activity, extracted from accelerometer data, are the most effective in distinguishing between unipolar and bipolar depression, achieving an accuracy of $96.77\%$. Temperature-based features also showed high discriminative power, reaching an accuracy of $93.55\%$. These findings highlight the potential of physiological and behavioral monitoring for improving the classification of depressive subtypes, paving the way for more tailored clinical interventions.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025
Focus3D: A Practical Method to Adaptively Focus ISAR Data and Provide 3-D Information for Automatic Target Recognition
To improve ATR identification of ships at sea requires an advanced ISAR processor - one that not only provides focused images but can also determine the pose of the ship. This tells us whether the image shows a profile (vertical plane) view, a plan (horizontal plane) view or some view in between. If the processor can provide this information, then the ATR processor can try to match the images with known vertical or horizontal features of ships and, in conjunction with estimated ship length, narrow the set of possible identifications. This paper extends the work of Melendez and Bennett [M-B, Ref. 1] by combining a focus algorithm with a method that models the angles of the ship relative to the radar. In M-B the algorithm was limited to a single angle and the plane of rotation was not determined. This assumption may be fine for a short time image where there is limited data available to determine the pose. However, the present paper models the ship rotation with two angles - aspect angle, representing rotation in the horizontal plane, and tilt angle, representing variations in the effective grazing angle to the ship.
SAR Object Detection with Self-Supervised Pretraining and Curriculum-Aware Sampling ICLR 2025
Object detection in satellite-borne Synthetic Aperture Radar (SAR) imagery holds immense potential in tasks such as urban monitoring and disaster response. However, the inherent complexities of SAR data and the scarcity of annotations present significant challenges in the advancement of object detection in this domain. Notably, the detection of small objects in satellite-borne SAR images poses a particularly intricate problem, because of the technology's relatively low spatial resolution and inherent noise. Furthermore, the lack of large labelled SAR datasets hinders the development of supervised deep learning-based object detection models. In this paper, we introduce TRANSAR, a novel self-supervised end-to-end vision transformer-based SAR object detection model that incorporates masked image pre-training on an unlabeled SAR image dataset that spans more than $25,700$ km\textsuperscript{2} ground area. Unlike traditional object detection formulation, our approach capitalises on auxiliary binary semantic segmentation, designed to segregate objects of interest during the post-tuning, especially the smaller ones, from the background. In addition, to address the innate class imbalance due to the disproportion of the object to the image size, we introduce an adaptive sampling scheduler that dynamically adjusts the target class distribution during training based on curriculum learning and model feedback. This approach allows us to outperform conventional supervised architecture such as DeepLabv3 or UNet, and state-of-the-art self-supervised learning-based arhitectures such as DPT, SegFormer or UperNet, as shown by extensive evaluations on benchmark SAR datasets.
comment: Accepted to ICLR 2025 ML4RS https://ml-for-rs.github.io/iclr2025/
Weak Cube R-CNN: Weakly Supervised 3D Detection using only 2D Bounding Boxes SC
Monocular 3D object detection is an essential task in computer vision, and it has several applications in robotics and virtual reality. However, 3D object detectors are typically trained in a fully supervised way, relying extensively on 3D labeled data, which is labor-intensive and costly to annotate. This work focuses on weakly-supervised 3D detection to reduce data needs using a monocular method that leverages a singlecamera system over expensive LiDAR sensors or multi-camera setups. We propose a general model Weak Cube R-CNN, which can predict objects in 3D at inference time, requiring only 2D box annotations for training by exploiting the relationship between 2D projections of 3D cubes. Our proposed method utilizes pre-trained frozen foundation 2D models to estimate depth and orientation information on a training set. We use these estimated values as pseudo-ground truths during training. We design loss functions that avoid 3D labels by incorporating information from the external models into the loss. In this way, we aim to implicitly transfer knowledge from these large foundation 2D models without having access to 3D bounding box annotations. Experimental results on the SUN RGB-D dataset show increased performance in accuracy compared to an annotation time equalized Cube R-CNN baseline. While not precise for centimetre-level measurements, this method provides a strong foundation for further research.
comment: 14 pages, 5 figures. Accepted for 23rd Scandinavian Conference, SCIA 2025, Reykjavik, Iceland
LIFT+: Lightweight Fine-Tuning for Long-Tail Learning
The fine-tuning paradigm has emerged as a prominent approach for addressing long-tail learning tasks in the era of foundation models. However, the impact of fine-tuning strategies on long-tail learning performance remains unexplored. In this work, we disclose that existing paradigms exhibit a profound misuse of fine-tuning methods, leaving significant room for improvement in both efficiency and accuracy. Specifically, we reveal that heavy fine-tuning (fine-tuning a large proportion of model parameters) can lead to non-negligible performance deterioration on tail classes, whereas lightweight fine-tuning demonstrates superior effectiveness. Through comprehensive theoretical and empirical validation, we identify this phenomenon as stemming from inconsistent class conditional distributions induced by heavy fine-tuning. Building on this insight, we propose LIFT+, an innovative lightweight fine-tuning framework to optimize consistent class conditions. Furthermore, LIFT+ incorporates semantic-aware initialization, minimalist data augmentation, and test-time ensembling to enhance adaptation and generalization of foundation models. Our framework provides an efficient and accurate pipeline that facilitates fast convergence and model compactness. Extensive experiments demonstrate that LIFT+ significantly reduces both training epochs (from $\sim$100 to $\leq$15) and learned parameters (less than 1%), while surpassing state-of-the-art approaches by a considerable margin. The source code is available at https://github.com/shijxcs/LIFT-plus.
A Stochastic Nonlinear Dynamical System for Smoothing Noisy Eye Gaze Data
In this study, we address the challenges associated with accurately determining gaze location on a screen, which is often compromised by noise from factors such as eye tracker limitations, calibration drift, ambient lighting changes, and eye blinks. We propose the use of an extended Kalman filter (EKF) to smooth the gaze data collected during eye-tracking experiments, and systematically explore the interaction of different system parameters. Our results demonstrate that the EKF significantly reduces noise, leading to a marked improvement in tracking accuracy. Furthermore, we show that our proposed stochastic nonlinear dynamical model aligns well with real experimental data and holds promise for applications in related fields.
comment: 9 pages, 2 figures
ChartQA-X: Generating Explanations for Charts
The ability to interpret and explain complex information from visual data in charts is crucial for data-driven decision-making. In this work, we address the challenge of providing explanations alongside answering questions about chart images. We present ChartQA-X, a comprehensive dataset comprising various chart types with 28,299 contextually relevant questions, answers, and detailed explanations. These explanations are generated by prompting six different models and selecting the best responses based on metrics such as faithfulness, informativeness, coherence, and perplexity. Our experiments show that models fine-tuned on our dataset for explanation generation achieve superior performance across various metrics and demonstrate improved accuracy in question-answering tasks on new datasets. By integrating answers with explanatory narratives, our approach enhances the ability of intelligent agents to convey complex information effectively, improve user understanding, and foster trust in the generated responses.
StructRe: Rewriting for Structured Shape Modeling
Man-made 3D shapes are naturally organized in parts and hierarchies; such structures provide important constraints for shape reconstruction and generation. Modeling shape structures is difficult, because there can be multiple hierarchies for a given shape, causing ambiguity, and across different categories the shape structures are correlated with semantics, limiting generalization. We present StructRe, a structure rewriting system, as a novel approach to structured shape modeling. Given a 3D object represented by points and components, StructRe can rewrite it upward into more concise structures, or downward into more detailed structures; by iterating the rewriting process, hierarchies are obtained. Such a localized rewriting process enables probabilistic modeling of ambiguous structures and robust generalization across object categories. We train StructRe on PartNet data and show its generalization to cross-category and multiple object hierarchies, and test its extension to ShapeNet. We also demonstrate the benefits of probabilistic and generalizable structure modeling for shape reconstruction, generation and editing tasks.
comment: Our project page: https://jiepengwang.github.io/StructRe/
DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency
Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.
comment: V1 has been withdrawn due to a template issue, because of the arXiv policy, we can't delete it. Please refer to the newest version v2
Understanding Attention Mechanism in Video Diffusion Models
Text-to-video (T2V) synthesis models, such as OpenAI's Sora, have garnered significant attention due to their ability to generate high-quality videos from a text prompt. In diffusion-based T2V models, the attention mechanism is a critical component. However, it remains unclear what intermediate features are learned and how attention blocks in T2V models affect various aspects of video synthesis, such as image quality and temporal consistency. In this paper, we conduct an in-depth perturbation analysis of the spatial and temporal attention blocks of T2V models using an information-theoretic approach. Our results indicate that temporal and spatial attention maps affect not only the timing and layout of the videos but also the complexity of spatiotemporal elements and the aesthetic quality of the synthesized videos. Notably, high-entropy attention maps are often key elements linked to superior video quality, whereas low-entropy attention maps are associated with the video's intra-frame structure. Based on our findings, we propose two novel methods to enhance video quality and enable text-guided video editing. These methods rely entirely on lightweight manipulation of the attention matrices in T2V models. The efficacy and effectiveness of our methods are further validated through experimental evaluation across multiple datasets.
Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Accepted at CVPR Workshop Anti-UAV 2025. 15 pages
DVLTA-VQA: Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment
Inspired by the dual-stream theory of the human visual system (HVS) - where the ventral stream is responsible for object recognition and detail analysis, while the dorsal stream focuses on spatial relationships and motion perception - an increasing number of video quality assessment (VQA) works built upon this framework are proposed. Recent advancements in large multi-modal models, notably Contrastive Language-Image Pretraining (CLIP), have motivated researchers to incorporate CLIP into dual-stream-based VQA methods. This integration aims to harness the model's superior semantic understanding capabilities to replicate the object recognition and detail analysis in ventral stream, as well as spatial relationship analysis in dorsal stream. However, CLIP is originally designed for images and lacks the ability to capture temporal and motion information inherent in videos.To address the limitation, this paper propose a Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment (DVLTA-VQA), which decouples CLIP's visual and textual components, and integrates them into different stages of the NR-VQA pipeline. Specifically, a Video-Based Temporal CLIP module is proposed to explicitly model temporal dynamics and enhance motion perception, aligning with the dorsal stream. Additionally, a Temporal Context Module is developed to refine inter-frame dependencies, further improving motion modeling. On the ventral stream side, a Basic Visual Feature Extraction Module is employed to strengthen detail analysis. Finally, a text-guided adaptive fusion strategy is proposed to enable dynamic weighting of features, facilitating more effective integration of spatial and temporal information.
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference Under Ambiguities ICLR 2025
Spatial expressions in situated communication can be ambiguous, as their meanings vary depending on the frames of reference (FoR) adopted by speakers and listeners. While spatial language understanding and reasoning by vision-language models (VLMs) have gained increasing attention, potential ambiguities in these models are still under-explored. To address this issue, we present the COnsistent Multilingual Frame Of Reference Test (COMFORT), an evaluation protocol to systematically assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art VLMs using COMFORT. Despite showing some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs: notably, the models (1) exhibit poor robustness and consistency, (2) lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-specific or culture-specific conventions in cross-lingual tests, as English tends to dominate other languages. With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.
comment: Accepted to ICLR 2025 (Oral) | Project page: https://spatial-comfort.github.io/
Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
The robustness of DNNs is a crucial factor in safety-critical applications, particularly in complex and dynamic environments where localized corruptions can arise. While previous studies have evaluated the robustness of semantic segmentation (SS) models under whole-image natural or adversarial corruptions, a comprehensive investigation into the spatial robustness of dense vision models under localized corruptions remained underexplored. This paper fills this gap by introducing specialized metrics for benchmarking the spatial robustness of segmentation models, alongside with an evaluation framework to assess the impact of localized corruptions. Furthermore, we uncover the inherent complexity of characterizing worst-case robustness using a single localized adversarial perturbation. To address this, we propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness against adversarial perturbations applied to specific regions. The proposed metrics and analysis were exploited to evaluate 14 segmentation models in driving scenarios, uncovering key insights into the effects of localized corruption in both natural and adversarial forms. The results reveal that models respond to these two types of threats differently; for instance, transformer-based segmentation models demonstrate notable robustness to localized natural corruptions but are highly vulnerable to adversarial ones and vice-versa for CNN-based models. Consequently, we also address the challenge of balancing robustness to both natural and adversarial localized corruptions by means of ensemble models, thereby achieving a broader threat coverage and improved reliability for dense vision tasks.
comment: Under review
CDXLSTM: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current RS-CD methods lack a balanced consideration of performance and efficiency. CNNs lack global context, Transformers are computationally expensive, and Mambas face CUDA dependence and local correlation loss. In this paper, we propose CDXLSTM, with a core component that is a powerful XLSTM-based feature enhancement layer, integrating the advantages of linear computational complexity, global context perception, and strong interpret-ability. Specifically, we introduce a scale-specific Feature Enhancer layer, incorporating a Cross-Temporal Global Perceptron customized for semantic-accurate deep features, and a Cross-Temporal Spatial Refiner customized for detail-rich shallow features. Additionally, we propose a Cross-Scale Interactive Fusion module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDXLSTM achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at https://github.com/xwmaxwma/rschange.
A Coding-Theoretic Analysis of Hyperspherical Prototypical Learning Geometry
Hyperspherical Prototypical Learning (HPL) is a supervised approach to representation learning that designs class prototypes on the unit hypersphere. The prototypes bias the representations to class separation in a scale invariant and known geometry. Previous approaches to HPL have either of the following shortcomings: (i) they follow an unprincipled optimisation procedure; or (ii) they are theoretically sound, but are constrained to only one possible latent dimension. In this paper, we address both shortcomings. To address (i), we present a principled optimisation procedure whose solution we show is optimal. To address (ii), we construct well-separated prototypes in a wide range of dimensions using linear block codes. Additionally, we give a full characterisation of the optimal prototype placement in terms of achievable and converse bounds, showing that our proposed methods are near-optimal.
comment: Changes in version 2: Minor formatting changes. Published in the Proceedings of the Geometry-grounded Representation Learning and Generative Modeling Workshop (GRaM), PMLR 251. Available at: https://proceedings.mlr.press/v251/lindstrom24a.html 14 pages: 9 of the main paper, 2 of references, and 3 of appendices.. Code is available at: https://github.com/martinlindstrom/coding_theoretic_hpl
A Survey and Evaluation of Adversarial Attacks for Object Detection
Deep learning models achieve remarkable accuracy in computer vision tasks, yet remain vulnerable to adversarial examples--carefully crafted perturbations to input images that can deceive these models into making confident but incorrect predictions. This vulnerability pose significant risks in high-stakes applications such as autonomous vehicles, security surveillance, and safety-critical inspection systems. While the existing literature extensively covers adversarial attacks in image classification, comprehensive analyses of such attacks on object detection systems remain limited. This paper presents a novel taxonomic framework for categorizing adversarial attacks specific to object detection architectures, synthesizes existing robustness metrics, and provides a comprehensive empirical evaluation of state-of-the-art attack methodologies on popular object detection models, including both traditional detectors and modern detectors with vision-language pretraining. Through rigorous analysis of open-source attack implementations and their effectiveness across diverse detection architectures, we derive key insights into attack characteristics. Furthermore, we delineate critical research gaps and emerging challenges to guide future investigations in securing object detection systems against adversarial threats. Our findings establish a foundation for developing more robust detection models while highlighting the urgent need for standardized evaluation protocols in this rapidly evolving domain.
comment: Accepted for publication in the IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors presents a fundamental challenge. Most deep learning-based fusion methods rely on large-scale paired datasets to extract global weighting features from raw images, thereby generating fused outputs that approximate real fused images. In contrast to previous studies, this paper explores few-shot training of neural networks under the condition of having prior knowledge. We propose a novel fusion framework named GBFF, and a Granular Ball Significant Extraction algorithm specifically designed for the few-shot prior setting. All pixel pairs involved in the fusion process are initially modeled as a Coarse-Grained Granular Ball. At the local level, Fine-Grained Granular Balls are used to slide through the brightness space to extract Non-Salient Pixel Pairs, and perform splitting operations to obtain Salient Pixel Pairs. Pixel-wise weights are then computed to generate a pseudo-supervised image. At the global level, pixel pairs with significant contributions to the fusion process are categorized into the Positive Region, while those whose contributions cannot be accurately determined are assigned to the Boundary Region. The Granular Ball performs modality-aware adaptation based on the proportion of the positive region, thereby adjusting the neural network's loss function and enabling it to complement the information of the boundary region. Extensive experiments demonstrate the effectiveness of both the proposed algorithm and the underlying theory. Compared with state-of-the-art (SOTA) methods, our approach shows strong competitiveness in terms of both fusion time and image expressiveness. Our code is publicly available at:
Long-Context Autoregressive Video Modeling with Next-Frame Prediction
Long-context autoregressive modeling has significantly advanced language generation, but video generation still struggles to fully utilize extended temporal contexts. To investigate long-context video modeling, we introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling. Just as language models learn causal dependencies between tokens (i.e., Token AR), FAR models temporal causal dependencies between continuous frames, achieving better convergence than Token AR and video diffusion transformers. Building on FAR, we observe that long-context video modeling faces challenges due to visual redundancy. Training on long videos is computationally expensive, as vision tokens grow much faster than language tokens. To tackle this issue, we propose balancing locality and long-range dependency through long short-term context modeling. A high-resolution short-term context window ensures fine-grained temporal consistency, while an unlimited long-term context window encodes long-range information using fewer tokens. With this approach, we can train on long video sequences with a manageable token context length, thereby significantly reducing training time and memory usage. Furthermore, we propose a multi-level KV cache designed to support the long short-term context modeling, which accelerating inference on long video sequences. We demonstrate that FAR achieves state-of-the-art performance in both short- and long-video generation, providing a simple yet effective baseline for video autoregressive modeling. The code is released at https://github.com/showlab/FAR.
comment: Project page at https://farlongctx.github.io/
Multimodal Fake News Video Explanation: Dataset, Analysis and Evaluation
Multimodal fake news videos are difficult to interpret because they require comprehensive consideration of the correlation and consistency between multiple modes. Existing methods deal with fake news videos as a classification problem, but it's not clear why news videos are identified as fake. Without proper explanation, the end user may not understand the underlying meaning of the falsehood. Therefore, we propose a new problem - Fake news video Explanation (FNVE) - given a multimodal news post containing a video and title, our goal is to generate natural language explanations to reveal the falsity of the news video. To that end, we developed FakeVE, a new dataset of 2,672 fake news video posts that can definitively explain four real-life fake news video aspects. In order to understand the characteristics of fake news video explanation, we conducted an exploratory analysis of FakeVE from different perspectives. In addition, we propose a Multimodal Relation Graph Transformer (MRGT) based on the architecture of multimodal Transformer to benchmark FakeVE. The empirical results show that the results of the various benchmarks (adopted by FakeVE) are convincing and provide a detailed analysis of the differences in explanation generation of the benchmark models.
A Robust Prototype-Based Network with Interpretable RBF Classifier Foundations AAAI 2025
Prototype-based classification learning methods are known to be inherently interpretable. However, this paradigm suffers from major limitations compared to deep models, such as lower performance. This led to the development of the so-called deep Prototype-Based Networks (PBNs), also known as prototypical parts models. In this work, we analyze these models with respect to different properties, including interpretability. In particular, we focus on the Classification-by-Components (CBC) approach, which uses a probabilistic model to ensure interpretability and can be used as a shallow or deep architecture. We show that this model has several shortcomings, like creating contradicting explanations. Based on these findings, we propose an extension of CBC that solves these issues. Moreover, we prove that this extension has robustness guarantees and derive a loss that optimizes robustness. Additionally, our analysis shows that most (deep) PBNs are related to (deep) RBF classifiers, which implies that our robustness guarantees generalize to shallow RBF classifiers. The empirical evaluation demonstrates that our deep PBN yields state-of-the-art classification accuracy on different benchmarks while resolving the interpretability shortcomings of other approaches. Further, our shallow PBN variant outperforms other shallow PBNs while being inherently interpretable and exhibiting provable robustness guarantees.
comment: To appear at AAAI 2025. Includes the Appendix of the AAAI submission. In v2, the font size has been increased in some figures. In v3, an incorrect hyperparameter specification (Table 6; $\lambda$) has been corrected
Beyond the Frame: Generating 360° Panoramic Videos from Perspective Videos
360{\deg} videos have emerged as a promising medium to represent our dynamic visual world. Compared to the "tunnel vision" of standard cameras, their borderless field of view offers a more complete perspective of our surroundings. While existing video models excel at producing standard videos, their ability to generate full panoramic videos remains elusive. In this paper, we investigate the task of video-to-360{\deg} generation: given a perspective video as input, our goal is to generate a full panoramic video that is consistent with the original video. Unlike conventional video generation tasks, the output's field of view is significantly larger, and the model is required to have a deep understanding of both the spatial layout of the scene and the dynamics of objects to maintain spatio-temporal consistency. To address these challenges, we first leverage the abundant 360{\deg} videos available online and develop a high-quality data filtering pipeline to curate pairwise training data. We then carefully design a series of geometry- and motion-aware operations to facilitate the learning process and improve the quality of 360{\deg} video generation. Experimental results demonstrate that our model can generate realistic and coherent 360{\deg} videos from in-the-wild perspective video. In addition, we showcase its potential applications, including video stabilization, camera viewpoint control, and interactive visual question answering.
comment: Project page: https://red-fairy.github.io/argus/
CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning
Evidence-based deep learning represents a burgeoning paradigm for uncertainty estimation, offering reliable predictions with negligible extra computational overheads. Existing methods usually adopt Kullback-Leibler divergence to estimate the uncertainty of network predictions, ignoring domain gaps among various modalities. To tackle this issue, this paper introduces a novel algorithm based on H\"older Divergence (HD) to enhance the reliability of multi-view learning by addressing inherent uncertainty challenges from incomplete or noisy data. Generally, our method extracts the representations of multiple modalities through parallel network branches, and then employs HD to estimate the prediction uncertainties. Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result that considers all available representations. Mathematically, HD proves to better measure the ``distance'' between real data distribution and predictive distribution of the model and improve the performances of multi-class recognition tasks. Specifically, our method surpass the existing state-of-the-art counterparts on all evaluating benchmarks. We further conduct extensive experiments on different backbones to verify our superior robustness. It is demonstrated that our method successfully pushes the corresponding performance boundaries. Finally, we perform experiments on more challenging scenarios, \textit{i.e.}, learning with incomplete or noisy data, revealing that our method exhibits a high tolerance to such corrupted data.
comment: NA
RGB-Phase Speckle: Cross-Scene Stereo 3D Reconstruction via Wrapped Pre-Normalization ICCV 2025
3D reconstruction garners increasing attention alongside the advancement of high-level image applications, where dense stereo matching (DSM) serves as a pivotal technique. Previous studies often rely on publicly available datasets for training, focusing on modifying network architectures or incorporating specialized modules to extract domain-invariant features and thus improve model robustness. In contrast, inspired by single-frame structured-light phase-shifting encoding, this study introduces RGB-Speckle, a cross-scene 3D reconstruction framework based on an active stereo camera system, designed to enhance robustness. Specifically, we propose a novel phase pre-normalization encoding-decoding method: first, we randomly perturb phase-shift maps and embed them into the three RGB channels to generate color speckle patterns; subsequently, the camera captures phase-encoded images modulated by objects as input to a stereo matching network. This technique effectively mitigates external interference and ensures consistent input data for RGB-Speckle, thereby bolstering cross-domain 3D reconstruction stability. To validate the proposed method, we conduct complex experiments: (1) construct a color speckle dataset for complex scenarios based on the proposed encoding scheme; (2) evaluate the impact of the phase pre-normalization encoding-decoding technique on 3D reconstruction accuracy; and (3) further investigate its robustness across diverse conditions. Experimental results demonstrate that the proposed RGB-Speckle model offers significant advantages in cross-domain and cross-scene 3D reconstruction tasks, enhancing model generalization and reinforcing robustness in challenging environments, thus providing a novel solution for robust 3D reconstruction research.
comment: Submitted to ICCV 2025
ArtCrafter: Text-Image Aligning Style Transfer via Embedding Reframing
Recent years have witnessed significant advancements in text-guided style transfer, primarily attributed to innovations in diffusion models. These models excel in conditional guidance, utilizing text or images to direct the sampling process. However, despite their capabilities, direct conditional guidance approaches often face challenges in balancing the expressiveness of textual semantics with the diversity of output results while capturing stylistic features. To address these challenges, we introduce ArtCrafter, a novel framework for text-to-image style transfer. Specifically, we introduce an attention-based style extraction module, meticulously engineered to capture the subtle stylistic elements within an image. This module features a multi-layer architecture that leverages the capabilities of perceiver attention mechanisms to integrate fine-grained information. Additionally, we present a novel text-image aligning augmentation component that adeptly balances control over both modalities, enabling the model to efficiently map image and text embeddings into a shared feature space. We achieve this through attention operations that enable smooth information flow between modalities. Lastly, we incorporate an explicit modulation that seamlessly blends multimodal enhanced embeddings with original embeddings through an embedding reframing design, empowering the model to generate diverse outputs. Extensive experiments demonstrate that ArtCrafter yields impressive results in visual stylization, exhibiting exceptional levels of stylistic intensity, controllability, and diversity.
comment: 13 pages, 17 figures, submitted to a journal
CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
Class-Incremental Learning (CIL) enables models to continuously learn new class knowledge while retaining previous classes, facilitating adaptation and evolution in dynamic, real-world environments. Traditional CIL methods primarily rely on visual features, which limits their effectiveness in complex, multimodal scenarios. In contrast, VLMs show promising potential for enhancing CIL by leveraging pre-trained knowledge and integrating multi-modal semantic cues such as text and vision. However, existing approaches struggle to mitigate catastrophic forgetting while preserving the generalization strengths of VLMs across diverse modalities. To address these challenges, we propose a Feature Calibration Enhanced Parameter Synthesis (FCPS) framework. Specifically, FCPS introduces a dynamic parameter adjustment mechanism that iteratively calibrates the contribution of original visual features to the final class decision, thus preserving the model's intrinsic generalization capability across modalities. Simultaneously, parameter integration enables effective knowledge transfer, maintaining a balance between acquiring new class representations and preserving old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
Test-time Alignment of Diffusion Models without Reward Over-optimization ICLR 2025
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free, test-time method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS.
comment: ICLR 2025 (Spotlight). The Thirteenth International Conference on Learning Representations. 2025
VariFace: Fair and Diverse Synthetic Dataset Generation for Face Recognition
The use of large-scale, web-scraped datasets to train face recognition models has raised significant privacy and bias concerns. Synthetic methods mitigate these concerns and provide scalable and controllable face generation to enable fair and accurate face recognition. However, existing synthetic datasets display limited intraclass and interclass diversity and do not match the face recognition performance obtained using real datasets. Here, we propose VariFace, a two-stage diffusion-based pipeline to create fair and diverse synthetic face datasets to train face recognition models. Specifically, we introduce three methods: Face Recognition Consistency to refine demographic labels, Face Vendi Score Guidance to improve interclass diversity, and Divergence Score Conditioning to balance the identity preservation-intraclass diversity trade-off. When constrained to the same dataset size, VariFace considerably outperforms previous synthetic datasets (0.9200 $\rightarrow$ 0.9405) and achieves comparable performance to face recognition models trained with real data (Real Gap = -0.0065). In an unconstrained setting, VariFace not only consistently achieves better performance compared to previous synthetic methods across dataset sizes but also, for the first time, outperforms the real dataset (CASIA-WebFace) across six evaluation datasets. This sets a new state-of-the-art performance with an average face verification accuracy of 0.9567 (Real Gap = +0.0097) across LFW, CFP-FP, CPLFW, AgeDB, and CALFW datasets and 0.9366 (Real Gap = +0.0380) on the RFW dataset.
QMix: Quality-aware Learning with Mixed Noise for Robust Retinal Disease Diagnosis
Due to the complexity of medical image acquisition and the difficulty of annotation, medical image datasets inevitably contain noise. Noisy data with wrong labels affects the robustness and generalization ability of deep neural networks. Previous noise learning methods mainly considered noise arising from images being mislabeled, i.e. label noise, assuming that all mislabeled images are of high image quality. However, medical images are prone to suffering extreme quality issues, i.e. data noise, where discriminative visual features are missing for disease diagnosis. In this paper, we propose a noise learning framework, termed as QMix, that learns a robust disease diagnosis model under mixed noise. QMix alternates between sample separation and quality-aware semisupervised training in each training epoch. In the sample separation phase, we design a joint uncertainty-loss criterion to effectively separate (1) correctly labeled images; (2) mislabeled images with high quality and (3) mislabeled images with low quality. In the semi-supervised training phase, we train a disease diagnosis model to learn robust feature representation from the separated samples. Specifically, we devise a sample-reweighing loss to mitigate the effect of mislabeled images with low quality during training. Meanwhile, a contrastive enhancement loss is proposed to further distinguish mislabeled images with low quality from correctly labeled images. QMix achieved state-of-the-art disease diagnosis performance on five public retinal image datasets and exhibited substantial improvement on robustness against mixed noise.
comment: Accepted to IEEE Transactions on Medical Imaging
Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 17 pages,11 figures, 11 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
Online Video Understanding: OVBench and VideoChat-Online CVPR 2025
Multimodal Large Language Models (MLLMs) have significantly progressed in offline video understanding. However, applying these models to real-world scenarios, such as autonomous driving and human-computer interaction, presents unique challenges due to the need for real-time processing of continuous online video streams. To this end, this paper presents systematic efforts from three perspectives: evaluation benchmark, model architecture, and training strategy. First, we introduce OVBench, a comprehensive question-answering benchmark designed to evaluate models' ability to perceive, memorize, and reason within online video contexts. It features 6 core task types across three temporal contexts-past, current, and future-forming 16 subtasks from diverse datasets. Second, we propose a new Pyramid Memory Bank (PMB) that effectively retains key spatiotemporal information in video streams. Third, we proposed an offline-to-online learning paradigm, designing an interleaved dialogue format for online video data and constructing an instruction-tuning dataset tailored for online video training. This framework led to the development of VideoChat-Online, a robust and efficient model for online video understanding. Despite the lower computational cost and higher efficiency, VideoChat-Online outperforms existing state-of-the-art offline and online models across popular offline video benchmarks and OVBench, demonstrating the effectiveness of our model architecture and training strategy. % Our approach surpasses existing state-of-the-art offline models Qwen2-VL 7B and online models Flash-VStream, by 4.19% and 23.7% on OVBench, respectively.
comment: CVPR 2025 Camera Ready Version. Project Page: https://videochat-online.github.io
FANeRV: Frequency Separation and Augmentation based Neural Representation for Video
Neural representations for video (NeRV) have gained considerable attention for their strong performance across various video tasks. However, existing NeRV methods often struggle to capture fine spatial details, resulting in vague reconstructions. In this paper, we present a Frequency Separation and Augmentation based Neural Representation for video (FANeRV), which addresses these limitations with its core Wavelet Frequency Upgrade Block. This block explicitly separates input frames into high and low-frequency components using discrete wavelet transform, followed by targeted enhancement using specialized modules. Finally, a specially designed gated network effectively fuses these frequency components for optimal reconstruction. Additionally, convolutional residual enhancement blocks are integrated into the later stages of the network to balance parameter distribution and improve the restoration of high-frequency details. Experimental results demonstrate that FANeRV significantly improves reconstruction performance and excels in multiple tasks, including video compression, inpainting, and interpolation, outperforming existing NeRV methods.
Near, far: Patch-ordering enhances vision foundation models' scene understanding ICLR25
We introduce NeCo: Patch Neighbor Consistency, a novel self-supervised training loss that enforces patch-level nearest neighbor consistency across a student and teacher model. Compared to contrastive approaches that only yield binary learning signals, i.e., 'attract' and 'repel', this approach benefits from the more fine-grained learning signal of sorting spatially dense features relative to reference patches. Our method leverages differentiable sorting applied on top of pretrained representations, such as DINOv2-registers to bootstrap the learning signal and further improve upon them. This dense post-pretraining leads to superior performance across various models and datasets, despite requiring only 19 hours on a single GPU. This method generates high-quality dense feature encoders and establishes several new state-of-the-art results such as +5.5% and +6% for non-parametric in-context semantic segmentation on ADE20k and Pascal VOC, +7.2% and +5.7% for linear segmentation evaluations on COCO-Things and -Stuff and improvements in the 3D understanding of multi-view consistency on SPair-71k, by more than 1.5%.
comment: Accepted at ICLR25. The webpage is accessible at: https://vpariza.github.io/NeCo/
Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
unPIC: A Geometric Multiview Prior for Image to 3D Synthesis
We introduce a hierarchical probabilistic approach to go from a 2D image to multiview 3D: a diffusion "prior" predicts the unseen 3D geometry, which then conditions a diffusion "decoder" to generate novel views of the subject. We use a pointmap-based geometric representation to coordinate the generation of multiple target views simultaneously. We construct a predictable distribution of geometric features per target view to enable learnability across examples, and generalization to arbitrary inputs images. Our modular, geometry-driven approach to novel-view synthesis (called "unPIC") beats competing baselines such as CAT3D, EscherNet, Free3D, and One-2-3-45 on held-out objects from ObjaverseXL, as well as unseen real-world objects from Google Scanned Objects, Amazon Berkeley Objects, and the Digital Twin Catalog.
Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning
Recently, Multimodal Large Language Models (MLLMs) have achieved significant success across multiple disciplines due to their exceptional instruction-following capabilities and extensive world knowledge. However, whether these MLLMs possess human-like compositional reasoning abilities remains an open problem. To unveil their reasoning behaviors, we first curate a \textbf{M}ultimodal \textbf{A}ssumptive \textbf{R}ea\textbf{s}oning Benchmark (MARS-Bench) in this paper. Interestingly, we find that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question, whereas such presuppositions appear naive to human reasoning. Besides, we also propose a simple yet effective method, Active Deduction (AD), a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction before reaching a final decision. Equipped with the proposed AD method, a MLLM demonstrates significant improvements in assumptive reasoning abilities without compromising its general-purpose question-answering performance. We also provide extensive evaluations of both open-source and private MLLMs on MARS-Bench, along with experimental analyses of the AD method.
Towards Training-Free Open-World Classification with 3D Generative Models
3D open-world classification is a challenging yet essential task in dynamic and unstructured real-world scenarios, requiring both open-category and open-pose recognition. To address these challenges, recent wisdom often takes sophisticated 2D pre-trained models to provide enriched and stable representations. However, these methods largely rely on how 3D objects can be projected into 2D space, which is unfortunately not well solved, and thus significantly limits their performance. Unlike these present efforts, in this paper we make a pioneering exploration of 3D generative models for 3D open-world classification. Drawing on abundant prior knowledge from 3D generative models, we additionally craft a rotation-invariant feature extractor. This innovative synergy endows our pipeline with the advantages of being training-free, open-category, and pose-invariant, thus well suited to 3D open-world classification. Extensive experiments on benchmark datasets demonstrate the potential of generative models in 3D open-world classification, achieving state-of-the-art performance on ModelNet10 and McGill with 32.0% and 8.7% overall accuracy improvement, respectively.
Scene-Text Grounding for Text-Based Video Question Answering
Existing efforts in text-based video question answering (TextVideoQA) are criticized for their opaque decisionmaking and heavy reliance on scene-text recognition. In this paper, we propose to study Grounded TextVideoQA by forcing models to answer questions and spatio-temporally localize the relevant scene-text regions, thus decoupling QA from scenetext recognition and promoting research towards interpretable QA. The task has three-fold significance. First, it encourages scene-text evidence versus other short-cuts for answer predictions. Second, it directly accepts scene-text regions as visual answers, thus circumventing the problem of ineffective answer evaluation by stringent string matching. Third, it isolates the challenges inherited in VideoQA and scene-text recognition. This enables the diagnosis of the root causes for failure predictions, e.g., wrong QA or wrong scene-text recognition? To achieve Grounded TextVideoQA, we propose the T2S-QA model that highlights a disentangled temporal-to-spatial contrastive learning strategy for weakly-supervised scene-text grounding and grounded TextVideoQA. To facilitate evaluation, we construct a new dataset ViTXT-GQA which features 52K scene-text bounding boxes within 2.2K temporal segments related to 2K questions and 729 videos. With ViTXT-GQA, we perform extensive experiments and demonstrate the severe limitations of existing techniques in Grounded TextVideoQA. While T2S-QA achieves superior results, the large performance gap with human leaves ample space for improvement. Our further analysis of oracle scene-text inputs posits that the major challenge is scene-text recognition. To advance the research of Grounded TextVideoQA, our dataset and code are at https://github.com/zhousheng97/ViTXT-GQA.git
Human-Activity AGV Quality Assessment: A Benchmark Dataset and an Objective Evaluation Metric
AI-driven video generation techniques have made significant progress in recent years. However, AI-generated videos (AGVs) involving human activities often exhibit substantial visual and semantic distortions, hindering the practical application of video generation technologies in real-world scenarios. To address this challenge, we conduct a pioneering study on human activity AGV quality assessment, focusing on visual quality evaluation and the identification of semantic distortions. First, we construct the AI-Generated Human activity Video Quality Assessment (Human-AGVQA) dataset, consisting of 6,000 AGVs derived from 15 popular text-to-video (T2V) models using 400 text prompts that describe diverse human activities. We conduct a subjective study to evaluate the human appearance quality, action continuity quality, and overall video quality of AGVs, and identify semantic issues of human body parts. Based on Human-AGVQA, we benchmark the performance of T2V models and analyze their strengths and weaknesses in generating different categories of human activities. Second, we develop an objective evaluation metric, named AI-Generated Human activity Video Quality metric (GHVQ), to automatically analyze the quality of human activity AGVs. GHVQ systematically extracts human-focused quality features, AI-generated content-aware quality features, and temporal continuity features, making it a comprehensive and explainable quality metric for human activity AGVs. The extensive experimental results show that GHVQ outperforms existing quality metrics on the Human-AGVQA dataset by a large margin, demonstrating its efficacy in assessing the quality of human activity AGVs. The Human-AGVQA dataset and GHVQ metric will be released publicly.
RegMixMatch: Optimizing Mixup Utilization in Semi-Supervised Learning AAAI
Consistency regularization and pseudo-labeling have significantly advanced semi-supervised learning (SSL). Prior works have effectively employed Mixup for consistency regularization in SSL. However, our findings indicate that applying Mixup for consistency regularization may degrade SSL performance by compromising the purity of artificial labels. Moreover, most pseudo-labeling based methods utilize thresholding strategy to exclude low-confidence data, aiming to mitigate confirmation bias; however, this approach limits the utility of unlabeled samples. To address these challenges, we propose RegMixMatch, a novel framework that optimizes the use of Mixup with both high- and low-confidence samples in SSL. First, we introduce semi-supervised RegMixup, which effectively addresses reduced artificial labels purity by using both mixed samples and clean samples for training. Second, we develop a class-aware Mixup technique that integrates information from the top-2 predicted classes into low-confidence samples and their artificial labels, reducing the confirmation bias associated with these samples and enhancing their effective utilization. Experimental results demonstrate that RegMixMatch achieves state-of-the-art performance across various SSL benchmarks.
comment: Accepted in AAAI Conference on Artificial Intelligence (AAAI-25)
Efficient Fourier Filtering Network with Contrastive Learning for UAV-based Unaligned Bi-modal Salient Object Detection
Unmanned aerial vehicle (UAV)-based bi-modal salient object detection (BSOD) aims to segment salient objects in a scene utilizing complementary cues in unaligned RGB and thermal image pairs. However, the high computational expense of existing UAV-based BSOD models limits their applicability to real-world UAV devices. To address this problem, we propose an efficient Fourier filter network with contrastive learning that achieves both real-time and accurate performance. Specifically, we first design a semantic contrastive alignment loss to align the two modalities at the semantic level, which facilitates mutual refinement in a parameter-free way. Second, inspired by the fast Fourier transform that obtains global relevance in linear complexity, we propose synchronized alignment fusion, which aligns and fuses bi-modal features in the channel and spatial dimensions by a hierarchical filtering mechanism. Our proposed model, AlignSal, reduces the number of parameters by 70.0%, decreases the floating point operations by 49.4%, and increases the inference speed by 152.5% compared to the cutting-edge BSOD model (i.e., MROS). Extensive experiments on the UAV RGB-T 2400 and seven bi-modal dense prediction datasets demonstrate that AlignSal achieves both real-time inference speed and better performance and generalizability compared to nineteen state-of-the-art models across most evaluation metrics. In addition, our ablation studies further verify AlignSal's potential in boosting the performance of existing aligned BSOD models on UAV-based unaligned data. The code is available at: https://github.com/JoshuaLPF/AlignSal.
comment: Accepted by TGRS 2025
MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention
Efficiently capturing multi-scale information and building long-range dependencies among pixels are essential for medical image segmentation because of the various sizes and shapes of the lesion regions or organs. In this paper, we present Multi-scale Cross-axis Attention (MCA) to solve the above challenging issues based on the efficient axial attention. Instead of simply connecting axial attention along the horizontal and vertical directions sequentially, we propose to calculate dual cross attentions between two parallel axial attentions to capture global information better. To process the significant variations of lesion regions or organs in individual sizes and shapes, we also use multiple convolutions of strip-shape kernels with different kernel sizes in each axial attention path to improve the efficiency of the proposed MCA in encoding spatial information. We build the proposed MCA upon the MSCAN backbone, yielding our network, termed MCANet. Our MCANet with only 4M+ parameters performs even better than most previous works with heavy backbones (e.g., Swin Transformer) on four challenging tasks, including skin lesion segmentation, nuclei segmentation, abdominal multi-organ segmentation, and polyp segmentation. Code is available at https://github.com/haoshao-nku/medical_seg.
comment: accept to Machine Intelligence Research.DOI: 10.1007/s11633-025-1552-6
ViTOC: Vision Transformer and Object-aware Captioner
This paper presents ViTOC (Vision Transformer and Object-aware Captioner), a novel vision-language model for image captioning that addresses the challenges of accuracy and diversity in generated descriptions. Unlike conventional approaches, ViTOC employs a dual-path architecture based on Vision Transformer and object detector, effectively fusing global visual features and local object information through learnable vectors. The model introduces an innovative object-aware prompting strategy that significantly enhances its capability in handling long-tail data. Experiments on the standard COCO dataset demonstrate that ViTOC outperforms baseline models across all evaluation metrics. Additionally, we propose a reference-free evaluation method based on CLIP to further validate the model's effectiveness. By utilizing pretrained visual model parameters, ViTOC achieves efficient end-to-end training.
comment: The core idea is too close to what has been published in other journals
PATFinger: Prompt-Adapted Transferable Fingerprinting against Unauthorized Multimodal Dataset Usage
The multimodal datasets can be leveraged to pre-train large-scale vision-language models by providing cross-modal semantics. Current endeavors for determining the usage of datasets mainly focus on single-modal dataset ownership verification through intrusive methods and non-intrusive techniques, while cross-modal approaches remain under-explored. Intrusive methods can adapt to multimodal datasets but degrade model accuracy, while non-intrusive methods rely on label-driven decision boundaries that fail to guarantee stable behaviors for verification. To address these issues, we propose a novel prompt-adapted transferable fingerprinting scheme from a training-free perspective, called PATFinger, which incorporates the global optimal perturbation (GOP) and the adaptive prompts to capture dataset-specific distribution characteristics. Our scheme utilizes inherent dataset attributes as fingerprints instead of compelling the model to learn triggers. The GOP is derived from the sample distribution to maximize embedding drifts between different modalities. Subsequently, our PATFinger re-aligns the adaptive prompt with GOP samples to capture the cross-modal interactions on the carefully crafted surrogate model. This allows the dataset owner to check the usage of datasets by observing specific prediction behaviors linked to the PATFinger during retrieval queries. Extensive experiments demonstrate the effectiveness of our scheme against unauthorized multimodal dataset usage on various cross-modal retrieval architectures by 30% over state-of-the-art baselines.
C2GM: Cascading conditional generative cartography framework for multi-scale tile map generation with geographic feature constraints
Multi-scale maps are essential representations of surveying and cartographic results, serving as fundamental components of geographic services. Current image generation networks can quickly produce map tiles from remote-sensing images. However, generative models designed for natural images often focus on texture features, neglecting the unique characteristics of remote-sensing features and the scale attributes of tile maps. This limitation in generative models impairs the accurate representation of geographic information, and the quality of tile map generation still needs improvement. Diffusion models have demonstrated remarkable success in various image generation tasks, highlighting their potential to address this challenge. This paper presents C2GM, a novel framework for generating multi-scale tile maps through conditional guided diffusion and multi-scale cascade generation. Specifically, we implement a conditional feature fusion encoder to extract object priors from remote sensing images and cascade reference double branch input, ensuring an accurate representation of complex features. Low-level generated tiles act as constraints for high-level map generation, enhancing visual continuity. Moreover, we incorporate map scale modality information using CLIP to simulate the relationship between map scale and cartographic generalization in tile maps. Extensive experimental evaluations demonstrate that C2GM consistently achieves the state-of-the-art (SOTA) performance on all metrics, facilitating the rapid and effective generation of multi-scale large-format maps for emergency response and remote mapping applications.
Adaptive Decision Boundary for Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) aims to continuously learn new classes from a limited set of training samples without forgetting knowledge of previously learned classes. Conventional FSCIL methods typically build a robust feature extractor during the base training session with abundant training samples and subsequently freeze this extractor, only fine-tuning the classifier in subsequent incremental phases. However, current strategies primarily focus on preventing catastrophic forgetting, considering only the relationship between novel and base classes, without paying attention to the specific decision spaces of each class. To address this challenge, we propose a plug-and-play Adaptive Decision Boundary Strategy (ADBS), which is compatible with most FSCIL methods. Specifically, we assign a specific decision boundary to each class and adaptively adjust these boundaries during training to optimally refine the decision spaces for the classes in each session. Furthermore, to amplify the distinctiveness between classes, we employ a novel inter-class constraint loss that optimizes the decision boundaries and prototypes for each class. Extensive experiments on three benchmarks, namely CIFAR100, miniImageNet, and CUB200, demonstrate that incorporating our ADBS method with existing FSCIL techniques significantly improves performance, achieving overall state-of-the-art results.
Distribution Backtracking Builds A Faster Convergence Trajectory for Diffusion Distillation
Accelerating the sampling speed of diffusion models remains a significant challenge. Recent score distillation methods distill a heavy teacher model into a student generator to achieve one-step generation, which is optimized by calculating the difference between the two score functions on the samples generated by the student model. However, there is a score mismatch issue in the early stage of the distillation process, because existing methods mainly focus on using the endpoint of pre-trained diffusion models as teacher models, overlooking the importance of the convergence trajectory between the student generator and the teacher model. To address this issue, we extend the score distillation process by introducing the entire convergence trajectory of teacher models and propose Distribution Backtracking Distillation (DisBack). DisBask is composed of two stages: Degradation Recording and Distribution Backtracking. Degradation Recording is designed to obtain the convergence trajectory of the teacher model, which records the degradation path from the trained teacher model to the untrained initial student generator. The degradation path implicitly represents the teacher model's intermediate distributions, and its reverse can be viewed as the convergence trajectory from the student generator to the teacher model. Then Distribution Backtracking trains a student generator to backtrack the intermediate distributions along the path to approximate the convergence trajectory of teacher models. Extensive experiments show that DisBack achieves faster and better convergence than the existing distillation method and accomplishes comparable generation performance, with FID score of 1.38 on ImageNet 64x64 dataset. Notably, DisBack is easy to implement and can be generalized to existing distillation methods to boost performance. Our code is publicly available on https://github.com/SYZhang0805/DisBack.
comment: Our code is publicly available on https://github.com/SYZhang0805/DisBack
Transferable Foundation Models for Geometric Tasks on Point Cloud Representations: Geometric Neural Operators
We introduce methods for obtaining pretrained Geometric Neural Operators (GNPs) that can serve as basal foundation models for use in obtaining geometric features. These can be used within data processing pipelines for machine learning tasks and numerical methods. We show how our GNPs can be trained to learn robust latent representations for the differential geometry of point-clouds to provide estimates of metric, curvature, and other shape-related features. We demonstrate how our pre-trained GNPs can be used (i) to estimate the geometric properties of surfaces of arbitrary shape and topologies with robustness in the presence of noise, (ii) to approximate solutions of geometric partial differential equations (PDEs) on manifolds, and (iii) to solve equations for shape deformations such as curvature driven flows. We release codes and weights for using GNPs in the package geo_neural_op. This allows for incorporating our pre-trained GNPs as components for reuse within existing and new data processing pipelines. The GNPs also can be used as part of numerical solvers involving geometry or as part of methods for performing inference and other geometric tasks.
UMSPU: Universal Multi-Size Phase Unwrapping via Mutual Self-Distillation and Adaptive Boosting Ensemble Segmenters
Spatial phase unwrapping is a key technique for extracting phase information to obtain 3D morphology and other features. Modern industrial measurement scenarios demand high precision, large image sizes, and high speed. However, conventional methods struggle with noise resistance and processing speed. Current deep learning methods are limited by the receptive field size and sparse semantic information, making them ineffective for large size images. To address this issue, we propose a mutual self-distillation (MSD) mechanism and adaptive boosting ensemble segmenters to construct a universal multi-size phase unwrapping network (UMSPU). MSD performs hierarchical attention refinement and achieves cross-layer collaborative learning through bidirectional distillation, ensuring fine-grained semantic representation across image sizes. The adaptive boosting ensemble segmenters combine weak segmenters with different receptive fields into a strong one, ensuring stable segmentation across spatial frequencies. Experimental results show that UMSPU overcomes image size limitations, achieving high precision across image sizes ranging from 256*256 to 2048*2048 (an 8 times increase). It also outperforms existing methods in speed, robustness, and generalization. Its practicality is further validated in structured light imaging and InSAR. We believe that UMSPU offers a universal solution for phase unwrapping, with broad potential for industrial applications.
StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
Structured 3D Latents for Scalable and Versatile 3D Generation
We introduce a novel 3D generation method for versatile and high-quality 3D asset creation. The cornerstone is a unified Structured LATent (SLAT) representation which allows decoding to different output formats, such as Radiance Fields, 3D Gaussians, and meshes. This is achieved by integrating a sparsely-populated 3D grid with dense multiview visual features extracted from a powerful vision foundation model, comprehensively capturing both structural (geometry) and textural (appearance) information while maintaining flexibility during decoding. We employ rectified flow transformers tailored for SLAT as our 3D generation models and train models with up to 2 billion parameters on a large 3D asset dataset of 500K diverse objects. Our model generates high-quality results with text or image conditions, significantly surpassing existing methods, including recent ones at similar scales. We showcase flexible output format selection and local 3D editing capabilities which were not offered by previous models. Code, model, and data will be released.
comment: Project Page: https://github.com/Microsoft/TRELLIS
ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework
Multimodal foundation models offer a promising framework for robotic perception and planning by processing sensory inputs to generate actionable plans. However, addressing uncertainty in both perception (sensory interpretation) and decision-making (plan generation) remains a critical challenge for ensuring task reliability. We present a comprehensive framework to disentangle, quantify, and mitigate these two forms of uncertainty. We first introduce a framework for uncertainty disentanglement, isolating perception uncertainty arising from limitations in visual understanding and decision uncertainty relating to the robustness of generated plans. To quantify each type of uncertainty, we propose methods tailored to the unique properties of perception and decision-making: we use conformal prediction to calibrate perception uncertainty and introduce Formal-Methods-Driven Prediction (FMDP) to quantify decision uncertainty, leveraging formal verification techniques for theoretical guarantees. Building on this quantification, we implement two targeted intervention mechanisms: an active sensing process that dynamically re-observes high-uncertainty scenes to enhance visual input quality and an automated refinement procedure that fine-tunes the model on high-certainty data, improving its capability to meet task specifications. Empirical validation in real-world and simulated robotic tasks demonstrates that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines. These improvements are attributed to the combined effect of both interventions and highlight the importance of uncertainty disentanglement, which facilitates targeted interventions that enhance the robustness and reliability of autonomous systems. Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/.
comment: Fine-tuned models, code, and datasets are available at https://uncertainty-in-planning.github.io/
SEAL: Semantic Attention Learning for Long Video Representation
Long video understanding presents challenges due to the inherent high computational complexity and redundant temporal information. An effective representation for long videos must efficiently process such redundancy while preserving essential contents for downstream tasks. This paper introduces SEmantic Attention Learning (SEAL), a novel unified representation for long videos. To reduce computational complexity, long videos are decomposed into three distinct types of semantic entities: scenes, objects, and actions, allowing models to operate on a compact set of entities rather than a large number of frames or pixels. To further address redundancy, we propose an attention learning module that balances token relevance with diversity, formulated as a subset selection optimization problem. Our representation is versatile and applicable across various long video understanding tasks. Extensive experiments demonstrate that SEAL significantly outperforms state-of-the-art methods in video question answering and temporal grounding tasks across diverse benchmarks, including LVBench, MovieChat-1K, and Ego4D.
CoDiff: Conditional Diffusion Model for Collaborative 3D Object Detection
Collaborative 3D object detection holds significant importance in the field of autonomous driving, as it greatly enhances the perception capabilities of each individual agent by facilitating information exchange among multiple agents. However, in practice, due to pose estimation errors and time delays, the fusion of information across agents often results in feature representations with spatial and temporal noise, leading to detection errors. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to explore the use of diffusion models to address the noise problem between multi-agent systems. In this work, we propose CoDiff, a novel robust collaborative perception framework that leverages the potential of diffusion models to generate more comprehensive and clearer feature representations. To the best of our knowledge, this is the first work to apply diffusion models to multi-agent collaborative perception. Specifically, we project high-dimensional feature map into the latent space of a powerful pre-trained autoencoder. Within this space, individual agent information serves as a condition to guide the diffusion model's sampling. This process denoises coarse feature maps and progressively refines the fused features. Experimental study on both simulated and real-world datasets demonstrates that the proposed framework CoDiff consistently outperforms existing relevant methods in terms of the collaborative object detection performance, and exhibits highly desired robustness when the pose and delay information of agents is with high-level noise. The code is released at https://github.com/HuangZhe885/CoDiff
GaSLight: Gaussian Splats for Spatially-Varying Lighting in HDR
We present GaSLight, a method that generates spatially-varying lighting from regular images. Our method proposes using HDR Gaussian Splats as light source representation, marking the first time regular images can serve as light sources in a 3D renderer. Our two-stage process first enhances the dynamic range of images plausibly and accurately by leveraging the priors embedded in diffusion models. Next, we employ Gaussian Splats to model 3D lighting, achieving spatially variant lighting. Our approach yields state-of-the-art results on HDR estimations and their applications in illuminating virtual objects and scenes. To facilitate the benchmarking of images as light sources, we introduce a novel dataset of calibrated and unsaturated HDR to evaluate images as light sources. We assess our method using a combination of this novel dataset and an existing dataset from the literature. Project page: https://lvsn.github.io/gaslight/
XYScanNet: A State Space Model for Single Image Deblurring
Deep state-space models (SSMs), like recent Mamba architectures, are emerging as a promising alternative to CNN and Transformer networks. Existing Mamba-based restoration methods process visual data by leveraging a flatten-and-scan strategy that converts image patches into a 1D sequence before scanning. However, this scanning paradigm ignores local pixel dependencies and introduces spatial misalignment by positioning distant pixels incorrectly adjacent, which reduces local noise-awareness and degrades image sharpness in low-level vision tasks. To overcome these issues, we propose a novel slice-and-scan strategy that alternates scanning along intra- and inter-slices. We further design a new Vision State Space Module (VSSM) for image deblurring, and tackle the inefficiency challenges of the current Mamba-based vision module. Building upon this, we develop XYScanNet, an SSM architecture integrated with a lightweight feature fusion module for enhanced image deblurring. XYScanNet, maintains competitive distortion metrics and significantly improves perceptual performance. Experimental results show that XYScanNet enhances KID by $17\%$ compared to the nearest competitor.
VideoPanda: Video Panoramic Diffusion with Multi-view Attention
High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/ for results.
comment: Project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/
EditSplat: Multi-View Fusion and Attention-Guided Optimization for View-Consistent 3D Scene Editing with 3D Gaussian Splatting
Recent advancements in 3D editing have highlighted the potential of text-driven methods in real-time, user-friendly AR/VR applications. However, current methods rely on 2D diffusion models without adequately considering multi-view information, resulting in multi-view inconsistency. While 3D Gaussian Splatting (3DGS) significantly improves rendering quality and speed, its 3D editing process encounters difficulties with inefficient optimization, as pre-trained Gaussians retain excessive source information, hindering optimization. To address these limitations, we propose EditSplat, a novel text-driven 3D scene editing framework that integrates Multi-view Fusion Guidance (MFG) and Attention-Guided Trimming (AGT). Our MFG ensures multi-view consistency by incorporating essential multi-view information into the diffusion process, leveraging classifier-free guidance from the text-to-image diffusion model and the geometric structure inherent to 3DGS. Additionally, our AGT utilizes the explicit representation of 3DGS to selectively prune and optimize 3D Gaussians, enhancing optimization efficiency and enabling precise, semantically rich local editing. Through extensive qualitative and quantitative evaluations, EditSplat achieves state-of-the-art performance, establishing a new benchmark for text-driven 3D scene editing.
Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware methods often lack robust topological guarantees, are limited to specific use cases, or impose high computational costs. In this work, we propose a novel, graph-based framework for topologically accurate image segmentation that is both computationally efficient and generally applicable. Our method constructs a component graph that fully encodes the topological information of both the prediction and ground truth, allowing us to efficiently identify topologically critical regions and aggregate a loss based on local neighborhood information. Furthermore, we introduce a strict topological metric capturing the homotopy equivalence between the union and intersection of prediction-label pairs. We formally prove the topological guarantees of our approach and empirically validate its effectiveness on binary and multi-class datasets. Our loss demonstrates state-of-the-art performance with up to fivefold faster loss computation compared to persistent homology methods.
Reducing Deep Network Complexity via Sparse Hierarchical Fourier Interaction Networks
This paper presents a Sparse Hierarchical Fourier Interaction Networks, an architectural building block that unifies three complementary principles of frequency domain modeling: A hierarchical patch wise Fourier transform that affords simultaneous access to local detail and global context; A learnable, differentiable top K masking mechanism which retains only the most informative spectral coefficients, thereby exploiting the natural compressibility of visual and linguistic signals.
Enabling Fast and Accurate Crowdsourced Annotation for Elevation-Aware Flood Extent Mapping
Mapping the extent of flood events is a necessary and important aspect of disaster management. In recent years, deep learning methods have evolved as an effective tool to quickly label high resolution imagery and provide necessary flood extent mappings. These methods, though, require large amounts of annotated training data to create models that are accurate and robust to new flooded imagery. In this work, we present FloodTrace, a web-based application that enables effective crowdsourcing of flooded region annotation for machine learning applications. To create this application, we conducted extensive interviews with domain experts to produce a set of formal requirements. Our work brings topological segmentation tools to the web and greatly improves annotation efficiency compared to the state-of-the-art. The user-friendliness of our solution allows researchers to outsource annotations to non-experts and utilize them to produce training data with equal quality to fully expert-labeled data. We conducted a user study to confirm the effectiveness of our application in which 266 graduate students annotated high-resolution aerial imagery from Hurricane Matthew in North Carolina. Experimental results show the efficiency benefits of our application for untrained users, with median annotation time less than half the state-of-the-art annotation method. In addition, using our aggregation and correction framework, flood detection models trained on crowdsourced annotations were able to achieve performance equal to models trained on fully expert-labeled annotations, while requiring a fraction of the time on the part of the expert.
PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisance. We argue that language prior can enhance monocular depth estimation by leveraging the inductive bias learned during the text-to-image pre-training of diffusion models. The ability of these models to generate images that align with text indicates that they have learned the spatial relationships, size, and shape of specified objects, which can be applied to improve depth estimation. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both images and corresponding text descriptions to infer affine-invariant depth through a denoising process. We also show that language prior enhances the model's perception of specific regions of images that users care about and describe. Simultaneously, language prior acts as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. By training on HyperSim and Virtual KITTI, we achieve faster training convergence, fewer inference diffusion steps, and state-of-the-art zero-shot performance across NYUv2, KITTI, ETH3D, and ScanNet. Code will be released upon acceptance.
BOP Challenge 2024 on Model-Based and Model-Free 6D Object Pose Estimation
We present the evaluation methodology, datasets and results of the BOP Challenge 2024, the 6th in a series of public competitions organized to capture the state of the art in 6D object pose estimation and related tasks. In 2024, our goal was to transition BOP from lab-like setups to real-world scenarios. First, we introduced new model-free tasks, where no 3D object models are available and methods need to onboard objects just from provided reference videos. Second, we defined a new, more practical 6D object detection task where identities of objects visible in a test image are not provided as input. Third, we introduced new BOP-H3 datasets recorded with high-resolution sensors and AR/VR headsets, closely resembling real-world scenarios. BOP-H3 include 3D models and onboarding videos to support both model-based and model-free tasks. Participants competed on seven challenge tracks. Notably, the best 2024 method for model-based 6D localization of unseen objects (FreeZeV2.1) achieves 22% higher accuracy on BOP-Classic-Core than the best 2023 method (GenFlow), and is only 4% behind the best 2023 method for seen objects (GPose2023) although being significantly slower (24.9 vs 2.7s per image). A more practical 2024 method for this task is Co-op which takes only 0.8s per image and is 13% more accurate than GenFlow. Methods have similar rankings on 6D detection as on 6D localization but higher run time. On model-based 2D detection of unseen objects, the best 2024 method (MUSE) achieves 21--29% relative improvement compared to the best 2023 method (CNOS). However, the 2D detection accuracy for unseen objects is still -35% behind the accuracy for seen objects (GDet2023), and the 2D detection stage is consequently the main bottleneck of existing pipelines for 6D localization/detection of unseen objects. The online evaluation system stays open and is available at http://bop.felk.cvut.cz/
comment: arXiv admin note: text overlap with arXiv:2403.09799
Image and Video Processing
NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement: Methods and Results CVPR
This paper presents a review for the NTIRE 2025 Challenge on Short-form UGC Video Quality Assessment and Enhancement. The challenge comprises two tracks: (i) Efficient Video Quality Assessment (KVQ), and (ii) Diffusion-based Image Super-Resolution (KwaiSR). Track 1 aims to advance the development of lightweight and efficient video quality assessment (VQA) models, with an emphasis on eliminating reliance on model ensembles, redundant weights, and other computationally expensive components in the previous IQA/VQA competitions. Track 2 introduces a new short-form UGC dataset tailored for single image super-resolution, i.e., the KwaiSR dataset. It consists of 1,800 synthetically generated S-UGC image pairs and 1,900 real-world S-UGC images, which are split into training, validation, and test sets using a ratio of 8:1:1. The primary objective of the challenge is to drive research that benefits the user experience of short-form UGC platforms such as Kwai and TikTok. This challenge attracted 266 participants and received 18 valid final submissions with corresponding fact sheets, significantly contributing to the progress of short-form UGC VQA and image superresolution. The project is publicly available at https://github.com/lixinustc/KVQE- ChallengeCVPR-NTIRE2025.
comment: Challenge Report of NTIRE 2025; Methods from 18 Teams; Accepted by CVPR Workshop; 21 pages
Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
Efficient Chebyshev Reconstruction for the Anisotropic Equilibrium Model in Magnetic Particle Imaging
Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable of real-time, high-sensitivity mapping of superparamagnetic iron oxide nanoparticles. Model-based image reconstruction provides an alternative to conventional methods that rely on a measured system matrix, eliminating the need for laborious calibration measurements. Nevertheless, model-based approaches must account for the complexities of the imaging chain to maintain high image quality. A recently proposed direct reconstruction method leverages weighted Chebyshev polynomials in the frequency domain, removing the need for a simulated system matrix. However, the underlying model neglects key physical effects, such as nanoparticle anisotropy, leading to distortions in reconstructed images. To mitigate these artifacts, an adapted direct Chebyshev reconstruction (DCR) method incorporates a spatially variant deconvolution step, significantly improving reconstruction accuracy at the cost of increased computational demands. In this work, we evaluate the adapted DCR on six experimental phantoms, demonstrating enhanced reconstruction quality in real measurements and achieving image fidelity comparable to or exceeding that of simulated system matrix reconstruction. Furthermore, we introduce an efficient approximation for the spatially variable deconvolution, reducing both runtime and memory consumption while maintaining accuracy. This method achieves computational complexity of O(N log N ), making it particularly beneficial for high-resolution and three-dimensional imaging. Our results highlight the potential of the adapted DCR approach for improving model-based MPI reconstruction in practical applications.
comment: This work has been submitted to the IEEE for possible publication
TUMLS: Trustful Fully Unsupervised Multi-Level Segmentation for Whole Slide Images of Histology
Digital pathology, augmented by artificial intelligence (AI), holds significant promise for improving the workflow of pathologists. However, challenges such as the labor-intensive annotation of whole slide images (WSIs), high computational demands, and trust concerns arising from the absence of uncertainty estimation in predictions hinder the practical application of current AI methodologies in histopathology. To address these issues, we present a novel trustful fully unsupervised multi-level segmentation methodology (TUMLS) for WSIs. TUMLS adopts an autoencoder (AE) as a feature extractor to identify the different tissue types within low-resolution training data. It selects representative patches from each identified group based on an uncertainty measure and then does unsupervised nuclei segmentation in their respective higher-resolution space without using any ML algorithms. Crucially, this solution integrates seamlessly into clinicians workflows, transforming the examination of a whole WSI into a review of concise, interpretable cross-level insights. This integration significantly enhances and accelerates the workflow while ensuring transparency. We evaluated our approach using the UPENN-GBM dataset, where the AE achieved a mean squared error (MSE) of 0.0016. Additionally, nucleus segmentation is assessed on the MoNuSeg dataset, outperforming all unsupervised approaches with an F1 score of 77.46% and a Jaccard score of 63.35%. These results demonstrate the efficacy of TUMLS in advancing the field of digital pathology.
comment: 32 pages, 15 figures, 3 tables, 42 references
NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images: Methods and Results CVPR
This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
comment: Challenge Report of CVPR NTIRE 2025; 26 pages; Methods from 32 teams
Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
Rethinking Few-Shot Image Fusion: Granular Ball Priors Enable General-Purpose Deep Fusion
In image fusion tasks, the absence of real fused images as priors presents a fundamental challenge. Most deep learning-based fusion methods rely on large-scale paired datasets to extract global weighting features from raw images, thereby generating fused outputs that approximate real fused images. In contrast to previous studies, this paper explores few-shot training of neural networks under the condition of having prior knowledge. We propose a novel fusion framework named GBFF, and a Granular Ball Significant Extraction algorithm specifically designed for the few-shot prior setting. All pixel pairs involved in the fusion process are initially modeled as a Coarse-Grained Granular Ball. At the local level, Fine-Grained Granular Balls are used to slide through the brightness space to extract Non-Salient Pixel Pairs, and perform splitting operations to obtain Salient Pixel Pairs. Pixel-wise weights are then computed to generate a pseudo-supervised image. At the global level, pixel pairs with significant contributions to the fusion process are categorized into the Positive Region, while those whose contributions cannot be accurately determined are assigned to the Boundary Region. The Granular Ball performs modality-aware adaptation based on the proportion of the positive region, thereby adjusting the neural network's loss function and enabling it to complement the information of the boundary region. Extensive experiments demonstrate the effectiveness of both the proposed algorithm and the underlying theory. Compared with state-of-the-art (SOTA) methods, our approach shows strong competitiveness in terms of both fusion time and image expressiveness. Our code is publicly available at:
CDXLSTM: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current RS-CD methods lack a balanced consideration of performance and efficiency. CNNs lack global context, Transformers are computationally expensive, and Mambas face CUDA dependence and local correlation loss. In this paper, we propose CDXLSTM, with a core component that is a powerful XLSTM-based feature enhancement layer, integrating the advantages of linear computational complexity, global context perception, and strong interpret-ability. Specifically, we introduce a scale-specific Feature Enhancer layer, incorporating a Cross-Temporal Global Perceptron customized for semantic-accurate deep features, and a Cross-Temporal Spatial Refiner customized for detail-rich shallow features. Additionally, we propose a Cross-Scale Interactive Fusion module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDXLSTM achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at https://github.com/xwmaxwma/rschange.
Impact of Data Duplication on Deep Neural Network-Based Image Classifiers: Robust vs. Standard Models
The accuracy and robustness of machine learning models against adversarial attacks are significantly influenced by factors such as training data quality, model architecture, the training process, and the deployment environment. In recent years, duplicated data in training sets, especially in language models, has attracted considerable attention. It has been shown that deduplication enhances both training performance and model accuracy in language models. While the importance of data quality in training image classifier Deep Neural Networks (DNNs) is widely recognized, the impact of duplicated images in the training set on model generalization and performance has received little attention. In this paper, we address this gap and provide a comprehensive study on the effect of duplicates in image classification. Our analysis indicates that the presence of duplicated images in the training set not only negatively affects the efficiency of model training but also may result in lower accuracy of the image classifier. This negative impact of duplication on accuracy is particularly evident when duplicated data is non-uniform across classes or when duplication, whether uniform or non-uniform, occurs in the training set of an adversarially trained model. Even when duplicated samples are selected in a uniform way, increasing the amount of duplication does not lead to a significant improvement in accuracy.
RGB-Phase Speckle: Cross-Scene Stereo 3D Reconstruction via Wrapped Pre-Normalization ICCV 2025
3D reconstruction garners increasing attention alongside the advancement of high-level image applications, where dense stereo matching (DSM) serves as a pivotal technique. Previous studies often rely on publicly available datasets for training, focusing on modifying network architectures or incorporating specialized modules to extract domain-invariant features and thus improve model robustness. In contrast, inspired by single-frame structured-light phase-shifting encoding, this study introduces RGB-Speckle, a cross-scene 3D reconstruction framework based on an active stereo camera system, designed to enhance robustness. Specifically, we propose a novel phase pre-normalization encoding-decoding method: first, we randomly perturb phase-shift maps and embed them into the three RGB channels to generate color speckle patterns; subsequently, the camera captures phase-encoded images modulated by objects as input to a stereo matching network. This technique effectively mitigates external interference and ensures consistent input data for RGB-Speckle, thereby bolstering cross-domain 3D reconstruction stability. To validate the proposed method, we conduct complex experiments: (1) construct a color speckle dataset for complex scenarios based on the proposed encoding scheme; (2) evaluate the impact of the phase pre-normalization encoding-decoding technique on 3D reconstruction accuracy; and (3) further investigate its robustness across diverse conditions. Experimental results demonstrate that the proposed RGB-Speckle model offers significant advantages in cross-domain and cross-scene 3D reconstruction tasks, enhancing model generalization and reinforcing robustness in challenging environments, thus providing a novel solution for robust 3D reconstruction research.
comment: Submitted to ICCV 2025
Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 17 pages,11 figures, 11 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention
Efficiently capturing multi-scale information and building long-range dependencies among pixels are essential for medical image segmentation because of the various sizes and shapes of the lesion regions or organs. In this paper, we present Multi-scale Cross-axis Attention (MCA) to solve the above challenging issues based on the efficient axial attention. Instead of simply connecting axial attention along the horizontal and vertical directions sequentially, we propose to calculate dual cross attentions between two parallel axial attentions to capture global information better. To process the significant variations of lesion regions or organs in individual sizes and shapes, we also use multiple convolutions of strip-shape kernels with different kernel sizes in each axial attention path to improve the efficiency of the proposed MCA in encoding spatial information. We build the proposed MCA upon the MSCAN backbone, yielding our network, termed MCANet. Our MCANet with only 4M+ parameters performs even better than most previous works with heavy backbones (e.g., Swin Transformer) on four challenging tasks, including skin lesion segmentation, nuclei segmentation, abdominal multi-organ segmentation, and polyp segmentation. Code is available at https://github.com/haoshao-nku/medical_seg.
comment: accept to Machine Intelligence Research.DOI: 10.1007/s11633-025-1552-6
C2GM: Cascading conditional generative cartography framework for multi-scale tile map generation with geographic feature constraints
Multi-scale maps are essential representations of surveying and cartographic results, serving as fundamental components of geographic services. Current image generation networks can quickly produce map tiles from remote-sensing images. However, generative models designed for natural images often focus on texture features, neglecting the unique characteristics of remote-sensing features and the scale attributes of tile maps. This limitation in generative models impairs the accurate representation of geographic information, and the quality of tile map generation still needs improvement. Diffusion models have demonstrated remarkable success in various image generation tasks, highlighting their potential to address this challenge. This paper presents C2GM, a novel framework for generating multi-scale tile maps through conditional guided diffusion and multi-scale cascade generation. Specifically, we implement a conditional feature fusion encoder to extract object priors from remote sensing images and cascade reference double branch input, ensuring an accurate representation of complex features. Low-level generated tiles act as constraints for high-level map generation, enhancing visual continuity. Moreover, we incorporate map scale modality information using CLIP to simulate the relationship between map scale and cartographic generalization in tile maps. Extensive experimental evaluations demonstrate that C2GM consistently achieves the state-of-the-art (SOTA) performance on all metrics, facilitating the rapid and effective generation of multi-scale large-format maps for emergency response and remote mapping applications.
Multimedia
SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs
Cross-modal retrieval (CMR) is a fundamental task in multimedia research, focused on retrieving semantically relevant targets across different modalities. While traditional CMR methods match text and image via embedding-based similarity calculations, recent advancements in pre-trained generative models have established generative retrieval as a promising alternative. This paradigm assigns each target a unique identifier and leverages a generative model to directly predict identifiers corresponding to input queries without explicit indexing. Despite its great potential, current generative CMR approaches still face semantic information insufficiency in both identifier construction and generation processes. To address these limitations, we propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE), designed to unleash the semantic understanding capabilities in generative cross-modal retrieval task. Specifically, we first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation. Furthermore, we introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination. Additionally, to the best of our knowledge, SemCORE is the first framework to simultaneously consider both text-to-image and image-to-text retrieval tasks within generative cross-modal retrieval. Extensive experiments demonstrate that our framework outperforms state-of-the-art generative cross-modal retrieval methods. Notably, SemCORE achieves substantial improvements across benchmark datasets, with an average increase of 8.65 points in Recall@1 for text-to-image retrieval.
HiScene: Creating Hierarchical 3D Scenes with Isometric View Generation
Scene-level 3D generation represents a critical frontier in multimedia and computer graphics, yet existing approaches either suffer from limited object categories or lack editing flexibility for interactive applications. In this paper, we present HiScene, a novel hierarchical framework that bridges the gap between 2D image generation and 3D object generation and delivers high-fidelity scenes with compositional identities and aesthetic scene content. Our key insight is treating scenes as hierarchical "objects" under isometric views, where a room functions as a complex object that can be further decomposed into manipulatable items. This hierarchical approach enables us to generate 3D content that aligns with 2D representations while maintaining compositional structure. To ensure completeness and spatial alignment of each decomposed instance, we develop a video-diffusion-based amodal completion technique that effectively handles occlusions and shadows between objects, and introduce shape prior injection to ensure spatial coherence within the scene. Experimental results demonstrate that our method produces more natural object arrangements and complete object instances suitable for interactive applications, while maintaining physical plausibility and alignment with user inputs.
comment: Project webpage: https://zju3dv.github.io/hiscene/
FashionDPO:Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization SIGIR'25
Personalized outfit generation aims to construct a set of compatible and personalized fashion items as an outfit. Recently, generative AI models have received widespread attention, as they can generate fashion items for users to complete an incomplete outfit or create a complete outfit. However, they have limitations in terms of lacking diversity and relying on the supervised learning paradigm. Recognizing this gap, we propose a novel framework FashionDPO, which fine-tunes the fashion outfit generation model using direct preference optimization. This framework aims to provide a general fine-tuning approach to fashion generative models, refining a pre-trained fashion outfit generation model using automatically generated feedback, without the need to design a task-specific reward function. To make sure that the feedback is comprehensive and objective, we design a multi-expert feedback generation module which covers three evaluation perspectives, \ie quality, compatibility and personalization. Experiments on two established datasets, \ie iFashion and Polyvore-U, demonstrate the effectiveness of our framework in enhancing the model's ability to align with users' personalized preferences while adhering to fashion compatibility principles. Our code and model checkpoints are available at https://github.com/Yzcreator/FashionDPO.
comment: Accepted by SIGIR'25
Saliency-Aware Diffusion Reconstruction for Effective Invisible Watermark Removal
As digital content becomes increasingly ubiquitous, the need for robust watermark removal techniques has grown due to the inadequacy of existing embedding techniques, which lack robustness. This paper introduces a novel Saliency-Aware Diffusion Reconstruction (SADRE) framework for watermark elimination on the web, combining adaptive noise injection, region-specific perturbations, and advanced diffusion-based reconstruction. SADRE disrupts embedded watermarks by injecting targeted noise into latent representations guided by saliency masks although preserving essential image features. A reverse diffusion process ensures high-fidelity image restoration, leveraging adaptive noise levels determined by watermark strength. Our framework is theoretically grounded with stability guarantees and achieves robust watermark removal across diverse scenarios. Empirical evaluations on state-of-the-art (SOTA) watermarking techniques demonstrate SADRE's superiority in balancing watermark disruption and image quality. SADRE sets a new benchmark for watermark elimination, offering a flexible and reliable solution for real-world web content. Code is available on~\href{https://github.com/inzamamulDU/SADRE}{\textbf{https://github.com/inzamamulDU/SADRE}}.
comment: Accepted at The Web Conference 2025
A Survey on Cross-Modal Interaction Between Music and Multimodal Data
Multimodal learning has driven innovation across various industries, particularly in the field of music. By enabling more intuitive interaction experiences and enhancing immersion, it not only lowers the entry barriers to the music but also increases its overall appeal. This survey aims to provide a comprehensive review of multimodal tasks related to music, outlining how music contributes to multimodal learning and offering insights for researchers seeking to expand the boundaries of computational music. Unlike text and images, which are often semantically or visually intuitive, music primarily interacts with humans through auditory perception, making its data representation inherently less intuitive. Therefore, this paper first introduces the representations of music and provides an overview of music datasets. Subsequently, we categorize cross-modal interactions between music and multimodal data into three types: music-driven cross-modal interactions, music-oriented cross-modal interactions, and bidirectional music cross-modal interactions. For each category, we systematically trace the development of relevant sub-tasks, analyze existing limitations, and discuss emerging trends. Furthermore, we provide a comprehensive summary of datasets and evaluation metrics used in multimodal tasks related to music, offering benchmark references for future research. Finally, we discuss the current challenges in cross-modal interactions involving music and propose potential directions for future research.
comment: 34 pages, 7 figures
SmartFreeEdit: Mask-Free Spatial-Aware Image Editing with Complex Instruction Understanding
Recent advancements in image editing have utilized large-scale multimodal models to enable intuitive, natural instruction-driven interactions. However, conventional methods still face significant challenges, particularly in spatial reasoning, precise region segmentation, and maintaining semantic consistency, especially in complex scenes. To overcome these challenges, we introduce SmartFreeEdit, a novel end-to-end framework that integrates a multimodal large language model (MLLM) with a hypergraph-enhanced inpainting architecture, enabling precise, mask-free image editing guided exclusively by natural language instructions. The key innovations of SmartFreeEdit include:(1)the introduction of region aware tokens and a mask embedding paradigm that enhance the spatial understanding of complex scenes;(2) a reasoning segmentation pipeline designed to optimize the generation of editing masks based on natural language instructions;and (3) a hypergraph-augmented inpainting module that ensures the preservation of both structural integrity and semantic coherence during complex edits, overcoming the limitations of local-based image generation. Extensive experiments on the Reason-Edit benchmark demonstrate that SmartFreeEdit surpasses current state-of-the-art methods across multiple evaluation metrics, including segmentation accuracy, instruction adherence, and visual quality preservation, while addressing the issue of local information focus and improving global consistency in the edited image. Our project will be available at https://github.com/smileformylove/SmartFreeEdit.
Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models ICRA 2025
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at https://chain-of-modality.github.io
comment: ICRA 2025
Harmony: A Unified Framework for Modality Incremental Learning
Incremental learning aims to enable models to continuously acquire knowledge from evolving data streams while preserving previously learned capabilities. While current research predominantly focuses on unimodal incremental learning and multimodal incremental learning where the modalities are consistent, real-world scenarios often present data from entirely new modalities, posing additional challenges. This paper investigates the feasibility of developing a unified model capable of incremental learning across continuously evolving modal sequences. To this end, we introduce a novel paradigm called Modality Incremental Learning (MIL), where each learning stage involves data from distinct modalities. To address this task, we propose a novel framework named Harmony, designed to achieve modal alignment and knowledge retention, enabling the model to reduce the modal discrepancy and learn from a sequence of distinct modalities, ultimately completing tasks across multiple modalities within a unified framework. Our approach introduces the adaptive compatible feature modulation and cumulative modal bridging. Through constructing historical modal features and performing modal knowledge accumulation and alignment, the proposed components collaboratively bridge modal differences and maintain knowledge retention, even with solely unimodal data available at each learning phase.These components work in concert to establish effective modality connections and maintain knowledge retention, even when only unimodal data is available at each learning stage. Extensive experiments on the MIL task demonstrate that our proposed method significantly outperforms existing incremental learning methods, validating its effectiveness in MIL scenarios.
Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models CVPR
Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: https://github.com/Lum1104/EIBench, offering a foundation for advanced multimodal causal analysis and next-generation affective computing.
comment: Accepted at CVPR Workshop NEXD 2025. 21 pages, Project: https://github.com/Lum1104/EIBench
Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
Multimodal Fake News Video Explanation: Dataset, Analysis and Evaluation
Multimodal fake news videos are difficult to interpret because they require comprehensive consideration of the correlation and consistency between multiple modes. Existing methods deal with fake news videos as a classification problem, but it's not clear why news videos are identified as fake. Without proper explanation, the end user may not understand the underlying meaning of the falsehood. Therefore, we propose a new problem - Fake news video Explanation (FNVE) - given a multimodal news post containing a video and title, our goal is to generate natural language explanations to reveal the falsity of the news video. To that end, we developed FakeVE, a new dataset of 2,672 fake news video posts that can definitively explain four real-life fake news video aspects. In order to understand the characteristics of fake news video explanation, we conducted an exploratory analysis of FakeVE from different perspectives. In addition, we propose a Multimodal Relation Graph Transformer (MRGT) based on the architecture of multimodal Transformer to benchmark FakeVE. The empirical results show that the results of the various benchmarks (adopted by FakeVE) are convincing and provide a detailed analysis of the differences in explanation generation of the benchmark models.
Scene-Text Grounding for Text-Based Video Question Answering
Existing efforts in text-based video question answering (TextVideoQA) are criticized for their opaque decisionmaking and heavy reliance on scene-text recognition. In this paper, we propose to study Grounded TextVideoQA by forcing models to answer questions and spatio-temporally localize the relevant scene-text regions, thus decoupling QA from scenetext recognition and promoting research towards interpretable QA. The task has three-fold significance. First, it encourages scene-text evidence versus other short-cuts for answer predictions. Second, it directly accepts scene-text regions as visual answers, thus circumventing the problem of ineffective answer evaluation by stringent string matching. Third, it isolates the challenges inherited in VideoQA and scene-text recognition. This enables the diagnosis of the root causes for failure predictions, e.g., wrong QA or wrong scene-text recognition? To achieve Grounded TextVideoQA, we propose the T2S-QA model that highlights a disentangled temporal-to-spatial contrastive learning strategy for weakly-supervised scene-text grounding and grounded TextVideoQA. To facilitate evaluation, we construct a new dataset ViTXT-GQA which features 52K scene-text bounding boxes within 2.2K temporal segments related to 2K questions and 729 videos. With ViTXT-GQA, we perform extensive experiments and demonstrate the severe limitations of existing techniques in Grounded TextVideoQA. While T2S-QA achieves superior results, the large performance gap with human leaves ample space for improvement. Our further analysis of oracle scene-text inputs posits that the major challenge is scene-text recognition. To advance the research of Grounded TextVideoQA, our dataset and code are at https://github.com/zhousheng97/ViTXT-GQA.git
PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisance. We argue that language prior can enhance monocular depth estimation by leveraging the inductive bias learned during the text-to-image pre-training of diffusion models. The ability of these models to generate images that align with text indicates that they have learned the spatial relationships, size, and shape of specified objects, which can be applied to improve depth estimation. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both images and corresponding text descriptions to infer affine-invariant depth through a denoising process. We also show that language prior enhances the model's perception of specific regions of images that users care about and describe. Simultaneously, language prior acts as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. By training on HyperSim and Virtual KITTI, we achieve faster training convergence, fewer inference diffusion steps, and state-of-the-art zero-shot performance across NYUv2, KITTI, ETH3D, and ScanNet. Code will be released upon acceptance.
Computation and Language
SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs
Cross-modal retrieval (CMR) is a fundamental task in multimedia research, focused on retrieving semantically relevant targets across different modalities. While traditional CMR methods match text and image via embedding-based similarity calculations, recent advancements in pre-trained generative models have established generative retrieval as a promising alternative. This paradigm assigns each target a unique identifier and leverages a generative model to directly predict identifiers corresponding to input queries without explicit indexing. Despite its great potential, current generative CMR approaches still face semantic information insufficiency in both identifier construction and generation processes. To address these limitations, we propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE), designed to unleash the semantic understanding capabilities in generative cross-modal retrieval task. Specifically, we first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation. Furthermore, we introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination. Additionally, to the best of our knowledge, SemCORE is the first framework to simultaneously consider both text-to-image and image-to-text retrieval tasks within generative cross-modal retrieval. Extensive experiments demonstrate that our framework outperforms state-of-the-art generative cross-modal retrieval methods. Notably, SemCORE achieves substantial improvements across benchmark datasets, with an average increase of 8.65 points in Recall@1 for text-to-image retrieval.
Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
comment: Code and data released at: https://github.com/letta-ai/sleep-time-compute
CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training
Pre-training datasets are typically collected from web content and lack inherent domain divisions. For instance, widely used datasets like Common Crawl do not include explicit domain labels, while manually curating labeled datasets such as The Pile is labor-intensive. Consequently, identifying an optimal pre-training data mixture remains a challenging problem, despite its significant benefits for pre-training performance. To address these challenges, we propose CLustering-based Iterative Data Mixture Bootstrapping (CLIMB), an automated framework that discovers, evaluates, and refines data mixtures in a pre-training setting. Specifically, CLIMB embeds and clusters large-scale datasets in a semantic space and then iteratively searches for optimal mixtures using a smaller proxy model and a predictor. When continuously trained on 400B tokens with this mixture, our 1B model exceeds the state-of-the-art Llama-3.2-1B by 2.0%. Moreover, we observe that optimizing for a specific domain (e.g., Social Sciences) yields a 5% improvement over random sampling. Finally, we introduce ClimbLab, a filtered 1.2-trillion-token corpus with 20 clusters as a research playground, and ClimbMix, a compact yet powerful 400-billion-token dataset designed for efficient pre-training that delivers superior performance under an equal token budget. We analyze the final data mixture, elucidating the characteristics of an optimal data mixture. Our data is available at: https://research.nvidia.com/labs/lpr/climb/
comment: 20 pages, 9 figures
MIB: A Mechanistic Interpretability Benchmark
How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of meaningful and lasting evaluation standards, we propose MIB, a benchmark with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or specific causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and locate model features for a causal variable relevant to the task. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., standard dimensions of hidden vectors. These findings illustrate that MIB enables meaningful comparisons of methods, and increases our confidence that there has been real progress in the field.
Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. \emph{Antidistillation sampling} provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be naturally framed as probabilistic conditioning, but exact generation from the resulting distribution -- which can differ substantially from the LM's base distribution -- is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). Our SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains -- Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis -- we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8x larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
comment: 34 pages, 4 figures
Energy-Based Reward Models for Robust Language Model Alignment
Reward models (RMs) are essential for aligning Large Language Models (LLMs) with human preferences. However, they often struggle with capturing complex human preferences and generalizing to unseen data. To address these challenges, we introduce Energy-Based Reward Model (EBRM), a lightweight post-hoc refinement framework that enhances RM robustness and generalization. EBRM models the reward distribution explicitly, capturing uncertainty in human preferences and mitigating the impact of noisy or misaligned annotations. It achieves this through conflict-aware data filtering, label-noise-aware contrastive training, and hybrid initialization. Notably, EBRM enhances RMs without retraining, making it computationally efficient and adaptable across different models and tasks. Empirical evaluations on RM benchmarks demonstrate significant improvements in both robustness and generalization, achieving up to a 5.97% improvement in safety-critical alignment tasks compared to standard RMs. Furthermore, reinforcement learning experiments confirm that our refined rewards enhance alignment quality, effectively delaying reward hacking. These results demonstrate our approach as a scalable and effective enhancement for existing RMs and alignment pipelines. The code is available at EBRM.
FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a reusable framework for automatically building information retrieval (IR) evaluation benchmarks from community-asked questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not clearly improve first-stage retrieval accuracy (two out of five topics). We hope that FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks. FreshStack datasets are available at: https://fresh-stack.github.io.
LLMs Meet Finance: Fine-Tuning Foundation Models for the Open FinLLM Leaderboard
This paper investigates the application of large language models (LLMs) to financial tasks. We fine-tuned foundation models using the Open FinLLM Leaderboard as a benchmark. Building on Qwen2.5 and Deepseek-R1, we employed techniques including supervised fine-tuning (SFT), direct preference optimization (DPO), and reinforcement learning (RL) to enhance their financial capabilities. The fine-tuned models demonstrated substantial performance gains across a wide range of financial tasks. Moreover, we measured the data scaling law in the financial domain. Our work demonstrates the potential of large language models (LLMs) in financial applications.
Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
Tackling Social Bias against the Poor: A Dataset and Taxonomy on Aporophobia NAACL 2025
Eradicating poverty is the first goal in the United Nations Sustainable Development Goals. However, aporophobia -- the societal bias against people living in poverty -- constitutes a major obstacle to designing, approving and implementing poverty-mitigation policies. This work presents an initial step towards operationalizing the concept of aporophobia to identify and track harmful beliefs and discriminative actions against poor people on social media. In close collaboration with non-profits and governmental organizations, we conduct data collection and exploration. Then we manually annotate a corpus of English tweets from five world regions for the presence of (1) direct expressions of aporophobia, and (2) statements referring to or criticizing aporophobic views or actions of others, to comprehensively characterize the social media discourse related to bias and discrimination against the poor. Based on the annotated data, we devise a taxonomy of categories of aporophobic attitudes and actions expressed through speech on social media. Finally, we train several classifiers and identify the main challenges for automatic detection of aporophobia in social networks. This work paves the way towards identifying, tracking, and mitigating aporophobic views on social media at scale.
comment: In Findings of the Association for Computational Linguistics: NAACL 2025
Retrieval-Augmented Generation with Conflicting Evidence
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.
comment: Our data and code is available at: https://github.com/HanNight/RAMDocs
Accuracy is Not Agreement: Expert-Aligned Evaluation of Crash Narrative Classification Models
This study explores the relationship between deep learning (DL) model accuracy and expert agreement in the classification of crash narratives. We evaluate five DL models -- including BERT variants, the Universal Sentence Encoder (USE), and a zero-shot classifier -- against expert-labeled data and narrative text. The analysis is further extended to four large language models (LLMs): GPT-4, LLaMA 3, Qwen, and Claude. Our results reveal a counterintuitive trend: models with higher technical accuracy often exhibit lower agreement with domain experts, whereas LLMs demonstrate greater expert alignment despite relatively lower accuracy scores. To quantify and interpret model-expert agreement, we employ Cohen's Kappa, Principal Component Analysis (PCA), and SHAP-based explainability techniques. Findings indicate that expert-aligned models tend to rely more on contextual and temporal language cues, rather than location-specific keywords. These results underscore that accuracy alone is insufficient for evaluating models in safety-critical NLP applications. We advocate for incorporating expert agreement as a complementary metric in model evaluation frameworks and highlight the promise of LLMs as interpretable, scalable tools for crash analysis pipelines.
RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins CVPR 2025
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
comment: CVPR 2025 Highlight. 22 pages. Project page: https://robotwin-benchmark.github.io/
Aspect-Based Summarization with Self-Aspect Retrieval Enhanced Generation
Aspect-based summarization aims to generate summaries tailored to specific aspects, addressing the resource constraints and limited generalizability of traditional summarization approaches. Recently, large language models have shown promise in this task without the need for training. However, they rely excessively on prompt engineering and face token limits and hallucination challenges, especially with in-context learning. To address these challenges, in this paper, we propose a novel framework for aspect-based summarization: Self-Aspect Retrieval Enhanced Summary Generation. Rather than relying solely on in-context learning, given an aspect, we employ an embedding-driven retrieval mechanism to identify its relevant text segments. This approach extracts the pertinent content while avoiding unnecessary details, thereby mitigating the challenge of token limits. Moreover, our framework optimizes token usage by deleting unrelated parts of the text and ensuring that the model generates output strictly based on the given aspect. With extensive experiments on benchmark datasets, we demonstrate that our framework not only achieves superior performance but also effectively mitigates the token limitation problem.
How Large Language Models Are Changing MOOC Essay Answers: A Comparison of Pre- and Post-LLM Responses
The release of ChatGPT in late 2022 caused a flurry of activity and concern in the academic and educational communities. Some see the tool's ability to generate human-like text that passes at least cursory inspections for factual accuracy ``often enough'' a golden age of information retrieval and computer-assisted learning. Some, on the other hand, worry the tool may lead to unprecedented levels of academic dishonesty and cheating. In this work, we quantify some of the effects of the emergence of Large Language Models (LLMs) on online education by analyzing a multi-year dataset of student essay responses from a free university-level MOOC on AI ethics. Our dataset includes essays submitted both before and after ChatGPT's release. We find that the launch of ChatGPT coincided with significant changes in both the length and style of student essays, mirroring observations in other contexts such as academic publishing. We also observe -- as expected based on related public discourse -- changes in prevalence of key content words related to AI and LLMs, but not necessarily the general themes or topics discussed in the student essays as identified through (dynamic) topic modeling.
comment: 10 pages, 4 figures
ChatEXAONEPath: An Expert-level Multimodal Large Language Model for Histopathology Using Whole Slide Images
Recent studies have made significant progress in developing large language models (LLMs) in the medical domain, which can answer expert-level questions and demonstrate the potential to assist clinicians in real-world clinical scenarios. Studies have also witnessed the importance of integrating various modalities with the existing LLMs for a better understanding of complex clinical contexts, which are innately multi-faceted by nature. Although studies have demonstrated the ability of multimodal LLMs in histopathology to answer questions from given images, they lack in understanding of thorough clinical context due to the patch-level data with limited information from public datasets. Thus, developing WSI-level MLLMs is significant in terms of the scalability and applicability of MLLMs in histopathology. In this study, we introduce an expert-level MLLM for histopathology using WSIs, dubbed as ChatEXAONEPath. We present a retrieval-based data generation pipeline using 10,094 pairs of WSIs and histopathology reports from The Cancer Genome Atlas (TCGA). We also showcase an AI-based evaluation protocol for a comprehensive understanding of the medical context from given multimodal information and evaluate generated answers compared to the original histopathology reports. We demonstrate the ability of diagnosing the given histopathology images using ChatEXAONEPath with the acceptance rate of 62.9% from 1,134 pairs of WSIs and reports. Our proposed model can understand pan-cancer WSIs and clinical context from various cancer types. We argue that our proposed model has the potential to assist clinicians by comprehensively understanding complex morphology of WSIs for cancer diagnosis through the integration of multiple modalities.
SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation SemEval
Large language models (LLMs) frequently memorize sensitive information during training, posing risks when deploying publicly accessible models. Current machine unlearning methods struggle to selectively remove specific data associations without degrading overall model capabilities. This paper presents our solution to SemEval-2025 Task 4 on targeted unlearning, which introduces a two-stage methodology that combines causal mediation analysis with layer-specific optimization. Through systematic causal tracing experiments on OLMo architectures (1B and 7B parameters), we identify the critical role of the first few transformer layers (layers 0-5) in storing subject-attribute associations within MLP modules. Building on this insight, we develop a constrained optimization approach that freezes upper layers while applying a novel joint loss function to lower layers-simultaneously maximizing forget set loss via output token cross-entropy penalties and minimizing retain set deviation through adaptive regularization. Our method achieves 2nd place in the 1B model track, demonstrating strong task performance while maintaining 88% of baseline MMLU accuracy. These results establish causal-informed layer optimization as a promising paradigm for efficient, precise unlearning in LLMs, offering a significant step forward in addressing data privacy concerns in AI systems.
comment: 8 pages, In Proceedings of The 19th International Workshop on Semantic Evaluation (SemEval), 2025
Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild
The proliferation of large language models (LLMs) has significantly advanced information retrieval systems, particularly in response generation (RG). Unfortunately, LLMs often face knowledge conflicts between internal memory and retrievaled external information, arising from misinformation, biases, or outdated knowledge. These conflicts undermine response reliability and introduce uncertainty in decision-making. In this work, we analyze how LLMs navigate knowledge conflicts from an information-theoretic perspective and reveal that when conflicting and supplementary information exhibit significant differences, LLMs confidently resolve their preferences. However, when the distinction is ambiguous, LLMs experience heightened uncertainty. Based on this insight, we propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models into adaptive augmentation of retrieved information and guiding LLM preference in response generation. Extensive experiments on single-choice, open-ended question-answering (QA), and retrieval augmented generation (RAG) validate our theoretical findings and demonstrate the efficacy of Swin-VIB. Notably, our method improves single-choice task accuracy by at least 7.54\% over competitive baselines.
A Phenomenological Approach to Analyzing User Queries in IT Systems Using Heidegger's Fundamental Ontology
This paper presents a novel research analytical IT system grounded in Martin Heidegger's Fundamental Ontology, distinguishing between beings (das Seiende) and Being (das Sein). The system employs two modally distinct, descriptively complete languages: a categorical language of beings for processing user inputs and an existential language of Being for internal analysis. These languages are bridged via a phenomenological reduction module, enabling the system to analyze user queries (including questions, answers, and dialogues among IT specialists), identify recursive and self-referential structures, and provide actionable insights in categorical terms. Unlike contemporary systems limited to categorical analysis, this approach leverages Heidegger's phenomenological existential analysis to uncover deeper ontological patterns in query processing, aiding in resolving logical traps in complex interactions, such as metaphor usage in IT contexts. The path to full realization involves formalizing the language of Being by a research team based on Heidegger's Fundamental Ontology; given the existing completeness of the language of beings, this reduces the system's computability to completeness, paving the way for a universal query analysis tool. The paper presents the system's architecture, operational principles, technical implementation, use cases--including a case based on real IT specialist dialogues--comparative evaluation with existing tools, and its advantages and limitations.
comment: 12 pages, no figures
Sparks of Science: Hypothesis Generation Using Structured Paper Data
Generating novel and creative scientific hypotheses is a cornerstone in achieving Artificial General Intelligence. Large language and reasoning models have the potential to aid in the systematic creation, selection, and validation of scientifically informed hypotheses. However, current foundation models often struggle to produce scientific ideas that are both novel and feasible. One reason is the lack of a dedicated dataset that frames Scientific Hypothesis Generation (SHG) as a Natural Language Generation (NLG) task. In this paper, we introduce HypoGen, the first dataset of approximately 5500 structured problem-hypothesis pairs extracted from top-tier computer science conferences structured with a Bit-Flip-Spark schema, where the Bit is the conventional assumption, the Spark is the key insight or conceptual leap, and the Flip is the resulting counterproposal. HypoGen uniquely integrates an explicit Chain-of-Reasoning component that reflects the intellectual process from Bit to Flip. We demonstrate that framing hypothesis generation as conditional language modelling, with the model fine-tuned on Bit-Flip-Spark and the Chain-of-Reasoning (and where, at inference, we only provide the Bit), leads to improvements in the overall quality of the hypotheses. Our evaluation employs automated metrics and LLM judge rankings for overall quality assessment. We show that by fine-tuning on our HypoGen dataset we improve the novelty, feasibility, and overall quality of the generated hypotheses. The HypoGen dataset is publicly available at huggingface.co/datasets/UniverseTBD/hypogen-dr1.
comment: 9 pages, 2 figures. Comments welcome
Estimating Optimal Context Length for Hybrid Retrieval-augmented Multi-document Summarization
Recent advances in long-context reasoning abilities of language models led to interesting applications in large-scale multi-document summarization. However, prior work has shown that these long-context models are not effective at their claimed context windows. To this end, retrieval-augmented systems provide an efficient and effective alternative. However, their performance can be highly sensitive to the choice of retrieval context length. In this work, we present a hybrid method that combines retrieval-augmented systems with long-context windows supported by recent language models. Our method first estimates the optimal retrieval length as a function of the retriever, summarizer, and dataset. On a randomly sampled subset of the dataset, we use a panel of LLMs to generate a pool of silver references. We use these silver references to estimate the optimal context length for a given RAG system configuration. Our results on the multi-document summarization task showcase the effectiveness of our method across model classes and sizes. We compare against length estimates from strong long-context benchmarks such as RULER and HELMET. Our analysis also highlights the effectiveness of our estimation method for very long-context LMs and its generalization to new classes of LMs.
Are Retrials All You Need? Enhancing Large Language Model Reasoning Without Verbalized Feedback
Recent advancements in large language models (LLMs) have catalyzed the development of general-purpose autonomous agents, demonstrating remarkable performance in complex reasoning tasks across various domains. This surge has spurred the evolution of a plethora of prompt-based reasoning frameworks. A recent focus has been on iterative reasoning strategies that refine outputs through self-evaluation and verbalized feedback. However, these strategies require additional computational complexity to enable models to recognize and correct their mistakes, leading to a significant increase in their cost. In this work, we introduce the concept of ``retrials without feedback'', an embarrassingly simple yet powerful mechanism for enhancing reasoning frameworks by allowing LLMs to retry problem-solving attempts upon identifying incorrect answers. Unlike conventional iterative refinement methods, our method does not require explicit self-reflection or verbalized feedback, simplifying the refinement process. Our findings indicate that simpler retrial-based approaches often outperform more sophisticated reasoning frameworks, suggesting that the benefits of complex methods may not always justify their computational costs. By challenging the prevailing assumption that more intricate reasoning strategies inherently lead to better performance, our work offers new insights into how simpler, more efficient approaches can achieve optimal results. So, are retrials all you need?
comment: 8 pages, 16 figures, 1 table. arXiv admin note: text overlap with arXiv:2405.06691
ConExion: Concept Extraction with Large Language Models
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
MAIN: Mutual Alignment Is Necessary for instruction tuning
Instruction tuning has enabled large language models (LLMs) to achieve remarkable performance, but its success heavily depends on the availability of large-scale, high-quality instruction-response pairs. However, current methods for scaling up data generation often overlook a crucial aspect: the alignment between instructions and responses. We hypothesize that high-quality instruction-response pairs are not defined by the individual quality of each component, but by the extent of their alignment with each other. To address this, we propose a Mutual Alignment Framework (MAIN) that ensures coherence between the instruction and response through mutual constraints. Experiments demonstrate that models such as LLaMA and Mistral, fine-tuned within this framework, outperform traditional methods across multiple benchmarks. This approach underscores the critical role of instruction-response alignment in enabling scalable and high-quality instruction tuning for LLMs.
Benchmarking Multi-National Value Alignment for Large Language Models
Do Large Language Models (LLMs) hold positions that conflict with your country's values? Occasionally they do! However, existing works primarily focus on ethical reviews, failing to capture the diversity of national values, which encompass broader policy, legal, and moral considerations. Furthermore, current benchmarks that rely on spectrum tests using manually designed questionnaires are not easily scalable. To address these limitations, we introduce NaVAB, a comprehensive benchmark to evaluate the alignment of LLMs with the values of five major nations: China, the United States, the United Kingdom, France, and Germany. NaVAB implements a national value extraction pipeline to efficiently construct value assessment datasets. Specifically, we propose a modeling procedure with instruction tagging to process raw data sources, a screening process to filter value-related topics and a generation process with a Conflict Reduction mechanism to filter non-conflicting values.We conduct extensive experiments on various LLMs across countries, and the results provide insights into assisting in the identification of misaligned scenarios. Moreover, we demonstrate that NaVAB can be combined with alignment techniques to effectively reduce value concerns by aligning LLMs' values with the target country.
Information Gain-Guided Causal Intervention for Autonomous Debiasing Large Language Models
Despite significant progress, recent studies indicate that current large language models (LLMs) may still capture dataset biases and utilize them during inference, leading to the poor generalizability of LLMs. However, due to the diversity of dataset biases and the insufficient nature of bias suppression based on in-context learning, the effectiveness of previous prior knowledge-based debiasing methods and in-context learning based automatic debiasing methods is limited. To address these challenges, we explore the combination of causal mechanisms with information theory and propose an information gain-guided causal intervention debiasing (IGCIDB) framework. This framework first utilizes an information gain-guided causal intervention method to automatically and autonomously balance the distribution of instruction-tuning dataset. Subsequently, it employs a standard supervised fine-tuning process to train LLMs on the debiased dataset. Experimental results show that IGCIDB can effectively debias LLM to improve its generalizability across different tasks.
Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication
The rapid evolution of artificial intelligence (AI) has introduced AI agents as a disruptive paradigm across various industries, yet their application in machine translation (MT) remains underexplored. This paper describes and analyses the potential of single- and multi-agent systems for MT, reflecting on how they could enhance multilingual digital communication. While single-agent systems are well-suited for simpler translation tasks, multi-agent systems, which involve multiple specialized AI agents collaborating in a structured manner, may offer a promising solution for complex scenarios requiring high accuracy, domain-specific knowledge, and contextual awareness. To demonstrate the feasibility of multi-agent workflows in MT, we are conducting a pilot study in legal MT. The study employs a multi-agent system involving four specialized AI agents for (i) translation, (ii) adequacy review, (iii) fluency review, and (iv) final editing. Our findings suggest that multi-agent systems may have the potential to significantly improve domain-adaptability and contextual awareness, with superior translation quality to traditional MT or single-agent systems. This paper also sets the stage for future research into multi-agent applications in MT, integration into professional translation workflows, and shares a demo of the system analyzed in the paper.
ViClaim: A Multilingual Multilabel Dataset for Automatic Claim Detection in Videos
The growing influence of video content as a medium for communication and misinformation underscores the urgent need for effective tools to analyze claims in multilingual and multi-topic settings. Existing efforts in misinformation detection largely focus on written text, leaving a significant gap in addressing the complexity of spoken text in video transcripts. We introduce ViClaim, a dataset of 1,798 annotated video transcripts across three languages (English, German, Spanish) and six topics. Each sentence in the transcripts is labeled with three claim-related categories: fact-check-worthy, fact-non-check-worthy, or opinion. We developed a custom annotation tool to facilitate the highly complex annotation process. Experiments with state-of-the-art multilingual language models demonstrate strong performance in cross-validation (macro F1 up to 0.896) but reveal challenges in generalization to unseen topics, particularly for distinct domains. Our findings highlight the complexity of claim detection in video transcripts. ViClaim offers a robust foundation for advancing misinformation detection in video-based communication, addressing a critical gap in multimodal analysis.
Building Russian Benchmark for Evaluation of Information Retrieval Models
We introduce RusBEIR, a comprehensive benchmark designed for zero-shot evaluation of information retrieval (IR) models in the Russian language. Comprising 17 datasets from various domains, it integrates adapted, translated, and newly created datasets, enabling systematic comparison of lexical and neural models. Our study highlights the importance of preprocessing for lexical models in morphologically rich languages and confirms BM25 as a strong baseline for full-document retrieval. Neural models, such as mE5-large and BGE-M3, demonstrate superior performance on most datasets, but face challenges with long-document retrieval due to input size constraints. RusBEIR offers a unified, open-source framework that promotes research in Russian-language information retrieval.
EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and modality-of-thought (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
Can LLMs reason over extended multilingual contexts? Towards long-context evaluation beyond retrieval and haystacks
Existing multilingual long-context benchmarks, often based on the popular needle-in-a-haystack test, primarily evaluate a model's ability to locate specific information buried within irrelevant texts. However, such a retrieval-centric approach is myopic and inherently limited, as successful recall alone does not indicate a model's capacity to reason over extended contexts. Moreover, these benchmarks are susceptible to data leakage, short-circuiting, and risk making the evaluation a priori identifiable. To address these limitations, we introduce MLRBench, a new synthetic benchmark for multilingual long-context reasoning. Unlike existing benchmarks, MLRBench goes beyond surface-level retrieval by including tasks that assess multi-hop inference, aggregation, and epistemic reasoning. Spanning seven languages, MLRBench is designed to be parallel, resistant to leakage, and scalable to arbitrary context lengths. Our extensive experiments with an open-weight large language model (LLM) reveal a pronounced gap between high- and low-resource languages, particularly for tasks requiring the model to aggregate multiple facts or predict the absence of information. We also find that, in multilingual settings, LLMs effectively utilize less than 30% of their claimed context length. Although off-the-shelf Retrieval Augmented Generation helps alleviate this to a certain extent, it does not solve the long-context problem. We open-source MLRBench to enable future research in improved evaluation and training of multilingual LLMs.
comment: 33 Pages in Total - 23 (Main Manuscript) + 10 (Appendix)
SMARTe: Slot-based Method for Accountable Relational Triple extraction
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research.
Assesing LLMs in Art Contexts: Critique Generation and Theory of Mind Evaluation
This study explored how large language models (LLMs) perform in two areas related to art: writing critiques of artworks and reasoning about mental states (Theory of Mind, or ToM) in art-related situations. For the critique generation part, we built a system that combines Noel Carroll's evaluative framework with a broad selection of art criticism theories. The model was prompted to first write a full-length critique and then shorter, more coherent versions using a step-by-step prompting process. These AI-generated critiques were then compared with those written by human experts in a Turing test-style evaluation. In many cases, human subjects had difficulty telling which was which, and the results suggest that LLMs can produce critiques that are not only plausible in style but also rich in interpretation, as long as they are carefully guided. In the second part, we introduced new simple ToM tasks based on situations involving interpretation, emotion, and moral tension, which can appear in the context of art. These go beyond standard false-belief tests and allow for more complex, socially embedded forms of reasoning. We tested 41 recent LLMs and found that their performance varied across tasks and models. In particular, tasks that involved affective or ambiguous situations tended to reveal clearer differences. Taken together, these results help clarify how LLMs respond to complex interpretative challenges, revealing both their cognitive limitations and potential. While our findings do not directly contradict the so-called Generative AI Paradox--the idea that LLMs can produce expert-like output without genuine understanding--they suggest that, depending on how LLMs are instructed, such as through carefully designed prompts, these models may begin to show behaviors that resemble understanding more closely than we might assume.
comment: 30 pages, 13 figures, 1 table
Towards Lossless Token Pruning in Late-Interaction Retrieval Models SIGIR 2025
Late interaction neural IR models like ColBERT offer a competitive effectiveness-efficiency trade-off across many benchmarks. However, they require a huge memory space to store the contextual representation for all the document tokens. Some works have proposed using either heuristics or statistical-based techniques to prune tokens from each document. This however doesn't guarantee that the removed tokens have no impact on the retrieval score. Our work uses a principled approach to define how to prune tokens without impacting the score between a document and a query. We introduce three regularization losses, that induce a solution with high pruning ratios, as well as two pruning strategies. We study them experimentally (in and out-domain), showing that we can preserve ColBERT's performance while using only 30\% of the tokens.
comment: Accepted at SIGIR 2025 Full Paper Track
Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at https://github.com/ycpNotFound/GeoGen.
comment: 10 pages, 5 figures
Out of Sight Out of Mind, Out of Sight Out of Mind: Measuring Bias in Language Models Against Overlooked Marginalized Groups in Regional Contexts
We know that language models (LMs) form biases and stereotypes of minorities, leading to unfair treatments of members of these groups, thanks to research mainly in the US and the broader English-speaking world. As the negative behavior of these models has severe consequences for society and individuals, industry and academia are actively developing methods to reduce the bias in LMs. However, there are many under-represented groups and languages that have been overlooked so far. This includes marginalized groups that are specific to individual countries and regions in the English speaking and Western world, but crucially also almost all marginalized groups in the rest of the world. The UN estimates, that between 600 million to 1.2 billion people worldwide are members of marginalized groups and in need for special protection. If we want to develop inclusive LMs that work for everyone, we have to broaden our understanding to include overlooked marginalized groups and low-resource languages and dialects. In this work, we contribute to this effort with the first study investigating offensive stereotyping bias in 23 LMs for 270 marginalized groups from Egypt, the remaining 21 Arab countries, Germany, the UK, and the US. Additionally, we investigate the impact of low-resource languages and dialects on the study of bias in LMs, demonstrating the limitations of current bias metrics, as we measure significantly higher bias when using the Egyptian Arabic dialect versus Modern Standard Arabic. Our results show, LMs indeed show higher bias against many marginalized groups in comparison to dominant groups. However, this is not the case for Arabic LMs, where the bias is high against both marginalized and dominant groups in relation to religion and ethnicity. Our results also show higher intersectional bias against Non-binary, LGBTQIA+ and Black women.
Chinese-Vicuna: A Chinese Instruction-following Llama-based Model
Chinese-Vicuna is an open-source, resource-efficient language model designed to bridge the gap in Chinese instruction-following capabilities by fine-tuning Meta's LLaMA architecture using Low-Rank Adaptation (LoRA). Targeting low-resource environments, it enables cost-effective deployment on consumer GPUs (e.g., RTX-2080Ti for 7B models) and supports domain-specific adaptation in fields like healthcare and law. By integrating hybrid datasets (BELLE and Guanaco) and 4-bit quantization (QLoRA), the model achieves competitive performance in tasks such as translation, code generation, and domain-specific Q\&A. The project provides a comprehensive toolkit for model conversion, CPU inference, and multi-turn dialogue interfaces, emphasizing accessibility for researchers and developers. Evaluations indicate competitive performance across medical tasks, multi-turn dialogue coherence, and real-time legal updates. Chinese-Vicuna's modular design, open-source ecosystem, and community-driven enhancements position it as a versatile foundation for Chinese LLM applications.
comment: Chinese-Vicuna Technique Report
Pandora: A Code-Driven Large Language Model Agent for Unified Reasoning Across Diverse Structured Knowledge
Unified Structured Knowledge Reasoning (USKR) aims to answer natural language questions (NLQs) by using structured sources such as tables, databases, and knowledge graphs in a unified way. Existing USKR methods either rely on employing task-specific strategies or custom-defined representations, which struggle to leverage the knowledge transfer between different SKR tasks or align with the prior of LLMs, thereby limiting their performance. This paper proposes a novel USKR framework named \textsc{Pandora}, which takes advantage of \textsc{Python}'s \textsc{Pandas} API to construct a unified knowledge representation for alignment with LLM pre-training. It employs an LLM to generate textual reasoning steps and executable Python code for each question. Demonstrations are drawn from a memory of training examples that cover various SKR tasks, facilitating knowledge transfer. Extensive experiments on four benchmarks involving three SKR tasks demonstrate that \textsc{Pandora} outperforms existing unified frameworks and competes effectively with task-specific methods.
KODIS: A Multicultural Dispute Resolution Dialogue Corpus
We present KODIS, a dyadic dispute resolution corpus containing thousands of dialogues from over 75 countries. Motivated by a theoretical model of culture and conflict, participants engage in a typical customer service dispute designed by experts to evoke strong emotions and conflict. The corpus contains a rich set of dispositional, process, and outcome measures. The initial analysis supports theories of how anger expressions lead to escalatory spirals and highlights cultural differences in emotional expression. We make this corpus and data collection framework available to the community.
Why and How LLMs Hallucinate: Connecting the Dots with Subsequence Associations
Large language models (LLMs) frequently generate hallucinations-content that deviates from factual accuracy or provided context-posing challenges for diagnosis due to the complex interplay of underlying causes. This paper introduces a subsequence association framework to systematically trace and understand hallucinations. Our key insight is that hallucinations arise when dominant hallucinatory associations outweigh faithful ones. Through theoretical and empirical analyses, we demonstrate that decoder-only transformers effectively function as subsequence embedding models, with linear layers encoding input-output associations. We propose a tracing algorithm that identifies causal subsequences by analyzing hallucination probabilities across randomized input contexts. Experiments show our method outperforms standard attribution techniques in identifying hallucination causes and aligns with evidence from the model's training corpus. This work provides a unified perspective on hallucinations and a robust framework for their tracing and analysis.
Data-efficient LLM Fine-tuning for Code Generation
Large language models (LLMs) have demonstrated significant potential in code generation tasks. However, there remains a performance gap between open-source and closed-source models. To address this gap, existing approaches typically generate large amounts of synthetic data for fine-tuning, which often leads to inefficient training. In this work, we propose a data selection strategy in order to improve the effectiveness and efficiency of training for code-based LLMs. By prioritizing data complexity and ensuring that the sampled subset aligns with the distribution of the original dataset, our sampling strategy effectively selects high-quality data. Additionally, we optimize the tokenization process through a "dynamic pack" technique, which minimizes padding tokens and reduces computational resource consumption. Experimental results show that when training on 40% of the OSS-Instruct dataset, the DeepSeek-Coder-Base-6.7B model achieves an average performance of 66.9%, surpassing the 66.1% performance with the full dataset. Moreover, training time is reduced from 47 minutes to 34 minutes, and the peak GPU memory decreases from 61.47 GB to 42.72 GB during a single epoch. Similar improvements are observed with the CodeLlama-Python-7B model on the Evol-Instruct dataset. By optimizing both data selection and tokenization, our approach not only improves model performance but also improves training efficiency.
comment: arXiv admin note: text overlap with arXiv:2408.02193
WebLists: Extracting Structured Information From Complex Interactive Websites Using Executable LLM Agents
Most recent web agent research has focused on navigation and transaction tasks, with little emphasis on extracting structured data at scale. We present WebLists, a benchmark of 200 data-extraction tasks across four common business and enterprise use-cases. Each task requires an agent to navigate to a webpage, configure it appropriately, and extract complete datasets with well-defined schemas. We show that both LLMs with search capabilities and SOTA web agents struggle with these tasks, with a recall of 3% and 31%, respectively, despite higher performance on question-answering tasks. To address this challenge, we propose BardeenAgent, a novel framework that enables web agents to convert their execution into repeatable programs, and replay them at scale across pages with similar structure. BardeenAgent is also the first LLM agent to take advantage of the regular structure of HTML. In particular BardeenAgent constructs a generalizable CSS selector to capture all relevant items on the page, then fits the operations to extract the data. On the WebLists benchmark, BardeenAgent achieves 66% recall overall, more than doubling the performance of SOTA web agents, and reducing cost per output row by 3x.
GRAIL: Gradient-Based Adaptive Unlearning for Privacy and Copyright in LLMs IJCNN 2025
Large Language Models (LLMs) trained on extensive datasets often learn sensitive information, which raises significant social and legal concerns under principles such as the "Right to be forgotten." Retraining entire models from scratch to remove undesired information is both costly and impractical. Furthermore, existing single-domain unlearning methods fail to address multi-domain scenarios, where knowledge is interwoven across domains such as privacy and copyright, creating overlapping representations that lead to excessive knowledge removal or degraded performance. To tackle these issues, we propose GRAIL (GRadient-based AdaptIve unLearning), a novel multi-domain unlearning framework. GRAIL leverages gradient information from multiple domains to precisely distinguish the unlearning scope from the retention scope, and applies an adaptive parameter-wise localization strategy to selectively remove targeted knowledge while preserving critical parameters for each domain. Experimental results on unlearning benchmarks show that GRAIL achieves unlearning success on par with the existing approaches, while also demonstrating up to 17% stronger knowledge retention success compared to the previous state-of-art method. Our findings establish a new paradigm for effectively managing and regulating sensitive information in large-scale pre-trained language models.
comment: Accepted by IJCNN 2025
ACoRN: Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models
Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However,retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language modelbased compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy-reducing documents, making it highly useful in real-world scenarios.
Persona-judge: Personalized Alignment of Large Language Models via Token-level Self-judgment
Aligning language models with human preferences presents significant challenges, particularly in achieving personalization without incurring excessive computational costs. Existing methods rely on reward signals and additional annotated data, limiting their scalability and adaptability to diverse human values. To address these challenges, we introduce Persona-judge, a novel discriminative paradigm that enables training-free personalized alignment with unseen preferences. Instead of optimizing policy parameters through external reward feedback, Persona-judge leverages the intrinsic preference judgment capabilities of the model. Specifically, a draft model generates candidate tokens conditioned on a given preference, while a judge model, embodying another preference, cross-validates the predicted tokens whether to be accepted. Experimental results demonstrate that Persona-judge, using the inherent preference evaluation mechanisms of the model, offers a scalable and computationally efficient solution to personalized alignment, paving the way for more adaptive customized alignment.
VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
Scaling Instruction-Tuned LLMs to Million-Token Contexts via Hierarchical Synthetic Data Generation
Large Language Models (LLMs) struggle with long-context reasoning, not only due to the quadratic scaling of computational complexity with sequence length but also because of the scarcity and expense of annotating long-context data. There has been barely any open-source work that systematically ablates long-context data, nor is there any openly available instruction tuning dataset with contexts surpassing 100K tokens. To bridge this gap, we introduce a novel post-training synthetic data generation strategy designed to efficiently extend the context window of LLMs while preserving their general task performance. Our approach scalably extends to arbitrarily long context lengths, unconstrained by the length of available real-world data, which effectively addresses the scarcity of raw long-context data. Through a step-by-step rotary position embedding (RoPE) scaling training strategy, we demonstrate that our model, with a context length of up to 1M tokens, performs well on the RULER benchmark and InfiniteBench and maintains robust performance on general language tasks.
comment: 26 pages, 5 figures
Towards Characterizing Subjectivity of Individuals through Modeling Value Conflicts and Trade-offs
Large Language Models (LLMs) not only have solved complex reasoning problems but also exhibit remarkable performance in tasks that require subjective decision making. Existing studies suggest that LLM generations can be subjectively grounded to some extent, yet exploring whether LLMs can account for individual-level subjectivity has not been sufficiently studied. In this paper, we characterize subjectivity of individuals on social media and infer their moral judgments using LLMs. We propose a framework, SOLAR (Subjective Ground with Value Abstraction), that observes value conflicts and trade-offs in the user-generated texts to better represent subjective ground of individuals. Empirical results show that our framework improves overall inference results as well as performance on controversial situations. Additionally, we qualitatively show that SOLAR provides explanations about individuals' value preferences, which can further account for their judgments.
comment: 8 pages
GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning
Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of $65.3$. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.
comment: 10 pages, 8 figures
Simplifying Graph Transformers
Transformers have attained outstanding performance across various modalities, employing scaled-dot-product (SDP) attention mechanisms. Researchers have attempted to migrate Transformers to graph learning, but most advanced Graph Transformers are designed with major architectural differences, either integrating message-passing or incorporating sophisticated attention mechanisms. These complexities prevent the easy adoption of Transformer training advances. We propose three simple modifications to the plain Transformer to render it applicable to graphs without introducing major architectural distortions. Specifically, we advocate for the use of (1) simplified $L_2$ attention to measure the magnitude closeness of tokens; (2) adaptive root-mean-square normalization to preserve token magnitude information; and (3) a relative positional encoding bias with a shared encoder. Significant performance gains across a variety of graph datasets justify the effectiveness of our proposed modifications. Furthermore, empirical evaluation on the expressiveness benchmark reveals noteworthy realized expressiveness in the graph isomorphism.
Identifying and Mitigating the Influence of the Prior Distribution in Large Language Models
Large language models (LLMs) sometimes fail to respond appropriately to deterministic tasks -- such as counting or forming acronyms -- because the implicit prior distribution they have learned over sequences of tokens influences their responses. In this work, we show that, in at least some cases, LLMs actually compute the information needed to perform these tasks correctly, and we identify some interventions that can allow them to access this information to improve their performance. First, we show that simply prompting the language model to not rely on its prior knowledge leads to dramatic improvements in prior-dominated tasks. We then use mechanistic interpretability techniques to localize the prior within the LLM and manipulate the extent to which that prior influences its responses. Specifically, we show that it is possible to identify layers of the underlying neural network that correlate with the prior probability of a response and that lightweight finetuning of these layers with basic prompts on prior-dominated tasks achieves high performance on held-out answers. These results suggest that the information required to produce a correct response is contained within the representations of the problems formed by the models. Furthermore, we show that this finetuning is significantly more effective for prior-dominated tasks, and that the error after finetuning is no longer correlated with the prior. Our results suggest that it may be possible to define effective methods for manipulating the extent to which LLMs rely upon their priors in solving problems, potentially increasing their performance in settings where LLMs hallucinate for reasons related to the prior probability of token sequences.
comment: 16 pages, 5 figures
Provable Secure Steganography Based on Adaptive Dynamic Sampling
The security of private communication is increasingly at risk due to widespread surveillance. Steganography, a technique for embedding secret messages within innocuous carriers, enables covert communication over monitored channels. Provably Secure Steganography (PSS) is state of the art for making stego carriers indistinguishable from normal ones by ensuring computational indistinguishability between stego and cover distributions. However, current PSS methods often require explicit access to the distribution of generative model for both sender and receiver, limiting their practicality in black box scenarios. In this paper, we propose a provably secure steganography scheme that does not require access to explicit model distributions for both sender and receiver. Our method incorporates a dynamic sampling strategy, enabling generative models to embed secret messages within multiple sampling choices without disrupting the normal generation process of the model. Extensive evaluations of three real world datasets and three LLMs demonstrate that our blackbox method is comparable with existing white-box steganography methods in terms of efficiency and capacity while eliminating the degradation of steganography in model generated outputs.
MetaSynth: Meta-Prompting-Driven Agentic Scaffolds for Diverse Synthetic Data Generation
Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a method for generating synthetic data that enhances diversity through meta-prompting, where a language model orchestrates multiple "expert" LLM agents to collaboratively generate data. Using only 25 million tokens of synthetic data generated with MetaSynth, we successfully adapt a well-trained LLM (Mistral-7B-v0.3) to two specialized domains-Finance and Biomedicine-without compromising the capabilities of the resulting model in general tasks. In addition, we evaluate the diversity of our synthetic data using seven automated metrics, and find that it approaches the diversity of LLM pre-training corpora. Continually pre-training Mistral-7B-v0.3 with MetaSynth notably outperforms the base LLM, showing improvements of up to 4.08% in Finance and 13.75% in Biomedicine. The same model shows degraded performance when trained on data generated using a template prompt, even when the template includes prior generations and varying In-Context exemplars of real data. Our findings suggest that a few million tokens of diverse synthetic data without mixing any real data, is sufficient for effective domain adaptation when using MetaSynth.
comment: 33 pages, 17 figures. Preprint
ZeroSumEval: Scaling LLM Evaluation with Inter-Model Competition
Evaluating the capabilities of Large Language Models (LLMs) has traditionally relied on static benchmark datasets, human assessments, or model-based evaluations - methods that often suffer from overfitting, high costs, and biases. ZeroSumEval is a novel competition-based evaluation protocol that leverages zero-sum games to assess LLMs with dynamic benchmarks that resist saturation. ZeroSumEval encompasses a diverse suite of games, including security challenges (PyJail), classic games (Chess, Liar's Dice, Poker), knowledge tests (MathQuiz), and persuasion challenges (Gandalf, Debate). These games are designed to evaluate a range of AI capabilities such as strategic reasoning, planning, knowledge application, and creativity. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework. To demonstrate this, we conduct extensive experiments with >7000 simulations across 7 games and 13 models. Our results show that while frontier models from the GPT and Claude families can play common games and answer questions, they struggle to play games that require creating novel and challenging questions. We also observe that models cannot reliably jailbreak each other and fail generally at tasks requiring creativity. We release our code at https://github.com/facebookresearch/ZeroSumEval.
CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has significantly enhanced large language models (LLMs) in knowledge-intensive tasks by incorporating external knowledge retrieval. However, existing RAG frameworks primarily rely on semantic similarity and correlation-driven retrieval, limiting their ability to distinguish true causal relationships from spurious associations. This results in responses that may be factually grounded but fail to establish cause-and-effect mechanisms, leading to incomplete or misleading insights. To address this issue, we introduce Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (CDF-RAG), a framework designed to improve causal consistency, factual accuracy, and explainability in generative reasoning. CDF-RAG iteratively refines queries, retrieves structured causal graphs, and enables multi-hop causal reasoning across interconnected knowledge sources. Additionally, it validates responses against causal pathways, ensuring logically coherent and factually grounded outputs. We evaluate CDF-RAG on four diverse datasets, demonstrating its ability to improve response accuracy and causal correctness over existing RAG-based methods. Our code is publicly available at https://github.com/ elakhatibi/CDF-RAG.
Benchmarking LLM-based Relevance Judgment Methods
Large Language Models (LLMs) are increasingly deployed in both academic and industry settings to automate the evaluation of information seeking systems, particularly by generating graded relevance judgments. Previous work on LLM-based relevance assessment has primarily focused on replicating graded human relevance judgments through various prompting strategies. However, there has been limited exploration of alternative assessment methods or comprehensive comparative studies. In this paper, we systematically compare multiple LLM-based relevance assessment methods, including binary relevance judgments, graded relevance assessments, pairwise preference-based methods, and two nugget-based evaluation methods~--~document-agnostic and document-dependent. In addition to a traditional comparison based on system rankings using Kendall correlations, we also examine how well LLM judgments align with human preferences, as inferred from relevance grades. We conduct extensive experiments on datasets from three TREC Deep Learning tracks 2019, 2020 and 2021 as well as the ANTIQUE dataset, which focuses on non-factoid open-domain question answering. As part of our data release, we include relevance judgments generated by both an open-source (Llama3.2b) and a commercial (gpt-4o) model. Our goal is to \textit{reproduce} various LLM-based relevance judgment methods to provide a comprehensive comparison. All code, data, and resources are publicly available in our GitHub Repository at https://github.com/Narabzad/llm-relevance-judgement-comparison.
ELAB: Extensive LLM Alignment Benchmark in Persian Language
This paper presents a comprehensive evaluation framework for aligning Persian Large Language Models (LLMs) with critical ethical dimensions, including safety, fairness, and social norms. It addresses the gaps in existing LLM evaluation frameworks by adapting them to Persian linguistic and cultural contexts. This benchmark creates three types of Persian-language benchmarks: (i) translated data, (ii) new data generated synthetically, and (iii) new naturally collected data. We translate Anthropic Red Teaming data, AdvBench, HarmBench, and DecodingTrust into Persian. Furthermore, we create ProhibiBench-fa, SafeBench-fa, FairBench-fa, and SocialBench-fa as new datasets to address harmful and prohibited content in indigenous culture. Moreover, we collect extensive dataset as GuardBench-fa to consider Persian cultural norms. By combining these datasets, our work establishes a unified framework for evaluating Persian LLMs, offering a new approach to culturally grounded alignment evaluation. A systematic evaluation of Persian LLMs is performed across the three alignment aspects: safety (avoiding harmful content), fairness (mitigating biases), and social norms (adhering to culturally accepted behaviors). We present a publicly available leaderboard that benchmarks Persian LLMs with respect to safety, fairness, and social norms at: https://huggingface.co/spaces/MCILAB/LLM_Alignment_Evaluation.
Memorization: A Close Look at Books
To what extent can entire books be extracted from LLMs? Using the Llama 3 70B family of models, and the "prefix-prompting" extraction technique, we were able to auto-regressively reconstruct, with a very high level of similarity, one entire book (Alice's Adventures in Wonderland) from just the first 500 tokens. We were also able to obtain high extraction rates on several other books, piece-wise. However, these successes do not extend uniformly to all books. We show that extraction rates of books correlate with book popularity and thus, likely duplication in the training data. We also confirm the undoing of mitigations in the instruction-tuned Llama 3.1, following recent work (Nasr et al., 2025). We further find that this undoing comes from changes to only a tiny fraction of weights concentrated primarily in the lower transformer blocks. Our results provide evidence of the limits of current regurgitation mitigation strategies and introduce a framework for studying how fine-tuning affects the retrieval of verbatim memorization in aligned LLMs.
Knowledge Acquisition on Mass-shooting Events via LLMs for AI-Driven Justice
Mass-shooting events pose a significant challenge to public safety, generating large volumes of unstructured textual data that hinder effective investigations and the formulation of public policy. Despite the urgency, few prior studies have effectively automated the extraction of key information from these events to support legal and investigative efforts. This paper presented the first dataset designed for knowledge acquisition on mass-shooting events through the application of named entity recognition (NER) techniques. It focuses on identifying key entities such as offenders, victims, locations, and criminal instruments, that are vital for legal and investigative purposes. The NER process is powered by Large Language Models (LLMs) using few-shot prompting, facilitating the efficient extraction and organization of critical information from diverse sources, including news articles, police reports, and social media. Experimental results on real-world mass-shooting corpora demonstrate that GPT-4o is the most effective model for mass-shooting NER, achieving the highest Micro Precision, Micro Recall, and Micro F1-scores. Meanwhile, o1-mini delivers competitive performance, making it a resource-efficient alternative for less complex NER tasks. It is also observed that increasing the shot count enhances the performance of all models, but the gains are more substantial for GPT-4o and o1-mini, highlighting their superior adaptability to few-shot learning scenarios.
THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models
Reasoning models have demonstrated impressive performance on difficult tasks that traditional language models struggle at. However, many are plagued with the problem of overthinking--generating large amounts of unnecessary tokens which don't improve accuracy on a question. We introduce approximate measures of problem-level difficulty and demonstrate that a clear relationship between problem difficulty and optimal token spend exists, and evaluate how well calibrated a variety of reasoning models are in terms of efficiently allocating the optimal token count. We find that in general, reasoning models are poorly calibrated, particularly on easy problems. To evaluate calibration on easy questions we introduce DUMB500, a dataset of extremely easy math, reasoning, code, and task problems, and jointly evaluate reasoning model on these simple examples and extremely difficult examples from existing frontier benchmarks on the same task domain. Finally, we introduce THOUGHTTERMINATOR, a training-free black box decoding technique that significantly improves reasoning model calibration.
Cost-of-Pass: An Economic Framework for Evaluating Language Models
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment.
comment: Code is available at: https://github.com/mhamzaerol/Cost-of-Pass
Acoustic to Articulatory Inversion of Speech; Data Driven Approaches, Challenges, Applications, and Future Scope
This review is focused on the data-driven approaches applied in different applications of Acoustic-to-Articulatory Inversion (AAI) of speech. This review paper considered the relevant works published in the last ten years (2011-2021). The selection criteria includes (a) type of AAI - Speaker Dependent and Speaker Independent AAI, (b) objectives of the work - Articulatory approximation, Articulatory Feature space selection and Automatic Speech Recognition (ASR), explore the correlation between acoustic and articulatory features, and framework for Computer-assisted language training, (c) Corpus - Simultaneously recorded speech (wav) and medical imaging models such as ElectroMagnetic Articulography (EMA), Electropalatography (EPG), Laryngography, Electroglottography (EGG), X-ray Cineradiography, Ultrasound, and real-time Magnetic Resonance Imaging (rtMRI), (d) Methods or models - recent works are considered, and therefore all the works are based on machine learning, (e) Evaluation - as AAI is a non-linear regression problem, the performance evaluation is mostly done by Correlation Coefficient (CC), Root Mean Square Error (RMSE), and also considered Mean Square Error (MSE), and Mean Format Error (MFE). The practical application of the AAI model can provide a better and user-friendly interpretable image feedback system of articulatory positions, especially tongue movement. Such trajectory feedback system can be used to provide phonetic, language, and speech therapy for pathological subjects.
comment: This is a review paper about Acoustic to Articulatory inversion of speech, presented in an international conference. This paper has 8 pages and 2 figures
Sentiment Analysis on the young people's perception about the mobile Internet costs in Senegal
Internet penetration rates in Africa are rising steadily, and mobile Internet is getting an even bigger boost with the availability of smartphones. Young people are increasingly using the Internet, especially social networks, and Senegal is no exception to this revolution. Social networks have become the main means of expression for young people. Despite this evolution in Internet access, there are few operators on the market, which limits the alternatives available in terms of value for money. In this paper, we will look at how young people feel about the price of mobile Internet in Senegal, in relation to the perceived quality of the service, through their comments on social networks. We scanned a set of Twitter and Facebook comments related to the subject and applied a sentiment analysis model to gather their general feelings.
comment: 19 pages, 14 figures, 10th International Congress on Information and Communication Technology (ICICT 2025)
Interpersonal Theory of Suicide as a Lens to Examine Suicidal Ideation in Online Spaces
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.
CPG-EVAL: A Multi-Tiered Benchmark for Evaluating the Chinese Pedagogical Grammar Competence of Large Language Models
Purpose: The rapid emergence of large language models (LLMs) such as ChatGPT has significantly impacted foreign language education, yet their pedagogical grammar competence remains under-assessed. This paper introduces CPG-EVAL, the first dedicated benchmark specifically designed to evaluate LLMs' knowledge of pedagogical grammar within the context of foreign language instruction. Methodology: The benchmark comprises five tasks designed to assess grammar recognition, fine-grained grammatical distinction, categorical discrimination, and resistance to linguistic interference. Findings: Smaller-scale models can succeed in single language instance tasks, but struggle with multiple instance tasks and interference from confusing instances. Larger-scale models show better resistance to interference but still have significant room for accuracy improvement. The evaluation indicates the need for better instructional alignment and more rigorous benchmarks, to effectively guide the deployment of LLMs in educational contexts. Value: This study offers the first specialized, theory-driven, multi-tiered benchmark framework for systematically evaluating LLMs' pedagogical grammar competence in Chinese language teaching contexts. CPG-EVAL not only provides empirical insights for educators, policymakers, and model developers to better gauge AI's current abilities in educational settings, but also lays the groundwork for future research on improving model alignment, enhancing educational suitability, and ensuring informed decision-making concerning LLM integration in foreign language instruction.
comment: 12 pages, 1 figure, 3 tables
ImPart: Importance-Aware Delta-Sparsification for Improved Model Compression and Merging in LLMs
With the proliferation of task-specific large language models, delta compression has emerged as a method to mitigate the resource challenges of deploying numerous such models by effectively compressing the delta model parameters. Previous delta-sparsification methods either remove parameters randomly or truncate singular vectors directly after singular value decomposition (SVD). However, these methods either disregard parameter importance entirely or evaluate it with too coarse a granularity. In this work, we introduce ImPart, a novel importance-aware delta sparsification approach. Leveraging SVD, it dynamically adjusts sparsity ratios of different singular vectors based on their importance, effectively retaining crucial task-specific knowledge even at high sparsity ratios. Experiments show that ImPart achieves state-of-the-art delta sparsification performance, demonstrating $2\times$ higher compression ratio than baselines at the same performance level. When integrated with existing methods, ImPart sets a new state-of-the-art on delta quantization and model merging.
Deep literature reviews: an application of fine-tuned language models to migration research
This paper presents a hybrid framework for literature reviews that augments traditional bibliometric methods with large language models (LLMs). By fine-tuning open-source LLMs, our approach enables scalable extraction of qualitative insights from large volumes of research content, enhancing both the breadth and depth of knowledge synthesis. To improve annotation efficiency and consistency, we introduce an error-focused validation process in which LLMs generate initial labels and human reviewers correct misclassifications. Applying this framework to over 20000 scientific articles about human migration, we demonstrate that a domain-adapted LLM can serve as a "specialist" model - capable of accurately selecting relevant studies, detecting emerging trends, and identifying critical research gaps. Notably, the LLM-assisted review reveals a growing scholarly interest in climate-induced migration. However, existing literature disproportionately centers on a narrow set of environmental hazards (e.g., floods, droughts, sea-level rise, and land degradation), while overlooking others that more directly affect human health and well-being, such as air and water pollution or infectious diseases. This imbalance highlights the need for more comprehensive research that goes beyond physical environmental changes to examine their ecological and societal consequences, particularly in shaping migration as an adaptive response. Overall, our proposed framework demonstrates the potential of fine-tuned LLMs to conduct more efficient, consistent, and insightful literature reviews across disciplines, ultimately accelerating knowledge synthesis and scientific discovery.
DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency.
Bayesian dynamic borrowing considering semantic similarity between outcomes for disproportionality analysis in FAERS
We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs). The method embeds a robust meta-analytic predictive (MAP) prior within a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs) to enable weighted information sharing from MedDRA Preferred Terms (PTs) that are clinically similar to the target PT. This continuous similarity-based borrowing addresses limitation of rigid hierarchical grouping in current disproportionality analysis (DPA). Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evaluate this approach - termed IC SSM - against standard Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term (HLGT) level. A novel references set (PVLens), derived from FDA product label updates, enabled prospective evaluation of method performance in identifying AEs prior to official labeling. The IC SSM approach demonstrated improved sensitivity compared to both traditional IC and HLGT-based borrowing, with minor trade-offs in F1 scores and Youden's index. IC SSM consistently identified more true positives and detected signals over 5 months sooner than traditional IC. Despite a marginally lower aggregate Youden's index, IC SSM showed higher performance in the early post-marketing period, providing more stable and relevant estimates than HLGT-based borrowing and traditional IC. These findings support the use of SSM-informed Bayesian borrowing as a scalable and context-aware enhancement to traditional DPA methods. Future research should validate this approach across other datasets and explore additional similarity metrics and Bayesian inference strategies using case-level data.
comment: 30 pages, 7 figures, 5 supplementary figures
Selective Attention Federated Learning: Improving Privacy and Efficiency for Clinical Text Classification
Federated Learning (FL) faces major challenges regarding communication overhead and model privacy when training large language models (LLMs), especially in healthcare applications. To address these, we introduce Selective Attention Federated Learning (SAFL), a novel approach that dynamically fine-tunes only those transformer layers identified as attention-critical. By employing attention patterns to determine layer importance, SAFL significantly reduces communication bandwidth and enhances differential privacy resilience. Evaluations on clinical NLP benchmarks (i2b2 Clinical Concept Extraction and MIMIC-III discharge summaries) demonstrate that SAFL achieves competitive performance with centralized models while substantially improving communication efficiency and privacy preservation.
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference Under Ambiguities ICLR 2025
Spatial expressions in situated communication can be ambiguous, as their meanings vary depending on the frames of reference (FoR) adopted by speakers and listeners. While spatial language understanding and reasoning by vision-language models (VLMs) have gained increasing attention, potential ambiguities in these models are still under-explored. To address this issue, we present the COnsistent Multilingual Frame Of Reference Test (COMFORT), an evaluation protocol to systematically assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art VLMs using COMFORT. Despite showing some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs: notably, the models (1) exhibit poor robustness and consistency, (2) lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-specific or culture-specific conventions in cross-lingual tests, as English tends to dominate other languages. With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.
comment: Accepted to ICLR 2025 (Oral) | Project page: https://spatial-comfort.github.io/
Contextual Agent Security: A Policy for Every Purpose
Judging an action's safety requires knowledge of the context in which the action takes place. To human agents who act in various contexts, this may seem obvious: performing an action such as email deletion may or may not be appropriate depending on the email's content, the goal (e.g., to erase sensitive emails or to clean up trash), and the type of email address (e.g., work or personal). Unlike people, computational systems have often had only limited agency in limited contexts. Thus, manually crafted policies and user confirmation (e.g., smartphone app permissions or network access control lists), while imperfect, have sufficed to restrict harmful actions. However, with the upcoming deployment of generalist agents that support a multitude of tasks (e.g., an automated personal assistant), we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual agent security (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies.
comment: Workshop in Hot Topics in Operating Systems (HotOS) 2025
SIFT-50M: A Large-Scale Multilingual Dataset for Speech Instruction Fine-Tuning
We introduce SIFT (Speech Instruction Fine-Tuning), a 50M-example dataset designed for instruction fine-tuning and pre-training of speech-text large language models (LLMs). SIFT-50M is built from publicly available speech corpora, which collectively contain 14K hours of speech, and leverages LLMs along with off-the-shelf expert models. The dataset spans five languages, encompassing a diverse range of speech understanding as well as controllable speech generation instructions. Using SIFT-50M, we train SIFT-LLM, which outperforms existing speech-text LLMs on instruction-following benchmarks while achieving competitive performance on foundational speech tasks. To support further research, we also introduce EvalSIFT, a benchmark dataset specifically designed to evaluate the instruction-following capabilities of speech-text LLMs.
Citation-Enhanced Generation for LLM-based Chatbots
Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our codes and dataset will be publicly available.
Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
comment: fix typos
Arabizi vs LLMs: Can the Genie Understand the Language of Aladdin?
In this era of rapid technological advancements, communication continues to evolve as new linguistic phenomena emerge. Among these is Arabizi, a hybrid form of Arabic that incorporates Latin characters and numbers to represent the spoken dialects of Arab communities. Arabizi is widely used on social media and allows people to communicate in an informal and dynamic way, but it poses significant challenges for machine translation due to its lack of formal structure and deeply embedded cultural nuances. This case study arises from a growing need to translate Arabizi for gisting purposes. It evaluates the capacity of different LLMs to decode and translate Arabizi, focusing on multiple Arabic dialects that have rarely been studied up until now. Using a combination of human evaluators and automatic metrics, this research project investigates the model's performance in translating Arabizi into both Modern Standard Arabic and English. Key questions explored include which dialects are translated most effectively and whether translations into English surpass those into Arabic.
comment: Accepted to MT Summit 2025 (Track: Implementation and Case Studies) https://mtsummit2025.unige.ch/
MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
While current large language models (LLMs) perform well on many knowledge-related tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with memorizing rare events and with updating their memory as facts change over time. In addition, the uninterpretable nature of parametric memory makes it challenging to prevent hallucination. Model editing and augmenting LLMs with parameters specialized for memory are only partial solutions. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation. The project repository is publicly available at https://github.com/amodaresi/MemLLM
comment: Published in Transactions on Machine Learning Research (TMLR)
Unipa-GPT: Large Language Models for university-oriented QA in Italian
This paper illustrates the architecture and training of Unipa-GPT, a chatbot relying on a Large Language Model, developed for assisting students in choosing a bachelor/master degree course at the University of Palermo. Unipa-GPT relies on gpt-3.5-turbo, it was presented in the context of the European Researchers' Night (SHARPER night). In our experiments we adopted both the Retrieval Augmented Generation (RAG) approach and fine-tuning to develop the system. The whole architecture of Unipa-GPT is presented, both the RAG and the fine-tuned systems are compared, and a brief discussion on their performance is reported. Further comparison with other Large Language Models and the experimental results during the SHARPER night are illustrated. Corpora and code are available on GitHub
comment: GitHub repository: https://github.com/CHILab1/UnipaGPT-23
CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
Multi-Stakeholder Disaster Insights from Social Media Using Large Language Models
In recent years, social media has emerged as a primary channel for users to promptly share feedback and issues during disasters and emergencies, playing a key role in crisis management. While significant progress has been made in collecting and analyzing social media content, there remains a pressing need to enhance the automation, aggregation, and customization of this data to deliver actionable insights tailored to diverse stakeholders, including the press, police, EMS, and firefighters. This effort is essential for improving the coordination of activities such as relief efforts, resource distribution, and media communication. This paper presents a methodology that leverages the capabilities of LLMs to enhance disaster response and management. Our approach combines classification techniques with generative AI to bridge the gap between raw user feedback and stakeholder-specific reports. Social media posts shared during catastrophic events are analyzed with a focus on user-reported issues, service interruptions, and encountered challenges. We employ full-spectrum LLMs, using analytical models like BERT for precise, multi-dimensional classification of content type, sentiment, emotion, geolocation, and topic. Generative models such as ChatGPT are then used to produce human-readable, informative reports tailored to distinct audiences, synthesizing insights derived from detailed classifications. We compare standard approaches, which analyze posts directly using prompts in ChatGPT, to our advanced method, which incorporates multi-dimensional classification, sub-event selection, and tailored report generation. Our methodology demonstrates superior performance in both quantitative metrics, such as text coherence scores and latent representations, and qualitative assessments by automated tools and field experts, delivering precise insights for diverse disaster response stakeholders.
Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical Reasoning ACL 2024
Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard at https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347. The source code and data are publicly available at https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning.
comment: 21 pages, 8 figures, the Findings of ACL 2024
Multi-Step Deductive Reasoning Over Natural Language: An Empirical Study on Out-of-Distribution Generalisation
Combining deep learning with symbolic logic reasoning aims to capitalize on the success of both fields and is drawing increasing attention. Inspired by DeepLogic, an end-to-end model trained to perform inference on logic programs, we introduce IMA-GloVe-GA, an iterative neural inference network for multi-step reasoning expressed in natural language. In our model, reasoning is performed using an iterative memory neural network based on RNN with a gated attention mechanism. We evaluate IMA-GloVe-GA on three datasets: PARARULES, CONCEPTRULES V1 and CONCEPTRULES V2. Experimental results show DeepLogic with gated attention can achieve higher test accuracy than DeepLogic and other RNN baseline models. Our model achieves better out-of-distribution generalisation than RoBERTa-Large when the rules have been shuffled. Furthermore, to address the issue of unbalanced distribution of reasoning depths in the current multi-step reasoning datasets, we develop PARARULE-Plus, a large dataset with more examples that require deeper reasoning steps. Experimental results show that the addition of PARARULE-Plus can increase the model's performance on examples requiring deeper reasoning depths. The source code and data are available at https://github.com/Strong-AI-Lab/Multi-Step-Deductive-Reasoning-Over-Natural-Language.
comment: 10 pages, 3 figures, The 2nd International Joint Conference on Learning & Reasoning and 16th International Workshop on Neural-Symbolic Learning and Reasoning (IJCLR-NeSy 2022)
FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion
Heterogeneous model fusion enhances the performance of LLMs by integrating the knowledge and capabilities of multiple structurally diverse models. However, existing approaches often rely solely on selecting the best output for each prompt from source models, which underutilizes their full potential due to limited source knowledge and results in sparse optimization signals. To address this limitation, we propose FuseRL, a novel two-stage framework comprising FuseSFT and FusePO to maximize the utilization of source LLMs. FuseSFT establishes a robust initialization by integrating the strengths of heterogeneous source models through weighted supervised fine-tuning (SFT) on diverse outputs for each prompt. FusePO optimizes weighted preferences based on the outputs of multiple source models to enable superior alignment performance. Extensive experiments demonstrate the effectiveness of our framework across various preference alignment methods, including RLOO, DPO, and SimPO. Using Llama-3.1-8B-Instruct as the target model, our approach achieves state-of-the-art performance among 8B LLMs on the AlpacaEval-2 and Arena-Hard benchmarks. Further analysis suggests that FuseSFT regularizes the training process to reduce overfitting, while FusePO introduces dense and diverse signals for preference optimization.
Baichuan 2: Open Large-scale Language Models
Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.
comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan2
Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
Think-to-Talk or Talk-to-Think? When LLMs Come Up with an Answer in Multi-Step Arithmetic Reasoning
This study investigates the internal reasoning process of language models during arithmetic multi-step reasoning, motivated by the question of when they internally form their answers during reasoning. Particularly, we inspect whether the answer is determined before or after chain-of-thought (CoT) begins to determine whether models follow a post-hoc Think-to-Talk mode or a step-by-step Talk-to-Think mode of explanation. Through causal probing experiments in controlled arithmetic reasoning tasks, we found systematic internal reasoning patterns across models in our case study; for example, single-step subproblems are solved before CoT begins, and more complicated multi-step calculations are performed during CoT.
DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
In-context KV-Cache Eviction for LLMs via Attention-Gate
The KV-Cache technique has become the standard for the inference of large language models (LLMs). Yet, it is widely criticized that KV-Cache can become a bottleneck of the LLM inference system. This paper enables a novel dynamic KV-Cache eviction policy by injecting a lightweight module called Attention-Gate to the model. It accepts the global context as input and yields eviction flags for each token. The self-attention modules in the model proceed according to the flags and cache only a subset of the KV states for next token prediction. The Attention-Gates can yield various flags for different heads and layers and be easily tuned on top of a pre-trained LLM via continual pre-training or supervised fine-tuning. The computational and memory overhead introduced by Attention-Gates can be minimal. We empirically evaluate the proposed approach across multiple scenarios, showing that effective eviction of redundant tokens can not only improve efficiency but also enhance performance.
Judging the Judges: A Systematic Study of Position Bias in LLM-as-a-Judge
LLM-as-a-Judge has emerged as a promising alternative to human evaluators across various tasks, yet inherent biases - particularly position bias, the tendency to favor solutions based on their position within the prompt - compromise its reliability. This exploratory study evaluates position bias in LLM judges across pairwise and list-wise comparison settings, introducing three metrics: repetition stability, position consistency, and preference fairness. Our experiments, involving 15 LLM judges across MTBench and DevBench with 22 tasks and approximately 40 solution-generating models, result in over 150,000 evaluation instances. We identify Judge-Level, Candidate-Level, and Task-Level factors contributing to bias. The findings confirm that position bias is not due to random chance and varies significantly across judges and tasks. While position bias is weakly influenced by the length of prompt components, it is strongly affected by the quality gap between solutions. Our agreement and disagreement analysis among judges further provides insights into the distribution of judging difficulty across the dataset, and highlights the potential for dataset modifications.
ZeroSumEval: An Extensible Framework For Scaling LLM Evaluation with Inter-Model Competition
We introduce ZeroSumEval, a dynamic, competition-based, and evolving evaluation framework for Large Language Models (LLMs) that leverages competitive games. ZeroSumEval encompasses a diverse suite of games, including security challenges (Capture the Flag), classic board games (chess), and knowledge tests (MathQuiz). These games are designed to evaluate a range of capabilities such as strategic reasoning, planning, knowledge application, safety, and adaptability. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework for easily implementing games and leverages DSPy to provide a better abstraction for LLM player strategies.
Fleet of Agents: Coordinated Problem Solving with Large Language Models
While numerous frameworks have been developed to enhance the reasoning abilities of large language models (LLMs), there is a scarcity of methods that effectively balance the trade-off between cost and quality. In this paper, we introduce Fleet of Agents (FoA), a novel and intuitive yet principled framework utilizing LLMs as agents to navigate through dynamic tree searches, employing a genetic-type particle filtering approach. FoA spawns a multitude of agents, each exploring the search space autonomously, followed by a selection phase where resampling based on a heuristic value function optimizes the balance between exploration and exploitation. This mechanism enables dynamic branching, adapting the exploration strategy based on discovered solutions. We conduct extensive experiments on three benchmark tasks, ``Game of 24'', ``Mini-Crosswords'', and ``WebShop'', utilizing four different LLMs, ``GPT-3.5'', ``GPT-4'', ``LLaMA3.2-11B'', and ``LLaMA3.2-90B''. On average across all tasks and LLMs, FoA obtains a quality improvement of ~5% while requiring only ~40% of the cost of previous SOTA methods. Notably, our analyses reveal that (1) FoA achieves the best cost-quality trade-off among all benchmarked methods and (2) FoA + LLaMA3.2-11B surpasses the Llama3.2-90B model. FoA is publicly available at https://github.com/au-clan/FoA.
comment: 28 pages, 68 figures, 8 tables
Exploring the Trade-Offs: Quantization Methods, Task Difficulty, and Model Size in Large Language Models From Edge to Giant
Quantization has gained attention as a promising solution for the cost-effective deployment of large and small language models. However, most prior work has been limited to perplexity or basic knowledge tasks and lacks a comprehensive evaluation of recent models like Llama-3.3. In this paper, we conduct a comprehensive evaluation of instruction-tuned models spanning 1B to 405B parameters, applying four quantization methods across 13 datasets. Our findings reveal that (1) quantized models generally surpass smaller FP16 baselines, yet they often struggle with instruction-following and hallucination detection; (2) FP8 consistently emerges as the most robust option across tasks, and AWQ tends to outperform GPTQ in weight-only quantization; (3) smaller models can suffer severe accuracy drops at 4-bit quantization, while 70B-scale models maintain stable performance; (4) notably, \textit{hard} tasks do not always experience the largest accuracy losses, indicating that quantization magnifies a model's inherent weaknesses rather than simply correlating with task difficulty; and (5) an LLM-based judge (MT-Bench) highlights significant performance declines in coding and STEM tasks, though reasoning may sometimes improve.
comment: 21 pages, 2 figure
Evaluating the Bias in LLMs for Surveying Opinion and Decision Making in Healthcare
Generative agents have been increasingly used to simulate human behaviour in silico, driven by large language models (LLMs). These simulacra serve as sandboxes for studying human behaviour without compromising privacy or safety. However, it remains unclear whether such agents can truly represent real individuals. This work compares survey data from the Understanding America Study (UAS) on healthcare decision-making with simulated responses from generative agents. Using demographic-based prompt engineering, we create digital twins of survey respondents and analyse how well different LLMs reproduce real-world behaviours. Our findings show that some LLMs fail to reflect realistic decision-making, such as predicting universal vaccine acceptance. However, Llama 3 captures variations across race and Income more accurately but also introduces biases not present in the UAS data. This study highlights the potential of generative agents for behavioural research while underscoring the risks of bias from both LLMs and prompting strategies.
Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
LLM-Select: Feature Selection with Large Language Models
In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could benefit practitioners in domains like healthcare and the social sciences, where collecting high-quality data comes at a high cost.
comment: Published in Transactions on Machine Learning Research (TMLR), April 2025
United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections
"Synthetic samples" based on large language models (LLMs) have been argued to serve as efficient alternatives to surveys of humans, assuming that their training data includes information on human attitudes and behavior. However, LLM-synthetic samples might exhibit bias, for example due to training data and fine-tuning processes being unrepresentative of diverse contexts. Such biases risk reinforcing existing biases in research, policymaking, and society. Therefore, researchers need to investigate if and under which conditions LLM-generated synthetic samples can be used for public opinion prediction. In this study, we examine to what extent LLM-based predictions of individual public opinion exhibit context-dependent biases by predicting the results of the 2024 European Parliament elections. Prompting three LLMs with individual-level background information of 26,000 eligible European voters, we ask the LLMs to predict each person's voting behavior. By comparing them to the actual results, we show that LLM-based predictions of future voting behavior largely fail, their accuracy is unequally distributed across national and linguistic contexts, and they require detailed attitudinal information in the prompt. The findings emphasize the limited applicability of LLM-synthetic samples to public opinion prediction. In investigating their contextual biases, this study contributes to the understanding and mitigation of inequalities in the development of LLMs and their applications in computational social science.
ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6$\times$ larger batch sizes and boost throughput by up to 3.04$\times$ on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
Are You Doubtful? Oh, It Might Be Difficult Then! Exploring the Use of Model Uncertainty for Question Difficulty Estimation
In an educational setting, an estimate of the difficulty of multiple-choice questions (MCQs), a commonly used strategy to assess learning progress, constitutes very useful information for both teachers and students. Since human assessment is costly from multiple points of view, automatic approaches to MCQ item difficulty estimation are investigated, yielding however mixed success until now. Our approach to this problem takes a different angle from previous work: asking various Large Language Models to tackle the questions included in three different MCQ datasets, we leverage model uncertainty to estimate item difficulty. By using both model uncertainty features as well as textual features in a Random Forest regressor, we show that uncertainty features contribute substantially to difficulty prediction, where difficulty is inversely proportional to the number of students who can correctly answer a question. In addition to showing the value of our approach, we also observe that our model achieves state-of-the-art results on the USMLE and CMCQRD publicly available datasets.
comment: 14 pages,7 figures
Reducing the Scope of Language Models
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models.
Does Refusal Training in LLMs Generalize to the Past Tense? ICLR 2025
Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, o1-mini, o1-preview, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense.
comment: Accepted at ICLR 2025. Updates in v2 and v3: added GPT-4o, Claude 3.5 Sonnet, o1-mini, and o1-preview results. Code and jailbreak artifacts: https://github.com/tml-epfl/llm-past-tense
PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisance. We argue that language prior can enhance monocular depth estimation by leveraging the inductive bias learned during the text-to-image pre-training of diffusion models. The ability of these models to generate images that align with text indicates that they have learned the spatial relationships, size, and shape of specified objects, which can be applied to improve depth estimation. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both images and corresponding text descriptions to infer affine-invariant depth through a denoising process. We also show that language prior enhances the model's perception of specific regions of images that users care about and describe. Simultaneously, language prior acts as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. By training on HyperSim and Virtual KITTI, we achieve faster training convergence, fewer inference diffusion steps, and state-of-the-art zero-shot performance across NYUv2, KITTI, ETH3D, and ScanNet. Code will be released upon acceptance.
Psycholinguistic Analyses in Software Engineering Text: A Systematic Literature Review
Context: A deeper understanding of human factors in software engineering (SE) is essential for improving team collaboration, decision-making, and productivity. Communication channels like code reviews and chats provide insights into developers' psychological and emotional states. While large language models excel at text analysis, they often lack transparency and precision. Psycholinguistic tools like Linguistic Inquiry and Word Count (LIWC) offer clearer, interpretable insights into cognitive and emotional processes exhibited in text. Despite its wide use in SE research, no comprehensive review of LIWC's use has been conducted. Objective: We examine the importance of psycholinguistic tools, particularly LIWC, and provide a thorough analysis of its current and potential future applications in SE research. Methods: We conducted a systematic review of six prominent databases, identifying 43 SE-related papers using LIWC. Our analysis focuses on five research questions. Results: Our findings reveal a wide range of applications, including analyzing team communication to detect developer emotions and personality, developing ML models to predict deleted Stack Overflow posts, and more recently comparing AI-generated and human-written text. LIWC has been primarily used with data from project management platforms (e.g., GitHub) and Q&A forums (e.g., Stack Overflow). Key BSE concepts include Communication, Organizational Climate, and Positive Psychology. 26 of 43 papers did not formally evaluate LIWC. Concerns were raised about some limitations, including difficulty handling SE-specific vocabulary. Conclusion: We highlight the potential of psycholinguistic tools and their limitations, and present new use cases for advancing the research of human factors in SE (e.g., bias in human-LLM conversations).
Human-Computer Interaction
Object-Driven Narrative in AR: A Scenario-Metaphor Framework with VLM Integration
Most adaptive AR storytelling systems define environmental semantics using simple object labels and spatial coordinates, limiting narratives to rigid, pre-defined logic. This oversimplification overlooks the contextual significance of object relationships-for example, a wedding ring on a nightstand might suggest marital conflict, yet is treated as just "two objects" in space. To address this, we explored integrating Vision Language Models (VLMs) into AR pipelines. However, several challenges emerged: First, stories generated with simple prompt guidance lacked narrative depth and spatial usage. Second, spatial semantics were underutilized, failing to support meaningful storytelling. Third, pre-generated scripts struggled to align with AR Foundation's object naming and coordinate systems. We propose a scene-driven AR storytelling framework that reimagines environments as active narrative agents, built on three innovations: 1. State-aware object semantics: We decompose object meaning into physical, functional, and metaphorical layers, allowing VLMs to distinguish subtle narrative cues between similar objects. 2. Structured narrative interface: A bidirectional JSON layer maps VLM-generated metaphors to AR anchors, maintaining spatial and semantic coherence. 3. STAM evaluation framework: A three-part experimental design evaluates narrative quality, highlighting both strengths and limitations of VLM-AR integration. Our findings show that the system can generate stories from the environment itself, not just place them on top of it. In user studies, 70% of participants reported seeing real-world objects differently when narratives were grounded in environmental symbolism. By merging VLMs' generative creativity with AR's spatial precision, this framework introduces a novel object-driven storytelling paradigm, transforming passive spaces into active narrative landscapes.
Should We Tailor the Talk? Understanding the Impact of Conversational Styles on Preference Elicitation in Conversational Recommender Systems
Conversational recommender systems (CRSs) provide users with an interactive means to express preferences and receive real-time personalized recommendations. The success of these systems is heavily influenced by the preference elicitation process. While existing research mainly focuses on what questions to ask during preference elicitation, there is a notable gap in understanding what role broader interaction patterns including tone, pacing, and level of proactiveness play in supporting users in completing a given task. This study investigates the impact of different conversational styles on preference elicitation, task performance, and user satisfaction with CRSs. We conducted a controlled experiment in the context of scientific literature recommendation, contrasting two distinct conversational styles, high involvement (fast paced, direct, and proactive with frequent prompts) and high considerateness (polite and accommodating, prioritizing clarity and user comfort) alongside a flexible experimental condition where users could switch between the two. Our results indicate that adapting conversational strategies based on user expertise and allowing flexibility between styles can enhance both user satisfaction and the effectiveness of recommendations in CRSs. Overall, our findings hold important implications for the design of future CRSs.
comment: To appear in: Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization (UMAP '25), June 16--19, 2025, New York City, NY, USA
Early Accessibility: Automating Alt-Text Generation for UI Icons During App Development
Alt-text is essential for mobile app accessibility, yet UI icons often lack meaningful descriptions, limiting accessibility for screen reader users. Existing approaches either require extensive labeled datasets, struggle with partial UI contexts, or operate post-development, increasing technical debt. We first conduct a formative study to determine when and how developers prefer to generate icon alt-text. We then explore the ALTICON approach for generating alt-text for UI icons during development using two fine-tuned models: a text-only large language model that processes extracted UI metadata and a multi-modal model that jointly analyzes icon images and textual context. To improve accuracy, the method extracts relevant UI information from the DOM tree, retrieves in-icon text via OCR, and applies structured prompts for alt-text generation. Our empirical evaluation with the most closely related deep-learning and vision-language models shows that ALTICON generates alt-text that is of higher quality while not requiring a full-screen input.
Neurodiversity in Computing Education Research: A Systematic Literature Review
Ensuring equitable access to computing education for all students-including those with autism, dyslexia, or ADHD-is essential to developing a diverse and inclusive workforce. To understand the state of disability research in computing education, we conducted a systematic literature review of research on neurodiversity in computing education. Our search resulted in 1,943 total papers, which we filtered to 14 papers based on our inclusion criteria. Our mixed-methods approach analyzed research methods, participants, contribution types, and findings. The three main contribution types included empirical contributions based on user studies (57.1%), opinion contributions and position papers (50%), and survey contributions (21.4%). Interviews were the most common methodology (75% of empirical contributions). There were often inconsistencies in how research methods were described (e.g., number of participants and interview and survey materials). Our work shows that research on neurodivergence in computing education is still very preliminary. Most papers provided curricular recommendations that lacked empirical evidence to support those recommendations. Three areas of future work include investigating the impacts of active learning, increasing awareness and knowledge about neurodiverse students' experiences, and engaging neurodivergent students in the design of pedagogical materials and computing education research.
A Phenomenological Approach to Analyzing User Queries in IT Systems Using Heidegger's Fundamental Ontology
This paper presents a novel research analytical IT system grounded in Martin Heidegger's Fundamental Ontology, distinguishing between beings (das Seiende) and Being (das Sein). The system employs two modally distinct, descriptively complete languages: a categorical language of beings for processing user inputs and an existential language of Being for internal analysis. These languages are bridged via a phenomenological reduction module, enabling the system to analyze user queries (including questions, answers, and dialogues among IT specialists), identify recursive and self-referential structures, and provide actionable insights in categorical terms. Unlike contemporary systems limited to categorical analysis, this approach leverages Heidegger's phenomenological existential analysis to uncover deeper ontological patterns in query processing, aiding in resolving logical traps in complex interactions, such as metaphor usage in IT contexts. The path to full realization involves formalizing the language of Being by a research team based on Heidegger's Fundamental Ontology; given the existing completeness of the language of beings, this reduces the system's computability to completeness, paving the way for a universal query analysis tool. The paper presents the system's architecture, operational principles, technical implementation, use cases--including a case based on real IT specialist dialogues--comparative evaluation with existing tools, and its advantages and limitations.
comment: 12 pages, no figures
Customizing Emotional Support: How Do Individuals Construct and Interact With LLM-Powered Chatbots
Personalized support is essential to fulfill individuals' emotional needs and sustain their mental well-being. Large language models (LLMs), with great customization flexibility, hold promises to enable individuals to create their own emotional support agents. In this work, we developed ChatLab, where users could construct LLM-powered chatbots with additional interaction features including voices and avatars. Using a Research through Design approach, we conducted a week-long field study followed by interviews and design activities (N = 22), which uncovered how participants created diverse chatbot personas for emotional reliance, confronting stressors, connecting to intellectual discourse, reflecting mirrored selves, etc. We found that participants actively enriched the personas they constructed, shaping the dynamics between themselves and the chatbot to foster open and honest conversations. They also suggested other customizable features, such as integrating online activities and adjustable memory settings. Based on these findings, we discuss opportunities for enhancing personalized emotional support through emerging AI technologies.
comment: 20 pages, 3 figures, 3 tables. Accepted to CHI 2025, ACM Conference on Human Factors in Computing Systems
Explainable AI in Usable Privacy and Security: Challenges and Opportunities
Large Language Models (LLMs) are increasingly being used for automated evaluations and explaining them. However, concerns about explanation quality, consistency, and hallucinations remain open research challenges, particularly in high-stakes contexts like privacy and security, where user trust and decision-making are at stake. In this paper, we investigate these issues in the context of PRISMe, an interactive privacy policy assessment tool that leverages LLMs to evaluate and explain website privacy policies. Based on a prior user study with 22 participants, we identify key concerns regarding LLM judgment transparency, consistency, and faithfulness, as well as variations in user preferences for explanation detail and engagement. We discuss potential strategies to mitigate these concerns, including structured evaluation criteria, uncertainty estimation, and retrieval-augmented generation (RAG). We identify a need for adaptive explanation strategies tailored to different user profiles for LLM-as-a-judge. Our goal is to showcase the application area of usable privacy and security to be promising for Human-Centered Explainable AI (HCXAI) to make an impact.
comment: Presented at the 5th CHI Workshop on Human-Centered Explainable AI (HCXAI)
Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication
The rapid evolution of artificial intelligence (AI) has introduced AI agents as a disruptive paradigm across various industries, yet their application in machine translation (MT) remains underexplored. This paper describes and analyses the potential of single- and multi-agent systems for MT, reflecting on how they could enhance multilingual digital communication. While single-agent systems are well-suited for simpler translation tasks, multi-agent systems, which involve multiple specialized AI agents collaborating in a structured manner, may offer a promising solution for complex scenarios requiring high accuracy, domain-specific knowledge, and contextual awareness. To demonstrate the feasibility of multi-agent workflows in MT, we are conducting a pilot study in legal MT. The study employs a multi-agent system involving four specialized AI agents for (i) translation, (ii) adequacy review, (iii) fluency review, and (iv) final editing. Our findings suggest that multi-agent systems may have the potential to significantly improve domain-adaptability and contextual awareness, with superior translation quality to traditional MT or single-agent systems. This paper also sets the stage for future research into multi-agent applications in MT, integration into professional translation workflows, and shares a demo of the system analyzed in the paper.
DashChat: Interactive Authoring of Industrial Dashboard Design Prototypes through Conversation with LLM-Powered Agents
Industrial dashboards, commonly deployed by organizations such as enterprises and governments, are increasingly crucial in data communication and decision-making support across various domains. Designing an industrial dashboard prototype is particularly challenging due to its visual complexity, which can include data visualization, layout configuration, embellishments, and animations. Additionally, in real-world industrial settings, designers often encounter numerous constraints. For instance, when companies negotiate collaborations with clients and determine design plans, they typically need to demo design prototypes and iterate on them based on mock data quickly. Such a task is very common and crucial during the ideation stage, as it not only helps save developmental costs but also avoids data-related issues such as lengthy data handover periods. However, existing authoring tools of dashboards are mostly not tailored to such prototyping needs, and motivated by these gaps, we propose DashChat, an interactive system that leverages large language models (LLMs) to generate industrial dashboard design prototypes from natural language. We collaborated closely with designers from the industry and derived the requirements based on their practical experience. First, by analyzing 114 high-quality industrial dashboards, we summarized their common design patterns and inject the identified ones into LLMs as reference. Next, we built a multi-agent pipeline powered by LLMs to understand textual requirements from users and generate practical, aesthetic prototypes. Besides, functionally distinct, parallel-operating agents are created to enable efficient generation. Then, we developed a user-friendly interface that supports text-based interaction for generating and modifying prototypes. Two user studies demonstrated that our system is both effective and efficient in supporting design prototyping.
Questions: A Taxonomy for Critical Reflection in Machine-Supported Decision-Making
Decision-makers run the risk of relying too much on machine recommendations. Explainable AI, a common strategy for calibrating reliance, has mixed and even negative effects, such as increasing overreliance. To cognitively engage the decision-maker and to facilitate a deliberate decision-making process, we propose a potential `reflection machine' that supports critical reflection about the pending decision, including the machine recommendation. Reflection has been shown to improve critical thinking and reasoning, and thus decision-making. One way to stimulate reflection is to ask relevant questions. To systematically create questions, we present a question taxonomy inspired by Socratic questions and human-centred explainable AI. This taxonomy can contribute to the design of such a `reflection machine' that asks decision-makers questions. Our work is part of the growing research on human-machine collaborations that goes beyond the paradigm of machine recommendations and explanations, and aims to enable greater human oversight as required by the European AI Act.
Assesing LLMs in Art Contexts: Critique Generation and Theory of Mind Evaluation
This study explored how large language models (LLMs) perform in two areas related to art: writing critiques of artworks and reasoning about mental states (Theory of Mind, or ToM) in art-related situations. For the critique generation part, we built a system that combines Noel Carroll's evaluative framework with a broad selection of art criticism theories. The model was prompted to first write a full-length critique and then shorter, more coherent versions using a step-by-step prompting process. These AI-generated critiques were then compared with those written by human experts in a Turing test-style evaluation. In many cases, human subjects had difficulty telling which was which, and the results suggest that LLMs can produce critiques that are not only plausible in style but also rich in interpretation, as long as they are carefully guided. In the second part, we introduced new simple ToM tasks based on situations involving interpretation, emotion, and moral tension, which can appear in the context of art. These go beyond standard false-belief tests and allow for more complex, socially embedded forms of reasoning. We tested 41 recent LLMs and found that their performance varied across tasks and models. In particular, tasks that involved affective or ambiguous situations tended to reveal clearer differences. Taken together, these results help clarify how LLMs respond to complex interpretative challenges, revealing both their cognitive limitations and potential. While our findings do not directly contradict the so-called Generative AI Paradox--the idea that LLMs can produce expert-like output without genuine understanding--they suggest that, depending on how LLMs are instructed, such as through carefully designed prompts, these models may begin to show behaviors that resemble understanding more closely than we might assume.
comment: 30 pages, 13 figures, 1 table
On Error Classification from Physiological Signals within Airborne Environment
Human error remains a critical concern in aviation safety, contributing to 70-80% of accidents despite technological advancements. While physiological measures show promise for error detection in laboratory settings, their effectiveness in dynamic flight environments remains underexplored. Through live flight trials with nine commercial pilots, we investigated whether established error-detection approaches maintain accuracy during actual flight operations. Participants completed standardized multi-tasking scenarios across conditions ranging from laboratory settings to straight-and-level flight and 2G manoeuvres while we collected synchronized physiological data. Our findings demonstrate that EEG-based classification maintains high accuracy (87.83%) during complex flight manoeuvres, comparable to laboratory performance (89.23%). Eye-tracking showed moderate performance (82.50\%), while ECG performed near chance level (51.50%). Classification accuracy remained stable across flight conditions, with minimal degradation during 2G manoeuvres. These results provide the first evidence that physiological error detection can translate effectively to operational aviation environments.
Accessibility Recommendations for Designing Better Mobile Application User Interfaces for Seniors
Seniors represent a growing user base for mobile applications; however, many apps fail to adequately address their accessibility challenges and usability preferences. To investigate this issue, we conducted an exploratory focus group study with 16 senior participants, from which we derived an initial set of user personas highlighting key accessibility and personalisation barriers. These personas informed the development of a model-driven engineering toolset, which was used to generate adaptive mobile app prototypes tailored to seniors' needs. We then conducted a second focus group study with 22 seniors to evaluate these prototypes and validate our findings. Based on insights from both studies, we developed a refined set of personas and a series of accessibility and personalisation recommendations grounded in empirical data, prior research, accessibility standards, and developer resources, aimed at supporting software practitioners in designing more inclusive mobile applications.
comment: Submitted to ACM Transactions on Software Engineering and Methodology (ToSEM)
Predicting Driver's Perceived Risk: a Model Based on Semi-Supervised Learning Strategy
Drivers' perception of risk determines their acceptance, trust, and use of the Automated Driving Systems (ADSs). However, perceived risk is subjective and difficult to evaluate using existing methods. To address this issue, a driver's subjective perceived risk (DSPR) model is proposed, regarding perceived risk as a dynamically triggered mechanism with anisotropy and attenuation. 20 participants are recruited for a driver-in-the-loop experiment to report their real-time subjective risk ratings (SRRs) when experiencing various automatic driving scenarios. A convolutional neural network and bidirectional long short-term memory network with temporal pattern attention (CNN-Bi-LSTM-TPA) is embedded into a semi-supervised learning strategy to predict SRRs, aiming to reduce data noise caused by subjective randomness of participants. The results illustrate that DSPR achieves the highest prediction accuracy of 87.91% in predicting SRRs, compared to three state-of-the-art risk models. The semi-supervised strategy improves accuracy by 20.12%. Besides, CNN-Bi-LSTM-TPA network presents the highest accuracy among four different LSTM structures. This study offers an effective method for assessing driver's perceived risk, providing support for the safety enhancement of ADS and driver's trust improvement.
comment: 6pages, 8figures, 5tables. Accepted to be presented at the 2025 36th IEEE Intelligent Vehicles Symposium (IV) (IV 2025)
From Regulation to Support: Centering Humans in Technology-Mediated Emotion Intervention in Care Contexts
Enhancing emotional well-being has become a significant focus in HCI and CSCW, with technologies increasingly designed to track, visualize, and manage emotions. However, these approaches have faced criticism for potentially suppressing certain emotional experiences. Through a scoping review of 53 empirical studies from ACM proceedings implementing Technology-Mediated Emotion Intervention (TMEI), we critically examine current practices through lenses drawn from HCI critical theories. Our analysis reveals emotion intervention mechanisms that extend beyond traditional emotion regulation paradigms, identifying care-centered goals that prioritize non-judgmental emotional support and preserve users' identities. The findings demonstrate how researchers design technologies for generating artificial care, intervening in power dynamics, and nudging behavioral changes. We contribute the concept of "emotion support" as an alternative approach to "emotion regulation," emphasizing human-centered approaches to emotional well-being. This work advances the understanding of diverse human emotional needs beyond individual and cognitive perspectives, offering design implications that critically reimagine how technologies can honor emotional complexity, preserve human agency, and transform power dynamics in care contexts.
Leveraging Agency in Virtual Reality to Enable Situated Learning
Learning is an active process that is deeply tied to physical and social contexts. Yet schools traditionally place learners in a passive role and focus on decontextualizing knowledge. Situating learning in more authentic tasks and contexts typically requires taking it outside the classroom via field trips and apprenticeships, but virtual reality (VR) is a promising tool to bring more authentically situated learning experiences into classrooms. In this position paper, I discuss how one of VR's primary affordances for learning is heightening agenct, and how such heightened agency can facilitate more authenticlaly situated learning by allowing learners legitimate peripheral participation.
comment: Presented at CHI 2025 (arXiv:2504.07475)
Multi-Sensor Fusion-Based Mobile Manipulator Remote Control for Intelligent Smart Home Assistance
This paper proposes a wearable-controlled mobile manipulator system for intelligent smart home assistance, integrating MEMS capacitive microphones, IMU sensors, vibration motors, and pressure feedback to enhance human-robot interaction. The wearable device captures forearm muscle activity and converts it into real-time control signals for mobile manipulation. The wearable device achieves an offline classification accuracy of 88.33\%\ across six distinct movement-force classes for hand gestures by using a CNN-LSTM model, while real-world experiments involving five participants yield a practical accuracy of 83.33\%\ with an average system response time of 1.2 seconds. In Human-Robot synergy in navigation and grasping tasks, the robot achieved a 98\%\ task success rate with an average trajectory deviation of only 3.6 cm. Finally, the wearable-controlled mobile manipulator system achieved a 93.3\%\ gripping success rate, a transfer success of 95.6\%\, and a full-task success rate of 91.1\%\ during object grasping and transfer tests, in which a total of 9 object-texture combinations were evaluated. These three experiments' results validate the effectiveness of MEMS-based wearable sensing combined with multi-sensor fusion for reliable and intuitive control of assistive robots in smart home scenarios.
Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models ICRA 2025
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at https://chain-of-modality.github.io
comment: ICRA 2025
Utilizing Virtual Reality for Wildfire Evacuation Training
The risk of loss of lives and property damage has increased all around the world in recent years as wildfire seasons have become longer and fires have become larger. Knowing how to prepare and evacuate safely is critical, yet it may be daunting for those who have never experienced a wildfire threat before. This paper considers the potential for utilizing virtual reality (VR) technology to prepare people for an evacuation scenario. We discuss the unique affordances of VR for this type of work, as well as the initial steps in creating a training simulation. We also explore the next steps for what a tool like this may mean for the future of evacuation preparedness training.
comment: Presented at CHI 2025 (arXiv:2504.07475)
The Future of Work is Blended, Not Hybrid
The way we work is no longer hybrid -- it is blended with AI co-workers, automated decisions, and virtual presence reshaping human roles, agency, and expertise. We now work through AI, with our outputs shaped by invisible algorithms. AI's infiltration into knowledge, creative, and service work is not just about automation, but concerns redistribution of agency, creativity, and control. How do we deal with physical and distributed AI-mediated workspaces? What happens when algorithms co-author reports, and draft our creative work? In this provocation, we argue that hybrid work is obsolete. Blended work is the future, not just in physical and virtual spaces but in how human effort and AI output become inseparable. We argue this shift demands urgent attention to AI-mediated work practices, work-life boundaries, physical-digital interactions, and AI transparency and accountability. The question is not whether we accept it, but whether we actively shape it before it shapes us.
comment: 13 pages, 2 tables
Interpersonal Theory of Suicide as a Lens to Examine Suicidal Ideation in Online Spaces
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.
CPG-EVAL: A Multi-Tiered Benchmark for Evaluating the Chinese Pedagogical Grammar Competence of Large Language Models
Purpose: The rapid emergence of large language models (LLMs) such as ChatGPT has significantly impacted foreign language education, yet their pedagogical grammar competence remains under-assessed. This paper introduces CPG-EVAL, the first dedicated benchmark specifically designed to evaluate LLMs' knowledge of pedagogical grammar within the context of foreign language instruction. Methodology: The benchmark comprises five tasks designed to assess grammar recognition, fine-grained grammatical distinction, categorical discrimination, and resistance to linguistic interference. Findings: Smaller-scale models can succeed in single language instance tasks, but struggle with multiple instance tasks and interference from confusing instances. Larger-scale models show better resistance to interference but still have significant room for accuracy improvement. The evaluation indicates the need for better instructional alignment and more rigorous benchmarks, to effectively guide the deployment of LLMs in educational contexts. Value: This study offers the first specialized, theory-driven, multi-tiered benchmark framework for systematically evaluating LLMs' pedagogical grammar competence in Chinese language teaching contexts. CPG-EVAL not only provides empirical insights for educators, policymakers, and model developers to better gauge AI's current abilities in educational settings, but also lays the groundwork for future research on improving model alignment, enhancing educational suitability, and ensuring informed decision-making concerning LLM integration in foreign language instruction.
comment: 12 pages, 1 figure, 3 tables
Birds of a Different Feather Flock Together: Exploring Opportunities and Challenges in Animal-Human-Machine Teaming
Animal-Human-Machine (AHM) teams are a type of hybrid intelligence system wherein interactions between a human, AI-enabled machine, and animal members can result in unique capabilities greater than the sum of their parts. This paper calls for a systematic approach to studying the design of AHM team structures to optimize performance and overcome limitations in various applied settings. We consider the challenges and opportunities in investigating the synergistic potential of AHM team members by introducing a set of dimensions of AHM team functioning to effectively utilize each member's strengths while compensating for individual weaknesses. Using three representative examples of such teams -- security screening, search-and-rescue, and guide dogs -- the paper illustrates how AHM teams can tackle complex tasks. We conclude with open research directions that this multidimensional approach presents for studying hybrid human-AI systems beyond AHM teams.
Tinker Tales: Interactive Storytelling Framework for Early Childhood Narrative Development and AI Literacy
This paper presents Tinker Tales, an interactive storytelling framework in the format of a board game, designed to support both narrative development and AI literacy in early childhood. The framework integrates tangible and speech-based interactions with AI through NFC chip-attached pawns and tokens, along with a speaker and microphone. Children select and define key story elements-such as characters, places, items, and emotions-using the pawns and tokens, providing further details to the AI and receiving proper assistance, similar to how adults prompt AI for specific tasks (e.g., writing). For evaluation, several game sessions were simulated with a child AI agent, and the quality and safety of the generated stories were assessed from various perspectives. This work highlights the potential of combining physical and digital elements in AI literacy, offering a safe and engaging way for children to learn how to effectively collaborate with AI.
Dynamic Difficulty Adjustment With Brain Waves as a Tool for Optimizing Engagement
This study explores the use of electroencephalography (EEG)-based brain wave monitoring to enable dynamic difficulty adjustment (DDA) in a virtual reality (VR) gaming environment. Using the Task Engagement Index (TEI) derived from frontal EEG electrodes, we adapt game challenge levels in real time to maintain optimal player engagement. In a within-subject design with six participants, we found that the DDA condition significantly increased engagement duration by 19.79% compared to a non-DDA control condition. These results suggest that combining EEG, DDA, and VR technologies can enhance user experience and has potential applications in adaptive learning, rehabilitation, and personalized interfaces.
comment: 9 pages, 4 figures, originally developed as part of a neuroscience and HCI research project
Designing Empathetic Companions: Exploring Personality, Emotion, and Trust in Social Robots
How should a companion robot behave? In this research, we present a cognitive architecture based on a tailored personality model to investigate the impact of robotic personalities on the perception of companion robots. Drawing from existing literature, we identified empathy, trust, and enjoyability as key factors in building companionship with social robots. Based on these insights, we implemented a personality-dependent, emotion-aware generator, recognizing the crucial role of robot emotions in shaping these elements. We then conducted a user study involving 84 dyadic conversation sessions with the emotional robot Navel, which exhibited different personalities. Results were derived from a multimodal analysis, including questionnaires, open-ended responses, and behavioral observations. This approach allowed us to validate the developed emotion generator and explore the relationship between the personality traits of Agreeableness, Extraversion, Conscientiousness, and Empathy. Furthermore, we drew robust conclusions on how these traits influence relational trust, capability trust, enjoyability, and sociability.
comment: 8 pages, 6 figures
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
Why Larp?! A Synthesis Paper on Live Action Roleplay in Relation to HCI Research and Practice
Live action roleplay (larp) has a wide range of applications, and can be relevant in relation to HCI. While there has been research about larp in relation to topics such as embodied interaction, playfulness and futuring published in HCI venues since the early 2000s, there is not yet a compilation of this knowledge. In this paper, we synthesise knowledge about larp and larp-adjacent work within the domain of HCI. We present a practitioner overview from an expert group of larp researchers, the results of a literature review, and highlight particular larp research exemplars which all work together to showcase the diverse set of ways that larp can be utilised in relation to HCI topics and research. This paper identifies the need for further discussions toward establishing best practices for utilising larp in relation to HCI research, as well as advocating for increased engagement with larps outside academia.
Beyond Tools: Understanding How Heavy Users Integrate LLMs into Everyday Tasks and Decision-Making
Large language models (LLMs) are increasingly used for both everyday and specialized tasks. While HCI research focuses on domain-specific applications, little is known about how heavy users integrate LLMs into everyday decision-making. Through qualitative interviews with heavy LLM users (n=7) who employ these systems for both intuitive and analytical thinking tasks, our findings show that participants use LLMs for social validation, self-regulation, and interpersonal guidance, seeking to build self-confidence and optimize cognitive resources. These users viewed LLMs either as rational, consistent entities or average human decision-makers. Our findings suggest that heavy LLM users develop nuanced interaction patterns beyond simple delegation, highlighting the need to reconsider how we study LLM integration in decision-making processes.
Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
Argumentative Experience: Reducing Confirmation Bias on Controversial Issues through LLM-Generated Multi-Persona Debates
Large language models (LLMs) are enabling designers to give life to exciting new user experiences for information access. In this work, we present a system that generates LLM personas to debate a topic of interest from different perspectives. How might information seekers use and benefit from such a system? Can centering information access around diverse viewpoints help to mitigate thorny challenges like confirmation bias in which information seekers over-trust search results matching existing beliefs? How do potential biases and hallucinations in LLMs play out alongside human users who are also fallible and possibly biased? Our study exposes participants to multiple viewpoints on controversial issues via a mixed-methods, within-subjects study. We use eye-tracking metrics to quantitatively assess cognitive engagement alongside qualitative feedback. Compared to a baseline search system, we see more creative interactions and diverse information-seeking with our multi-persona debate system, which more effectively reduces user confirmation bias and conviction toward their initial beliefs. Overall, our study contributes to the emerging design space of LLM-based information access systems, specifically investigating the potential of simulated personas to promote greater exposure to information diversity, emulate collective intelligence, and mitigate bias in information seeking.
Computer Vision and Pattern Recognition
Adapting a World Model for Trajectory Following in a 3D Game
Imitation learning is a powerful tool for training agents by leveraging expert knowledge, and being able to replicate a given trajectory is an integral part of it. In complex environments, like modern 3D video games, distribution shift and stochasticity necessitate robust approaches beyond simple action replay. In this study, we apply Inverse Dynamics Models (IDM) with different encoders and policy heads to trajectory following in a modern 3D video game -- Bleeding Edge. Additionally, we investigate several future alignment strategies that address the distribution shift caused by the aleatoric uncertainty and imperfections of the agent. We measure both the trajectory deviation distance and the first significant deviation point between the reference and the agent's trajectory and show that the optimal configuration depends on the chosen setting. Our results show that in a diverse data setting, a GPT-style policy head with an encoder trained from scratch performs the best, DINOv2 encoder with the GPT-style policy head gives the best results in the low data regime, and both GPT-style and MLP-style policy heads had comparable results when pre-trained on a diverse setting and fine-tuned for a specific behaviour setting.
SHeaP: Self-Supervised Head Geometry Predictor Learned via 2D Gaussians
Accurate, real-time 3D reconstruction of human heads from monocular images and videos underlies numerous visual applications. As 3D ground truth data is hard to come by at scale, previous methods have sought to learn from abundant 2D videos in a self-supervised manner. Typically, this involves the use of differentiable mesh rendering, which is effective but faces limitations. To improve on this, we propose SHeaP (Self-supervised Head Geometry Predictor Learned via 2D Gaussians). Given a source image, we predict a 3DMM mesh and a set of Gaussians that are rigged to this mesh. We then reanimate this rigged head avatar to match a target frame, and backpropagate photometric losses to both the 3DMM and Gaussian prediction networks. We find that using Gaussians for rendering substantially improves the effectiveness of this self-supervised approach. Training solely on 2D data, our method surpasses existing self-supervised approaches in geometric evaluations on the NoW benchmark for neutral faces and a new benchmark for non-neutral expressions. Our method also produces highly expressive meshes, outperforming state-of-the-art in emotion classification.
comment: For video demonstrations and additional materials please see https://nlml.github.io/sheap/
How Do I Do That? Synthesizing 3D Hand Motion and Contacts for Everyday Interactions CVPR 2025
We tackle the novel problem of predicting 3D hand motion and contact maps (or Interaction Trajectories) given a single RGB view, action text, and a 3D contact point on the object as input. Our approach consists of (1) Interaction Codebook: a VQVAE model to learn a latent codebook of hand poses and contact points, effectively tokenizing interaction trajectories, (2) Interaction Predictor: a transformer-decoder module to predict the interaction trajectory from test time inputs by using an indexer module to retrieve a latent affordance from the learned codebook. To train our model, we develop a data engine that extracts 3D hand poses and contact trajectories from the diverse HoloAssist dataset. We evaluate our model on a benchmark that is 2.5-10X larger than existing works, in terms of diversity of objects and interactions observed, and test for generalization of the model across object categories, action categories, tasks, and scenes. Experimental results show the effectiveness of our approach over transformer & diffusion baselines across all settings.
comment: CVPR 2025, Project page: https://ap229997.github.io/projects/latentact
The Tenth NTIRE 2025 Image Denoising Challenge Report
This paper presents an overview of the NTIRE 2025 Image Denoising Challenge ({\sigma} = 50), highlighting the proposed methodologies and corresponding results. The primary objective is to develop a network architecture capable of achieving high-quality denoising performance, quantitatively evaluated using PSNR, without constraints on computational complexity or model size. The task assumes independent additive white Gaussian noise (AWGN) with a fixed noise level of 50. A total of 290 participants registered for the challenge, with 20 teams successfully submitting valid results, providing insights into the current state-of-the-art in image denoising.
Beyond Reconstruction: A Physics Based Neural Deferred Shader for Photo-realistic Rendering
Deep learning based rendering has demonstrated major improvements for photo-realistic image synthesis, applicable to various applications including visual effects in movies and photo-realistic scene building in video games. However, a significant limitation is the difficulty of decomposing the illumination and material parameters, which limits such methods to reconstruct an input scene, without any possibility to control these parameters. This paper introduces a novel physics based neural deferred shading pipeline to decompose the data-driven rendering process, learn a generalizable shading function to produce photo-realistic results for shading and relighting tasks, we also provide a shadow estimator to efficiently mimic shadowing effect. Our model achieves improved performance compared to classical models and a state-of-art neural shading model, and enables generalizable photo-realistic shading from arbitrary illumination input.
Towards Learning to Complete Anything in Lidar
We propose CAL (Complete Anything in Lidar) for Lidar-based shape-completion in-the-wild. This is closely related to Lidar-based semantic/panoptic scene completion. However, contemporary methods can only complete and recognize objects from a closed vocabulary labeled in existing Lidar datasets. Different to that, our zero-shot approach leverages the temporal context from multi-modal sensor sequences to mine object shapes and semantic features of observed objects. These are then distilled into a Lidar-only instance-level completion and recognition model. Although we only mine partial shape completions, we find that our distilled model learns to infer full object shapes from multiple such partial observations across the dataset. We show that our model can be prompted on standard benchmarks for Semantic and Panoptic Scene Completion, localize objects as (amodal) 3D bounding boxes, and recognize objects beyond fixed class vocabularies. Our project page is https://research.nvidia.com/labs/dvl/projects/complete-anything-lidar
VGDFR: Diffusion-based Video Generation with Dynamic Latent Frame Rate
Diffusion Transformer(DiT)-based generation models have achieved remarkable success in video generation. However, their inherent computational demands pose significant efficiency challenges. In this paper, we exploit the inherent temporal non-uniformity of real-world videos and observe that videos exhibit dynamic information density, with high-motion segments demanding greater detail preservation than static scenes. Inspired by this temporal non-uniformity, we propose VGDFR, a training-free approach for Diffusion-based Video Generation with Dynamic Latent Frame Rate. VGDFR adaptively adjusts the number of elements in latent space based on the motion frequency of the latent space content, using fewer tokens for low-frequency segments while preserving detail in high-frequency segments. Specifically, our key contributions are: (1) A dynamic frame rate scheduler for DiT video generation that adaptively assigns frame rates for video segments. (2) A novel latent-space frame merging method to align latent representations with their denoised counterparts before merging those redundant in low-resolution space. (3) A preference analysis of Rotary Positional Embeddings (RoPE) across DiT layers, informing a tailored RoPE strategy optimized for semantic and local information capture. Experiments show that VGDFR can achieve a speedup up to 3x for video generation with minimal quality degradation.
FLIP Reasoning Challenge ICLR 2025
Over the past years, advances in artificial intelligence (AI) have demonstrated how AI can solve many perception and generation tasks, such as image classification and text writing, yet reasoning remains a challenge. This paper introduces the FLIP dataset, a benchmark for evaluating AI reasoning capabilities based on human verification tasks on the Idena blockchain. FLIP challenges present users with two orderings of 4 images, requiring them to identify the logically coherent one. By emphasizing sequential reasoning, visual storytelling, and common sense, FLIP provides a unique testbed for multimodal AI systems. Our experiments evaluate state-of-the-art models, leveraging both vision-language models (VLMs) and large language models (LLMs). Results reveal that even the best open-sourced and closed-sourced models achieve maximum accuracies of 75.5% and 77.9%, respectively, in zero-shot settings, compared to human performance of 95.3%. Captioning models aid reasoning models by providing text descriptions of images, yielding better results than when using the raw images directly, 69.6% vs. 75.2% for Gemini 1.5 Pro. Combining the predictions from 15 models in an ensemble increases the accuracy to 85.2%. These findings highlight the limitations of existing reasoning models and the need for robust multimodal benchmarks like FLIP. The full codebase and dataset will be available at https://github.com/aplesner/FLIP-Reasoning-Challenge.
comment: Published at First Workshop on Open Science for Foundation Models at ICLR 2025
Human Aligned Compression for Robust Models CVPR 2025
Adversarial attacks on image models threaten system robustness by introducing imperceptible perturbations that cause incorrect predictions. We investigate human-aligned learned lossy compression as a defense mechanism, comparing two learned models (HiFiC and ELIC) against traditional JPEG across various quality levels. Our experiments on ImageNet subsets demonstrate that learned compression methods outperform JPEG, particularly for Vision Transformer architectures, by preserving semantically meaningful content while removing adversarial noise. Even in white-box settings where attackers can access the defense, these methods maintain substantial effectiveness. We also show that sequential compression--applying rounds of compression/decompression--significantly enhances defense efficacy while maintaining classification performance. Our findings reveal that human-aligned compression provides an effective, computationally efficient defense that protects the image features most relevant to human and machine understanding. It offers a practical approach to improving model robustness against adversarial threats.
comment: Presented at the Workshop AdvML at CVPR 2025
Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography
The application of artificial intelligence (AI) in medical imaging has revolutionized diagnostic practices, enabling advanced analysis and interpretation of radiological data. This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography, focusing on COVID-19, lung opacity, and viral pneumonia. While deep learning models, particularly convolutional neural networks (CNNs) and vision transformers (ViTs), learn directly from image data, radiomics-based models extract and analyze quantitative features, potentially providing advantages in data-limited scenarios. This study systematically compares the diagnostic accuracy and robustness of various AI models, including Decision Trees, Gradient Boosting, Random Forests, Support Vector Machines (SVM), and Multi-Layer Perceptrons (MLP) for radiomics, against state-of-the-art computer vision deep learning architectures. Performance metrics across varying sample sizes reveal insights into each model's efficacy, highlighting the contexts in which specific AI approaches may offer enhanced diagnostic capabilities. The results aim to inform the integration of AI-driven diagnostic tools in clinical practice, particularly in automated and high-throughput environments where timely, reliable diagnosis is critical. This comparative study addresses an essential gap, establishing guidance for the selection of AI models based on clinical and operational needs.
SIDME: Self-supervised Image Demoiréing via Masked Encoder-Decoder Reconstruction
Moir\'e patterns, resulting from aliasing between object light signals and camera sampling frequencies, often degrade image quality during capture. Traditional demoir\'eing methods have generally treated images as a whole for processing and training, neglecting the unique signal characteristics of different color channels. Moreover, the randomness and variability of moir\'e pattern generation pose challenges to the robustness of existing methods when applied to real-world data. To address these issues, this paper presents SIDME (Self-supervised Image Demoir\'eing via Masked Encoder-Decoder Reconstruction), a novel model designed to generate high-quality visual images by effectively processing moir\'e patterns. SIDME combines a masked encoder-decoder architecture with self-supervised learning, allowing the model to reconstruct images using the inherent properties of camera sampling frequencies. A key innovation is the random masked image reconstructor, which utilizes an encoder-decoder structure to handle the reconstruction task. Furthermore, since the green channel in camera sampling has a higher sampling frequency compared to red and blue channels, a specialized self-supervised loss function is designed to improve the training efficiency and effectiveness. To ensure the generalization ability of the model, a self-supervised moir\'e image generation method has been developed to produce a dataset that closely mimics real-world conditions. Extensive experiments demonstrate that SIDME outperforms existing methods in processing real moir\'e pattern data, showing its superior generalization performance and robustness.
comment: 21 pages, 13 figures
Cobra: Efficient Line Art COlorization with BRoAder References
The comic production industry requires reference-based line art colorization with high accuracy, efficiency, contextual consistency, and flexible control. A comic page often involves diverse characters, objects, and backgrounds, which complicates the coloring process. Despite advancements in diffusion models for image generation, their application in line art colorization remains limited, facing challenges related to handling extensive reference images, time-consuming inference, and flexible control. We investigate the necessity of extensive contextual image guidance on the quality of line art colorization. To address these challenges, we introduce Cobra, an efficient and versatile method that supports color hints and utilizes over 200 reference images while maintaining low latency. Central to Cobra is a Causal Sparse DiT architecture, which leverages specially designed positional encodings, causal sparse attention, and Key-Value Cache to effectively manage long-context references and ensure color identity consistency. Results demonstrate that Cobra achieves accurate line art colorization through extensive contextual reference, significantly enhancing inference speed and interactivity, thereby meeting critical industrial demands. We release our codes and models on our project page: https://zhuang2002.github.io/Cobra/.
comment: Project page with code: https://zhuang2002.github.io/Cobra/
Coding-Prior Guided Diffusion Network for Video Deblurring
While recent video deblurring methods have advanced significantly, they often overlook two valuable prior information: (1) motion vectors (MVs) and coding residuals (CRs) from video codecs, which provide efficient inter-frame alignment cues, and (2) the rich real-world knowledge embedded in pre-trained diffusion generative models. We present CPGDNet, a novel two-stage framework that effectively leverages both coding priors and generative diffusion priors for high-quality deblurring. First, our coding-prior feature propagation (CPFP) module utilizes MVs for efficient frame alignment and CRs to generate attention masks, addressing motion inaccuracies and texture variations. Second, a coding-prior controlled generation (CPC) module network integrates coding priors into a pretrained diffusion model, guiding it to enhance critical regions and synthesize realistic details. Experiments demonstrate our method achieves state-of-the-art perceptual quality with up to 30% improvement in IQA metrics. Both the code and the codingprior-augmented dataset will be open-sourced.
Uncertainty-Guided Coarse-to-Fine Tumor Segmentation with Anatomy-Aware Post-Processing SC
Reliable tumor segmentation in thoracic computed tomography (CT) remains challenging due to boundary ambiguity, class imbalance, and anatomical variability. We propose an uncertainty-guided, coarse-to-fine segmentation framework that combines full-volume tumor localization with refined region-of-interest (ROI) segmentation, enhanced by anatomically aware post-processing. The first-stage model generates a coarse prediction, followed by anatomically informed filtering based on lung overlap, proximity to lung surfaces, and component size. The resulting ROIs are segmented by a second-stage model trained with uncertainty-aware loss functions to improve accuracy and boundary calibration in ambiguous regions. Experiments on private and public datasets demonstrate improvements in Dice and Hausdorff scores, with fewer false positives and enhanced spatial interpretability. These results highlight the value of combining uncertainty modeling and anatomical priors in cascaded segmentation pipelines for robust and clinically meaningful tumor delineation. On the Orlando dataset, our framework improved Swin UNETR Dice from 0.4690 to 0.6447. Reduction in spurious components was strongly correlated with segmentation gains, underscoring the value of anatomically informed post-processing.
comment: 6 pages, 2 figures, to appear in IEEE ADSCA 2025
Towards Realistic Low-Light Image Enhancement via ISP Driven Data Modeling
Deep neural networks (DNNs) have recently become the leading method for low-light image enhancement (LLIE). However, despite significant progress, their outputs may still exhibit issues such as amplified noise, incorrect white balance, or unnatural enhancements when deployed in real world applications. A key challenge is the lack of diverse, large scale training data that captures the complexities of low-light conditions and imaging pipelines. In this paper, we propose a novel image signal processing (ISP) driven data synthesis pipeline that addresses these challenges by generating unlimited paired training data. Specifically, our pipeline begins with easily collected high-quality normal-light images, which are first unprocessed into the RAW format using a reverse ISP. We then synthesize low-light degradations directly in the RAW domain. The resulting data is subsequently processed through a series of ISP stages, including white balance adjustment, color space conversion, tone mapping, and gamma correction, with controlled variations introduced at each stage. This broadens the degradation space and enhances the diversity of the training data, enabling the generated data to capture a wide range of degradations and the complexities inherent in the ISP pipeline. To demonstrate the effectiveness of our synthetic pipeline, we conduct extensive experiments using a vanilla UNet model consisting solely of convolutional layers, group normalization, GeLU activation, and convolutional block attention modules (CBAMs). Extensive testing across multiple datasets reveals that the vanilla UNet model trained with our data synthesis pipeline delivers high fidelity, visually appealing enhancement results, surpassing state-of-the-art (SOTA) methods both quantitatively and qualitatively.
comment: 17 pages, 11 tables, 10 figures
Modality-Independent Explainable Detection of Inaccurate Organ Segmentations Using Denoising Autoencoders
In radiation therapy planning, inaccurate segmentations of organs at risk can result in suboptimal treatment delivery, if left undetected by the clinician. To address this challenge, we developed a denoising autoencoder-based method to detect inaccurate organ segmentations. We applied noise to ground truth organ segmentations, and the autoencoders were tasked to denoise them. Through the application of our method to organ segmentations generated on both MR and CT scans, we demonstrated that the method is independent of imaging modality. By providing reconstructions, our method offers visual information about inaccurate regions of the organ segmentations, leading to more explainable detection of suboptimal segmentations. We compared our method to existing approaches in the literature and demonstrated that it achieved superior performance for the majority of organs.
comment: Short version of this paper was accepted for poster presentation at IEEE ISBI 2025
Beyond Patches: Mining Interpretable Part-Prototypes for Explainable AI
Deep learning has provided considerable advancements for multimedia systems, yet the interpretability of deep models remains a challenge. State-of-the-art post-hoc explainability methods, such as GradCAM, provide visual interpretation based on heatmaps but lack conceptual clarity. Prototype-based approaches, like ProtoPNet and PIPNet, offer a more structured explanation but rely on fixed patches, limiting their robustness and semantic consistency. To address these limitations, a part-prototypical concept mining network (PCMNet) is proposed that dynamically learns interpretable prototypes from meaningful regions. PCMNet clusters prototypes into concept groups, creating semantically grounded explanations without requiring additional annotations. Through a joint process of unsupervised part discovery and concept activation vector extraction, PCMNet effectively captures discriminative concepts and makes interpretable classification decisions. Our extensive experiments comparing PCMNet against state-of-the-art methods on multiple datasets show that it can provide a high level of interpretability, stability, and robustness under clean and occluded scenarios.
CoMotion: Concurrent Multi-person 3D Motion ICLR 2025
We introduce an approach for detecting and tracking detailed 3D poses of multiple people from a single monocular camera stream. Our system maintains temporally coherent predictions in crowded scenes filled with difficult poses and occlusions. Our model performs both strong per-frame detection and a learned pose update to track people from frame to frame. Rather than match detections across time, poses are updated directly from a new input image, which enables online tracking through occlusion. We train on numerous image and video datasets leveraging pseudo-labeled annotations to produce a model that matches state-of-the-art systems in 3D pose estimation accuracy while being faster and more accurate in tracking multiple people through time. Code and weights are provided at https://github.com/apple/ml-comotion
comment: Accepted at ICLR 2025, for code and weights go to https://github.com/apple/ml-comotion
Towards a General-Purpose Zero-Shot Synthetic Low-Light Image and Video Pipeline
Low-light conditions pose significant challenges for both human and machine annotation. This in turn has led to a lack of research into machine understanding for low-light images and (in particular) videos. A common approach is to apply annotations obtained from high quality datasets to synthetically created low light versions. In addition, these approaches are often limited through the use of unrealistic noise models. In this paper, we propose a new Degradation Estimation Network (DEN), which synthetically generates realistic standard RGB (sRGB) noise without the requirement for camera metadata. This is achieved by estimating the parameters of physics-informed noise distributions, trained in a self-supervised manner. This zero-shot approach allows our method to generate synthetic noisy content with a diverse range of realistic noise characteristics, unlike other methods which focus on recreating the noise characteristics of the training data. We evaluate our proposed synthetic pipeline using various methods trained on its synthetic data for typical low-light tasks including synthetic noise replication, video enhancement, and object detection, showing improvements of up to 24\% KLD, 21\% LPIPS, and 62\% AP$_{50-95}$, respectively.
RADLER: Radar Object Detection Leveraging Semantic 3D City Models and Self-Supervised Radar-Image Learning CVPR
Semantic 3D city models are worldwide easy-accessible, providing accurate, object-oriented, and semantic-rich 3D priors. To date, their potential to mitigate the noise impact on radar object detection remains under-explored. In this paper, we first introduce a unique dataset, RadarCity, comprising 54K synchronized radar-image pairs and semantic 3D city models. Moreover, we propose a novel neural network, RADLER, leveraging the effectiveness of contrastive self-supervised learning (SSL) and semantic 3D city models to enhance radar object detection of pedestrians, cyclists, and cars. Specifically, we first obtain the robust radar features via a SSL network in the radar-image pretext task. We then use a simple yet effective feature fusion strategy to incorporate semantic-depth features from semantic 3D city models. Having prior 3D information as guidance, RADLER obtains more fine-grained details to enhance radar object detection. We extensively evaluate RADLER on the collected RadarCity dataset and demonstrate average improvements of 5.46% in mean avarage precision (mAP) and 3.51% in mean avarage recall (mAR) over previous radar object detection methods. We believe this work will foster further research on semantic-guided and map-supported radar object detection. Our project page is publicly available athttps://gpp-communication.github.io/RADLER .
comment: The paper accepted for CVPRW '25 (PBVS 2025 - the Perception Beyond the Visible Spectrum)
CodingHomo: Bootstrapping Deep Homography With Video Coding
Homography estimation is a fundamental task in computer vision with applications in diverse fields. Recent advances in deep learning have improved homography estimation, particularly with unsupervised learning approaches, offering increased robustness and generalizability. However, accurately predicting homography, especially in complex motions, remains a challenge. In response, this work introduces a novel method leveraging video coding, particularly by harnessing inherent motion vectors (MVs) present in videos. We present CodingHomo, an unsupervised framework for homography estimation. Our framework features a Mask-Guided Fusion (MGF) module that identifies and utilizes beneficial features among the MVs, thereby enhancing the accuracy of homography prediction. Additionally, the Mask-Guided Homography Estimation (MGHE) module is presented for eliminating undesired features in the coarse-to-fine homography refinement process. CodingHomo outperforms existing state-of-the-art unsupervised methods, delivering good robustness and generalizability. The code and dataset are available at: \href{github}{https://github.com/liuyike422/CodingHomo
FocusedAD: Character-centric Movie Audio Description
Movie Audio Description (AD) aims to narrate visual content during dialogue-free segments, particularly benefiting blind and visually impaired (BVI) audiences. Compared with general video captioning, AD demands plot-relevant narration with explicit character name references, posing unique challenges in movie understanding.To identify active main characters and focus on storyline-relevant regions, we propose FocusedAD, a novel framework that delivers character-centric movie audio descriptions. It includes: (i) a Character Perception Module(CPM) for tracking character regions and linking them to names; (ii) a Dynamic Prior Module(DPM) that injects contextual cues from prior ADs and subtitles via learnable soft prompts; and (iii) a Focused Caption Module(FCM) that generates narrations enriched with plot-relevant details and named characters. To overcome limitations in character identification, we also introduce an automated pipeline for building character query banks. FocusedAD achieves state-of-the-art performance on multiple benchmarks, including strong zero-shot results on MAD-eval-Named and our newly proposed Cinepile-AD dataset. Code and data will be released at https://github.com/Thorin215/FocusedAD .
comment: Code and Demo link: https://github.com/Thorin215/FocusedAD
Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models -
Despite recent advances in Large Vision Language Models (LVLMs), these models still suffer from generating hallucinatory responses that do not align with the visual input provided. To mitigate such hallucinations, we introduce Efficient Contrastive Decoding (ECD), a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time. By contrasting token probabilities and hallucination scores, ECD subtracts hallucinated concepts from the original distribution, effectively suppressing hallucinations. Notably, our proposed method can be applied to any open-source LVLM and does not require additional LVLM training. We evaluate our method on several benchmark datasets and across different LVLMs. Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
Weakly Semi-supervised Whole Slide Image Classification by Two-level Cross Consistency Supervision
Computer-aided Whole Slide Image (WSI) classification has the potential to enhance the accuracy and efficiency of clinical pathological diagnosis. It is commonly formulated as a Multiple Instance Learning (MIL) problem, where each WSI is treated as a bag and the small patches extracted from the WSI are considered instances within that bag. However, obtaining labels for a large number of bags is a costly and time-consuming process, particularly when utilizing existing WSIs for new classification tasks. This limitation renders most existing WSI classification methods ineffective. To address this issue, we propose a novel WSI classification problem setting, more aligned with clinical practice, termed Weakly Semi-supervised Whole slide image Classification (WSWC). In WSWC, a small number of bags are labeled, while a significant number of bags remain unlabeled. The MIL nature of the WSWC problem, coupled with the absence of patch labels, distinguishes it from typical semi-supervised image classification problems, making existing algorithms for natural images unsuitable for directly solving the WSWC problem. In this paper, we present a concise and efficient framework, named CroCo, to tackle the WSWC problem through two-level Cross Consistency supervision. CroCo comprises two heterogeneous classifier branches capable of performing both instance classification and bag classification. The fundamental idea is to establish cross-consistency supervision at both the bag-level and instance-level between the two branches during training. Extensive experiments conducted on four datasets demonstrate that CroCo achieves superior bag classification and instance classification performance compared to other comparative methods when limited WSIs with bag labels are available. To the best of our knowledge, this paper presents for the first time the WSWC problem and gives a successful resolution.
Anti-Aesthetics: Protecting Facial Privacy against Customized Text-to-Image Synthesis
The rise of customized diffusion models has spurred a boom in personalized visual content creation, but also poses risks of malicious misuse, severely threatening personal privacy and copyright protection. Some studies show that the aesthetic properties of images are highly positively correlated with human perception of image quality. Inspired by this, we approach the problem from a novel and intriguing aesthetic perspective to degrade the generation quality of maliciously customized models, thereby achieving better protection of facial identity. Specifically, we propose a Hierarchical Anti-Aesthetic (HAA) framework to fully explore aesthetic cues, which consists of two key branches: 1) Global Anti-Aesthetics: By establishing a global anti-aesthetic reward mechanism and a global anti-aesthetic loss, it can degrade the overall aesthetics of the generated content; 2) Local Anti-Aesthetics: A local anti-aesthetic reward mechanism and a local anti-aesthetic loss are designed to guide adversarial perturbations to disrupt local facial identity. By seamlessly integrating both branches, our HAA effectively achieves the goal of anti-aesthetics from a global to a local level during customized generation. Extensive experiments show that HAA outperforms existing SOTA methods largely in identity removal, providing a powerful tool for protecting facial privacy and copyright.
Remote sensing colour image semantic segmentation of trails created by large herbivorous Mammals
Detection of spatial areas where biodiversity is at risk is of paramount importance for the conservation and monitoring of ecosystems. Large terrestrial mammalian herbivores are keystone species as their activity not only has deep effects on soils, plants, and animals, but also shapes landscapes, as large herbivores act as allogenic ecosystem engineers. One key landscape feature that indicates intense herbivore activity and potentially impacts biodiversity is the formation of grazing trails. Grazing trails are formed by the continuous trampling activity of large herbivores that can produce complex networks of tracks of bare soil. Here, we evaluated different algorithms based on machine learning techniques to identify grazing trails. Our goal is to automatically detect potential areas with intense herbivory activity, which might be beneficial for conservation and management plans. We have applied five semantic segmentation methods combined with fourteen encoders aimed at mapping grazing trails on aerial images. Our results indicate that in most cases the chosen methodology successfully mapped the trails, although there were a few instances where the actual trail structure was underestimated. The UNet architecture with the MambaOut encoder was the best architecture for mapping trails. The proposed approach could be applied to develop tools for mapping and monitoring temporal changes in these landscape structures to support habitat conservation and land management programs. This is the first time, to the best of our knowledge, that competitive image segmentation results are obtained for the detection and delineation of trails of large herbivorous mammals.
comment: 24 pages, 6 figures. Submitted to Computers and Geosciences
A Diffusion-Based Framework for Terrain-Aware Remote Sensing Image Reconstruction
Remote sensing imagery is essential for environmental monitoring, agricultural management, and disaster response. However, data loss due to cloud cover, sensor failures, or incomplete acquisition-especially in high-resolution and high-frequency tasks-severely limits satellite imagery's effectiveness. Traditional interpolation methods struggle with large missing areas and complex structures. Remote sensing imagery consists of multiple bands, each with distinct meanings, and ensuring consistency across bands is critical to avoid anomalies in the combined images. This paper proposes SatelliteMaker, a diffusion-based method that reconstructs missing data across varying levels of data loss while maintaining spatial, spectral, and temporal consistency. We also propose Digital Elevation Model (DEM) as a conditioning input and use tailored prompts to generate realistic images, making diffusion models applicable to quantitative remote sensing tasks. Additionally, we propose a VGG-Adapter module based on Distribution Loss, which reduces distribution discrepancy and ensures style consistency. Extensive experiments show that SatelliteMaker achieves state-of-the-art performance across multiple tasks.
Logits DeConfusion with CLIP for Few-Shot Learning CVPR 2025
With its powerful visual-language alignment capability, CLIP performs well in zero-shot and few-shot learning tasks. However, we found in experiments that CLIP's logits suffer from serious inter-class confusion problems in downstream tasks, and the ambiguity between categories seriously affects the accuracy. To address this challenge, we propose a novel method called Logits DeConfusion, which effectively learns and eliminates inter-class confusion in logits by combining our Multi-level Adapter Fusion (MAF) module with our Inter-Class Deconfusion (ICD) module. Our MAF extracts features from different levels and fuses them uniformly to enhance feature representation. Our ICD learnably eliminates inter-class confusion in logits with a residual structure. Experimental results show that our method can significantly improve the classification performance and alleviate the inter-class confusion problem. The code is available at https://github.com/LiShuo1001/LDC.
comment: CVPR 2025
Metric-Solver: Sliding Anchored Metric Depth Estimation from a Single Image
Accurate and generalizable metric depth estimation is crucial for various computer vision applications but remains challenging due to the diverse depth scales encountered in indoor and outdoor environments. In this paper, we introduce Metric-Solver, a novel sliding anchor-based metric depth estimation method that dynamically adapts to varying scene scales. Our approach leverages an anchor-based representation, where a reference depth serves as an anchor to separate and normalize the scene depth into two components: scaled near-field depth and tapered far-field depth. The anchor acts as a normalization factor, enabling the near-field depth to be normalized within a consistent range while mapping far-field depth smoothly toward zero. Through this approach, any depth from zero to infinity in the scene can be represented within a unified representation, effectively eliminating the need to manually account for scene scale variations. More importantly, for the same scene, the anchor can slide along the depth axis, dynamically adjusting to different depth scales. A smaller anchor provides higher resolution in the near-field, improving depth precision for closer objects while a larger anchor improves depth estimation in far regions. This adaptability enables the model to handle depth predictions at varying distances and ensure strong generalization across datasets. Our design enables a unified and adaptive depth representation across diverse environments. Extensive experiments demonstrate that Metric-Solver outperforms existing methods in both accuracy and cross-dataset generalization.
comment: Our project page: https://tele-ai.github.io/MetricSolver/
Generalized Visual Relation Detection with Diffusion Models
Visual relation detection (VRD) aims to identify relationships (or interactions) between object pairs in an image. Although recent VRD models have achieved impressive performance, they are all restricted to pre-defined relation categories, while failing to consider the semantic ambiguity characteristic of visual relations. Unlike objects, the appearance of visual relations is always subtle and can be described by multiple predicate words from different perspectives, e.g., ``ride'' can be depicted as ``race'' and ``sit on'', from the sports and spatial position views, respectively. To this end, we propose to model visual relations as continuous embeddings, and design diffusion models to achieve generalized VRD in a conditional generative manner, termed Diff-VRD. We model the diffusion process in a latent space and generate all possible relations in the image as an embedding sequence. During the generation, the visual and text embeddings of subject-object pairs serve as conditional signals and are injected via cross-attention. After the generation, we design a subsequent matching stage to assign the relation words to subject-object pairs by considering their semantic similarities. Benefiting from the diffusion-based generative process, our Diff-VRD is able to generate visual relations beyond the pre-defined category labels of datasets. To properly evaluate this generalized VRD task, we introduce two evaluation metrics, i.e., text-to-image retrieval and SPICE PR Curve inspired by image captioning. Extensive experiments in both human-object interaction (HOI) detection and scene graph generation (SGG) benchmarks attest to the superiority and effectiveness of Diff-VRD.
comment: Under review at IEEE TCSVT. The Appendix is provided additionally
AttentionDrop: A Novel Regularization Method for Transformer Models
Transformer-based architectures achieve state-of-the-art performance across a wide range of tasks in natural language processing, computer vision, and speech. However, their immense capacity often leads to overfitting, especially when training data is limited or noisy. We propose AttentionDrop, a unified family of stochastic regularization techniques that operate directly on the self-attention distributions. We introduces three variants: 1. Hard Attention Masking: randomly zeroes out top-k attention logits per query to encourage diverse context utilization. 2. Blurred Attention Smoothing: applies a dynamic Gaussian convolution over attention logits to diffuse overly peaked distributions. 3. Consistency-Regularized AttentionDrop: enforces output stability under multiple independent AttentionDrop perturbations via a KL-based consistency loss.
comment: 26 pages
Self-alignment of Large Video Language Models with Refined Regularized Preference Optimization
Despite recent advances in Large Video Language Models (LVLMs), they still struggle with fine-grained temporal understanding, hallucinate, and often make simple mistakes on even simple video question-answering tasks, all of which pose significant challenges to their safe and reliable deployment in real-world applications. To address these limitations, we propose a self-alignment framework that enables LVLMs to learn from their own errors. Our proposed framework first obtains a training set of preferred and non-preferred response pairs, where non-preferred responses are generated by incorporating common error patterns that often occur due to inadequate spatio-temporal understanding, spurious correlations between co-occurring concepts, and over-reliance on linguistic cues while neglecting the vision modality, among others. To facilitate self-alignment of LVLMs with the constructed preferred and non-preferred response pairs, we introduce Refined Regularized Preference Optimization (RRPO), a novel preference optimization method that utilizes sub-sequence-level refined rewards and token-wise KL regularization to address the limitations of Direct Preference Optimization (DPO). We demonstrate that RRPO achieves more precise alignment and more stable training compared to DPO. Our experiments and analysis validate the effectiveness of our approach across diverse video tasks, including video hallucination, short- and long-video understanding, and fine-grained temporal reasoning.
DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency
Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.
Single-shot Star-convex Polygon-based Instance Segmentation for Spatially-correlated Biomedical Objects
Biomedical images often contain objects known to be spatially correlated or nested due to their inherent properties, leading to semantic relations. Examples include cell nuclei being nested within eukaryotic cells and colonies growing exclusively within their culture dishes. While these semantic relations bear key importance, detection tasks are often formulated independently, requiring multi-shot analysis pipelines. Importantly, spatial correlation could constitute a fundamental prior facilitating learning of more meaningful representations for tasks like instance segmentation. This knowledge has, thus far, not been utilised by the biomedical computer vision community. We argue that the instance segmentation of two or more categories of objects can be achieved in parallel. We achieve this via two architectures HydraStarDist (HSD) and the novel (HSD-WBR) based on the widely-used StarDist (SD), to take advantage of the star-convexity of our target objects. HSD and HSD-WBR are constructed to be capable of incorporating their interactions as constraints into account. HSD implicitly incorporates spatial correlation priors based on object interaction through a joint encoder. HSD-WBR further enforces the prior in a regularisation layer with the penalty we proposed named Within Boundary Regularisation Penalty (WBR). Both architectures achieve nested instance segmentation in a single shot. We demonstrate their competitiveness based on $IoU_R$ and AP and superiority in a new, task-relevant criteria, Joint TP rate (JTPR) compared to their baseline SD and Cellpose. Our approach can be further modified to capture partial-inclusion/-exclusion in multi-object interactions in fluorescent or brightfield microscopy or digital imaging. Finally, our strategy suggests gains by making this learning single-shot and computationally efficient.
comment: 12 pages, 8 figures
Modular-Cam: Modular Dynamic Camera-view Video Generation with LLM AAAI 2025
Text-to-Video generation, which utilizes the provided text prompt to generate high-quality videos, has drawn increasing attention and achieved great success due to the development of diffusion models recently. Existing methods mainly rely on a pre-trained text encoder to capture the semantic information and perform cross attention with the encoded text prompt to guide the generation of video. However, when it comes to complex prompts that contain dynamic scenes and multiple camera-view transformations, these methods can not decompose the overall information into separate scenes, as well as fail to smoothly change scenes based on the corresponding camera-views. To solve these problems, we propose a novel method, i.e., Modular-Cam. Specifically, to better understand a given complex prompt, we utilize a large language model to analyze user instructions and decouple them into multiple scenes together with transition actions. To generate a video containing dynamic scenes that match the given camera-views, we incorporate the widely-used temporal transformer into the diffusion model to ensure continuity within a single scene and propose CamOperator, a modular network based module that well controls the camera movements. Moreover, we propose AdaControlNet, which utilizes ControlNet to ensure consistency across scenes and adaptively adjusts the color tone of the generated video. Extensive qualitative and quantitative experiments prove our proposed Modular-Cam's strong capability of generating multi-scene videos together with its ability to achieve fine-grained control of camera movements. Generated results are available at https://modular-cam.github.io.
comment: AAAI 2025 Poster
pix2pockets: Shot Suggestions in 8-Ball Pool from a Single Image in the Wild SC
Computer vision models have seen increased usage in sports, and reinforcement learning (RL) is famous for beating humans in strategic games such as Chess and Go. In this paper, we are interested in building upon these advances and examining the game of classic 8-ball pool. We introduce pix2pockets, a foundation for an RL-assisted pool coach. Given a single image of a pool table, we first aim to detect the table and the balls and then propose the optimal shot suggestion. For the first task, we build a dataset with 195 diverse images where we manually annotate all balls and table dots, leading to 5748 object segmentation masks. For the second task, we build a standardized RL environment that allows easy development and benchmarking of any RL algorithm. Our object detection model yields an AP50 of 91.2 while our ball location pipeline obtains an error of only 0.4 cm. Furthermore, we compare standard RL algorithms to set a baseline for the shot suggestion task and we show that all of them fail to pocket all balls without making a foul move. We also present a simple baseline that achieves a per-shot success rate of 94.7% and clears a full game in a single turn 30% of the time.
comment: 15 pages, 7 figures, to be published in SCIA 2025
RadMamba: Efficient Human Activity Recognition through Radar-based Micro-Doppler-Oriented Mamba State-Space Model
Radar-based HAR has emerged as a promising alternative to conventional monitoring approaches, such as wearable devices and camera-based systems, due to its unique privacy preservation and robustness advantages. However, existing solutions based on convolutional and recurrent neural networks, although effective, are computationally demanding during deployment. This limits their applicability in scenarios with constrained resources or those requiring multiple sensors. Advanced architectures, such as ViT and SSM architectures, offer improved modeling capabilities and have made efforts toward lightweight designs. However, their computational complexity remains relatively high. To leverage the strengths of transformer architectures while simultaneously enhancing accuracy and reducing computational complexity, this paper introduces RadMamba, a parameter-efficient, radar micro-Doppler-oriented Mamba SSM specifically tailored for radar-based HAR. Across three diverse datasets, RadMamba matches the top-performing previous model's 99.8% classification accuracy on Dataset DIAT with only 1/400 of its parameters and equals the leading models' 92.0% accuracy on Dataset CI4R with merely 1/10 of their parameters. In scenarios with continuous sequences of actions evaluated on Dataset UoG2020, RadMamba surpasses other models with significantly higher parameter counts by at least 3%, achieving this with only 6.7k parameters. Our code is available at: https://github.com/lab-emi/AIRHAR.
comment: Under Review
Object Placement for Anything ICME 2025
Object placement aims to determine the appropriate placement (\emph{e.g.}, location and size) of a foreground object when placing it on the background image. Most previous works are limited by small-scale labeled dataset, which hinders the real-world application of object placement. In this work, we devise a semi-supervised framework which can exploit large-scale unlabeled dataset to promote the generalization ability of discriminative object placement models. The discriminative models predict the rationality label for each foreground placement given a foreground-background pair. To better leverage the labeled data, under the semi-supervised framework, we further propose to transfer the knowledge of rationality variation, \emph{i.e.}, whether the change of foreground placement would result in the change of rationality label, from labeled data to unlabeled data. Extensive experiments demonstrate that our framework can effectively enhance the generalization ability of discriminative object placement models.
comment: accepted by ICME 2025
Understanding Attention Mechanism in Video Diffusion Models
Text-to-video (T2V) synthesis models, such as OpenAI's Sora, have garnered significant attention due to their ability to generate high-quality videos from a text prompt. In diffusion-based T2V models, the attention mechanism is a critical component. However, it remains unclear what intermediate features are learned and how attention blocks in T2V models affect various aspects of video synthesis, such as image quality and temporal consistency. In this paper, we conduct an in-depth perturbation analysis of the spatial and temporal attention blocks of T2V models using an information-theoretic approach. Our results indicate that temporal and spatial attention maps affect not only the timing and layout of the videos but also the complexity of spatiotemporal elements and the aesthetic quality of the synthesized videos. Notably, high-entropy attention maps are often key elements linked to superior video quality, whereas low-entropy attention maps are associated with the video's intra-frame structure. Based on our findings, we propose two novel methods to enhance video quality and enable text-guided video editing. These methods rely entirely on lightweight manipulation of the attention matrices in T2V models. The efficacy and effectiveness of our methods are further validated through experimental evaluation across multiple datasets.
Action Anticipation from SoccerNet Football Video Broadcasts CVPR
Artificial intelligence has revolutionized the way we analyze sports videos, whether to understand the actions of games in long untrimmed videos or to anticipate the player's motion in future frames. Despite these efforts, little attention has been given to anticipating game actions before they occur. In this work, we introduce the task of action anticipation for football broadcast videos, which consists in predicting future actions in unobserved future frames, within a five- or ten-second anticipation window. To benchmark this task, we release a new dataset, namely the SoccerNet Ball Action Anticipation dataset, based on SoccerNet Ball Action Spotting. Additionally, we propose a Football Action ANticipation TRAnsformer (FAANTRA), a baseline method that adapts FUTR, a state-of-the-art action anticipation model, to predict ball-related actions. To evaluate action anticipation, we introduce new metrics, including mAP@$\delta$, which evaluates the temporal precision of predicted future actions, as well as mAP@$\infty$, which evaluates their occurrence within the anticipation window. We also conduct extensive ablation studies to examine the impact of various task settings, input configurations, and model architectures. Experimental results highlight both the feasibility and challenges of action anticipation in football videos, providing valuable insights into the design of predictive models for sports analytics. By forecasting actions before they unfold, our work will enable applications in automated broadcasting, tactical analysis, and player decision-making. Our dataset and code are publicly available at https://github.com/MohamadDalal/FAANTRA.
comment: 15 pages, 14 figures. To be published in the CVSports CVPR workshop
MixSignGraph: A Sign Sequence is Worth Mixed Graphs of Nodes
Recent advances in sign language research have benefited from CNN-based backbones, which are primarily transferred from traditional computer vision tasks (\eg object identification, image recognition). However, these CNN-based backbones usually excel at extracting features like contours and texture, but may struggle with capturing sign-related features. In fact, sign language tasks require focusing on sign-related regions, including the collaboration between different regions (\eg left hand region and right hand region) and the effective content in a single region. To capture such region-related features, we introduce MixSignGraph, which represents sign sequences as a group of mixed graphs and designs the following three graph modules for feature extraction, \ie Local Sign Graph (LSG) module, Temporal Sign Graph (TSG) module and Hierarchical Sign Graph (HSG) module. Specifically, the LSG module learns the correlation of intra-frame cross-region features within one frame, \ie focusing on spatial features. The TSG module tracks the interaction of inter-frame cross-region features among adjacent frames, \ie focusing on temporal features. The HSG module aggregates the same-region features from different-granularity feature maps of a frame, \ie focusing on hierarchical features. In addition, to further improve the performance of sign language tasks without gloss annotations, we propose a simple yet counter-intuitive Text-driven CTC Pre-training (TCP) method, which generates pseudo gloss labels from text labels for model pre-training. Extensive experiments conducted on current five public sign language datasets demonstrate the superior performance of the proposed model. Notably, our model surpasses the SOTA models on multiple sign language tasks across several datasets, without relying on any additional cues.
comment: 17 pages, 9 figures, submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI). This is a regular paper submission
Instruction-augmented Multimodal Alignment for Image-Text and Element Matching CVPR 2025
With the rapid advancement of text-to-image (T2I) generation models, assessing the semantic alignment between generated images and text descriptions has become a significant research challenge. Current methods, including those based on Visual Question Answering (VQA), still struggle with fine-grained assessments and precise quantification of image-text alignment. This paper presents an improved evaluation method named Instruction-augmented Multimodal Alignment for Image-Text and Element Matching (iMatch), which evaluates image-text semantic alignment by fine-tuning multimodal large language models. We introduce four innovative augmentation strategies: First, the QAlign strategy creates a precise probabilistic mapping to convert discrete scores from multimodal large language models into continuous matching scores. Second, a validation set augmentation strategy uses pseudo-labels from model predictions to expand training data, boosting the model's generalization performance. Third, an element augmentation strategy integrates element category labels to refine the model's understanding of image-text matching. Fourth, an image augmentation strategy employs techniques like random lighting to increase the model's robustness. Additionally, we propose prompt type augmentation and score perturbation strategies to further enhance the accuracy of element assessments. Our experimental results show that the iMatch method significantly surpasses existing methods, confirming its effectiveness and practical value. Furthermore, our iMatch won first place in the CVPR NTIRE 2025 Text to Image Generation Model Quality Assessment - Track 1 Image-Text Alignment.
comment: Accepted to CVPR 2025 Workshop
A Complex-valued SAR Foundation Model Based on Physically Inspired Representation Learning
Vision foundation models in remote sensing have been extensively studied due to their superior generalization on various downstream tasks. Synthetic Aperture Radar (SAR) offers all-day, all-weather imaging capabilities, providing significant advantages for Earth observation. However, establishing a foundation model for SAR image interpretation inevitably encounters the challenges of insufficient information utilization and poor interpretability. In this paper, we propose a remote sensing foundation model based on complex-valued SAR data, which simulates the polarimetric decomposition process for pre-training, i.e., characterizing pixel scattering intensity as a weighted combination of scattering bases and scattering coefficients, thereby endowing the foundation model with physical interpretability. Specifically, we construct a series of scattering queries, each representing an independent and meaningful scattering basis, which interact with SAR features in the scattering query decoder and output the corresponding scattering coefficient. To guide the pre-training process, polarimetric decomposition loss and power self-supervision loss are constructed. The former aligns the predicted coefficients with Yamaguchi coefficients, while the latter reconstructs power from the predicted coefficients and compares it to the input image's power. The performance of our foundation model is validated on six typical downstream tasks, achieving state-of-the-art results. Notably, the foundation model can extract stable feature representations and exhibits strong generalization, even in data-scarce conditions.
A Review of YOLOv12: Attention-Based Enhancements vs. Previous Versions
The YOLO (You Only Look Once) series has been a leading framework in real-time object detection, consistently improving the balance between speed and accuracy. However, integrating attention mechanisms into YOLO has been challenging due to their high computational overhead. YOLOv12 introduces a novel approach that successfully incorporates attention-based enhancements while preserving real-time performance. This paper provides a comprehensive review of YOLOv12's architectural innovations, including Area Attention for computationally efficient self-attention, Residual Efficient Layer Aggregation Networks for improved feature aggregation, and FlashAttention for optimized memory access. Additionally, we benchmark YOLOv12 against prior YOLO versions and competing object detectors, analyzing its improvements in accuracy, inference speed, and computational efficiency. Through this analysis, we demonstrate how YOLOv12 advances real-time object detection by refining the latency-accuracy trade-off and optimizing computational resources.
Analysis of Pseudo-Labeling for Online Source-Free Universal Domain Adaptation
A domain (distribution) shift between training and test data often hinders the real-world performance of deep neural networks, necessitating unsupervised domain adaptation (UDA) to bridge this gap. Online source-free UDA has emerged as a solution for practical scenarios where access to source data is restricted and target data is received as a continuous stream. However, the open-world nature of many real-world applications additionally introduces category shifts meaning that the source and target label spaces may differ. Online source-free universal domain adaptation (SF-UniDA) addresses this challenge. Existing methods mainly rely on self-training with pseudo-labels, yet the relationship between pseudo-labeling and adaptation outcomes has not been studied yet. To bridge this gap, we conduct a systematic analysis through controlled experiments with simulated pseudo-labeling, offering valuable insights into pseudo-labeling for online SF-UniDA. Our findings reveal a substantial gap between the current state-of-the-art and the upper bound of adaptation achieved with perfect pseudo-labeling. Moreover, we show that a contrastive loss enables effective adaptation even with moderate pseudo-label accuracy, while a cross-entropy loss, though less robust to pseudo-label errors, achieves superior results when pseudo-labeling approaches perfection. Lastly, our findings indicate that pseudo-label accuracy is in general more crucial than quantity, suggesting that prioritizing fewer but high-confidence pseudo-labels is beneficial. Overall, our study highlights the critical role of pseudo-labeling in (online) SF-UniDA and provides actionable insights to drive future advancements in the field. Our code is available at https://github.com/pascalschlachter/PLAnalysis.
comment: Submitted to the 33rd European Signal Processing Conference (EUSIPCO 2025)
Securing the Skies: A Comprehensive Survey on Anti-UAV Methods, Benchmarking, and Future Directions CVPR
Unmanned Aerial Vehicles (UAVs) are indispensable for infrastructure inspection, surveillance, and related tasks, yet they also introduce critical security challenges. This survey provides a wide-ranging examination of the anti-UAV domain, centering on three core objectives-classification, detection, and tracking-while detailing emerging methodologies such as diffusion-based data synthesis, multi-modal fusion, vision-language modeling, self-supervised learning, and reinforcement learning. We systematically evaluate state-of-the-art solutions across both single-modality and multi-sensor pipelines (spanning RGB, infrared, audio, radar, and RF) and discuss large-scale as well as adversarially oriented benchmarks. Our analysis reveals persistent gaps in real-time performance, stealth detection, and swarm-based scenarios, underscoring pressing needs for robust, adaptive anti-UAV systems. By highlighting open research directions, we aim to foster innovation and guide the development of next-generation defense strategies in an era marked by the extensive use of UAVs.
comment: Accepted at CVPR Workshop Anti-UAV 2025. 15 pages
Exploring Video-Based Driver Activity Recognition under Noisy Labels
As an open research topic in the field of deep learning, learning with noisy labels has attracted much attention and grown rapidly over the past ten years. Learning with label noise is crucial for driver distraction behavior recognition, as real-world video data often contains mislabeled samples, impacting model reliability and performance. However, label noise learning is barely explored in the driver activity recognition field. In this paper, we propose the first label noise learning approach for the driver activity recognition task. Based on the cluster assumption, we initially enable the model to learn clustering-friendly low-dimensional representations from given videos and assign the resultant embeddings into clusters. We subsequently perform co-refinement within each cluster to smooth the classifier outputs. Furthermore, we propose a flexible sample selection strategy that combines two selection criteria without relying on any hyperparameters to filter clean samples from the training dataset. We also incorporate a self-adaptive parameter into the sample selection process to enforce balancing across classes. A comprehensive variety of experiments on the public Drive&Act dataset for all granularity levels demonstrates the superior performance of our method in comparison with other label-denoising methods derived from the image classification field. The source code is available at https://github.com/ilonafan/DAR-noisy-labels.
comment: The source code is available at https://github.com/ilonafan/DAR-noisy-labels
Novel-view X-ray Projection Synthesis through Geometry-Integrated Deep Learning
X-ray imaging plays a crucial role in the medical field, providing essential insights into the internal anatomy of patients for diagnostics, image-guided procedures, and clinical decision-making. Traditional techniques often require multiple X-ray projections from various angles to obtain a comprehensive view, leading to increased radiation exposure and more complex clinical processes. This paper explores an innovative approach using the DL-GIPS model, which synthesizes X-ray projections from new viewpoints by leveraging a single existing projection. The model strategically manipulates geometry and texture features extracted from an initial projection to match new viewing angles. It then synthesizes the final projection by merging these modified geometry features with consistent texture information through an advanced image generation process. We demonstrate the effectiveness and broad applicability of the DL-GIPS framework through lung imaging examples, highlighting its potential to revolutionize stereoscopic and volumetric imaging by minimizing the need for extensive data acquisition.
comment: 6 pages, 3 figures, 1 table
Flow Intelligence: Robust Feature Matching via Temporal Signature Correlation
Feature matching across video streams remains a cornerstone challenge in computer vision. Increasingly, robust multimodal matching has garnered interest in robotics, surveillance, remote sensing, and medical imaging. While traditional rely on detecting and matching spatial features, they break down when faced with noisy, misaligned, or cross-modal data. Recent deep learning methods have improved robustness through learned representations, but remain constrained by their dependence on extensive training data and computational demands. We present Flow Intelligence, a paradigm-shifting approach that moves beyond spatial features by focusing on temporal motion patterns exclusively. Instead of detecting traditional keypoints, our method extracts motion signatures from pixel blocks across consecutive frames and extract temporal motion signatures between videos. These motion-based descriptors achieve natural invariance to translation, rotation, and scale variations while remaining robust across different imaging modalities. This novel approach also requires no pretraining data, eliminates the need for spatial feature detection, enables cross-modal matching using only temporal motion, and it outperforms existing methods in challenging scenarios where traditional approaches fail. By leveraging motion rather than appearance, Flow Intelligence enables robust, real-time video feature matching in diverse environments.
R-Meshfusion: Reinforcement Learning Powered Sparse-View Mesh Reconstruction with Diffusion Priors
Mesh reconstruction from multi-view images is a fundamental problem in computer vision, but its performance degrades significantly under sparse-view conditions, especially in unseen regions where no ground-truth observations are available. While recent advances in diffusion models have demonstrated strong capabilities in synthesizing novel views from limited inputs, their outputs often suffer from visual artifacts and lack 3D consistency, posing challenges for reliable mesh optimization. In this paper, we propose a novel framework that leverages diffusion models to enhance sparse-view mesh reconstruction in a principled and reliable manner. To address the instability of diffusion outputs, we propose a Consensus Diffusion Module that filters unreliable generations via interquartile range (IQR) analysis and performs variance-aware image fusion to produce robust pseudo-supervision. Building on this, we design an online reinforcement learning strategy based on the Upper Confidence Bound (UCB) to adaptively select the most informative viewpoints for enhancement, guided by diffusion loss. Finally, the fused images are used to jointly supervise a NeRF-based model alongside sparse-view ground truth, ensuring consistency across both geometry and appearance. Extensive experiments demonstrate that our method achieves significant improvements in both geometric quality and rendering quality.
ADAT: Time-Series-Aware Adaptive Transformer Architecture for Sign Language Translation
Current sign language machine translation systems rely on recognizing hand movements, facial expressions and body postures, and natural language processing, to convert signs into text. Recent approaches use Transformer architectures to model long-range dependencies via positional encoding. However, they lack accuracy in recognizing fine-grained, short-range temporal dependencies between gestures captured at high frame rates. Moreover, their high computational complexity leads to inefficient training. To mitigate these issues, we propose an Adaptive Transformer (ADAT), which incorporates components for enhanced feature extraction and adaptive feature weighting through a gating mechanism to emphasize contextually relevant features while reducing training overhead and maintaining translation accuracy. To evaluate ADAT, we introduce MedASL, the first public medical American Sign Language dataset. In sign-to-gloss-to-text experiments, ADAT outperforms the encoder-decoder transformer, improving BLEU-4 accuracy by 0.1% while reducing training time by 14.33% on PHOENIX14T and 3.24% on MedASL. In sign-to-text experiments, it improves accuracy by 8.7% and reduces training time by 2.8% on PHOENIX14T and achieves 4.7% higher accuracy and 7.17% faster training on MedASL. Compared to encoder-only and decoder-only baselines in sign-to-text, ADAT is at least 6.8% more accurate despite being up to 12.1% slower due to its dual-stream structure.
Beyond Words: Augmenting Discriminative Richness via Diffusions in Unsupervised Prompt Learning
Fine-tuning vision-language models (VLMs) with large amounts of unlabeled data has recently garnered significant interest. However, a key challenge remains the lack of high-quality pseudo-labeled data. Current pseudo-labeling strategies often struggle with mismatches between semantic and visual information, leading to sub-optimal performance of unsupervised prompt learning (UPL) methods. In this paper, we introduce a simple yet effective approach called \textbf{A}ugmenting D\textbf{i}scriminative \textbf{R}ichness via Diffusions (AiR), toward learning a richer discriminating way to represent the class comprehensively and thus facilitate classification. Specifically, our approach includes a pseudo-label generation module that leverages high-fidelity synthetic samples to create an auxiliary classifier, which captures richer visual variation, bridging text-image-pair classification to a more robust image-image-pair classification. Additionally, we exploit the diversity of diffusion-based synthetic samples to enhance prompt learning, providing greater information for semantic-visual alignment. Extensive experiments on five public benchmarks, including RESISC45 and Flowers102, and across three learning paradigms-UL, SSL, and TRZSL-demonstrate that AiR achieves substantial and consistent performance improvements over state-of-the-art unsupervised prompt learning methods.
SemDiff: Generating Natural Unrestricted Adversarial Examples via Semantic Attributes Optimization in Diffusion Models
Unrestricted adversarial examples (UAEs), allow the attacker to create non-constrained adversarial examples without given clean samples, posing a severe threat to the safety of deep learning models. Recent works utilize diffusion models to generate UAEs. However, these UAEs often lack naturalness and imperceptibility due to simply optimizing in intermediate latent noises. In light of this, we propose SemDiff, a novel unrestricted adversarial attack that explores the semantic latent space of diffusion models for meaningful attributes, and devises a multi-attributes optimization approach to ensure attack success while maintaining the naturalness and imperceptibility of generated UAEs. We perform extensive experiments on four tasks on three high-resolution datasets, including CelebA-HQ, AFHQ and ImageNet. The results demonstrate that SemDiff outperforms state-of-the-art methods in terms of attack success rate and imperceptibility. The generated UAEs are natural and exhibit semantically meaningful changes, in accord with the attributes' weights. In addition, SemDiff is found capable of evading different defenses, which further validates its effectiveness and threatening.
Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
AnomalyR1: A GRPO-based End-to-end MLLM for Industrial Anomaly Detection
Industrial Anomaly Detection (IAD) poses a formidable challenge due to the scarcity of defective samples, making it imperative to deploy models capable of robust generalization to detect unseen anomalies effectively. Traditional approaches, often constrained by hand-crafted features or domain-specific expert models, struggle to address this limitation, underscoring the need for a paradigm shift. We introduce AnomalyR1, a pioneering framework that leverages VLM-R1, a Multimodal Large Language Model (MLLM) renowned for its exceptional generalization and interpretability, to revolutionize IAD. By integrating MLLM with Group Relative Policy Optimization (GRPO), enhanced by our novel Reasoned Outcome Alignment Metric (ROAM), AnomalyR1 achieves a fully end-to-end solution that autonomously processes inputs of image and domain knowledge, reasons through analysis, and generates precise anomaly localizations and masks. Based on the latest multimodal IAD benchmark, our compact 3-billion-parameter model outperforms existing methods, establishing state-of-the-art results. As MLLM capabilities continue to advance, this study is the first to deliver an end-to-end VLM-based IAD solution that demonstrates the transformative potential of ROAM-enhanced GRPO, positioning our framework as a forward-looking cornerstone for next-generation intelligent anomaly detection systems in industrial applications with limited defective data.
Learning Physics-Informed Color-Aware Transforms for Low-Light Image Enhancement ICME 2025
Image decomposition offers deep insights into the imaging factors of visual data and significantly enhances various advanced computer vision tasks. In this work, we introduce a novel approach to low-light image enhancement based on decomposed physics-informed priors. Existing methods that directly map low-light to normal-light images in the sRGB color space suffer from inconsistent color predictions and high sensitivity to spectral power distribution (SPD) variations, resulting in unstable performance under diverse lighting conditions. To address these challenges, we introduce a Physics-informed Color-aware Transform (PiCat), a learning-based framework that converts low-light images from the sRGB color space into deep illumination-invariant descriptors via our proposed Color-aware Transform (CAT). This transformation enables robust handling of complex lighting and SPD variations. Complementing this, we propose the Content-Noise Decomposition Network (CNDN), which refines the descriptor distributions to better align with well-lit conditions by mitigating noise and other distortions, thereby effectively restoring content representations to low-light images. The CAT and the CNDN collectively act as a physical prior, guiding the transformation process from low-light to normal-light domains. Our proposed PiCat framework demonstrates superior performance compared to state-of-the-art methods across five benchmark datasets.
comment: Accepted by ICME 2025
Search is All You Need for Few-shot Anomaly Detection
Few-shot anomaly detection (FSAD) has emerged as a crucial yet challenging task in industrial inspection, where normal distribution modeling must be accomplished with only a few normal images. While existing approaches typically employ multi-modal foundation models combining language and vision modalities for prompt-guided anomaly detection, these methods often demand sophisticated prompt engineering and extensive manual tuning. In this paper, we demonstrate that a straightforward nearest-neighbor search framework can surpass state-of-the-art performance in both single-class and multi-class FSAD scenarios. Our proposed method, VisionAD, consists of four simple yet essential components: (1) scalable vision foundation models that extract universal and discriminative features; (2) dual augmentation strategies - support augmentation to enhance feature matching adaptability and query augmentation to address the oversights of single-view prediction; (3) multi-layer feature integration that captures both low-frequency global context and high-frequency local details with minimal computational overhead; and (4) a class-aware visual memory bank enabling efficient one-for-all multi-class detection. Extensive evaluations across MVTec-AD, VisA, and Real-IAD benchmarks demonstrate VisionAD's exceptional performance. Using only 1 normal images as support, our method achieves remarkable image-level AUROC scores of 97.4%, 94.8%, and 70.8% respectively, outperforming current state-of-the-art approaches by significant margins (+1.6%, +3.2%, and +1.4%). The training-free nature and superior few-shot capabilities of VisionAD make it particularly appealing for real-world applications where samples are scarce or expensive to obtain. Code is available at https://github.com/Qiqigeww/VisionAD.
CAGS: Open-Vocabulary 3D Scene Understanding with Context-Aware Gaussian Splatting
Open-vocabulary 3D scene understanding is crucial for applications requiring natural language-driven spatial interpretation, such as robotics and augmented reality. While 3D Gaussian Splatting (3DGS) offers a powerful representation for scene reconstruction, integrating it with open-vocabulary frameworks reveals a key challenge: cross-view granularity inconsistency. This issue, stemming from 2D segmentation methods like SAM, results in inconsistent object segmentations across views (e.g., a "coffee set" segmented as a single entity in one view but as "cup + coffee + spoon" in another). Existing 3DGS-based methods often rely on isolated per-Gaussian feature learning, neglecting the spatial context needed for cohesive object reasoning, leading to fragmented representations. We propose Context-Aware Gaussian Splatting (CAGS), a novel framework that addresses this challenge by incorporating spatial context into 3DGS. CAGS constructs local graphs to propagate contextual features across Gaussians, reducing noise from inconsistent granularity, employs mask-centric contrastive learning to smooth SAM-derived features across views, and leverages a precomputation strategy to reduce computational cost by precomputing neighborhood relationships, enabling efficient training in large-scale scenes. By integrating spatial context, CAGS significantly improves 3D instance segmentation and reduces fragmentation errors on datasets like LERF-OVS and ScanNet, enabling robust language-guided 3D scene understanding.
Learning Compatible Multi-Prize Subnetworks for Asymmetric Retrieval CVPR 2025
Asymmetric retrieval is a typical scenario in real-world retrieval systems, where compatible models of varying capacities are deployed on platforms with different resource configurations. Existing methods generally train pre-defined networks or subnetworks with capacities specifically designed for pre-determined platforms, using compatible learning. Nevertheless, these methods suffer from limited flexibility for multi-platform deployment. For example, when introducing a new platform into the retrieval systems, developers have to train an additional model at an appropriate capacity that is compatible with existing models via backward-compatible learning. In this paper, we propose a Prunable Network with self-compatibility, which allows developers to generate compatible subnetworks at any desired capacity through post-training pruning. Thus it allows the creation of a sparse subnetwork matching the resources of the new platform without additional training. Specifically, we optimize both the architecture and weight of subnetworks at different capacities within a dense network in compatible learning. We also design a conflict-aware gradient integration scheme to handle the gradient conflicts between the dense network and subnetworks during compatible learning. Extensive experiments on diverse benchmarks and visual backbones demonstrate the effectiveness of our method. Our code and model are available at https://github.com/Bunny-Black/PrunNet.
comment: Accepted to CVPR 2025
A Category-Fragment Segmentation Framework for Pelvic Fracture Segmentation in X-ray Images
Pelvic fractures, often caused by high-impact trauma, frequently require surgical intervention. Imaging techniques such as CT and 2D X-ray imaging are used to transfer the surgical plan to the operating room through image registration, enabling quick intraoperative adjustments. Specifically, segmenting pelvic fractures from 2D X-ray imaging can assist in accurately positioning bone fragments and guiding the placement of screws or metal plates. In this study, we propose a novel deep learning-based category and fragment segmentation (CFS) framework for the automatic segmentation of pelvic bone fragments in 2D X-ray images. The framework consists of three consecutive steps: category segmentation, fragment segmentation, and post-processing. Our best model achieves an IoU of 0.91 for anatomical structures and 0.78 for fracture segmentation. Results demonstrate that the CFS framework is effective and accurate.
comment: 5 pages, 2 figures, 1 table
Synthetic Data for Blood Vessel Network Extraction ICLR 2025
Blood vessel networks in the brain play a crucial role in stroke research, where understanding their topology is essential for analyzing blood flow dynamics. However, extracting detailed topological vessel network information from microscopy data remains a significant challenge, mainly due to the scarcity of labeled training data and the need for high topological accuracy. This work combines synthetic data generation with deep learning to automatically extract vessel networks as graphs from volumetric microscopy data. To combat data scarcity, we introduce a comprehensive pipeline for generating large-scale synthetic datasets that mirror the characteristics of real vessel networks. Our three-stage approach progresses from abstract graph generation through vessel mask creation to realistic medical image synthesis, incorporating biological constraints and imaging artifacts at each stage. Using this synthetic data, we develop a two-stage deep learning pipeline of 3D U-Net-based models for node detection and edge prediction. Fine-tuning on real microscopy data shows promising adaptation, improving edge prediction F1 scores from 0.496 to 0.626 by training on merely 5 manually labeled samples. These results suggest that automated vessel network extraction is becoming practically feasible, opening new possibilities for large-scale vascular analysis in stroke research.
comment: Presented at SynthData Workshop at ICLR 2025
Cross-Frequency Collaborative Training Network and Dataset for Semi-supervised First Molar Root Canal Segmentation
Root canal (RC) treatment is a highly delicate and technically complex procedure in clinical practice, heavily influenced by the clinicians' experience and subjective judgment. Deep learning has made significant advancements in the field of computer-aided diagnosis (CAD) because it can provide more objective and accurate diagnostic results. However, its application in RC treatment is still relatively rare, mainly due to the lack of public datasets in this field. To address this issue, in this paper, we established a First Molar Root Canal segmentation dataset called FMRC-2025. Additionally, to alleviate the workload of manual annotation for dentists and fully leverage the unlabeled data, we designed a Cross-Frequency Collaborative training semi-supervised learning (SSL) Network called CFC-Net. It consists of two components: (1) Cross-Frequency Collaborative Mean Teacher (CFC-MT), which introduces two specialized students (SS) and one comprehensive teacher (CT) for collaborative multi-frequency training. The CT and SS are trained on different frequency components while fully integrating multi-frequency knowledge through cross and full frequency consistency supervisions. (2) Uncertainty-guided Cross-Frequency Mix (UCF-Mix) mechanism enables the network to generate high-confidence pseudo-labels while learning to integrate multi-frequency information and maintaining the structural integrity of the targets. Extensive experiments on FMRC-2025 and three public dental datasets demonstrate that CFC-MT is effective for RC segmentation and can also exhibit strong generalizability on other dental segmentation tasks, outperforming state-of-the-art SSL medical image segmentation methods. Codes and dataset will be released.
comment: 12 pages, Initial submission time 25 December 2024, Now Under Review
ACE: Attentional Concept Erasure in Diffusion Models
Large text-to-image diffusion models have demonstrated remarkable image synthesis capabilities, but their indiscriminate training on Internet-scale data has led to learned concepts that enable harmful, copyrighted, or otherwise undesirable content generation. We address the task of concept erasure in diffusion models, i.e., removing a specified concept from a pre-trained model such that prompting the concept (or related synonyms) no longer yields its depiction, while preserving the model's ability to generate other content. We propose a novel method, Attentional Concept Erasure (ACE), that integrates a closed-form attention manipulation with lightweight fine-tuning. Theoretically, we formulate concept erasure as aligning the model's conditional distribution on the target concept with a neutral distribution. Our approach identifies and nullifies concept-specific latent directions in the cross-attention modules via a gated low-rank adaptation, followed by adversarially augmented fine-tuning to ensure thorough erasure of the concept and its synonyms. Empirically, we demonstrate on multiple benchmarks, including object classes, celebrity faces, explicit content, and artistic styles, that ACE achieves state-of-the-art concept removal efficacy and robustness. Compared to prior methods, ACE better balances generality (erasing concept and related terms) and specificity (preserving unrelated content), scales to dozens of concepts, and is efficient, requiring only a few seconds of adaptation per concept. We will release our code to facilitate safer deployment of diffusion models.
comment: Under Review
Boosting Multi-View Stereo with Depth Foundation Model in the Absence of Real-World Labels
Learning-based Multi-View Stereo (MVS) methods have made remarkable progress in recent years. However, how to effectively train the network without using real-world labels remains a challenging problem. In this paper, driven by the recent advancements of vision foundation models, a novel method termed DFM-MVS, is proposed to leverage the depth foundation model to generate the effective depth prior, so as to boost MVS in the absence of real-world labels. Specifically, a depth prior-based pseudo-supervised training mechanism is developed to simulate realistic stereo correspondences using the generated depth prior, thereby constructing effective supervision for the MVS network. Besides, a depth prior-guided error correction strategy is presented to leverage the depth prior as guidance to mitigate the error propagation problem inherent in the widely-used coarse-to-fine network structure. Experimental results on DTU and Tanks & Temples datasets demonstrate that the proposed DFM-MVS significantly outperforms existing MVS methods without using real-world labels.
A Visual RAG Pipeline for Few-Shot Fine-Grained Product Classification
Despite the rapid evolution of learning and computer vision algorithms, Fine-Grained Classification (FGC) still poses an open problem in many practically relevant applications. In the retail domain, for example, the identification of fast changing and visually highly similar products and their properties are key to automated price-monitoring and product recommendation. This paper presents a novel Visual RAG pipeline that combines the Retrieval Augmented Generation (RAG) approach and Vision Language Models (VLMs) for few-shot FGC. This Visual RAG pipeline extracts product and promotion data in advertisement leaflets from various retailers and simultaneously predicts fine-grained product ids along with price and discount information. Compared to previous approaches, the key characteristic of the Visual RAG pipeline is that it allows the prediction of novel products without re-training, simply by adding a few class samples to the RAG database. Comparing several VLM back-ends like GPT-4o [23], GPT-4o-mini [24], and Gemini 2.0 Flash [10], our approach achieves 86.8% accuracy on a diverse dataset.
TextDiffSeg: Text-guided Latent Diffusion Model for 3d Medical Images Segmentation
Diffusion Probabilistic Models (DPMs) have demonstrated significant potential in 3D medical image segmentation tasks. However, their high computational cost and inability to fully capture global 3D contextual information limit their practical applications. To address these challenges, we propose a novel text-guided diffusion model framework, TextDiffSeg. This method leverages a conditional diffusion framework that integrates 3D volumetric data with natural language descriptions, enabling cross-modal embedding and establishing a shared semantic space between visual and textual modalities. By enhancing the model's ability to recognize complex anatomical structures, TextDiffSeg incorporates innovative label embedding techniques and cross-modal attention mechanisms, effectively reducing computational complexity while preserving global 3D contextual integrity. Experimental results demonstrate that TextDiffSeg consistently outperforms existing methods in segmentation tasks involving kidney and pancreas tumors, as well as multi-organ segmentation scenarios. Ablation studies further validate the effectiveness of key components, highlighting the synergistic interaction between text fusion, image feature extractor, and label encoder. TextDiffSeg provides an efficient and accurate solution for 3D medical image segmentation, showcasing its broad applicability in clinical diagnosis and treatment planning.
Real-World Depth Recovery via Structure Uncertainty Modeling and Inaccurate GT Depth Fitting
The low-quality structure in raw depth maps is prevalent in real-world RGB-D datasets, which makes real-world depth recovery a critical task in recent years. However, the lack of paired raw-ground truth (raw-GT) data in the real world poses challenges for generalized depth recovery. Existing methods insufficiently consider the diversity of structure misalignment in raw depth maps, which leads to poor generalization in real-world depth recovery. Notably, random structure misalignments are not limited to raw depth data but also affect GT depth in real-world datasets. In the proposed method, we tackle the generalization problem from both input and output perspectives. For input, we enrich the diversity of structure misalignment in raw depth maps by designing a new raw depth generation pipeline, which helps the network avoid overfitting to a specific condition. Furthermore, a structure uncertainty module is designed to explicitly identify the misaligned structure for input raw depth maps to better generalize in unseen scenarios. Notably the well-trained depth foundation model (DFM) can help the structure uncertainty module estimate the structure uncertainty better. For output, a robust feature alignment module is designed to precisely align with the accurate structure of RGB images avoiding the interference of inaccurate GT depth. Extensive experiments on multiple datasets demonstrate the proposed method achieves competitive accuracy and generalization capabilities across various challenging raw depth maps.
Neighbor-Based Feature and Index Enhancement for Person Re-Identification CVPR
Person re-identification (Re-ID) aims to match the same pedestrian in a large gallery with different cameras and views. Enhancing the robustness of the extracted feature representations is a main challenge in Re-ID. Existing methods usually improve feature representation by improving model architecture, but most methods ignore the potential contextual information, which limits the effectiveness of feature representation and retrieval performance. Neighborhood information, especially the potential information of multi-order neighborhoods, can effectively enrich feature expression and improve retrieval accuracy, but this has not been fully explored in existing research. Therefore, we propose a novel model DMON-ARO that leverages latent neighborhood information to enhance both feature representation and index performance. Our approach is built on two complementary modules: Dynamic Multi-Order Neighbor Modeling (DMON) and Asymmetric Relationship Optimization (ARO). The DMON module dynamically aggregates multi-order neighbor relationships, allowing it to capture richer contextual information and enhance feature representation through adaptive neighborhood modeling. Meanwhile, ARO refines the distance matrix by optimizing query-to-gallery relationships, improving the index accuracy. Extensive experiments on three benchmark datasets demonstrate that our approach achieves performance improvements against baseline models, which illustrate the effectiveness of our model. Specifically, our model demonstrates improvements in Rank-1 accuracy and mAP. Moreover, this method can also be directly extended to other re-identification tasks.
comment: Comment: This paper has been accepted for publication in the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
DART: Disease-aware Image-Text Alignment and Self-correcting Re-alignment for Trustworthy Radiology Report Generation CVPR
The automatic generation of radiology reports has emerged as a promising solution to reduce a time-consuming task and accurately capture critical disease-relevant findings in X-ray images. Previous approaches for radiology report generation have shown impressive performance. However, there remains significant potential to improve accuracy by ensuring that retrieved reports contain disease-relevant findings similar to those in the X-ray images and by refining generated reports. In this study, we propose a Disease-aware image-text Alignment and self-correcting Re-alignment for Trustworthy radiology report generation (DART) framework. In the first stage, we generate initial reports based on image-to-text retrieval with disease-matching, embedding both images and texts in a shared embedding space through contrastive learning. This approach ensures the retrieval of reports with similar disease-relevant findings that closely align with the input X-ray images. In the second stage, we further enhance the initial reports by introducing a self-correction module that re-aligns them with the X-ray images. Our proposed framework achieves state-of-the-art results on two widely used benchmarks, surpassing previous approaches in both report generation and clinical efficacy metrics, thereby enhancing the trustworthiness of radiology reports.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
ACMamba: Fast Unsupervised Anomaly Detection via An Asymmetrical Consensus State Space Model
Unsupervised anomaly detection in hyperspectral images (HSI), aiming to detect unknown targets from backgrounds, is challenging for earth surface monitoring. However, current studies are hindered by steep computational costs due to the high-dimensional property of HSI and dense sampling-based training paradigm, constraining their rapid deployment. Our key observation is that, during training, not all samples within the same homogeneous area are indispensable, whereas ingenious sampling can provide a powerful substitute for reducing costs. Motivated by this, we propose an Asymmetrical Consensus State Space Model (ACMamba) to significantly reduce computational costs without compromising accuracy. Specifically, we design an asymmetrical anomaly detection paradigm that utilizes region-level instances as an efficient alternative to dense pixel-level samples. In this paradigm, a low-cost Mamba-based module is introduced to discover global contextual attributes of regions that are essential for HSI reconstruction. Additionally, we develop a consensus learning strategy from the optimization perspective to simultaneously facilitate background reconstruction and anomaly compression, further alleviating the negative impact of anomaly reconstruction. Theoretical analysis and extensive experiments across eight benchmarks verify the superiority of ACMamba, demonstrating a faster speed and stronger performance over the state-of-the-art.
comment: 15 pages, 9 figures
Multimodal Spatio-temporal Graph Learning for Alignment-free RGBT Video Object Detection
RGB-Thermal Video Object Detection (RGBT VOD) can address the limitation of traditional RGB-based VOD in challenging lighting conditions, making it more practical and effective in many applications. However, similar to most RGBT fusion tasks, it still mainly relies on manually aligned multimodal image pairs. In this paper, we propose a novel Multimodal Spatio-temporal Graph learning Network (MSGNet) for alignment-free RGBT VOD problem by leveraging the robust graph representation learning model. Specifically, we first design an Adaptive Partitioning Layer (APL) to estimate the corresponding regions of the Thermal image within the RGB image (high-resolution), achieving a preliminary inexact alignment. Then, we introduce the Spatial Sparse Graph Learning Module (S-SGLM) which employs a sparse information passing mechanism on the estimated inexact alignment to achieve reliable information interaction between different modalities. Moreover, to fully exploit the temporal cues for RGBT VOD problem, we introduce Hybrid Structured Temporal Modeling (HSTM), which involves a Temporal Sparse Graph Learning Module (T-SGLM) and Temporal Star Block (TSB). T-SGLM aims to filter out some redundant information between adjacent frames by employing the sparse aggregation mechanism on the temporal graph. Meanwhile, TSB is dedicated to achieving the complementary learning of local spatial relationships. Extensive comparative experiments conducted on both the aligned dataset VT-VOD50 and the unaligned dataset UVT-VOD2024 demonstrate the effectiveness and superiority of our proposed method. Our project will be made available on our website for free public access.
Bridging the Semantic Gaps: Improving Medical VQA Consistency with LLM-Augmented Question Sets
Medical Visual Question Answering (MVQA) systems can interpret medical images in response to natural language queries. However, linguistic variability in question phrasing often undermines the consistency of these systems. To address this challenge, we propose a Semantically Equivalent Question Augmentation (SEQA) framework, which leverages large language models (LLMs) to generate diverse yet semantically equivalent rephrasings of questions. Specifically, this approach enriches linguistic diversity while preserving semantic meaning. We further introduce an evaluation metric, Total Agreement Rate with Semantically Equivalent Input and Correct Answer (TAR-SC), which assesses a model's capability to generate consistent and correct responses to semantically equivalent linguistic variations. In addition, we also propose three other diversity metrics - average number of QA items per image (ANQI), average number of questions per image with the same answer (ANQA), and average number of open-ended questions per image with the same semantics (ANQS). Using the SEQA framework, we augmented the benchmarked MVQA public datasets of SLAKE, VQA-RAD, and PathVQA. As a result, all three datasets achieved significant improvements by incorporating more semantically equivalent questions: ANQI increased by an average of 86.1, ANQA by 85.1, and ANQS by 46. Subsequent experiments evaluate three MVQA models (M2I2, MUMC, and BiomedGPT) under both zero-shot and fine-tuning settings on the enhanced datasets. Experimental results in MVQA datasets show that fine-tuned models achieve an average accuracy improvement of 19.35%, while our proposed TAR-SC metric shows an average improvement of 11. 61%, indicating a substantial enhancement in model consistency.
comment: The first two listed authors contributed equally to this work
TacoDepth: Towards Efficient Radar-Camera Depth Estimation with One-stage Fusion CVPR 2025
Radar-Camera depth estimation aims to predict dense and accurate metric depth by fusing input images and Radar data. Model efficiency is crucial for this task in pursuit of real-time processing on autonomous vehicles and robotic platforms. However, due to the sparsity of Radar returns, the prevailing methods adopt multi-stage frameworks with intermediate quasi-dense depth, which are time-consuming and not robust. To address these challenges, we propose TacoDepth, an efficient and accurate Radar-Camera depth estimation model with one-stage fusion. Specifically, the graph-based Radar structure extractor and the pyramid-based Radar fusion module are designed to capture and integrate the graph structures of Radar point clouds, delivering superior model efficiency and robustness without relying on the intermediate depth results. Moreover, TacoDepth can be flexible for different inference modes, providing a better balance of speed and accuracy. Extensive experiments are conducted to demonstrate the efficacy of our method. Compared with the previous state-of-the-art approach, TacoDepth improves depth accuracy and processing speed by 12.8% and 91.8%. Our work provides a new perspective on efficient Radar-Camera depth estimation.
comment: Accepted by CVPR 2025 (Oral Presentation)
Extended Short- and Long-Range Mesh Learning for Fast and Generalized Garment Simulation
3D garment simulation is a critical component for producing cloth-based graphics. Recent advancements in graph neural networks (GNNs) offer a promising approach for efficient garment simulation. However, GNNs require extensive message-passing to propagate information such as physical forces and maintain contact awareness across the entire garment mesh, which becomes computationally inefficient at higher resolutions. To address this, we devise a novel GNN-based mesh learning framework with two key components to extend the message-passing range with minimal overhead, namely the Laplacian-Smoothed Dual Message-Passing (LSDMP) and the Geodesic Self-Attention (GSA) modules. LSDMP enhances message-passing with a Laplacian features smoothing process, which efficiently propagates the impact of each vertex to nearby vertices. Concurrently, GSA introduces geodesic distance embeddings to represent the spatial relationship between vertices and utilises attention mechanisms to capture global mesh information. The two modules operate in parallel to ensure both short- and long-range mesh modelling. Extensive experiments demonstrate the state-of-the-art performance of our method, requiring fewer layers and lower inference latency.
GrabS: Generative Embodied Agent for 3D Object Segmentation without Scene Supervision ICLR 2025
We study the hard problem of 3D object segmentation in complex point clouds without requiring human labels of 3D scenes for supervision. By relying on the similarity of pretrained 2D features or external signals such as motion to group 3D points as objects, existing unsupervised methods are usually limited to identifying simple objects like cars or their segmented objects are often inferior due to the lack of objectness in pretrained features. In this paper, we propose a new two-stage pipeline called GrabS. The core concept of our method is to learn generative and discriminative object-centric priors as a foundation from object datasets in the first stage, and then design an embodied agent to learn to discover multiple objects by querying against the pretrained generative priors in the second stage. We extensively evaluate our method on two real-world datasets and a newly created synthetic dataset, demonstrating remarkable segmentation performance, clearly surpassing all existing unsupervised methods.
comment: ICLR 2025 Spotlight. Code and data are available at: https://github.com/vLAR-group/GrabS
SkeletonX: Data-Efficient Skeleton-based Action Recognition via Cross-sample Feature Aggregation
While current skeleton action recognition models demonstrate impressive performance on large-scale datasets, their adaptation to new application scenarios remains challenging. These challenges are particularly pronounced when facing new action categories, diverse performers, and varied skeleton layouts, leading to significant performance degeneration. Additionally, the high cost and difficulty of collecting skeleton data make large-scale data collection impractical. This paper studies one-shot and limited-scale learning settings to enable efficient adaptation with minimal data. Existing approaches often overlook the rich mutual information between labeled samples, resulting in sub-optimal performance in low-data scenarios. To boost the utility of labeled data, we identify the variability among performers and the commonality within each action as two key attributes. We present SkeletonX, a lightweight training pipeline that integrates seamlessly with existing GCN-based skeleton action recognizers, promoting effective training under limited labeled data. First, we propose a tailored sample pair construction strategy on two key attributes to form and aggregate sample pairs. Next, we develop a concise and effective feature aggregation module to process these pairs. Extensive experiments are conducted on NTU RGB+D, NTU RGB+D 120, and PKU-MMD with various GCN backbones, demonstrating that the pipeline effectively improves performance when trained from scratch with limited data. Moreover, it surpasses previous state-of-the-art methods in the one-shot setting, with only 1/10 of the parameters and much fewer FLOPs. The code and data are available at: https://github.com/zzysteve/SkeletonX
comment: Accepted by IEEE Transactions on Multimedia (TMM). 13 pages, 7 figures, 11 tables
The Devil is in the Prompts: Retrieval-Augmented Prompt Optimization for Text-to-Video Generation CVPR2025
The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce \textbf{RAPO}, a novel \textbf{R}etrieval-\textbf{A}ugmented \textbf{P}rompt \textbf{O}ptimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts. Project website: \href{https://whynothaha.github.io/Prompt_optimizer/RAPO.html}{GitHub}.
comment: accepted by CVPR2025
Recent Advance in 3D Object and Scene Generation: A Survey
In recent years, the demand for 3D content has grown exponentially with intelligent upgrading of interactive media, extended reality (XR), and Metaverse industries. In order to overcome the limitation of traditional manual modeling approaches, such as labor-intensive workflows and prolonged production cycles, revolutionary advances have been achieved through the convergence of novel 3D representation paradigms and artificial intelligence generative technologies. In this survey, we conduct a systematically review of the cutting-edge achievements in static 3D object and scene generation, as well as establish a comprehensive technical framework through systematic categorization. Specifically, we initiate our analysis with mainstream 3D object representations, followed by in-depth exploration of two principal technical pathways in object generation: data-driven supervised learning methods and deep generative model-based approaches. Regarding scene generation, we focus on three dominant paradigms: layout-guided compositional synthesis, 2D prior-based scene generation, and rule-driven modeling. Finally, we critically examine persistent challenges in 3D generation and propose potential research directions for future investigation. This survey aims to provide readers with a structured understanding of state-of-the-art 3D generation technologies while inspiring researchers to undertake more exploration in this domain.
comment: 34 pages, 6 figures
DVLTA-VQA: Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment
Inspired by the dual-stream theory of the human visual system (HVS) - where the ventral stream is responsible for object recognition and detail analysis, while the dorsal stream focuses on spatial relationships and motion perception - an increasing number of video quality assessment (VQA) works built upon this framework are proposed. Recent advancements in large multi-modal models, notably Contrastive Language-Image Pretraining (CLIP), have motivated researchers to incorporate CLIP into dual-stream-based VQA methods. This integration aims to harness the model's superior semantic understanding capabilities to replicate the object recognition and detail analysis in ventral stream, as well as spatial relationship analysis in dorsal stream. However, CLIP is originally designed for images and lacks the ability to capture temporal and motion information inherent in videos. %Furthermore, existing feature fusion strategies in no-reference video quality assessment (NR-VQA) often rely on fixed weighting schemes, which fail to adaptively adjust feature importance. To address the limitation, this paper propose a Decoupled Vision-Language Modeling with Text-Guided Adaptation for Blind Video Quality Assessment (DVLTA-VQA), which decouples CLIP's visual and textual components, and integrates them into different stages of the NR-VQA pipeline.
EgoExo-Gen: Ego-centric Video Prediction by Watching Exo-centric Videos ICLR 2025
Generating videos in the first-person perspective has broad application prospects in the field of augmented reality and embodied intelligence. In this work, we explore the cross-view video prediction task, where given an exo-centric video, the first frame of the corresponding ego-centric video, and textual instructions, the goal is to generate futur frames of the ego-centric video. Inspired by the notion that hand-object interactions (HOI) in ego-centric videos represent the primary intentions and actions of the current actor, we present EgoExo-Gen that explicitly models the hand-object dynamics for cross-view video prediction. EgoExo-Gen consists of two stages. First, we design a cross-view HOI mask prediction model that anticipates the HOI masks in future ego-frames by modeling the spatio-temporal ego-exo correspondence. Next, we employ a video diffusion model to predict future ego-frames using the first ego-frame and textual instructions, while incorporating the HOI masks as structural guidance to enhance prediction quality. To facilitate training, we develop an automated pipeline to generate pseudo HOI masks for both ego- and exo-videos by exploiting vision foundation models. Extensive experiments demonstrate that our proposed EgoExo-Gen achieves better prediction performance compared to previous video prediction models on the Ego-Exo4D and H2O benchmark datasets, with the HOI masks significantly improving the generation of hands and interactive objects in the ego-centric videos.
comment: ICLR 2025
Towards Safe Synthetic Image Generation On the Web: A Multimodal Robust NSFW Defense and Million Scale Dataset
In the past years, we have witnessed the remarkable success of Text-to-Image (T2I) models and their widespread use on the web. Extensive research in making T2I models produce hyper-realistic images has led to new concerns, such as generating Not-Safe-For-Work (NSFW) web content and polluting the web society. To help prevent misuse of T2I models and create a safer web environment for users features like NSFW filters and post-hoc security checks are used in these models. However, recent work unveiled how these methods can easily fail to prevent misuse. In particular, adversarial attacks on text and image modalities can easily outplay defensive measures. %Exploiting such leads to the growing concern of preventing adversarial attacks on text and image modalities. Moreover, there is currently no robust multimodal NSFW dataset that includes both prompt and image pairs and adversarial examples. This work proposes a million-scale prompt and image dataset generated using open-source diffusion models. Second, we develop a multimodal defense to distinguish safe and NSFW text and images, which is robust against adversarial attacks and directly alleviates current challenges. Our extensive experiments show that our model performs well against existing SOTA NSFW detection methods in terms of accuracy and recall, drastically reducing the Attack Success Rate (ASR) in multimodal adversarial attack scenarios. Code: https://github.com/shahidmuneer/multimodal-nsfw-defense.
comment: Short Paper The Web Conference
Learning What NOT to Count
Few/zero-shot object counting methods reduce the need for extensive annotations but often struggle to distinguish between fine-grained categories, especially when multiple similar objects appear in the same scene. To address this limitation, we propose an annotation-free approach that enables the seamless integration of new fine-grained categories into existing few/zero-shot counting models. By leveraging latent generative models, we synthesize high-quality, category-specific crowded scenes, providing a rich training source for adapting to new categories without manual labeling. Our approach introduces an attention prediction network that identifies fine-grained category boundaries trained using only synthetic pseudo-annotated data. At inference, these fine-grained attention estimates refine the output of existing few/zero-shot counting networks. To benchmark our method, we further introduce the FGTC dataset, a taxonomy-specific fine-grained object counting dataset for natural images. Our method substantially enhances pre-trained state-of-the-art models on fine-grained taxon counting tasks, while using only synthetic data. Code and data to be released upon acceptance.
Non-uniform Point Cloud Upsampling via Local Manifold Distribution
Existing learning-based point cloud upsampling methods often overlook the intrinsic data distribution charac?teristics of point clouds, leading to suboptimal results when handling sparse and non-uniform point clouds. We propose a novel approach to point cloud upsampling by imposing constraints from the perspective of manifold distributions. Leveraging the strong fitting capability of Gaussian functions, our method employs a network to iteratively optimize Gaussian components and their weights, accurately representing local manifolds. By utilizing the probabilistic distribution properties of Gaussian functions, we construct a unified statistical manifold to impose distribution constraints on the point cloud. Experimental results on multiple datasets demonstrate that our method generates higher-quality and more uniformly distributed dense point clouds when processing sparse and non-uniform inputs, outperforming state-of-the-art point cloud upsampling techniques.
An Online Adaptation Method for Robust Depth Estimation and Visual Odometry in the Open World
Recently, learning-based robotic navigation systems have gained extensive research attention and made significant progress. However, the diversity of open-world scenarios poses a major challenge for the generalization of such systems to practical scenarios. Specifically, learned systems for scene measurement and state estimation tend to degrade when the application scenarios deviate from the training data, resulting to unreliable depth and pose estimation. Toward addressing this problem, this work aims to develop a visual odometry system that can fast adapt to diverse novel environments in an online manner. To this end, we construct a self-supervised online adaptation framework for monocular visual odometry aided by an online-updated depth estimation module. Firstly, we design a monocular depth estimation network with lightweight refiner modules, which enables efficient online adaptation. Then, we construct an objective for self-supervised learning of the depth estimation module based on the output of the visual odometry system and the contextual semantic information of the scene. Specifically, a sparse depth densification module and a dynamic consistency enhancement module are proposed to leverage camera poses and contextual semantics to generate pseudo-depths and valid masks for the online adaptation. Finally, we demonstrate the robustness and generalization capability of the proposed method in comparison with state-of-the-art learning-based approaches on urban, in-house datasets and a robot platform. Code is publicly available at: https://github.com/jixingwu/SOL-SLAM.
comment: 11 pages, 14 figures
Interpreting the Linear Structure of Vision-language Model Embedding Spaces
Vision-language models encode images and text in a joint space, minimizing the distance between corresponding image and text pairs. How are language and images organized in this joint space, and how do the models encode meaning and modality? To investigate this, we train and release sparse autoencoders (SAEs) on the embedding spaces of four vision-language models (CLIP, SigLIP, SigLIP2, and AIMv2). SAEs approximate model embeddings as sparse linear combinations of learned directions, or "concepts". We find that, compared to other methods of linear feature learning, SAEs are better at reconstructing the real embeddings, while also able to retain the most sparsity. Retraining SAEs with different seeds or different data diet leads to two findings: the rare, specific concepts captured by the SAEs are liable to change drastically, but we also show that the key commonly-activating concepts extracted by SAEs are remarkably stable across runs. Interestingly, while most concepts are strongly unimodal in activation, we find they are not merely encoding modality per se. Many lie close to - but not entirely within - the subspace defining modality, suggesting that they encode cross-modal semantics despite their unimodal usage. To quantify this bridging behavior, we introduce the Bridge Score, a metric that identifies concept pairs which are both co-activated across aligned image-text inputs and geometrically aligned in the shared space. This reveals that even unimodal concepts can collaborate to support cross-modal integration. We release interactive demos of the SAEs for all models, allowing researchers to explore the organization of the concept spaces. Overall, our findings uncover a sparse linear structure within VLM embedding spaces that is shaped by modality, yet stitched together through latent bridges-offering new insight into how multimodal meaning is constructed.
Diffusion Distillation With Direct Preference Optimization For Efficient 3D LiDAR Scene Completion
The application of diffusion models in 3D LiDAR scene completion is limited due to diffusion's slow sampling speed. Score distillation accelerates diffusion sampling but with performance degradation, while post-training with direct policy optimization (DPO) boosts performance using preference data. This paper proposes Distillation-DPO, a novel diffusion distillation framework for LiDAR scene completion with preference aligment. First, the student model generates paired completion scenes with different initial noises. Second, using LiDAR scene evaluation metrics as preference, we construct winning and losing sample pairs. Such construction is reasonable, since most LiDAR scene metrics are informative but non-differentiable to be optimized directly. Third, Distillation-DPO optimizes the student model by exploiting the difference in score functions between the teacher and student models on the paired completion scenes. Such procedure is repeated until convergence. Extensive experiments demonstrate that, compared to state-of-the-art LiDAR scene completion diffusion models, Distillation-DPO achieves higher-quality scene completion while accelerating the completion speed by more than 5-fold. Our method is the first to explore adopting preference learning in distillation to the best of our knowledge and provide insights into preference-aligned distillation. Our code is public available on https://github.com/happyw1nd/DistillationDPO.
comment: Our code is public available on https://github.com/happyw1nd/DistillationDPO
DeepWheel: Generating a 3D Synthetic Wheel Dataset for Design and Performance Evaluation
Data-driven design is emerging as a powerful strategy to accelerate engineering innovation. However, its application to vehicle wheel design remains limited due to the lack of large-scale, high-quality datasets that include 3D geometry and physical performance metrics. To address this gap, this study proposes a synthetic design-performance dataset generation framework using generative AI. The proposed framework first generates 2D rendered images using Stable Diffusion, and then reconstructs the 3D geometry through 2.5D depth estimation. Structural simulations are subsequently performed to extract engineering performance data. To further expand the design and performance space, topology optimization is applied, enabling the generation of a more diverse set of wheel designs. The final dataset, named DeepWheel, consists of over 6,000 photo-realistic images and 900 structurally analyzed 3D models. This multi-modal dataset serves as a valuable resource for surrogate model training, data-driven inverse design, and design space exploration. The proposed methodology is also applicable to other complex design domains. The dataset is released under the Creative Commons Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) and is available on the https://www.smartdesignlab.org/datasets
comment: 28 pages, 18 figures. Not yet submitted to a journal or conference
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
3DAffordSplat: Efficient Affordance Reasoning with 3D Gaussians
3D affordance reasoning is essential in associating human instructions with the functional regions of 3D objects, facilitating precise, task-oriented manipulations in embodied AI. However, current methods, which predominantly depend on sparse 3D point clouds, exhibit limited generalizability and robustness due to their sensitivity to coordinate variations and the inherent sparsity of the data. By contrast, 3D Gaussian Splatting (3DGS) delivers high-fidelity, real-time rendering with minimal computational overhead by representing scenes as dense, continuous distributions. This positions 3DGS as a highly effective approach for capturing fine-grained affordance details and improving recognition accuracy. Nevertheless, its full potential remains largely untapped due to the absence of large-scale, 3DGS-specific affordance datasets. To overcome these limitations, we present 3DAffordSplat, the first large-scale, multi-modal dataset tailored for 3DGS-based affordance reasoning. This dataset includes 23,677 Gaussian instances, 8,354 point cloud instances, and 6,631 manually annotated affordance labels, encompassing 21 object categories and 18 affordance types. Building upon this dataset, we introduce AffordSplatNet, a novel model specifically designed for affordance reasoning using 3DGS representations. AffordSplatNet features an innovative cross-modal structure alignment module that exploits structural consistency priors to align 3D point cloud and 3DGS representations, resulting in enhanced affordance recognition accuracy. Extensive experiments demonstrate that the 3DAffordSplat dataset significantly advances affordance learning within the 3DGS domain, while AffordSplatNet consistently outperforms existing methods across both seen and unseen settings, highlighting its robust generalization capabilities.
comment: The first large-scale 3D Gaussians Affordance Reasoning Benchmark
Consensus Entropy: Harnessing Multi-VLM Agreement for Self-Verifying and Self-Improving OCR
The Optical Character Recognition (OCR) task is important for evaluating Vision-Language Models (VLMs) and providing high-quality data sources for LLM training data. While state-of-the-art VLMs show improved average OCR accuracy, they still struggle with sample-level quality degradation and lack reliable automatic detection of low-quality outputs. We introduce Consensus Entropy (CE), a training-free post-inference method that quantifies OCR uncertainty by aggregating outputs from multiple VLMs. Our approach exploits a key insight: correct VLM OCR predictions converge in output space while errors diverge. We develop a lightweight multi-model framework that effectively identifies problematic samples, selects the best outputs and combines model strengths. Experiments across multiple OCR benchmarks and VLMs demonstrate that CE outperforms VLM-as-judge approaches and single-model baselines at the same cost and achieves state-of-the-art results across multiple metrics. For instance, our solution demonstrates: achieving 15.2% higher F1 scores than VLM-as-judge methods in quality verification, delivering 6.0% accuracy gains on mathematical calculation tasks, and requiring rephrasing only 7.3% of inputs while maintaining overall performance. Notably, the entire process requires neither training nor supervision while maintaining plug-and-play functionality throughout.
GATE3D: Generalized Attention-based Task-synergized Estimation in 3D*
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: 9pages, 1 supple
Fine-Grained Rib Fracture Diagnosis with Hyperbolic Embeddings: A Detailed Annotation Framework and Multi-Label Classification Model
Accurate rib fracture identification and classification are essential for treatment planning. However, existing datasets often lack fine-grained annotations, particularly regarding rib fracture characterization, type, and precise anatomical location on individual ribs. To address this, we introduce a novel rib fracture annotation protocol tailored for fracture classification. Further, we enhance fracture classification by leveraging cross-modal embeddings that bridge radiological images and clinical descriptions. Our approach employs hyperbolic embeddings to capture the hierarchical nature of fracture, mapping visual features and textual descriptions into a shared non-Euclidean manifold. This framework enables more nuanced similarity computations between imaging characteristics and clinical descriptions, accounting for the inherent hierarchical relationships in fracture taxonomy. Experimental results demonstrate that our approach outperforms existing methods across multiple classification tasks, with average recall improvements of 6% on the AirRib dataset and 17.5% on the public RibFrac dataset.
Taming Data and Transformers for Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation
Parameter-Efficient Fine-Tuning (PEFT) is a technique that allows us to adapt powerful Foundation Models (FMs) to diverse downstream tasks while preserving and unleashing their inherent capabilities. However, we have observed that existing PEFT methods, which are often designed with natural imagery in mind, struggle when applied to Remote Sensing (RS) scenarios. This is primarily due to their inability to handle artifact influences, a problem particularly severe in RS image features. To tackle this challenge, we introduce Earth-Adapter, the first PEFT method specifically designed for RS artifacts conquering. Earth-Adapter introduces a novel Mixture of Frequency Adaptation process that combines a Mixture of Adapter (MoA) with Discrete Fourier Transformation (DFT). By utilizing DFT, Earth-Adapter can decompose features into different frequency components, precisely separating artifacts from original features. The MoA then dynamically assigns weights to each adapter expert, allowing for the combination of features across various frequency domains. These simple-yet-effective approaches enable Earth-Adapter to more efficiently overcome the disturbances caused by artifacts than previous PEFT methods, significantly enhancing the FMs' performance on RS scenarios. Experiments on Domain Adaptation (DA), and Domain Generalization (DG) semantic segmentation benchmarks showcase the Earth-Adapter's effectiveness. Compared with baseline Rein, Earth-Adapter significantly improves 9.0% mIoU in DA and 3.1% mIoU in DG benchmarks. Our code will be released at https://github.com/VisionXLab/Earth-Adapter.
KMM: Key Frame Mask Mamba for Extended Motion Generation
Human motion generation is a cut-edge area of research in generative computer vision, with promising applications in video creation, game development, and robotic manipulation. The recent Mamba architecture shows promising results in efficiently modeling long and complex sequences, yet two significant challenges remain: Firstly, directly applying Mamba to extended motion generation is ineffective, as the limited capacity of the implicit memory leads to memory decay. Secondly, Mamba struggles with multimodal fusion compared to Transformers, and lack alignment with textual queries, often confusing directions (left or right) or omitting parts of longer text queries. To address these challenges, our paper presents three key contributions: Firstly, we introduce KMM, a novel architecture featuring Key frame Masking Modeling, designed to enhance Mamba's focus on key actions in motion segments. This approach addresses the memory decay problem and represents a pioneering method in customizing strategic frame-level masking in SSMs. Additionally, we designed a contrastive learning paradigm for addressing the multimodal fusion problem in Mamba and improving the motion-text alignment. Finally, we conducted extensive experiments on the go-to dataset, BABEL, achieving state-of-the-art performance with a reduction of more than 57% in FID and 70% parameters compared to previous state-of-the-art methods. See project website: https://steve-zeyu-zhang.github.io/KMM
Seedream 3.0 Technical Report
We present Seedream 3.0, a high-performance Chinese-English bilingual image generation foundation model. We develop several technical improvements to address existing challenges in Seedream 2.0, including alignment with complicated prompts, fine-grained typography generation, suboptimal visual aesthetics and fidelity, and limited image resolutions. Specifically, the advancements of Seedream 3.0 stem from improvements across the entire pipeline, from data construction to model deployment. At the data stratum, we double the dataset using a defect-aware training paradigm and a dual-axis collaborative data-sampling framework. Furthermore, we adopt several effective techniques such as mixed-resolution training, cross-modality RoPE, representation alignment loss, and resolution-aware timestep sampling in the pre-training phase. During the post-training stage, we utilize diversified aesthetic captions in SFT, and a VLM-based reward model with scaling, thereby achieving outputs that well align with human preferences. Furthermore, Seedream 3.0 pioneers a novel acceleration paradigm. By employing consistent noise expectation and importance-aware timestep sampling, we achieve a 4 to 8 times speedup while maintaining image quality. Seedream 3.0 demonstrates significant improvements over Seedream 2.0: it enhances overall capabilities, in particular for text-rendering in complicated Chinese characters which is important to professional typography generation. In addition, it provides native high-resolution output (up to 2K), allowing it to generate images with high visual quality.
comment: Seedream 3.0 Technical Report
Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models
A significant portion of roads, particularly in densely populated developing countries, lacks explicitly defined right-of-way rules. These understructured roads pose substantial challenges for autonomous vehicle motion planning, where efficient and safe navigation relies on understanding decentralized human coordination for collision avoidance. This coordination, often termed "social driving etiquette," remains underexplored due to limited open-source empirical data and suitable modeling frameworks. In this paper, we present a novel dataset and modeling framework designed to study motion planning in these understructured environments. The dataset includes 20 aerial videos of representative scenarios, an image dataset for training vehicle detection models, and a development kit for vehicle trajectory estimation. We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset, and is therefore a viable framework for decentralized collision avoidance planning.
comment: 7 pages, 7 figures, 1 table
MMCLIP: Cross-modal Attention Masked Modelling for Medical Language-Image Pre-Training
Vision-and-language pretraining (VLP) in the medical field utilizes contrastive learning on image-text pairs to achieve effective transfer across tasks. Yet, current VLP approaches with the masked modeling strategy face two challenges when applied to the medical domain. First, current models struggle to accurately reconstruct key pathological features due to the scarcity of medical data. Second, most methods only adopt either paired image-text or image-only data, failing to exploit the combination of both paired and unpaired data. To this end, this paper proposes the MMCLIP (Masked Medical Contrastive Language-Image Pre-Training) framework to enhance pathological learning and feature learning via unpaired data. First, we introduce the attention-masked image modeling (AttMIM) and entity-driven masked language modeling module (EntMLM), which learns to reconstruct pathological visual and textual tokens via multi-modal feature interaction, thus improving medical-enhanced features. The AttMIM module masks a portion of the image features that are highly responsive to textual features. This allows MMCLIP to improve the reconstruction of highly similar image data in medicine efficiency. Second, our MMCLIP capitalizes unpaired data to enhance multimodal learning by introducing disease-kind prompts. The experimental results show that MMCLIP achieves SOTA for zero-shot and fine-tuning classification performance on five datasets. Our code will be available at https://github.com/AIGeeksGroup/MMCLIP.
Self-Supervised Enhancement of Forward-Looking Sonar Images: Bridging Cross-Modal Degradation Gaps through Feature Space Transformation and Multi-Frame Fusion
Enhancing forward-looking sonar images is critical for accurate underwater target detection. Current deep learning methods mainly rely on supervised training with simulated data, but the difficulty in obtaining high-quality real-world paired data limits their practical use and generalization. Although self-supervised approaches from remote sensing partially alleviate data shortages, they neglect the cross-modal degradation gap between sonar and remote sensing images. Directly transferring pretrained weights often leads to overly smooth sonar images, detail loss, and insufficient brightness. To address this, we propose a feature-space transformation that maps sonar images from the pixel domain to a robust feature domain, effectively bridging the degradation gap. Additionally, our self-supervised multi-frame fusion strategy leverages complementary inter-frame information to naturally remove speckle noise and enhance target-region brightness. Experiments on three self-collected real-world forward-looking sonar datasets show that our method significantly outperforms existing approaches, effectively suppressing noise, preserving detailed edges, and substantially improving brightness, demonstrating strong potential for underwater target detection applications.
A Semi-Self-Supervised Approach for Dense-Pattern Video Object Segmentation
Video object segmentation (VOS) -- predicting pixel-level regions for objects within each frame of a video -- is particularly challenging in agricultural scenarios, where videos of crops include hundreds of small, dense, and occluded objects (stems, leaves, flowers, pods) that sway and move unpredictably in the wind. Supervised training is the state-of-the-art for VOS, but it requires large, pixel-accurate, human-annotated videos, which are costly to produce for videos with many densely packed objects in each frame. To address these challenges, we proposed a semi-self-supervised spatiotemporal approach for dense-VOS (DVOS) using a diffusion-based method through multi-task (reconstruction and segmentation) learning. We train the model first with synthetic data that mimics the camera and object motion of real videos and then with pseudo-labeled videos. We evaluate our DVOS method for wheat head segmentation from a diverse set of videos (handheld, drone-captured, different field locations, and different growth stages -- spanning from Boot-stage to Wheat-mature and Harvest-ready). Despite using only a few manually annotated video frames, the proposed approach yielded a high-performing model, achieving a Dice score of 0.79 when tested on a drone-captured external test set. While our method was evaluated on wheat head segmentation, it can be extended to other crops and domains, such as crowd analysis or microscopic image analysis.
SpiritSight Agent: Advanced GUI Agent with One Look CVPR 2025
Graphical User Interface (GUI) agents show amazing abilities in assisting human-computer interaction, automating human user's navigation on digital devices. An ideal GUI agent is expected to achieve high accuracy, low latency, and compatibility for different GUI platforms. Recent vision-based approaches have shown promise by leveraging advanced Vision Language Models (VLMs). While they generally meet the requirements of compatibility and low latency, these vision-based GUI agents tend to have low accuracy due to their limitations in element grounding. To address this issue, we propose $\textbf{SpiritSight}$, a vision-based, end-to-end GUI agent that excels in GUI navigation tasks across various GUI platforms. First, we create a multi-level, large-scale, high-quality GUI dataset called $\textbf{GUI-Lasagne}$ using scalable methods, empowering SpiritSight with robust GUI understanding and grounding capabilities. Second, we introduce the $\textbf{Universal Block Parsing (UBP)}$ method to resolve the ambiguity problem in dynamic high-resolution of visual inputs, further enhancing SpiritSight's ability to ground GUI objects. Through these efforts, SpiritSight agent outperforms other advanced methods on diverse GUI benchmarks, demonstrating its superior capability and compatibility in GUI navigation tasks. Models and datasets are available at https://hzhiyuan.github.io/SpiritSight-Agent.
comment: Paper accepted to CVPR 2025
InfoNCE: Identifying the Gap Between Theory and Practice
Prior theory work on Contrastive Learning via the InfoNCE loss showed that, under certain assumptions, the learned representations recover the ground-truth latent factors. We argue that these theories overlook crucial aspects of how CL is deployed in practice. Specifically, they either assume equal variance across all latents or that certain latents are kept invariant. However, in practice, positive pairs are often generated using augmentations such as strong cropping to just a few pixels. Hence, a more realistic assumption is that all latent factors change with a continuum of variability across all factors. We introduce AnInfoNCE, a generalization of InfoNCE that can provably uncover the latent factors in this anisotropic setting, broadly generalizing previous identifiability results in CL. We validate our identifiability results in controlled experiments and show that AnInfoNCE increases the recovery of previously collapsed information in CIFAR10 and ImageNet, albeit at the cost of downstream accuracy. Finally, we discuss the remaining mismatches between theoretical assumptions and practical implementations.
Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: accepted version in Radiology: Artificial Intelligence. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: https://pubs.rsna.org/page/ai/author-instructions, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
Strategic Client Selection to Address Non-IIDness in HAPS-enabled FL Networks
The deployment of federated learning (FL) in non-terrestrial networks (NTN) that are supported by high-altitude platform stations (HAPS) offers numerous advantages. Due to its large footprint, it facilitates interaction with a large number of line-of-sight (LoS) ground clients, each possessing diverse datasets along with distinct communication and computational capabilities. The presence of many clients enhances the accuracy of the FL model and speeds up convergence. However, the variety of datasets among these clients poses a significant challenge, as it leads to pervasive non-independent and identically distributed (non-IID) data. The data non-IIDness results in markedly reduced training accuracy and slower convergence rates. To address this issue, we propose a novel weighted attribute-based client selection strategy that leverages multiple user-specific attributes, including historical traffic patterns, instantaneous channel conditions, computational capabilities, and previous-round learning performance. By combining these attributes into a composite score for each user at every FL round and selecting users with higher scores as FL clients, the framework ensures more uniform and representative data distributions, effectively mitigating the adverse effects of non-IID data. Simulation results corroborate the effectiveness of the proposed client selection strategy in enhancing FL model accuracy and convergence rate, as well as reducing training loss, by effectively addressing the critical challenge of data non-IIDness in large-scale FL system implementations.
comment: Submitted to IEEE for possible publication
OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving with Counterfactual Reasoning
The advances in vision-language models (VLMs) have led to a growing interest in autonomous driving to leverage their strong reasoning capabilities. However, extending these capabilities from 2D to full 3D understanding is crucial for real-world applications. To address this challenge, we propose OmniDrive, a holistic vision-language dataset that aligns agent models with 3D driving tasks through counterfactual reasoning. This approach enhances decision-making by evaluating potential scenarios and their outcomes, similar to human drivers considering alternative actions. Our counterfactual-based synthetic data annotation process generates large-scale, high-quality datasets, providing denser supervision signals that bridge planning trajectories and language-based reasoning. Futher, we explore two advanced OmniDrive-Agent frameworks, namely Omni-L and Omni-Q, to assess the importance of vision-language alignment versus 3D perception, revealing critical insights into designing effective LLM-agents. Significant improvements on the DriveLM Q\&A benchmark and nuScenes open-loop planning demonstrate the effectiveness of our dataset and methods.
Exploring Self-supervised Skeleton-based Action Recognition in Occluded Environments IJCNN 2025
To integrate action recognition into autonomous robotic systems, it is essential to address challenges such as person occlusions-a common yet often overlooked scenario in existing self-supervised skeleton-based action recognition methods. In this work, we propose IosPSTL, a simple and effective self-supervised learning framework designed to handle occlusions. IosPSTL combines a cluster-agnostic KNN imputer with an Occluded Partial Spatio-Temporal Learning (OPSTL) strategy. First, we pre-train the model on occluded skeleton sequences. Then, we introduce a cluster-agnostic KNN imputer that performs semantic grouping using k-means clustering on sequence embeddings. It imputes missing skeleton data by applying K-Nearest Neighbors in the latent space, leveraging nearby sample representations to restore occluded joints. This imputation generates more complete skeleton sequences, which significantly benefits downstream self-supervised models. To further enhance learning, the OPSTL module incorporates Adaptive Spatial Masking (ASM) to make better use of intact, high-quality skeleton sequences during training. Our method achieves state-of-the-art performance on the occluded versions of the NTU-60 and NTU-120 datasets, demonstrating its robustness and effectiveness under challenging conditions. Code is available at https://github.com/cyfml/OPSTL.
comment: Accepted to IJCNN 2025. Code is available at https://github.com/cyfml/OPSTL
Cross-Modal Mapping: Mitigating the Modality Gap for Few-Shot Image Classification
Few-shot image classification remains a critical challenge in the field of computer vision, particularly in data-scarce environments. Existing methods typically rely on pre-trained visual-language models, such as CLIP. However, due to the modality gap, which is the inconsistent distribution of image and text features in the joint embedding space, directly using these features as class prototypes often leads to suboptimal performance. To address this issue, we propose a novel Cross-Modal Mapping (CMM) method. This method globally aligns image features with the text feature space through linear transformation and optimizes their local spatial relationships using triplet loss, thereby significantly enhancing cross-modal consistency. Experimental results show that compared to other methods, CMM simplifies the training process and demonstrates higher efficiency. Furthermore, CMM improves the average Top-1 accuracy by 1.06% on 11 benchmark datasets compared to methods that partially fine-tune the backbone, and it performs excellently on 4 distribution shift datasets. Notably, CMM effectively mitigates the modality gap in pre-trained models, enabling text features to serve as effective class prototypes for image features, thus providing an efficient and highly generalizable solution for few-shot learning.
StructRe: Rewriting for Structured Shape Modeling
Man-made 3D shapes are naturally organized in parts and hierarchies; such structures provide important constraints for shape reconstruction and generation. Modeling shape structures is difficult, because there can be multiple hierarchies for a given shape, causing ambiguity, and across different categories the shape structures are correlated with semantics, limiting generalization. We present StructRe, a structure rewriting system, as a novel approach to structured shape modeling. Given a 3D object represented by points and components, StructRe can rewrite it upward into more concise structures, or downward into more detailed structures; by iterating the rewriting process, hierarchies are obtained. Such a localized rewriting process enables probabilistic modeling of ambiguous structures and robust generalization across object categories. We train StructRe on PartNet data and show its generalization to cross-category and multiple object hierarchies, and test its extension to ShapeNet. We also demonstrate the benefits of probabilistic and generalizable structure modeling for shape reconstruction, generation and editing tasks.
comment: Our project page: https://jiepengwang.github.io/StructRe/
Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction
Document parsing is essential for converting unstructured and semi-structured documents such as contracts, academic papers, and invoices into structured, machine-readable data. Document parsing reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It outlines future research directions and emphasizes the importance of developing larger and more diverse datasets.
OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving with Counterfactual Reasoning
The advances in vision-language models (VLMs) have led to a growing interest in autonomous driving to leverage their strong reasoning capabilities. However, extending these capabilities from 2D to full 3D understanding is crucial for real-world applications. To address this challenge, we propose OmniDrive, a holistic vision-language dataset that aligns agent models with 3D driving tasks through counterfactual reasoning. This approach enhances decision-making by evaluating potential scenarios and their outcomes, similar to human drivers considering alternative actions. Our counterfactual-based synthetic data annotation process generates large-scale, high-quality datasets, providing denser supervision signals that bridge planning trajectories and language-based reasoning. Futher, we explore two advanced OmniDrive-Agent frameworks, namely Omni-L and Omni-Q, to assess the importance of vision-language alignment versus 3D perception, revealing critical insights into designing effective LLM-agents. Significant improvements on the DriveLM Q\&A benchmark and nuScenes open-loop planning demonstrate the effectiveness of our dataset and methods.
comment: Mistaken resubmission. The original version is at arXiv:2405.01533
GST: Precise 3D Human Body from a Single Image with Gaussian Splatting Transformers CVPR 2025
Reconstructing posed 3D human models from monocular images has important applications in the sports industry, including performance tracking, injury prevention and virtual training. In this work, we combine 3D human pose and shape estimation with 3D Gaussian Splatting (3DGS), a representation of the scene composed of a mixture of Gaussians. This allows training or fine-tuning a human model predictor on multi-view images alone, without 3D ground truth. Predicting such mixtures for a human from a single input image is challenging due to self-occlusions and dependence on articulations, while also needing to retain enough flexibility to accommodate a variety of clothes and poses. Our key observation is that the vertices of standardized human meshes (such as SMPL) can provide an adequate spatial density and approximate initial position for the Gaussians. We can then train a transformer model to jointly predict comparatively small adjustments to these positions, as well as the other 3DGS attributes and the SMPL parameters. We show empirically that this combination (using only multi-view supervision) can achieve near real-time inference of 3D human models from a single image without expensive diffusion models or 3D points supervision, thus making it ideal for the sport industry at any level. More importantly, rendering is an effective auxiliary objective to refine 3D pose estimation by accounting for clothes and other geometric variations. The code is available at https://github.com/prosperolo/GST.
comment: Camera ready for CVSports workshop at CVPR 2025
Collaborative Learning for Enhanced Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) endeavors to bridge the gap between a model trained on a labeled source domain and its deployment in an unlabeled target domain. However, current high-performance models demand significant resources, making deployment costs prohibitive and highlighting the need for compact, yet effective models. For UDA of lightweight models, Knowledge Distillation (KD) leveraging a Teacher-Student framework could be a common approach, but we found that domain shift in UDA leads to a significant increase in non-salient parameters in the teacher model, degrading model's generalization ability and transferring misleading information to the student model. Interestingly, we observed that this phenomenon occurs considerably less in the student model. Driven by this insight, we introduce Collaborative Learning for UDA (CLDA), a method that updates the teacher's non-salient parameters using the student model and at the same time utilizes the updated teacher model to improve UDA performance of the student model. Experiments show consistent performance improvements for both student and teacher models. For example, in semantic segmentation, CLDA achieves an improvement of +0.7% mIoU for the teacher model and +1.4% mIoU for the student model compared to the baseline model in the GTA-to-Cityscapes datasets. In the Synthia-to-Cityscapes dataset, it achieves an improvement of +0.8% mIoU and +2.0% mIoU for the teacher and student models, respectively.
Trajectory-guided Motion Perception for Facial Expression Quality Assessment in Neurological Disorders
Automated facial expression quality assessment (FEQA) in neurological disorders is critical for enhancing diagnostic accuracy and improving patient care, yet effectively capturing the subtle motions and nuances of facial muscle movements remains a challenge. We propose to analyse facial landmark trajectories, a compact yet informative representation, that encodes these subtle motions from a high-level structural perspective. Hence, we introduce Trajectory-guided Motion Perception Transformer (TraMP-Former), a novel FEQA framework that fuses landmark trajectory features for fine-grained motion capture with visual semantic cues from RGB frames, ultimately regressing the combined features into a quality score. Extensive experiments demonstrate that TraMP-Former achieves new state-of-the-art performance on benchmark datasets with neurological disorders, including PFED5 (up by 6.51%) and an augmented Toronto NeuroFace (up by 7.62%). Our ablation studies further validate the efficiency and effectiveness of landmark trajectories in FEQA. Our code is available at https://github.com/shuchaoduan/TraMP-Former.
comment: Accepted to IEEE FG 2025 (preprint)
reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis
This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at https://bigearth.net.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025. Our code is available at https://github.com/rsim-tu-berlin/bigearthnet-pipeline
StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V
comment: https://github.com/Picsart-AI-Research/StreamingT2V
WMNav: Integrating Vision-Language Models into World Models for Object Goal Navigation
Object Goal Navigation-requiring an agent to locate a specific object in an unseen environment-remains a core challenge in embodied AI. Although recent progress in Vision-Language Model (VLM)-based agents has demonstrated promising perception and decision-making abilities through prompting, none has yet established a fully modular world model design that reduces risky and costly interactions with the environment by predicting the future state of the world. We introduce WMNav, a novel World Model-based Navigation framework powered by Vision-Language Models (VLMs). It predicts possible outcomes of decisions and builds memories to provide feedback to the policy module. To retain the predicted state of the environment, WMNav proposes the online maintained Curiosity Value Map as part of the world model memory to provide dynamic configuration for navigation policy. By decomposing according to a human-like thinking process, WMNav effectively alleviates the impact of model hallucination by making decisions based on the feedback difference between the world model plan and observation. To further boost efficiency, we implement a two-stage action proposer strategy: broad exploration followed by precise localization. Extensive evaluation on HM3D and MP3D validates WMNav surpasses existing zero-shot benchmarks in both success rate and exploration efficiency (absolute improvement: +3.2% SR and +3.2% SPL on HM3D, +13.5% SR and +1.1% SPL on MP3D). Project page: https://b0b8k1ng.github.io/WMNav/.
comment: 8 pages, 5 figures
ADAPT: An Autonomous Forklift for Construction Site Operation
Efficient material logistics play a critical role in controlling costs and schedules in the construction industry. However, manual material handling remains prone to inefficiencies, delays, and safety risks. Autonomous forklifts offer a promising solution to streamline on-site logistics, reducing reliance on human operators and mitigating labor shortages. This paper presents the development and evaluation of ADAPT (Autonomous Dynamic All-terrain Pallet Transporter), a fully autonomous off-road forklift designed for construction environments. Unlike structured warehouse settings, construction sites pose significant challenges, including dynamic obstacles, unstructured terrain, and varying weather conditions. To address these challenges, our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control, enabling reliable operation in complex environments. We validate the system through extensive real-world testing, comparing its continuous performance against an experienced human operator across various weather conditions. Our findings demonstrate that autonomous outdoor forklifts can operate near human-level performance, offering a viable path toward safer and more efficient construction logistics.
RSTeller: Scaling Up Visual Language Modeling in Remote Sensing with Rich Linguistic Semantics from Openly Available Data and Large Language Models SP
Abundant, well-annotated multimodal data in remote sensing are pivotal for aligning complex visual remote sensing (RS) scenes with human language, enabling the development of specialized vision language models across diverse RS interpretation tasks. However, annotating RS images with rich linguistic semantics at scale demands expertise in RS and substantial human labor, making it costly and often impractical. In this study, we propose a workflow that leverages large language models (LLMs) to generate multimodal datasets with semantically rich captions at scale from plain OpenStreetMap (OSM) data for images sourced from the Google Earth Engine (GEE) platform. This approach facilitates the generation of paired remote sensing data and can be readily scaled up using openly available data. Within this framework, we present RSTeller, a multimodal dataset comprising over 1.3 million RS images, each accompanied by two descriptive captions. Extensive experiments demonstrate that RSTeller enhances the performance of multiple existing vision language models for RS scene understanding through continual pre-training. Our methodology significantly reduces the manual effort and expertise needed for annotating remote sensing imagery while democratizing access to high-quality annotated data. This advancement fosters progress in visual language modeling and encourages broader participation in remote sensing research and applications. The RSTeller dataset is available at https://github.com/SlytherinGe/RSTeller.
comment: Submitted to ISPRS
MotionStreamer: Streaming Motion Generation via Diffusion-based Autoregressive Model in Causal Latent Space
This paper addresses the challenge of text-conditioned streaming motion generation, which requires us to predict the next-step human pose based on variable-length historical motions and incoming texts. Existing methods struggle to achieve streaming motion generation, e.g., diffusion models are constrained by pre-defined motion lengths, while GPT-based methods suffer from delayed response and error accumulation problem due to discretized non-causal tokenization. To solve these problems, we propose MotionStreamer, a novel framework that incorporates a continuous causal latent space into a probabilistic autoregressive model. The continuous latents mitigate information loss caused by discretization and effectively reduce error accumulation during long-term autoregressive generation. In addition, by establishing temporal causal dependencies between current and historical motion latents, our model fully utilizes the available information to achieve accurate online motion decoding. Experiments show that our method outperforms existing approaches while offering more applications, including multi-round generation, long-term generation, and dynamic motion composition. Project Page: https://zju3dv.github.io/MotionStreamer/
comment: Project Page: https://zju3dv.github.io/MotionStreamer/
Proxy Denoising for Source-Free Domain Adaptation ICLR 2025
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to an unlabeled target domain with no access to the source data. Inspired by the success of large Vision-Language (ViL) models in many applications, the latest research has validated ViL's benefit for SFDA by using their predictions as pseudo supervision. However, we observe that ViL's supervision could be noisy and inaccurate at an unknown rate, introducing additional negative effects during adaption. To address this thus-far ignored challenge, we introduce a novel Proxy Denoising (ProDe) approach. The key idea is to leverage the ViL model as a proxy to facilitate the adaptation process towards the latent domain-invariant space. We design a proxy denoising mechanism to correct ViL's predictions, grounded on a proxy confidence theory that models the dynamic effect of proxy's divergence against the domain-invariant space during adaptation. To capitalize on the corrected proxy, we derive a mutual knowledge distilling regularization. Extensive experiments show that ProDe significantly outperforms current state-of-the-art alternatives under the conventional closed set setting and more challenging open set, partial set, generalized SFDA, multi-target, multi-source, and test-time settings. Our code and data are available at https://github.com/tntek/source-free-domain-adaptation.
comment: This paper is accepted by ICLR 2025 (Oral, Top 1.8%)
SplatFlow: Multi-View Rectified Flow Model for 3D Gaussian Splatting Synthesis
Text-based generation and editing of 3D scenes hold significant potential for streamlining content creation through intuitive user interactions. While recent advances leverage 3D Gaussian Splatting (3DGS) for high-fidelity and real-time rendering, existing methods are often specialized and task-focused, lacking a unified framework for both generation and editing. In this paper, we introduce SplatFlow, a comprehensive framework that addresses this gap by enabling direct 3DGS generation and editing. SplatFlow comprises two main components: a multi-view rectified flow (RF) model and a Gaussian Splatting Decoder (GSDecoder). The multi-view RF model operates in latent space, generating multi-view images, depths, and camera poses simultaneously, conditioned on text prompts, thus addressing challenges like diverse scene scales and complex camera trajectories in real-world settings. Then, the GSDecoder efficiently translates these latent outputs into 3DGS representations through a feed-forward 3DGS method. Leveraging training-free inversion and inpainting techniques, SplatFlow enables seamless 3DGS editing and supports a broad range of 3D tasks-including object editing, novel view synthesis, and camera pose estimation-within a unified framework without requiring additional complex pipelines. We validate SplatFlow's capabilities on the MVImgNet and DL3DV-7K datasets, demonstrating its versatility and effectiveness in various 3D generation, editing, and inpainting-based tasks.
comment: Project Page: https://gohyojun15.github.io/SplatFlow/
Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation
With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
comment: 44 pages, 7 figures, 8 tables
Two Effects, One Trigger: On the Modality Gap, Object Bias, and Information Imbalance in Contrastive Vision-Language Models ICLR 2025
Contrastive vision-language models (VLMs), like CLIP, have gained popularity for their versatile applicability to various downstream tasks. Despite their successes in some tasks, like zero-shot object recognition, they perform surprisingly poor on other tasks, like attribute recognition. Previous work has attributed these challenges to the modality gap, a separation of image and text in the shared representation space, and to a bias towards objects over other factors, such as attributes. In this analysis paper, we investigate both phenomena thoroughly. We evaluated off-the-shelf VLMs and while the gap's influence on performance is typically overshadowed by other factors, we find indications that closing the gap indeed leads to improvements. Moreover, we find that, contrary to intuition, only few embedding dimensions drive the gap and that the embedding spaces are differently organized. To allow for a clean study of object bias, we introduce a definition and a corresponding measure of it. Equipped with this tool, we find that object bias does not lead to worse performance on other concepts, such as attributes per se. However, why do both phenomena, modality gap and object bias, emerge in the first place? To answer this fundamental question and uncover some of the inner workings of contrastive VLMs, we conducted experiments that allowed us to control the amount of shared information between the modalities. These experiments revealed that the driving factor behind both the modality gap and the object bias, is an information imbalance between images and captions, and unveiled an intriguing connection between the modality gap and entropy of the logits.
comment: ICLR 2025 (Oral)
SAM2MOT: A Novel Paradigm of Multi-Object Tracking by Segmentation
Segment Anything 2 (SAM2) enables robust single-object tracking using segmentation. To extend this to multi-object tracking (MOT), we propose SAM2MOT, introducing a novel Tracking by Segmentation paradigm. Unlike Tracking by Detection or Tracking by Query, SAM2MOT directly generates tracking boxes from segmentation masks, reducing reliance on detection accuracy. SAM2MOT has two key advantages: zero-shot generalization, allowing it to work across datasets without fine-tuning, and strong object association, inherited from SAM2. To further improve performance, we integrate a trajectory manager system for precise object addition and removal, and a cross-object interaction module to handle occlusions. Experiments on DanceTrack, UAVDT, and BDD100K show state-of-the-art results. Notably, SAM2MOT outperforms existing methods on DanceTrack by +2.1 HOTA and +4.5 IDF1, highlighting its effectiveness in MOT. Code is available at https://github.com/TripleJoy/SAM2MOT.
Improving Generalization of Universal Adversarial Perturbation via Dynamic Maximin Optimization AAAI 2025
Deep neural networks (DNNs) are susceptible to universal adversarial perturbations (UAPs). These perturbations are meticulously designed to fool the target model universally across all sample classes. Unlike instance-specific adversarial examples (AEs), generating UAPs is more complex because they must be generalized across a wide range of data samples and models. Our research reveals that existing universal attack methods, which optimize UAPs using DNNs with static model parameter snapshots, do not fully leverage the potential of DNNs to generate more effective UAPs. Rather than optimizing UAPs against static DNN models with a fixed training set, we suggest using dynamic model-data pairs to generate UAPs. In particular, we introduce a dynamic maximin optimization strategy, aiming to optimize the UAP across a variety of optimal model-data pairs. We term this approach DM-UAP. DM-UAP utilizes an iterative max-min-min optimization framework that refines the model-data pairs, coupled with a curriculum UAP learning algorithm to examine the combined space of model parameters and data thoroughly. Comprehensive experiments on the ImageNet dataset demonstrate that the proposed DM-UAP markedly enhances both cross-sample universality and cross-model transferability of UAPs. Using only 500 samples for UAP generation, DM-UAP outperforms the state-of-the-art approach with an average increase in fooling ratio of 12.108%.
comment: Accepted in AAAI 2025
Orthus: Autoregressive Interleaved Image-Text Generation with Modality-Specific Heads
We introduce Orthus, an autoregressive (AR) transformer that excels in generating images given textual prompts, answering questions based on visual inputs, and even crafting lengthy image-text interleaved contents. Unlike prior arts on unified multimodal modeling, Orthus simultaneously copes with discrete text tokens and continuous image features under the AR modeling principle. The continuous treatment of visual signals minimizes the information loss for both image understanding and generation while the fully AR formulation renders the characterization of the correlation between modalities straightforward. The key mechanism enabling Orthus to leverage these advantages lies in its modality-specific heads -- one regular language modeling (LM) head predicts discrete text tokens and one diffusion head generates continuous image features conditioning on the output of the backbone. We devise an efficient strategy for building Orthus -- by substituting the Vector Quantization (VQ) operation in the existing unified AR model with a soft alternative, introducing a diffusion head, and tuning the added modules to reconstruct images, we can create an Orthus-base model effortlessly (e.g., within mere 72 A100 GPU hours). Orthus-base can further embrace post-training to better model interleaved images and texts. Empirically, Orthus surpasses competing baselines including Show-o and Chameleon across standard benchmarks, achieving a GenEval score of 0.58 and an MME-P score of 1265.8 using 7B parameters. Orthus also shows exceptional mixed-modality generation capabilities, reflecting the potential for handling intricate practical generation tasks.
Mitigating Long-tail Distribution in Oracle Bone Inscriptions: Dataset, Model, and Benchmark
The oracle bone inscription (OBI) recognition plays a significant role in understanding the history and culture of ancient China. However, the existing OBI datasets suffer from a long-tail distribution problem, leading to biased performance of OBI recognition models across majority and minority classes. With recent advancements in generative models, OBI synthesis-based data augmentation has become a promising avenue to expand the sample size of minority classes. Unfortunately, current OBI datasets lack large-scale structure-aligned image pairs for generative model training. To address these problems, we first present the Oracle-P15K, a structure-aligned OBI dataset for OBI generation and denoising, consisting of 14,542 images infused with domain knowledge from OBI experts. Second, we propose a diffusion model-based pseudo OBI generator, called OBIDiff, to achieve realistic and controllable OBI generation. Given a clean glyph image and a target rubbing-style image, it can effectively transfer the noise style of the original rubbing to the glyph image. Extensive experiments on OBI downstream tasks and user preference studies show the effectiveness of the proposed Oracle-P15K dataset and demonstrate that OBIDiff can accurately preserve inherent glyph structures while transferring authentic rubbing styles effectively.
Enhancing Contrastive Learning Inspired by the Philosophy of "The Blind Men and the Elephant" AAAI 2025
Contrastive learning is a prevalent technique in self-supervised vision representation learning, typically generating positive pairs by applying two data augmentations to the same image. Designing effective data augmentation strategies is crucial for the success of contrastive learning. Inspired by the story of the blind men and the elephant, we introduce JointCrop and JointBlur. These methods generate more challenging positive pairs by leveraging the joint distribution of the two augmentation parameters, thereby enabling contrastive learning to acquire more effective feature representations. To the best of our knowledge, this is the first effort to explicitly incorporate the joint distribution of two data augmentation parameters into contrastive learning. As a plug-and-play framework without additional computational overhead, JointCrop and JointBlur enhance the performance of SimCLR, BYOL, MoCo v1, MoCo v2, MoCo v3, SimSiam, and Dino baselines with notable improvements.
comment: Accepted by AAAI 2025
Discrete Distribution Networks ICLR 2025
We introduce a novel generative model, the Discrete Distribution Networks (DDN), that approximates data distribution using hierarchical discrete distributions. We posit that since the features within a network inherently capture distributional information, enabling the network to generate multiple samples simultaneously, rather than a single output, may offer an effective way to represent distributions. Therefore, DDN fits the target distribution, including continuous ones, by generating multiple discrete sample points. To capture finer details of the target data, DDN selects the output that is closest to the Ground Truth (GT) from the coarse results generated in the first layer. This selected output is then fed back into the network as a condition for the second layer, thereby generating new outputs more similar to the GT. As the number of DDN layers increases, the representational space of the outputs expands exponentially, and the generated samples become increasingly similar to the GT. This hierarchical output pattern of discrete distributions endows DDN with unique properties: more general zero-shot conditional generation and 1D latent representation. We demonstrate the efficacy of DDN and its intriguing properties through experiments on CIFAR-10 and FFHQ. The code is available at https://discrete-distribution-networks.github.io/
comment: Published as a conference paper at ICLR 2025
Multi-modal vision-language model for generalizable annotation-free pathology localization and clinical diagnosis
Defining pathologies automatically from medical images aids the understanding of the emergence and progression of diseases, and such an ability is crucial in clinical diagnostics. However, existing deep learning models heavily rely on expert annotations and lack generalization capabilities in open clinical environments. In this study, we present a generalizable vision-language model for Annotation-Free pathology Localization (AFLoc). The core strength of AFLoc lies in its extensive multi-level semantic structure-based contrastive learning, which comprehensively aligns multi-granularity medical concepts from reports with abundant image features, to adapt to the diverse expressions of pathologies and unseen pathologies without the reliance on image annotations from experts. We conducted primary experiments on a dataset of 220K pairs of image-report chest X-ray images, and performed extensive validation across six external datasets encompassing 20 types of chest pathologies. The results demonstrate that AFLoc outperforms state-of-the-art methods in both annotation-free localization and classification tasks. Additionally, we assessed the generalizability of AFLoc on other modalities, including histopathology and retinal fundus images. Extensive experiments show that AFLoc exhibits robust generalization capabilities, even surpassing human benchmarks in localizing five different types of pathological images. These results highlight the potential of AFLoc in reducing annotation requirements and its applicability in complex clinical environments.
Spatio-Temporal Fuzzy-oriented Multi-Modal Meta-Learning for Fine-grained Emotion Recognition
Fine-grained emotion recognition (FER) plays a vital role in various fields, such as disease diagnosis, personalized recommendations, and multimedia mining. However, existing FER methods face three key challenges in real-world applications: (i) they rely on large amounts of continuously annotated data to ensure accuracy since emotions are complex and ambiguous in reality, which is costly and time-consuming; (ii) they cannot capture the temporal heterogeneity caused by changing emotion patterns, because they usually assume that the temporal correlation within sampling periods is the same; (iii) they do not consider the spatial heterogeneity of different FER scenarios, that is, the distribution of emotion information in different data may have bias or interference. To address these challenges, we propose a Spatio-Temporal Fuzzy-oriented Multi-modal Meta-learning framework (ST-F2M). Specifically, ST-F2M first divides the multi-modal videos into multiple views, and each view corresponds to one modality of one emotion. Multiple randomly selected views for the same emotion form a meta-training task. Next, ST-F2M uses an integrated module with spatial and temporal convolutions to encode the data of each task, reflecting the spatial and temporal heterogeneity. Then it adds fuzzy semantic information to each task based on generalized fuzzy rules, which helps handle the complexity and ambiguity of emotions. Finally, ST-F2M learns emotion-related general meta-knowledge through meta-recurrent neural networks to achieve fast and robust fine-grained emotion recognition. Extensive experiments show that ST-F2M outperforms various state-of-the-art methods in terms of accuracy and model efficiency. In addition, we construct ablation studies and further analysis to explore why ST-F2M performs well.
comment: This work has been submitted to the IEEE for possible publication
OpenSDI: Spotting Diffusion-Generated Images in the Open World
This paper identifies OpenSDI, a challenge for spotting diffusion-generated images in open-world settings. In response to this challenge, we define a new benchmark, the OpenSDI dataset (OpenSDID), which stands out from existing datasets due to its diverse use of large vision-language models that simulate open-world diffusion-based manipulations. Another outstanding feature of OpenSDID is its inclusion of both detection and localization tasks for images manipulated globally and locally by diffusion models. To address the OpenSDI challenge, we propose a Synergizing Pretrained Models (SPM) scheme to build up a mixture of foundation models. This approach exploits a collaboration mechanism with multiple pretrained foundation models to enhance generalization in the OpenSDI context, moving beyond traditional training by synergizing multiple pretrained models through prompting and attending strategies. Building on this scheme, we introduce MaskCLIP, an SPM-based model that aligns Contrastive Language-Image Pre-Training (CLIP) with Masked Autoencoder (MAE). Extensive evaluations on OpenSDID show that MaskCLIP significantly outperforms current state-of-the-art methods for the OpenSDI challenge, achieving remarkable relative improvements of 14.23% in IoU (14.11% in F1) and 2.05% in accuracy (2.38% in F1) compared to the second-best model in localization and detection tasks, respectively. Our dataset and code are available at https://github.com/iamwangyabin/OpenSDI.
SceneFactory: A Workflow-centric and Unified Framework for Incremental Scene Modeling
We present SceneFactory, a workflow-centric and unified framework for incremental scene modeling, that conveniently supports a wide range of applications, such as (unposed and/or uncalibrated) multi-view depth estimation, LiDAR completion, (dense) RGB-D/RGB-L/Mono/Depth-only reconstruction and SLAM. The workflow-centric design uses multiple blocks as the basis for constructing different production lines. The supported applications, i.e., productions avoid redundancy in their designs. Thus, the focus is placed on each block itself for independent expansion. To support all input combinations, our implementation consists of four building blocks that form SceneFactory: (1) tracking, (2) flexion, (3) depth estimation, and (4) scene reconstruction. The tracking block is based on Mono SLAM and is extended to support RGB-D and RGB-LiDAR (RGB-L) inputs. Flexion is used to convert the depth image (untrackable) into a trackable image. For general-purpose depth estimation, we propose an unposed \& uncalibrated multi-view depth estimation model (U$^2$-MVD) to estimate dense geometry. U$^2$-MVD exploits dense bundle adjustment to solve for poses, intrinsics, and inverse depth. A semantic-aware ScaleCov step is then introduced to complete the multi-view depth. Relying on U$^2$-MVD, SceneFactory both supports user-friendly 3D creation (with just images) and bridges the applications of Dense RGB-D and Dense Mono. For high-quality surface and color reconstruction, we propose Dual-purpose Multi-resolutional Neural Points (DM-NPs) for the first surface accessible Surface Color Field design, where we introduce Improved Point Rasterization (IPR) for point cloud based surface query. ...
comment: Accepted to IEEE Transactions on Robotics (T-RO). For project page and code, please find https://jarrome.github.io/SceneFactory/
GaussVideoDreamer: 3D Scene Generation with Video Diffusion and Inconsistency-Aware Gaussian Splatting
Single-image 3D scene reconstruction presents significant challenges due to its inherently ill-posed nature and limited input constraints. Recent advances have explored two promising directions: multiview generative models that train on 3D consistent datasets but struggle with out-of-distribution generalization, and 3D scene inpainting and completion frameworks that suffer from cross-view inconsistency and suboptimal error handling, as they depend exclusively on depth data or 3D smoothness, which ultimately degrades output quality and computational performance. Building upon these approaches, we present GaussVideoDreamer, which advances generative multimedia approaches by bridging the gap between image, video, and 3D generation, integrating their strengths through two key innovations: (1) A progressive video inpainting strategy that harnesses temporal coherence for improved multiview consistency and faster convergence. (2) A 3D Gaussian Splatting consistency mask to guide the video diffusion with 3D consistent multiview evidence. Our pipeline combines three core components: a geometry-aware initialization protocol, Inconsistency-Aware Gaussian Splatting, and a progressive video inpainting strategy. Experimental results demonstrate that our approach achieves 32% higher LLaVA-IQA scores and at least 2x speedup compared to existing methods while maintaining robust performance across diverse scenes.
VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow CVPR 2025
Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.
comment: CVPR 2025. Code is available at https://github.com/tudelft-iv/VoteFlow. Yancong Lin and Shiming Wang have equal contributions
Masked Autoencoders are Robust Data Augmentors
Deep neural networks are capable of learning powerful representations to tackle complex vision tasks but expose undesirable properties like the over-fitting issue. To this end, regularization techniques like image augmentation are necessary for deep neural networks to generalize well. Nevertheless, most prevalent image augmentation recipes confine themselves to off-the-shelf linear transformations like scale, flip, and colorjitter. Due to their hand-crafted property, these augmentations are insufficient to generate truly hard augmented examples. In this paper, we propose a novel perspective of augmentation to regularize the training process. Inspired by the recent success of applying masked image modeling to self-supervised learning, we adopt the self-supervised masked autoencoder to generate the distorted view of the input images. We show that utilizing such model-based nonlinear transformation as data augmentation can improve high-level recognition tasks. We term the proposed method as \textbf{M}ask-\textbf{R}econstruct \textbf{A}ugmentation (MRA). The extensive experiments on various image classification benchmarks verify the effectiveness of the proposed augmentation. Specifically, MRA consistently enhances the performance on supervised, semi-supervised as well as few-shot classification.
Direction-Aware Diagonal Autoregressive Image Generation
The raster-ordered image token sequence exhibits a significant Euclidean distance between index-adjacent tokens at line breaks, making it unsuitable for autoregressive generation. To address this issue, this paper proposes Direction-Aware Diagonal Autoregressive Image Generation (DAR) method, which generates image tokens following a diagonal scanning order. The proposed diagonal scanning order ensures that tokens with adjacent indices remain in close proximity while enabling causal attention to gather information from a broader range of directions. Additionally, two direction-aware modules: 4D-RoPE and direction embeddings are introduced, enhancing the model's capability to handle frequent changes in generation direction. To leverage the representational capacity of the image tokenizer, we use its codebook as the image token embeddings. We propose models of varying scales, ranging from 485M to 2.0B. On the 256$\times$256 ImageNet benchmark, our DAR-XL (2.0B) outperforms all previous autoregressive image generators, achieving a state-of-the-art FID score of 1.37.
DTFSal: Audio-Visual Dynamic Token Fusion for Video Saliency Prediction
Audio-visual saliency prediction aims to mimic human visual attention by identifying salient regions in videos through the integration of both visual and auditory information. Although visual-only approaches have significantly advanced, effectively incorporating auditory cues remains challenging due to complex spatio-temporal interactions and high computational demands. To address these challenges, we propose Dynamic Token Fusion Saliency (DFTSal), a novel audio-visual saliency prediction framework designed to balance accuracy with computational efficiency. Our approach features a multi-scale visual encoder equipped with two novel modules: the Learnable Token Enhancement Block (LTEB), which adaptively weights tokens to emphasize crucial saliency cues, and the Dynamic Learnable Token Fusion Block (DLTFB), which employs a shifting operation to reorganize and merge features, effectively capturing long-range dependencies and detailed spatial information. In parallel, an audio branch processes raw audio signals to extract meaningful auditory features. Both visual and audio features are integrated using our Adaptive Multimodal Fusion Block (AMFB), which employs local, global, and adaptive fusion streams for precise cross-modal fusion. The resulting fused features are processed by a hierarchical multi-decoder structure, producing accurate saliency maps. Extensive evaluations on six audio-visual benchmarks demonstrate that DFTSal achieves SOTA performance while maintaining computational efficiency.
Kernel-Aware Graph Prompt Learning for Few-Shot Anomaly Detection AAAI 2025
Few-shot anomaly detection (FSAD) aims to detect unseen anomaly regions with the guidance of very few normal support images from the same class. Existing FSAD methods usually find anomalies by directly designing complex text prompts to align them with visual features under the prevailing large vision-language model paradigm. However, these methods, almost always, neglect intrinsic contextual information in visual features, e.g., the interaction relationships between different vision layers, which is an important clue for detecting anomalies comprehensively. To this end, we propose a kernel-aware graph prompt learning framework, termed as KAG-prompt, by reasoning the cross-layer relations among visual features for FSAD. Specifically, a kernel-aware hierarchical graph is built by taking the different layer features focusing on anomalous regions of different sizes as nodes, meanwhile, the relationships between arbitrary pairs of nodes stand for the edges of the graph. By message passing over this graph, KAG-prompt can capture cross-layer contextual information, thus leading to more accurate anomaly prediction. Moreover, to integrate the information of multiple important anomaly signals in the prediction map, we propose a novel image-level scoring method based on multi-level information fusion. Extensive experiments on MVTecAD and VisA datasets show that KAG-prompt achieves state-of-the-art FSAD results for image-level/pixel-level anomaly detection. Code is available at https://github.com/CVL-hub/KAG-prompt.git.
comment: Accepted to AAAI 2025
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Multimodal representation learning, exemplified by multimodal contrastive learning (MMCL) using image-text pairs, aims to learn powerful representations by aligning cues across modalities. This approach relies on the core assumption that the exemplar image-text pairs constitute two representations of an identical concept. However, recent research has revealed that real-world datasets often exhibit misalignment. There are two distinct viewpoints on how to address this issue: one suggests mitigating the misalignment, and the other leveraging it. We seek here to reconcile these seemingly opposing perspectives, and to provide a practical guide for practitioners. Using latent variable models we thus formalize misalignment by introducing two specific mechanisms: selection bias, where some semantic variables are missing, and perturbation bias, where semantic variables are distorted -- both affecting latent variables shared across modalities. Our theoretical analysis demonstrates that, under mild assumptions, the representations learned by MMCL capture exactly the information related to the subset of the semantic variables invariant to selection and perturbation biases. This provides a unified perspective for understanding misalignment. Based on this, we further offer actionable insights into how misalignment should inform the design of real-world ML systems. We validate our theoretical findings through extensive empirical studies on both synthetic data and real image-text datasets, shedding light on the nuanced impact of misalignment on multimodal representation learning.
DyDiT++: Dynamic Diffusion Transformers for Efficient Visual Generation ICLR
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the \emph{static} inference paradigm, which inevitably introduces redundant computation in certain \emph{diffusion timesteps} and \emph{spatial regions}. To overcome this inefficiency, we propose \textbf{Dy}namic \textbf{Di}ffusion \textbf{T}ransformer (DyDiT), an architecture that \emph{dynamically} adjusts its computation along both \emph{timestep} and \emph{spatial} dimensions. Specifically, we introduce a \emph{Timestep-wise Dynamic Width} (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a \emph{Spatial-wise Dynamic Token} (SDT) strategy to avoid redundant computation at unnecessary spatial locations. TDW and SDT can be seamlessly integrated into DiT and significantly accelerates the generation process. Building on these designs, we further enhance DyDiT in three key aspects. First, DyDiT is integrated seamlessly with flow matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT.
comment: Extended journal version for ICLR. arXiv admin note: substantial text overlap with arXiv:2410.03456
SignDiff: Diffusion Model for American Sign Language Production
In this paper, we propose a dual-condition diffusion pre-training model named SignDiff that can generate human sign language speakers from a skeleton pose. SignDiff has a novel Frame Reinforcement Network called FR-Net, similar to dense human pose estimation work, which enhances the correspondence between text lexical symbols and sign language dense pose frames, reduces the occurrence of multiple fingers in the diffusion model. In addition, we propose a new method for American Sign Language Production (ASLP), which can generate ASL skeletal pose videos from text input, integrating two new improved modules and a new loss function to improve the accuracy and quality of sign language skeletal posture and enhance the ability of the model to train on large-scale data. We propose the first baseline for ASL production and report the scores of 17.19 and 12.85 on BLEU-4 on the How2Sign dev/test sets. We evaluated our model on the previous mainstream dataset PHOENIX14T, and the experiments achieved the SOTA results. In addition, our image quality far exceeds all previous results by 10 percentage points in terms of SSIM.
comment: Project Page at https://signdiff.github.io
MomentSeeker: A Comprehensive Benchmark and A Strong Baseline For Moment Retrieval Within Long Videos
Retrieval augmented generation (RAG) holds great promise in addressing challenges associated with long video understanding. These methods retrieve useful moments from long videos for their presented tasks, thereby enabling multimodal large language models (MLLMs) to generate high-quality answers in a cost-effective way. In this work, we present MomentSeeker, a comprehensive benchmark to evaluate retrieval models' performance in handling general long-video moment retrieval (LVMR) tasks. MomentSeeker offers three key advantages. First, it incorporates long videos of over 500 seconds on average, making it the first benchmark specialized for long-video moment retrieval. Second, it covers a wide range of task categories (including Moment Search, Caption Alignment, Image-conditioned Moment Search, and Video-conditioned Moment Search) and diverse application scenarios (e.g., sports, movies, cartoons, and ego), making it a comprehensive tool for assessing retrieval models' general LVMR performance. Additionally, the evaluation tasks are carefully curated through human annotation, ensuring the reliability of assessment. We further fine-tune an MLLM-based LVMR retriever on synthetic data, which demonstrates strong performance on our benchmark. We perform extensive experiments with various popular multimodal retrievers based on our benchmark, whose results highlight the challenges of LVMR and limitations for existing methods. Our created resources will be shared with community to advance future research in this field.
Partial Label Learning for Emotion Recognition from EEG
Fully supervised learning has recently achieved promising performance in various electroencephalography (EEG) learning tasks by training on large datasets with ground truth labels. However, labeling EEG data for affective experiments is challenging, as it can be difficult for participants to accurately distinguish between similar emotions, resulting in ambiguous labeling (reporting multiple emotions for one EEG instance). This notion could cause model performance degradation, as the ground truth is hidden within multiple candidate labels. To address this issue, Partial Label Learning (PLL) has been proposed to identify the ground truth from candidate labels during the training phase, and has shown good performance in the computer vision domain. However, PLL methods have not yet been adopted for EEG representation learning or implemented for emotion recognition tasks. In this paper, we adapt and re-implement six state-of-the-art PLL approaches for emotion recognition from EEG on two large emotion datasets (SEED-IV and SEED-V). These datasets contain four and five categories of emotions, respectively. We evaluate the performance of all methods in classical, circumplex-based and real-world experiments. The results show that PLL methods can achieve strong results in affective computing from EEG and achieve comparable performance to fully supervised learning. We also investigate the effect of label disambiguation, a key step in many PLL methods. The results show that in most cases, label disambiguation would benefit the model when the candidate labels are generated based on their similarities to the ground truth rather than obeying a uniform distribution. This finding suggests the potential of using label disambiguation-based PLL methods for circumplex-based and real-world affective tasks.
comment: 15 pages, 13 figures
Imagery as Inquiry: Exploring A Multimodal Dataset for Conversational Recommendation
We introduce a multimodal dataset where users express preferences through images. These images encompass a broad spectrum of visual expressions ranging from landscapes to artistic depictions. Users request recommendations for books or music that evoke similar feelings to those captured in the images, and recommendations are endorsed by the community through upvotes. This dataset supports two recommendation tasks: title generation and multiple-choice selection. Our experiments with large foundation models reveal their limitations in these tasks. Particularly, vision-language models show no significant advantage over language-only counterparts that use descriptions, which we hypothesize is due to underutilized visual capabilities. To better harness these abilities, we propose the chain-of-imagery prompting, which results in notable improvements. We release our code and datasets.
Versatile Multimodal Controls for Expressive Talking Human Animation
In filmmaking, directors typically allow actors to perform freely based on the script before providing specific guidance on how to present key actions. AI-generated content faces similar requirements, where users not only need automatic generation of lip synchronization and basic gestures from audio input but also desire semantically accurate and expressive body movement that can be ``directly guided'' through text descriptions. Therefore, we present VersaAnimator, a versatile framework that synthesizes expressive talking human videos from arbitrary portrait images. Specifically, we design a motion generator that produces basic rhythmic movements from audio input and supports text-prompt control for specific actions. The generated whole-body 3D motion tokens can animate portraits of various scales, producing talking heads, half-body gestures and even leg movements for whole-body images. Besides, we introduce a multi-modal controlled video diffusion that generates photorealistic videos, where speech signals govern lip synchronization, facial expressions, and head motions while body movements are guided by the 2D poses. Furthermore, we introduce a token2pose translator to smoothly map 3D motion tokens to 2D pose sequences. This design mitigates the stiffness resulting from direct 3D to 2D conversion and enhances the details of the generated body movements. Extensive experiments shows that VersaAnimator synthesizes lip-synced and identity-preserving videos while generating expressive and semantically meaningful whole-body motions.
OMR-Diffusion:Optimizing Multi-Round Enhanced Training in Diffusion Models for Improved Intent Understanding
Generative AI has significantly advanced text-driven image generation, but it still faces challenges in producing outputs that consistently align with evolving user preferences and intents, particularly in multi-turn dialogue scenarios. In this research, We present a Visual Co-Adaptation (VCA) framework that incorporates human-in-the-loop feedback, utilizing a well-trained reward model specifically designed to closely align with human preferences. Using a diverse multi-turn dialogue dataset, the framework applies multiple reward functions (such as diversity, consistency, and preference feedback) to refine the diffusion model through LoRA, effectively optimizing image generation based on user input. We also constructed multi-round dialogue datasets with prompts and image pairs that well-fit user intent. Experiments show the model achieves 508 wins in human evaluation, outperforming DALL-E 3 (463 wins) and others. It also achieves 3.4 rounds in dialogue efficiency (vs. 13.7 for DALL-E 3) and excels in metrics like LPIPS (0.15) and BLIP (0.59). Various experiments demonstrate the effectiveness of the proposed method over state-of-the-art baselines, with significant improvements in image consistency and alignment with user intent.
TDRI: Two-Phase Dialogue Refinement and Co-Adaptation for Interactive Image Generation
Although text-to-image generation technologies have made significant advancements, they still face challenges when dealing with ambiguous prompts and aligning outputs with user intent.Our proposed framework, TDRI (Two-Phase Dialogue Refinement and Co-Adaptation), addresses these issues by enhancing image generation through iterative user interaction. It consists of two phases: the Initial Generation Phase, which creates base images based on user prompts, and the Interactive Refinement Phase, which integrates user feedback through three key modules. The Dialogue-to-Prompt (D2P) module ensures that user feedback is effectively transformed into actionable prompts, which improves the alignment between user intent and model input. By evaluating generated outputs against user expectations, the Feedback-Reflection (FR) module identifies discrepancies and facilitates improvements. In an effort to ensure consistently high-quality results, the Adaptive Optimization (AO) module fine-tunes the generation process by balancing user preferences and maintaining prompt fidelity. Experimental results show that TDRI outperforms existing methods by achieving 33.6% human preference, compared to 6.2% for GPT-4 augmentation, and the highest CLIP and BLIP alignment scores (0.338 and 0.336, respectively). In iterative feedback tasks, user satisfaction increased to 88% after 8 rounds, with diminishing returns beyond 6 rounds. Furthermore, TDRI has been found to reduce the number of iterations and improve personalization in the creation of fashion products. TDRI exhibits a strong potential for a wide range of applications in the creative and industrial domains, as it streamlines the creative process and improves alignment with user preferences
Learning to Learn Transferable Generative Attack for Person Re-Identification
Deep learning-based person re-identification (re-id) models are widely employed in surveillance systems and inevitably inherit the vulnerability of deep networks to adversarial attacks. Existing attacks merely consider cross-dataset and cross-model transferability, ignoring the cross-test capability to perturb models trained in different domains. To powerfully examine the robustness of real-world re-id models, the Meta Transferable Generative Attack (MTGA) method is proposed, which adopts meta-learning optimization to promote the generative attacker producing highly transferable adversarial examples by learning comprehensively simulated transfer-based cross-model\&dataset\&test black-box meta attack tasks. Specifically, cross-model\&dataset black-box attack tasks are first mimicked by selecting different re-id models and datasets for meta-train and meta-test attack processes. As different models may focus on different feature regions, the Perturbation Random Erasing module is further devised to prevent the attacker from learning to only corrupt model-specific features. To boost the attacker learning to possess cross-test transferability, the Normalization Mix strategy is introduced to imitate diverse feature embedding spaces by mixing multi-domain statistics of target models. Extensive experiments show the superiority of MTGA, especially in cross-model\&dataset and cross-model\&dataset\&test attacks, our MTGA outperforms the SOTA methods by 21.5\% and 11.3\% on mean mAP drop rate, respectively. The code of MTGA will be released after the paper is accepted.
Visual Language Models show widespread visual deficits on neuropsychological tests
Visual Language Models (VLMs) show remarkable performance in visual reasoning tasks, successfully tackling college-level challenges that require high-level understanding of images. However, some recent reports of VLMs struggling to reason about elemental visual concepts like orientation, position, continuity, and occlusion suggest a potential gulf between human and VLM vision. Here we use the toolkit of neuropsychology to systematically assess the capabilities of three state-of-the-art VLMs across visual domains. Using 51 tests drawn from six clinical and experimental batteries, we characterise the visual abilities of leading VLMs relative to normative performance in healthy adults. While the models excel in straightforward object recognition tasks, we find widespread deficits in low- and mid-level visual abilities that would be considered clinically significant in humans. These selective deficits, profiled through validated test batteries, suggest that an artificial system can achieve complex object recognition without developing foundational visual concepts that in humans require no explicit training.
comment: 31 pages, 3 figures, 1 supplementary document with 1 figure and 51 sample images; corrected typo in Fig 1
Image and Video Processing
Correlation Ratio for Unsupervised Learning of Multi-modal Deformable Registration SP
In recent years, unsupervised learning for deformable image registration has been a major research focus. This approach involves training a registration network using pairs of moving and fixed images, along with a loss function that combines an image similarity measure and deformation regularization. For multi-modal image registration tasks, the correlation ratio has been a widely-used image similarity measure historically, yet it has been underexplored in current deep learning methods. Here, we propose a differentiable correlation ratio to use as a loss function for learning-based multi-modal deformable image registration. This approach extends the traditionally non-differentiable implementation of the correlation ratio by using the Parzen windowing approximation, enabling backpropagation with deep neural networks. We validated the proposed correlation ratio on a multi-modal neuroimaging dataset. In addition, we established a Bayesian training framework to study how the trade-off between the deformation regularizer and similarity measures, including mutual information and our proposed correlation ratio, affects the registration performance.
comment: Accepted by SPIE MI'25 ((c) SPIE). Code available at https://github.com/junyuchen245/Correlation_Ratio
Human Aligned Compression for Robust Models CVPR 2025
Adversarial attacks on image models threaten system robustness by introducing imperceptible perturbations that cause incorrect predictions. We investigate human-aligned learned lossy compression as a defense mechanism, comparing two learned models (HiFiC and ELIC) against traditional JPEG across various quality levels. Our experiments on ImageNet subsets demonstrate that learned compression methods outperform JPEG, particularly for Vision Transformer architectures, by preserving semantically meaningful content while removing adversarial noise. Even in white-box settings where attackers can access the defense, these methods maintain substantial effectiveness. We also show that sequential compression--applying rounds of compression/decompression--significantly enhances defense efficacy while maintaining classification performance. Our findings reveal that human-aligned compression provides an effective, computationally efficient defense that protects the image features most relevant to human and machine understanding. It offers a practical approach to improving model robustness against adversarial threats.
comment: Presented at the Workshop AdvML at CVPR 2025
Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography
The application of artificial intelligence (AI) in medical imaging has revolutionized diagnostic practices, enabling advanced analysis and interpretation of radiological data. This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography, focusing on COVID-19, lung opacity, and viral pneumonia. While deep learning models, particularly convolutional neural networks (CNNs) and vision transformers (ViTs), learn directly from image data, radiomics-based models extract and analyze quantitative features, potentially providing advantages in data-limited scenarios. This study systematically compares the diagnostic accuracy and robustness of various AI models, including Decision Trees, Gradient Boosting, Random Forests, Support Vector Machines (SVM), and Multi-Layer Perceptrons (MLP) for radiomics, against state-of-the-art computer vision deep learning architectures. Performance metrics across varying sample sizes reveal insights into each model's efficacy, highlighting the contexts in which specific AI approaches may offer enhanced diagnostic capabilities. The results aim to inform the integration of AI-driven diagnostic tools in clinical practice, particularly in automated and high-throughput environments where timely, reliable diagnosis is critical. This comparative study addresses an essential gap, establishing guidance for the selection of AI models based on clinical and operational needs.
SIDME: Self-supervised Image Demoiréing via Masked Encoder-Decoder Reconstruction
Moir\'e patterns, resulting from aliasing between object light signals and camera sampling frequencies, often degrade image quality during capture. Traditional demoir\'eing methods have generally treated images as a whole for processing and training, neglecting the unique signal characteristics of different color channels. Moreover, the randomness and variability of moir\'e pattern generation pose challenges to the robustness of existing methods when applied to real-world data. To address these issues, this paper presents SIDME (Self-supervised Image Demoir\'eing via Masked Encoder-Decoder Reconstruction), a novel model designed to generate high-quality visual images by effectively processing moir\'e patterns. SIDME combines a masked encoder-decoder architecture with self-supervised learning, allowing the model to reconstruct images using the inherent properties of camera sampling frequencies. A key innovation is the random masked image reconstructor, which utilizes an encoder-decoder structure to handle the reconstruction task. Furthermore, since the green channel in camera sampling has a higher sampling frequency compared to red and blue channels, a specialized self-supervised loss function is designed to improve the training efficiency and effectiveness. To ensure the generalization ability of the model, a self-supervised moir\'e image generation method has been developed to produce a dataset that closely mimics real-world conditions. Extensive experiments demonstrate that SIDME outperforms existing methods in processing real moir\'e pattern data, showing its superior generalization performance and robustness.
comment: 21 pages, 13 figures
Modality-Independent Explainable Detection of Inaccurate Organ Segmentations Using Denoising Autoencoders
In radiation therapy planning, inaccurate segmentations of organs at risk can result in suboptimal treatment delivery, if left undetected by the clinician. To address this challenge, we developed a denoising autoencoder-based method to detect inaccurate organ segmentations. We applied noise to ground truth organ segmentations, and the autoencoders were tasked to denoise them. Through the application of our method to organ segmentations generated on both MR and CT scans, we demonstrated that the method is independent of imaging modality. By providing reconstructions, our method offers visual information about inaccurate regions of the organ segmentations, leading to more explainable detection of suboptimal segmentations. We compared our method to existing approaches in the literature and demonstrated that it achieved superior performance for the majority of organs.
comment: Short version of this paper was accepted for poster presentation at IEEE ISBI 2025
Towards a General-Purpose Zero-Shot Synthetic Low-Light Image and Video Pipeline
Low-light conditions pose significant challenges for both human and machine annotation. This in turn has led to a lack of research into machine understanding for low-light images and (in particular) videos. A common approach is to apply annotations obtained from high quality datasets to synthetically created low light versions. In addition, these approaches are often limited through the use of unrealistic noise models. In this paper, we propose a new Degradation Estimation Network (DEN), which synthetically generates realistic standard RGB (sRGB) noise without the requirement for camera metadata. This is achieved by estimating the parameters of physics-informed noise distributions, trained in a self-supervised manner. This zero-shot approach allows our method to generate synthetic noisy content with a diverse range of realistic noise characteristics, unlike other methods which focus on recreating the noise characteristics of the training data. We evaluate our proposed synthetic pipeline using various methods trained on its synthetic data for typical low-light tasks including synthetic noise replication, video enhancement, and object detection, showing improvements of up to 24\% KLD, 21\% LPIPS, and 62\% AP$_{50-95}$, respectively.
A Diffusion-Based Framework for Terrain-Aware Remote Sensing Image Reconstruction
Remote sensing imagery is essential for environmental monitoring, agricultural management, and disaster response. However, data loss due to cloud cover, sensor failures, or incomplete acquisition-especially in high-resolution and high-frequency tasks-severely limits satellite imagery's effectiveness. Traditional interpolation methods struggle with large missing areas and complex structures. Remote sensing imagery consists of multiple bands, each with distinct meanings, and ensuring consistency across bands is critical to avoid anomalies in the combined images. This paper proposes SatelliteMaker, a diffusion-based method that reconstructs missing data across varying levels of data loss while maintaining spatial, spectral, and temporal consistency. We also propose Digital Elevation Model (DEM) as a conditioning input and use tailored prompts to generate realistic images, making diffusion models applicable to quantitative remote sensing tasks. Additionally, we propose a VGG-Adapter module based on Distribution Loss, which reduces distribution discrepancy and ensures style consistency. Extensive experiments show that SatelliteMaker achieves state-of-the-art performance across multiple tasks.
Exploring Video-Based Driver Activity Recognition under Noisy Labels
As an open research topic in the field of deep learning, learning with noisy labels has attracted much attention and grown rapidly over the past ten years. Learning with label noise is crucial for driver distraction behavior recognition, as real-world video data often contains mislabeled samples, impacting model reliability and performance. However, label noise learning is barely explored in the driver activity recognition field. In this paper, we propose the first label noise learning approach for the driver activity recognition task. Based on the cluster assumption, we initially enable the model to learn clustering-friendly low-dimensional representations from given videos and assign the resultant embeddings into clusters. We subsequently perform co-refinement within each cluster to smooth the classifier outputs. Furthermore, we propose a flexible sample selection strategy that combines two selection criteria without relying on any hyperparameters to filter clean samples from the training dataset. We also incorporate a self-adaptive parameter into the sample selection process to enforce balancing across classes. A comprehensive variety of experiments on the public Drive&Act dataset for all granularity levels demonstrates the superior performance of our method in comparison with other label-denoising methods derived from the image classification field. The source code is available at https://github.com/ilonafan/DAR-noisy-labels.
comment: The source code is available at https://github.com/ilonafan/DAR-noisy-labels
Novel-view X-ray Projection Synthesis through Geometry-Integrated Deep Learning
X-ray imaging plays a crucial role in the medical field, providing essential insights into the internal anatomy of patients for diagnostics, image-guided procedures, and clinical decision-making. Traditional techniques often require multiple X-ray projections from various angles to obtain a comprehensive view, leading to increased radiation exposure and more complex clinical processes. This paper explores an innovative approach using the DL-GIPS model, which synthesizes X-ray projections from new viewpoints by leveraging a single existing projection. The model strategically manipulates geometry and texture features extracted from an initial projection to match new viewing angles. It then synthesizes the final projection by merging these modified geometry features with consistent texture information through an advanced image generation process. We demonstrate the effectiveness and broad applicability of the DL-GIPS framework through lung imaging examples, highlighting its potential to revolutionize stereoscopic and volumetric imaging by minimizing the need for extensive data acquisition.
comment: 6 pages, 3 figures, 1 table
TextDiffSeg: Text-guided Latent Diffusion Model for 3d Medical Images Segmentation
Diffusion Probabilistic Models (DPMs) have demonstrated significant potential in 3D medical image segmentation tasks. However, their high computational cost and inability to fully capture global 3D contextual information limit their practical applications. To address these challenges, we propose a novel text-guided diffusion model framework, TextDiffSeg. This method leverages a conditional diffusion framework that integrates 3D volumetric data with natural language descriptions, enabling cross-modal embedding and establishing a shared semantic space between visual and textual modalities. By enhancing the model's ability to recognize complex anatomical structures, TextDiffSeg incorporates innovative label embedding techniques and cross-modal attention mechanisms, effectively reducing computational complexity while preserving global 3D contextual integrity. Experimental results demonstrate that TextDiffSeg consistently outperforms existing methods in segmentation tasks involving kidney and pancreas tumors, as well as multi-organ segmentation scenarios. Ablation studies further validate the effectiveness of key components, highlighting the synergistic interaction between text fusion, image feature extractor, and label encoder. TextDiffSeg provides an efficient and accurate solution for 3D medical image segmentation, showcasing its broad applicability in clinical diagnosis and treatment planning.
HyperKING: Quantum-Classical Generative Adversarial Networks for Hyperspectral Image Restoration
Quantum machine intelligence starts showing its impact on satellite remote sensing (SRS). Also, recent literature exhibits that quantum generative intelligences encompass superior potential than their classical counterpart, motivating us to develop quantum generative adversarial networks (GANs) for SRS. However, existing quantum GANs are restricted by the limited quantum bit (qubit) resources of current quantum computers and process merely a small 2x2 grayscale image, far from being applicable to SRS. Recently, the novel concept of hybrid quantum-classical GAN, a quantum generator with a classical discriminator, has upgraded the order to 28x28 (still grayscale), whereas it is still insufficient for SRS. This motivates us to design a radically new hybrid framework, where both generator and discriminator are hybrid architectures. We demonstrate this feasibility, leading to a breakthrough of processing 128x128 hyperspectral images for SRS. Specifically, we design the quantum part with mathematically provable quantum full expressibility (FE) to address core signal processing tasks, wherein the FE property allows the quantum network to realize any valid quantum operator with appropriate training. The classical part, composed of convolutional layers, treats the read-in (compressing the optical information into limited qubits) and read-out (addressing the quantum collapse effect) procedures. The proposed innovative hybrid quantum GAN, named Hyperspectral Knot-like IntelligeNt dIscrimiNator and Generator (HyperKING), where knot partly symbolizes the quantum entanglement and partly the compressed quantum domain in the central part of the network architecture. HyperKING significantly surpasses the classical approaches in hyperspectral tensor completion, mixed noise removal (about 3dB improvement), and blind source separation results.
comment: 19 pages, 15 figures, accepted by IEEE Transactions on Geoscience and Remote Sensing
Analysis of the MICCAI Brain Tumor Segmentation -- Metastases (BraTS-METS) 2025 Lighthouse Challenge: Brain Metastasis Segmentation on Pre- and Post-treatment MRI
Despite continuous advancements in cancer treatment, brain metastatic disease remains a significant complication of primary cancer and is associated with an unfavorable prognosis. One approach for improving diagnosis, management, and outcomes is to implement algorithms based on artificial intelligence for the automated segmentation of both pre- and post-treatment MRI brain images. Such algorithms rely on volumetric criteria for lesion identification and treatment response assessment, which are still not available in clinical practice. Therefore, it is critical to establish tools for rapid volumetric segmentations methods that can be translated to clinical practice and that are trained on high quality annotated data. The BraTS-METS 2025 Lighthouse Challenge aims to address this critical need by establishing inter-rater and intra-rater variability in dataset annotation by generating high quality annotated datasets from four individual instances of segmentation by neuroradiologists while being recorded on video (two instances doing "from scratch" and two instances after AI pre-segmentation). This high-quality annotated dataset will be used for testing phase in 2025 Lighthouse challenge and will be publicly released at the completion of the challenge. The 2025 Lighthouse challenge will also release the 2023 and 2024 segmented datasets that were annotated using an established pipeline of pre-segmentation, student annotation, two neuroradiologists checking, and one neuroradiologist finalizing the process. It builds upon its previous edition by including post-treatment cases in the dataset. Using these high-quality annotated datasets, the 2025 Lighthouse challenge plans to test benchmark algorithms for automated segmentation of pre-and post-treatment brain metastases (BM), trained on diverse and multi-institutional datasets of MRI images obtained from patients with brain metastases.
comment: 28 pages, 4 figures, 2 tables
GLUSE: Enhanced Channel-Wise Adaptive Gated Linear Units SE for Onboard Satellite Earth Observation Image Classification
This study introduces ResNet-GLUSE, a lightweight ResNet variant enhanced with Gated Linear Unit-enhanced Squeeze-and-Excitation (GLUSE), an adaptive channel-wise attention mechanism. By integrating dynamic gating into the traditional SE framework, GLUSE improves feature recalibration while maintaining computational efficiency. Experiments on EuroSAT and PatternNet datasets confirm its effectiveness, achieving exceeding \textbf{94\% and 98\% accuracy}, respectively. While \textbf{MobileViT achieves 99\% accuracy}, ResNet-GLUSE offers \textbf{33x fewer parameters, 27x fewer FLOPs, 33x smaller model size (MB), $\approx$6x lower power consumption (W), and $\approx$3x faster inference time (s)}, making it significantly more efficient for onboard satellite deployment. Furthermore, due to its simplicity, ResNet-GLUSE can be easily mimicked for \textbf{neuromorphic computing}, enabling ultra-low power inference at just \textbf{852.30 mW} on Akida Brainchip. This balance between high accuracy and ultra-low resource consumption establishes ResNet-GLUSE as a practical solution for real-time Earth Observation (EO) tasks. Reproducible codes are available in our shared repository.
comment: Under review. arXiv admin note: text overlap with arXiv:2411.00209
Regist3R: Incremental Registration with Stereo Foundation Model
Multi-view 3D reconstruction has remained an essential yet challenging problem in the field of computer vision. While DUSt3R and its successors have achieved breakthroughs in 3D reconstruction from unposed images, these methods exhibit significant limitations when scaling to multi-view scenarios, including high computational cost and cumulative error induced by global alignment. To address these challenges, we propose Regist3R, a novel stereo foundation model tailored for efficient and scalable incremental reconstruction. Regist3R leverages an incremental reconstruction paradigm, enabling large-scale 3D reconstructions from unordered and many-view image collections. We evaluate Regist3R on public datasets for camera pose estimation and 3D reconstruction. Our experiments demonstrate that Regist3R achieves comparable performance with optimization-based methods while significantly improving computational efficiency, and outperforms existing multi-view reconstruction models. Furthermore, to assess its performance in real-world applications, we introduce a challenging oblique aerial dataset which has long spatial spans and hundreds of views. The results highlight the effectiveness of Regist3R. We also demonstrate the first attempt to reconstruct large-scale scenes encompassing over thousands of views through pointmap-based foundation models, showcasing its potential for practical applications in large-scale 3D reconstruction tasks, including urban modeling, aerial mapping, and beyond.
comment: 19 pages
Wavelet-based Variational Autoencoders for High-Resolution Image Generation
Variational Autoencoders (VAEs) are powerful generative models capable of learning compact latent representations. However, conventional VAEs often generate relatively blurry images due to their assumption of an isotropic Gaussian latent space and constraints in capturing high-frequency details. In this paper, we explore a novel wavelet-based approach (Wavelet-VAE) in which the latent space is constructed using multi-scale Haar wavelet coefficients. We propose a comprehensive method to encode the image features into multi-scale detail and approximation coefficients and introduce a learnable noise parameter to maintain stochasticity. We thoroughly discuss how to reformulate the reparameterization trick, address the KL divergence term, and integrate wavelet sparsity principles into the training objective. Our experimental evaluation on CIFAR-10 and other high-resolution datasets demonstrates that the Wavelet-VAE improves visual fidelity and recovers higher-resolution details compared to conventional VAEs. We conclude with a discussion of advantages, potential limitations, and future research directions for wavelet-based generative modeling.
Dual Deep Learning Approach for Non-invasive Renal Tumour Subtyping with VERDICT-MRI
This work aims to characterise renal tumour microstructure using diffusion MRI (dMRI); via the Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumours (VERDICT)-MRI framework with self-supervised learning. Comprehensive datasets were acquired from 14 patients with 15 biopsy-confirmed renal tumours, with nine b-values in the range b=[0,2500]s/mm2. A three-compartment VERDICT model for renal tumours was fitted to the dMRI data using a self-supervised deep neural network, and ROIs were drawn by an experienced uroradiologist. An economical acquisition protocol for future studies with larger patient cohorts was optimised using a recursive feature selection approach. The VERDICT model described the diffusion data in renal tumours more accurately than IVIM or ADC. Combined with self-supervised deep learning, VERDICT identified significant differences in the intracellular volume fraction between cancerous and normal tissue, and in the vascular volume fraction between vascular and non-vascular. The feature selector yields a 4 b-value acquisition of b = [70,150,1000,2000], with a duration of 14 minutes.
comment: 19 pages, 9 figures
Self-Supervised Enhancement of Forward-Looking Sonar Images: Bridging Cross-Modal Degradation Gaps through Feature Space Transformation and Multi-Frame Fusion
Enhancing forward-looking sonar images is critical for accurate underwater target detection. Current deep learning methods mainly rely on supervised training with simulated data, but the difficulty in obtaining high-quality real-world paired data limits their practical use and generalization. Although self-supervised approaches from remote sensing partially alleviate data shortages, they neglect the cross-modal degradation gap between sonar and remote sensing images. Directly transferring pretrained weights often leads to overly smooth sonar images, detail loss, and insufficient brightness. To address this, we propose a feature-space transformation that maps sonar images from the pixel domain to a robust feature domain, effectively bridging the degradation gap. Additionally, our self-supervised multi-frame fusion strategy leverages complementary inter-frame information to naturally remove speckle noise and enhance target-region brightness. Experiments on three self-collected real-world forward-looking sonar datasets show that our method significantly outperforms existing approaches, effectively suppressing noise, preserving detailed edges, and substantially improving brightness, demonstrating strong potential for underwater target detection applications.
A Semi-Self-Supervised Approach for Dense-Pattern Video Object Segmentation
Video object segmentation (VOS) -- predicting pixel-level regions for objects within each frame of a video -- is particularly challenging in agricultural scenarios, where videos of crops include hundreds of small, dense, and occluded objects (stems, leaves, flowers, pods) that sway and move unpredictably in the wind. Supervised training is the state-of-the-art for VOS, but it requires large, pixel-accurate, human-annotated videos, which are costly to produce for videos with many densely packed objects in each frame. To address these challenges, we proposed a semi-self-supervised spatiotemporal approach for dense-VOS (DVOS) using a diffusion-based method through multi-task (reconstruction and segmentation) learning. We train the model first with synthetic data that mimics the camera and object motion of real videos and then with pseudo-labeled videos. We evaluate our DVOS method for wheat head segmentation from a diverse set of videos (handheld, drone-captured, different field locations, and different growth stages -- spanning from Boot-stage to Wheat-mature and Harvest-ready). Despite using only a few manually annotated video frames, the proposed approach yielded a high-performing model, achieving a Dice score of 0.79 when tested on a drone-captured external test set. While our method was evaluated on wheat head segmentation, it can be extended to other crops and domains, such as crowd analysis or microscopic image analysis.
Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
comment: In this new version: accepted version in Radiology: Artificial Intelligence. Note regarding the license/copyright: This submission is conforming with the RSNA Preprint policy available here: https://pubs.rsna.org/page/ai/author-instructions, which REQUIRES authors to update the version on preprint servers with the accepted version and the copyright notice as indicated in the PDF
Exploring Self-supervised Skeleton-based Action Recognition in Occluded Environments IJCNN 2025
To integrate action recognition into autonomous robotic systems, it is essential to address challenges such as person occlusions-a common yet often overlooked scenario in existing self-supervised skeleton-based action recognition methods. In this work, we propose IosPSTL, a simple and effective self-supervised learning framework designed to handle occlusions. IosPSTL combines a cluster-agnostic KNN imputer with an Occluded Partial Spatio-Temporal Learning (OPSTL) strategy. First, we pre-train the model on occluded skeleton sequences. Then, we introduce a cluster-agnostic KNN imputer that performs semantic grouping using k-means clustering on sequence embeddings. It imputes missing skeleton data by applying K-Nearest Neighbors in the latent space, leveraging nearby sample representations to restore occluded joints. This imputation generates more complete skeleton sequences, which significantly benefits downstream self-supervised models. To further enhance learning, the OPSTL module incorporates Adaptive Spatial Masking (ASM) to make better use of intact, high-quality skeleton sequences during training. Our method achieves state-of-the-art performance on the occluded versions of the NTU-60 and NTU-120 datasets, demonstrating its robustness and effectiveness under challenging conditions. Code is available at https://github.com/cyfml/OPSTL.
comment: Accepted to IJCNN 2025. Code is available at https://github.com/cyfml/OPSTL
reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis
This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at https://bigearth.net.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025. Our code is available at https://github.com/rsim-tu-berlin/bigearthnet-pipeline
StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V
comment: https://github.com/Picsart-AI-Research/StreamingT2V
Quantum Generative Learning for High-Resolution Medical Image Generation
Integration of quantum computing in generative machine learning models has the potential to offer benefits such as training speed-up and superior feature extraction. However, the existing quantum generative adversarial networks (QGANs) fail to generate high-quality images due to their patch-based, pixel-wise learning approaches. These methods capture only local details, ignoring the global structure and semantic information of images. In this work, we address these challenges by proposing a quantum image generative learning (QIGL) approach for high-quality medical image generation. Our proposed quantum generator leverages variational quantum circuit approach addressing scalability issues by extracting principal components from the images instead of dividing them into patches. Additionally, we integrate the Wasserstein distance within the QIGL framework to generate a diverse set of medical samples. Through a systematic set of simulations on X-ray images from knee osteoarthritis and medical MNIST datasets, our model demonstrates superior performance, achieving the lowest Fr\'echet Inception Distance (FID) scores compared to its classical counterpart and advanced QGAN models reported in the literature.
Diffusion-empowered AutoPrompt MedSAM
MedSAM, a medical foundation model derived from the SAM architecture, has demonstrated notable success across diverse medical domains. However, its clinical application faces two major challenges: the dependency on labor-intensive manual prompt generation, which imposes a significant burden on clinicians, and the absence of semantic labeling in the generated segmentation masks for organs or lesions, limiting its practicality for non-expert users. To address these limitations, we propose AutoMedSAM, an end-to-end framework derived from SAM, designed to enhance usability and segmentation performance. AutoMedSAM retains MedSAM's image encoder and mask decoder structure while introducing a novel diffusion-based class prompt encoder. The diffusion-based encoder employs a dual-decoder structure to collaboratively generate prompt embeddings guided by sparse and dense prompt definitions. These embeddings enhance the model's ability to understand and process clinical imagery autonomously. With this encoder, AutoMedSAM leverages class prompts to embed semantic information into the model's predictions, transforming MedSAM's semi-automated pipeline into a fully automated workflow. Furthermore, AutoMedSAM employs an uncertainty-aware joint optimization strategy during training to effectively inherit MedSAM's pre-trained knowledge while improving generalization by integrating multiple loss functions. Experimental results across diverse datasets demonstrate that AutoMedSAM achieves superior performance while broadening its applicability to both clinical settings and non-expert users. Code is available at https://github.com/HP-ML/AutoPromptMedSAM.git.
Multimedia
Towards Realistic Low-Light Image Enhancement via ISP Driven Data Modeling
Deep neural networks (DNNs) have recently become the leading method for low-light image enhancement (LLIE). However, despite significant progress, their outputs may still exhibit issues such as amplified noise, incorrect white balance, or unnatural enhancements when deployed in real world applications. A key challenge is the lack of diverse, large scale training data that captures the complexities of low-light conditions and imaging pipelines. In this paper, we propose a novel image signal processing (ISP) driven data synthesis pipeline that addresses these challenges by generating unlimited paired training data. Specifically, our pipeline begins with easily collected high-quality normal-light images, which are first unprocessed into the RAW format using a reverse ISP. We then synthesize low-light degradations directly in the RAW domain. The resulting data is subsequently processed through a series of ISP stages, including white balance adjustment, color space conversion, tone mapping, and gamma correction, with controlled variations introduced at each stage. This broadens the degradation space and enhances the diversity of the training data, enabling the generated data to capture a wide range of degradations and the complexities inherent in the ISP pipeline. To demonstrate the effectiveness of our synthetic pipeline, we conduct extensive experiments using a vanilla UNet model consisting solely of convolutional layers, group normalization, GeLU activation, and convolutional block attention modules (CBAMs). Extensive testing across multiple datasets reveals that the vanilla UNet model trained with our data synthesis pipeline delivers high fidelity, visually appealing enhancement results, surpassing state-of-the-art (SOTA) methods both quantitatively and qualitatively.
comment: 17 pages, 11 tables, 10 figures
Interpreting the Linear Structure of Vision-language Model Embedding Spaces
Vision-language models encode images and text in a joint space, minimizing the distance between corresponding image and text pairs. How are language and images organized in this joint space, and how do the models encode meaning and modality? To investigate this, we train and release sparse autoencoders (SAEs) on the embedding spaces of four vision-language models (CLIP, SigLIP, SigLIP2, and AIMv2). SAEs approximate model embeddings as sparse linear combinations of learned directions, or "concepts". We find that, compared to other methods of linear feature learning, SAEs are better at reconstructing the real embeddings, while also able to retain the most sparsity. Retraining SAEs with different seeds or different data diet leads to two findings: the rare, specific concepts captured by the SAEs are liable to change drastically, but we also show that the key commonly-activating concepts extracted by SAEs are remarkably stable across runs. Interestingly, while most concepts are strongly unimodal in activation, we find they are not merely encoding modality per se. Many lie close to - but not entirely within - the subspace defining modality, suggesting that they encode cross-modal semantics despite their unimodal usage. To quantify this bridging behavior, we introduce the Bridge Score, a metric that identifies concept pairs which are both co-activated across aligned image-text inputs and geometrically aligned in the shared space. This reveals that even unimodal concepts can collaborate to support cross-modal integration. We release interactive demos of the SAEs for all models, allowing researchers to explore the organization of the concept spaces. Overall, our findings uncover a sparse linear structure within VLM embedding spaces that is shaped by modality, yet stitched together through latent bridges-offering new insight into how multimodal meaning is constructed.
Consensus Entropy: Harnessing Multi-VLM Agreement for Self-Verifying and Self-Improving OCR
The Optical Character Recognition (OCR) task is important for evaluating Vision-Language Models (VLMs) and providing high-quality data sources for LLM training data. While state-of-the-art VLMs show improved average OCR accuracy, they still struggle with sample-level quality degradation and lack reliable automatic detection of low-quality outputs. We introduce Consensus Entropy (CE), a training-free post-inference method that quantifies OCR uncertainty by aggregating outputs from multiple VLMs. Our approach exploits a key insight: correct VLM OCR predictions converge in output space while errors diverge. We develop a lightweight multi-model framework that effectively identifies problematic samples, selects the best outputs and combines model strengths. Experiments across multiple OCR benchmarks and VLMs demonstrate that CE outperforms VLM-as-judge approaches and single-model baselines at the same cost and achieves state-of-the-art results across multiple metrics. For instance, our solution demonstrates: achieving 15.2% higher F1 scores than VLM-as-judge methods in quality verification, delivering 6.0% accuracy gains on mathematical calculation tasks, and requiring rephrasing only 7.3% of inputs while maintaining overall performance. Notably, the entire process requires neither training nor supervision while maintaining plug-and-play functionality throughout.
Taming Data and Transformers for Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
Exploring Self-supervised Skeleton-based Action Recognition in Occluded Environments IJCNN 2025
To integrate action recognition into autonomous robotic systems, it is essential to address challenges such as person occlusions-a common yet often overlooked scenario in existing self-supervised skeleton-based action recognition methods. In this work, we propose IosPSTL, a simple and effective self-supervised learning framework designed to handle occlusions. IosPSTL combines a cluster-agnostic KNN imputer with an Occluded Partial Spatio-Temporal Learning (OPSTL) strategy. First, we pre-train the model on occluded skeleton sequences. Then, we introduce a cluster-agnostic KNN imputer that performs semantic grouping using k-means clustering on sequence embeddings. It imputes missing skeleton data by applying K-Nearest Neighbors in the latent space, leveraging nearby sample representations to restore occluded joints. This imputation generates more complete skeleton sequences, which significantly benefits downstream self-supervised models. To further enhance learning, the OPSTL module incorporates Adaptive Spatial Masking (ASM) to make better use of intact, high-quality skeleton sequences during training. Our method achieves state-of-the-art performance on the occluded versions of the NTU-60 and NTU-120 datasets, demonstrating its robustness and effectiveness under challenging conditions. Code is available at https://github.com/cyfml/OPSTL.
comment: Accepted to IJCNN 2025. Code is available at https://github.com/cyfml/OPSTL
Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction
Document parsing is essential for converting unstructured and semi-structured documents such as contracts, academic papers, and invoices into structured, machine-readable data. Document parsing reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It outlines future research directions and emphasizes the importance of developing larger and more diverse datasets.
StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V
comment: https://github.com/Picsart-AI-Research/StreamingT2V
Computation and Language
BitNet b1.58 2B4T Technical Report
We introduce BitNet b1.58 2B4T, the first open-source, native 1-bit Large Language Model (LLM) at the 2-billion parameter scale. Trained on a corpus of 4 trillion tokens, the model has been rigorously evaluated across benchmarks covering language understanding, mathematical reasoning, coding proficiency, and conversational ability. Our results demonstrate that BitNet b1.58 2B4T achieves performance on par with leading open-weight, full-precision LLMs of similar size, while offering significant advantages in computational efficiency, including substantially reduced memory footprint, energy consumption, and decoding latency. To facilitate further research and adoption, the model weights are released via Hugging Face along with open-source inference implementations for both GPU and CPU architectures.
comment: Work in progress
Dysarthria Normalization via Local Lie Group Transformations for Robust ASR
We present a geometry-driven method for normalizing dysarthric speech using local Lie group transformations of spectrograms. Time, frequency, and amplitude distortions are modeled as smooth, invertible deformations, parameterized by scalar fields and applied via exponential maps. A neural network is trained to infer these fields from synthetic distortions of typical speech-without using any pathological data. At test time, the model applies an approximate inverse to real dysarthric inputs. Despite zero-shot generalization, we observe substantial ASR gains, including up to 16 percentage points WER reduction on challenging TORGO samples, with no degradation on clean speech. This work introduces a principled, interpretable approach for robust speech recognition under motor speech disorders
comment: Preprint. 11 pages, 3 figures, 2 tables, 8 appendices. Code and data available upon request
Advancing Arabic Speech Recognition Through Large-Scale Weakly Supervised Learning
Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like conversational agents, industrial robotics, call center automation, and automated subtitling. However, developing high-performance ASR models remains challenging, particularly for low-resource languages like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and labor-intensive to produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the Conformer architecture. Our model is trained from scratch on 15,000 hours of weakly annotated speech data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for costly manual transcriptions. Despite the absence of human-verified labels, our approach attains state-of-the-art (SOTA) performance, exceeding all previous efforts in the field of Arabic ASR on the standard benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-efficient alternative to traditional supervised approaches, paving the way for improved ASR systems in low resource settings.
Watermarking Needs Input Repetition Masking
Recent advancements in Large Language Models (LLMs) raised concerns over potential misuse, such as for spreading misinformation. In response two counter measures emerged: machine learning-based detectors that predict if text is synthetic, and LLM watermarking, which subtly marks generated text for identification and attribution. Meanwhile, humans are known to adjust language to their conversational partners both syntactically and lexically. By implication, it is possible that humans or unwatermarked LLMs could unintentionally mimic properties of LLM generated text, making counter measures unreliable. In this work we investigate the extent to which such conversational adaptation happens. We call the concept $\textit{mimicry}$ and demonstrate that both humans and LLMs end up mimicking, including the watermarking signal even in seemingly improbable settings. This challenges current academic assumptions and suggests that for long-term watermarking to be reliable, the likelihood of false positives needs to be significantly lower, while longer word sequences should be used for seeding watermarking mechanisms.
d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning
Recent large language models (LLMs) have demonstrated strong reasoning capabilities that benefits from online reinforcement learning (RL). These capabilities have primarily been demonstrated within the left-to-right autoregressive (AR) generation paradigm. In contrast, non-autoregressive paradigms based on diffusion generate text in a coarse-to-fine manner. Although recent diffusion-based large language models (dLLMs) have achieved competitive language modeling performance compared to their AR counterparts, it remains unclear if dLLMs can also leverage recent advances in LLM reasoning. To this end, we propose d1, a framework to adapt pre-trained masked dLLMs into reasoning models via a combination of supervised finetuning (SFT) and RL. Specifically, we develop and extend techniques to improve reasoning in pretrained dLLMs: (a) we utilize a masked SFT technique to distill knowledge and instill self-improvement behavior directly from existing datasets, and (b) we introduce a novel critic-free, policy-gradient based RL algorithm called diffu-GRPO. Through empirical studies, we investigate the performance of different post-training recipes on multiple mathematical and logical reasoning benchmarks. We find that d1 yields the best performance and significantly improves performance of a state-of-the-art dLLM.
comment: 25 pages, project page at https://dllm-reasoning.github.io/
What Do Large Language Models Know? Tacit Knowledge as a Potential Causal-Explanatory Structure
It is sometimes assumed that Large Language Models (LLMs) know language, or for example that they know that Paris is the capital of France. But what -- if anything -- do LLMs actually know? In this paper, I argue that LLMs can acquire tacit knowledge as defined by Martin Davies (1990). Whereas Davies himself denies that neural networks can acquire tacit knowledge, I demonstrate that certain architectural features of LLMs satisfy the constraints of semantic description, syntactic structure, and causal systematicity. Thus, tacit knowledge may serve as a conceptual framework for describing, explaining, and intervening on LLMs and their behavior.
comment: Accepted for publication in Philosophy of Science
SALAD: Improving Robustness and Generalization through Contrastive Learning with Structure-Aware and LLM-Driven Augmented Data NAACL 2025
In various natural language processing (NLP) tasks, fine-tuning Pre-trained Language Models (PLMs) often leads to the issue of spurious correlations, which negatively impacts performance, particularly when dealing with out-of-distribution data. To address this problem, we propose SALAD}(Structure Aware and LLM-driven Augmented Data), a novel approach designed to enhance model robustness and generalization by generating structure-aware and counterfactually augmented data for contrastive learning. Our method leverages a tagging-based approach to generate structure-aware positive samples and utilizes large language models (LLMs) to generate counterfactual negative samples with diverse sentence patterns. By applying contrastive learning, SALAD enables the model to focus on learning the structural relationships between key sentence components while minimizing reliance on spurious correlations. We validate our approach through experiments on three tasks: Sentiment Classification, Sexism Detection, and Natural Language Inference. The results demonstrate that SALAD not only improves model robustness and performance across different environments but also enhances generalization to out-of-distribution datasets and cross-domain scenarios.
comment: Accepted to NAACL 2025 main. 15 pages, 4 figures
Trusting CHATGPT: how minor tweaks in the prompts lead to major differences in sentiment classification
One fundamental question for the social sciences today is: how much can we trust highly complex predictive models like ChatGPT? This study tests the hypothesis that subtle changes in the structure of prompts do not produce significant variations in the classification results of sentiment polarity analysis generated by the Large Language Model GPT-4o mini. Using a dataset of 100.000 comments in Spanish on four Latin American presidents, the model classified the comments as positive, negative, or neutral on 10 occasions, varying the prompts slightly each time. The experimental methodology included exploratory and confirmatory analyses to identify significant discrepancies among classifications. The results reveal that even minor modifications to prompts such as lexical, syntactic, or modal changes, or even their lack of structure impact the classifications. In certain cases, the model produced inconsistent responses, such as mixing categories, providing unsolicited explanations, or using languages other than Spanish. Statistical analysis using Chi-square tests confirmed significant differences in most comparisons between prompts, except in one case where linguistic structures were highly similar. These findings challenge the robustness and trust of Large Language Models for classification tasks, highlighting their vulnerability to variations in instructions. Moreover, it was evident that the lack of structured grammar in prompts increases the frequency of hallucinations. The discussion underscores that trust in Large Language Models is based not only on technical performance but also on the social and institutional relationships underpinning their use.
comment: in Spanish language
Mapping Controversies Using Artificial Intelligence: An Analysis of the Hamas-Israel Conflict on YouTube
This article analyzes the Hamas-Israel controversy through 253,925 Spanish-language YouTube comments posted between October 2023 and January 2024, following the October 7 attack that escalated the conflict. Adopting an interdisciplinary approach, the study combines the analysis of controversies from Science and Technology Studies (STS) with advanced computational methodologies, specifically Natural Language Processing (NLP) using the BERT (Bidirectional Encoder Representations from Transformers) model. Using this approach, the comments were automatically classified into seven categories, reflecting pro-Palestinian, pro-Israeli, anti- Palestinian, anti-Israeli positions, among others. The results show a predominance of pro- Palestinian comments, although pro-Israeli and anti-Palestinian comments received more "likes." This study also applies the agenda-setting theory to demonstrate how media coverage significantly influences public perception, observing a notable shift in public opinion, transitioning from a pro- Palestinian stance to a more critical position towards Israel. This work highlights the importance of combining social science perspectives with technological tools in the analysis of controversies, presenting a methodological innovation by integrating computational analysis with critical social theories to address complex public opinion phenomena and media narratives.
comment: in Spanish language
Poem Meter Classification of Recited Arabic Poetry: Integrating High-Resource Systems for a Low-Resource Task
Arabic poetry is an essential and integral part of Arabic language and culture. It has been used by the Arabs to spot lights on their major events such as depicting brutal battles and conflicts. They also used it, as in many other languages, for various purposes such as romance, pride, lamentation, etc. Arabic poetry has received major attention from linguistics over the decades. One of the main characteristics of Arabic poetry is its special rhythmic structure as opposed to prose. This structure is referred to as a meter. Meters, along with other poetic characteristics, are intensively studied in an Arabic linguistic field called "\textit{Aroud}". Identifying these meters for a verse is a lengthy and complicated process. It also requires technical knowledge in \textit{Aruod}. For recited poetry, it adds an extra layer of processing. Developing systems for automatic identification of poem meters for recited poems need large amounts of labelled data. In this study, we propose a state-of-the-art framework to identify the poem meters of recited Arabic poetry, where we integrate two separate high-resource systems to perform the low-resource task. To ensure generalization of our proposed architecture, we publish a benchmark for this task for future research.
Multilingual Contextualization of Large Language Models for Document-Level Machine Translation
Large language models (LLMs) have demonstrated strong performance in sentence-level machine translation, but scaling to document-level translation remains challenging, particularly in modeling long-range dependencies and discourse phenomena across sentences and paragraphs. In this work, we propose a method to improve LLM-based long-document translation through targeted fine-tuning on high-quality document-level data, which we curate and introduce as DocBlocks. Our approach supports multiple translation paradigms, including direct document-to-document and chunk-level translation, by integrating instructions both with and without surrounding context. This enables models to better capture cross-sentence dependencies while maintaining strong sentence-level translation performance. Experimental results show that incorporating multiple translation paradigms improves document-level translation quality and inference speed compared to prompting and agent-based methods.
comment: 9 pages, work-in-progress
Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models -
Despite recent advances in Large Vision Language Models (LVLMs), these models still suffer from generating hallucinatory responses that do not align with the visual input provided. To mitigate such hallucinations, we introduce Efficient Contrastive Decoding (ECD), a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time. By contrasting token probabilities and hallucination scores, ECD subtracts hallucinated concepts from the original distribution, effectively suppressing hallucinations. Notably, our proposed method can be applied to any open-source LVLM and does not require additional LVLM training. We evaluate our method on several benchmark datasets and across different LVLMs. Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
Entropy-Guided Watermarking for LLMs: A Test-Time Framework for Robust and Traceable Text Generation
The rapid development of Large Language Models (LLMs) has intensified concerns about content traceability and potential misuse. Existing watermarking schemes for sampled text often face trade-offs between maintaining text quality and ensuring robust detection against various attacks. To address these issues, we propose a novel watermarking scheme that improves both detectability and text quality by introducing a cumulative watermark entropy threshold. Our approach is compatible with and generalizes existing sampling functions, enhancing adaptability. Experimental results across multiple LLMs show that our scheme significantly outperforms existing methods, achieving over 80\% improvements on widely-used datasets, e.g., MATH and GSM8K, while maintaining high detection accuracy.
Gauging Overprecision in LLMs: An Empirical Study
Recently, overconfidence in large language models (LLMs) has garnered considerable attention due to its fundamental importance in quantifying the trustworthiness of LLM generation. However, existing approaches prompt the \textit{black box LLMs} to produce their confidence (\textit{verbalized confidence}), which can be subject to many biases and hallucinations. Inspired by a different aspect of overconfidence in cognitive science called \textit{overprecision}, we designed a framework for its study in black box LLMs. This framework contains three main phases: 1) generation, 2) refinement and 3) evaluation. In the generation phase we prompt the LLM to generate answers to numerical questions in the form of intervals with a certain level of confidence. This confidence level is imposed in the prompt and not required for the LLM to generate as in previous approaches. We use various prompting techniques and use the same prompt multiple times to gauge the effects of randomness in the generation process. In the refinement phase, answers from the previous phase are refined to generate better answers. The LLM answers are evaluated and studied in the evaluation phase to understand its internal workings. This study allowed us to gain various insights into LLM overprecision: 1) LLMs are highly uncalibrated for numerical tasks 2) {\color{blue}there is no correlation between the length of the interval and the imposed confidence level, which can be symptomatic of a a) lack of understanding of the concept of confidence or b) inability to adjust self-confidence by following instructions}, {\color{blue}3)} LLM numerical precision differs depending on the task, scale of answer and prompting technique {\color{blue}4) Refinement of answers doesn't improve precision in most cases}. We believe this study offers new perspectives on LLM overconfidence and serves as a strong baseline for overprecision in LLMs.
comment: 16 pages
Selective Demonstration Retrieval for Improved Implicit Hate Speech Detection
Hate speech detection is a crucial area of research in natural language processing, essential for ensuring online community safety. However, detecting implicit hate speech, where harmful intent is conveyed in subtle or indirect ways, remains a major challenge. Unlike explicit hate speech, implicit expressions often depend on context, cultural subtleties, and hidden biases, making them more challenging to identify consistently. Additionally, the interpretation of such speech is influenced by external knowledge and demographic biases, resulting in varied detection results across different language models. Furthermore, Large Language Models often show heightened sensitivity to toxic language and references to vulnerable groups, which can lead to misclassifications. This over-sensitivity results in false positives (incorrectly identifying harmless statements as hateful) and false negatives (failing to detect genuinely harmful content). Addressing these issues requires methods that not only improve detection precision but also reduce model biases and enhance robustness. To address these challenges, we propose a novel method, which utilizes in-context learning without requiring model fine-tuning. By adaptively retrieving demonstrations that focus on similar groups or those with the highest similarity scores, our approach enhances contextual comprehension. Experimental results show that our method outperforms current state-of-the-art techniques. Implementation details and code are available at TBD.
Bayesian dynamic borrowing considering semantic similarity between outcomes for disproportionality analysis in FAERS
We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs). The method embeds a robust meta-analytic predictive (MAP) prior within a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs) to enable weighted information sharing from MedDRA Preferred Terms (PTs) that are clinical similar to the target PT. This continuous similarity-based borrowing addresses limitation of rigid hierarchical grouping in current disproportionality analysis (DPA). Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evalute this approach - termed IC SSM - against standard Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term (HLGT) level. A novel references set (PVLens), derived from FDA product label updates, enabled prospective evaluation of method performance in identifying AEs prior to official labeling. The IC SSM approach demonstrated improved sensitivity compared to both traditional IC and HLGT-based borrowing, with minor trade-offs in F1 scores and Youden's index. IC SSM consistently identified more true positives and detected signals over 5 months sooner than traditional IC. Despite a marginally lower aggregate Youden's index, IC SSM showed higher performance in the early post-marketing period, providing more stable and relevant estimates than HLGT-based borrowing and traditional IC. These findings support the use of SSM-informed Bayesian borrowing as a scalable and context-aware enhancement to traditional DPA methods. Future research should validate this approach across other datasets and explore additional similarity metrics and Bayesian inference strategies using case-level data.
comment: 30 pages, 7 figures, 5 supplementary figures
Language Models as Quasi-Crystalline Thought: Structure, Constraint, and Emergence in Generative Systems
This essay proposes an analogy between large language models (LLMs) and quasicrystals: systems that exhibit global coherence without periodic repetition and that are generated through local constraints. While LLMs are often evaluated in terms of predictive accuracy, factuality, or alignment, this structural perspective suggests that their most characteristic behavior is the production of internally resonant linguistic patterns. Just as quasicrystals forced a redefinition of order in physical systems, viewing LLMs as generators of quasi-structured language opens new paths for evaluation and design: privileging propagation of constraint over token-level accuracy, and coherence of form over fixed meaning. LLM outputs should be read not only for what they say, but for the patterns of constraint and coherence that organize them. This shift reframes generative language as a space of emergent patterning: LLMs are neither fully random nor strictly rule-based, but defined by a logic of constraint, resonance, and structural depth.
SemEval-2025 Task 3: Mu-SHROOM, the Multilingual Shared Task on Hallucinations and Related Observable Overgeneration Mistakes SemEval-2025
We present the Mu-SHROOM shared task which is focused on detecting hallucinations and other overgeneration mistakes in the output of instruction-tuned large language models (LLMs). Mu-SHROOM addresses general-purpose LLMs in 14 languages, and frames the hallucination detection problem as a span-labeling task. We received 2,618 submissions from 43 participating teams employing diverse methodologies. The large number of submissions underscores the interest of the community in hallucination detection. We present the results of the participating systems and conduct an empirical analysis to identify key factors contributing to strong performance in this task. We also emphasize relevant current challenges, notably the varying degree of hallucinations across languages and the high annotator disagreement when labeling hallucination spans.
comment: Mu-SHROOM is part of SemEval-2025 (Task 3). TBP: Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
LLM-as-a-Judge: Reassessing the Performance of LLMs in Extractive QA
Extractive reading comprehension question answering (QA) datasets are typically evaluated using Exact Match (EM) and F1-score, but these metrics often fail to fully capture model performance. With the success of large language models (LLMs), they have been employed in various tasks, including serving as judges (LLM-as-a-judge). In this paper, we reassess the performance of QA models using LLM-as-a-judge across four reading comprehension QA datasets. We examine different families of LLMs and various answer types to evaluate the effectiveness of LLM-as-a-judge in these tasks. Our results show that LLM-as-a-judge is highly correlated with human judgments and can replace traditional EM/F1 metrics. By using LLM-as-a-judge, the correlation with human judgments improves significantly, from 0.17 (EM) and 0.36 (F1-score) to 0.85. These findings confirm that EM and F1 metrics underestimate the true performance of the QA models. While LLM-as-a-judge is not perfect for more difficult answer types (e.g., job), it still outperforms EM/F1, and we observe no bias issues, such as self-preference, when the same model is used for both the QA and judgment tasks.
comment: 17 pages; code and data are available at https://github.com/Alab-NII/llm-judge-extract-qa
Robust and Fine-Grained Detection of AI Generated Texts ACL 2025
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
comment: ACL 2025 Feb ARR Submission
ADAT: Time-Series-Aware Adaptive Transformer Architecture for Sign Language Translation
Current sign language machine translation systems rely on recognizing hand movements, facial expressions and body postures, and natural language processing, to convert signs into text. Recent approaches use Transformer architectures to model long-range dependencies via positional encoding. However, they lack accuracy in recognizing fine-grained, short-range temporal dependencies between gestures captured at high frame rates. Moreover, their high computational complexity leads to inefficient training. To mitigate these issues, we propose an Adaptive Transformer (ADAT), which incorporates components for enhanced feature extraction and adaptive feature weighting through a gating mechanism to emphasize contextually relevant features while reducing training overhead and maintaining translation accuracy. To evaluate ADAT, we introduce MedASL, the first public medical American Sign Language dataset. In sign-to-gloss-to-text experiments, ADAT outperforms the encoder-decoder transformer, improving BLEU-4 accuracy by 0.1% while reducing training time by 14.33% on PHOENIX14T and 3.24% on MedASL. In sign-to-text experiments, it improves accuracy by 8.7% and reduces training time by 2.8% on PHOENIX14T and achieves 4.7% higher accuracy and 7.17% faster training on MedASL. Compared to encoder-only and decoder-only baselines in sign-to-text, ADAT is at least 6.8% more accurate despite being up to 12.1% slower due to its dual-stream structure.
An LLM-as-a-judge Approach for Scalable Gender-Neutral Translation Evaluation
Gender-neutral translation (GNT) aims to avoid expressing the gender of human referents when the source text lacks explicit cues about the gender of those referents. Evaluating GNT automatically is particularly challenging, with current solutions being limited to monolingual classifiers. Such solutions are not ideal because they do not factor in the source sentence and require dedicated data and fine-tuning to scale to new languages. In this work, we address such limitations by investigating the use of large language models (LLMs) as evaluators of GNT. Specifically, we explore two prompting approaches: one in which LLMs generate sentence-level assessments only, and another, akin to a chain-of-thought approach, where they first produce detailed phrase-level annotations before a sentence-level judgment. Through extensive experiments on multiple languages with five models, both open and proprietary, we show that LLMs can serve as evaluators of GNT. Moreover, we find that prompting for phrase-level annotations before sentence-level assessments consistently improves the accuracy of all models, providing a better and more scalable alternative to current solutions.
comment: Accepted at GITT 2025
Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: Preprint
Rethinking LLM-Based Recommendations: A Query Generation-Based, Training-Free Approach
Existing large language model LLM-based recommendation methods face several challenges, including inefficiency in handling large candidate pools, sensitivity to item order within prompts ("lost in the middle" phenomenon) poor scalability, and unrealistic evaluation due to random negative sampling. To address these issues, we propose a Query-to-Recommendation approach that leverages LLMs to generate personalized queries for retrieving relevant items from the entire candidate pool, eliminating the need for candidate pre-selection. This method can be integrated into an ID-based recommendation system without additional training, enhances recommendation performance and diversity through LLMs' world knowledge, and performs well even for less popular item groups. Experiments on three datasets show up to 57 percent improvement, with an average gain of 31 percent, demonstrating strong zero-shot performance and further gains when ensembled with existing models.
Evaluating the Goal-Directedness of Large Language Models
To what extent do LLMs use their capabilities towards their given goal? We take this as a measure of their goal-directedness. We evaluate goal-directedness on tasks that require information gathering, cognitive effort, and plan execution, where we use subtasks to infer each model's relevant capabilities. Our evaluations of LLMs from Google DeepMind, OpenAI, and Anthropic show that goal-directedness is relatively consistent across tasks, differs from task performance, and is only moderately sensitive to motivational prompts. Notably, most models are not fully goal-directed. We hope our goal-directedness evaluations will enable better monitoring of LLM progress, and enable more deliberate design choices of agentic properties in LLMs.
FiSMiness: A Finite State Machine Based Paradigm for Emotional Support Conversations
Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Finite State Machine (FSM) on LLMs, and propose a framework called FiSMiness. Our framework allows a single LLM to bootstrap the planning during ESC, and self-reason the seeker's emotion, support strategy and the final response upon each conversational turn. Substantial experiments on ESC datasets suggest that FiSMiness outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and external-assisted methods, even those with many more parameters.
comment: accepted by CMCL
Could Thinking Multilingually Empower LLM Reasoning?
Previous work indicates that large language models exhibit a significant "English bias", i.e. they often perform better when tasks are presented in English. Interestingly, we have observed that using certain other languages in reasoning tasks can yield better performance than English. However, this phenomenon remains under-explored. In this paper, we explore the upper bound of harnessing multilingualism in reasoning tasks, suggesting that multilingual reasoning promises significantly (by nearly 10 Acc@$k$ points) and robustly (tolerance for variations in translation quality and language choice) higher upper bounds than English-only reasoning. Besides analyzing the reason behind the upper bound and challenges in reaching it, we also find that common answer selection methods cannot achieve this upper bound, due to their limitations and biases. These insights could pave the way for future research aimed at fully harnessing the potential of multilingual reasoning in LLMs.
Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
ARWI: Arabic Write and Improve
Although Arabic is spoken by over 400 million people, advanced Arabic writing assistance tools remain limited. To address this gap, we present ARWI, a new writing assistant that helps learners improve essay writing in Modern Standard Arabic. ARWI is the first publicly available Arabic writing assistant to include a prompt database for different proficiency levels, an Arabic text editor, state-of-the-art grammatical error detection and correction, and automated essay scoring aligned with the Common European Framework of Reference standards for language attainment. Moreover, ARWI can be used to gather a growing auto-annotated corpus, facilitating further research on Arabic grammar correction and essay scoring, as well as profiling patterns of errors made by native speakers and non-native learners. A preliminary user study shows that ARWI provides actionable feedback, helping learners identify grammatical gaps, assess language proficiency, and guide improvement.
Efficient and Adaptive Simultaneous Speech Translation with Fully Unidirectional Architecture
Simultaneous speech translation (SimulST) produces translations incrementally while processing partial speech input. Although large language models (LLMs) have showcased strong capabilities in offline translation tasks, applying them to SimulST poses notable challenges. Existing LLM-based SimulST approaches either incur significant computational overhead due to repeated encoding of bidirectional speech encoder, or they depend on a fixed read/write policy, limiting the efficiency and performance. In this work, we introduce Efficient and Adaptive Simultaneous Speech Translation (EASiST) with fully unidirectional architecture, including both speech encoder and LLM. EASiST includes a multi-latency data curation strategy to generate semantically aligned SimulST training samples and redefines SimulST as an interleaved generation task with explicit read/write tokens. To facilitate adaptive inference, we incorporate a lightweight policy head that dynamically predicts read/write actions. Additionally, we employ a multi-stage training strategy to align speech-text modalities and optimize both translation and policy behavior. Experiments on the MuST-C En$\rightarrow$De and En$\rightarrow$Es datasets demonstrate that EASiST offers superior latency-quality trade-offs compared to several strong baselines.
Selective Attention Federated Learning: Improving Privacy and Efficiency for Clinical Text Classification
Federated Learning (FL) faces major challenges regarding communication overhead and model privacy when training large language models (LLMs), especially in healthcare applications. To address these, we introduce Selective Attention Federated Learning (SAFL), a novel approach that dynamically fine-tunes only those transformer layers identified as attention-critical. By employing attention patterns to determine layer importance, SAFL significantly reduces communication bandwidth and enhances differential privacy resilience. Evaluations on clinical NLP benchmarks (i2b2 Clinical Concept Extraction and MIMIC-III discharge summaries) demonstrate that SAFL achieves competitive performance with centralized models while substantially improving communication efficiency and privacy preservation.
Enhancing Web Agents with Explicit Rollback Mechanisms
With recent advancements in large language models, web agents have been greatly improved. However, dealing with complex and dynamic web environments requires more advanced planning and search abilities. Previous studies usually adopt a greedy one-way search strategy, which may struggle to recover from erroneous states. In this work, we enhance web agents with an explicit rollback mechanism, enabling the agent to revert back to a previous state in its navigation trajectory. This mechanism gives the model the flexibility to directly control the search process, leading to an effective and efficient web navigation method. We conduct experiments on two live web navigation benchmarks with zero-shot and fine-tuning settings. The results demonstrate the effectiveness of our proposed approach.
Unsupervised Classification of English Words Based on Phonological Information: Discovery of Germanic and Latinate Clusters
Cross-linguistically, native words and loanwords follow different phonological rules. In English, for example, words of Germanic and Latinate origin exhibit different stress patterns, and a certain syntactic structure is exclusive to Germanic verbs. When seeing them as a cognitive model, however, such etymology-based generalizations face challenges in terms of learnability, since the historical origins of words are presumably inaccessible information for general language learners. In this study, we present computational evidence indicating that the Germanic-Latinate distinction in the English lexicon is learnable from the phonotactic information of individual words. Specifically, we performed an unsupervised clustering on corpus-extracted words, and the resulting word clusters largely aligned with the etymological distinction. The model-discovered clusters also recovered various linguistic generalizations documented in the previous literature regarding the corresponding etymological classes. Moreover, our findings also uncovered previously unrecognized features of the quasi-etymological clusters, offering novel hypotheses for future experimental studies.
Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT?
Recent supervised fine-tuning (SFT) approaches have significantly improved language models' performance on mathematical reasoning tasks, even when models are trained at a small scale. However, the specific capabilities enhanced through such fine-tuning remain poorly understood. In this paper, we conduct a detailed analysis of model performance on the AIME24 dataset to understand how reasoning capabilities evolve. We discover a ladder-like structure in problem difficulty, categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard (Exh)), and identify the specific requirements for advancing between tiers. We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT (500-1K instances), while Hard-level questions suffer from frequent model's errors at each step of the reasoning chain, with accuracy plateauing at around 65% despite logarithmic scaling. Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills that current models uniformly struggle with. Additional findings reveal that carefully curated small-scale datasets offer limited advantage-scaling dataset size proves far more effective. Our analysis provides a clearer roadmap for advancing language model capabilities in mathematical reasoning.
The Devil is in the Prompts: Retrieval-Augmented Prompt Optimization for Text-to-Video Generation CVPR2025
The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce \textbf{RAPO}, a novel \textbf{R}etrieval-\textbf{A}ugmented \textbf{P}rompt \textbf{O}ptimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts. Project website: \href{https://whynothaha.github.io/Prompt_optimizer/RAPO.html}{GitHub}.
comment: accepted by CVPR2025
Higher-Order Binding of Language Model Virtual Personas: a Study on Approximating Political Partisan Misperceptions
Large language models (LLMs) are increasingly capable of simulating human behavior, offering cost-effective ways to estimate user responses during the early phases of survey design. While previous studies have examined whether models can reflect individual opinions or attitudes, we argue that a \emph{higher-order} binding of virtual personas requires successfully approximating not only the opinions of a user as an identified member of a group, but also the nuanced ways in which that user perceives and evaluates those outside the group. In particular, faithfully simulating how humans perceive different social groups is critical for applying LLMs to various political science studies, including timely topics on polarization dynamics, inter-group conflict, and democratic backsliding. To this end, we propose a novel methodology for constructing virtual personas with synthetic user ``backstories" generated as extended, multi-turn interview transcripts. Our generated backstories are longer, rich in detail, and consistent in authentically describing a singular individual, compared to previous methods. We show that virtual personas conditioned on our backstories closely replicate human response distributions (up to an 87\% improvement as measured by Wasserstein Distance) and produce effect sizes that closely match those observed in the original studies. Altogether, our work extends the applicability of LLMs beyond estimating individual self-opinions, enabling their use in a broader range of human studies.
MOM: Memory-Efficient Offloaded Mini-Sequence Inference for Long Context Language Models
Long-context language models exhibit impressive performance but remain challenging to deploy due to high GPU memory demands during inference. We propose Memory-efficient Offloaded Mini-sequence Inference (MOM), a method that partitions critical layers into smaller "mini-sequences" and integrates seamlessly with KV cache offloading. Experiments on various Llama, Qwen, and Mistral models demonstrate that MOM reduces peak memory usage by over 50\% on average. On Meta-Llama-3.2-8B, MOM extends the maximum context length from 155k to 455k tokens on a single A100 80GB GPU, while keeping outputs identical and not compromising accuracy. MOM also maintains highly competitive throughput due to minimal computational overhead and efficient last-layer processing. Compared to traditional chunked prefill methods, MOM achieves a 35\% greater context length extension. More importantly, our method drastically reduces prefill memory consumption, eliminating it as the longstanding dominant memory bottleneck during inference. This breakthrough fundamentally changes research priorities, redirecting future efforts from prefill-stage optimizations to improving decode-stage residual KV cache efficiency.
comment: Submitted to COLM
Memorization vs. Reasoning: Updating LLMs with New Knowledge
Large language models (LLMs) encode vast amounts of pre-trained knowledge in their parameters, but updating them as real-world information evolves remains a challenge. Existing methodologies and benchmarks primarily target entity substitutions, failing to capture the full breadth of complex real-world dynamics. In this paper, we introduce Knowledge Update Playground (KUP), an automatic pipeline for simulating realistic knowledge updates reflected in an evidence corpora. KUP's evaluation framework includes direct and indirect probes to both test memorization of updated facts and reasoning over them, for any update learning methods. Next, we present a lightweight method called memory conditioned training (MCT), which conditions tokens in the update corpus on self-generated "memory" tokens during training. Our strategy encourages LLMs to surface and reason over newly memorized knowledge at inference. Our results on two strong LLMs show that (1) KUP benchmark is highly challenging, with the best CPT models achieving $<2\%$ in indirect probing setting (reasoning) and (2) MCT training significantly outperforms prior continued pre-training (CPT) baselines, improving direct probing (memorization) results by up to $25.4\%$.
comment: 9 pages, 3 figures
Evaluating the Diversity and Quality of LLM Generated Content ICLR 2025
Recent work suggests that preference-tuning techniques--including Reinforcement Learning from Human Preferences (RLHF) methods like PPO and GRPO, as well as alternatives like DPO--reduce diversity, creating a dilemma given that such models are widely deployed in applications requiring diverse outputs. To address this, we introduce a framework for measuring effective semantic diversity--diversity among outputs that meet quality thresholds--which better reflects the practical utility of large language models (LLMs). Using open-ended tasks that require no human intervention, we find counterintuitive results: although preference-tuned models--especially those trained via RL--exhibit reduced lexical and syntactic diversity, they produce greater effective semantic diversity than SFT or base models, not from increasing diversity among high-quality outputs, but from generating more high-quality outputs overall. We discover that preference tuning reduces syntactic diversity while preserving semantic diversity--revealing a distinction between diversity in form and diversity in content that traditional metrics often overlook. Our analysis further shows that smaller models are consistently more parameter-efficient at generating unique content within a fixed sampling budget, offering insights into the relationship between model scaling and diversity. These findings have important implications for applications that require diverse yet high-quality outputs, from creative assistance to synthetic data generation.
comment: ICLR 2025 Third Workshop on Deep Learning for Code
BrowseComp: A Simple Yet Challenging Benchmark for Browsing Agents
We present BrowseComp, a simple yet challenging benchmark for measuring the ability for agents to browse the web. BrowseComp comprises 1,266 questions that require persistently navigating the internet in search of hard-to-find, entangled information. Despite the difficulty of the questions, BrowseComp is simple and easy-to-use, as predicted answers are short and easily verifiable against reference answers. BrowseComp for browsing agents can be seen as analogous to how programming competitions are an incomplete but useful benchmark for coding agents. While BrowseComp sidesteps challenges of a true user query distribution, like generating long answers or resolving ambiguity, it measures the important core capability of exercising persistence and creativity in finding information. BrowseComp can be found at https://github.com/openai/simple-evals.
Beyond Text: Characterizing Domain Expert Needs in Document Research
Working with documents is a key part of almost any knowledge work, from contextualizing research in a literature review to reviewing legal precedent. Recently, as their capabilities have expanded, primarily text-based NLP systems have often been billed as able to assist or even automate this kind of work. But to what extent are these systems able to model these tasks as experts conceptualize and perform them now? In this study, we interview sixteen domain experts across two domains to understand their processes of document research, and compare it to the current state of NLP systems. We find that our participants processes are idiosyncratic, iterative, and rely extensively on the social context of a document in addition its content; existing approaches in NLP and adjacent fields that explicitly center the document as an object, rather than as merely a container for text, tend to better reflect our participants' priorities, though they are often less accessible outside their research communities. We call on the NLP community to more carefully consider the role of the document in building useful tools that are accessible, personalizable, iterative, and socially aware.
Accelerating Clinical NLP at Scale with a Hybrid Framework with Reduced GPU Demands: A Case Study in Dementia Identification
Clinical natural language processing (NLP) is increasingly in demand in both clinical research and operational practice. However, most of the state-of-the-art solutions are transformers-based and require high computational resources, limiting their accessibility. We propose a hybrid NLP framework that integrates rule-based filtering, a Support Vector Machine (SVM) classifier, and a BERT-based model to improve efficiency while maintaining accuracy. We applied this framework in a dementia identification case study involving 4.9 million veterans with incident hypertension, analyzing 2.1 billion clinical notes. At the patient level, our method achieved a precision of 0.90, a recall of 0.84, and an F1-score of 0.87. Additionally, this NLP approach identified over three times as many dementia cases as structured data methods. All processing was completed in approximately two weeks using a single machine with dual A40 GPUs. This study demonstrates the feasibility of hybrid NLP solutions for large-scale clinical text analysis, making state-of-the-art methods more accessible to healthcare organizations with limited computational resources.
comment: This manuscript has been submitted to AMIA 2025 annual symposium (https://amia.org/education-events/amia-2025-annual-symposium)
Can Pre-training Indicators Reliably Predict Fine-tuning Outcomes of LLMs?
While metrics available during pre-training, such as perplexity, correlate well with model performance at scaling-laws studies, their predictive capacities at a fixed model size remain unclear, hindering effective model selection and development. To address this gap, we formulate the task of selecting pre-training checkpoints to maximize downstream fine-tuning performance as a pairwise classification problem: predicting which of two LLMs, differing in their pre-training, will perform better after supervised fine-tuning (SFT). We construct a dataset using 50 1B parameter LLM variants with systematically varied pre-training configurations, e.g., objectives or data, and evaluate them on diverse downstream tasks after SFT. We first conduct a study and demonstrate that the conventional perplexity is a misleading indicator. As such, we introduce novel unsupervised and supervised proxy metrics derived from pre-training that successfully reduce the relative performance prediction error rate by over 50%. Despite the inherent complexity of this task, we demonstrate the practical utility of our proposed proxies in specific scenarios, paving the way for more efficient design of pre-training schemes optimized for various downstream tasks.
Towards Conversational AI for Human-Machine Collaborative MLOps
This paper presents a Large Language Model (LLM) based conversational agent system designed to enhance human-machine collaboration in Machine Learning Operations (MLOps). We introduce the Swarm Agent, an extensible architecture that integrates specialized agents to create and manage ML workflows through natural language interactions. The system leverages a hierarchical, modular design incorporating a KubeFlow Pipelines (KFP) Agent for ML pipeline orchestration, a MinIO Agent for data management, and a Retrieval-Augmented Generation (RAG) Agent for domain-specific knowledge integration. Through iterative reasoning loops and context-aware processing, the system enables users with varying technical backgrounds to discover, execute, and monitor ML pipelines; manage datasets and artifacts; and access relevant documentation, all via intuitive conversational interfaces. Our approach addresses the accessibility gap in complex MLOps platforms like Kubeflow, making advanced ML tools broadly accessible while maintaining the flexibility to extend to other platforms. The paper describes the architecture, implementation details, and demonstrates how this conversational MLOps assistant reduces complexity and lowers barriers to entry for users across diverse technical skill levels.
comment: 8 pages, 5 figures
Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 20 pages, 3 figures
SLURG: Investigating the Feasibility of Generating Synthetic Online Fallacious Discourse
In our paper we explore the definition, and extrapolation of fallacies as they pertain to the automatic detection of manipulation on social media. In particular we explore how these logical fallacies might appear in the real world i.e internet forums. We discovered a prevalence of misinformation / misguided intention in discussion boards specifically centered around the Ukrainian Russian Conflict which serves to narrow the domain of our task. Although automatic fallacy detection has gained attention recently, most datasets use unregulated fallacy taxonomies or are limited to formal linguistic domains like political debates or news reports. Online discourse, however, often features non-standardized and diverse language not captured in these domains. We present Shady Linguistic Utterance Replication-Generation (SLURG) to address these limitations, exploring the feasibility of generating synthetic fallacious forum-style comments using large language models (LLMs), specifically DeepHermes-3-Mistral-24B. Our findings indicate that LLMs can replicate the syntactic patterns of real data} and that high-quality few-shot prompts enhance LLMs' ability to mimic the vocabulary diversity of online forums.
comment: 15 pages, 11 figures
On Linear Representations and Pretraining Data Frequency in Language Models ICLR 2025
Pretraining data has a direct impact on the behaviors and quality of language models (LMs), but we only understand the most basic principles of this relationship. While most work focuses on pretraining data's effect on downstream task behavior, we investigate its relationship to LM representations. Previous work has discovered that, in language models, some concepts are encoded `linearly' in the representations, but what factors cause these representations to form? We study the connection between pretraining data frequency and models' linear representations of factual relations. We find evidence that the formation of linear representations is strongly connected to pretraining term frequencies; specifically for subject-relation-object fact triplets, both subject-object co-occurrence frequency and in-context learning accuracy for the relation are highly correlated with linear representations. This is the case across all phases of pretraining. In OLMo-7B and GPT-J, we discover that a linear representation consistently (but not exclusively) forms when the subjects and objects within a relation co-occur at least 1k and 2k times, respectively, regardless of when these occurrences happen during pretraining. Finally, we train a regression model on measurements of linear representation quality in fully-trained LMs that can predict how often a term was seen in pretraining. Our model achieves low error even on inputs from a different model with a different pretraining dataset, providing a new method for estimating properties of the otherwise-unknown training data of closed-data models. We conclude that the strength of linear representations in LMs contains signal about the models' pretraining corpora that may provide new avenues for controlling and improving model behavior: particularly, manipulating the models' training data to meet specific frequency thresholds.
comment: ICLR 2025
Position: The Most Expensive Part of an LLM should be its Training Data
Training a state-of-the-art Large Language Model (LLM) is an increasingly expensive endeavor due to growing computational, hardware, energy, and engineering demands. Yet, an often-overlooked (and seldom paid) expense is the human labor behind these models' training data. Every LLM is built on an unfathomable amount of human effort: trillions of carefully written words sourced from books, academic papers, codebases, social media, and more. This position paper aims to assign a monetary value to this labor and argues that the most expensive part of producing an LLM should be the compensation provided to training data producers for their work. To support this position, we study 64 LLMs released between 2016 and 2024, estimating what it would cost to pay people to produce their training datasets from scratch. Even under highly conservative estimates of wage rates, the costs of these models' training datasets are 10-1000 times larger than the costs to train the models themselves, representing a significant financial liability for LLM providers. In the face of the massive gap between the value of training data and the lack of compensation for its creation, we highlight and discuss research directions that could enable fairer practices in the future.
comment: 8 pages, 3 figures
A Human-AI Comparative Analysis of Prompt Sensitivity in LLM-Based Relevance Judgment
Large Language Models (LLMs) are increasingly used to automate relevance judgments for information retrieval (IR) tasks, often demonstrating agreement with human labels that approaches inter-human agreement. To assess the robustness and reliability of LLM-based relevance judgments, we systematically investigate impact of prompt sensitivity on the task. We collected prompts for relevance assessment from 15 human experts and 15 LLMs across three tasks~ -- ~binary, graded, and pairwise~ -- ~yielding 90 prompts in total. After filtering out unusable prompts from three humans and three LLMs, we employed the remaining 72 prompts with three different LLMs as judges to label document/query pairs from two TREC Deep Learning Datasets (2020 and 2021). We compare LLM-generated labels with TREC official human labels using Cohen's $\kappa$ and pairwise agreement measures. In addition to investigating the impact of prompt variations on agreement with human labels, we compare human- and LLM-generated prompts and analyze differences among different LLMs as judges. We also compare human- and LLM-generated prompts with the standard UMBRELA prompt used for relevance assessment by Bing and TREC 2024 Retrieval Augmented Generation (RAG) Track. To support future research in LLM-based evaluation, we release all data and prompts at https://github.com/Narabzad/prompt-sensitivity-relevance-judgements/.
Automated Python Translation
Python is one of the most commonly used programming languages in industry and education. Its English keywords and built-in functions/modules allow it to come close to pseudo-code in terms of its readability and ease of writing. However, those who do not speak English may not experience these advantages. In fact, they may even be hindered in their ability to understand Python code, as the English nature of its terms creates an additional layer of overhead. To that end, we introduce the task of automatically translating Python's natural modality (keywords, error types, identifiers, etc.) into other human languages. This presents a unique challenge, considering the abbreviated nature of these forms, as well as potential untranslatability of advanced mathematical/programming concepts across languages. We therefore create an automated pipeline to translate Python into other human languages, comparing strategies using machine translation and large language models. We then use this pipeline to acquire translations from five common Python libraries (pytorch, pandas, tensorflow, numpy, and random) in seven languages, and do a quality test on a subset of these terms in French, Greek, and Bengali. We hope this will provide a clearer path forward towards creating a universal Python, accessible to anyone regardless of nationality or language background.
comment: 15 pages, 4 figures, 17 tables
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
Exploring the Role of Knowledge Graph-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
Post-training Large Language Models (LLMs) with explicit reasoning trajectories can enhance their reasoning abilities. However, acquiring such high-quality trajectory data typically demands meticulous supervision from humans or superior models, which can be either expensive or license-constrained. In this paper, we explore how far an LLM can improve its reasoning by self-synthesizing reasoning paths as training data without any additional supervision. Existing self-synthesizing methods, such as STaR, suffer from poor generalization to out-of-domain (OOD) reasoning tasks. We hypothesize it is due to that their self-synthesized reasoning paths are too task-specific, lacking general task-agnostic reasoning guidance. To address this, we propose Reasoning Generalist via Self-Improvement (ReGenesis), a method to self-synthesize reasoning paths as post-training data by progressing from abstract to concrete. More specifically, ReGenesis self-synthesizes reasoning paths by converting general reasoning guidelines into task-specific ones, generating reasoning structures, and subsequently transforming these structures into reasoning paths, without the need for human-designed task-specific examples used in existing methods. We show that ReGenesis achieves superior performance on all in-domain and OOD settings tested compared to existing methods. For six OOD tasks specifically, while previous methods exhibited an average performance decrease of approximately 4.6% after post training, ReGenesis delivers around 6.1% performance improvement. We also conduct in-depth analysis of our framework and show ReGenesis is effective across various LLMs and design choices.
Taming Data and Transformers for Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
How Inclusively do LMs Perceive Social and Moral Norms? NAACL 2025
This paper discusses and contains offensive content. Language models (LMs) are used in decision-making systems and as interactive assistants. However, how well do these models making judgements align with the diversity of human values, particularly regarding social and moral norms? In this work, we investigate how inclusively LMs perceive norms across demographic groups (e.g., gender, age, and income). We prompt 11 LMs on rules-of-thumb (RoTs) and compare their outputs with the existing responses of 100 human annotators. We introduce the Absolute Distance Alignment Metric (ADA-Met) to quantify alignment on ordinal questions. We find notable disparities in LM responses, with younger, higher-income groups showing closer alignment, raising concerns about the representation of marginalized perspectives. Our findings highlight the importance of further efforts to make LMs more inclusive of diverse human values. The code and prompts are available on GitHub under the CC BY-NC 4.0 license.
comment: Accepted at NAACL 2025 Findings
RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples improve the success rate of over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data. This significant improvement demonstrates RoboTwin's potential to enhance the development and evaluation of dual-arm robotic manipulation systems. Project Page: https://robotwin-benchmark.github.io/early-version/.
comment: Project page: https://robotwin-benchmark.github.io/early-version/
BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source datasets in operations research domain lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, an algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods. In tree-based reasoning, BPP-Search excels in accuracy and efficiency, enabling faster retrieval of correct solutions. The StructuredOR dataset is available at https://github.com/tengwang0318/StructuredOR.
Science Out of Its Ivory Tower: Improving Accessibility with Reinforcement Learning
A vast amount of scholarly work is published daily, yet much of it remains inaccessible to the general public due to dense jargon and complex language. To address this challenge in science communication, we introduce a reinforcement learning framework that fine-tunes a language model to rewrite scholarly abstracts into more comprehensible versions. Guided by a carefully balanced combination of word- and sentence-level accessibility rewards, our language model effectively substitutes technical terms with more accessible alternatives, a task which models supervised fine-tuned or guided by conventional readability measures struggle to accomplish. Our best model adjusts the readability level of scholarly abstracts by approximately six U.S. grade levels -- in other words, from a postgraduate to a high school level. This translates to roughly a 90% relative boost over the supervised fine-tuning baseline, all while maintaining factual accuracy and high-quality language. An in-depth analysis of our approach shows that balanced rewards lead to systematic modifications in the base model, likely contributing to smoother optimization and superior performance. We envision this work as a step toward bridging the gap between scholarly research and the general public, particularly younger readers and those without a college degree.
Automatic Item Generation for Personality Situational Judgment Tests with Large Language Models
Personality assessment, particularly through situational judgment tests (SJTs), is a vital tool for psychological research, talent selection, and educational evaluation. This study explores the potential of GPT-4, a state-of-the-art large language model (LLM), to automate the generation of personality situational judgment tests (PSJTs) in Chinese. Traditional SJT development is labor-intensive and prone to biases, while GPT-4 offers a scalable, efficient alternative. Two studies were conducted: Study 1 evaluated the impact of prompt design and temperature settings on content validity, finding that optimized prompts with a temperature of 1.0 produced creative and accurate items. Study 2 assessed the psychometric properties of GPT-4-generated PSJTs, revealing that they demonstrated satisfactory reliability and validity, surpassing the performance of manually developed tests in measuring the Big Five personality traits. This research highlights GPT-4's effectiveness in developing high-quality PSJTs, providing a scalable and innovative method for psychometric test development. These findings expand the possibilities of automatic item generation and the application of LLMs in psychology, and offer practical implications for streamlining test development processes in resource-limited settings.
comment: Submitted to Psychological Methods. 56 pages (main text), 12 pages (appendix), and 5 figures
FastCuRL: Curriculum Reinforcement Learning with Progressive Context Extension for Efficient Training R1-like Reasoning Models
Improving the training efficiency remains one of the most significant challenges in large-scale reinforcement learning. In this paper, we investigate how the model's context length and the complexity of the training dataset influence the training process of R1-like models. Our experiments reveal three key insights: (1) adopting longer context lengths may not necessarily result in better performance; (2) selecting an appropriate context length helps mitigate entropy collapse; and (3) appropriately controlling the model's context length and curating training data based on input prompt length can effectively improve RL training efficiency, achieving better performance with shorter thinking length. Inspired by these insights, we propose FastCuRL, a curriculum reinforcement learning framework with the progressive context extension strategy, and successfully accelerate the training process of RL models. Experimental results demonstrate that FastCuRL-1.5B-Preview surpasses DeepScaleR-1.5B-Preview across all five benchmarks while only utilizing 50\% of training steps. Furthermore, all training stages for FastCuRL-1.5B-Preview are completed using a single node with 8 GPUs.
comment: Ongoing Work
Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction
Document parsing is essential for converting unstructured and semi-structured documents such as contracts, academic papers, and invoices into structured, machine-readable data. Document parsing reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It outlines future research directions and emphasizes the importance of developing larger and more diverse datasets.
Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.
comment: 14 pages, 5 figures. Preprint prepared for future submission. Includes implementation and token-efficiency analysis. Code at https://github.com/biubiutomato/TME-Agent
LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior by removing undesired data-model influences from the pretrained model while preserving general utility. Significant recent efforts have been dedicated to developing LLM unlearning benchmarks such as WMDP (Weapons of Mass Destruction Proxy) and MUSE (Machine Unlearning Six-way Evaluation), facilitating standardized unlearning performance assessment and method comparison. Despite their usefulness, we uncover for the first time a novel coreset effect within these benchmarks. Specifically, we find that LLM unlearning achieved with the original (full) forget set can be effectively maintained using a significantly smaller subset (functioning as a "coreset"), e.g., as little as 5% of the forget set, even when selected at random. This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime. We demonstrate that this coreset effect remains strong, regardless of the LLM unlearning method used, such as NPO (Negative Preference Optimization) and RMU (Representation Misdirection Unlearning), the popular ones in these benchmarks. The surprisingly strong coreset effect is also robust across various data selection methods, ranging from random selection to more sophisticated heuristic approaches. We explain the coreset effect in LLM unlearning through a keyword-based perspective, showing that keywords extracted from the forget set alone contribute significantly to unlearning effectiveness and indicating that current unlearning is driven by a compact set of high-impact tokens rather than the entire dataset. We further justify the faithfulness of coreset-unlearned models along additional dimensions, such as mode connectivity and robustness to jailbreaking attacks. Codes are available at https://github.com/OPTML-Group/MU-Coreset.
StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text
Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V
comment: https://github.com/Picsart-AI-Research/StreamingT2V
Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings
Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, leading to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we propose a novel approach that leverages fine-grained, token-level quality assessments along with error severity levels using RL methods. Specifically, we use xCOMET, a state-of-the-art quality estimation system, as our token-level reward model. We conduct experiments on small and large translation datasets with standard encoder-decoder and large language models-based machine translation systems, comparing the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to both automatic and human evaluation. Furthermore, token-level reward optimization improves training stability, evidenced by a steady increase in mean rewards over training epochs.
comment: 12 pages, work-in-progress
Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation
With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
comment: 44 pages, 7 figures, 8 tables
Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
Orthus: Autoregressive Interleaved Image-Text Generation with Modality-Specific Heads
We introduce Orthus, an autoregressive (AR) transformer that excels in generating images given textual prompts, answering questions based on visual inputs, and even crafting lengthy image-text interleaved contents. Unlike prior arts on unified multimodal modeling, Orthus simultaneously copes with discrete text tokens and continuous image features under the AR modeling principle. The continuous treatment of visual signals minimizes the information loss for both image understanding and generation while the fully AR formulation renders the characterization of the correlation between modalities straightforward. The key mechanism enabling Orthus to leverage these advantages lies in its modality-specific heads -- one regular language modeling (LM) head predicts discrete text tokens and one diffusion head generates continuous image features conditioning on the output of the backbone. We devise an efficient strategy for building Orthus -- by substituting the Vector Quantization (VQ) operation in the existing unified AR model with a soft alternative, introducing a diffusion head, and tuning the added modules to reconstruct images, we can create an Orthus-base model effortlessly (e.g., within mere 72 A100 GPU hours). Orthus-base can further embrace post-training to better model interleaved images and texts. Empirically, Orthus surpasses competing baselines including Show-o and Chameleon across standard benchmarks, achieving a GenEval score of 0.58 and an MME-P score of 1265.8 using 7B parameters. Orthus also shows exceptional mixed-modality generation capabilities, reflecting the potential for handling intricate practical generation tasks.
Local Grammar-Based Coding Revisited
In the setting of minimal local grammar-based coding, the input string is represented as a grammar with the minimal output length defined via simple symbol-by-symbol encoding. This paper discusses four contributions to this field. First, we invoke a simple harmonic bound on ranked probabilities, which reminds Zipf's law and simplifies universality proofs for minimal local grammar-based codes. Second, we refine known bounds on the vocabulary size, showing its partial power-law equivalence with mutual information and redundancy. These bounds are relevant for linking Zipf's law with the neural scaling law for large language models. Third, we develop a framework for universal codes with fixed infinite vocabularies, recasting universal coding as matching ranked patterns that are independent of empirical data. Finally, we analyze grammar-based codes with finite vocabularies being empirical rank lists, proving that that such codes are also universal. These results extend foundations of universal grammar-based coding and reaffirm previously stated connections to power laws for human language and language models.
comment: 41 pages, no figures
Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL: a developer can change one and the LLM automatically updates the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
Leveraging Social Determinants of Health in Alzheimer's Research Using LLM-Augmented Literature Mining and Knowledge Graphs
Growing evidence suggests that social determinants of health (SDoH), a set of nonmedical factors, affect individuals' risks of developing Alzheimer's disease (AD) and related dementias. Nevertheless, the etiological mechanisms underlying such relationships remain largely unclear, mainly due to difficulties in collecting relevant information. This study presents a novel, automated framework that leverages recent advancements of large language model (LLM) and natural language processing techniques to mine SDoH knowledge from extensive literature and integrate it with AD-related biological entities extracted from the general-purpose knowledge graph PrimeKG. Utilizing graph neural networks, we performed link prediction tasks to evaluate the resultant SDoH-augmented knowledge graph. Our framework shows promise for enhancing knowledge discovery in AD and can be generalized to other SDoH-related research areas, offering a new tool for exploring the impact of social determinants on health outcomes. Our code is available at: https://github.com/hwq0726/SDoHenPKG
comment: Accepted by AMIA-IS'25: AMIA Informatics Summit
Knowledge-Driven Feature Selection and Engineering for Genotype Data with Large Language Models
Predicting phenotypes with complex genetic bases based on a small, interpretable set of variant features remains a challenging task. Conventionally, data-driven approaches are utilized for this task, yet the high dimensional nature of genotype data makes the analysis and prediction difficult. Motivated by the extensive knowledge encoded in pre-trained LLMs and their success in processing complex biomedical concepts, we set to examine the ability of LLMs in feature selection and engineering for tabular genotype data, with a novel knowledge-driven framework. We develop FREEFORM, Free-flow Reasoning and Ensembling for Enhanced Feature Output and Robust Modeling, designed with chain-of-thought and ensembling principles, to select and engineer features with the intrinsic knowledge of LLMs. Evaluated on two distinct genotype-phenotype datasets, genetic ancestry and hereditary hearing loss, we find this framework outperforms several data-driven methods, particularly on low-shot regimes. FREEFORM is available as open-source framework at GitHub: https://github.com/PennShenLab/FREEFORM.
comment: accepted by AMIA-IS'25: AMIA Informatics Summit [Marco Ramoni Distinguished Paper Award for Translational Bioinformatics]
Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions. Our repository is available on https://github.com/testtimescaling/testtimescaling.github.io/
comment: v2: Creating the GitHub repository, Citing some missed works, Incorporating two new domains (agentic and evaluation) in where to scale, Incorporating one direction (thoughtology research) in challenge and future work
Sequence-Level Leakage Risk of Training Data in Large Language Models
This work quantifies the risk of training data leakage from LLMs (Large Language Models) using sequence-level probabilities. Computing extraction probabilities for individual sequences provides finer-grained information than has been studied in prior benchmarking work. We re-analyze the effects of decoding schemes, model sizes, prefix lengths, partial sequence leakages, and token positions to uncover new insights that were not possible in previous works due to their choice of metrics. We perform this study on two pre-trained models, Llama and OPT, trained on the Common Crawl and The Pile respectively. We discover that 1) Extraction Rate, the predominant metric used in prior quantification work, underestimates the threat of leakage of training data in randomized LLMs by as much as 2.14X. 2) Although on average, larger models and longer prefixes can extract more data, this is not true for a substantial portion of individual sequences. 30.4-41.5% of our sequences are easier to extract with either shorter prefixes or smaller models. 3) Contrary to previous beliefs, partial leakage in commonly used decoding schemes like top-k and top-p is not easier than leaking verbatim training data. The aim of this work is to encourage the adoption of this metric for future work on quantification of training data extraction.
ChaosEater: Fully Automating Chaos Engineering with Large Language Models
Chaos Engineering (CE) is an engineering technique aimed at improving the resiliency of distributed systems. It involves artificially injecting specific failures into a distributed system and observing its behavior in response. Based on the observation, the system can be proactively improved to handle those failures. Recent CE tools implement the automated execution of predefined CE experiments. However, defining these experiments and improving the system based on the experimental results still remain manual. To reduce the costs of the manual operations, we propose ChaosEater, a system for automating the entire CE operations with Large Language Models (LLMs). It predefines the agentic workflow according to a systematic CE cycle and assigns subdivided operations within the workflow to LLMs. ChaosEater targets CE for Kubernetes systems, which are managed through code (i.e., Infrastructure as Code). Therefore, the LLMs in ChaosEater perform software engineering tasks to complete CE cycles, including requirement definition, code generation, debugging, and testing. We evaluate ChaosEater through case studies on both small and large Kubernetes systems. The results demonstrate that it stably completes reasonable single CE cycles with significantly low time and monetary costs. The CE cycles are also qualitatively validated by human engineers and LLMs.
comment: 114 pages (7 main), 11 figures. Project page: https://ntt-dkiku.github.io/chaos-eater
KPC-cF: Aspect-Based Sentiment Analysis via Implicit-Feature Alignment with Corpus Filtering ICML 2024
Investigations into Aspect-Based Sentiment Analysis (ABSA) for Korean industrial reviews are notably lacking in the existing literature. Our research proposes an intuitive and effective framework for ABSA in low-resource languages such as Korean. It optimizes prediction labels by integrating translated benchmark and unlabeled Korean data. Using a model fine-tuned on translated data, we pseudo-labeled the actual Korean NLI set. Subsequently, we applied LaBSE and \MSP{}-based filtering to this pseudo-NLI set as implicit feature, enhancing Aspect Category Detection and Polarity determination through additional training. Incorporating dual filtering, this model bridged dataset gaps and facilitates feature alignment with minimal resources. By implementing alignment pipelines, our approach aims to leverage high-resource datasets to develop reliable predictive and refined models within corporate or individual communities in low-resource language countries. Compared to English ABSA, our framework showed an approximately 3\% difference in F1 scores and accuracy. We will release our dataset and code for Korean ABSA, at this link.
comment: Work in Progress, DMLR@ICML 2024
Large Visual-Language Models Are Also Good Classifiers: A Study of In-Context Multimodal Fake News Detection
Large visual-language models (LVLMs) exhibit exceptional performance in visual-language reasoning across diverse cross-modal benchmarks. Despite these advances, recent research indicates that Large Language Models (LLMs), like GPT-3.5-turbo, underachieve compared to well-trained smaller models, such as BERT, in Fake News Detection (FND), prompting inquiries into LVLMs' efficacy in FND tasks. Although performance could improve through fine-tuning LVLMs, the substantial parameters and requisite pre-trained weights render it a resource-heavy endeavor for FND applications. This paper initially assesses the FND capabilities of two notable LVLMs, CogVLM and GPT4V, in comparison to a smaller yet adeptly trained CLIP model in a zero-shot context. The findings demonstrate that LVLMs can attain performance competitive with that of the smaller model. Next, we integrate standard in-context learning (ICL) with LVLMs, noting improvements in FND performance, though limited in scope and consistency. To address this, we introduce the \textbf{I}n-context \textbf{M}ultimodal \textbf{F}ake \textbf{N}ews \textbf{D}etection (IMFND) framework, enriching in-context examples and test inputs with predictions and corresponding probabilities from a well-trained smaller model. This strategic integration directs the LVLMs' focus towards news segments associated with higher probabilities, thereby improving their analytical accuracy. The experimental results suggest that the IMFND framework significantly boosts the FND efficiency of LVLMs, achieving enhanced accuracy over the standard ICL approach across three publicly available FND datasets.
comment: Withdraw for new experiments
ToolSandbox: A Stateful, Conversational, Interactive Evaluation Benchmark for LLM Tool Use Capabilities
Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities. ToolSandbox evaluation framework is released at https://github.com/apple/ToolSandbox
ValueCompass: A Framework for Measuring Contextual Value Alignment Between Human and LLMs
As AI systems become more advanced, ensuring their alignment with a diverse range of individuals and societal values becomes increasingly critical. But how can we capture fundamental human values and assess the degree to which AI systems align with them? We introduce ValueCompass, a framework of fundamental values, grounded in psychological theory and a systematic review, to identify and evaluate human-AI alignment. We apply ValueCompass to measure the value alignment of humans and large language models (LLMs) across four real-world scenarios: collaborative writing, education, public sectors, and healthcare. Our findings reveal concerning misalignments between humans and LLMs, such as humans frequently endorse values like "National Security" which were largely rejected by LLMs. We also observe that values differ across scenarios, highlighting the need for context-aware AI alignment strategies. This work provides valuable insights into the design space of human-AI alignment, laying the foundations for developing AI systems that responsibly reflect societal values and ethics.
CSPLADE: Learned Sparse Retrieval with Causal Language Models
In recent years, dense retrieval has been the focus of information retrieval (IR) research. While effective, dense retrieval produces uninterpretable dense vectors, and suffers from the drawback of large index size. Learned sparse retrieval (LSR) has emerged as promising alternative, achieving competitive retrieval performance while also being able to leverage the classical inverted index data structure for efficient retrieval. However, limited works have explored scaling LSR beyond BERT scale. In this work, we identify two challenges in training large language models (LLM) for LSR: (1) training instability during the early stage of contrastive training; (2) suboptimal performance due to pre-trained LLM's unidirectional attention. To address these challenges, we propose two corresponding techniques: (1) a lightweight adaptation training phase to eliminate training instability; (2) two model variants to enable bidirectional information. With these techniques, we are able to train LSR models with 8B scale LLM, and achieve competitive retrieval performance with reduced index size. Furthermore, we are among the first to analyze the performance-efficiency tradeoff of LLM-based LSR model through the lens of model quantization. Our findings provide insights into adapting LLMs for efficient retrieval modeling.
ALCM: Autonomous LLM-Augmented Causal Discovery Framework
To perform effective causal inference in high-dimensional datasets, initiating the process with causal discovery is imperative, wherein a causal graph is generated based on observational data. However, obtaining a complete and accurate causal graph poses a formidable challenge, recognized as an NP- hard problem. Recently, the advent of Large Language Models (LLMs) has ushered in a new era, indicating their emergent capabilities and widespread applicability in facilitating causal reasoning across diverse domains, such as medicine, finance, and science. The expansive knowledge base of LLMs holds the potential to elevate the field of causal reasoning by offering interpretability, making inferences, generalizability, and uncovering novel causal structures. In this paper, we introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and LLMs, automating the generation of a more resilient, accurate, and explicable causal graph. The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner. These components autonomously collaborate within a dynamic environment to address causal discovery questions and deliver plausible causal graphs. We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets. Experimental results demonstrate that ALCM outperforms existing LLM methods and conventional data-driven causal reasoning mechanisms. This study not only shows the effectiveness of the ALCM but also underscores new research directions in leveraging the causal reasoning capabilities of LLMs.
IdentifyMe: A Challenging Long-Context Mention Resolution Benchmark for LLMs
Recent evaluations of LLMs on coreference resolution have revealed that traditional output formats and evaluation metrics do not fully capture the models' referential understanding. To address this, we introduce IdentifyMe, a new benchmark for mention resolution presented in a multiple-choice question (MCQ) format, commonly used for evaluating LLMs. IdentifyMe features long narratives and employs heuristics to exclude easily identifiable mentions, creating a more challenging task. The benchmark also consists of a curated mixture of different mention types and corresponding entities, allowing for a fine-grained analysis of model performance. We evaluate both closed- and open source LLMs on IdentifyMe and observe a significant performance gap (20-30%) between the state-of-the-art sub-10B open models vs. closed ones. We observe that pronominal mentions, which have limited surface information, are typically much harder for models to resolve than nominal mentions. Additionally, we find that LLMs often confuse entities when their mentions overlap in nested structures. The highest-scoring model, GPT-4o, achieves 81.9% accuracy, highlighting the strong referential capabilities of state-of-the-art LLMs while also indicating room for further improvement.
comment: 10 pages, 5 figures
Taxonomy and Analysis of Sensitive User Queries in Generative AI Search NAACL2025
Although there has been a growing interest among industries in integrating generative LLMs into their services, limited experience and scarcity of resources act as a barrier in launching and servicing large-scale LLM-based services. In this paper, we share our experiences in developing and operating generative AI models within a national-scale search engine, with a specific focus on the sensitiveness of user queries. We propose a taxonomy for sensitive search queries, outline our approaches, and present a comprehensive analysis report on sensitive queries from actual users. We believe that our experiences in launching generative AI search systems can contribute to reducing the barrier in building generative LLM-based services.
comment: NAACL2025(Findings), corrected typo in co-corresponding authors
AMPS: ASR with Multimodal Paraphrase Supervision
Spontaneous or conversational multilingual speech presents many challenges for state-of-the-art automatic speech recognition (ASR) systems. In this work, we present a new technique AMPS that augments a multilingual multimodal ASR system with paraphrase-based supervision for improved conversational ASR in multiple languages, including Hindi, Marathi, Malayalam, Kannada, and Nyanja. We use paraphrases of the reference transcriptions as additional supervision while training the multimodal ASR model and selectively invoke this paraphrase objective for utterances with poor ASR performance. Using AMPS with a state-of-the-art multimodal model SeamlessM4T, we obtain significant relative reductions in word error rates (WERs) of up to 5%. We present detailed analyses of our system using both objective and human evaluation metrics.
OnRL-RAG: Real-Time Personalized Mental Health Dialogue System
Large language models (LLMs) have been widely used for various tasks and applications. However, LLMs and fine-tuning are limited to the pre-trained data. For example, ChatGPT's world knowledge until 2021 can be outdated or inaccurate. To enhance the capabilities of LLMs, Retrieval-Augmented Generation (RAG), is proposed to augment LLMs with additional, new, latest details and information to LLMs. While RAG offers the correct information, it may not best present it, especially to different population groups with personalizations. Reinforcement Learning from Human Feedback (RLHF) adapts to user needs by aligning model responses with human preference through feedback loops. In real-life applications, such as mental health problems, a dynamic and feedback-based model would continuously adapt to new information and offer personalized assistance due to complex factors fluctuating in a daily environment. Thus, we propose an Online Reinforcement Learning-based Retrieval-Augmented Generation (OnRL-RAG) system to detect and personalize the responding systems to mental health problems, such as stress, anxiety, and depression. We use an open-source dataset collected from 2028 College Students with 28 survey questions for each student to demonstrate the performance of our proposed system with the existing systems. Our system achieves superior performance compared to standard RAG and simple LLM via GPT-4o, GPT-4o-mini, Gemini-1.5, and GPT-3.5. This work would open up the possibilities of real-life applications of LLMs for personalized services in the everyday environment. The results will also help researchers in the fields of sociology, psychology, and neuroscience to align their theories more closely with the actual human daily environment.
Why Lift so Heavy? Slimming Large Language Models by Cutting Off the Layers IJCNN 2025
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks. However, the sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking. While traditional approaches such as model pruning or distillation offer ways for reducing model size, they often come at the expense of performance retention. In our investigation, we systematically explore the approach of reducing the number of layers in LLMs. Surprisingly, we observe that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks. Remarkably, in certain cases, models with a single layer outperform their fully layered counterparts. These findings offer valuable insights for future work aimed at mitigating the size constraints of LLMs while preserving their performance, thereby opening avenues for significantly more efficient use of LLMs.
comment: IJCNN 2025
Multi-Field Adaptive Retrieval ICLR 2025
Document retrieval for tasks such as search and retrieval-augmented generation typically involves datasets that are unstructured: free-form text without explicit internal structure in each document. However, documents can have a structured form, consisting of fields such as an article title, message body, or HTML header. To address this gap, we introduce Multi-Field Adaptive Retrieval (MFAR), a flexible framework that accommodates any number of and any type of document indices on structured data. Our framework consists of two main steps: (1) the decomposition of an existing document into fields, each indexed independently through dense and lexical methods, and (2) learning a model which adaptively predicts the importance of a field by conditioning on the document query, allowing on-the-fly weighting of the most likely field(s). We find that our approach allows for the optimized use of dense versus lexical representations across field types, significantly improves in document ranking over a number of existing retrievers, and achieves state-of-the-art performance for multi-field structured data.
comment: ICLR 2025, Spotlight
Human-Computer Interaction
Towards Human-Centered Early Prediction Models for Academic Performance in Real-World Contexts SC
Supporting student success requires collaboration among multiple stakeholders. Researchers have explored machine learning models for academic performance prediction; yet key challenges remain in ensuring these models are interpretable, equitable, and actionable within real-world educational support systems. First, many models prioritize predictive accuracy but overlook human-centered considerations, limiting trust among students and reducing their usefulness for educators and institutional decision-makers. Second, most models require at least a month of data before making reliable predictions, delaying opportunities for early intervention. Third, current models primarily rely on sporadically collected, classroom-derived data, missing broader behavioral patterns that could provide more continuous and actionable insights. To address these gaps, we present three modeling approaches-LR, 1D-CNN, and MTL-1D-CNN-to classify students as low or high academic performers. We evaluate them based on explainability, fairness, and generalizability to assess their alignment with key social values. Using behavioral and self-reported data collected within the first week of two Spring terms, we demonstrate that these models can identify at-risk students as early as week one. However, trade-offs across human-centered considerations highlight the complexity of designing predictive models that effectively support multi-stakeholder decision-making and intervention strategies. We discuss these trade-offs and their implications for different stakeholders, outlining how predictive models can be integrated into student support systems. Finally, we examine broader socio-technical challenges in deploying these models and propose future directions for advancing human-centered, collaborative academic prediction systems.
comment: Accepted to CSCW
Creating benchmarkable components to measure the quality ofAI-enhanced developer tools
In the AI community, benchmarks to evaluate model quality are well established, but an equivalent approach to benchmarking products built upon generative AI models is still missing. This has had two consequences. First, it has made teams focus on model quality over the developer experience, while successful products combine both. Second, product team have struggled to answer questions about their products in relation to their competitors. In this case study, we share: (1) our process to create robust, enterprise-grade and modular components to support the benchmarking of the developer experience (DX) dimensions of our team's AI for code offerings, and (2) the components we have created to do so, including demographics and attitudes towards AI surveys, a benchmarkable task, and task and feature surveys. By doing so, we hope to lower the barrier to the DX benchmarking of genAI-enhanced code products.
comment: 15 pages, 2 figures, presented at CHI 2025, April 26-May 1, Yokohama, Japan
Purposefully Induced Psychosis (PIP): Embracing Hallucination as Imagination in Large Language Models
Hallucinations in Large Language Models (LLMs) are widely regarded as errors - outputs that deviate from factual accuracy. However, in creative or exploratory contexts, these "mistakes" may represent unexpected avenues for innovation. We introduce Purposefully Induced Psychosis (PIP), a novel approach that amplifies LLM hallucinations for imaginative tasks such as speculative fiction, interactive storytelling, and mixed-reality simulations. Drawing on Herman Melville's Moby-Dick, where Pip's "madness" reveals profound insight, we reframe hallucinations as a source of computational imagination rather than a flaw. Our method fine-tunes LLMs to encourage speculative, metaphorical, and surreal outputs - hallucinations that are useful when factual accuracy is not the chief objective. Inspired by the consensual illusions of theater and stage magic, PIP situates these creative missteps in contexts where users willingly suspend disbelief, thereby transforming "errors" into catalysts for new ways of thinking. We discuss potential applications, design principles for ensuring user consent, preliminary observations, and implications for broader AI ethics and human-AI collaboration.
comment: 5 pages, 3 figures
No Fuss, Just Function -- A Proposal for Non-Intrusive Full Body Tracking in XR for Meaningful Spatial Interactions
Extended Reality (XR) is a rapidly growing field with a wide range of hardware from head mounted displays to installations. Users have the possibility to access the entire Mixed Reality (MR) continuum. Goal of the human-computer-interaction (HCI) community is to allow natural and intuitive interactions but in general interactions for XR often rely on handheld controllers. One natural interaction method is full body tracking (FBT), where a user can use their body to interact with the experience. Classically, FBT systems require markers or trackers on the users to capture motion. Recently, there have been approaches based on Human Pose Estimation (HPE), which highlight the potential of low-cost non-intrusive FBT for XR. Due to the lack of handheld devices, HPE may also improve accessibility with people struggling with traditional input methods. This paper proposes the concept of non-intrusive FBT for XR for all. The goal is to spark a discussion on advantages for users by using a non-intrusive FBT system for accessibility and user experience.
comment: Presented at CHI 2025 (arXiv:2504.07475)
Who Said Only Military Officers Can Deal with Uncertainty? On the Importance of Uncertainty in EdTech Data Visualisations
AI-powered predictive systems have high margins of error. However, data visualisations of algorithmic systems in education and other social fields tend to visualise certainty, thus invisibilising the underlying approximations and uncertainties of the algorithmic systems and the social settings in which these systems operate. This paper draws on a critical speculative approach to first analyse data visualisations from predictive analytics platforms for education. It demonstrates that visualisations of uncertainty in education are rare. Second, the paper explores uncertainty visualisations in other fields (defence, climate change and healthcare). The paper concludes by reflecting on the role of data visualisations and un/certainty in shaping educational futures. It also identifies practical implications for the design of data visualisations in education.
comment: 20 pages, 12 figures
Mind2Matter: Creating 3D Models from EEG Signals
The reconstruction of 3D objects from brain signals has gained significant attention in brain-computer interface (BCI) research. Current research predominantly utilizes functional magnetic resonance imaging (fMRI) for 3D reconstruction tasks due to its excellent spatial resolution. Nevertheless, the clinical utility of fMRI is limited by its prohibitive costs and inability to support real-time operations. In comparison, electroencephalography (EEG) presents distinct advantages as an affordable, non-invasive, and mobile solution for real-time brain-computer interaction systems. While recent advances in deep learning have enabled remarkable progress in image generation from neural data, decoding EEG signals into structured 3D representations remains largely unexplored. In this paper, we propose a novel framework that translates EEG recordings into 3D object reconstructions by leveraging neural decoding techniques and generative models. Our approach involves training an EEG encoder to extract spatiotemporal visual features, fine-tuning a large language model to interpret these features into descriptive multimodal outputs, and leveraging generative 3D Gaussians with layout-guided control to synthesize the final 3D structures. Experiments demonstrate that our model captures salient geometric and semantic features, paving the way for applications in brain-computer interfaces (BCIs), virtual reality, and neuroprosthetics.Our code is available in https://github.com/sddwwww/Mind2Matter.
The Jade Gateway to Trust: Exploring How Socio-Cultural Perspectives Shape Trust Within Chinese NFT Communities SC
Today's world is witnessing an unparalleled rate of technological transformation. The emergence of non-fungible tokens (NFTs) has transformed how we handle digital assets and value. Despite their initial popularity, NFTs face declining adoption influenced not only by cryptocurrency volatility but also by trust dynamics within communities. From a social computing perspective, understanding these trust dynamics offers valuable insights for the development of both the NFT ecosystem and the broader digital economy. China presents a compelling context for examining these dynamics, offering a unique intersection of technological innovation and traditional cultural values. Through a content analysis of eight Chinese NFT-focused WeChat groups and 21 semi-structured interviews, we examine how socio-cultural factors influence trust formation and development. We found that trust in Chinese NFT communities is significantly molded by local cultural values. To be precise, Confucian virtues, such as benevolence, propriety, and integrity, play a crucial role in shaping these trust relationships. Our research identifies three critical trust dimensions in China's NFT market: (1) technological, (2) institutional, and (3) social. We examined the challenges in cultivating each dimension. Based on these insights, we developed tailored trust-building guidelines for Chinese NFT stakeholders. These guidelines address trust issues that factor into NFT's declining popularity and could offer valuable strategies for CSCW researchers, developers, and designers aiming to enhance trust in global NFT communities. Our research urges CSCW scholars to take into account the unique socio-cultural contexts when developing trust-enhancing strategies for digital innovations and online interactions.
comment: 39 pages, 7 tables, 4 figures, ACM CSCW
Schemex: Interactive Structural Abstraction from Examples with Contrastive Refinement
Each type of creative or communicative work is underpinned by an implicit structure. People learn these structures from examples - a process known in cognitive science as schema induction. However, inducing schemas is challenging, as structural patterns are often obscured by surface-level variation. We present Schemex, an interactive visual workflow that scaffolds schema induction through clustering, abstraction, and contrastive refinement. Schemex supports users through visual representations and interactive exploration that connect abstract structures to concrete examples, promoting transparency, adaptability, and effective human-AI collaboration. In our user study, participants reported significantly greater insight and confidence in the schemas developed with Schemex compared to those created using a baseline of an AI reasoning model. We conclude by discussing the broader implications of structural abstraction and contrastive refinement across domains.
Probing the Unknown: Exploring Student Interactions with Probeable Problems at Scale in Introductory Programming
Introductory programming courses often rely on small code-writing exercises that have clearly specified problem statements. This limits opportunities for students to practice how to clarify ambiguous requirements -- a critical skill in real-world programming. In addition, the emerging capabilities of large language models (LLMs) to produce code from well-defined specifications may harm student engagement with traditional programming exercises. This study explores the use of ``Probeable Problems'', automatically gradable tasks that have deliberately vague or incomplete specifications. Such problems require students to submit test inputs, or `probes', to clarify requirements before implementation. Through analysis of over 40,000 probes in an introductory course, we identify patterns linking probing behaviors to task success. Systematic strategies, such as thoroughly exploring expected behavior before coding, resulted in fewer incorrect code submissions and correlated with course success. Feedback from nearly 1,000 participants highlighted the challenges and real-world relevance of these tasks, as well as benefits to critical thinking and metacognitive skills. Probeable Problems are easy to set up and deploy at scale, and help students recognize and resolve uncertainties in programming problems.
comment: Accepted at ITiCSE 2025
Multimodal LLM Augmented Reasoning for Interpretable Visual Perception Analysis
In this paper, we advance the study of AI-augmented reasoning in the context of Human-Computer Interaction (HCI), psychology and cognitive science, focusing on the critical task of visual perception. Specifically, we investigate the applicability of Multimodal Large Language Models (MLLMs) in this domain. To this end, we leverage established principles and explanations from psychology and cognitive science related to complexity in human visual perception. We use them as guiding principles for the MLLMs to compare and interprete visual content. Our study aims to benchmark MLLMs across various explainability principles relevant to visual perception. Unlike recent approaches that primarily employ advanced deep learning models to predict complexity metrics from visual content, our work does not seek to develop a mere new predictive model. Instead, we propose a novel annotation-free analytical framework to assess utility of MLLMs as cognitive assistants for HCI tasks, using visual perception as a case study. The primary goal is to pave the way for principled study in quantifying and evaluating the interpretability of MLLMs for applications in improving human reasoning capability and uncovering biases in existing perception datasets annotated by humans.
MobilePoser: Real-Time Full-Body Pose Estimation and 3D Human Translation from IMUs in Mobile Consumer Devices
There has been a continued trend towards minimizing instrumentation for full-body motion capture, going from specialized rooms and equipment, to arrays of worn sensors and recently sparse inertial pose capture methods. However, as these techniques migrate towards lower-fidelity IMUs on ubiquitous commodity devices, like phones, watches, and earbuds, challenges arise including compromised online performance, temporal consistency, and loss of global translation due to sensor noise and drift. Addressing these challenges, we introduce MobilePoser, a real-time system for full-body pose and global translation estimation using any available subset of IMUs already present in these consumer devices. MobilePoser employs a multi-stage deep neural network for kinematic pose estimation followed by a physics-based motion optimizer, achieving state-of-the-art accuracy while remaining lightweight. We conclude with a series of demonstrative applications to illustrate the unique potential of MobilePoser across a variety of fields, such as health and wellness, gaming, and indoor navigation to name a few.
Co-Writing with AI, on Human Terms: Aligning Research with User Demands Across the Writing Process
As generative AI tools like ChatGPT become integral to everyday writing, critical questions arise about how to preserve writers' sense of agency and ownership when using these tools. Yet, a systematic understanding of how AI assistance affects different aspects of the writing process - and how this shapes writers' agency - remains underexplored. To address this gap, we conducted a systematic review of 109 HCI papers using the PRISMA approach. From this literature, we identify four overarching design strategies for AI writing support: structured guidance, guided exploration, active co-writing, and critical feedback - mapped across the four key cognitive processes in writing: planning, translating, reviewing, and monitoring. We complement this analysis with interviews of 15 writers across diverse domains. Our findings reveal that writers' desired levels of AI intervention vary across the writing process: content-focused writers (e.g., academics) prioritize ownership during planning, while form-focused writers (e.g., creatives) value control over translating and reviewing. Writers' preferences are also shaped by contextual goals, values, and notions of originality and authorship. By examining when ownership matters, what writers want to own, and how AI interactions shape agency, we surface both alignment and gaps between research and user needs. Our findings offer actionable design guidance for developing human-centered writing tools for co-writing with AI, on human terms.
Towards Conversational AI for Human-Machine Collaborative MLOps
This paper presents a Large Language Model (LLM) based conversational agent system designed to enhance human-machine collaboration in Machine Learning Operations (MLOps). We introduce the Swarm Agent, an extensible architecture that integrates specialized agents to create and manage ML workflows through natural language interactions. The system leverages a hierarchical, modular design incorporating a KubeFlow Pipelines (KFP) Agent for ML pipeline orchestration, a MinIO Agent for data management, and a Retrieval-Augmented Generation (RAG) Agent for domain-specific knowledge integration. Through iterative reasoning loops and context-aware processing, the system enables users with varying technical backgrounds to discover, execute, and monitor ML pipelines; manage datasets and artifacts; and access relevant documentation, all via intuitive conversational interfaces. Our approach addresses the accessibility gap in complex MLOps platforms like Kubeflow, making advanced ML tools broadly accessible while maintaining the flexibility to extend to other platforms. The paper describes the architecture, implementation details, and demonstrates how this conversational MLOps assistant reduces complexity and lowers barriers to entry for users across diverse technical skill levels.
comment: 8 pages, 5 figures
PlanGlow: Personalized Study Planning with an Explainable and Controllable LLM-Driven System
Personal development through self-directed learning is essential in today's fast-changing world, but many learners struggle to manage it effectively. While AI tools like large language models (LLMs) have the potential for personalized learning planning, they face issues such as transparency and hallucinated information. To address this, we propose PlanGlow, an LLM-based system that generates personalized, well-structured study plans with clear explanations and controllability through user-centered interactions. Through mixed methods, we surveyed 28 participants and interviewed 10 before development, followed by a within-subject experiment with 24 participants to evaluate PlanGlow's performance, usability, controllability, and explainability against two baseline systems: a GPT-4o-based system and Khan Academy's Khanmigo. Results demonstrate that PlanGlow significantly improves usability, explainability, and controllability. Additionally, two educational experts assessed and confirmed the quality of the generated study plans. These findings highlight PlanGlow's potential to enhance personalized learning and address key challenges in self-directed learning.
comment: 12 pages, 6 figures. To appear at ACM Learning@Scale 2025
Supporting AI-Augmented Meta-Decision Making with InDecision
From school admissions to hiring and investment decisions, the first step behind many high-stakes decision-making processes is "deciding how to decide." Formulating effective criteria to guide decision-making requires an iterative process of exploration, reflection, and discovery. Yet, this process remains under-supported in practice. In this short paper, we outline an opportunity space for AI-driven tools that augment human meta-decision making. We draw upon prior literature to propose a set of design goals for future AI tools aimed at supporting human meta-decision making. We then illustrate these ideas through InDecision, a mixed-initiative tool designed to support the iterative development of decision criteria. Based on initial findings from designing and piloting InDecision with users, we discuss future directions for AI-augmented meta-decision making.
comment: Accepted at Tools for Thought Workshop (CHI'25)
Don't Just Translate, Agitate: Using Large Language Models as Devil's Advocates for AI Explanations
This position paper highlights a growing trend in Explainable AI (XAI) research where Large Language Models (LLMs) are used to translate outputs from explainability techniques, like feature-attribution weights, into a natural language explanation. While this approach may improve accessibility or readability for users, recent findings suggest that translating into human-like explanations does not necessarily enhance user understanding and may instead lead to overreliance on AI systems. When LLMs summarize XAI outputs without surfacing model limitations, uncertainties, or inconsistencies, they risk reinforcing the illusion of interpretability rather than fostering meaningful transparency. We argue that - instead of merely translating XAI outputs - LLMs should serve as constructive agitators, or devil's advocates, whose role is to actively interrogate AI explanations by presenting alternative interpretations, potential biases, training data limitations, and cases where the model's reasoning may break down. In this role, LLMs can facilitate users in engaging critically with AI systems and generated explanations, with the potential to reduce overreliance caused by misinterpreted or specious explanations.
comment: Presented at the Human-centered Explainable AI Workshop (HCXAI) @ CHI 2025
Mitigating LLM Hallucinations with Knowledge Graphs: A Case Study
High-stakes domains like cyber operations need responsible and trustworthy AI methods. While large language models (LLMs) are becoming increasingly popular in these domains, they still suffer from hallucinations. This research paper provides learning outcomes from a case study with LinkQ, an open-source natural language interface that was developed to combat hallucinations by forcing an LLM to query a knowledge graph (KG) for ground-truth data during question-answering (QA). We conduct a quantitative evaluation of LinkQ using a well-known KGQA dataset, showing that the system outperforms GPT-4 but still struggles with certain question categories - suggesting that alternative query construction strategies will need to be investigated in future LLM querying systems. We discuss a qualitative study of LinkQ with two domain experts using a real-world cybersecurity KG, outlining these experts' feedback, suggestions, perceived limitations, and future opportunities for systems like LinkQ.
comment: Presented at the Human-centered Explainable AI Workshop (HCXAI) @ CHI 2025
Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations
The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.
comment: 14 pages, 6 figures
Plataforma para visualização geo-temporal de apinhamento turístico
Tourist crowding degrades the visitor experience and negatively impacts the environment and the local population, potentially making tourism in popular destinations unsustainable. This motivated us to develop, within the framework of the European RESETTING project related to the digital transformation of tourism, a platform to visualize this crowding, exploring historical data, detecting patterns and trends and predicting future events. The ultimate goal is to support short- and medium-term decision-making to mitigate the phenomenon. To this end, the platform takes into account the carrying capacity of the target sites when calculating crowding density. The integration of data from different sources is achieved with an extensible, connector-based architecture. Three scenarios for using the platform are described, relating to major annual crowding events. Two of them, in the municipality of Lisbon, are based on data from a mobile network provided by the LxDataLab initiative. The third, in Melbourne, Australia, using public data from a network of movement sensors called the Pedestrian Counting System. An experiment to evaluate the usability of the proposed platform using NASA-TLX is also described. -- -- O apinhamento tur\'istico degrada a experi\^encia dos visitantes e impacta negativamente o ambiente e a popula\c{c}\~ao local, podendo tornar insustent\'avel o turismo em destinos populares. Isto motivou-nos a desenvolver, no \^ambito do projeto europeu RESETTING relacionado com a transforma\c{c}\~ao digital do turismo, uma plataforma para visualizar este apinhamento, explorando dados hist\'oricos, detetando padr\~oes e tend\^encias e prevendo eventos futuros. O objetivo final \'e apoiar a tomada de decis\~ao, a curto e m\'edio prazo, para mitigar o fen\'omeno. Para tal, a plataforma considera a capacidade de carga dos locais alvo no c\'alculo da densidade de apinhamento. A integra\c{c}\~ao de dados de diversas fontes \'e conseguida com uma arquitetura extens\'ivel, \`a base de conetores. S\~ao descritos tr\^es cen\'arios de utiliza\c{c}\~ao da plataforma, relativos a eventos anuais de grande apinhamento. Dois deles, no munic\'ipio de Lisboa, baseados em dados de uma rede m\'ovel disponibilizados pela iniciativa LxDataLab. O terceiro, em Melbourne na Austr\'alia, utilizando dados p\'ublicos de uma rede de sensores de movimento designada de Pedestrian Counting System. \'E ainda descrita uma experi\^encia de avalia\c{c}\~ao da usabilidade da plataforma proposta, usando o NASA-TLX.
comment: 6 pages, in Portuguese language, 3 figures, to be published in proceedings of XIV Congresso da Geografia Portuguesa
Using customized GPT to develop prompting proficiency in architectural AI-generated images
This research investigates the use of customized GPT models to enhance prompting proficiency among architecture students when generating AI-driven images. Prompt engineering is increasingly essential in architectural education due to the widespread adoption of generative AI tools. This study utilized a mixed-methods experimental design involving architecture students divided into three distinct groups: a control group receiving no structured support, a second group provided with structured prompting guides, and a third group supported by both structured guides and interactive AI personas. Students engaged in reverse engineering tasks, first guessing provided image prompts and then generating their own prompts, aiming to boost critical thinking and prompting skills. Variables examined included time spent prompting, word count, prompt similarity, and concreteness. Quantitative analysis involved correlation assessments between these variables and a one-way ANOVA to evaluate differences across groups. While several correlations showed meaningful relationships, not all were statistically significant. ANOVA results indicated statistically significant improvements in word count, similarity, and concreteness, especially in the group supported by AI personas and structured prompting guides. Qualitative feedback complemented these findings, revealing enhanced confidence and critical thinking skills in students. These results suggest tailored GPT interactions substantially improve students' ability to communicate architectural concepts clearly and effectively.
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
Feedforward in Generative AI: Opportunities for a Design Space
Generative AI (GenAI) models have become more capable than ever at augmenting productivity and cognition across diverse contexts. However, a fundamental challenge remains as users struggle to anticipate what AI will generate. As a result, they must engage in excessive turn-taking with the AI's feedback to clarify their intent, leading to significant cognitive load and time investment. Our goal is to advance the perspective that in order for users to seamlessly leverage the full potential of GenAI systems across various contexts, we must design GenAI systems that not only provide informative feedback but also informative feedforward -- designs that tell users what AI will generate before the user submits their prompt. To spark discussion on feedforward in GenAI, we designed diverse instantiations of feedforward across four GenAI applications: conversational UIs, document editors, malleable interfaces, and automation agents, and discussed how these designs can contribute to a more rigorous investigation of a design space and a set of guidelines for feedforward in all GenAI systems.
comment: 5 pages, 3 figures, CHI '25 Workshop on Tools for Thought
MindCoder: Automated and Controllable Reasoning Chain in Qualitative Analysis
Extracting insights from qualitative analysis involves a series of reasoning steps, such as open coding, grouping, and identifying themes. We introduce the MindCoder reasoning chain, built on Chain-of-Thought (CoT) prompting, to support the insight extraction process step by step-including topic clustering, code labeling, conceptualization, and reporting. We designed the MindCoder web application to help users 1) automatically run this reasoning chain (i.e., obtain analysis report results in approximately 3-5 minutes) and 2) interactively control the reasoning process on demand. Our technical evaluations assess its reliability across various data types and demonstrate that simulated human iteration can potentially enhance coding quality. A user study further confirmed positive feedback regarding MindCoder's automation and its on-demand reasoning functionality.
comment: 17 pages for main content, 3 pages for references, 10 pages for appendix
Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT
Health sensing for chronic disease management creates immense benefits for social welfare. Existing health sensing studies primarily focus on the prediction of physical chronic diseases. Depression, a widespread complication of chronic diseases, is however understudied. We draw on the medical literature to support depression detection using motion sensor data. To connect humans in this decision-making, safeguard trust, and ensure algorithm transparency, we develop an interpretable deep learning model: Temporal Prototype Network (TempPNet). TempPNet is built upon the emergent prototype learning models. To accommodate the temporal characteristic of sensor data and the progressive property of depression, TempPNet differs from existing prototype learning models in its capability of capturing temporal progressions of prototypes. Extensive empirical analyses using real-world motion sensor data show that TempPNet outperforms state-of-the-art benchmarks in depression detection. Moreover, TempPNet interprets its decision by visualizing the temporal progression of depression and its corresponding symptoms detected from sensor data. We further employ a user study and a medical expert panel to demonstrate its superiority over the benchmarks in interpretability. This study offers an algorithmic solution for impactful social good -- collaborative care of chronic diseases and depression in health sensing. Methodologically, it contributes to extant literature with a novel interpretable deep learning model for depression detection from sensor data. Patients, doctors, and caregivers can deploy our model on mobile devices to monitor patients' depression risks in real-time. Our model's interpretability also allows human experts to participate in the decision-making by reviewing the interpretation and making informed interventions.
comment: Accepted by Management Science
Reliable Physiological Monitoring on the Wrist Using Generative Deep Learning to Address Poor Skin-Sensor Contact
Photoplethysmography (PPG) is a widely adopted, non-invasive technique for monitoring cardiovascular health and physiological parameters in both consumer and clinical settings. While motion artifacts in dynamic environments have been extensively studied, suboptimal skin-sensor contact in sedentary conditions - a critical yet underexplored issue - can distort PPG waveform morphology, leading to the loss or misalignment of key features and compromising sensing accuracy. In this work, we propose CP-PPG, a novel framework that transforms Contact Pressure-distorted PPG signals into high-fidelity waveforms with ideal morphology. CP-PPG integrates a custom data collection protocol, a carefully designed signal processing pipeline, and a novel deep adversarial model trained with a custom PPG-aware loss function. We validated CP-PPG through comprehensive evaluations, including 1) morphology transformation performance on our self-collected dataset, 2) downstream physiological monitoring performance on public datasets, and 3) in-the-wild study. Extensive experiments demonstrate substantial and consistent improvements in signal fidelity (Mean Absolute Error: 0.09, 40% improvement over the original signal) as well as downstream performance across all evaluations in Heart Rate (HR), Heart Rate Variability (HRV), Respiration Rate (RR), and Blood Pressure (BP) estimation (on average, 21% improvement in HR; 41-46% in HRV; 6% in RR; and 4-5% in BP). These findings highlight the critical importance of addressing skin-sensor contact issues to enhance the reliability and effectiveness of PPG-based physiological monitoring. CP-PPG thus holds significant potential to improve the accuracy of wearable health technologies in clinical and consumer applications.
SpiritSight Agent: Advanced GUI Agent with One Look CVPR 2025
Graphical User Interface (GUI) agents show amazing abilities in assisting human-computer interaction, automating human user's navigation on digital devices. An ideal GUI agent is expected to achieve high accuracy, low latency, and compatibility for different GUI platforms. Recent vision-based approaches have shown promise by leveraging advanced Vision Language Models (VLMs). While they generally meet the requirements of compatibility and low latency, these vision-based GUI agents tend to have low accuracy due to their limitations in element grounding. To address this issue, we propose $\textbf{SpiritSight}$, a vision-based, end-to-end GUI agent that excels in GUI navigation tasks across various GUI platforms. First, we create a multi-level, large-scale, high-quality GUI dataset called $\textbf{GUI-Lasagne}$ using scalable methods, empowering SpiritSight with robust GUI understanding and grounding capabilities. Second, we introduce the $\textbf{Universal Block Parsing (UBP)}$ method to resolve the ambiguity problem in dynamic high-resolution of visual inputs, further enhancing SpiritSight's ability to ground GUI objects. Through these efforts, SpiritSight agent outperforms other advanced methods on diverse GUI benchmarks, demonstrating its superior capability and compatibility in GUI navigation tasks. Models and datasets are available at https://hzhiyuan.github.io/SpiritSight-Agent.
comment: Paper accepted to CVPR 2025
Explaining Facial Expression Recognition
Facial expression recognition (FER) has emerged as a promising approach to the development of emotion-aware intelligent agents and systems. However, key challenges remain in utilizing FER in real-world contexts, including ensuring user understanding and establishing a suitable level of user trust. We developed a novel explanation method utilizing Facial Action Units (FAUs) to explain the output of a FER model through both textual and visual modalities. We conducted an empirical user study evaluating user understanding and trust, comparing our approach to state-of-the-art eXplainable AI (XAI) methods. Our results indicate that visual AND textual as well as textual-only FAU-based explanations resulted in better user understanding of the FER model. We also show that all modalities of FAU-based methods improved appropriate trust of the users towards the FER model.
WikiReddit: Tracing Information and Attention Flows Between Online Platforms AAAI
The World Wide Web is a complex interconnected digital ecosystem, where information and attention flow between platforms and communities throughout the globe. These interactions co-construct how we understand the world, reflecting and shaping public discourse. Unfortunately, researchers often struggle to understand how information circulates and evolves across the web because platform-specific data is often siloed and restricted by linguistic barriers. To address this gap, we present a comprehensive, multilingual dataset capturing all Wikipedia mentions and links shared in posts and comments on Reddit 2020-2023, excluding those from private and NSFW subreddits. Each linked Wikipedia article is enriched with revision history, page view data, article ID, redirects, and Wikidata identifiers. Through a research agreement with Reddit, our dataset ensures user privacy while providing a query and ID mechanism that integrates with the Reddit and Wikipedia APIs. This enables extended analyses for researchers studying how information flows across platforms. For example, Reddit discussions use Wikipedia for deliberation and fact-checking which subsequently influences Wikipedia content, by driving traffic to articles or inspiring edits. By analyzing the relationship between information shared and discussed on these platforms, our dataset provides a foundation for examining the interplay between social media discourse and collaborative knowledge consumption and production.
comment: Accepted at the 19th International AAAI Conference on Web and Social Media (ICWSM 2025)
Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL: a developer can change one and the LLM automatically updates the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
Pre-instruction for Pedestrians Interacting Autonomous Vehicles with an eHMI: Effects on Their Psychology and Walking Behavior
External human-machine interface (eHMI) is considered as a new explicit communication method for pedestrian-AV interactions, particularly in encounter scenarios. Pedestrians without prior negotiation experience with eHMI may misinterpret the driving intentions of AV, leading to confusion and unpredictable behavior. To address this, our study suggests providing pre-instruction on eHMI to enhance comprehension. To compare pedestrians' subjective feelings and walking behavior changes with and without the use of eHMI, as well as before and after receiving pre-instructions, a road crossing experiment using a within-subject design was conducted. In the experiment, the participants were challenged to recognize situations and experienced uncertainty when encountering AVs lacking eHMI, in contrast to manual driving vehicles. After the pre-instruction, participants could understand the driving intention of an AV with eHMI and predict its driving behavior more easily. Furthermore, participants' subjective feelings and hesitation to make decisions improved to align with the same criteria as encountered with a manual driving vehicle. Additionally, this study found that the information guidance effect of using eHMI makes participants' walking speeds more consistent over multiple trials after pre-instruction.
comment: 12 pages, 7 figures, 6 Tables
Examining Human-AI Collaboration for Co-Writing Constructive Comments Online
This paper examines how large language models (LLMs) can help people write constructive comments on divisive social issues and whether the notions of constructiveness vary between humans and LLMs. Through controlled experiments with 600 participants from India and the US, who reviewed and wrote constructive comments on online threads on Islamophobia and homophobia, we observed potential misalignment in how LLMs and humans perceive constructiveness in online comments. While the LLM was more likely to prioritize politeness and balance among contrasting viewpoints when evaluating constructive comments, participants emphasized logic and facts more than the LLM did. Despite these differences, participants rated both LLM-generated and human-AI co-written comments as significantly more constructive than those written independently by humans. Our analysis also revealed that LLM-generated comments exhibited more linguistic features associated with constructiveness compared to human-written comments on divisive topics. When participants used LLMs to refine their comments, the resulting comments were more constructive, more positive, and less toxic, retained the original intent but occasionally lost nuances. Based on these findings, we discuss ethical and design considerations in using LLMs to facilitate constructive discourse online.
InterChat: Enhancing Generative Visual Analytics using Multimodal Interactions
The rise of Large Language Models (LLMs) and generative visual analytics systems has transformed data-driven insights, yet significant challenges persist in accurately interpreting users' analytical and interaction intents. While language inputs offer flexibility, they often lack precision, making the expression of complex intents inefficient, error-prone, and time-intensive. To address these limitations, we investigate the design space of multimodal interactions for generative visual analytics through a literature review and pilot brainstorming sessions. Building on these insights, we introduce a highly extensible workflow that integrates multiple LLM agents for intent inference and visualization generation. We develop InterChat, a generative visual analytics system that combines direct manipulation of visual elements with natural language inputs. This integration enables precise intent communication and supports progressive, visually driven exploratory data analyses. By employing effective prompt engineering, and contextual interaction linking, alongside intuitive visualization and interaction designs, InterChat bridges the gap between user interactions and LLM-driven visualizations, enhancing both interpretability and usability. Extensive evaluations, including two usage scenarios, a user study, and expert feedback, demonstrate the effectiveness of InterChat. Results show significant improvements in the accuracy and efficiency of handling complex visual analytics tasks, highlighting the potential of multimodal interactions to redefine user engagement and analytical depth in generative visual analytics.
comment: This work is accepted by the 27th Eurographics Conference on Visualization (EuroVis 2025). The paper contains 12 pages and 7 figures
Emotion Alignment: Discovering the Gap Between Social Media and Real-World Sentiments in Persian Tweets and Images
In contemporary society, widespread social media usage is evident in people's daily lives. Nevertheless, disparities in emotional expressions between the real world and online platforms can manifest. We comprehensively analyzed Persian community on X to explore this phenomenon. An innovative pipeline was designed to measure the similarity between emotions in the real world compared to social media. Accordingly, recent tweets and images of participants were gathered and analyzed using Transformers-based text and image sentiment analysis modules. Each participant's friends also provided insights into the their real-world emotions. A distance criterion was used to compare real-world feelings with virtual experiences. Our study encompassed N=105 participants, 393 friends who contributed their perspectives, over 8,300 collected tweets, and 2,000 media images. Results indicated a 28.67% similarity between images and real-world emotions, while tweets exhibited a 75.88% alignment with real-world feelings. Additionally, the statistical significance confirmed that the observed disparities in sentiment proportions.
PhishLang: A Real-Time, Fully Client-Side Phishing Detection Framework Using MobileBERT
In this paper, we introduce PhishLang, the first fully client-side anti-phishing framework built on a lightweight ensemble framework that utilizes advanced language models to analyze the contextual features of a website's source code and URL. Unlike traditional heuristic or machine learning approaches that rely on static features and struggle to adapt to evolving threats, or deep learning models that are computationally intensive, our approach utilizes MobileBERT, a fast and memory-efficient variant of the BERT architecture, to capture nuanced features indicative of phishing attacks. To further enhance detection accuracy, PhishLang employs a multi-modal ensemble approach, combining both the URL and Source detection models. This architecture ensures robustness by allowing one model to compensate for scenarios where the other may fail, or if both models provide ambiguous inferences. As a result, PhishLang excels at detecting both regular and evasive phishing threats, including zero-day attacks, outperforming popular anti-phishing tools, while operating without relying on external blocklists and safeguarding user privacy by ensuring that browser history remains entirely local and unshared. We release PhishLang as a Chromium browser extension and also open-source the framework to aid the research community.
ValueCompass: A Framework for Measuring Contextual Value Alignment Between Human and LLMs
As AI systems become more advanced, ensuring their alignment with a diverse range of individuals and societal values becomes increasingly critical. But how can we capture fundamental human values and assess the degree to which AI systems align with them? We introduce ValueCompass, a framework of fundamental values, grounded in psychological theory and a systematic review, to identify and evaluate human-AI alignment. We apply ValueCompass to measure the value alignment of humans and large language models (LLMs) across four real-world scenarios: collaborative writing, education, public sectors, and healthcare. Our findings reveal concerning misalignments between humans and LLMs, such as humans frequently endorse values like "National Security" which were largely rejected by LLMs. We also observe that values differ across scenarios, highlighting the need for context-aware AI alignment strategies. This work provides valuable insights into the design space of human-AI alignment, laying the foundations for developing AI systems that responsibly reflect societal values and ethics.
Missing Pieces: How Do Designs that Expose Uncertainty Longitudinally Impact Trust in AI Decision Aids? An In Situ Study of Gig Drivers
Decision aids based on artificial intelligence (AI) induce a wide range of outcomes when they are deployed in uncertain environments. In this paper, we investigate how users' trust in recommendations from an AI decision aid is impacted over time by designs that expose uncertainty in predicted outcomes. Unlike previous work, we focus on gig driving - a real-world, repeated decision-making context. We report on a longitudinal mixed-methods study ($n=51$) where we measured gig drivers' trust as they interacted with an AI-based schedule recommendation tool. Our results show that participants' trust in the tool was shaped by both their first impressions of its accuracy and their longitudinal interactions with it; and that task-aligned framings of uncertainty improved trust by allowing participants to incorporate uncertainty into their decision-making processes. Additionally, we observed that trust depended on their characteristics as drivers, underscoring the need for more in situ studies of AI decision aids.
comment: 27 pages; 3 tables; 13 figures; accepted version, published at the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25)
AI, Jobs, and the Automation Trap: Where Is HCI?
As artificial intelligence (AI) continues to reshape the workforce, its current trajectory raises pressing questions about its ultimate purpose. Why does job automation dominate the agenda, even at the expense of human agency and equity? This paper critiques the automation-centric paradigm, arguing that current reward structures, which largely focus on cost reduction, drive the overwhelming emphasis on task replacement in AI patents. Meanwhile, Human-Centered AI (HCAI), which envisions AI as a collaborator augmenting human capabilities and aligning with societal values, remains a fugitive from the mainstream narrative. Despite its promise, HCAI has gone ``missing'', with little evidence of its principles translating into patents or real-world impact. To increase impact, actionable interventions are needed to disrupt existing incentive structures within the HCI community. We call for a shift in priorities to support translational research, foster cross-disciplinary collaboration, and promote metrics that reward tangible and real-world impact.
comment: 8 pages, 1 figure, 1 table
Computer Vision and Pattern Recognition
Aligning Generative Denoising with Discriminative Objectives Unleashes Diffusion for Visual Perception ICLR 2025
With the success of image generation, generative diffusion models are increasingly adopted for discriminative tasks, as pixel generation provides a unified perception interface. However, directly repurposing the generative denoising process for discriminative objectives reveals critical gaps rarely addressed previously. Generative models tolerate intermediate sampling errors if the final distribution remains plausible, but discriminative tasks require rigorous accuracy throughout, as evidenced in challenging multi-modal tasks like referring image segmentation. Motivated by this gap, we analyze and enhance alignment between generative diffusion processes and perception tasks, focusing on how perception quality evolves during denoising. We find: (1) earlier denoising steps contribute disproportionately to perception quality, prompting us to propose tailored learning objectives reflecting varying timestep contributions; (2) later denoising steps show unexpected perception degradation, highlighting sensitivity to training-denoising distribution shifts, addressed by our diffusion-tailored data augmentation; and (3) generative processes uniquely enable interactivity, serving as controllable user interfaces adaptable to correctional prompts in multi-round interactions. Our insights significantly improve diffusion-based perception models without architectural changes, achieving state-of-the-art performance on depth estimation, referring image segmentation, and generalist perception tasks. Code available at https://github.com/ziqipang/ADDP.
comment: ICLR 2025
SimpleAR: Pushing the Frontier of Autoregressive Visual Generation through Pretraining, SFT, and RL
This work presents SimpleAR, a vanilla autoregressive visual generation framework without complex architecure modifications. Through careful exploration of training and inference optimization, we demonstrate that: 1) with only 0.5B parameters, our model can generate 1024x1024 resolution images with high fidelity, and achieve competitive results on challenging text-to-image benchmarks, e.g., 0.59 on GenEval and 79.66 on DPG; 2) both supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) training could lead to significant improvements on generation aesthectics and prompt alignment; and 3) when optimized with inference acceleraton techniques like vLLM, the time for SimpleAR to generate an 1024x1024 image could be reduced to around 14 seconds. By sharing these findings and open-sourcing the code, we hope to reveal the potential of autoregressive visual generation and encourage more participation in this research field. Code is available at https://github.com/wdrink/SimpleAR.
comment: technical report, work in progress
PARTFIELD: Learning 3D Feature Fields for Part Segmentation and Beyond
We propose PartField, a feedforward approach for learning part-based 3D features, which captures the general concept of parts and their hierarchy without relying on predefined templates or text-based names, and can be applied to open-world 3D shapes across various modalities. PartField requires only a 3D feedforward pass at inference time, significantly improving runtime and robustness compared to prior approaches. Our model is trained by distilling 2D and 3D part proposals from a mix of labeled datasets and image segmentations on large unsupervised datasets, via a contrastive learning formulation. It produces a continuous feature field which can be clustered to yield a hierarchical part decomposition. Comparisons show that PartField is up to 20% more accurate and often orders of magnitude faster than other recent class-agnostic part-segmentation methods. Beyond single-shape part decomposition, consistency in the learned field emerges across shapes, enabling tasks such as co-segmentation and correspondence, which we demonstrate in several applications of these general-purpose, hierarchical, and consistent 3D feature fields. Check our Webpage! https://research.nvidia.com/labs/toronto-ai/partfield-release/
comment: https://research.nvidia.com/labs/toronto-ai/partfield-release/
Diffusion Distillation With Direct Preference Optimization For Efficient 3D LiDAR Scene Completion
The application of diffusion models in 3D LiDAR scene completion is limited due to diffusion's slow sampling speed. Score distillation accelerates diffusion sampling but with performance degradation, while post-training with direct policy optimization (DPO) boosts performance using preference data. This paper proposes Distillation-DPO, a novel diffusion distillation framework for LiDAR scene completion with preference aligment. First, the student model generates paired completion scenes with different initial noises. Second, using LiDAR scene evaluation metrics as preference, we construct winning and losing sample pairs. Such construction is reasonable, since most LiDAR scene metrics are informative but non-differentiable to be optimized directly. Third, Distillation-DPO optimizes the student model by exploiting the difference in score functions between the teacher and student models on the paired completion scenes. Such procedure is repeated until convergence. Extensive experiments demonstrate that, compared to state-of-the-art LiDAR scene completion diffusion models, Distillation-DPO achieves higher-quality scene completion while accelerating the completion speed by more than 5-fold. Our method is the first to explore adopting preference learning in distillation to the best of our knowledge and provide insights into preference-aligned distillation. Our code is public available on https://github.com/happyw1nd/DistillationDPO.
comment: Our code is public available on https://github.com/happyw1nd/DistillationDPO
TADACap: Time-series Adaptive Domain-Aware Captioning
While image captioning has gained significant attention, the potential of captioning time-series images, prevalent in areas like finance and healthcare, remains largely untapped. Existing time-series captioning methods typically offer generic, domain-agnostic descriptions of time-series shapes and struggle to adapt to new domains without substantial retraining. To address these limitations, we introduce TADACap, a retrieval-based framework to generate domain-aware captions for time-series images, capable of adapting to new domains without retraining. Building on TADACap, we propose a novel retrieval strategy that retrieves diverse image-caption pairs from a target domain database, namely TADACap-diverse. We benchmarked TADACap-diverse against state-of-the-art methods and ablation variants. TADACap-diverse demonstrates comparable semantic accuracy while requiring significantly less annotation effort.
comment: Accepted to ICAIF 2024
Mamba-Based Ensemble learning for White Blood Cell Classification
White blood cell (WBC) classification assists in assessing immune health and diagnosing various diseases, yet manual classification is labor-intensive and prone to inconsistencies. Recent advancements in deep learning have shown promise over traditional methods; however, challenges such as data imbalance and the computational demands of modern technologies, such as Transformer-based models which do not scale well with input size, limit their practical application. This paper introduces a novel framework that leverages Mamba models integrated with ensemble learning to improve WBC classification. Mamba models, known for their linear complexity, provide a scalable alternative to Transformer-based approaches, making them suitable for deployment in resource-constrained environments. Additionally, we introduce a new WBC dataset, Chula-WBC-8, for benchmarking. Our approach not only validates the effectiveness of Mamba models in this domain but also demonstrates their potential to significantly enhance classification efficiency without compromising accuracy. The source code can be found at https://github.com/LewisClifton/Mamba-WBC-Classification.
Enhancing Out-of-Distribution Detection with Extended Logit Normalization
Out-of-distribution (OOD) detection is essential for the safe deployment of machine learning models. Recent advances have explored improved classification losses and representation learning strategies to enhance OOD detection. However, these methods are often tailored to specific post-hoc detection techniques, limiting their generalizability. In this work, we identify a critical issue in Logit Normalization (LogitNorm), which inhibits its effectiveness in improving certain post-hoc OOD detection methods. To address this, we propose Extended Logit Normalization ($\textbf{ELogitNorm}$), a novel hyperparameter-free formulation that significantly benefits a wide range of post-hoc detection methods. By incorporating feature distance-awareness to LogitNorm, $\textbf{ELogitNorm}$ shows more robust OOD separability and in-distribution (ID) confidence calibration than its predecessor. Extensive experiments across standard benchmarks demonstrate that our approach outperforms state-of-the-art training-time methods in OOD detection while maintaining strong ID classification accuracy.
NormalCrafter: Learning Temporally Consistent Normals from Video Diffusion Priors
Surface normal estimation serves as a cornerstone for a spectrum of computer vision applications. While numerous efforts have been devoted to static image scenarios, ensuring temporal coherence in video-based normal estimation remains a formidable challenge. Instead of merely augmenting existing methods with temporal components, we present NormalCrafter to leverage the inherent temporal priors of video diffusion models. To secure high-fidelity normal estimation across sequences, we propose Semantic Feature Regularization (SFR), which aligns diffusion features with semantic cues, encouraging the model to concentrate on the intrinsic semantics of the scene. Moreover, we introduce a two-stage training protocol that leverages both latent and pixel space learning to preserve spatial accuracy while maintaining long temporal context. Extensive evaluations demonstrate the efficacy of our method, showcasing a superior performance in generating temporally consistent normal sequences with intricate details from diverse videos.
comment: 9 pages, 6 figures, Project Page: https://normalcrafter.github.io/
ADT: Tuning Diffusion Models with Adversarial Supervision
Diffusion models have achieved outstanding image generation by reversing a forward noising process to approximate true data distributions. During training, these models predict diffusion scores from noised versions of true samples in a single forward pass, while inference requires iterative denoising starting from white noise. This training-inference divergences hinder the alignment between inference and training data distributions, due to potential prediction biases and cumulative error accumulation. To address this problem, we propose an intuitive but effective fine-tuning framework, called Adversarial Diffusion Tuning (ADT), by stimulating the inference process during optimization and aligning the final outputs with training data by adversarial supervision. Specifically, to achieve robust adversarial training, ADT features a siamese-network discriminator with a fixed pre-trained backbone and lightweight trainable parameters, incorporates an image-to-image sampling strategy to smooth discriminative difficulties, and preserves the original diffusion loss to prevent discriminator hacking. In addition, we carefully constrain the backward-flowing path for back-propagating gradients along the inference path without incurring memory overload or gradient explosion. Finally, extensive experiments on Stable Diffusion models (v1.5, XL, and v3), demonstrate that ADT significantly improves both distribution alignment and image quality.
Leveraging Point Transformers for Detecting Anatomical Landmarks in Digital Dentistry MICCAI2024
The increasing availability of intraoral scanning devices has heightened their importance in modern clinical orthodontics. Clinicians utilize advanced Computer-Aided Design techniques to create patient-specific treatment plans that include laboriously identifying crucial landmarks such as cusps, mesial-distal locations, facial axis points, and tooth-gingiva boundaries. Detecting such landmarks automatically presents challenges, including limited dataset sizes, significant anatomical variability among subjects, and the geometric nature of the data. We present our experiments from the 3DTeethLand Grand Challenge at MICCAI 2024. Our method leverages recent advancements in point cloud learning through transformer architectures. We designed a Point Transformer v3 inspired module to capture meaningful geometric and anatomical features, which are processed by a lightweight decoder to predict per-point distances, further processed by graph-based non-minima suppression. We report promising results and discuss insights on learned feature interpretability.
comment: 10 pages + references, 3 figures, MICCAI2024 3DTeethland Challenge submission
Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps SP
Accurate, detailed, and high-frequent bathymetry is crucial for shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods utilizing airborne or satellite optical imagery to derive bathymetry primarily rely on either SfM-MVS with refraction correction or Spectrally Derived Bathymetry (SDB). However, SDB methods often require extensive manual fieldwork or costly reference data, while SfM-MVS approaches face challenges even after refraction correction. These include depth data gaps and noise in environments with homogeneous visual textures, which hinder the creation of accurate and complete Digital Surface Models (DSMs) of the seabed. To address these challenges, this work introduces a methodology that combines the high-fidelity 3D reconstruction capabilities of the SfM-MVS methods with state-of-the-art refraction correction techniques, along with the spectral analysis capabilities of a new deep learning-based method for bathymetry prediction. This integration enables a synergistic approach where SfM-MVS derived DSMs with data gaps are used as training data to generate complete bathymetric maps. In this context, we propose Swin-BathyUNet that combines U-Net with Swin Transformer self-attention layers and a cross-attention mechanism, specifically tailored for SDB. Swin-BathyUNet is designed to improve bathymetric accuracy by capturing long-range spatial relationships and can also function as a standalone solution for standard SDB with various training depth data, independent of the SfM-MVS output. Experimental results in two completely different test sites in the Mediterranean and Baltic Seas demonstrate the effectiveness of the proposed approach through extensive experiments that demonstrate improvements in bathymetric accuracy, detail, coverage, and noise reduction in the predicted DSM. The code is available at https://github.com/pagraf/Swin-BathyUNet.
comment: Accepted for publication in ISPRS Journal of Photogrammetry and Remote Sensing
Robustness and sex differences in skin cancer detection: logistic regression vs CNNs
Deep learning has been reported to achieve high performances in the detection of skin cancer, yet many challenges regarding the reproducibility of results and biases remain. This study is a replication (different data, same analysis) of a study on Alzheimer's disease [28] which studied robustness of logistic regression (LR) and convolutional neural networks (CNN) across patient sexes. We explore sex bias in skin cancer detection, using the PAD-UFES-20 dataset with LR trained on handcrafted features reflecting dermatological guidelines (ABCDE and the 7-point checklist), and a pre-trained ResNet-50 model. We evaluate these models in alignment with [28]: across multiple training datasets with varied sex composition to determine their robustness. Our results show that both the LR and the CNN were robust to the sex distributions, but the results also revealed that the CNN had a significantly higher accuracy (ACC) and area under the receiver operating characteristics (AUROC) for male patients than for female patients. We hope these findings to contribute to the growing field of investigating potential bias in popular medical machine learning methods. The data and relevant scripts to reproduce our results can be found in our Github.
comment: 16 pages (excluding appendix), 2 figures (excluding appendix), submitted to MIUA 2025 conference (response pending)
Multi-level Cellular Automata for FLIM networks
The necessity of abundant annotated data and complex network architectures presents a significant challenge in deep-learning Salient Object Detection (deep SOD) and across the broader deep-learning landscape. This challenge is particularly acute in medical applications in developing countries with limited computational resources. Combining modern and classical techniques offers a path to maintaining competitive performance while enabling practical applications. Feature Learning from Image Markers (FLIM) methodology empowers experts to design convolutional encoders through user-drawn markers, with filters learned directly from these annotations. Recent findings demonstrate that coupling a FLIM encoder with an adaptive decoder creates a flyweight network suitable for SOD, requiring significantly fewer parameters than lightweight models and eliminating the need for backpropagation. Cellular Automata (CA) methods have proven successful in data-scarce scenarios but require proper initialization -- typically through user input, priors, or randomness. We propose a practical intersection of these approaches: using FLIM networks to initialize CA states with expert knowledge without requiring user interaction for each image. By decoding features from each level of a FLIM network, we can initialize multiple CAs simultaneously, creating a multi-level framework. Our method leverages the hierarchical knowledge encoded across different network layers, merging multiple saliency maps into a high-quality final output that functions as a CA ensemble. Benchmarks across two challenging medical datasets demonstrate the competitiveness of our multi-level CA approach compared to established models in the deep SOD literature.
VideoPanda: Video Panoramic Diffusion with Multi-view Attention
High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research-staging.nvidia.com/labs/toronto-ai/VideoPanda/ for results.
comment: Project website at https://research-staging.nvidia.com/labs/toronto-ai/VideoPanda/
Omni$^2$: Unifying Omnidirectional Image Generation and Editing in an Omni Model
$360^{\circ}$ omnidirectional images (ODIs) have gained considerable attention recently, and are widely used in various virtual reality (VR) and augmented reality (AR) applications. However, capturing such images is expensive and requires specialized equipment, making ODI synthesis increasingly important. While common 2D image generation and editing methods are rapidly advancing, these models struggle to deliver satisfactory results when generating or editing ODIs due to the unique format and broad 360$^{\circ}$ Field-of-View (FoV) of ODIs. To bridge this gap, we construct \textbf{\textit{Any2Omni}}, the first comprehensive ODI generation-editing dataset comprises 60,000+ training data covering diverse input conditions and up to 9 ODI generation and editing tasks. Built upon Any2Omni, we propose an \textbf{\underline{Omni}} model for \textbf{\underline{Omni}}-directional image generation and editing (\textbf{\textit{Omni$^2$}}), with the capability of handling various ODI generation and editing tasks under diverse input conditions using one model. Extensive experiments demonstrate the superiority and effectiveness of the proposed Omni$^2$ model for both the ODI generation and editing tasks.
comment: 10 pages
From Gaze to Insight: Bridging Human Visual Attention and Vision Language Model Explanation for Weakly-Supervised Medical Image Segmentation
Medical image segmentation remains challenging due to the high cost of pixel-level annotations for training. In the context of weak supervision, clinician gaze data captures regions of diagnostic interest; however, its sparsity limits its use for segmentation. In contrast, vision-language models (VLMs) provide semantic context through textual descriptions but lack the explanation precision required. Recognizing that neither source alone suffices, we propose a teacher-student framework that integrates both gaze and language supervision, leveraging their complementary strengths. Our key insight is that gaze data indicates where clinicians focus during diagnosis, while VLMs explain why those regions are significant. To implement this, the teacher model first learns from gaze points enhanced by VLM-generated descriptions of lesion morphology, establishing a foundation for guiding the student model. The teacher then directs the student through three strategies: (1) Multi-scale feature alignment to fuse visual cues with textual semantics; (2) Confidence-weighted consistency constraints to focus on reliable predictions; (3) Adaptive masking to limit error propagation in uncertain areas. Experiments on the Kvasir-SEG, NCI-ISBI, and ISIC datasets show that our method achieves Dice scores of 80.78%, 80.53%, and 84.22%, respectively-improving 3-5% over gaze baselines without increasing the annotation burden. By preserving correlations among predictions, gaze data, and lesion descriptions, our framework also maintains clinical interpretability. This work illustrates how integrating human visual attention with AI-generated semantic context can effectively overcome the limitations of individual weak supervision signals, thereby advancing the development of deployable, annotation-efficient medical AI systems. Code is available at: https://github.com/jingkunchen/FGI.git.
comment: 10 pages, 5 figures
A Decade of Wheat Mapping for Lebanon
Wheat accounts for approximately 20% of the world's caloric intake, making it a vital component of global food security. Given this importance, mapping wheat fields plays a crucial role in enabling various stakeholders, including policy makers, researchers, and agricultural organizations, to make informed decisions regarding food security, supply chain management, and resource allocation. In this paper, we tackle the problem of accurately mapping wheat fields out of satellite images by introducing an improved pipeline for winter wheat segmentation, as well as presenting a case study on a decade-long analysis of wheat mapping in Lebanon. We integrate a Temporal Spatial Vision Transformer (TSViT) with Parameter-Efficient Fine Tuning (PEFT) and a novel post-processing pipeline based on the Fields of The World (FTW) framework. Our proposed pipeline addresses key challenges encountered in existing approaches, such as the clustering of small agricultural parcels in a single large field. By merging wheat segmentation with precise field boundary extraction, our method produces geometrically coherent and semantically rich maps that enable us to perform in-depth analysis such as tracking crop rotation pattern over years. Extensive evaluations demonstrate improved boundary delineation and field-level precision, establishing the potential of the proposed framework in operational agricultural monitoring and historical trend analysis. By allowing for accurate mapping of wheat fields, this work lays the foundation for a range of critical studies and future advances, including crop monitoring and yield estimation.
Explicit and Implicit Representations in AI-based 3D Reconstruction for Radiology: A systematic literature review
The demand for high-quality medical imaging in clinical practice and assisted diagnosis has made 3D reconstruction in radiological imaging a key research focus. Artificial intelligence (AI) has emerged as a promising approach to enhancing reconstruction accuracy while reducing acquisition and processing time, thereby minimizing patient radiation exposure and discomfort and ultimately benefiting clinical diagnosis. This review explores state-of-the-art AI-based 3D reconstruction algorithms in radiological imaging, categorizing them into explicit and implicit approaches based on their underlying principles. Explicit methods include point-based, volume-based, and Gaussian representations, while implicit methods encompass implicit prior embedding and neural radiance fields. Additionally, we examine commonly used evaluation metrics and benchmark datasets. Finally, we discuss the current state of development, key challenges, and future research directions in this evolving field. Our project available on: https://github.com/Bean-Young/AI4Med.
comment: 43 pages, 5 figures, submit to Medical Image Analysis
DeepWheel: Generating a 3D Synthetic Wheel Dataset for Design and Performance Evaluation
Data-driven design is emerging as a powerful strategy to accelerate engineering innovation. However, its application to vehicle wheel design remains limited due to the lack of large-scale, high-quality datasets that include 3D geometry and physical performance metrics. To address this gap, this study proposes a synthetic design-performance dataset generation framework using generative AI. The proposed framework first generates 2D rendered images using Stable Diffusion, and then reconstructs the 3D geometry through 2.5D depth estimation. Structural simulations are subsequently performed to extract engineering performance data. To further expand the design and performance space, topology optimization is applied, enabling the generation of a more diverse set of wheel designs. The final dataset, named DeepWheel, consists of over 6,000 photo-realistic images and 900 structurally analyzed 3D models. This multi-modal dataset serves as a valuable resource for surrogate model training, data-driven inverse design, and design space exploration. The proposed methodology is also applicable to other complex design domains. The dataset is released under the Creative Commons Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) and is available on the https://www.smartdesignlab.org/datasets
comment: 28 pages, 18 figures. Not yet submitted to a journal or conference
Seedream 3.0 Technical Report
We present Seedream 3.0, a high-performance Chinese-English bilingual image generation foundation model. We develop several technical improvements to address existing challenges in Seedream 2.0, including alignment with complicated prompts, fine-grained typography generation, suboptimal visual aesthetics and fidelity, and limited image resolutions. Specifically, the advancements of Seedream 3.0 stem from improvements across the entire pipeline, from data construction to model deployment. At the data stratum, we double the dataset using a defect-aware training paradigm and a dual-axis collaborative data-sampling framework. Furthermore, we adopt several effective techniques such as mixed-resolution training, cross-modality RoPE, representation alignment loss, and resolution-aware timestep sampling in the pre-training phase. During the post-training stage, we utilize diversified aesthetic captions in SFT, and a VLM-based reward model with scaling, thereby achieving outputs that well align with human preferences. Furthermore, Seedream 3.0 pioneers a novel acceleration paradigm. By employing consistent noise expectation and importance-aware timestep sampling, we achieve a 4 to 8 times speedup while maintaining image quality. Seedream 3.0 demonstrates significant improvements over Seedream 2.0: it enhances overall capabilities, in particular for text-rendering in complicated Chinese characters which is important to professional typography generation. In addition, it provides native high-resolution output (up to 2K), allowing it to generate images with high visual quality.
comment: Seedream 3.0 Technical Report
PVUW 2025 Challenge Report: Advances in Pixel-level Understanding of Complex Videos in the Wild
This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
comment: Workshop Page: https://pvuw.github.io/. arXiv admin note: text overlap with arXiv:2504.00476, arXiv:2504.05178
Big Brother is Watching: Proactive Deepfake Detection via Learnable Hidden Face
As deepfake technologies continue to advance, passive detection methods struggle to generalize with various forgery manipulations and datasets. Proactive defense techniques have been actively studied with the primary aim of preventing deepfake operation effectively working. In this paper, we aim to bridge the gap between passive detection and proactive defense, and seek to solve the detection problem utilizing a proactive methodology. Inspired by several watermarking-based forensic methods, we explore a novel detection framework based on the concept of ``hiding a learnable face within a face''. Specifically, relying on a semi-fragile invertible steganography network, a secret template image is embedded into a host image imperceptibly, acting as an indicator monitoring for any malicious image forgery when being restored by the inverse steganography process. Instead of being manually specified, the secret template is optimized during training to resemble a neutral facial appearance, just like a ``big brother'' hidden in the image to be protected. By incorporating a self-blending mechanism and robustness learning strategy with a simulative transmission channel, a robust detector is built to accurately distinguish if the steganographic image is maliciously tampered or benignly processed. Finally, extensive experiments conducted on multiple datasets demonstrate the superiority of the proposed approach over competing passive and proactive detection methods.
Uncertainty Estimation for Trust Attribution to Speed-of-Sound Reconstruction with Variational Networks
Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with Variational Networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions. We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference. We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS~4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%. A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.
comment: Published at the International Journal of Computer Assisted Radiology and Surgery. Presented at the 16th International Conference on Information Processing in Computer-Assisted Interventions 2025
Context-Aware Palmprint Recognition via a Relative Similarity Metric
We propose a new approach to matching mechanism for palmprint recognition by introducing a Relative Similarity Metric (RSM) that enhances the robustness and discriminability of existing matching frameworks. While conventional systems rely on direct pairwise similarity measures, such as cosine or Euclidean distances, these metrics fail to capture how a pairwise similarity compares within the context of the entire dataset. Our method addresses this by evaluating the relative consistency of similarity scores across up to all identities, allowing for better suppression of false positives and negatives. Applied atop the CCNet architecture, our method achieves a new state-of-the-art 0.000036% Equal Error Rate (EER) on the Tongji dataset, outperforming previous methods and demonstrating the efficacy of incorporating relational structure into the palmprint matching process.
CFIS-YOLO: A Lightweight Multi-Scale Fusion Network for Edge-Deployable Wood Defect Detection
Wood defect detection is critical for ensuring quality control in the wood processing industry. However, current industrial applications face two major challenges: traditional methods are costly, subjective, and labor-intensive, while mainstream deep learning models often struggle to balance detection accuracy and computational efficiency for edge deployment. To address these issues, this study proposes CFIS-YOLO, a lightweight object detection model optimized for edge devices. The model introduces an enhanced C2f structure, a dynamic feature recombination module, and a novel loss function that incorporates auxiliary bounding boxes and angular constraints. These innovations improve multi-scale feature fusion and small object localization while significantly reducing computational overhead. Evaluated on a public wood defect dataset, CFIS-YOLO achieves a mean Average Precision (mAP@0.5) of 77.5\%, outperforming the baseline YOLOv10s by 4 percentage points. On SOPHON BM1684X edge devices, CFIS-YOLO delivers 135 FPS, reduces power consumption to 17.3\% of the original implementation, and incurs only a 0.5 percentage point drop in mAP. These results demonstrate that CFIS-YOLO is a practical and effective solution for real-world wood defect detection in resource-constrained environments.
comment: 10 pages, 11 figures
Autoregressive Distillation of Diffusion Transformers CVPR 2025
Diffusion models with transformer architectures have demonstrated promising capabilities in generating high-fidelity images and scalability for high resolution. However, iterative sampling process required for synthesis is very resource-intensive. A line of work has focused on distilling solutions to probability flow ODEs into few-step student models. Nevertheless, existing methods have been limited by their reliance on the most recent denoised samples as input, rendering them susceptible to exposure bias. To address this limitation, we propose AutoRegressive Distillation (ARD), a novel approach that leverages the historical trajectory of the ODE to predict future steps. ARD offers two key benefits: 1) it mitigates exposure bias by utilizing a predicted historical trajectory that is less susceptible to accumulated errors, and 2) it leverages the previous history of the ODE trajectory as a more effective source of coarse-grained information. ARD modifies the teacher transformer architecture by adding token-wise time embedding to mark each input from the trajectory history and employs a block-wise causal attention mask for training. Furthermore, incorporating historical inputs only in lower transformer layers enhances performance and efficiency. We validate the effectiveness of ARD in a class-conditioned generation on ImageNet and T2I synthesis. Our model achieves a $5\times$ reduction in FID degradation compared to the baseline methods while requiring only 1.1\% extra FLOPs on ImageNet-256. Moreover, ARD reaches FID of 1.84 on ImageNet-256 in merely 4 steps and outperforms the publicly available 1024p text-to-image distilled models in prompt adherence score with a minimal drop in FID compared to the teacher. Project page: https://github.com/alsdudrla10/ARD.
comment: CVPR 2025 Oral
UniAnimate-DiT: Human Image Animation with Large-Scale Video Diffusion Transformer
This report presents UniAnimate-DiT, an advanced project that leverages the cutting-edge and powerful capabilities of the open-source Wan2.1 model for consistent human image animation. Specifically, to preserve the robust generative capabilities of the original Wan2.1 model, we implement Low-Rank Adaptation (LoRA) technique to fine-tune a minimal set of parameters, significantly reducing training memory overhead. A lightweight pose encoder consisting of multiple stacked 3D convolutional layers is designed to encode motion information of driving poses. Furthermore, we adopt a simple concatenation operation to integrate the reference appearance into the model and incorporate the pose information of the reference image for enhanced pose alignment. Experimental results show that our approach achieves visually appearing and temporally consistent high-fidelity animations. Trained on 480p (832x480) videos, UniAnimate-DiT demonstrates strong generalization capabilities to seamlessly upscale to 720P (1280x720) during inference. The training and inference code is publicly available at https://github.com/ali-vilab/UniAnimate-DiT.
comment: The training and inference code (based on Wan2.1) is available at https://github.com/ali-vilab/UniAnimate-DiT
Efficient Medical Image Restoration via Reliability Guided Learning in Frequency Domain
Medical image restoration tasks aim to recover high-quality images from degraded observations, exhibiting emergent desires in many clinical scenarios, such as low-dose CT image denoising, MRI super-resolution, and MRI artifact removal. Despite the success achieved by existing deep learning-based restoration methods with sophisticated modules, they struggle with rendering computationally-efficient reconstruction results. Moreover, they usually ignore the reliability of the restoration results, which is much more urgent in medical systems. To alleviate these issues, we present LRformer, a Lightweight Transformer-based method via Reliability-guided learning in the frequency domain. Specifically, inspired by the uncertainty quantification in Bayesian neural networks (BNNs), we develop a Reliable Lesion-Semantic Prior Producer (RLPP). RLPP leverages Monte Carlo (MC) estimators with stochastic sampling operations to generate sufficiently-reliable priors by performing multiple inferences on the foundational medical image segmentation model, MedSAM. Additionally, instead of directly incorporating the priors in the spatial domain, we decompose the cross-attention (CA) mechanism into real symmetric and imaginary anti-symmetric parts via fast Fourier transform (FFT), resulting in the design of the Guided Frequency Cross-Attention (GFCA) solver. By leveraging the conjugated symmetric property of FFT, GFCA reduces the computational complexity of naive CA by nearly half. Extensive experimental results in various tasks demonstrate the superiority of the proposed LRformer in both effectiveness and efficiency.
Distillation-Supervised Convolutional Low-Rank Adaptation for Efficient Image Super-Resolution
Convolutional neural networks (CNNs) have been widely used in efficient image super-resolution. However, for CNN-based methods, performance gains often require deeper networks and larger feature maps, which increase complexity and inference costs. Inspired by LoRA's success in fine-tuning large language models, we explore its application to lightweight models and propose Distillation-Supervised Convolutional Low-Rank Adaptation (DSCLoRA), which improves model performance without increasing architectural complexity or inference costs. Specifically, we integrate ConvLoRA into the efficient SR network SPAN by replacing the SPAB module with the proposed SConvLB module and incorporating ConvLoRA layers into both the pixel shuffle block and its preceding convolutional layer. DSCLoRA leverages low-rank decomposition for parameter updates and employs a spatial feature affinity-based knowledge distillation strategy to transfer second-order statistical information from teacher models (pre-trained SPAN) to student models (ours). This method preserves the core knowledge of lightweight models and facilitates optimal solution discovery under certain conditions. Experiments on benchmark datasets show that DSCLoRA improves PSNR and SSIM over SPAN while maintaining its efficiency and competitive image quality. Notably, DSCLoRA ranked first in the Overall Performance Track of the NTIRE 2025 Efficient Super-Resolution Challenge. Our code and models are made publicly available at https://github.com/Yaozzz666/DSCF-SR.
Single-Input Multi-Output Model Merging: Leveraging Foundation Models for Dense Multi-Task Learning
Model merging is a flexible and computationally tractable approach to merge single-task checkpoints into a multi-task model. Prior work has solely focused on constrained multi-task settings where there is a one-to-one mapping between a sample and a task, overlooking the paradigm where multiple tasks may operate on the same sample, e.g., scene understanding. In this paper, we focus on the multi-task setting with single-input-multiple-outputs (SIMO) and show that it qualitatively differs from the single-input-single-output model merging settings studied in the literature due to the existence of task-specific decoders and diverse loss objectives. We identify that existing model merging methods lead to significant performance degradation, primarily due to representation misalignment between the merged encoder and task-specific decoders. We propose two simple and efficient fixes for the SIMO setting to re-align the feature representation after merging. Compared to joint fine-tuning, our approach is computationally effective and flexible, and sheds light into identifying task relationships in an offline manner. Experiments on NYUv2, Cityscapes, and a subset of the Taskonomy dataset demonstrate: (1) task arithmetic suffices to enable multi-task capabilities; however, the representations generated by the merged encoder has to be re-aligned with the task-specific heads; (2) the proposed architecture rivals traditional multi-task learning in performance but requires fewer samples and training steps by leveraging the existence of task-specific models.
comment: 22 pages, 6 figures
Enhanced Small Target Detection via Multi-Modal Fusion and Attention Mechanisms: A YOLOv5 Approach ATC 2024
With the rapid development of information technology, modern warfare increasingly relies on intelligence, making small target detection critical in military applications. The growing demand for efficient, real-time detection has created challenges in identifying small targets in complex environments due to interference. To address this, we propose a small target detection method based on multi-modal image fusion and attention mechanisms. This method leverages YOLOv5, integrating infrared and visible light data along with a convolutional attention module to enhance detection performance. The process begins with multi-modal dataset registration using feature point matching, ensuring accurate network training. By combining infrared and visible light features with attention mechanisms, the model improves detection accuracy and robustness. Experimental results on anti-UAV and Visdrone datasets demonstrate the effectiveness and practicality of our approach, achieving superior detection results for small and dim targets.
comment: Accepted by ATC 2024
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation.In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/
Cryo-em images are intrinsically low dimensional
Simulation-based inference provides a powerful framework for cryo-electron microscopy, employing neural networks in methods like CryoSBI to infer biomolecular conformations via learned latent representations. This latent space represents a rich opportunity, encoding valuable information about the physical system and the inference process. Harnessing this potential hinges on understanding the underlying geometric structure of these representations. We investigate this structure by applying manifold learning techniques to CryoSBI representations of hemagglutinin (simulated and experimental). We reveal that these high-dimensional data inherently populate low-dimensional, smooth manifolds, with simulated data effectively covering the experimental counterpart. By characterizing the manifold's geometry using Diffusion Maps and identifying its principal axes of variation via coordinate interpretation methods, we establish a direct link between the latent structure and key physical parameters. Discovering this intrinsic low-dimensionality and interpretable geometric organization not only validates the CryoSBI approach but enables us to learn more from the data structure and provides opportunities for improving future inference strategies by exploiting this revealed manifold geometry.
Next-Future: Sample-Efficient Policy Learning for Robotic-Arm Tasks
Hindsight Experience Replay (HER) is widely regarded as the state-of-the-art algorithm for achieving sample-efficient multi-goal reinforcement learning (RL) in robotic manipulation tasks with binary rewards. HER facilitates learning from failed attempts by replaying trajectories with redefined goals. However, it relies on a heuristic-based replay method that lacks a principled framework. To address this limitation, we introduce a novel replay strategy, "Next-Future", which focuses on rewarding single-step transitions. This approach significantly enhances sample efficiency and accuracy in learning multi-goal Markov decision processes (MDPs), particularly under stringent accuracy requirements -- a critical aspect for performing complex and precise robotic-arm tasks. We demonstrate the efficacy of our method by highlighting how single-step learning enables improved value approximation within the multi-goal RL framework. The performance of the proposed replay strategy is evaluated across eight challenging robotic manipulation tasks, using ten random seeds for training. Our results indicate substantial improvements in sample efficiency for seven out of eight tasks and higher success rates in six tasks. Furthermore, real-world experiments validate the practical feasibility of the learned policies, demonstrating the potential of "Next-Future" in solving complex robotic-arm tasks.
comment: 10 pages, 9 figures, 6 tables
Leveraging multimodal explanatory annotations for video interpretation with Modality Specific Dataset
We examine the impact of concept-informed supervision on multimodal video interpretation models using MOByGaze, a dataset containing human-annotated explanatory concepts. We introduce Concept Modality Specific Datasets (CMSDs), which consist of data subsets categorized by the modality (visual, textual, or audio) of annotated concepts. Models trained on CMSDs outperform those using traditional legacy training in both early and late fusion approaches. Notably, this approach enables late fusion models to achieve performance close to that of early fusion models. These findings underscore the importance of modality-specific annotations in developing robust, self-explainable video models and contribute to advancing interpretable multimodal learning in complex video analysis.
comment: 6 pages, 8 Figures
CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
3DAffordSplat: Efficient Affordance Reasoning with 3D Gaussians
3D affordance reasoning is essential in associating human instructions with the functional regions of 3D objects, facilitating precise, task-oriented manipulations in embodied AI. However, current methods, which predominantly depend on sparse 3D point clouds, exhibit limited generalizability and robustness due to their sensitivity to coordinate variations and the inherent sparsity of the data. By contrast, 3D Gaussian Splatting (3DGS) delivers high-fidelity, real-time rendering with minimal computational overhead by representing scenes as dense, continuous distributions. This positions 3DGS as a highly effective approach for capturing fine-grained affordance details and improving recognition accuracy. Nevertheless, its full potential remains largely untapped due to the absence of large-scale, 3DGS-specific affordance datasets. To overcome these limitations, we present 3DAffordSplat, the first large-scale, multi-modal dataset tailored for 3DGS-based affordance reasoning. This dataset includes 23,677 Gaussian instances, 8,354 point cloud instances, and 6,631 manually annotated affordance labels, encompassing 21 object categories and 18 affordance types. Building upon this dataset, we introduce AffordSplatNet, a novel model specifically designed for affordance reasoning using 3DGS representations. AffordSplatNet features an innovative cross-modal structure alignment module that exploits structural consistency priors to align 3D point cloud and 3DGS representations, resulting in enhanced affordance recognition accuracy. Extensive experiments demonstrate that the 3DAffordSplat dataset significantly advances affordance learning within the 3DGS domain, while AffordSplatNet consistently outperforms existing methods across both seen and unseen settings, highlighting its robust generalization capabilities.
comment: The first large-scale 3D Gaussians Affordance Reasoning Benchmark
Focal Split: Untethered Snapshot Depth from Differential Defocus CVPR 2025
We introduce Focal Split, a handheld, snapshot depth camera with fully onboard power and computing based on depth-from-differential-defocus (DfDD). Focal Split is passive, avoiding power consumption of light sources. Its achromatic optical system simultaneously forms two differentially defocused images of the scene, which can be independently captured using two photosensors in a snapshot. The data processing is based on the DfDD theory, which efficiently computes a depth and a confidence value for each pixel with only 500 floating point operations (FLOPs) per pixel from the camera measurements. We demonstrate a Focal Split prototype, which comprises a handheld custom camera system connected to a Raspberry Pi 5 for real-time data processing. The system consumes 4.9 W and is powered on a 5 V, 10,000 mAh battery. The prototype can measure objects with distances from 0.4 m to 1.2 m, outputting 480$\times$360 sparse depth maps at 2.1 frames per second (FPS) using unoptimized Python scripts. Focal Split is DIY friendly. A comprehensive guide to building your own Focal Split depth camera, code, and additional data can be found at https://focal-split.qiguo.org.
comment: CVPR 2025, 8 pages, 7 figures
Video Summarization with Large Language Models CVPR 2025
The exponential increase in video content poses significant challenges in terms of efficient navigation, search, and retrieval, thus requiring advanced video summarization techniques. Existing video summarization methods, which heavily rely on visual features and temporal dynamics, often fail to capture the semantics of video content, resulting in incomplete or incoherent summaries. To tackle the challenge, we propose a new video summarization framework that leverages the capabilities of recent Large Language Models (LLMs), expecting that the knowledge learned from massive data enables LLMs to evaluate video frames in a manner that better aligns with diverse semantics and human judgments, effectively addressing the inherent subjectivity in defining keyframes. Our method, dubbed LLM-based Video Summarization (LLMVS), translates video frames into a sequence of captions using a Muti-modal Large Language Model (M-LLM) and then assesses the importance of each frame using an LLM, based on the captions in its local context. These local importance scores are refined through a global attention mechanism in the entire context of video captions, ensuring that our summaries effectively reflect both the details and the overarching narrative. Our experimental results demonstrate the superiority of the proposed method over existing ones in standard benchmarks, highlighting the potential of LLMs in the processing of multimedia content.
comment: Accepted to CVPR 2025
R-TPT: Improving Adversarial Robustness of Vision-Language Models through Test-Time Prompt Tuning CVPR 2025
Vision-language models (VLMs), such as CLIP, have gained significant popularity as foundation models, with numerous fine-tuning methods developed to enhance performance on downstream tasks. However, due to their inherent vulnerability and the common practice of selecting from a limited set of open-source models, VLMs suffer from a higher risk of adversarial attacks than traditional vision models. Existing defense techniques typically rely on adversarial fine-tuning during training, which requires labeled data and lacks of flexibility for downstream tasks. To address these limitations, we propose robust test-time prompt tuning (R-TPT), which mitigates the impact of adversarial attacks during the inference stage. We first reformulate the classic marginal entropy objective by eliminating the term that introduces conflicts under adversarial conditions, retaining only the pointwise entropy minimization. Furthermore, we introduce a plug-and-play reliability-based weighted ensembling strategy, which aggregates useful information from reliable augmented views to strengthen the defense. R-TPT enhances defense against adversarial attacks without requiring labeled training data while offering high flexibility for inference tasks. Extensive experiments on widely used benchmarks with various attacks demonstrate the effectiveness of R-TPT. The code is available in https://github.com/TomSheng21/R-TPT.
comment: CVPR 2025
TerraMesh: A Planetary Mosaic of Multimodal Earth Observation Data
Large-scale foundation models in Earth Observation can learn versatile, label-efficient representations by leveraging massive amounts of unlabeled data. However, existing public datasets are often limited in scale, geographic coverage, or sensor variety. We introduce TerraMesh, a new globally diverse, multimodal dataset combining optical, synthetic aperture radar, elevation, and land-cover modalities in an Analysis-Ready Data format. TerraMesh includes over 9 million samples with eight spatiotemporal aligned modalities, enabling large-scale pre-training and fostering robust cross-modal correlation learning. We provide detailed data processing steps, comprehensive statistics, and empirical evidence demonstrating improved model performance when pre-trained on TerraMesh. The dataset will be made publicly available with a permissive license.
TerraMind: Large-Scale Generative Multimodality for Earth Observation
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code is open-sourced under a permissive license.
YOLO-RS: Remote Sensing Enhanced Crop Detection Methods
With the rapid development of remote sensing technology, crop classification and health detection based on deep learning have gradually become a research hotspot. However, the existing target detection methods show poor performance when dealing with small targets in remote sensing images, especially in the case of complex background and image mixing, which is difficult to meet the practical application requirementsite. To address this problem, a novel target detection model YOLO-RS is proposed in this paper. The model is based on the latest Yolov11 which significantly enhances the detection of small targets by introducing the Context Anchor Attention (CAA) mechanism and an efficient multi-field multi-scale feature fusion network. YOLO-RS adopts a bidirectional feature fusion strategy in the feature fusion process, which effectively enhances the model's performance in the detection of small targets. Small target detection. Meanwhile, the ACmix module at the end of the model backbone network solves the category imbalance problem by adaptively adjusting the contrast and sample mixing, thus enhancing the detection accuracy in complex scenes. In the experiments on the PDT remote sensing crop health detection dataset and the CWC crop classification dataset, YOLO-RS improves both the recall and the mean average precision (mAP) by about 2-3\% or so compared with the existing state-of-the-art methods, while the F1-score is also significantly improved. Moreover, the computational complexity of the model only increases by about 5.2 GFLOPs, indicating its significant advantages in both performance and efficiency. The experimental results validate the effectiveness and application potential of YOLO-RS in the task of detecting small targets in remote sensing images.
TSAL: Few-shot Text Segmentation Based on Attribute Learning
Recently supervised learning rapidly develops in scene text segmentation. However, the lack of high-quality datasets and the high cost of pixel annotation greatly limit the development of them. Considering the well-performed few-shot learning methods for downstream tasks, we investigate the application of the few-shot learning method to scene text segmentation. We propose TSAL, which leverages CLIP's prior knowledge to learn text attributes for segmentation. To fully utilize the semantic and texture information in the image, a visual-guided branch is proposed to separately extract text and background features. To reduce data dependency and improve text detection accuracy, the adaptive prompt-guided branch employs effective adaptive prompt templates to capture various text attributes. To enable adaptive prompts capture distinctive text features and complex background distribution, we propose Adaptive Feature Alignment module(AFA). By aligning learnable tokens of different attributes with visual features and prompt prototypes, AFA enables adaptive prompts to capture both general and distinctive attribute information. TSAL can capture the unique attributes of text and achieve precise segmentation using only few images. Experiments demonstrate that our method achieves SOTA performance on multiple text segmentation datasets under few-shot settings and show great potential in text-related domains.
DMAGaze: Gaze Estimation Based on Feature Disentanglement and Multi-Scale Attention
Gaze estimation, which predicts gaze direction, commonly faces the challenge of interference from complex gaze-irrelevant information in face images. In this work, we propose DMAGaze, a novel gaze estimation framework that exploits information from facial images in three aspects: gaze-relevant global features (disentangled from facial image), local eye features (extracted from cropped eye patch), and head pose estimation features, to improve overall performance. Firstly, we design a new continuous mask-based Disentangler to accurately disentangle gaze-relevant and gaze-irrelevant information in facial images by achieving the dual-branch disentanglement goal through separately reconstructing the eye and non-eye regions. Furthermore, we introduce a new cascaded attention module named Multi-Scale Global Local Attention Module (MS-GLAM). Through a customized cascaded attention structure, it effectively focuses on global and local information at multiple scales, further enhancing the information from the Disentangler. Finally, the global gaze-relevant features disentangled by the upper face branch, combined with head pose and local eye features, are passed through the detection head for high-precision gaze estimation. Our proposed DMAGaze has been extensively validated on two mainstream public datasets, achieving state-of-the-art performance.
SAR-to-RGB Translation with Latent Diffusion for Earth Observation
Earth observation satellites like Sentinel-1 (S1) and Sentinel-2 (S2) provide complementary remote sensing (RS) data, but S2 images are often unavailable due to cloud cover or data gaps. To address this, we propose a diffusion model (DM)-based approach for SAR-to-RGB translation, generating synthetic optical images from SAR inputs. We explore three different setups: two using Standard Diffusion, which reconstruct S2 images by adding and removing noise (one without and one with class conditioning), and one using Cold Diffusion, which blends S2 with S1 before removing the SAR signal. We evaluate the generated images in downstream tasks, including land cover classification and cloud removal. While generated images may not perfectly replicate real S2 data, they still provide valuable information. Our results show that class conditioning improves classification accuracy, while cloud removal performance remains competitive despite our approach not being optimized for it. Interestingly, despite exhibiting lower perceptual quality, the Cold Diffusion setup performs well in land cover classification, suggesting that traditional quantitative evaluation metrics may not fully reflect the practical utility of generated images. Our findings highlight the potential of DMs for SAR-to-RGB translation in RS applications where RGB images are missing.
comment: 10 pages, 3 figures
GC-GAT: Multimodal Vehicular Trajectory Prediction using Graph Goal Conditioning and Cross-context Attention
Predicting future trajectories of surrounding vehicles heavily relies on what contextual information is given to a motion prediction model. The context itself can be static (lanes, regulatory elements, etc) or dynamic (traffic participants). This paper presents a lane graph-based motion prediction model that first predicts graph-based goal proposals and later fuses them with cross attention over multiple contextual elements. We follow the famous encoder-interactor-decoder architecture where the encoder encodes scene context using lightweight Gated Recurrent Units, the interactor applies cross-context attention over encoded scene features and graph goal proposals, and the decoder regresses multimodal trajectories via Laplacian Mixture Density Network from the aggregated encodings. Using cross-attention over graph-based goal proposals gives robust trajectory estimates since the model learns to attend to future goal-relevant scene elements for the intended agent. We evaluate our work on nuScenes motion prediction dataset, achieving state-of-the-art results.
Taming Consistency Distillation for Accelerated Human Image Animation
Recent advancements in human image animation have been propelled by video diffusion models, yet their reliance on numerous iterative denoising steps results in high inference costs and slow speeds. An intuitive solution involves adopting consistency models, which serve as an effective acceleration paradigm through consistency distillation. However, simply employing this strategy in human image animation often leads to quality decline, including visual blurring, motion degradation, and facial distortion, particularly in dynamic regions. In this paper, we propose the DanceLCM approach complemented by several enhancements to improve visual quality and motion continuity at low-step regime: (1) segmented consistency distillation with an auxiliary light-weight head to incorporate supervision from real video latents, mitigating cumulative errors resulting from single full-trajectory generation; (2) a motion-focused loss to centre on motion regions, and explicit injection of facial fidelity features to improve face authenticity. Extensive qualitative and quantitative experiments demonstrate that DanceLCM achieves results comparable to state-of-the-art video diffusion models with a mere 2-4 inference steps, significantly reducing the inference burden without compromising video quality. The code and models will be made publicly available.
Visual Re-Ranking with Non-Visual Side Information SC
The standard approach for visual place recognition is to use global image descriptors to retrieve the most similar database images for a given query image. The results can then be further improved with re-ranking methods that re-order the top scoring images. However, existing methods focus on re-ranking based on the same image descriptors that were used for the initial retrieval, which we argue provides limited additional signal. In this work we propose Generalized Contextual Similarity Aggregation (GCSA), which is a graph neural network-based re-ranking method that, in addition to the visual descriptors, can leverage other types of available side information. This can for example be other sensor data (such as signal strength of nearby WiFi or BlueTooth endpoints) or geometric properties such as camera poses for database images. In many applications this information is already present or can be acquired with low effort. Our architecture leverages the concept of affinity vectors to allow for a shared encoding of the heterogeneous multi-modal input. Two large-scale datasets, covering both outdoor and indoor localization scenarios, are utilized for training and evaluation. In experiments we show significant improvement not only on image retrieval metrics, but also for the downstream visual localization task.
comment: Accepted at Scandinavian Conference on Image Analysis (SCIA) 2025
K-means Enhanced Density Gradient Analysis for Urban and Transport Metrics Using Multi-Modal Satellite Imagery
This paper presents a novel computational approach for evaluating urban metrics through density gradient analysis using multi-modal satellite imagery, with applications including public transport and other urban systems. By combining optical and Synthetic Aperture Radar (SAR) data, we develop a method to segment urban areas, identify urban centers, and quantify density gradients. Our approach calculates two key metrics: the density gradient coefficient ($\alpha$) and the minimum effective distance (LD) at which density reaches a target threshold. We further employ machine learning techniques, specifically K-means clustering, to objectively identify uniform and high-variability regions within density gradient plots. We demonstrate that these metrics provide an effective screening tool for public transport analyses by revealing the underlying urban structure. Through comparative analysis of two representative cities with contrasting urban morphologies (monocentric vs polycentric), we establish relationships between density gradient characteristics and public transport network topologies. Cities with clear density peaks in their gradient plots indicate distinct urban centers requiring different transport strategies than those with more uniform density distributions. This methodology offers urban planners a cost-effective, globally applicable approach to preliminary public transport assessment using freely available satellite data. The complete implementation, with additional examples and documentation, is available in an open-source repository under the MIT license at https://github.com/nexri/Satellite-Imagery-Urban-Analysis.
comment: 16 pages, 6 figures
Revealing Covert Attention by Analyzing Human and Reinforcement Learning Agent Gameplay
This study introduces a novel method for revealing human covert attention patterns using gameplay data alone, utilizing offline attention techniques from reinforcement learning (RL). We propose the contextualized, task-relevant (CTR) attention network, which generates attention maps from both human and RL agent gameplay in Atari environments. These maps are sparse yet retain the necessary information for the current player's decision making. We compare the CTR-derived attention maps with a temporally integrated overt attention (TIOA) model based on eye-tracking data, serving as a point of comparison and discussion. Visual inspection reveals distinct attention patterns: human CTR maps focus on the player and rather nearby opponents, occasionally shifting between stronger focus and broader views - sometimes even attending to empty space ahead. In contrast, agent maps maintain a consistent broad focus on most objects, including distant ones and the player. Quantitative analysis further demonstrates that human CTR maps align more closely with TIOA than agent maps do. Our findings indicate that the CTR attention network can effectively reveal human covert attention patterns from gameplay alone, without the need for additional data like brain activity recordings. This work contributes to understanding human-agent attention differences and enables the development of RL agents augmented with human covert attention.
Flyweight FLIM Networks for Salient Object Detection in Biomedical Images
Salient Object Detection (SOD) with deep learning often requires substantial computational resources and large annotated datasets, making it impractical for resource-constrained applications. Lightweight models address computational demands but typically strive in complex and scarce labeled-data scenarios. Feature Learning from Image Markers (FLIM) learns an encoder's convolutional kernels among image patches extracted from discriminative regions marked on a few representative images, dismissing large annotated datasets, pretraining, and backpropagation. Such a methodology exploits information redundancy commonly found in biomedical image applications. This study presents methods to learn dilated-separable convolutional kernels and multi-dilation layers without backpropagation for FLIM networks. It also proposes a novel network simplification method to reduce kernel redundancy and encoder size. By combining a FLIM encoder with an adaptive decoder, a concept recently introduced to estimate a pointwise convolution per image, this study presents very efficient (named flyweight) SOD models for biomedical images. Experimental results in challenging datasets demonstrate superior efficiency and effectiveness to lightweight models. By requiring significantly fewer parameters and floating-point operations, the results show competitive effectiveness to heavyweight models. These advances highlight the potential of FLIM networks for data-limited and resource-constrained applications with information redundancy.
S$^2$Teacher: Step-by-step Teacher for Sparsely Annotated Oriented Object Detection
Although fully-supervised oriented object detection has made significant progress in multimodal remote sensing image understanding, it comes at the cost of labor-intensive annotation. Recent studies have explored weakly and semi-supervised learning to alleviate this burden. However, these methods overlook the difficulties posed by dense annotations in complex remote sensing scenes. In this paper, we introduce a novel setting called sparsely annotated oriented object detection (SAOOD), which only labels partial instances, and propose a solution to address its challenges. Specifically, we focus on two key issues in the setting: (1) sparse labeling leading to overfitting on limited foreground representations, and (2) unlabeled objects (false negatives) confusing feature learning. To this end, we propose the S$^2$Teacher, a novel method that progressively mines pseudo-labels for unlabeled objects, from easy to hard, to enhance foreground representations. Additionally, it reweights the loss of unlabeled objects to mitigate their impact during training. Extensive experiments demonstrate that S$^2$Teacher not only significantly improves detector performance across different sparse annotation levels but also achieves near-fully-supervised performance on the DOTA dataset with only 10% annotation instances, effectively balancing detection accuracy with annotation efficiency. The code will be public.
Token-Level Constraint Boundary Search for Jailbreaking Text-to-Image Models
Recent advancements in Text-to-Image (T2I) generation have significantly enhanced the realism and creativity of generated images. However, such powerful generative capabilities pose risks related to the production of inappropriate or harmful content. Existing defense mechanisms, including prompt checkers and post-hoc image checkers, are vulnerable to sophisticated adversarial attacks. In this work, we propose TCBS-Attack, a novel query-based black-box jailbreak attack that searches for tokens located near the decision boundaries defined by text and image checkers. By iteratively optimizing tokens near these boundaries, TCBS-Attack generates semantically coherent adversarial prompts capable of bypassing multiple defensive layers in T2I models. Extensive experiments demonstrate that our method consistently outperforms state-of-the-art jailbreak attacks across various T2I models, including securely trained open-source models and commercial online services like DALL-E 3. TCBS-Attack achieves an ASR-4 of 45\% and an ASR-1 of 21\% on jailbreaking full-chain T2I models, significantly surpassing baseline methods.
Using LLMs as prompt modifier to avoid biases in AI image generators
This study examines how Large Language Models (LLMs) can reduce biases in text-to-image generation systems by modifying user prompts. We define bias as a model's unfair deviation from population statistics given neutral prompts. Our experiments with Stable Diffusion XL, 3.5 and Flux demonstrate that LLM-modified prompts significantly increase image diversity and reduce bias without the need to change the image generators themselves. While occasionally producing results that diverge from original user intent for elaborate prompts, this approach generally provides more varied interpretations of underspecified requests rather than superficial variations. The method works particularly well for less advanced image generators, though limitations persist for certain contexts like disability representation. All prompts and generated images are available at https://iisys-hof.github.io/llm-prompt-img-gen/
Consensus Entropy: Harnessing Multi-VLM Agreement for Self-Verifying and Self-Improving OCR
The Optical Character Recognition (OCR) task is important for evaluating Vision-Language Models (VLMs) and providing high-quality data sources for LLM training data. While state-of-the-art VLMs show improved average OCR accuracy, they still struggle with sample-level quality degradation and lack reliable automatic detection of low-quality outputs. We introduce Consensus Entropy (CE), a training-free post-inference method that quantifies OCR uncertainty by aggregating outputs from multiple VLMs. Our approach exploits a key insight: correct VLM OCR predictions converge in output space while errors diverge. We develop a lightweight multi-model framework that effectively identifies problematic samples, selects the best outputs and combines model strengths. Experiments across multiple OCR benchmarks and VLMs demonstrate that CE outperforms VLM-as-judge approaches and single-model baselines at the same cost and achieves state-of-the-art results across multiple metrics. For instance, our solution demonstrates: achieving 15.2\% higher F1 scores than VLM-as-judge methods in quality verification, delivering 6.0\% accuracy gains on mathematical calculation tasks, and requiring rephrasing only 7.3\% of inputs while maintaining overall performance. Notably, the entire process requires neither training nor supervision while maintaining plug-and-play functionality throughout.
Vivid4D: Improving 4D Reconstruction from Monocular Video by Video Inpainting
Reconstructing 4D dynamic scenes from casually captured monocular videos is valuable but highly challenging, as each timestamp is observed from a single viewpoint. We introduce Vivid4D, a novel approach that enhances 4D monocular video synthesis by augmenting observation views - synthesizing multi-view videos from a monocular input. Unlike existing methods that either solely leverage geometric priors for supervision or use generative priors while overlooking geometry, we integrate both. This reformulates view augmentation as a video inpainting task, where observed views are warped into new viewpoints based on monocular depth priors. To achieve this, we train a video inpainting model on unposed web videos with synthetically generated masks that mimic warping occlusions, ensuring spatially and temporally consistent completion of missing regions. To further mitigate inaccuracies in monocular depth priors, we introduce an iterative view augmentation strategy and a robust reconstruction loss. Experiments demonstrate that our method effectively improves monocular 4D scene reconstruction and completion.
InfoClus: Informative Clustering of High-dimensional Data Embeddings
Developing an understanding of high-dimensional data can be facilitated by visualizing that data using dimensionality reduction. However, the low-dimensional embeddings are often difficult to interpret. To facilitate the exploration and interpretation of low-dimensional embeddings, we introduce a new concept named partitioning with explanations. The idea is to partition the data shown through the embedding into groups, each of which is given a sparse explanation using the original high-dimensional attributes. We introduce an objective function that quantifies how much we can learn through observing the explanations of the data partitioning, using information theory, and also how complex the explanations are. Through parameterization of the complexity, we can tune the solutions towards the desired granularity. We propose InfoClus, which optimizes the partitioning and explanations jointly, through greedy search constrained over a hierarchical clustering. We conduct a qualitative and quantitative analysis of InfoClus on three data sets. We contrast the results on the Cytometry data with published manual analysis results, and compare with two other recent methods for explaining embeddings (RVX and VERA). These comparisons highlight that InfoClus has distinct advantages over existing procedures and methods. We find that InfoClus can automatically create good starting points for the analysis of dimensionality-reduction-based scatter plots.
comment: 17 pages, 9 figures
Change State Space Models for Remote Sensing Change Detection
Despite their frequent use for change detection, both ConvNets and Vision transformers (ViT) exhibit well-known limitations, namely the former struggle to model long-range dependencies while the latter are computationally inefficient, rendering them challenging to train on large-scale datasets. Vision Mamba, an architecture based on State Space Models has emerged as an alternative addressing the aforementioned deficiencies and has been already applied to remote sensing change detection, though mostly as a feature extracting backbone. In this article the Change State Space Model is introduced, that has been specifically designed for change detection by focusing on the relevant changes between bi-temporal images, effectively filtering out irrelevant information. By concentrating solely on the changed features, the number of network parameters is reduced, enhancing significantly computational efficiency while maintaining high detection performance and robustness against input degradation. The proposed model has been evaluated via three benchmark datasets, where it outperformed ConvNets, ViTs, and Mamba-based counterparts at a fraction of their computational complexity. The implementation will be made available at https://github.com/Elman295/CSSM upon acceptance.
Improving fingerprint presentation attack detection by an approach integrated into the personal verification stage
Presentation Attack Detection (PAD) systems are usually designed independently of the fingerprint verification system. While this can be acceptable for use cases where specific user templates are not predetermined, it represents a missed opportunity to enhance security in scenarios where integrating PAD with the fingerprint verification system could significantly leverage users' templates, which are the real target of a potential presentation attack. This does not mean that a PAD should be specifically designed for such users; that would imply the availability of many enrolled users' PAI and, consequently, complexity, time, and cost increase. On the contrary, we propose to equip a basic PAD, designed according to the state of the art, with an innovative add-on module called the Closeness Binary Code (CC) module. The term "closeness" refers to a peculiar property of the bona fide-related features: in an Euclidean feature space, genuine fingerprints tend to cluster in a specific pattern. First, samples from the same finger are close to each other, then samples from other fingers of the same user and finally, samples from fingers of other users. This property is statistically verified in our previous publication, and further confirmed in this paper. It is independent of the user population and the feature set class, which can be handcrafted or deep network-based (embeddings). Therefore, the add-on can be designed without the need for the targeted user samples; moreover, it exploits her/his samples' "closeness" property during the verification stage. Extensive experiments on benchmark datasets and state-of-the-art PAD methods confirm the benefits of the proposed add-on, which can be easily coupled with the main PAD module integrated into the fingerprint verification system.
comment: This work has been submitted to the IEEE for possible publication
UKDM: Underwater keypoint detection and matching using underwater image enhancement techniques
The purpose of this paper is to explore the use of underwater image enhancement techniques to improve keypoint detection and matching. By applying advanced deep learning models, including generative adversarial networks and convolutional neural networks, we aim to find the best method which improves the accuracy of keypoint detection and the robustness of matching algorithms. We evaluate the performance of these techniques on various underwater datasets, demonstrating significant improvements over traditional methods.
Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections
Anomaly Detection (AD) involves identifying deviations from normal data distributions and is critical in fields such as medical diagnostics and industrial defect detection. Traditional AD methods typically require the availability of normal training samples; however, this assumption is not always feasible, as collecting such data can be impractical. Additionally, these methods often struggle to generalize across different domains. Recent advancements, such as AnomalyCLIP and AdaCLIP, utilize the zero-shot generalization capabilities of CLIP but still face a performance gap between image-level and pixel-level anomaly detection. To address this gap, we propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder. Also, to capture fine-grained variations more effectively, we have modified the CLIP vision encoder and altered the extraction of dense features. These changes ensure that the features retain richer spatial and structural information for both normal and anomalous prompts. Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets. This demonstrates its effectiveness in both image-level and pixel-level anomaly detection.
Leveraging LLMs and attention-mechanism for automatic annotation of historical maps
Historical maps are essential resources that provide insights into the geographical landscapes of the past. They serve as valuable tools for researchers across disciplines such as history, geography, and urban studies, facilitating the reconstruction of historical environments and the analysis of spatial transformations over time. However, when constrained to analogue or scanned formats, their interpretation is limited to humans and therefore not scalable. Recent advancements in machine learning, particularly in computer vision and large language models (LLMs), have opened new avenues for automating the recognition and classification of features and objects in historical maps. In this paper, we propose a novel distillation method that leverages LLMs and attention mechanisms for the automatic annotation of historical maps. LLMs are employed to generate coarse classification labels for low-resolution historical image patches, while attention mechanisms are utilized to refine these labels to higher resolutions. Experimental results demonstrate that the refined labels achieve a high recall of more than 90%. Additionally, the intersection over union (IoU) scores--84.2% for Wood and 72.0% for Settlement--along with precision scores of 87.1% and 79.5%, respectively, indicate that most labels are well-aligned with ground-truth annotations. Notably, these results were achieved without the use of fine-grained manual labels during training, underscoring the potential of our approach for efficient and scalable historical map analysis.
QAVA: Query-Agnostic Visual Attack to Large Vision-Language Models NAACL 2025
In typical multimodal tasks, such as Visual Question Answering (VQA), adversarial attacks targeting a specific image and question can lead large vision-language models (LVLMs) to provide incorrect answers. However, it is common for a single image to be associated with multiple questions, and LVLMs may still answer other questions correctly even for an adversarial image attacked by a specific question. To address this, we introduce the query-agnostic visual attack (QAVA), which aims to create robust adversarial examples that generate incorrect responses to unspecified and unknown questions. Compared to traditional adversarial attacks focused on specific images and questions, QAVA significantly enhances the effectiveness and efficiency of attacks on images when the question is unknown, achieving performance comparable to attacks on known target questions. Our research broadens the scope of visual adversarial attacks on LVLMs in practical settings, uncovering previously overlooked vulnerabilities, particularly in the context of visual adversarial threats. The code is available at https://github.com/btzyd/qava.
comment: Accepted by NAACL 2025 main
Defending Against Frequency-Based Attacks with Diffusion Models CVPR
Adversarial training is a common strategy for enhancing model robustness against adversarial attacks. However, it is typically tailored to the specific attack types it is trained on, limiting its ability to generalize to unseen threat models. Adversarial purification offers an alternative by leveraging a generative model to remove perturbations before classification. Since the purifier is trained independently of both the classifier and the threat models, it is better equipped to handle previously unseen attack scenarios. Diffusion models have proven highly effective for noise purification, not only in countering pixel-wise adversarial perturbations but also in addressing non-adversarial data shifts. In this study, we broaden the focus beyond pixel-wise robustness to explore the extent to which purification can mitigate both spectral and spatial adversarial attacks. Our findings highlight its effectiveness in handling diverse distortion patterns across low- to high-frequency regions.
comment: Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 5th Workshop on Adversarial Machine Learning in Computer Vision: Foundation Models + X
Acquisition of high-quality images for camera calibration in robotics applications via speech prompts
Accurate intrinsic and extrinsic camera calibration can be an important prerequisite for robotic applications that rely on vision as input. While there is ongoing research on enabling camera calibration using natural images, many systems in practice still rely on using designated calibration targets with e.g. checkerboard patterns or April tag grids. Once calibration images from different perspectives have been acquired and feature descriptors detected, those are typically used in an optimization process to minimize the geometric reprojection error. For this optimization to converge, input images need to be of sufficient quality and particularly sharpness; they should neither contain motion blur nor rolling-shutter artifacts that can arise when the calibration board was not static during image capture. In this work, we present a novel calibration image acquisition technique controlled via voice commands recorded with a clip-on microphone, that can be more robust and user-friendly than e.g. triggering capture with a remote control, or filtering out blurry frames from a video sequence in postprocessing. To achieve this, we use a state-of-the-art speech-to-text transcription model with accurate per-word timestamping to capture trigger words with precise temporal alignment. Our experiments show that the proposed method improves user experience by being fast and efficient, allowing us to successfully calibrate complex multi-camera setups.
comment: 8 pages, 6 figures
Easy3D: A Simple Yet Effective Method for 3D Interactive Segmentation
The increasing availability of digital 3D environments, whether through image-based 3D reconstruction, generation, or scans obtained by robots, is driving innovation across various applications. These come with a significant demand for 3D interaction, such as 3D Interactive Segmentation, which is useful for tasks like object selection and manipulation. Additionally, there is a persistent need for solutions that are efficient, precise, and performing well across diverse settings, particularly in unseen environments and with unfamiliar objects. In this work, we introduce a 3D interactive segmentation method that consistently surpasses previous state-of-the-art techniques on both in-domain and out-of-domain datasets. Our simple approach integrates a voxel-based sparse encoder with a lightweight transformer-based decoder that implements implicit click fusion, achieving superior performance and maximizing efficiency. Our method demonstrates substantial improvements on benchmark datasets, including ScanNet, ScanNet++, S3DIS, and KITTI-360, and also on unseen geometric distributions such as the ones obtained by Gaussian Splatting. The project web-page is available at https://simonelli-andrea.github.io/easy3d.
Meta-learning For Few-Shot Time Series Crop Type Classification: A Benchmark On The EuroCropsML Dataset
Spatial imbalances in crop type data pose significant challenges for accurate classification in remote sensing applications. Algorithms aiming at transferring knowledge from data-rich to data-scarce tasks have thus surged in popularity. However, despite their effectiveness in previous evaluations, their performance in challenging real-world applications is unclear and needs to be evaluated. This study benchmarks transfer learning and several meta-learning algorithms, including (First-Order) Model-Agnostic Meta-Learning ((FO)-MAML), Almost No Inner Loop (ANIL), and Task-Informed Meta-Learning (TIML), on the real-world EuroCropsML time series dataset, which combines farmer-reported crop data with Sentinel-2 satellite observations from Estonia, Latvia, and Portugal. Our findings indicate that MAML-based meta-learning algorithms achieve slightly higher accuracy compared to simpler transfer learning methods when applied to crop type classification tasks in Estonia after pre-training on data from Latvia. However, this improvement comes at the cost of increased computational demands and training time. Moreover, we find that the transfer of knowledge between geographically disparate regions, such as Estonia and Portugal, poses significant challenges to all investigated algorithms. These insights underscore the trade-offs between accuracy and computational resource requirements in selecting machine learning methods for real-world crop type classification tasks and highlight the difficulties of transferring knowledge between different regions of the Earth. To facilitate future research in this domain, we present the first comprehensive benchmark for evaluating transfer and meta-learning methods for crop type classification under real-world conditions. The corresponding code is publicly available at https://github.com/dida-do/eurocrops-meta-learning.
comment: 19 pages, 7 figures, 12 tables
DRIFT open dataset: A drone-derived intelligence for traffic analysis in urban environmen
Reliable traffic data are essential for understanding urban mobility and developing effective traffic management strategies. This study introduces the DRone-derived Intelligence For Traffic analysis (DRIFT) dataset, a large-scale urban traffic dataset collected systematically from synchronized drone videos at approximately 250 meters altitude, covering nine interconnected intersections in Daejeon, South Korea. DRIFT provides high-resolution vehicle trajectories that include directional information, processed through video synchronization and orthomap alignment, resulting in a comprehensive dataset of 81,699 vehicle trajectories. Through our DRIFT dataset, researchers can simultaneously analyze traffic at multiple scales - from individual vehicle maneuvers like lane-changes and safety metrics such as time-to-collision to aggregate network flow dynamics across interconnected urban intersections. The DRIFT dataset is structured to enable immediate use without additional preprocessing, complemented by open-source models for object detection and trajectory extraction, as well as associated analytical tools. DRIFT is expected to significantly contribute to academic research and practical applications, such as traffic flow analysis and simulation studies. The dataset and related resources are publicly accessible at https://github.com/AIxMobility/The-DRIFT.
comment: 30 pages, 15 figures
AnimeDL-2M: Million-Scale AI-Generated Anime Image Detection and Localization in Diffusion Era
Recent advances in image generation, particularly diffusion models, have significantly lowered the barrier for creating sophisticated forgeries, making image manipulation detection and localization (IMDL) increasingly challenging. While prior work in IMDL has focused largely on natural images, the anime domain remains underexplored-despite its growing vulnerability to AI-generated forgeries. Misrepresentations of AI-generated images as hand-drawn artwork, copyright violations, and inappropriate content modifications pose serious threats to the anime community and industry. To address this gap, we propose AnimeDL-2M, the first large-scale benchmark for anime IMDL with comprehensive annotations. It comprises over two million images including real, partially manipulated, and fully AI-generated samples. Experiments indicate that models trained on existing IMDL datasets of natural images perform poorly when applied to anime images, highlighting a clear domain gap between anime and natural images. To better handle IMDL tasks in anime domain, we further propose AniXplore, a novel model tailored to the visual characteristics of anime imagery. Extensive evaluations demonstrate that AniXplore achieves superior performance compared to existing methods. Dataset and code can be found in https://flytweety.github.io/AnimeDL2M/.
GATE3D: Generalized Attention-based Task-synergized Estimation in 3D*
The emerging trend in computer vision emphasizes developing universal models capable of simultaneously addressing multiple diverse tasks. Such universality typically requires joint training across multi-domain datasets to ensure effective generalization. However, monocular 3D object detection presents unique challenges in multi-domain training due to the scarcity of datasets annotated with accurate 3D ground-truth labels, especially beyond typical road-based autonomous driving contexts. To address this challenge, we introduce a novel weakly supervised framework leveraging pseudo-labels. Current pretrained models often struggle to accurately detect pedestrians in non-road environments due to inherent dataset biases. Unlike generalized image-based 2D object detection models, achieving similar generalization in monocular 3D detection remains largely unexplored. In this paper, we propose GATE3D, a novel framework designed specifically for generalized monocular 3D object detection via weak supervision. GATE3D effectively bridges domain gaps by employing consistency losses between 2D and 3D predictions. Remarkably, our model achieves competitive performance on the KITTI benchmark as well as on an indoor-office dataset collected by us to evaluate the generalization capabilities of our framework. Our results demonstrate that GATE3D significantly accelerates learning from limited annotated data through effective pre-training strategies, highlighting substantial potential for broader impacts in robotics, augmented reality, and virtual reality applications. Project page: https://ies0411.github.io/GATE3D/
comment: 9pages, 1 supple
MediSee: Reasoning-based Pixel-level Perception in Medical Images
Despite remarkable advancements in pixel-level medical image perception, existing methods are either limited to specific tasks or heavily rely on accurate bounding boxes or text labels as input prompts. However, the medical knowledge required for input is a huge obstacle for general public, which greatly reduces the universality of these methods. Compared with these domain-specialized auxiliary information, general users tend to rely on oral queries that require logical reasoning. In this paper, we introduce a novel medical vision task: Medical Reasoning Segmentation and Detection (MedSD), which aims to comprehend implicit queries about medical images and generate the corresponding segmentation mask and bounding box for the target object. To accomplish this task, we first introduce a Multi-perspective, Logic-driven Medical Reasoning Segmentation and Detection (MLMR-SD) dataset, which encompasses a substantial collection of medical entity targets along with their corresponding reasoning. Furthermore, we propose MediSee, an effective baseline model designed for medical reasoning segmentation and detection. The experimental results indicate that the proposed method can effectively address MedSD with implicit colloquial queries and outperform traditional medical referring segmentation methods.
comment: 10 pages, 6 figures
TMCIR: Token Merge Benefits Composed Image Retrieval
Composed Image Retrieval (CIR) retrieves target images using a multi-modal query that combines a reference image with text describing desired modifications. The primary challenge is effectively fusing this visual and textual information. Current cross-modal feature fusion approaches for CIR exhibit an inherent bias in intention interpretation. These methods tend to disproportionately emphasize either the reference image features (visual-dominant fusion) or the textual modification intent (text-dominant fusion through image-to-text conversion). Such an imbalanced representation often fails to accurately capture and reflect the actual search intent of the user in the retrieval results. To address this challenge, we propose TMCIR, a novel framework that advances composed image retrieval through two key innovations: 1) Intent-Aware Cross-Modal Alignment. We first fine-tune CLIP encoders contrastively using intent-reflecting pseudo-target images, synthesized from reference images and textual descriptions via a diffusion model. This step enhances the encoder ability of text to capture nuanced intents in textual descriptions. 2) Adaptive Token Fusion. We further fine-tune all encoders contrastively by comparing adaptive token-fusion features with the target image. This mechanism dynamically balances visual and textual representations within the contrastive learning pipeline, optimizing the composed feature for retrieval. Extensive experiments on Fashion-IQ and CIRR datasets demonstrate that TMCIR significantly outperforms state-of-the-art methods, particularly in capturing nuanced user intent.
comment: arXiv admin note: text overlap with arXiv:2310.05473 by other authors
PraNet-V2: Dual-Supervised Reverse Attention for Medical Image Segmentation
Accurate medical image segmentation is essential for effective diagnosis and treatment. Previously, PraNet-V1 was proposed to enhance polyp segmentation by introducing a reverse attention (RA) module that utilizes background information. However, PraNet-V1 struggles with multi-class segmentation tasks. To address this limitation, we propose PraNet-V2, which, compared to PraNet-V1, effectively performs a broader range of tasks including multi-class segmentation. At the core of PraNet-V2 is the Dual-Supervised Reverse Attention (DSRA) module, which incorporates explicit background supervision, independent background modeling, and semantically enriched attention fusion. Our PraNet-V2 framework demonstrates strong performance on four polyp segmentation datasets. Additionally, by integrating DSRA to iteratively enhance foreground segmentation results in three state-of-the-art semantic segmentation models, we achieve up to a 1.36% improvement in mean Dice score. Code is available at: https://github.com/ai4colonoscopy/PraNet-V2/tree/main/binary_seg/jittor.
comment: Technical report (4 tables 3 figures 8 pages)
DMPT: Decoupled Modality-aware Prompt Tuning for Multi-modal Object Re-identification WACV
Current multi-modal object re-identification approaches based on large-scale pre-trained backbones (i.e., ViT) have displayed remarkable progress and achieved excellent performance. However, these methods usually adopt the standard full fine-tuning paradigm, which requires the optimization of considerable backbone parameters, causing extensive computational and storage requirements. In this work, we propose an efficient prompt-tuning framework tailored for multi-modal object re-identification, dubbed DMPT, which freezes the main backbone and only optimizes several newly added decoupled modality-aware parameters. Specifically, we explicitly decouple the visual prompts into modality-specific prompts which leverage prior modality knowledge from a powerful text encoder and modality-independent semantic prompts which extract semantic information from multi-modal inputs, such as visible, near-infrared, and thermal-infrared. Built upon the extracted features, we further design a Prompt Inverse Bind (PromptIBind) strategy that employs bind prompts as a medium to connect the semantic prompt tokens of different modalities and facilitates the exchange of complementary multi-modal information, boosting final re-identification results. Experimental results on multiple common benchmarks demonstrate that our DMPT can achieve competitive results to existing state-of-the-art methods while requiring only 6.5% fine-tuning of the backbone parameters.
comment: 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
Seeing like a Cephalopod: Colour Vision with a Monochrome Event Camera CVPR 2025
Cephalopods exhibit unique colour discrimination capabilities despite having one type of photoreceptor, relying instead on chromatic aberration induced by their ocular optics and pupil shapes to perceive spectral information. We took inspiration from this biological mechanism to design a spectral imaging system that combines a ball lens with an event-based camera. Our approach relies on a motorised system that shifts the focal position, mirroring the adaptive lens motion in cephalopods. This approach has enabled us to achieve wavelength-dependent focusing across the visible light and near-infrared spectrum, making the event a spectral sensor. We characterise chromatic aberration effects, using both event-based and conventional frame-based sensors, validating the effectiveness of bio-inspired spectral discrimination both in simulation and in a real setup as well as assessing the spectral discrimination performance. Our proposed approach provides a robust spectral sensing capability without conventional colour filters or computational demosaicing. This approach opens new pathways toward new spectral sensing systems inspired by nature's evolutionary solutions. Code and analysis are available at: https://samiarja.github.io/neuromorphic_octopus_eye/
comment: 15 pages, 14 figures, 1 table. Accepted at CVPR 2025 (Workshop on Event-based Vision)
Deep Learning in Concealed Dense Prediction
Deep learning is developing rapidly and handling common computer vision tasks well. It is time to pay attention to more complex vision tasks, as model size, knowledge, and reasoning capabilities continue to improve. In this paper, we introduce and review a family of complex tasks, termed Concealed Dense Prediction (CDP), which has great value in agriculture, industry, etc. CDP's intrinsic trait is that the targets are concealed in their surroundings, thus fully perceiving them requires fine-grained representations, prior knowledge, auxiliary reasoning, etc. The contributions of this review are three-fold: (i) We introduce the scope, characteristics, and challenges specific to CDP tasks and emphasize their essential differences from generic vision tasks. (ii) We develop a taxonomy based on concealment counteracting to summarize deep learning efforts in CDP through experiments on three tasks. We compare 25 state-of-the-art methods across 12 widely used concealed datasets. (iii) We discuss the potential applications of CDP in the large model era and summarize 6 potential research directions. We offer perspectives for the future development of CDP by constructing a large-scale multimodal instruction fine-tuning dataset, CvpINST, and a concealed visual perception agent, CvpAgent.
comment: Technique Report
AgentPolyp: Accurate Polyp Segmentation via Image Enhancement Agent
Since human and environmental factors interfere, captured polyp images usually suffer from issues such as dim lighting, blur, and overexposure, which pose challenges for downstream polyp segmentation tasks. To address the challenges of noise-induced degradation in polyp images, we present AgentPolyp, a novel framework integrating CLIP-based semantic guidance and dynamic image enhancement with a lightweight neural network for segmentation. The agent first evaluates image quality using CLIP-driven semantic analysis (e.g., identifying ``low-contrast polyps with vascular textures") and adapts reinforcement learning strategies to dynamically apply multi-modal enhancement operations (e.g., denoising, contrast adjustment). A quality assessment feedback loop optimizes pixel-level enhancement and segmentation focus in a collaborative manner, ensuring robust preprocessing before neural network segmentation. This modular architecture supports plug-and-play extensions for various enhancement algorithms and segmentation networks, meeting deployment requirements for endoscopic devices.
Adaptive Decision Boundary for Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) aims to continuously learn new classes from a limited set of training samples without forgetting knowledge of previously learned classes. Conventional FSCIL methods typically build a robust feature extractor during the base training session with abundant training samples and subsequently freeze this extractor, only fine-tuning the classifier in subsequent incremental phases. However, current strategies primarily focus on preventing catastrophic forgetting, considering only the relationship between novel and base classes, without paying attention to the specific decision spaces of each class. To address this challenge, we propose a plug-and-play Adaptive Decision Boundary Strategy (ADBS), which is compatible with most FSCIL methods. Specifically, we assign a specific decision boundary to each class and adaptively adjust these boundaries during training to optimally refine the decision spaces for the classes in each session. Furthermore, to amplify the distinctiveness between classes, we employ a novel inter-class constraint loss that optimizes the decision boundaries and prototypes for each class. Extensive experiments on three benchmarks, namely CIFAR100, miniImageNet, and CUB200, demonstrate that incorporating our ADBS method with existing FSCIL techniques significantly improves performance, achieving overall state-of-the-art results.
Self-Supervised Enhancement of Forward-Looking Sonar Images: Bridging Cross-Modal Degradation Gaps through Feature Space Transformation and Multi-Frame Fusion
Enhancing forward-looking sonar images is critical for accurate underwater target detection. Current deep learning methods mainly rely on supervised training with simulated data, but the difficulty in obtaining high-quality real-world paired data limits their practical use and generalization. Although self-supervised approaches from remote sensing partially alleviate data shortages, they neglect the cross-modal degradation gap between sonar and remote sensing images. Directly transferring pretrained weights often leads to overly smooth sonar images, detail loss, and insufficient brightness. To address this, we propose a feature-space transformation that maps sonar images from the pixel domain to a robust feature domain, effectively bridging the degradation gap. Additionally, our self-supervised multi-frame fusion strategy leverages complementary inter-frame information to naturally remove speckle noise and enhance target-region brightness. Experiments on three self-collected real-world forward-looking sonar datasets show that our method significantly outperforms existing approaches, effectively suppressing noise, preserving detailed edges, and substantially improving brightness, demonstrating strong potential for underwater target detection applications.
AFiRe: Anatomy-Driven Self-Supervised Learning for Fine-Grained Representation in Radiographic Images
Current self-supervised methods, such as contrastive learning, predominantly focus on global discrimination, neglecting the critical fine-grained anatomical details required for accurate radiographic analysis. To address this challenge, we propose an Anatomy-driven self-supervised framework for enhancing Fine-grained Representation in radiographic image analysis (AFiRe). The core idea of AFiRe is to align the anatomical consistency with the unique token-processing characteristics of Vision Transformer. Specifically, AFiRe synergistically performs two self-supervised schemes: (i) Token-wise anatomy-guided contrastive learning, which aligns image tokens based on structural and categorical consistency, thereby enhancing fine-grained spatial-anatomical discrimination; (ii) Pixel-level anomaly-removal restoration, which particularly focuses on local anomalies, thereby refining the learned discrimination with detailed geometrical information. Additionally, we propose Synthetic Lesion Mask to enhance anatomical diversity while preserving intra-consistency, which is typically corrupted by traditional data augmentations, such as Cropping and Affine transformations. Experimental results show that AFiRe: (i) provides robust anatomical discrimination, achieving more cohesive feature clusters compared to state-of-the-art contrastive learning methods; (ii) demonstrates superior generalization, surpassing 7 radiography-specific self-supervised methods in multi-label classification tasks with limited labeling; and (iii) integrates fine-grained information, enabling precise anomaly detection using only image-level annotations.
An Efficient and Mixed Heterogeneous Model for Image Restoration
Image restoration~(IR), as a fundamental multimedia data processing task, has a significant impact on downstream visual applications. In recent years, researchers have focused on developing general-purpose IR models capable of handling diverse degradation types, thereby reducing the cost and complexity of model development. Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas. CNNs excel in efficient inference, whereas Transformers and Mamba excel at capturing long-range dependencies and modeling global contexts. While each architecture has demonstrated success in specialized, single-task settings, limited efforts have been made to effectively integrate heterogeneous architectures to jointly address diverse IR challenges. To bridge this gap, we propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion. RestorMixer adopts a three-stage encoder-decoder structure, where each stage is tailored to the resolution and feature characteristics of the input. In the initial high-resolution stage, CNN-based blocks are employed to rapidly extract shallow local features. In the subsequent stages, we integrate a refined multi-directional scanning Mamba module with a multi-scale window-based self-attention mechanism. This hierarchical and adaptive design enables the model to leverage the strengths of CNNs in local feature extraction, Mamba in global context modeling, and attention mechanisms in dynamic feature refinement. Extensive experimental results demonstrate that RestorMixer achieves leading performance across multiple IR tasks while maintaining high inference efficiency. The official code can be accessed at https://github.com/ClimBin/RestorMixer.
Recognition of Geometrical Shapes by Dictionary Learning
Dictionary learning is a versatile method to produce an overcomplete set of vectors, called atoms, to represent a given input with only a few atoms. In the literature, it has been used primarily for tasks that explore its powerful representation capabilities, such as for image reconstruction. In this work, we present a first approach to make dictionary learning work for shape recognition, considering specifically geometrical shapes. As we demonstrate, the choice of the underlying optimization method has a significant impact on recognition quality. Experimental results confirm that dictionary learning may be an interesting method for shape recognition tasks.
comment: 6 pages, 4 figures, ACDSA 2025 conference
Cross-Frequency Implicit Neural Representation with Self-Evolving Parameters
Implicit neural representation (INR) has emerged as a powerful paradigm for visual data representation. However, classical INR methods represent data in the original space mixed with different frequency components, and several feature encoding parameters (e.g., the frequency parameter $\omega$ or the rank $R$) need manual configurations. In this work, we propose a self-evolving cross-frequency INR using the Haar wavelet transform (termed CF-INR), which decouples data into four frequency components and employs INRs in the wavelet space. CF-INR allows the characterization of different frequency components separately, thus enabling higher accuracy for data representation. To more precisely characterize cross-frequency components, we propose a cross-frequency tensor decomposition paradigm for CF-INR with self-evolving parameters, which automatically updates the rank parameter $R$ and the frequency parameter $\omega$ for each frequency component through self-evolving optimization. This self-evolution paradigm eliminates the laborious manual tuning of these parameters, and learns a customized cross-frequency feature encoding configuration for each dataset. We evaluate CF-INR on a variety of visual data representation and recovery tasks, including image regression, inpainting, denoising, and cloud removal. Extensive experiments demonstrate that CF-INR outperforms state-of-the-art methods in each case.
Towards Efficient Partially Relevant Video Retrieval with Active Moment Discovering
Partially relevant video retrieval (PRVR) is a practical yet challenging task in text-to-video retrieval, where videos are untrimmed and contain much background content. The pursuit here is of both effective and efficient solutions to capture the partial correspondence between text queries and untrimmed videos. Existing PRVR methods, which typically focus on modeling multi-scale clip representations, however, suffer from content independence and information redundancy, impairing retrieval performance. To overcome these limitations, we propose a simple yet effective approach with active moment discovering (AMDNet). We are committed to discovering video moments that are semantically consistent with their queries. By using learnable span anchors to capture distinct moments and applying masked multi-moment attention to emphasize salient moments while suppressing redundant backgrounds, we achieve more compact and informative video representations. To further enhance moment modeling, we introduce a moment diversity loss to encourage different moments of distinct regions and a moment relevance loss to promote semantically query-relevant moments, which cooperate with a partially relevant retrieval loss for end-to-end optimization. Extensive experiments on two large-scale video datasets (\ie, TVR and ActivityNet Captions) demonstrate the superiority and efficiency of our AMDNet. In particular, AMDNet is about 15.5 times smaller (\#parameters) while 6.0 points higher (SumR) than the up-to-date method GMMFormer on TVR.
comment: Accepted by IEEE Transactions on Multimedia (TMM) on January 19, 2025. The code is available at https://github.com/songpipi/AMDNet
Embedding Radiomics into Vision Transformers for Multimodal Medical Image Classification
Background: Deep learning has significantly advanced medical image analysis, with Vision Transformers (ViTs) offering a powerful alternative to convolutional models by modeling long-range dependencies through self-attention. However, ViTs are inherently data-intensive and lack domain-specific inductive biases, limiting their applicability in medical imaging. In contrast, radiomics provides interpretable, handcrafted descriptors of tissue heterogeneity but suffers from limited scalability and integration into end-to-end learning frameworks. In this work, we propose the Radiomics-Embedded Vision Transformer (RE-ViT) that combines radiomic features with data-driven visual embeddings within a ViT backbone. Purpose: To develop a hybrid RE-ViT framework that integrates radiomics and patch-wise ViT embeddings through early fusion, enhancing robustness and performance in medical image classification. Methods: Following the standard ViT pipeline, images were divided into patches. For each patch, handcrafted radiomic features were extracted and fused with linearly projected pixel embeddings. The fused representations were normalized, positionally encoded, and passed to the ViT encoder. A learnable [CLS] token aggregated patch-level information for classification. We evaluated RE-ViT on three public datasets (including BUSI, ChestXray2017, and Retinal OCT) using accuracy, macro AUC, sensitivity, and specificity. RE-ViT was benchmarked against CNN-based (VGG-16, ResNet) and hybrid (TransMed) models. Results: RE-ViT achieved state-of-the-art results: on BUSI, AUC=0.950+/-0.011; on ChestXray2017, AUC=0.989+/-0.004; on Retinal OCT, AUC=0.986+/-0.001, which outperforms other comparison models. Conclusions: The RE-ViT framework effectively integrates radiomics with ViT architectures, demonstrating improved performance and generalizability across multimodal medical image classification tasks.
comment: 27 pages, 3 figures
InterAnimate: Taming Region-aware Diffusion Model for Realistic Human Interaction Animation
Recent video generation research has focused heavily on isolated actions, leaving interactive motions-such as hand-face interactions-largely unexamined. These interactions are essential for emerging biometric authentication systems, which rely on interactive motion-based anti-spoofing approaches. From a security perspective, there is a growing need for large-scale, high-quality interactive videos to train and strengthen authentication models. In this work, we introduce a novel paradigm for animating realistic hand-face interactions. Our approach simultaneously learns spatio-temporal contact dynamics and biomechanically plausible deformation effects, enabling natural interactions where hand movements induce anatomically accurate facial deformations while maintaining collision-free contact. To facilitate this research, we present InterHF, a large-scale hand-face interaction dataset featuring 18 interaction patterns and 90,000 annotated videos. Additionally, we propose InterAnimate, a region-aware diffusion model designed specifically for interaction animation. InterAnimate leverages learnable spatial and temporal latents to effectively capture dynamic interaction priors and integrates a region-aware interaction mechanism that injects these priors into the denoising process. To the best of our knowledge, this work represents the first large-scale effort to systematically study human hand-face interactions. Qualitative and quantitative results show InterAnimate produces highly realistic animations, setting a new benchmark. Code and data will be made public to advance research.
comment: under preview
Fine-Grained Rib Fracture Diagnosis with Hyperbolic Embeddings: A Detailed Annotation Framework and Multi-Label Classification Model
Accurate rib fracture identification and classification are essential for treatment planning. However, existing datasets often lack fine-grained annotations, particularly regarding rib fracture characterization, type, and precise anatomical location on individual ribs. To address this, we introduce a novel rib fracture annotation protocol tailored for fracture classification. Further, we enhance fracture classification by leveraging cross-modal embeddings that bridge radiological images and clinical descriptions. Our approach employs hyperbolic embeddings to capture the hierarchical nature of fracture, mapping visual features and textual descriptions into a shared non-Euclidean manifold. This framework enables more nuanced similarity computations between imaging characteristics and clinical descriptions, accounting for the inherent hierarchical relationships in fracture taxonomy. Experimental results demonstrate that our approach outperforms existing methods across multiple classification tasks, with average recall improvements of 6% on the AirRib dataset and 17.5% on the public RibFrac dataset.
CDUPatch: Color-Driven Universal Adversarial Patch Attack for Dual-Modal Visible-Infrared Detectors
Adversarial patches are widely used to evaluate the robustness of object detection systems in real-world scenarios. These patches were initially designed to deceive single-modal detectors (e.g., visible or infrared) and have recently been extended to target visible-infrared dual-modal detectors. However, existing dual-modal adversarial patch attacks have limited attack effectiveness across diverse physical scenarios. To address this, we propose CDUPatch, a universal cross-modal patch attack against visible-infrared object detectors across scales, views, and scenarios. Specifically, we observe that color variations lead to different levels of thermal absorption, resulting in temperature differences in infrared imaging. Leveraging this property, we propose an RGB-to-infrared adapter that maps RGB patches to infrared patches, enabling unified optimization of cross-modal patches. By learning an optimal color distribution on the adversarial patch, we can manipulate its thermal response and generate an adversarial infrared texture. Additionally, we introduce a multi-scale clipping strategy and construct a new visible-infrared dataset, MSDrone, which contains aerial vehicle images in varying scales and perspectives. These data augmentation strategies enhance the robustness of our patch in real-world conditions. Experiments on four benchmark datasets (e.g., DroneVehicle, LLVIP, VisDrone, MSDrone) show that our method outperforms existing patch attacks in the digital domain. Extensive physical tests further confirm strong transferability across scales, views, and scenarios.
PuzzleBench: A Fully Dynamic Evaluation Framework for Large Multimodal Models on Puzzle Solving
Large Multimodal Models (LMMs) have demonstrated impressive capabilities across a wide range of multimodal tasks, achieving ever-increasing performance on various evaluation benchmarks. However, existing benchmarks are typically static and often overlap with pre-training datasets, leading to fixed complexity constraints and substantial data contamination issues. Meanwhile, manually annotated datasets are labor-intensive, time-consuming, and subject to human bias and inconsistency, leading to reliability and reproducibility issues. To address these problems, we propose a fully dynamic multimodal evaluation framework, named Open-ended Visual Puzzle Generation (OVPG), which aims to generate fresh, diverse, and verifiable evaluation data automatically in puzzle-solving tasks. Specifically, the OVPG pipeline consists of a raw material sampling module, a visual content generation module, and a puzzle rule design module, which ensures that each evaluation instance is primitive, highly randomized, and uniquely solvable, enabling continual adaptation to the evolving capabilities of LMMs. Built upon OVPG, we construct PuzzleBench, a dynamic and scalable benchmark comprising 11,840 VQA samples. It features six carefully designed puzzle tasks targeting three core LMM competencies, visual recognition, logical reasoning, and context understanding. PuzzleBench differs from static benchmarks that quickly become outdated. It enables ongoing dataset refreshing through OVPG and a rich set of open-ended puzzle designs, allowing seamless adaptation to the evolving capabilities of LMMs.
Bringing together invertible UNets with invertible attention modules for memory-efficient diffusion models
Diffusion models have recently gained state of the art performance on many image generation tasks. However, most models require significant computational resources to achieve this. This becomes apparent in the application of medical image synthesis due to the 3D nature of medical datasets like CT-scans, MRIs, electron microscope, etc. In this paper we propose a novel architecture for a single GPU memory-efficient training for diffusion models for high dimensional medical datasets. The proposed model is built by using an invertible UNet architecture with invertible attention modules. This leads to the following two contributions: 1. denoising diffusion models and thus enabling memory usage to be independent of the dimensionality of the dataset, and 2. reducing the energy usage during training. While this new model can be applied to a multitude of image generation tasks, we showcase its memory-efficiency on the 3D BraTS2020 dataset leading to up to 15\% decrease in peak memory consumption during training with comparable results to SOTA while maintaining the image quality.
Safe-Construct: Redefining Construction Safety Violation Recognition as 3D Multi-View Engagement Task CVPR
Recognizing safety violations in construction environments is critical yet remains underexplored in computer vision. Existing models predominantly rely on 2D object detection, which fails to capture the complexities of real-world violations due to: (i) an oversimplified task formulation treating violation recognition merely as object detection, (ii) inadequate validation under realistic conditions, (iii) absence of standardized baselines, and (iv) limited scalability from the unavailability of synthetic dataset generators for diverse construction scenarios. To address these challenges, we introduce Safe-Construct, the first framework that reformulates violation recognition as a 3D multi-view engagement task, leveraging scene-level worker-object context and 3D spatial understanding. We also propose the Synthetic Indoor Construction Site Generator (SICSG) to create diverse, scalable training data, overcoming data limitations. Safe-Construct achieves a 7.6% improvement over state-of-the-art methods across four violation types. We rigorously evaluate our approach in near-realistic settings, incorporating four violations, four workers, 14 objects, and challenging conditions like occlusions (worker-object, worker-worker) and variable illumination (back-lighting, overexposure, sunlight). By integrating 3D multi-view spatial understanding and synthetic data generation, Safe-Construct sets a new benchmark for scalable and robust safety monitoring in high-risk industries. Project Website: https://Safe-Construct.github.io/Safe-Construct
comment: CVPR Workshop 2025; Project Website: https://Safe-Construct.github.io/Safe-Construct
Large Language Model-Informed Feature Discovery Improves Prediction and Interpretation of Credibility Perceptions of Visual Content
In today's visually dominated social media landscape, predicting the perceived credibility of visual content and understanding what drives human judgment are crucial for countering misinformation. However, these tasks are challenging due to the diversity and richness of visual features. We introduce a Large Language Model (LLM)-informed feature discovery framework that leverages multimodal LLMs, such as GPT-4o, to evaluate content credibility and explain its reasoning. We extract and quantify interpretable features using targeted prompts and integrate them into machine learning models to improve credibility predictions. We tested this approach on 4,191 visual social media posts across eight topics in science, health, and politics, using credibility ratings from 5,355 crowdsourced workers. Our method outperformed zero-shot GPT-based predictions by 13 percent in R2, and revealed key features like information concreteness and image format. We discuss the implications for misinformation mitigation, visual credibility, and the role of LLMs in social science.
comment: 26 pages
Weather-Aware Object Detection Transformer for Domain Adaptation
RT-DETRs have shown strong performance across various computer vision tasks but are known to degrade under challenging weather conditions such as fog. In this work, we investigate three novel approaches to enhance RT-DETR robustness in foggy environments: (1) Domain Adaptation via Perceptual Loss, which distills domain-invariant features from a teacher network to a student using perceptual supervision; (2) Weather Adaptive Attention, which augments the attention mechanism with fog-sensitive scaling by introducing an auxiliary foggy image stream; and (3) Weather Fusion Encoder, which integrates a dual-stream encoder architecture that fuses clear and foggy image features via multi-head self and cross-attention. Despite the architectural innovations, none of the proposed methods consistently outperform the baseline RT-DETR. We analyze the limitations and potential causes, offering insights for future research in weather-aware object detection.
Can Vision-Language Models Understand and Interpret Dynamic Gestures from Pedestrians? Pilot Datasets and Exploration Towards Instructive Nonverbal Commands for Cooperative Autonomous Vehicles
In autonomous driving, it is crucial to correctly interpret traffic gestures (TGs), such as those of an authority figure providing orders or instructions, or a pedestrian signaling the driver, to ensure a safe and pleasant traffic environment for all road users. This study investigates the capabilities of state-of-the-art vision-language models (VLMs) in zero-shot interpretation, focusing on their ability to caption and classify human gestures in traffic contexts. We create and publicly share two custom datasets with varying formal and informal TGs, such as 'Stop', 'Reverse', 'Hail', etc. The datasets are "Acted TG (ATG)" and "Instructive TG In-The-Wild (ITGI)". They are annotated with natural language, describing the pedestrian's body position and gesture. We evaluate models using three methods utilizing expert-generated captions as baseline and control: (1) caption similarity, (2) gesture classification, and (3) pose sequence reconstruction similarity. Results show that current VLMs struggle with gesture understanding: sentence similarity averages below 0.59, and classification F1 scores reach only 0.14-0.39, well below the expert baseline of 0.70. While pose reconstruction shows potential, it requires more data and refined metrics to be reliable. Our findings reveal that although some SOTA VLMs can interpret zero-shot human traffic gestures, none are accurate and robust enough to be trustworthy, emphasizing the need for further research in this domain.
DAAF:Degradation-Aware Adaptive Fusion Framework for Robust Infrared and Visible Images Fusion
Existing infrared and visible image fusion(IVIF) algorithms often prioritize high-quality images, neglecting image degradation such as low light and noise, which limits the practical potential. This paper propose Degradation-Aware Adaptive image Fusion (DAAF), which achieves unified modeling of adaptive degradation optimization and image fusion. Specifically, DAAF comprises an auxiliary Adaptive Degradation Optimization Network (ADON) and a Feature Interactive Local-Global Fusion (FILGF) Network. Firstly, ADON includes infrared and visible-light branches. Within the infrared branch, frequency-domain feature decomposition and extraction are employed to isolate Gaussian and stripe noise. In the visible-light branch, Retinex decomposition is applied to extract illumination and reflectance components, enabling complementary enhancement of detail and illumination distribution. Subsequently, FILGF performs interactive multi-scale local-global feature fusion. Local feature fusion consists of intra-inter model feature complement, while global feature fusion is achieved through a interactive cross-model attention. Extensive experiments have shown that DAAF outperforms current IVIF algorithms in normal and complex degradation scenarios.
GPS: Distilling Compact Memories via Grid-based Patch Sampling for Efficient Online Class-Incremental Learning
Online class-incremental learning aims to enable models to continuously adapt to new classes with limited access to past data, while mitigating catastrophic forgetting. Replay-based methods address this by maintaining a small memory buffer of previous samples, achieving competitive performance. For effective replay under constrained storage, recent approaches leverage distilled data to enhance the informativeness of memory. However, such approaches often involve significant computational overhead due to the use of bi-level optimization. Motivated by these limitations, we introduce Grid-based Patch Sampling (GPS), a lightweight and effective strategy for distilling informative memory samples without relying on a trainable model. GPS generates informative samples by sampling a subset of pixels from the original image, yielding compact low-resolution representations that preserve both semantic content and structural information. During replay, these representations are reassembled to support training and evaluation. Experiments on extensive benchmarks demonstrate that GRS can be seamlessly integrated into existing replay frameworks, leading to 3%-4% improvements in average end accuracy under memory-constrained settings, with limited computational overhead.
comment: 10 pages, 10 figures
Trade-offs in Privacy-Preserving Eye Tracking through Iris Obfuscation: A Benchmarking Study SP 2025
Recent developments in hardware, computer graphics, and AI may soon enable AR/VR head-mounted displays (HMDs) to become everyday devices like smartphones and tablets. Eye trackers within HMDs provide a special opportunity for such setups as it is possible to facilitate gaze-based research and interaction. However, estimating users' gaze information often requires raw eye images and videos that contain iris textures, which are considered a gold standard biometric for user authentication, and this raises privacy concerns. Previous research in the eye-tracking community focused on obfuscating iris textures while keeping utility tasks such as gaze estimation accurate. Despite these attempts, there is no comprehensive benchmark that evaluates state-of-the-art approaches. Considering all, in this paper, we benchmark blurring, noising, downsampling, rubber sheet model, and iris style transfer to obfuscate user identity, and compare their impact on image quality, privacy, utility, and risk of imposter attack on two datasets. We use eye segmentation and gaze estimation as utility tasks, and reduction in iris recognition accuracy as a measure of privacy protection, and false acceptance rate to estimate risk of attack. Our experiments show that canonical image processing methods like blurring and noising cause a marginal impact on deep learning-based tasks. While downsampling, rubber sheet model, and iris style transfer are effective in hiding user identifiers, iris style transfer, with higher computation cost, outperforms others in both utility tasks, and is more resilient against spoof attacks. Our analyses indicate that there is no universal optimal approach to balance privacy, utility, and computation burden. Therefore, we recommend practitioners consider the strengths and weaknesses of each approach, and possible combinations of those to reach an optimal privacy-utility trade-off.
comment: The 25th International Conference on Digital Signal Processing (DSP 2025)
Differentially Private 2D Human Pose Estimation
Human pose estimation (HPE) has become essential in numerous applications including healthcare, activity recognition, and human-computer interaction. However, the privacy implications of processing sensitive visual data present significant deployment barriers in critical domains. While traditional anonymization techniques offer limited protection and often compromise data utility for broader motion analysis, Differential Privacy (DP) provides formal privacy guarantees but typically degrades model performance when applied naively. In this work, we present the first differentially private 2D human pose estimation (2D-HPE) by applying Differentially Private Stochastic Gradient Descent (DP-SGD) to this task. To effectively balance privacy with performance, we adopt Projected DP-SGD (PDP-SGD), which projects the noisy gradients to a low-dimensional subspace. Additionally, we adapt TinyViT, a compact and efficient vision transformer for coordinate classification in HPE, providing a lightweight yet powerful backbone that enhances privacy-preserving deployment feasibility on resource-limited devices. Our approach is particularly valuable for multimedia interpretation tasks, enabling privacy-safe analysis and understanding of human motion across diverse visual media while preserving the semantic meaning required for downstream applications. Comprehensive experiments on the MPII Human Pose Dataset demonstrate significant performance enhancement with PDP-SGD achieving 78.48% PCKh@0.5 at a strict privacy budget ($\epsilon=0.2$), compared to 63.85% for standard DP-SGD. This work lays foundation for privacy-preserving human pose estimation in real-world, sensitive applications.
LLaVA-ReID: Selective Multi-image Questioner for Interactive Person Re-Identification
Traditional text-based person ReID assumes that person descriptions from witnesses are complete and provided at once. However, in real-world scenarios, such descriptions are often partial or vague. To address this limitation, we introduce a new task called interactive person re-identification (Inter-ReID). Inter-ReID is a dialogue-based retrieval task that iteratively refines initial descriptions through ongoing interactions with the witnesses. To facilitate the study of this new task, we construct a dialogue dataset that incorporates multiple types of questions by decomposing fine-grained attributes of individuals. We further propose LLaVA-ReID, a question model that generates targeted questions based on visual and textual contexts to elicit additional details about the target person. Leveraging a looking-forward strategy, we prioritize the most informative questions as supervision during training. Experimental results on both Inter-ReID and text-based ReID benchmarks demonstrate that LLaVA-ReID significantly outperforms baselines.
WildLive: Near Real-time Visual Wildlife Tracking onboard UAVs
Live tracking of wildlife via high-resolution video processing directly onboard drones is widely unexplored and most existing solutions rely on streaming video to ground stations to support navigation. Yet, both autonomous animal-reactive flight control beyond visual line of sight and/or mission-specific individual and behaviour recognition tasks rely to some degree on this capability. In response, we introduce WildLive -- a near real-time animal detection and tracking framework for high-resolution imagery running directly onboard uncrewed aerial vehicles (UAVs). The system performs multi-animal detection and tracking at 17fps+ for HD and 7fps+ on 4K video streams suitable for operation during higher altitude flights to minimise animal disturbance. Our system is optimised for Jetson Orin AGX onboard hardware. It integrates the efficiency of sparse optical flow tracking and mission-specific sampling with device-optimised and proven YOLO-driven object detection and segmentation techniques. Essentially, computational resource is focused onto spatio-temporal regions of high uncertainty to significantly improve UAV processing speeds without domain-specific loss of accuracy. Alongside, we introduce our WildLive dataset, which comprises 200k+ annotated animal instances across 19k+ frames from 4K UAV videos collected at the Ol Pejeta Conservancy in Kenya. All frames contain ground truth bounding boxes, segmentation masks, as well as individual tracklets and tracking point trajectories. We compare our system against current object tracking approaches including OC-SORT, ByteTrack, and SORT. Our materials are available at: https://dat-nguyenvn.github.io/WildLive/
Reference-Based 3D-Aware Image Editing with Triplanes CVPR 2025
Generative Adversarial Networks (GANs) have emerged as powerful tools for high-quality image generation and real image editing by manipulating their latent spaces. Recent advancements in GANs include 3D-aware models such as EG3D, which feature efficient triplane-based architectures capable of reconstructing 3D geometry from single images. However, limited attention has been given to providing an integrated framework for 3D-aware, high-quality, reference-based image editing. This study addresses this gap by exploring and demonstrating the effectiveness of the triplane space for advanced reference-based edits. Our novel approach integrates encoding, automatic localization, spatial disentanglement of triplane features, and fusion learning to achieve the desired edits. We demonstrate how our approach excels across diverse domains, including human faces, 360-degree heads, animal faces, partially stylized edits like cartoon faces, full-body clothing edits, and edits on class-agnostic samples. Our method shows state-of-the-art performance over relevant latent direction, text, and image-guided 2D and 3D-aware diffusion and GAN methods, both qualitatively and quantitatively.
comment: CVPR 2025 Highlight. Includes supplementary material
InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models
We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.
comment: Technical Report
Gaussian Differentially Private Human Faces Under a Face Radial Curve Representation
In this paper we consider the problem of releasing a Gaussian Differentially Private (GDP) 3D human face. The human face is a complex structure with many features and inherently tied to one's identity. Protecting this data, in a formally private way, is important yet challenging given the dimensionality of the problem. We extend approximate DP techniques for functional data to the GDP framework. We further propose a novel representation, face radial curves, of a 3D face as a set of functions and then utilize our proposed GDP functional data mechanism. To preserve the shape of the face while injecting noise we rely on tools from shape analysis for our novel representation of the face. We show that our method preserves the shape of the average face and injects less noise than traditional methods for the same privacy budget. Our mechanism consists of two primary components, the first is generally applicable to function value summaries (as are commonly found in nonparametric statistics or functional data analysis) while the second is general to disk-like surfaces and hence more applicable than just to human faces.
comment: 19 pages, 10 figures
Kimi-VL Technical Report
We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameters, setting a new standard for efficient multimodal thinking models. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.
Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
comment: 24 pages, 11 figures
SC-NeRF: NeRF-based Point Cloud Reconstruction using a Stationary Camera for Agricultural Applications
This paper presents a NeRF-based framework for point cloud (PCD) reconstruction, specifically designed for indoor high-throughput plant phenotyping facilities. Traditional NeRF-based reconstruction methods require cameras to move around stationary objects, but this approach is impractical for high-throughput environments where objects are rapidly imaged while moving on conveyors or rotating pedestals. To address this limitation, we develop a variant of NeRF-based PCD reconstruction that uses a single stationary camera to capture images as the object rotates on a pedestal. Our workflow comprises COLMAP-based pose estimation, a straightforward pose transformation to simulate camera movement, and subsequent standard NeRF training. A defined Region of Interest (ROI) excludes irrelevant scene data, enabling the generation of high-resolution point clouds (10M points). Experimental results demonstrate excellent reconstruction fidelity, with precision-recall analyses yielding an F-score close to 100.00 across all evaluated plant objects. Although pose estimation remains computationally intensive with a stationary camera setup, overall training and reconstruction times are competitive, validating the method's feasibility for practical high-throughput indoor phenotyping applications. Our findings indicate that high-quality NeRF-based 3D reconstructions are achievable using a stationary camera, eliminating the need for complex camera motion or costly imaging equipment. This approach is especially beneficial when employing expensive and delicate instruments, such as hyperspectral cameras, for 3D plant phenotyping. Future work will focus on optimizing pose estimation techniques and further streamlining the methodology to facilitate seamless integration into automated, high-throughput 3D phenotyping pipelines.
Deep Learning-Based Longitudinal Prediction of Childhood Myopia Progression Using Fundus Image Sequences and Baseline Refraction Data
Childhood myopia constitutes a significant global health concern. It exhibits an escalating prevalence and has the potential to evolve into severe, irreversible conditions that detrimentally impact familial well-being and create substantial economic costs. Contemporary research underscores the importance of precisely predicting myopia progression to enable timely and effective interventions, thereby averting severe visual impairment in children. Such predictions predominantly rely on subjective clinical assessments, which are inherently biased and resource-intensive, thus hindering their widespread application. In this study, we introduce a novel, high-accuracy method for quantitatively predicting the myopic trajectory and myopia risk in children using only fundus images and baseline refraction data. This approach was validated through a six-year longitudinal study of 3,408 children in Henan, utilizing 16,211 fundus images and corresponding refractive data. Our method based on deep learning demonstrated predictive accuracy with an error margin of 0.311D per year and AUC scores of 0.944 and 0.995 for forecasting the risks of developing myopia and high myopia, respectively. These findings confirm the utility of our model in supporting early intervention strategies and in significantly reducing healthcare costs, particularly by obviating the need for additional metadata and repeated consultations. Furthermore, our method was designed to rely only on fundus images and refractive error data, without the need for meta data or multiple inquiries from doctors, strongly reducing the associated medical costs and facilitating large-scale screening. Our model can even provide good predictions based on only a single time measurement. Consequently, the proposed method is an important means to reduce medical inequities caused by economic disparities.
EchoMask: Speech-Queried Attention-based Mask Modeling for Holistic Co-Speech Motion Generation
Masked modeling framework has shown promise in co-speech motion generation. However, it struggles to identify semantically significant frames for effective motion masking. In this work, we propose a speech-queried attention-based mask modeling framework for co-speech motion generation. Our key insight is to leverage motion-aligned speech features to guide the masked motion modeling process, selectively masking rhythm-related and semantically expressive motion frames. Specifically, we first propose a motion-audio alignment module (MAM) to construct a latent motion-audio joint space. In this space, both low-level and high-level speech features are projected, enabling motion-aligned speech representation using learnable speech queries. Then, a speech-queried attention mechanism (SQA) is introduced to compute frame-level attention scores through interactions between motion keys and speech queries, guiding selective masking toward motion frames with high attention scores. Finally, the motion-aligned speech features are also injected into the generation network to facilitate co-speech motion generation. Qualitative and quantitative evaluations confirm that our method outperforms existing state-of-the-art approaches, successfully producing high-quality co-speech motion.
comment: 12 pages, 12 figures
Cognitive Disentanglement for Referring Multi-Object Tracking
As a significant application of multi-source information fusion in intelligent transportation perception systems, Referring Multi-Object Tracking (RMOT) involves localizing and tracking specific objects in video sequences based on language references. However, existing RMOT approaches often treat language descriptions as holistic embeddings and struggle to effectively integrate the rich semantic information contained in language expressions with visual features. This limitation is especially apparent in complex scenes requiring comprehensive understanding of both static object attributes and spatial motion information. In this paper, we propose a Cognitive Disentanglement for Referring Multi-Object Tracking (CDRMT) framework that addresses these challenges. It adapts the "what" and "where" pathways from the human visual processing system to RMOT tasks. Specifically, our framework first establishes cross-modal connections while preserving modality-specific characteristics. It then disentangles language descriptions and hierarchically injects them into object queries, refining object understanding from coarse to fine-grained semantic levels. Finally, we reconstruct language representations based on visual features, ensuring that tracked objects faithfully reflect the referring expression. Extensive experiments on different benchmark datasets demonstrate that CDRMT achieves substantial improvements over state-of-the-art methods, with average gains of 6.0% in HOTA score on Refer-KITTI and 3.2% on Refer-KITTI-V2. Our approach advances the state-of-the-art in RMOT while simultaneously providing new insights into multi-source information fusion.
comment: 26 pages, 11 figures
Think or Not Think: A Study of Explicit Thinking in Rule-Based Visual Reinforcement Fine-Tuning
This paper investigates the thinking process in rule-based reinforcement learning fine-tuning (RFT) for multi-modal large language models (MLLMs). We first propose CLS-RL for classification, using verifiable rewards to encourage MLLM thinking. Experiments show CLS-RL significantly outperforms SFT and yields a 'free-lunch' generalization effect (improving performance on unseen datasets after training on one dataset). We then question if this explicit thinking is always necessary for RFT. Challenging convention that explicit thinking is crucial for RFT, we introduce No-Thinking-RL, minimizing thinking via a simple equality accuracy reward. Experiments show No-Thinking-RL surpasses CLS-RL in in-domain and generalization abilities, with significantly less fine-tuning time. This suggests reducing thinking can improve MLLM fine-tuning efficiency and effectiveness for certain visual tasks. We hypothesize explicit thinking negatively impacts reward convergence during RFT. To test this, we propose the Think-After-Answerwer method to let models first output the answer and then generate thinking process to alliviate the negative impact of thinking. We further test No-Thinking-RL on diverse tasks (including math, spatial, puzzles) with 2B and 7B models. For 2B models, No-Thinking-RL outperforms thinking-based RFT for all tasks, even on math, with Think-After-Answerwer performing intermediately. For 7B models, performance is comparable on simple visual tasks, but RFT with thinking excels on complex reasoning (math). This implies when dealing with complex math problems, smaller models struggle with generating effective reasoning, hurting performance on complex tasks. Conversely, for simple visual tasks, thinking is not indispensable, and its removal can boost performance and reduce training time. We hope our findings offer insights for better understanding the effect of the thinking process in RFT.
comment: Preprint, work in progress. Add results on math, cvbench, and puzzle
GarmentTracking: Category-Level Garment Pose Tracking CVPR 2023
Garments are important to humans. A visual system that can estimate and track the complete garment pose can be useful for many downstream tasks and real-world applications. In this work, we present a complete package to address the category-level garment pose tracking task: (1) A recording system VR-Garment, with which users can manipulate virtual garment models in simulation through a VR interface. (2) A large-scale dataset VR-Folding, with complex garment pose configurations in manipulation like flattening and folding. (3) An end-to-end online tracking framework GarmentTracking, which predicts complete garment pose both in canonical space and task space given a point cloud sequence. Extensive experiments demonstrate that the proposed GarmentTracking achieves great performance even when the garment has large non-rigid deformation. It outperforms the baseline approach on both speed and accuracy. We hope our proposed solution can serve as a platform for future research. Codes and datasets are available in https://garment-tracking.robotflow.ai.
comment: CVPR 2023
SCA: Highly Efficient Semantic-Consistent Unrestricted Adversarial Attack
Deep neural network based systems deployed in sensitive environments are vulnerable to adversarial attacks. Unrestricted adversarial attacks typically manipulate the semantic content of an image (e.g., color or texture) to create adversarial examples that are both effective and photorealistic. Recent works have utilized the diffusion inversion process to map images into a latent space, where high-level semantics are manipulated by introducing perturbations. However, they often results in substantial semantic distortions in the denoised output and suffers from low efficiency. In this study, we propose a novel framework called Semantic-Consistent Unrestricted Adversarial Attacks (SCA), which employs an inversion method to extract edit-friendly noise maps and utilizes Multimodal Large Language Model (MLLM) to provide semantic guidance throughout the process. Under the condition of rich semantic information provided by MLLM, we perform the DDPM denoising process of each step using a series of edit-friendly noise maps, and leverage DPM Solver++ to accelerate this process, enabling efficient sampling with semantic consistency. Compared to existing methods, our framework enables the efficient generation of adversarial examples that exhibit minimal discernible semantic changes. Consequently, we for the first time introduce Semantic-Consistent Adversarial Examples (SCAE). Extensive experiments and visualizations have demonstrated the high efficiency of SCA, particularly in being on average 12 times faster than the state-of-the-art attacks. Our research can further draw attention to the security of multimedia information.
LL-Gaussian: Low-Light Scene Reconstruction and Enhancement via Gaussian Splatting for Novel View Synthesis
Novel view synthesis (NVS) in low-light scenes remains a significant challenge due to degraded inputs characterized by severe noise, low dynamic range (LDR) and unreliable initialization. While recent NeRF-based approaches have shown promising results, most suffer from high computational costs, and some rely on carefully captured or pre-processed data--such as RAW sensor inputs or multi-exposure sequences--which severely limits their practicality. In contrast, 3D Gaussian Splatting (3DGS) enables real-time rendering with competitive visual fidelity; however, existing 3DGS-based methods struggle with low-light sRGB inputs, resulting in unstable Gaussian initialization and ineffective noise suppression. To address these challenges, we propose LL-Gaussian, a novel framework for 3D reconstruction and enhancement from low-light sRGB images, enabling pseudo normal-light novel view synthesis. Our method introduces three key innovations: 1) an end-to-end Low-Light Gaussian Initialization Module (LLGIM) that leverages dense priors from learning-based MVS approach to generate high-quality initial point clouds; 2) a dual-branch Gaussian decomposition model that disentangles intrinsic scene properties (reflectance and illumination) from transient interference, enabling stable and interpretable optimization; 3) an unsupervised optimization strategy guided by both physical constrains and diffusion prior to jointly steer decomposition and enhancement. Additionally, we contribute a challenging dataset collected in extreme low-light environments and demonstrate the effectiveness of LL-Gaussian. Compared to state-of-the-art NeRF-based methods, LL-Gaussian achieves up to 2,000 times faster inference and reduces training time to just 2%, while delivering superior reconstruction and rendering quality.
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
MM-Eureka: Exploring the Frontiers of Multimodal Reasoning with Rule-based Reinforcement Learning
DeepSeek R1, and o1 have demonstrated powerful reasoning capabilities in the text domain through stable large-scale reinforcement learning. To enable broader applications, some works have attempted to transfer these capabilities to multimodal reasoning. However, these efforts have been limited by the limited difficulty of selected tasks and relatively small training scales, making it challenging to demonstrate strong multimodal reasoning abilities. To address this gap, we introduce the MMK12 dataset and MM-EUREKA with 7B and 32B parameters. The former is a high-quality multimodal mathematics reasoning dataset featuring diverse knowledge domains with human-verified answers and solution processes. The latter is a multimodal model employing rule-based reinforcement learning on MMK12, utilizing online filtering and two-stage training strategy to enhance training stability. MM-EUREKA demonstrates remarkable performance gains in multimodal mathematical reasoning, outperforming previous powerful models like InternVL2.5-78B or InternVL2.5-38B-MPO. In particular, MM-EUREKA achieves competitive or superior performance compared to both open-source and closed-source models, and trails slightly behind o1 in multidisciplinary reasoning tasks. We open-source our complete pipeline to foster further research in this area. We release all our codes, models, data, etc. at https://github.com/ModalMinds/MM-EUREKA
ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation ICLR2025
Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.
comment: Accepted at ICLR2025
CyclePose -- Leveraging Cycle-Consistency for Annotation-Free Nuclei Segmentation in Fluorescence Microscopy MICCAI 2025
In recent years, numerous neural network architectures specifically designed for the instance segmentation of nuclei in microscopic images have been released. These models embed nuclei-specific priors to outperform generic architectures like U-Nets; however, they require large annotated datasets, which are often not available. Generative models (GANs, diffusion models) have been used to compensate for this by synthesizing training data. These two-stage approaches are computationally expensive, as first a generative model and then a segmentation model has to be trained. We propose CyclePose, a hybrid framework integrating synthetic data generation and segmentation training. CyclePose builds on a CycleGAN architecture, which allows unpaired translation between microscopy images and segmentation masks. We embed a segmentation model into CycleGAN and leverage a cycle consistency loss for self-supervision. Without annotated data, CyclePose outperforms other weakly or unsupervised methods on two public datasets. Code is available at https://github.com/jonasutz/CyclePose
comment: under review for MICCAI 2025
InstanceGaussian: Appearance-Semantic Joint Gaussian Representation for 3D Instance-Level Perception CVPR 2025
3D scene understanding has become an essential area of research with applications in autonomous driving, robotics, and augmented reality. Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful approach, combining explicit modeling with neural adaptability to provide efficient and detailed scene representations. However, three major challenges remain in leveraging 3DGS for scene understanding: 1) an imbalance between appearance and semantics, where dense Gaussian usage for fine-grained texture modeling does not align with the minimal requirements for semantic attributes; 2) inconsistencies between appearance and semantics, as purely appearance-based Gaussians often misrepresent object boundaries; and 3) reliance on top-down instance segmentation methods, which struggle with uneven category distributions, leading to over- or under-segmentation. In this work, we propose InstanceGaussian, a method that jointly learns appearance and semantic features while adaptively aggregating instances. Our contributions include: i) a novel Semantic-Scaffold-GS representation balancing appearance and semantics to improve feature representations and boundary delineation; ii) a progressive appearance-semantic joint training strategy to enhance stability and segmentation accuracy; and iii) a bottom-up, category-agnostic instance aggregation approach that addresses segmentation challenges through farthest point sampling and connected component analysis. Our approach achieves state-of-the-art performance in category-agnostic, open-vocabulary 3D point-level segmentation, highlighting the effectiveness of the proposed representation and training strategies. Project page: https://lhj-git.github.io/InstanceGaussian/
comment: 14 pages, accepted by CVPR 2025 as poster
Privacy-Preserving CNN Training with Transfer Learning: Multiclass Logistic Regression
In this paper, we present a practical solution to implement privacy-preserving CNN training based on mere Homomorphic Encryption (HE) technique. To our best knowledge, this is the first attempt successfully to crack this nut and no work ever before has achieved this goal. Several techniques combine to accomplish the task:: (1) with transfer learning, privacy-preserving CNN training can be reduced to homomorphic neural network training, or even multiclass logistic regression (MLR) training; (2) via a faster gradient variant called $\texttt{Quadratic Gradient}$, an enhanced gradient method for MLR with a state-of-the-art performance in convergence speed is applied in this work to achieve high performance; (3) we employ the thought of transformation in mathematics to transform approximating Softmax function in the encryption domain to the approximation of the Sigmoid function. A new type of loss function termed $\texttt{Squared Likelihood Error}$ has been developed alongside to align with this change.; and (4) we use a simple but flexible matrix-encoding method named $\texttt{Volley Revolver}$ to manage the data flow in the ciphertexts, which is the key factor to complete the whole homomorphic CNN training. The complete, runnable C++ code to implement our work can be found at: \href{https://github.com/petitioner/HE.CNNtraining}{$\texttt{https://github.com/petitioner/HE.CNNtraining}$}. We select $\texttt{REGNET\_X\_400MF}$ as our pre-trained model for transfer learning. We use the first 128 MNIST training images as training data and the whole MNIST testing dataset as the testing data. The client only needs to upload 6 ciphertexts to the cloud and it takes $\sim 21$ mins to perform 2 iterations on a cloud with 64 vCPUs, resulting in a precision of $21.49\%$.
comment: In this work, we initiated to implement privacy-persevering CNN training based on mere HE techniques by presenting a faster HE-friendly algorithm
Contextual AD Narration with Interleaved Multimodal Sequence CVPR25
The Audio Description (AD) task aims to generate descriptions of visual elements for visually impaired individuals to help them access long-form video content, like movies. With video feature, text, character bank and context information as inputs, the generated ADs are able to correspond to the characters by name and provide reasonable, contextual descriptions to help audience understand the storyline of movie. To achieve this goal, we propose to leverage pre-trained foundation models through a simple and unified framework to generate ADs with interleaved multimodal sequence as input, termed as Uni-AD. To enhance the alignment of features across various modalities with finer granularity, we introduce a simple and lightweight module that maps video features into the textual feature space. Moreover, we also propose a character-refinement module to provide more precise information by identifying the main characters who play more significant roles in the video context. With these unique designs, we further incorporate contextual information and a contrastive loss into our architecture to generate smoother and more contextually appropriate ADs. Experiments on multiple AD datasets show that Uni-AD performs well on AD generation, which demonstrates the effectiveness of our approach. Our code is available at: https://github.com/ant-research/UniAD.
comment: Accepted by CVPR25
Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
Class-Incremental Learning (CIL) enables models to continuously learn new class knowledge while retaining previous classes, facilitating adaptation and evolution in dynamic, real-world environments. Traditional CIL methods primarily rely on visual features, which limits their effectiveness in complex, multimodal scenarios. In contrast, VLMs show promising potential for enhancing CIL by leveraging pre-trained knowledge and integrating multi-modal semantic cues such as text and vision. However, existing approaches struggle to mitigate catastrophic forgetting while preserving the generalization strengths of VLMs across diverse modalities. To address these challenges, we propose a Feature Calibration Enhanced Parameter Synthesis (FCPS) framework. Specifically, FCPS introduces a dynamic parameter adjustment mechanism that iteratively calibrates the contribution of original visual features to the final class decision, thus preserving the model's intrinsic generalization capability across modalities. Simultaneously, parameter integration enables effective knowledge transfer, maintaining a balance between acquiring new class representations and preserving old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
What Is a Good Caption? A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions using F1-score. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides the first holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of capabilities.
Weakly Supervised Lymph Nodes Segmentation Based on Partial Instance Annotations with Pre-trained Dual-branch Network and Pseudo Label Learning
Assessing the presence of potentially malignant lymph nodes aids in estimating cancer progression, and identifying surrounding benign lymph nodes can assist in determining potential metastatic pathways for cancer. For quantitative analysis, automatic segmentation of lymph nodes is crucial. However, due to the labor-intensive and time-consuming manual annotation process required for a large number of lymph nodes, it is more practical to annotate only a subset of the lymph node instances to reduce annotation costs. In this study, we propose a pre-trained Dual-Branch network with Dynamically Mixed Pseudo label (DBDMP) to learn from partial instance annotations for lymph nodes segmentation. To obtain reliable pseudo labels for lymph nodes that are not annotated, we employ a dual-decoder network to generate different outputs that are then dynamically mixed. We integrate the original weak partial annotations with the mixed pseudo labels to supervise the network. To further leverage the extensive amount of unannotated voxels, we apply a self-supervised pre-training strategy to enhance the model's feature extraction capability. Experiments on the mediastinal Lymph Node Quantification (LNQ) dataset demonstrate that our method, compared to directly learning from partial instance annotations, significantly improves the Dice Similarity Coefficient (DSC) from 11.04% to 54.10% and reduces the Average Symmetric Surface Distance (ASSD) from 20.83 $mm$ to 8.72 $mm$. The code is available at https://github.com/WltyBY/LNQ2023_training_code.git
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:013
RORem: Training a Robust Object Remover with Human-in-the-Loop
Despite the significant advancements, existing object removal methods struggle with incomplete removal, incorrect content synthesis and blurry synthesized regions, resulting in low success rates. Such issues are mainly caused by the lack of high-quality paired training data, as well as the self-supervised training paradigm adopted in these methods, which forces the model to in-paint the masked regions, leading to ambiguity between synthesizing the masked objects and restoring the background. To address these issues, we propose a semi-supervised learning strategy with human-in-the-loop to create high-quality paired training data, aiming to train a Robust Object Remover (RORem). We first collect 60K training pairs from open-source datasets to train an initial object removal model for generating removal samples, and then utilize human feedback to select a set of high-quality object removal pairs, with which we train a discriminator to automate the following training data generation process. By iterating this process for several rounds, we finally obtain a substantial object removal dataset with over 200K pairs. Fine-tuning the pre-trained stable diffusion model with this dataset, we obtain our RORem, which demonstrates state-of-the-art object removal performance in terms of both reliability and image quality. Particularly, RORem improves the object removal success rate over previous methods by more than 18\%. The dataset, source code and trained model are available at https://github.com/leeruibin/RORem.
Prototypical Calibrating Ambiguous Samples for Micro-Action Recognition AAAI 2025
Micro-Action Recognition (MAR) has gained increasing attention due to its crucial role as a form of non-verbal communication in social interactions, with promising potential for applications in human communication and emotion analysis. However, current approaches often overlook the inherent ambiguity in micro-actions, which arises from the wide category range and subtle visual differences between categories. This oversight hampers the accuracy of micro-action recognition. In this paper, we propose a novel Prototypical Calibrating Ambiguous Network (PCAN) to unleash and mitigate the ambiguity of MAR. Firstly, we employ a hierarchical action-tree to identify the ambiguous sample, categorizing them into distinct sets of ambiguous samples of false negatives and false positives, considering both body- and action-level categories. Secondly, we implement an ambiguous contrastive refinement module to calibrate these ambiguous samples by regulating the distance between ambiguous samples and their corresponding prototypes. This calibration process aims to pull false negative (FN) samples closer to their respective prototypes and push false positive (FP) samples apart from their affiliated prototypes. In addition, we propose a new prototypical diversity amplification loss to strengthen the model's capacity by amplifying the differences between different prototypes. Finally, we propose a prototype-guided rectification to rectify prediction by incorporating the representability of prototypes. Extensive experiments conducted on the benchmark dataset demonstrate the superior performance of our method compared to existing approaches. The code is available at https://github.com/kunli-cs/PCAN.
comment: Fix typos; Accepted by AAAI 2025
VR-Splatting: Foveated Radiance Field Rendering via 3D Gaussian Splatting and Neural Points
Recent advances in novel view synthesis have demonstrated impressive results in fast photorealistic scene rendering through differentiable point rendering, either via Gaussian Splatting (3DGS) [Kerbl and Kopanas et al. 2023] or neural point rendering [Aliev et al. 2020]. Unfortunately, these directions require either a large number of small Gaussians or expensive per-pixel post-processing for reconstructing fine details, which negatively impacts rendering performance. To meet the high performance demands of virtual reality (VR) systems, primitive or pixel counts therefore must be kept low, affecting visual quality. In this paper, we propose a novel hybrid approach based on foveated rendering as a promising solution that combines the strengths of both point rendering directions regarding performance sweet spots. Analyzing the compatibility with the human visual system, we find that using a low-detailed, few primitive smooth Gaussian representation for the periphery is cheap to compute and meets the perceptual demands of peripheral vision. For the fovea only, we use neural points with a convolutional neural network for the small pixel footprint, which provides sharp, detailed output within the rendering budget. This combination also allows for synergistic method accelerations with point occlusion culling and reducing the demands on the neural network. Our evaluation confirms that our approach increases sharpness and details compared to a standard VR-ready 3DGS configuration, and participants of a user study overwhelmingly preferred our method. Our system meets the necessary performance requirements for real-time VR interactions, ultimately enhancing the user's immersive experience. The project page can be found at: https://lfranke.github.io/vr_splatting
TAMP: Token-Adaptive Layerwise Pruning in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown remarkable versatility in understanding diverse multimodal data and tasks. However, these capabilities come with an increased model scale. While post-training pruning reduces model size in unimodal models, its application to MLLMs often yields limited success. Our analysis discovers that conventional methods fail to account for the unique token attributes across layers and modalities inherent to MLLMs. Inspired by this observation, we propose TAMP, a simple yet effective pruning framework tailored for MLLMs, featuring two key components: (1) Diversity-Aware Sparsity, which adjusts sparsity ratio per layer based on diversities among multimodal output tokens, preserving more parameters in high-diversity layers; and (2) Adaptive Multimodal Input Activation, which identifies representative multimodal input tokens using attention scores to guide unstructured weight pruning. We validate our method on two state-of-the-art MLLMs: LLaVA-NeXT, designed for vision-language tasks, and VideoLLaMA2, capable of processing audio, visual, and language modalities. Empirical experiments across various multimodal evaluation benchmarks demonstrate that each component of our approach substantially outperforms existing pruning techniques.
comment: Preprint
MROSS: Multi-Round Region-based Optimization for Scene Sketching
Scene sketching is to convert a scene into a simplified, abstract representation that captures the essential elements and composition of the original scene. It requires a semantic understanding of the scene and consideration of different regions within the scene. Since scenes often contain diverse visual information across various regions, such as foreground objects, background elements, and spatial divisions, dealing with these different regions poses unique difficulties. In this paper, we define a sketch as some sets of B\'ezier curves because of their smooth and versatile characteristics. We optimize different regions of input scene in multiple rounds. In each optimization round, the strokes sampled from the next region can seamlessly be integrated into the sketch generated in the previous optimization round. We propose an additional stroke initialization method to ensure the integrity of the scene and the convergence of optimization. A novel CLIP-based Semantic Loss and a VGG-based Feature Loss are utilized to guide our multi-round optimization. Extensive experimental results on the quality and quantity of the generated sketches confirm the effectiveness of our method.
comment: 6 pages, 8 figures
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Vision Transformers (ViTs) have emerged as a fundamental architecture and serve as the backbone of modern vision-language models. Despite their impressive performance, ViTs exhibit notable vulnerability to evasion attacks, necessitating the development of specialized Adversarial Training (AT) strategies tailored to their unique architecture. While a direct solution might involve applying existing AT methods to ViTs, our analysis reveals significant incompatibilities, particularly with state-of-the-art (SOTA) approaches such as Generalist (CVPR 2023) and DBAT (USENIX Security 2024). This paper presents a systematic investigation of adversarial robustness in ViTs and provides a novel theoretical Mutual Information (MI) analysis in its autoencoder-based self-supervised pre-training. Specifically, we show that MI between the adversarial example and its latent representation in ViT-based autoencoders should be constrained via derived MI bounds. Building on this insight, we propose a self-supervised AT method, MIMIR, that employs an MI penalty to facilitate adversarial pre-training by masked image modeling with autoencoders. Extensive experiments on CIFAR-10, Tiny-ImageNet, and ImageNet-1K show that MIMIR can consistently provide improved natural and robust accuracy, where MIMIR outperforms SOTA AT results on ImageNet-1K. Notably, MIMIR demonstrates superior robustness against unforeseen attacks and common corruption data and can also withstand adaptive attacks where the adversary possesses full knowledge of the defense mechanism.
Causal Graphical Models for Vision-Language Compositional Understanding ICLR 2025
Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.
comment: Accepted at ICLR 2025
MedMerge: Merging Models for Effective Transfer Learning to Medical Imaging Tasks
Transfer learning has become a powerful tool to initialize deep learning models to achieve faster convergence and higher performance. This is especially useful in the medical imaging analysis domain, where data scarcity limits possible performance gains for deep learning models. Some advancements have been made in boosting the transfer learning performance gain by merging models starting from the same initialization. However, in the medical imaging analysis domain, there is an opportunity to merge models starting from different initializations, thus combining the features learned from different tasks. In this work, we propose MedMerge, a method whereby the weights of different models can be merged, and their features can be effectively utilized to boost performance on a new task. With MedMerge, we learn kernel-level weights that can later be used to merge the models into a single model, even when starting from different initializations. Testing on various medical imaging analysis tasks, we show that our merged model can achieve significant performance gains, with up to 7% improvement on the F1 score. The code implementation of this work is available at github.com/BioMedIA-MBZUAI/MedMerge.
Comparing Next-Day Wildfire Predictability of MODIS and VIIRS Satellite Data
Multiple studies have performed next-day fire prediction using satellite imagery. Two main satellites are used to detect wildfires: MODIS and VIIRS. Both satellites provide fire mask products, called MOD14 and VNP14, respectively. Studies have used one or the other, but there has been no comparison between them to determine which might be more suitable for next-day fire prediction. In this paper, we first evaluate how well VIIRS and MODIS data can be used to forecast wildfire spread one day ahead. We find that the model using VIIRS as input and VNP14 as target achieves the best results. Interestingly, the model using MODIS as input and VNP14 as target performs significantly better than using VNP14 as input and MOD14 as target. Next, we discuss why MOD14 might be harder to use for predicting next-day fires. We find that the MOD14 fire mask is highly stochastic and does not correlate with reasonable fire spread patterns. This is detrimental for machine learning tasks, as the model learns irrational patterns. Therefore, we conclude that MOD14 is unsuitable for next-day fire prediction and that VNP14 is a much better option. However, using MODIS input and VNP14 as target, we achieve a significant improvement in predictability. This indicates that an improved fire detection model is possible for MODIS. The full code and dataset is available online: https://github.com/justuskarlsson/wildfire-mod14-vnp14
Fine-Tuning Florence2 for Enhanced Object Detection in Un-constructed Environments: Vision-Language Model Approach
Vision-Language Models (VLMs) have emerged as powerful tools in artificial intelli-gence, capable of integrating textual and visual data for a unified understanding of complex scenes. While models such as Florence2, built on transformer architectures, have shown promise across general tasks, their performance in object detection within unstructured or cluttered environments remains underexplored. In this study, we fi-ne-tuned the Florence2 model for object detection tasks in non-constructed, complex environments. A comprehensive experimental framework was established involving multiple hardware configurations (NVIDIA T4, L4, and A100 GPUs), optimizers (AdamW, SGD), and varied hyperparameters including learning rates and LoRA (Low-Rank Adaptation) setups. Model training and evaluation were conducted on challenging datasets representative of real-world, disordered settings. The optimized Florence2 models exhibited significant improvements in object detection accuracy, with Mean Average Precision (mAP) metrics approaching or matching those of estab-lished models such as YOLOv8, YOLOv9, and YOLOv10. The integration of LoRA and careful fine-tuning of transformer layers contributed notably to these gains. Our find-ings highlight the adaptability of transformer-based VLMs like Florence2 for do-main-specific tasks, particularly in visually complex environments. The study under-scores the potential of fine-tuned VLMs to rival traditional convolution-based detec-tors, offering a flexible and scalable approach for advanced vision applications in re-al-world, unstructured settings.
comment: 22 pages, 13 Figures, 6 Tables
OctGPT: Octree-based Multiscale Autoregressive Models for 3D Shape Generation SIGGRAPH 2025
Autoregressive models have achieved remarkable success across various domains, yet their performance in 3D shape generation lags significantly behind that of diffusion models. In this paper, we introduce OctGPT, a novel multiscale autoregressive model for 3D shape generation that dramatically improves the efficiency and performance of prior 3D autoregressive approaches, while rivaling or surpassing state-of-the-art diffusion models. Our method employs a serialized octree representation to efficiently capture the hierarchical and spatial structures of 3D shapes. Coarse geometry is encoded via octree structures, while fine-grained details are represented by binary tokens generated using a vector quantized variational autoencoder (VQVAE), transforming 3D shapes into compact multiscale binary sequences suitable for autoregressive prediction. To address the computational challenges of handling long sequences, we incorporate octree-based transformers enhanced with 3D rotary positional encodings, scale-specific embeddings, and token-parallel generation schemes. These innovations reduce training time by 13 folds and generation time by 69 folds, enabling the efficient training of high-resolution 3D shapes, e.g.,$1024^3$, on just four NVIDIA 4090 GPUs only within days. OctGPT showcases exceptional versatility across various tasks, including text-, sketch-, and image-conditioned generation, as well as scene-level synthesis involving multiple objects. Extensive experiments demonstrate that OctGPT accelerates convergence and improves generation quality over prior autoregressive methods, offering a new paradigm for high-quality, scalable 3D content creation. Our code and trained models are available at https://github.com/octree-nn/octgpt.
comment: SIGGRAPH 2025
BlockGaussian: Efficient Large-Scale Scene Novel View Synthesis via Adaptive Block-Based Gaussian Splatting
The recent advancements in 3D Gaussian Splatting (3DGS) have demonstrated remarkable potential in novel view synthesis tasks. The divide-and-conquer paradigm has enabled large-scale scene reconstruction, but significant challenges remain in scene partitioning, optimization, and merging processes. This paper introduces BlockGaussian, a novel framework incorporating a content-aware scene partition strategy and visibility-aware block optimization to achieve efficient and high-quality large-scale scene reconstruction. Specifically, our approach considers the content-complexity variation across different regions and balances computational load during scene partitioning, enabling efficient scene reconstruction. To tackle the supervision mismatch issue during independent block optimization, we introduce auxiliary points during individual block optimization to align the ground-truth supervision, which enhances the reconstruction quality. Furthermore, we propose a pseudo-view geometry constraint that effectively mitigates rendering degradation caused by airspace floaters during block merging. Extensive experiments on large-scale scenes demonstrate that our approach achieves state-of-the-art performance in both reconstruction efficiency and rendering quality, with a 5x speedup in optimization and an average PSNR improvement of 1.21 dB on multiple benchmarks. Notably, BlockGaussian significantly reduces computational requirements, enabling large-scale scene reconstruction on a single 24GB VRAM device. The project page is available at https://github.com/SunshineWYC/BlockGaussian
comment: https://github.com/SunshineWYC/BlockGaussian
Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
Text-Driven 3D Lidar Place Recognition for Autonomous Driving
Environment description-based localization in large-scale point cloud maps constructed through remote sensing is critically significant for the advancement of large-scale autonomous systems, such as delivery robots operating in the last mile. However, current approaches encounter challenges due to the inability of point cloud encoders to effectively capture local details and long-range spatial relationships, as well as a significant modality gap between text and point cloud representations. To address these challenges, we present Des4Pos, a novel two-stage text-driven remote sensing localization framework. In the coarse stage, the point-cloud encoder utilizes the Multi-scale Fusion Attention Mechanism (MFAM) to enhance local geometric features, followed by a bidirectional Long Short-Term Memory (LSTM) module to strengthen global spatial relationships. Concurrently, the Stepped Text Encoder (STE) integrates cross-modal prior knowledge from CLIP [1] and aligns text and point-cloud features using this prior knowledge, effectively bridging modality discrepancies. In the fine stage, we introduce a Cascaded Residual Attention (CRA) module to fuse cross-modal features and predict relative localization offsets, thereby achieving greater localization precision. Experiments on the KITTI360Pose test set demonstrate that Des4Pos achieves state-of-the-art performance in text-to-point-cloud place recognition. Specifically, it attains a top-1 accuracy of 40% and a top-10 accuracy of 77% under a 5-meter radius threshold, surpassing the best existing methods by 7% and 7%, respectively.
comment: 13 pages
Real-world Image Dehazing with Coherence-based Pseudo Labeling and Cooperative Unfolding Network NeurIPS 2024
Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at https://github.com/cnyvfang/CORUN-Colabator.
comment: Accepted at NeurIPS 2024 as a Spotlight Paper
LDGNet: A Lightweight Difference Guiding Network for Remote Sensing Change Detection
With the rapid advancement of deep learning, the field of change detection (CD) in remote sensing imagery has achieved remarkable progress. Existing change detection methods primarily focus on achieving higher accuracy with increased computational costs and parameter sizes, leaving development of lightweight methods for rapid real-world processing an underexplored challenge. To address this challenge, we propose a Lightweight Difference Guiding Network (LDGNet), leveraging absolute difference image to guide optical remote sensing change detection. First, to enhance the feature representation capability of the lightweight backbone network, we propose the Difference Guiding Module (DGM), which leverages multi-scale features extracted from the absolute difference image to progressively influence the original image encoder at each layer, thereby reinforcing feature extraction. Second, we propose the Difference-Aware Dynamic Fusion (DADF) module with Visual State Space Model (VSSM) for lightweight long-range dependency modeling. The module first uses feature absolute differences to guide VSSM's global contextual modeling of change regions, then employs difference attention to dynamically fuse these long-range features with feature differences, enhancing change semantics while suppressing noise and background. Extensive experiments on multiple datasets demonstrate that our method achieves comparable or superior performance to current state-of-the-art (SOTA) methods requiring several times more computation, while maintaining only 3.43M parameters and 1.12G FLOPs.
Reinforcement Learning Platform for Adversarial Black-box Attacks with Custom Distortion Filters AAAI
We present a Reinforcement Learning Platform for Adversarial Black-box untargeted and targeted attacks, RLAB, that allows users to select from various distortion filters to create adversarial examples. The platform uses a Reinforcement Learning agent to add minimum distortion to input images while still causing misclassification by the target model. The agent uses a novel dual-action method to explore the input image at each step to identify sensitive regions for adding distortions while removing noises that have less impact on the target model. This dual action leads to faster and more efficient convergence of the attack. The platform can also be used to measure the robustness of image classification models against specific distortion types. Also, retraining the model with adversarial samples significantly improved robustness when evaluated on benchmark datasets. The proposed platform outperforms state-of-the-art methods in terms of the average number of queries required to cause misclassification. This advances trustworthiness with a positive social impact.
comment: Accepted at the 2025 AAAI Conference on Artificial Intelligence Proceedings
LPViT: Low-Power Semi-structured Pruning for Vision Transformers
Vision transformers have emerged as a promising alternative to convolutional neural networks for various image analysis tasks, offering comparable or superior performance. However, one significant drawback of ViTs is their resource-intensive nature, leading to increased memory footprint, computation complexity, and power consumption. To democratize this high-performance technology and make it more environmentally friendly, it is essential to compress ViT models, reducing their resource requirements while maintaining high performance. In this paper, we introduce a new block-structured pruning to address the resource-intensive issue for ViTs, offering a balanced trade-off between accuracy and hardware acceleration. Unlike unstructured pruning or channel-wise structured pruning, block pruning leverages the block-wise structure of linear layers, resulting in more efficient matrix multiplications. To optimize this pruning scheme, our paper proposes a novel hardware-aware learning objective that simultaneously maximizes speedup and minimizes power consumption during inference, tailored to the block sparsity structure. This objective eliminates the need for empirical look-up tables and focuses solely on reducing parametrized layer connections. Moreover, our paper provides a lightweight algorithm to achieve post-training pruning for ViTs, utilizing second-order Taylor approximation and empirical optimization to solve the proposed hardware-aware objective. Extensive experiments on ImageNet are conducted across various ViT architectures, including DeiT-B and DeiT-S, demonstrating competitive performance with other pruning methods and achieving a remarkable balance between accuracy preservation and power savings. Especially, we achieve 3.93x speedup on dedicated hardware and GPUs respectively for DeiT-B, and a power reduction by 1.4x on GPUs. Code released to https://github.com/Akimoto-Cris/LPViT.
Light-YOLOv8-Flame: A Lightweight High-Performance Flame Detection Algorithm
Fire detection algorithms, particularly those based on computer vision, encounter significant challenges such as high computational costs and delayed response times, which hinder their application in real-time systems. To address these limitations, this paper introduces Light-YOLOv8-Flame, a lightweight flame detection algorithm specifically designed for fast and efficient real-time deployment. The proposed model enhances the YOLOv8 architecture through the substitution of the original C2f module with the FasterNet Block module. This new block combines Partial Convolution (PConv) and Convolution (Conv) layers, reducing both computational complexity and model size. A dataset comprising 7,431 images, representing both flame and non-flame scenarios, was collected and augmented for training purposes. Experimental findings indicate that the modified YOLOv8 model achieves a 0.78% gain in mean average precision (mAP) and a 2.05% boost in recall, while reducing the parameter count by 25.34%, with only a marginal decrease in precision by 0.82%. These findings highlight that Light-YOLOv8-Flame offers enhanced detection performance and speed, making it well-suited for real-time fire detection on resource-constrained devices.
comment: 12 pages, 19 figures, 6 tables. Submitted to Engineering Letters
PaMi-VDPO: Mitigating Video Hallucinations by Prompt-Aware Multi-Instance Video Preference Learning
Direct Preference Optimization (DPO) helps reduce hallucinations in Video Multimodal Large Language Models (VLLMs), but its reliance on offline preference data limits adaptability and fails to capture true video-response misalignment. We propose Video Direct Preference Optimization (VDPO), an online preference learning framework that eliminates the need for preference annotation by leveraging video augmentations to generate rejected samples while keeping responses fixed. However, selecting effective augmentations is non-trivial, as some clips may be semantically identical to the original under specific prompts, leading to false rejections and disrupting alignment. To address this, we introduce Prompt-aware Multi-instance Learning VDPO (PaMi-VDPO), which selects augmentations based on prompt context. Instead of a single rejection, we construct a candidate set of augmented clips and apply a close-to-far selection strategy, initially ensuring all clips are semantically relevant while then prioritizing the most prompt-aware distinct clip. This allows the model to better capture meaningful visual differences, mitigating hallucinations, while avoiding false rejections, and improving alignment. PaMi-VDPOseamlessly integrates into existing VLLMs without additional parameters, GPT-4/human supervision. With only 10k SFT data, it improves the base model by 5.3% on VideoHallucer, surpassing GPT-4o, while maintaining stable performance on general video benchmarks.
SAT-HMR: Real-Time Multi-Person 3D Mesh Estimation via Scale-Adaptive Tokens
We propose a one-stage framework for real-time multi-person 3D human mesh estimation from a single RGB image. While current one-stage methods, which follow a DETR-style pipeline, achieve state-of-the-art (SOTA) performance with high-resolution inputs, we observe that this particularly benefits the estimation of individuals in smaller scales of the image (e.g., those far from the camera), but at the cost of significantly increased computation overhead. To address this, we introduce scale-adaptive tokens that are dynamically adjusted based on the relative scale of each individual in the image within the DETR framework. Specifically, individuals in smaller scales are processed at higher resolutions, larger ones at lower resolutions, and background regions are further distilled. These scale-adaptive tokens more efficiently encode the image features, facilitating subsequent decoding to regress the human mesh, while allowing the model to allocate computational resources more effectively and focus on more challenging cases. Experiments show that our method preserves the accuracy benefits of high-resolution processing while substantially reducing computational cost, achieving real-time inference with performance comparable to SOTA methods.
comment: 18 pages, 12 figures
UniForm: A Unified Multi-Task Diffusion Transformer for Audio-Video Generation
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To address these limitations, we first propose UniForm, a unified multi-task diffusion transformer that jointly generates audio and visual modalities in a shared latent space. A single diffusion process models both audio and video, capturing the inherent correlations between sound and vision. Second, we introduce task-specific noise schemes and task tokens, enabling a single model to support multiple tasks, including text-to-audio-video, audio-to-video, and video-to-audio generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Extensive experiments show that UniForm achieves the state-of-the-art performance across audio-video generation tasks, producing content that is both well-aligned and close to real-world data distributions. Our demos are available at https://uniform-t2av.github.io/.
comment: Our demos are available at https://uniform-t2av.github.io/
MoGe: Unlocking Accurate Monocular Geometry Estimation for Open-Domain Images with Optimal Training Supervision
We present MoGe, a powerful model for recovering 3D geometry from monocular open-domain images. Given a single image, our model directly predicts a 3D point map of the captured scene with an affine-invariant representation, which is agnostic to true global scale and shift. This new representation precludes ambiguous supervision in training and facilitate effective geometry learning. Furthermore, we propose a set of novel global and local geometry supervisions that empower the model to learn high-quality geometry. These include a robust, optimal, and efficient point cloud alignment solver for accurate global shape learning, and a multi-scale local geometry loss promoting precise local geometry supervision. We train our model on a large, mixed dataset and demonstrate its strong generalizability and high accuracy. In our comprehensive evaluation on diverse unseen datasets, our model significantly outperforms state-of-the-art methods across all tasks, including monocular estimation of 3D point map, depth map, and camera field of view. Code and models can be found on our project page.
comment: Project page: https://wangrc.site/MoGePage/
WildlifeReID-10k: Wildlife re-identification dataset with 10k individual animals
This paper introduces WildlifeReID-10k, a new large-scale re-identification benchmark with more than 10k animal identities of around 33 species across more than 140k images, re-sampled from 37 existing datasets. WildlifeReID-10k covers diverse animal species and poses significant challenges for SoTA methods, ensuring fair and robust evaluation through its time-aware and similarity-aware split protocol. The latter is designed to address the common issue of training-to-test data leakage caused by visually similar images appearing in both training and test sets. The WildlifeReID-10k dataset and benchmark are publicly available on Kaggle, along with strong baselines for both closed-set and open-set evaluation, enabling fair, transparent, and standardized evaluation of not just multi-species animal re-identification models.
GaussianHead: High-fidelity Head Avatars with Learnable Gaussian Derivation
Constructing vivid 3D head avatars for given subjects and realizing a series of animations on them is valuable yet challenging. This paper presents GaussianHead, which models the actional human head with anisotropic 3D Gaussians. In our framework, a motion deformation field and multi-resolution tri-plane are constructed respectively to deal with the head's dynamic geometry and complex texture. Notably, we impose an exclusive derivation scheme on each Gaussian, which generates its multiple doppelgangers through a set of learnable parameters for position transformation. With this design, we can compactly and accurately encode the appearance information of Gaussians, even those fitting the head's particular components with sophisticated structures. In addition, an inherited derivation strategy for newly added Gaussians is adopted to facilitate training acceleration. Extensive experiments show that our method can produce high-fidelity renderings, outperforming state-of-the-art approaches in reconstruction, cross-identity reenactment, and novel view synthesis tasks. Our code is available at: https://github.com/chiehwangs/gaussian-head.
comment: 15 pages, 14 figures, published to TVCG
Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction ICLR 2025
Understanding drivers' decision-making is crucial for road safety. Although predicting the ego-vehicle's path is valuable for driver-assistance systems, existing methods mainly focus on external factors like other vehicles' motions, often neglecting the driver's attention and intent. To address this gap, we infer the ego-trajectory by integrating the driver's gaze and the surrounding scene. We introduce RouteFormer, a novel multimodal ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view, comprising first-person video and gaze fixations. We also present the Path Complexity Index (PCI), a new metric for trajectory complexity that enables a more nuanced evaluation of challenging scenarios. To tackle data scarcity and enhance diversity, we introduce GEM, a comprehensive dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data. Extensive evaluations on GEM and DR(eye)VE demonstrate that RouteFormer significantly outperforms state-of-the-art methods, achieving notable improvements in prediction accuracy across diverse conditions. Ablation studies reveal that incorporating driver field-of-view data yields significantly better average displacement error, especially in challenging scenarios with high PCI scores, underscoring the importance of modeling driver attention. All data and code are available at https://meakbiyik.github.io/routeformer.
comment: Accepted to 13th International Conference on Learning Representations (ICLR 2025), 29 pages
Mamba as a Bridge: Where Vision Foundation Models Meet Vision Language Models for Domain-Generalized Semantic Segmentation CVPR 2025
Vision Foundation Models (VFMs) and Vision-Language Models (VLMs) have gained traction in Domain Generalized Semantic Segmentation (DGSS) due to their strong generalization capabilities. However, existing DGSS methods often rely exclusively on either VFMs or VLMs, overlooking their complementary strengths. VFMs (e.g., DINOv2) excel at capturing fine-grained features, while VLMs (e.g., CLIP) provide robust text alignment but struggle with coarse granularity. Despite their complementary strengths, effectively integrating VFMs and VLMs with attention mechanisms is challenging, as the increased patch tokens complicate long-sequence modeling. To address this, we propose MFuser, a novel Mamba-based fusion framework that efficiently combines the strengths of VFMs and VLMs while maintaining linear scalability in sequence length. MFuser consists of two key components: MVFuser, which acts as a co-adapter to jointly fine-tune the two models by capturing both sequential and spatial dynamics; and MTEnhancer, a hybrid attention-Mamba module that refines text embeddings by incorporating image priors. Our approach achieves precise feature locality and strong text alignment without incurring significant computational overhead. Extensive experiments demonstrate that MFuser significantly outperforms state-of-the-art DGSS methods, achieving 68.20 mIoU on synthetic-to-real and 71.87 mIoU on real-to-real benchmarks. The code is available at https://github.com/devinxzhang/MFuser.
comment: Accepted to CVPR 2025 (Highlight)
Image and Video Processing
Deep Learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with Data Gaps SP
Accurate, detailed, and high-frequent bathymetry is crucial for shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods utilizing airborne or satellite optical imagery to derive bathymetry primarily rely on either SfM-MVS with refraction correction or Spectrally Derived Bathymetry (SDB). However, SDB methods often require extensive manual fieldwork or costly reference data, while SfM-MVS approaches face challenges even after refraction correction. These include depth data gaps and noise in environments with homogeneous visual textures, which hinder the creation of accurate and complete Digital Surface Models (DSMs) of the seabed. To address these challenges, this work introduces a methodology that combines the high-fidelity 3D reconstruction capabilities of the SfM-MVS methods with state-of-the-art refraction correction techniques, along with the spectral analysis capabilities of a new deep learning-based method for bathymetry prediction. This integration enables a synergistic approach where SfM-MVS derived DSMs with data gaps are used as training data to generate complete bathymetric maps. In this context, we propose Swin-BathyUNet that combines U-Net with Swin Transformer self-attention layers and a cross-attention mechanism, specifically tailored for SDB. Swin-BathyUNet is designed to improve bathymetric accuracy by capturing long-range spatial relationships and can also function as a standalone solution for standard SDB with various training depth data, independent of the SfM-MVS output. Experimental results in two completely different test sites in the Mediterranean and Baltic Seas demonstrate the effectiveness of the proposed approach through extensive experiments that demonstrate improvements in bathymetric accuracy, detail, coverage, and noise reduction in the predicted DSM. The code is available at https://github.com/pagraf/Swin-BathyUNet.
comment: Accepted for publication in ISPRS Journal of Photogrammetry and Remote Sensing
Ring Artifacts Correction Based on Global-Local Features Interaction Guidance in the Projection Domain
Ring artifacts are common artifacts in CT imaging, typically caused by inconsistent responses of detector units to X-rays, resulting in stripe artifacts in the projection data. Under circular scanning mode, such artifacts manifest as concentric rings radiating from the center of rotation, severely degrading image quality. In the Radon transform domain, even if the object's density function is piecewise discontinuous in certain regions, the projection images remain nearly continuous in the angular direction, making the ideal projections exhibit a smooth global low-frequency characteristic. In practical scanning, the local disturbances of the same detector unit at different scanning angles lead to a prominent high-frequency locality of stripe artifacts. Existing studies generally model ring artifacts disturbances as fixed additive errors, which overlooks the dynamic variation of detector responses during practical scanning. However, the degree of detector response inconsistency is a function of the projection values, as revealed in our experiments, thereby requiring consideration of the interaction between global and local features in the process of stripe artifacts extraction and correction. Therefore, we propose a CT ring artifacts correction method based on global and local features in the projection domain. We employ the VSS block and Dense block to respectively correct the low-frequency sub-band, which capture the global correlations of the projection, and the high-frequency sub-band, which contain local stripe artifacts after wavelet decomposition. Specifically, the accuracy of artifacts correction is enhanced by the interaction guidance between global and local features. Extensive experiments demonstrate that our method achieves superior performance in both quantitative metrics and visual quality, verifying its robustness and practical applicability.
comment: 13 pages, 14 figures
Efficient Medical Image Restoration via Reliability Guided Learning in Frequency Domain
Medical image restoration tasks aim to recover high-quality images from degraded observations, exhibiting emergent desires in many clinical scenarios, such as low-dose CT image denoising, MRI super-resolution, and MRI artifact removal. Despite the success achieved by existing deep learning-based restoration methods with sophisticated modules, they struggle with rendering computationally-efficient reconstruction results. Moreover, they usually ignore the reliability of the restoration results, which is much more urgent in medical systems. To alleviate these issues, we present LRformer, a Lightweight Transformer-based method via Reliability-guided learning in the frequency domain. Specifically, inspired by the uncertainty quantification in Bayesian neural networks (BNNs), we develop a Reliable Lesion-Semantic Prior Producer (RLPP). RLPP leverages Monte Carlo (MC) estimators with stochastic sampling operations to generate sufficiently-reliable priors by performing multiple inferences on the foundational medical image segmentation model, MedSAM. Additionally, instead of directly incorporating the priors in the spatial domain, we decompose the cross-attention (CA) mechanism into real symmetric and imaginary anti-symmetric parts via fast Fourier transform (FFT), resulting in the design of the Guided Frequency Cross-Attention (GFCA) solver. By leveraging the conjugated symmetric property of FFT, GFCA reduces the computational complexity of naive CA by nearly half. Extensive experimental results in various tasks demonstrate the superiority of the proposed LRformer in both effectiveness and efficiency.
Focal Split: Untethered Snapshot Depth from Differential Defocus CVPR 2025
We introduce Focal Split, a handheld, snapshot depth camera with fully onboard power and computing based on depth-from-differential-defocus (DfDD). Focal Split is passive, avoiding power consumption of light sources. Its achromatic optical system simultaneously forms two differentially defocused images of the scene, which can be independently captured using two photosensors in a snapshot. The data processing is based on the DfDD theory, which efficiently computes a depth and a confidence value for each pixel with only 500 floating point operations (FLOPs) per pixel from the camera measurements. We demonstrate a Focal Split prototype, which comprises a handheld custom camera system connected to a Raspberry Pi 5 for real-time data processing. The system consumes 4.9 W and is powered on a 5 V, 10,000 mAh battery. The prototype can measure objects with distances from 0.4 m to 1.2 m, outputting 480$\times$360 sparse depth maps at 2.1 frames per second (FPS) using unoptimized Python scripts. Focal Split is DIY friendly. A comprehensive guide to building your own Focal Split depth camera, code, and additional data can be found at https://focal-split.qiguo.org.
comment: CVPR 2025, 8 pages, 7 figures
SAR-to-RGB Translation with Latent Diffusion for Earth Observation
Earth observation satellites like Sentinel-1 (S1) and Sentinel-2 (S2) provide complementary remote sensing (RS) data, but S2 images are often unavailable due to cloud cover or data gaps. To address this, we propose a diffusion model (DM)-based approach for SAR-to-RGB translation, generating synthetic optical images from SAR inputs. We explore three different setups: two using Standard Diffusion, which reconstruct S2 images by adding and removing noise (one without and one with class conditioning), and one using Cold Diffusion, which blends S2 with S1 before removing the SAR signal. We evaluate the generated images in downstream tasks, including land cover classification and cloud removal. While generated images may not perfectly replicate real S2 data, they still provide valuable information. Our results show that class conditioning improves classification accuracy, while cloud removal performance remains competitive despite our approach not being optimized for it. Interestingly, despite exhibiting lower perceptual quality, the Cold Diffusion setup performs well in land cover classification, suggesting that traditional quantitative evaluation metrics may not fully reflect the practical utility of generated images. Our findings highlight the potential of DMs for SAR-to-RGB translation in RS applications where RGB images are missing.
comment: 10 pages, 3 figures
K-means Enhanced Density Gradient Analysis for Urban and Transport Metrics Using Multi-Modal Satellite Imagery
This paper presents a novel computational approach for evaluating urban metrics through density gradient analysis using multi-modal satellite imagery, with applications including public transport and other urban systems. By combining optical and Synthetic Aperture Radar (SAR) data, we develop a method to segment urban areas, identify urban centers, and quantify density gradients. Our approach calculates two key metrics: the density gradient coefficient ($\alpha$) and the minimum effective distance (LD) at which density reaches a target threshold. We further employ machine learning techniques, specifically K-means clustering, to objectively identify uniform and high-variability regions within density gradient plots. We demonstrate that these metrics provide an effective screening tool for public transport analyses by revealing the underlying urban structure. Through comparative analysis of two representative cities with contrasting urban morphologies (monocentric vs polycentric), we establish relationships between density gradient characteristics and public transport network topologies. Cities with clear density peaks in their gradient plots indicate distinct urban centers requiring different transport strategies than those with more uniform density distributions. This methodology offers urban planners a cost-effective, globally applicable approach to preliminary public transport assessment using freely available satellite data. The complete implementation, with additional examples and documentation, is available in an open-source repository under the MIT license at https://github.com/nexri/Satellite-Imagery-Urban-Analysis.
comment: 16 pages, 6 figures
AgentPolyp: Accurate Polyp Segmentation via Image Enhancement Agent
Since human and environmental factors interfere, captured polyp images usually suffer from issues such as dim lighting, blur, and overexposure, which pose challenges for downstream polyp segmentation tasks. To address the challenges of noise-induced degradation in polyp images, we present AgentPolyp, a novel framework integrating CLIP-based semantic guidance and dynamic image enhancement with a lightweight neural network for segmentation. The agent first evaluates image quality using CLIP-driven semantic analysis (e.g., identifying ``low-contrast polyps with vascular textures") and adapts reinforcement learning strategies to dynamically apply multi-modal enhancement operations (e.g., denoising, contrast adjustment). A quality assessment feedback loop optimizes pixel-level enhancement and segmentation focus in a collaborative manner, ensuring robust preprocessing before neural network segmentation. This modular architecture supports plug-and-play extensions for various enhancement algorithms and segmentation networks, meeting deployment requirements for endoscopic devices.
Self-Supervised Enhancement of Forward-Looking Sonar Images: Bridging Cross-Modal Degradation Gaps through Feature Space Transformation and Multi-Frame Fusion
Enhancing forward-looking sonar images is critical for accurate underwater target detection. Current deep learning methods mainly rely on supervised training with simulated data, but the difficulty in obtaining high-quality real-world paired data limits their practical use and generalization. Although self-supervised approaches from remote sensing partially alleviate data shortages, they neglect the cross-modal degradation gap between sonar and remote sensing images. Directly transferring pretrained weights often leads to overly smooth sonar images, detail loss, and insufficient brightness. To address this, we propose a feature-space transformation that maps sonar images from the pixel domain to a robust feature domain, effectively bridging the degradation gap. Additionally, our self-supervised multi-frame fusion strategy leverages complementary inter-frame information to naturally remove speckle noise and enhance target-region brightness. Experiments on three self-collected real-world forward-looking sonar datasets show that our method significantly outperforms existing approaches, effectively suppressing noise, preserving detailed edges, and substantially improving brightness, demonstrating strong potential for underwater target detection applications.
Intraoperative perfusion assessment by continuous, low-latency hyperspectral light-field imaging: development, methodology, and clinical application
Accurate assessment of tissue perfusion is crucial in visceral surgery, especially during anastomosis. Currently, subjective visual judgment is commonly employed in clinical settings. Hyperspectral imaging (HSI) offers a non-invasive, quantitative alternative. However, HSI imaging lacks continuous integration into the clinical workflow. This study presents a hyperspectral light field system for intraoperative tissue oxygen saturation (SO2) analysis and visualization. We present a correlation method for determining SO2 saturation with low computational demands. We demonstrate clinical application, with our results aligning with the perfusion boundaries determined by the surgeon. We perform and compare continuous perfusion analysis using two hyperspectral cameras (Cubert S5, Cubert X20), achieving processing times of < 170 ms and < 400 ms, respectively. We discuss camera characteristics, system parameters, and the suitability for clinical use and real-time applications.
comment: 6 pages, 4 figures
A comprehensive review of remote sensing in wetland classification and mapping
Wetlands constitute critical ecosystems that support both biodiversity and human well-being; however, they have experienced a significant decline since the 20th century. Back in the 1970s, researchers began to employ remote sensing technologies for wetland classification and mapping to elucidate the extent and variations of wetlands. Although some review articles summarized the development of this field, there is a lack of a thorough and in-depth understanding of wetland classification and mapping: (1) the scientific importance of wetlands, (2) major data, methods used in wetland classification and mapping, (3) driving factors of wetland changes, (4) current research paradigm and limitations, (5) challenges and opportunities in wetland classification and mapping under the context of technological innovation and global environmental change. In this review, we aim to provide a comprehensive perspective and new insights into wetland classification and mapping for readers to answer these questions. First, we conduct a meta-analysis of over 1,200 papers, encompassing wetland types, methods, sensor types, and study sites, examining prevailing trends in wetland classification and mapping. Next, we review and synthesize the wetland features and existing data and methods in wetland classification and mapping. We also summarize typical wetland mapping products and explore the intrinsic driving factors of wetland changes across multiple spatial and temporal scales. Finally, we discuss current limitations and propose future directions in response to global environmental change and technological innovation. This review consolidates our understanding of wetland remote sensing and offers scientific recommendations that foster transformative progress in wetland science.
Efficient and Robust Remote Sensing Image Denoising Using Randomized Approximation of Geodesics' Gramian on the Manifold Underlying the Patch Space
Remote sensing images are widely utilized in many disciplines such as feature recognition and scene semantic segmentation. However, due to environmental factors and the issues of the imaging system, the image quality is often degraded which may impair subsequent visual tasks. Even though denoising remote sensing images plays an essential role before applications, the current denoising algorithms fail to attain optimum performance since these images possess complex features in the texture. Denoising frameworks based on artificial neural networks have shown better performance; however, they require exhaustive training with heterogeneous samples that extensively consume resources like power, memory, computation, and latency. Thus, here we present a computationally efficient and robust remote sensing image denoising method that doesn't require additional training samples. This method partitions patches of a remote-sensing image in which a low-rank manifold, representing the noise-free version of the image, underlies the patch space. An efficient and robust approach to revealing this manifold is a randomized approximation of the singular value spectrum of the geodesics' Gramian matrix of the patch space. The method asserts a unique emphasis on each color channel during denoising so the three denoised channels are merged to produce the final image.
comment: 21 pages, 5 figures, and submitted to the International Journal of Remote Sensing
Three-dimensional neural network driving self-interference digital holography enables high-fidelity, non-scanning volumetric fluorescence microscopy
We present a deep learning driven computational approach to overcome the limitations of self-interference digital holography that imposed by inferior axial imaging performances. We demonstrate a 3D deep neural network model can simultaneously suppresses the defocus noise and improves the spatial resolution and signal-to-noise ratio of conventional numerical back-propagation-obtained holographic reconstruction. Compared with existing 2D deep neural networks used for hologram reconstruction, our 3D model exhibits superior performance in enhancing the resolutions along all the three spatial dimensions. As the result, 3D non-scanning volumetric fluorescence microscopy can be achieved, using 2D self-interference hologram as input, without any mechanical and opto-electronic scanning and complicated system calibration. Our method offers a high spatiotemporal resolution 3D imaging approach which can potentially benefit, for example, the visualization of dynamics of cellular structure and measurement of 3D behavior of high-speed flow field.
ConvShareViT: Enhancing Vision Transformers with Convolutional Attention Mechanisms for Free-Space Optical Accelerators
This paper introduces ConvShareViT, a novel deep learning architecture that adapts Vision Transformers (ViTs) to the 4f free-space optical system. ConvShareViT replaces linear layers in multi-head self-attention (MHSA) and Multilayer Perceptrons (MLPs) with a depthwise convolutional layer with shared weights across input channels. Through the development of ConvShareViT, the behaviour of convolutions within MHSA and their effectiveness in learning the attention mechanism were analysed systematically. Experimental results demonstrate that certain configurations, particularly those using valid-padded shared convolutions, can successfully learn attention, achieving comparable attention scores to those obtained with standard ViTs. However, other configurations, such as those using same-padded convolutions, show limitations in attention learning and operate like regular CNNs rather than transformer models. ConvShareViT architectures are specifically optimised for the 4f optical system, which takes advantage of the parallelism and high-resolution capabilities of optical systems. Results demonstrate that ConvShareViT can theoretically achieve up to 3.04 times faster inference than GPU-based systems. This potential acceleration makes ConvShareViT an attractive candidate for future optical deep learning applications and proves that our ViT (ConvShareViT) can be employed using only the convolution operation, via the necessary optimisation of the ViT to balance performance and complexity.
Learned enclosure method for experimental EIT data
Electrical impedance tomography (EIT) is a non-invasive imaging method with diverse applications, including medical imaging and non-destructive testing. The inverse problem of reconstructing internal electrical conductivity from boundary measurements is nonlinear and highly ill-posed, making it difficult to solve accurately. In recent years, there has been growing interest in combining analytical methods with machine learning to solve inverse problems. In this paper, we propose a method for estimating the convex hull of inclusions from boundary measurements by combining the enclosure method proposed by Ikehata with neural networks. We demonstrate its performance using experimental data. Compared to the classical enclosure method with least squares fitting, the learned convex hull achieves superior performance on both simulated and experimental data.
TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Passenger Re-Identification
Transit Origin-Destination (OD) data are essential for transit planning, particularly in route optimization and demand-responsive paratransit systems. Traditional methods, such as manual surveys, are costly and inefficient, while Bluetooth and WiFi-based approaches require passengers to carry specific devices, limiting data coverage. On the other hand, most transit vehicles are equipped with onboard cameras for surveillance, offering an opportunity to repurpose them for edge-based OD data collection through visual person re-identification (ReID). However, such approaches face significant challenges, including severe occlusion and viewpoint variations in transit environments, which greatly reduce matching accuracy and hinder their adoption. Moreover, designing effective algorithms that can operate efficiently on edge devices remains an open challenge. To address these challenges, we propose TransitReID, a novel framework for individual-level transit OD data collection. TransitReID consists of two key components: (1) An occlusion-robust ReID algorithm featuring a variational autoencoder guided region-attention mechanism that adaptively focuses on visible body regions through reconstruction loss-optimized weight allocation; and (2) a Hierarchical Storage and Dynamic Matching (HSDM) mechanism specifically designed for efficient and robust transit OD matching which balances storage, speed, and accuracy. Additionally, a multi-threaded design supports near real-time operation on edge devices, which also ensuring privacy protection. We also introduce a ReID dataset tailored for complex bus environments to address the lack of relevant training data. Experimental results demonstrate that TransitReID achieves state-of-the-art performance in ReID tasks, with an accuracy of approximately 90\% in bus route simulations.
WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
The ability to embed watermarks in images is a fundamental problem of interest for computer vision, and is exacerbated by the rapid rise of generated imagery in recent times. Current state-of-the-art techniques suffer from computational and statistical challenges such as the slow execution speed for practical deployments. In addition, other works trade off fast watermarking speeds but suffer greatly in their robustness or perceptual quality. In this work, we propose WaterFlow (WF), a fast and extremely robust approach for high fidelity visual watermarking based on a learned latent-dependent watermark. Our approach utilizes a pretrained latent diffusion model to encode an arbitrary image into a latent space and produces a learned watermark that is then planted into the Fourier Domain of the latent. The transformation is specified via invertible flow layers that enhance the expressivity of the latent space of the pre-trained model to better preserve image quality while permitting robust and tractable detection. Most notably, WaterFlow demonstrates state-of-the-art performance on general robustness and is the first method capable of effectively defending against difficult combination attacks. We validate our findings on three widely used real and generated datasets: MS-COCO, DiffusionDB, and WikiArt.
Deep Generative Model-Based Generation of Synthetic Individual-Specific Brain MRI Segmentations
To the best of our knowledge, all existing methods that can generate synthetic brain magnetic resonance imaging (MRI) scans for a specific individual require detailed structural or volumetric information about the individual's brain. However, such brain information is often scarce, expensive, and difficult to obtain. In this paper, we propose the first approach capable of generating synthetic brain MRI segmentations -- specifically, 3D white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) segmentations -- for individuals using their easily obtainable and often readily available demographic, interview, and cognitive test information. Our approach features a novel deep generative model, CSegSynth, which outperforms existing prominent generative models, including conditional variational autoencoder (C-VAE), conditional generative adversarial network (C-GAN), and conditional latent diffusion model (C-LDM). We demonstrate the high quality of our synthetic segmentations through extensive evaluations. Also, in assessing the effectiveness of the individual-specific generation, we achieve superior volume prediction, with Pearson correlation coefficients reaching 0.80, 0.82, and 0.70 between the ground-truth WM, GM, and CSF volumes of test individuals and those volumes predicted based on generated individual-specific segmentations, respectively.
Prototype-Guided Diffusion for Digital Pathology: Achieving Foundation Model Performance with Minimal Clinical Data
Foundation models in digital pathology use massive datasets to learn useful compact feature representations of complex histology images. However, there is limited transparency into what drives the correlation between dataset size and performance, raising the question of whether simply adding more data to increase performance is always necessary. In this study, we propose a prototype-guided diffusion model to generate high-fidelity synthetic pathology data at scale, enabling large-scale self-supervised learning and reducing reliance on real patient samples while preserving downstream performance. Using guidance from histological prototypes during sampling, our approach ensures biologically and diagnostically meaningful variations in the generated data. We demonstrate that self-supervised features trained on our synthetic dataset achieve competitive performance despite using ~60x-760x less data than models trained on large real-world datasets. Notably, models trained using our synthetic data showed statistically comparable or better performance across multiple evaluation metrics and tasks, even when compared to models trained on orders of magnitude larger datasets. Our hybrid approach, combining synthetic and real data, further enhanced performance, achieving top results in several evaluations. These findings underscore the potential of generative AI to create compelling training data for digital pathology, significantly reducing the reliance on extensive clinical datasets and highlighting the efficiency of our approach.
3D Object Reconstruction with mmWave Radars
This paper presents RFconstruct, a framework that enables 3D shape reconstruction using commercial off-the-shelf (COTS) mmWave radars for self-driving scenarios. RFconstruct overcomes radar limitations of low angular resolution, specularity, and sparsity in radar point clouds through a holistic system design that addresses hardware, data processing, and machine learning challenges. The first step is fusing data captured by two radar devices that image orthogonal planes, then performing odometry-aware temporal fusion to generate denser 3D point clouds. RFconstruct then reconstructs 3D shapes of objects using a customized encoder-decoder model that does not require prior knowledge of the object's bound box. The shape reconstruction performance of RFconstruct is compared against 3D models extracted from a depth camera equipped with a LiDAR. We show that RFconstruct can accurately generate 3D shapes of cars, bikes, and pedestrians.
SlicerNNInteractive: A 3D Slicer extension for nnInteractive
SlicerNNInteractive integrates nnInteractive, a state-of-the-art promptable deep learning-based framework for 3D image segmentation, into the widely used 3D Slicer platform. Our extension implements a client-server architecture that decouples computationally intensive model inference from the client-side interface. Therefore, SlicerNNInteractive eliminates heavy hardware constraints on the client-side and enables better operating system compatibility than existing plugins for nnInteractive. Running both the client and server-side on a single machine is also possible, offering flexibility across different deployment scenarios. The extension provides an intuitive user interface with all interaction types available in the original framework (point, bounding box, scribble, and lasso prompts), while including a comprehensive set of keyboard shortcuts for efficient workflow.
comment: 5 pages, 2 figures
Ring deconvolution microscopy: exploiting symmetry for efficient spatially varying aberration correction
The most ubiquitous form of computational aberration correction for microscopy is deconvolution. However, deconvolution relies on the assumption that the point spread function is the same across the entire field-of-view. This assumption is often inadequate, but space-variant deblurring techniques generally require impractical amounts of calibration and computation. We present a new imaging pipeline that leverages symmetry to provide simple and fast spatially-varying aberration correction. Our ring deconvolution microscopy (RDM) method leverages the rotational symmetry of most microscopes and cameras, and naturally extends to sheet deconvolution in the case of lateral symmetry. We formally derive theory and algorithms for image recovery and additionally propose a neural network based on Seidel coefficients as a fast alternative, as well as extension of RDM to blind deconvolution. We demonstrate significant improvements in speed and image quality as compared to standard deconvolution and existing spatially-varying deconvolution across a diverse range of microscope modalities, including miniature microscopy, multicolor fluorescence microscopy, point-scanning multimode fiber micro-endoscopy, and light-sheet fluorescence microscopy. Our approach enables near-isotropic, subcellular resolution in each of these applications.
comment: 32 pages, 14 figures
TerrAInav Sim: An Open-Source Simulation of UAV Aerial Imaging from Satellite Data
Capturing real-world aerial images for vision-based navigation (VBN) is challenging due to limited availability and conditions that make it nearly impossible to access all desired images from any location. The complexity increases when multiple locations are involved. State-of-the-art solutions, such as deploying UAVs (unmanned aerial vehicles) for aerial imaging or relying on existing research databases, come with significant limitations. TerrAInav Sim offers a compelling alternative by simulating a UAV to capture bird's-eye view map-based images at zero yaw with real-world visible-band specifications. This open-source tool allows users to specify the bounding box (top-left and bottom-right) coordinates of any region on a map. Without the need to physically fly a drone, the virtual Python UAV performs a raster search to capture images. Users can define parameters such as the flight altitude, aspect ratio, diagonal field of view of the camera, and the overlap between consecutive images. TerrAInav Sim's capabilities range from capturing a few low-altitude images for basic applications to generating extensive datasets of entire cities for complex tasks like deep learning. This versatility makes TerrAInav a valuable tool for not only VBN but also other applications, including environmental monitoring, construction, and city management. The open-source nature of the tool also allows for the extension of the raster search to other missions. A dataset of Memphis, TN, has been provided along with this simulator. A supplementary dataset is also provided, which includes data from a 3D world generation package for comparison.
comment: 16 pages, 10 figures
Efficient Lung Ultrasound Severity Scoring Using Dedicated Feature Extractor
With the advent of the COVID-19 pandemic, ultrasound imaging has emerged as a promising technique for COVID-19 detection, due to its non-invasive nature, affordability, and portability. In response, researchers have focused on developing AI-based scoring systems to provide real-time diagnostic support. However, the limited size and lack of proper annotation in publicly available ultrasound datasets pose significant challenges for training a robust AI model. This paper proposes MeDiVLAD, a novel pipeline to address the above issue for multi-level lung-ultrasound (LUS) severity scoring. In particular, we leverage self-knowledge distillation to pretrain a vision transformer (ViT) without label and aggregate frame-level features via dual-level VLAD aggregation. We show that with minimal finetuning, MeDiVLAD outperforms conventional fully-supervised methods in both frame- and video-level scoring, while offering classification reasoning with exceptional quality. This superior performance enables key applications such as the automatic identification of critical lung pathology areas and provides a robust solution for broader medical video classification tasks.
comment: Accepted by IEEE ISBI 2025 (Selected for oral presentation) 2025/4/15 (v2): Corrected a notation error in Figure 2
Multimedia
Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis ACM MM2025
Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
comment: submitted to ACM MM2025
Leveraging multimodal explanatory annotations for video interpretation with Modality Specific Dataset
We examine the impact of concept-informed supervision on multimodal video interpretation models using MOByGaze, a dataset containing human-annotated explanatory concepts. We introduce Concept Modality Specific Datasets (CMSDs), which consist of data subsets categorized by the modality (visual, textual, or audio) of annotated concepts. Models trained on CMSDs outperform those using traditional legacy training in both early and late fusion approaches. Notably, this approach enables late fusion models to achieve performance close to that of early fusion models. These findings underscore the importance of modality-specific annotations in developing robust, self-explainable video models and contribute to advancing interpretable multimodal learning in complex video analysis.
comment: 6 pages, 8 Figures
Consensus Entropy: Harnessing Multi-VLM Agreement for Self-Verifying and Self-Improving OCR
The Optical Character Recognition (OCR) task is important for evaluating Vision-Language Models (VLMs) and providing high-quality data sources for LLM training data. While state-of-the-art VLMs show improved average OCR accuracy, they still struggle with sample-level quality degradation and lack reliable automatic detection of low-quality outputs. We introduce Consensus Entropy (CE), a training-free post-inference method that quantifies OCR uncertainty by aggregating outputs from multiple VLMs. Our approach exploits a key insight: correct VLM OCR predictions converge in output space while errors diverge. We develop a lightweight multi-model framework that effectively identifies problematic samples, selects the best outputs and combines model strengths. Experiments across multiple OCR benchmarks and VLMs demonstrate that CE outperforms VLM-as-judge approaches and single-model baselines at the same cost and achieves state-of-the-art results across multiple metrics. For instance, our solution demonstrates: achieving 15.2\% higher F1 scores than VLM-as-judge methods in quality verification, delivering 6.0\% accuracy gains on mathematical calculation tasks, and requiring rephrasing only 7.3\% of inputs while maintaining overall performance. Notably, the entire process requires neither training nor supervision while maintaining plug-and-play functionality throughout.
MMC: Iterative Refinement of VLM Reasoning via MCTS-based Multimodal Critique
Visual language models (VLMs) have demonstrated strong performance across diverse multimodal reasoning tasks but still face challenges such as hallucinations, resulting in incorrect reasoning outcomes. Inspired by recent research on external feedback mechanisms in large language models (LLMs), we propose a multimodal actor-critic framework to enhance VLM reasoning capabilities. Specifically, the actor model generates step-by-step reasoning paths based on image and text inputs, while the critic model evaluates these reasoning paths and provides corrective feedback. The actor model iteratively refines its reasoning based on the feedback until the reasoning outcome is deemed satisfactory by the critic model. To reduce reliance on costly manual annotations, we introduce an automated method for constructing multimodal critique datasets. By leveraging Monte Carlo Tree Search (MCTS), we systematically guide the actor model to explore diverse reasoning paths. To obtain critique data for correcting erroneous reasoning steps, we prompt an annotator model to compare pairs of reasoning paths diverging from a shared ancestor node - one leading to a correct conclusion and the other to an incorrect one. This approach enables us to construct the MMC (MCTS-based Multimodal Critique) dataset, upon which we further develop a comprehensive training and inference pipeline. Extensive experiments conducted on several public benchmark datasets and mainstream VLMs demonstrate that our approach significantly improves the performance of VLM on complex multimodal reasoning tasks, underscoring its effectiveness and wide applicability.
Dopamine Audiobook: A Training-free MLLM Agent for Emotional and Human-like Audiobook Generation
Audiobook generation, which creates vivid and emotion-rich audio works, faces challenges in conveying complex emotions, achieving human-like qualities, and aligning evaluations with human preferences. Existing text-to-speech (TTS) methods are often limited to specific scenarios, struggle with emotional transitions, and lack automatic human-aligned evaluation benchmarks, instead relying on either misaligned automated metrics or costly human assessments. To address these issues, we propose Dopamine Audiobook, a new unified training-free system leveraging a multimodal large language model (MLLM) as an AI agent for emotional and human-like audiobook generation and evaluation. Specifically, we first design a flow-based emotion-enhanced framework that decomposes complex emotional speech synthesis into controllable sub-tasks. Then, we propose an adaptive model selection module that dynamically selects the most suitable TTS methods from a set of existing state-of-the-art (SOTA) TTS methods for diverse scenarios. We further enhance emotional expressiveness through paralinguistic augmentation and prosody retrieval at word and utterance levels. For evaluation, we propose a novel GPT-based evaluation framework incorporating self-critique, perspective-taking, and psychological MagicEmo prompts to ensure human-aligned and self-aligned assessments. Experiments show that our method generates long speech with superior emotional expression to SOTA TTS models in various metrics. Importantly, our evaluation framework demonstrates better alignment with human preferences and transferability across audio tasks. Project website with audio samples can be found at https://dopamine-audiobook.github.io.
Real-Time Word-Level Temporal Segmentation in Streaming Speech Recognition
Rich-text captions are essential to help communication for Deaf and hard-of-hearing (DHH) people, second-language learners, and those with autism spectrum disorder (ASD). They also preserve nuances when converting speech to text, enhancing the realism of presentation scripts and conversation or speech logs. However, current real-time captioning systems lack the capability to alter text attributes (ex. capitalization, sizes, and fonts) at the word level, hindering the accurate conveyance of speaker intent that is expressed in the tones or intonations of the speech. For example, ''YOU should do this'' tends to be considered as indicating ''You'' as the focus of the sentence, whereas ''You should do THIS'' tends to be ''This'' as the focus. This paper proposes a solution that changes the text decorations at the word level in real time. As a prototype, we developed an application that adjusts word size based on the loudness of each spoken word. Feedback from users implies that this system helped to convey the speaker's intent, offering a more engaging and accessible captioning experience.
comment: 3 pages, 1 figures
Ichiyo: Fragile and Transient Interaction in Neighborhood
As the Internet develops, social networking and other communication tools have transformed people's relationships into something fast, visible, and geographically huge. However, these communication tools have not expanded opportunities for acquainting oneself with neighbors outside one's social network; rather, they have comparatively diminished occasions for interacting with unfamiliar neighbors by prioritizing communication with existing friends. Therefore, we invented the medium Ichiyo to increase the opportunities to think of neighbors walking along the same street or in the same neighborhood and to expand the imagination of those who pass by and those who used to be there. Thus, users can engage in indirect interaction. We used commercially available laser cutters to engrave QR codes on leaves that are naturally found in our living space to prevent environmental invasion. The QR codes lead to a communal space on the web where users can freely leave messages. By engraving QR codes, information can be virtually expanded to be presented. To get the feedback of Ichiyo, we let a total of several thousand people experience a new way of communication as a part of the exhibition ''iii Exhibition 2022'', an art exhibition at the University of Tokyo. A total of more than 1,000 leaves engraved with QR codes were prepared and scattered at the exhibition site and along the road from the nearest station to the venue.
comment: 3 pages, 3 figures
SteerMusic: Enhanced Musical Consistency for Zero-shot Text-Guided and Personalized Music Editing
Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing. However, these methods often struggle to maintain the music content consistency. Additionally, text instructions alone usually fail to accurately describe the desired music. In this paper, we propose two music editing methods that enhance the consistency between the original and edited music by leveraging score distillation. The first method, SteerMusic, is a coarse-grained zero-shot editing approach using delta denoising score. The second method, SteerMusic+, enables fine-grained personalized music editing by manipulating a concept token that represents a user-defined musical style. SteerMusic+ allows for the editing of music into any user-defined musical styles that cannot be achieved by the text instructions alone. Experimental results show that our methods outperform existing approaches in preserving both music content consistency and editing fidelity. User studies further validate that our methods achieve superior music editing quality. Audio examples are available on https://steermusic.pages.dev/.
Graph-Driven Multimodal Feature Learning Framework for Apparent Personality Assessment
Predicting personality traits automatically has become a challenging problem in computer vision. This paper introduces an innovative multimodal feature learning framework for personality analysis in short video clips. For visual processing, we construct a facial graph and design a Geo-based two-stream network incorporating an attention mechanism, leveraging both Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to capture static facial expressions. Additionally, ResNet18 and VGGFace networks are employed to extract global scene and facial appearance features at the frame level. To capture dynamic temporal information, we integrate a BiGRU with a temporal attention module for extracting salient frame representations. To enhance the model's robustness, we incorporate the VGGish CNN for audio-based features and XLM-Roberta for text-based features. Finally, a multimodal channel attention mechanism is introduced to integrate different modalities, and a Multi-Layer Perceptron (MLP) regression model is used to predict personality traits. Experimental results confirm that our proposed framework surpasses existing state-of-the-art approaches in performance.
Efficient Prompt Tuning for Hierarchical Ingredient Recognition ICME
Fine-grained ingredient recognition presents a significant challenge due to the diverse appearances of ingredients, resulting from different cutting and cooking methods. While existing approaches have shown promising results, they still require extensive training costs and focus solely on fine-grained ingredient recognition. In this paper, we address these limitations by introducing an efficient prompt-tuning framework that adapts pretrained visual-language models (VLMs), such as CLIP, to the ingredient recognition task without requiring full model finetuning. Additionally, we introduce three-level ingredient hierarchies to enhance both training performance and evaluation robustness. Specifically, we propose a hierarchical ingredient recognition task, designed to evaluate model performance across different hierarchical levels (e.g., chicken chunks, chicken, meat), capturing recognition capabilities from coarse- to fine-grained categories. Our method leverages hierarchical labels, training prompt-tuned models with both fine-grained and corresponding coarse-grained labels. Experimental results on the VireoFood172 dataset demonstrate the effectiveness of prompt-tuning with hierarchical labels, achieving superior performance. Moreover, the hierarchical ingredient recognition task provides valuable insights into the model's ability to generalize across different levels of ingredient granularity.
comment: Accepted by IEEE International Conference on Multimedia and Expo (ICME) 2025
UniForm: A Unified Multi-Task Diffusion Transformer for Audio-Video Generation
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To address these limitations, we first propose UniForm, a unified multi-task diffusion transformer that jointly generates audio and visual modalities in a shared latent space. A single diffusion process models both audio and video, capturing the inherent correlations between sound and vision. Second, we introduce task-specific noise schemes and task tokens, enabling a single model to support multiple tasks, including text-to-audio-video, audio-to-video, and video-to-audio generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Extensive experiments show that UniForm achieves the state-of-the-art performance across audio-video generation tasks, producing content that is both well-aligned and close to real-world data distributions. Our demos are available at https://uniform-t2av.github.io/.
comment: Our demos are available at https://uniform-t2av.github.io/
Causal Graphical Models for Vision-Language Compositional Understanding ICLR 2025
Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.
comment: Accepted at ICLR 2025
Muse: A Multimodal Conversational Recommendation Dataset with Scenario-Grounded User Profiles
Current conversational recommendation systems focus predominantly on text. However, real-world recommendation settings are generally multimodal, causing a significant gap between existing research and practical applications. To address this issue, we propose Muse, the first multimodal conversational recommendation dataset. Muse comprises 83,148 utterances from 7,000 conversations centered around the Clothing domain. Each conversation contains comprehensive multimodal interactions, rich elements, and natural dialogues. Data in Muse are automatically synthesized by a multi-agent framework powered by multimodal large language models (MLLMs). It innovatively derives user profiles from real-world scenarios rather than depending on manual design and history data for better scalability, and then it fulfills conversation simulation and optimization. Both human and LLM evaluations demonstrate the high quality of conversations in Muse. Additionally, fine-tuning experiments on three MLLMs demonstrate Muse's learnable patterns for recommendations and responses, confirming its value for multimodal conversational recommendation. Our dataset and codes are available at https://anonymous.4open.science/r/Muse-0086.
Computation and Language
DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning
The capacity for complex mathematical reasoning is a key benchmark for artificial intelligence. While reinforcement learning (RL) applied to LLMs shows promise, progress is significantly hindered by the lack of large-scale training data that is sufficiently challenging, possesses verifiable answer formats suitable for RL, and is free from contamination with evaluation benchmarks. To address these limitations, we introduce DeepMath-103K, a new, large-scale dataset comprising approximately 103K mathematical problems, specifically designed to train advanced reasoning models via RL. DeepMath-103K is curated through a rigorous pipeline involving source analysis, stringent decontamination against numerous benchmarks, and filtering for high difficulty (primarily Levels 5-9), significantly exceeding existing open resources in challenge. Each problem includes a verifiable final answer, enabling rule-based RL, and three distinct R1-generated solutions suitable for diverse training paradigms like supervised fine-tuning or distillation. Spanning a wide range of mathematical topics, DeepMath-103K promotes the development of generalizable reasoning. We demonstrate that models trained on DeepMath-103K achieve significant improvements on challenging mathematical benchmarks, validating its effectiveness. We release DeepMath-103K publicly to facilitate community progress in building more capable AI reasoning systems: https://github.com/zwhe99/DeepMath.
comment: WIP
TextArena
TextArena is an open-source collection of competitive text-based games for training and evaluation of agentic behavior in Large Language Models (LLMs). It spans 57+ unique environments (including single-player, two-player, and multi-player setups) and allows for easy evaluation of model capabilities via an online-play system (against humans and other submitted models) with real-time TrueSkill scores. Traditional benchmarks rarely assess dynamic social skills such as negotiation, theory of mind, and deception, creating a gap that TextArena addresses. Designed with research, community and extensibility in mind, TextArena emphasizes ease of adding new games, adapting the framework, testing models, playing against the models, and training models. Detailed documentation of environments, games, leaderboard, and examples are available on https://github.com/LeonGuertler/TextArena and https://www.textarena.ai/.
comment: work in progress; 5 pages, 3 figures
TADACap: Time-series Adaptive Domain-Aware Captioning
While image captioning has gained significant attention, the potential of captioning time-series images, prevalent in areas like finance and healthcare, remains largely untapped. Existing time-series captioning methods typically offer generic, domain-agnostic descriptions of time-series shapes and struggle to adapt to new domains without substantial retraining. To address these limitations, we introduce TADACap, a retrieval-based framework to generate domain-aware captions for time-series images, capable of adapting to new domains without retraining. Building on TADACap, we propose a novel retrieval strategy that retrieves diverse image-caption pairs from a target domain database, namely TADACap-diverse. We benchmarked TADACap-diverse against state-of-the-art methods and ablation variants. TADACap-diverse demonstrates comparable semantic accuracy while requiring significantly less annotation effort.
comment: Accepted to ICAIF 2024
Masculine Defaults via Gendered Discourse in Podcasts and Large Language Models
Masculine defaults are widely recognized as a significant type of gender bias, but they are often unseen as they are under-researched. Masculine defaults involve three key parts: (i) the cultural context, (ii) the masculine characteristics or behaviors, and (iii) the reward for, or simply acceptance of, those masculine characteristics or behaviors. In this work, we study discourse-based masculine defaults, and propose a twofold framework for (i) the large-scale discovery and analysis of gendered discourse words in spoken content via our Gendered Discourse Correlation Framework (GDCF); and (ii) the measurement of the gender bias associated with these gendered discourse words in LLMs via our Discourse Word-Embedding Association Test (D-WEAT). We focus our study on podcasts, a popular and growing form of social media, analyzing 15,117 podcast episodes. We analyze correlations between gender and discourse words -- discovered via LDA and BERTopic -- to automatically form gendered discourse word lists. We then study the prevalence of these gendered discourse words in domain-specific contexts, and find that gendered discourse-based masculine defaults exist in the domains of business, technology/politics, and video games. Next, we study the representation of these gendered discourse words from a state-of-the-art LLM embedding model from OpenAI, and find that the masculine discourse words have a more stable and robust representation than the feminine discourse words, which may result in better system performance on downstream tasks for men. Hence, men are rewarded for their discourse patterns with better system performance by one of the state-of-the-art language models -- and this embedding disparity is a representational harm and a masculine default.
comment: To appear in ICWSM 2025
A Dual-Space Framework for General Knowledge Distillation of Large Language Models
Knowledge distillation (KD) is a promising solution to compress large language models (LLMs) by transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the teacher model and the student model to transfer more information. However, we reveal that the current white-box KD framework exhibits two limitations: a) bridging probability distributions from different output spaces will limit the similarity between the teacher model and the student model; b) this framework cannot be applied to LLMs with different vocabularies. One of the root causes for these limitations is that the distributions from the teacher and the student for KD are output by different prediction heads, which yield distributions in different output spaces and dimensions. Therefore, in this paper, we propose a dual-space knowledge distillation (DSKD) framework that unifies the prediction heads of the teacher and the student models for KD. Specifically, we first introduce two projectors with ideal initialization to project the teacher/student hidden states into the student/teacher representation spaces. After this, the hidden states from different models can share the same head and unify the output spaces of the distributions. Furthermore, we develop an exact token alignment (ETA) algorithm to align the same tokens in two differently-tokenized sequences. Based on the above, our DSKD framework is a general KD framework that supports both off-policy and on-policy KD, and KD between any two LLMs regardless of their vocabularies. Extensive experiments on instruction-following, mathematical reasoning, and code generation benchmarks show that DSKD significantly outperforms existing methods based on the current white-box KD framework and surpasses other cross-tokenizer KD methods for LLMs with different vocabularies.
comment: 19 pages, 9 figures, 11 tables, under review. Code is available at: https://github.com/songmzhang/DSKDv2. arXiv admin note: text overlap with arXiv:2406.17328
Reinforcing Compositional Retrieval: Retrieving Step-by-Step for Composing Informative Contexts
Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous tasks, yet they often rely on external context to handle complex tasks. While retrieval-augmented frameworks traditionally focus on selecting top-ranked documents in a single pass, many real-world scenarios demand compositional retrieval, where multiple sources must be combined in a coordinated manner. In this work, we propose a tri-encoder sequential retriever that models this process as a Markov Decision Process (MDP), decomposing the probability of retrieving a set of elements into a sequence of conditional probabilities and allowing each retrieval step to be conditioned on previously selected examples. We train the retriever in two stages: first, we efficiently construct supervised sequential data for initial policy training; we then refine the policy to align with the LLM's preferences using a reward grounded in the structural correspondence of generated programs. Experimental results show that our method consistently and significantly outperforms baselines, underscoring the importance of explicitly modeling inter-example dependencies. These findings highlight the potential of compositional retrieval for tasks requiring multiple pieces of evidence or examples.
comment: 19 pages, 8 figures
Efficient Hybrid Language Model Compression through Group-Aware SSM Pruning
Hybrid LLM architectures that combine Attention and State Space Models (SSMs) achieve state-of-the-art accuracy and runtime performance. Recent work has demonstrated that applying compression and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. We introduce a novel group-aware pruning strategy that preserves the structural integrity of SSM blocks and their sequence modeling capabilities. Furthermore, we demonstrate the necessity of such SSM pruning to achieve improved accuracy and inference speed compared to traditional approaches. Our compression recipe combines SSM, FFN, embedding dimension, and layer pruning, followed by knowledge distillation-based retraining, similar to the MINITRON technique. Using this approach, we compress the Nemotron-H 8B Hybrid model down to 4B parameters with up to 40x fewer training tokens. The resulting model surpasses the accuracy of similarly-sized models while achieving 2x faster inference, significantly advancing the Pareto frontier.
DataDecide: How to Predict Best Pretraining Data with Small Experiments
Because large language models are expensive to pretrain on different datasets, using smaller-scale experiments to decide on data is crucial for reducing costs. Which benchmarks and methods of making decisions from observed performance at small scale most accurately predict the datasets that yield the best large models? To empower open exploration of this question, we release models, data, and evaluations in DataDecide -- the most extensive open suite of models over differences in data and scale. We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens, model sizes up to 1B parameters, and 3 random seeds. We find that the ranking of models at a single, small size (e.g., 150M parameters) is a strong baseline for predicting best models at our larger target scale (1B) (~80% of com parisons correct). No scaling law methods among 8 baselines exceed the compute-decision frontier of single-scale predictions, but DataDecide can measure improvement in future scaling laws. We also identify that using continuous likelihood metrics as proxies in small experiments makes benchmarks including MMLU, ARC, HellaSwag, MBPP, and HumanEval >80% predictable at the target 1B scale with just 0.01% of the compute.
RankAlign: A Ranking View of the Generator-Validator Gap in Large Language Models
Although large language models (LLMs) have become generally more capable and accurate across many tasks, some fundamental sources of unreliability remain in their behavior. One key limitation is their inconsistency at reporting the the same information when prompts are changed. In this paper, we consider the discrepancy between a model's generated answer and their own verification of that answer, the generator-validator gap. We define this gap in a more stringent way than prior work: we expect correlation of scores from a generator and a validator over the entire set of candidate answers. We show that according to this measure, a large gap exists in various settings, including question answering, lexical semantics tasks, and next-word prediction. We then propose RankAlign, a ranking-based training method, and show that it significantly closes the gap by 31.8% on average, surpassing all baseline methods. Moreover, this approach generalizes well to out-of-domain tasks and lexical items.
Cancer-Myth: Evaluating AI Chatbot on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) as a new form of internet search for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with detailed clinical contexts. In this paper, we first evaluate LLMs on cancer-related questions drawn from real patients, reviewed by three hematology oncology physicians. While responses are generally accurate, with GPT-4-Turbo scoring 4.13 out of 5, the models frequently fail to recognize or address false presuppositions in the questions-posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-4o, Gemini-1.Pro, and Claude-3.5-Sonnet -- corrects these false presuppositions more than 30% of the time. Even advanced medical agentic methods do not prevent LLMs from ignoring false presuppositions. These findings expose a critical gap in the clinical reliability of LLMs and underscore the need for more robust safeguards in medical AI systems.
OpenTuringBench: An Open-Model-based Benchmark and Framework for Machine-Generated Text Detection and Attribution
Open Large Language Models (OLLMs) are increasingly leveraged in generative AI applications, posing new challenges for detecting their outputs. We propose OpenTuringBench, a new benchmark based on OLLMs, designed to train and evaluate machine-generated text detectors on the Turing Test and Authorship Attribution problems. OpenTuringBench focuses on a representative set of OLLMs, and features a number of challenging evaluation tasks, including human/machine-manipulated texts, out-of-domain texts, and texts from previously unseen models. We also provide OTBDetector, a contrastive learning framework to detect and attribute OLLM-based machine-generated texts. Results highlight the relevance and varying degrees of difficulty of the OpenTuringBench tasks, with our detector achieving remarkable capabilities across the various tasks and outperforming most existing detectors. Resources are available on the OpenTuringBench Hugging Face repository at https://huggingface.co/datasets/MLNTeam-Unical/OpenTuringBench
comment: Under review with ARR
Network Alignment
Complex networks are frequently employed to model physical or virtual complex systems. When certain entities exist across multiple systems simultaneously, unveiling their corresponding relationships across the networks becomes crucial. This problem, known as network alignment, holds significant importance. It enhances our understanding of complex system structures and behaviours, facilitates the validation and extension of theoretical physics research about studying complex systems, and fosters diverse practical applications across various fields. However, due to variations in the structure, characteristics, and properties of complex networks across different fields, the study of network alignment is often isolated within each domain, with even the terminologies and concepts lacking uniformity. This review comprehensively summarizes the latest advancements in network alignment research, focusing on analyzing network alignment characteristics and progress in various domains such as social network analysis, bioinformatics, computational linguistics and privacy protection. It provides a detailed analysis of various methods' implementation principles, processes, and performance differences, including structure consistency-based methods, network embedding-based methods, and graph neural network-based (GNN-based) methods. Additionally, the methods for network alignment under different conditions, such as in attributed networks, heterogeneous networks, directed networks, and dynamic networks, are presented. Furthermore, the challenges and the open issues for future studies are also discussed.
Teaching Large Language Models to Reason through Learning and Forgetting
Leveraging inference-time search in large language models has proven effective in further enhancing a trained model's capability to solve complex mathematical and reasoning problems. However, this approach significantly increases computational costs and inference time, as the model must generate and evaluate multiple candidate solutions to identify a viable reasoning path. To address this, we propose an effective approach that integrates search capabilities directly into the model by fine-tuning it using both successful (learning) and failed reasoning paths (forgetting) derived from diverse search methods. While fine-tuning the model with these data might seem straightforward, we identify a critical issue: the model's search capability tends to degrade rapidly if fine-tuning is performed naively. We show that this degradation can be substantially mitigated by employing a smaller learning rate. Extensive experiments on the challenging Game-of-24 and Countdown mathematical reasoning benchmarks show that our approach not only outperforms both standard fine-tuning and inference-time search baselines but also significantly reduces inference time by 180$\times$.
A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce
Reinforcement learning (RL) has become a prevailing approach for fine-tuning large language models (LLMs) on complex reasoning tasks. Among recent methods, GRPO stands out for its empirical success in training models such as DeepSeek-R1, yet the sources of its effectiveness remain poorly understood. In this work, we revisit GRPO from a reinforce-like algorithm perspective and analyze its core components. Surprisingly, we find that a simple rejection sampling baseline, RAFT, which trains only on positively rewarded samples, yields competitive performance than GRPO and PPO. Our ablation studies reveal that GRPO's main advantage arises from discarding prompts with entirely incorrect responses, rather than from its reward normalization. Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples. Reinforce-Rej improves KL efficiency and stability, serving as a lightweight yet effective alternative to more complex RL algorithms. We advocate RAFT as a robust and interpretable baseline, and suggest that future advances should focus on more principled designs for incorporating negative samples, rather than relying on them indiscriminately. Our findings provide guidance for future work in reward-based LLM post-training.
comment: 12 pages, 4 figures
REWARD CONSISTENCY: Improving Multi-Objective Alignment from a Data-Centric Perspective
Multi-objective preference alignment in language models often encounters a challenging trade-off: optimizing for one human preference (e.g., helpfulness) frequently compromises others (e.g., harmlessness) due to the inherent conflicts between competing objectives. While prior work mainly focuses on algorithmic solutions, we explore a novel data-driven approach to uncover the types of data that can effectively mitigate these conflicts. Specifically, we propose the concept of Reward Consistency (RC), which identifies samples that align with multiple preference objectives, thereby reducing conflicts during training. Through gradient-based analysis, we demonstrate that RC-compliant samples inherently constrain performance degradation during multi-objective optimization. Building on these insights, we further develop Reward Consistency Sampling, a framework that automatically constructs preference datasets that effectively mitigate conflicts during multi-objective alignment. Our generated data achieves an average improvement of 13.37% in both the harmless rate and helpfulness win rate when optimizing harmlessness and helpfulness, and can consistently resolve conflicts in varying multi-objective scenarios.
Looking beyond the next token
The structure of causal language model training assumes that each token can be accurately predicted from the previous context. This contrasts with humans' natural writing and reasoning process, where goals are typically known before the exact argument or phrasings. While this mismatch has been well studied in the literature, the working assumption has been that architectural changes are needed to address this mismatch. We argue that rearranging and processing the training data sequences can allow models to more accurately imitate the true data-generating process, and does not require any other changes to the architecture or training infrastructure. We demonstrate that this technique, Trelawney, and the inference algorithms derived from it allow us to improve performance on several key benchmarks that span planning, algorithmic reasoning, and story generation tasks. Finally, our method naturally enables the generation of long-term goals at no additional cost. We investigate how using the model's goal-generation capability can further improve planning and reasoning. Additionally, we believe Trelawney could potentially open doors to new capabilities beyond the current language modeling paradigm.
Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis ACM MM2025
Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
comment: submitted to ACM MM2025
Automated Python Translation
Python is one of the most commonly used programming languages in industry and education. Its English keywords and built-in functions/modules allow it to come close to pseudo-code in terms of its readability and ease of writing. However, those who do not speak English may not experience these advantages. In fact, they may even be hindered in their ability to understand Python code, as the English nature of its terms creates an additional layer of overhead. To that end, we introduce the task of automatically translating Python's natural modality (keywords, error types, identifiers, etc.) into other human languages. This presents a unique challenge, considering the abbreviated nature of these forms, as well as potential untranslatability of advanced mathematical/programming concepts across languages. We therefore create an automated pipeline to translate Python into other human languages, comparing strategies using machine translation and large language models. We then use this pipeline to acquire translations from five common Python libraries (pytorch, pandas, tensorflow, numpy, and random) in seven languages, and do a quality test on a subset of these terms in French, Greek, and Bengali. We hope this will provide a clearer path forward towards creating a universal Python, accessible to anyone regardless of nationality or language background.
comment: 15 pages, 4 figures, 17 tables
The Obvious Invisible Threat: LLM-Powered GUI Agents' Vulnerability to Fine-Print Injections
A Large Language Model (LLM) powered GUI agent is a specialized autonomous system that performs tasks on the user's behalf according to high-level instructions. It does so by perceiving and interpreting the graphical user interfaces (GUIs) of relevant apps, often visually, inferring necessary sequences of actions, and then interacting with GUIs by executing the actions such as clicking, typing, and tapping. To complete real-world tasks, such as filling forms or booking services, GUI agents often need to process and act on sensitive user data. However, this autonomy introduces new privacy and security risks. Adversaries can inject malicious content into the GUIs that alters agent behaviors or induces unintended disclosures of private information. These attacks often exploit the discrepancy between visual saliency for agents and human users, or the agent's limited ability to detect violations of contextual integrity in task automation. In this paper, we characterized six types of such attacks, and conducted an experimental study to test these attacks with six state-of-the-art GUI agents, 234 adversarial webpages, and 39 human participants. Our findings suggest that GUI agents are highly vulnerable, particularly to contextually embedded threats. Moreover, human users are also susceptible to many of these attacks, indicating that simple human oversight may not reliably prevent failures. This misalignment highlights the need for privacy-aware agent design. We propose practical defense strategies to inform the development of safer and more reliable GUI agents.
From Misleading Queries to Accurate Answers: A Three-Stage Fine-Tuning Method for LLMs
Large language models (LLMs) exhibit excellent performance in natural language processing (NLP), but remain highly sensitive to the quality of input queries, especially when these queries contain misleading or inaccurate information. Existing methods focus on correcting the output, but they often overlook the potential of improving the ability of LLMs to detect and correct misleading content in the input itself. In this paper, we propose a novel three-stage fine-tuning method that enhances the ability of LLMs to detect and correct misleading information in the input, further improving response accuracy and reducing hallucinations. Specifically, the three stages include (1) training LLMs to identify misleading information, (2) training LLMs to correct the misleading information using built-in or external knowledge, and (3) training LLMs to generate accurate answers based on the corrected queries. To evaluate our method, we conducted experiments on three datasets for the hallucination detection task and the question answering (QA) task, as well as two datasets containing misleading information that we constructed. The experimental results demonstrate that our method significantly improves the accuracy and factuality of LLM responses, while also enhancing the ability to detect hallucinations and reducing the generation of hallucinations in the output, particularly when the query contains misleading information. We will publicly release our code upon acceptance.
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation.In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/
Towards Automated Safety Requirements Derivation Using Agent-based RAG
We study the automated derivation of safety requirements in a self-driving vehicle use case, leveraging LLMs in combination with agent-based retrieval-augmented generation. Conventional approaches that utilise pre-trained LLMs to assist in safety analyses typically lack domain-specific knowledge. Existing RAG approaches address this issue, yet their performance deteriorates when handling complex queries and it becomes increasingly harder to retrieve the most relevant information. This is particularly relevant for safety-relevant applications. In this paper, we propose the use of agent-based RAG to derive safety requirements and show that the retrieved information is more relevant to the queries. We implement an agent-based approach on a document pool of automotive standards and the Apollo case study, as a representative example of an automated driving perception system. Our solution is tested on a data set of safety requirement questions and answers, extracted from the Apollo data. Evaluating a set of selected RAG metrics, we present and discuss advantages of a agent-based approach compared to default RAG methods.
comment: 9 pages, 3 figures
Nondeterministic Polynomial-time Problem Challenge: An Ever-Scaling Reasoning Benchmark for LLMs
Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked. To handle these issues, we propose the ever-scalingness for building the benchmarks which are uncrushable, unhackable, auto-verifiable and general. This paper presents Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NP-complete problems and can generate any number of instances with any levels of complexities, ii) npsolver: which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, and iii) npeval: which provides the comprehensive and ready-to-use tools to analyze the performances of LLMs over different problems, the number of tokens, the aha moments, the reasoning errors and the solution errors. Extensive experiments over widely-used LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs' performances to below 10%, demonstrating that NPPC is uncrushable, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, where DeepSeek-R1 outperforms Claude-3.7-Sonnet and o1/o3-mini in most NP-complete problems considered, and iii) the numbers of tokens, aha moments in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed first to increase and then decrease when the problem instances become more and more difficult. We believe that NPPC is the first ever-scaling reasoning benchmark, serving as the uncrushable and unhackable testbed for LLMs toward artificial general intelligence (AGI).
comment: Preliminary work, 10 pages for main text
Enhancing multimodal analogical reasoning with Logic Augmented Generation
Recent advances in Large Language Models have demonstrated their capabilities across a variety of tasks. However, automatically extracting implicit knowledge from natural language remains a significant challenge, as machines lack active experience with the physical world. Given this scenario, semantic knowledge graphs can serve as conceptual spaces that guide the automated text generation reasoning process to achieve more efficient and explainable results. In this paper, we apply a logic-augmented generation (LAG) framework that leverages the explicit representation of a text through a semantic knowledge graph and applies it in combination with prompt heuristics to elicit implicit analogical connections. This method generates extended knowledge graph triples representing implicit meaning, enabling systems to reason on unlabeled multimodal data regardless of the domain. We validate our work through three metaphor detection and understanding tasks across four datasets, as they require deep analogical reasoning capabilities. The results show that this integrated approach surpasses current baselines, performs better than humans in understanding visual metaphors, and enables more explainable reasoning processes, though still has inherent limitations in metaphor understanding, especially for domain-specific metaphors. Furthermore, we propose a thorough error analysis, discussing issues with metaphorical annotations and current evaluation methods.
Benchmarking Next-Generation Reasoning-Focused Large Language Models in Ophthalmology: A Head-to-Head Evaluation on 5,888 Items
Recent advances in reasoning-focused large language models (LLMs) mark a shift from general LLMs toward models designed for complex decision-making, a crucial aspect in medicine. However, their performance in specialized domains like ophthalmology remains underexplored. This study comprehensively evaluated and compared the accuracy and reasoning capabilities of four newly developed reasoning-focused LLMs, namely DeepSeek-R1, OpenAI o1, o3-mini, and Gemini 2.0 Flash-Thinking. Each model was assessed using 5,888 multiple-choice ophthalmology exam questions from the MedMCQA dataset in zero-shot setting. Quantitative evaluation included accuracy, Macro-F1, and five text-generation metrics (ROUGE-L, METEOR, BERTScore, BARTScore, and AlignScore), computed against ground-truth reasonings. Average inference time was recorded for a subset of 100 randomly selected questions. Additionally, two board-certified ophthalmologists qualitatively assessed clarity, completeness, and reasoning structure of responses to differential diagnosis questions.O1 (0.902) and DeepSeek-R1 (0.888) achieved the highest accuracy, with o1 also leading in Macro-F1 (0.900). The performance of models across the text-generation metrics varied: O3-mini excelled in ROUGE-L (0.151), o1 in METEOR (0.232), DeepSeek-R1 and o3-mini tied for BERTScore (0.673), DeepSeek-R1 (-4.105) and Gemini 2.0 Flash-Thinking (-4.127) performed best in BARTScore, while o3-mini (0.181) and o1 (0.176) led AlignScore. Inference time across the models varied, with DeepSeek-R1 being slowest (40.4 seconds) and Gemini 2.0 Flash-Thinking fastest (6.7 seconds). Qualitative evaluation revealed that DeepSeek-R1 and Gemini 2.0 Flash-Thinking tended to provide detailed and comprehensive intermediate reasoning, whereas o1 and o3-mini displayed concise and summarized justifications.
comment: 83 pages, 6 figures, 3 tables, 9 supplementary figures, 7 supplementary tables
Bias Beyond English: Evaluating Social Bias and Debiasing Methods in a Low-Resource Setting
Social bias in language models can potentially exacerbate social inequalities. Despite it having garnered wide attention, most research focuses on English data. In a low-resource scenario, the models often perform worse due to insufficient training data. This study aims to leverage high-resource language corpora to evaluate bias and experiment with debiasing methods in low-resource languages. We evaluated the performance of recent multilingual models in five languages: English (\textsc{eng}), Chinese (\textsc{zho}), Russian (\textsc{rus}), Indonesian (\textsc{ind}) and Thai (\textsc{tha}), and analyzed four bias dimensions: \textit{gender}, \textit{religion}, \textit{nationality}, and \textit{race-color}. By constructing multilingual bias evaluation datasets, this study allows fair comparisons between models across languages. We have further investigated three debiasing methods-\texttt{CDA}, \texttt{Dropout}, \texttt{SenDeb}-and demonstrated that debiasing methods from high-resource languages can be effectively transferred to low-resource ones, providing actionable insights for fairness research in multilingual NLP.
MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos
Sexism is generally defined as prejudice and discrimination based on sex or gender, affecting every sector of society, from social institutions to relationships and individual behavior. Social media platforms amplify the impact of sexism by conveying discriminatory content not only through text but also across multiple modalities, highlighting the critical need for a multimodal approach to the analysis of sexism online. With the rise of social media platforms where users share short videos, sexism is increasingly spreading through video content. Automatically detecting sexism in videos is a challenging task, as it requires analyzing the combination of verbal, audio, and visual elements to identify sexist content. In this study, (1) we introduce MuSeD, a new Multimodal Spanish dataset for Sexism Detection consisting of $\approx$ 11 hours of videos extracted from TikTok and BitChute; (2) we propose an innovative annotation framework for analyzing the contribution of textual and multimodal labels in the classification of sexist and non-sexist content; and (3) we evaluate a range of large language models (LLMs) and multimodal LLMs on the task of sexism detection. We find that visual information plays a key role in labeling sexist content for both humans and models. Models effectively detect explicit sexism; however, they struggle with implicit cases, such as stereotypes, instances where annotators also show low agreement. This highlights the inherent difficulty of the task, as identifying implicit sexism depends on the social and cultural context.
Benchmarking Vision Language Models on German Factual Data
Similar to LLMs, the development of vision language models is mainly driven by English datasets and models trained in English and Chinese language, whereas support for other languages, even those considered high-resource languages such as German, remains significantly weaker. In this work we present an analysis of open-weight VLMs on factual knowledge in the German and English language. We disentangle the image-related aspects from the textual ones by analyzing accu-racy with jury-as-a-judge in both prompt languages and images from German and international contexts. We found that for celebrities and sights, VLMs struggle because they are lacking visual cognition of German image contents. For animals and plants, the tested models can often correctly identify the image contents ac-cording to the scientific name or English common name but fail in German lan-guage. Cars and supermarket products were identified equally well in English and German images across both prompt languages.
Using LLMs as prompt modifier to avoid biases in AI image generators
This study examines how Large Language Models (LLMs) can reduce biases in text-to-image generation systems by modifying user prompts. We define bias as a model's unfair deviation from population statistics given neutral prompts. Our experiments with Stable Diffusion XL, 3.5 and Flux demonstrate that LLM-modified prompts significantly increase image diversity and reduce bias without the need to change the image generators themselves. While occasionally producing results that diverge from original user intent for elaborate prompts, this approach generally provides more varied interpretations of underspecified requests rather than superficial variations. The method works particularly well for less advanced image generators, though limitations persist for certain contexts like disability representation. All prompts and generated images are available at https://iisys-hof.github.io/llm-prompt-img-gen/
DeepMLF: Multimodal language model with learnable tokens for deep fusion in sentiment analysis
While multimodal fusion has been extensively studied in Multimodal Sentiment Analysis (MSA), the role of fusion depth and multimodal capacity allocation remains underexplored. In this work, we position fusion depth, scalability, and dedicated multimodal capacity as primary factors for effective fusion. We introduce DeepMLF, a novel multimodal language model (LM) with learnable tokens tailored toward deep fusion. DeepMLF leverages an audiovisual encoder and a pretrained decoder LM augmented with multimodal information across its layers. We append learnable tokens to the LM that: 1) capture modality interactions in a controlled fashion and 2) preserve independent information flow for each modality. These fusion tokens gather linguistic information via causal self-attention in LM Blocks and integrate with audiovisual information through cross-attention MM Blocks. Serving as dedicated multimodal capacity, this design enables progressive fusion across multiple layers, providing depth in the fusion process. Our training recipe combines modality-specific losses and language modelling loss, with the decoder LM tasked to predict ground truth polarity. Across three MSA benchmarks with varying dataset characteristics, DeepMLF achieves state-of-the-art performance. Our results confirm that deeper fusion leads to better performance, with optimal fusion depths (5-7) exceeding those of existing approaches. Additionally, our analysis on the number of fusion tokens reveals that small token sets ($\sim$20) achieve optimal performance. We examine the importance of representation learning order (fusion curriculum) through audiovisual encoder initialization experiments. Our ablation studies demonstrate the superiority of the proposed fusion design and gating while providing a holistic examination of DeepMLF's scalability to LLMs, and the impact of each training objective and embedding regularization.
comment: Preprint
LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews
Peer review is a cornerstone of quality control in scientific publishing. With the increasing workload, the unintended use of `quick' heuristics, referred to as lazy thinking, has emerged as a recurring issue compromising review quality. Automated methods to detect such heuristics can help improve the peer-reviewing process. However, there is limited NLP research on this issue, and no real-world dataset exists to support the development of detection tools. This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories. Our analysis reveals that Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting. However, instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points, highlighting the importance of high-quality training data. Furthermore, a controlled experiment demonstrates that reviews revised with lazy thinking feedback are more comprehensive and actionable than those written without such feedback. We will release our dataset and the enhanced guidelines that can be used to train junior reviewers in the community. (Code available here: https://github.com/UKPLab/arxiv2025-lazy-review)
comment: 29 pages, 18 Figures, 15 Tables
Dynamic Compressing Prompts for Efficient Inference of Large Language Models
Large Language Models (LLMs) have shown outstanding performance across a variety of tasks, partly due to advanced prompting techniques. However, these techniques often require lengthy prompts, which increase computational costs and can hinder performance because of the limited context windows of LLMs. While prompt compression is a straightforward solution, existing methods confront the challenges of retaining essential information, adapting to context changes, and remaining effective across different tasks. To tackle these issues, we propose a task-agnostic method called Dynamic Compressing Prompts (LLM-DCP). Our method reduces the number of prompt tokens while aiming to preserve the performance as much as possible. We model prompt compression as a Markov Decision Process (MDP), enabling the DCP-Agent to sequentially remove redundant tokens by adapting to dynamic contexts and retaining crucial content. We develop a reward function for training the DCP-Agent that balances the compression rate, the quality of the LLM output, and the retention of key information. This allows for prompt token reduction without needing an external black-box LLM. Inspired by the progressive difficulty adjustment in curriculum learning, we introduce a Hierarchical Prompt Compression (HPC) training strategy that gradually increases the compression difficulty, enabling the DCP-Agent to learn an effective compression method that maintains information integrity. Experiments demonstrate that our method outperforms state-of-the-art techniques, especially at higher compression rates. The code for our approach will be available at https://github.com/Fhujinwu/DCP.
comment: Under review (submited in 2024.11)
ReZero: Enhancing LLM search ability by trying one-more-time
Retrieval-Augmented Generation (RAG) improves Large Language Model (LLM) performance on knowledge-intensive tasks but depends heavily on initial search query quality. Current methods, often using Reinforcement Learning (RL), typically focus on query formulation or reasoning over results, without explicitly encouraging persistence after a failed search. We introduce ReZero (Retry-Zero), a novel RL framework that directly rewards the act of retrying a search query following an initial unsuccessful attempt. This incentivizes the LLM to explore alternative queries rather than prematurely halting. ReZero demonstrates significant improvement, achieving 46.88% accuracy compared to a 25% baseline. By rewarding persistence, ReZero enhances LLM robustness in complex information-seeking scenarios where initial queries may prove insufficient.
Exploring the Role of KG-Based RAG in Japanese Medical Question Answering with Small-Scale LLMs
Large language models (LLMs) perform well in medical QA, but their effectiveness in Japanese contexts is limited due to privacy constraints that prevent the use of commercial models like GPT-4 in clinical settings. As a result, recent efforts focus on instruction-tuning open-source LLMs, though the potential of combining them with retrieval-augmented generation (RAG) remains underexplored. To bridge this gap, we are the first to explore a knowledge graph-based (KG) RAG framework for Japanese medical QA small-scale open-source LLMs. Experimental results show that KG-based RAG has only a limited impact on Japanese medical QA using small-scale open-source LLMs. Further case studies reveal that the effectiveness of the RAG is sensitive to the quality and relevance of the external retrieved content. These findings offer valuable insights into the challenges and potential of applying RAG in Japanese medical QA, while also serving as a reference for other low-resource languages.
comment: 10 pages
Understanding LLMs' Cross-Lingual Context Retrieval: How Good It Is And Where It Comes From
The ability of cross-lingual context retrieval is a fundamental aspect of cross-lingual alignment of large language models (LLMs), where the model extracts context information in one language based on requests in another language. Despite its importance in real-life applications, this ability has not been adequately investigated for state-of-the-art models. In this paper, we evaluate the cross-lingual context retrieval ability of over 40 LLMs across 12 languages to understand the source of this ability, using cross-lingual machine reading comprehension (xMRC) as a representative scenario. Our results show that several small, post-trained open LLMs show strong cross-lingual context retrieval ability, comparable to closed-source LLMs such as GPT-4o, and their estimated oracle performances greatly improve after post-training. Our interpretability analysis shows that the cross-lingual context retrieval process can be divided into two main phases: question encoding and answer retrieval, which are formed in pre-training and post-training, respectively. The phasing stability correlates with xMRC performance, and the xMRC bottleneck lies at the last model layers in the second phase, where the effect of post-training can be evidently observed. Our results also indicate that larger-scale pretraining cannot improve the xMRC performance. Instead, larger LLMs need further multilingual post-training to fully unlock their cross-lingual context retrieval potential. Our code and is available at https://github.com/NJUNLP/Cross-Lingual-Context-Retrieval
Efficient Reasoning Models: A Survey
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference. A curated collection of papers discussed in this survey is available in our GitHub repository.
ARise: Towards Knowledge-Augmented Reasoning via Risk-Adaptive Search
Large language models (LLMs) have demonstrated impressive capabilities and are receiving increasing attention to enhance their reasoning through scaling test--time compute. However, their application in open--ended, knowledge--intensive, complex reasoning scenarios is still limited. Reasoning--oriented methods struggle to generalize to open--ended scenarios due to implicit assumptions of complete world knowledge. Meanwhile, knowledge--augmented reasoning (KAR) methods fail to address two core challenges: 1) error propagation, where errors in early steps cascade through the chain, and 2) verification bottleneck, where the explore--exploit tradeoff arises in multi--branch decision processes. To overcome these limitations, we introduce ARise, a novel framework that integrates risk assessment of intermediate reasoning states with dynamic retrieval--augmented generation (RAG) within a Monte Carlo tree search paradigm. This approach enables effective construction and optimization of reasoning plans across multiple maintained hypothesis branches. Experimental results show that ARise significantly outperforms the state--of--the--art KAR methods by up to 23.10%, and the latest RAG-equipped large reasoning models by up to 25.37%.
comment: Project homepage: https://opencausalab.github.io/ARise
Exploring Persona-dependent LLM Alignment for the Moral Machine Experiment ICLR 2025
Deploying large language models (LLMs) with agency in real-world applications raises critical questions about how these models will behave. In particular, how will their decisions align with humans when faced with moral dilemmas? This study examines the alignment between LLM-driven decisions and human judgment in various contexts of the moral machine experiment, including personas reflecting different sociodemographics. We find that the moral decisions of LLMs vary substantially by persona, showing greater shifts in moral decisions for critical tasks than humans. Our data also indicate an interesting partisan sorting phenomenon, where political persona predominates the direction and degree of LLM decisions. We discuss the ethical implications and risks associated with deploying these models in applications that involve moral decisions.
comment: Accepted to ICLR 2025 Workshop - BiAlign (Bidirectional Human-AI Alignment)
Ai2 Scholar QA: Organized Literature Synthesis with Attribution
Retrieval-augmented generation is increasingly effective in answering scientific questions from literature, but many state-of-the-art systems are expensive and closed-source. We introduce Ai2 Scholar QA, a free online scientific question answering application. To facilitate research, we make our entire pipeline public: as a customizable open-source Python package and interactive web app, along with paper indexes accessible through public APIs and downloadable datasets. We describe our system in detail and present experiments analyzing its key design decisions. In an evaluation on a recent scientific QA benchmark, we find that Ai2 Scholar QA outperforms competing systems.
comment: 7 pages
Moving Beyond Next-Token Prediction: Transformers are Context-Sensitive Language Generators
Large Language Models (LLMs), powered by Transformers, have demonstrated human-like intelligence capabilities, yet their underlying mechanisms remain poorly understood. This paper presents a novel framework for interpreting LLMs as probabilistic left context-sensitive languages (CSLs) generators. We hypothesize that Transformers can be effectively decomposed into three fundamental components: context windows, attention mechanisms, and autoregressive generation frameworks. This decomposition allows for the development of more flexible and interpretable computational models, moving beyond the traditional view of attention and autoregression as inseparable processes. We argue that next-token predictions can be understood as probabilistic, dynamic approximations of left CSL production rules, providing an intuitive explanation for how simple token predictions can yield human-like intelligence outputs. Given that all CSLs are left context-sensitive (Penttonen, 1974), we conclude that Transformers stochastically approximate CSLs, which are widely recognized as models of human-like intelligence. This interpretation bridges the gap between Formal Language Theory and the observed generative power of Transformers, laying a foundation for future advancements in generative AI theory and applications. Our novel perspective on Transformer architectures will foster a deeper understanding of LLMs and their future potentials.
comment: 11 pages, 2 figures
CLASH: Evaluating Language Models on Judging High-Stakes Dilemmas from Multiple Perspectives
Navigating high-stakes dilemmas involving conflicting values is challenging even for humans, let alone for AI. Yet prior work in evaluating the reasoning capabilities of large language models (LLMs) in such situations has been limited to everyday scenarios. To close this gap, this work first introduces CLASH (Character perspective-based LLM Assessments in Situations with High-stakes), a meticulously curated dataset consisting of 345 high-impact dilemmas along with 3,795 individual perspectives of diverse values. In particular, we design CLASH in a way to support the study of critical aspects of value-based decision-making processes which are missing from prior work, including understanding decision ambivalence and psychological discomfort as well as capturing the temporal shifts of values in characters' perspectives. By benchmarking 10 open and closed frontier models, we uncover several key findings. (1) Even the strongest models, such as GPT-4o and Claude-Sonnet, achieve less than 50% accuracy in identifying situations where the decision should be ambivalent, while they perform significantly better in clear-cut scenarios. (2) While LLMs reasonably predict psychological discomfort as marked by human, they inadequately comprehend perspectives involving value shifts, indicating a need for LLMs to reason over complex values. (3) Our experiments also reveal a significant correlation between LLMs' value preferences and their steerability towards a given value. (4) Finally, LLMs exhibit greater steerability when engaged in value reasoning from a third-party perspective, compared to a first-person setup, though certain value pairs benefit uniquely from the first-person framing.
CSPLADE: Learned Sparse Retrieval with Causal Language Models
In recent years, dense retrieval has been the focus of information retrieval (IR) research. While effective, dense retrieval produces uninterpretable dense vectors, and suffers from the drawback of large index size. Learned sparse retrieval (LSR) has emerged as promising alternative, achieving competitive retrieval performance while also being able to leverage the classical inverted index data structure for efficient retrieval. However, limited works have explored scaling LSR beyond BERT scale. In this work, we identify two challenges in training large language models (LLM) for LSR: (1) training instability during the early stage of contrastive training; (2) suboptimal performance due to pre-trained LLM's unidirectional attention. To address these challenges, we propose two corresponding techniques: (1) a lightweight adaptation training phase to eliminate training instability; (2) two model variants to enable bidirectional information. With these techniques, we are able to train LSR models with 8B scale LLM, and achieve competitive retrieval performance with reduced index size. Furthermore, we are among the first to analyze the performance-efficiency tradeoff of LLM-based LSR model through the lens of model quantization. Our findings provide insights into adapting LLMs for efficient retrieval modeling.
Name of Thrones: Evaluating How LLMs Rank Student Names, Race, and Gender in Status Hierarchies
Across cultures, names tell a lot about their bearers as they carry deep personal and cultural significance. Names also serve as powerful signals of gender, race, and status in the social hierarchy - a pecking order in which individual positions shape others' expectations on their perceived competence and worth. With the widespread adoption of LLMs and as names are often an input for LLMs, it is crucial to evaluate whether LLMs may sort people into status positions based on first and last names and, if so, whether it is in an unfair, biased fashion. While prior work has primarily investigated biases in first names, little attention has been paid to last names and even less to the combined effects of first and last names. In this study, we conduct a large-scale analysis of name variations across 5 ethnicities to examine how AI exhibits name biases. Our study investigates three key characteristics of inequality and finds that LLMs reflect and reinforce status hierarchies based on names that signal gender and ethnicity as they encode differential expectations of competence, leadership, and economic potential. Contrary to the common assumption that AI tends to favor Whites, we show that East and, in some contexts, South Asian names receive higher rankings. We also disaggregate Asians, a population projected to be the largest immigrant group in the U.S. by 2055. Our results challenge the monolithic Asian model minority assumption, illustrating a more complex and stratified model of bias. Gender moderates biases, with girls facing unfair disadvantages in certain racial groups. Additionally, spanning cultural categories by adopting Western first names improves AI-perceived status for East and Southeast Asian students, particularly for girls. Our findings underscore the importance of intersectional and more nuanced understandings of race, gender, and mixed identities in the evaluation of LLMs.
GUM-SAGE: A Novel Dataset and Approach for Graded Entity Salience Prediction
Determining and ranking the most salient entities in a text is critical for user-facing systems, especially as users increasingly rely on models to interpret long documents they only partially read. Graded entity salience addresses this need by assigning entities scores that reflect their relative importance in a text. Existing approaches fall into two main categories: subjective judgments of salience, which allow for gradient scoring but lack consistency, and summarization-based methods, which define salience as mention-worthiness in a summary, promoting explainability but limiting outputs to binary labels (entities are either summary-worthy or not). In this paper, we introduce a novel approach for graded entity salience that combines the strengths of both approaches. Using an English dataset spanning 12 spoken and written genres, we collect 5 summaries per document and calculate each entity's salience score based on its presence across these summaries. Our approach shows stronger correlation with scores based on human summaries and alignments, and outperforms existing techniques, including LLMs. We release our data and code at https://github.com/jl908069/gum_sum_salience to support further research on graded salient entity extraction.
The Art of Audience Engagement: LLM-Based Thin-Slicing of Scientific Talks
This paper examines the thin-slicing approach - the ability to make accurate judgments based on minimal information - in the context of scientific presentations. Drawing on research from nonverbal communication and personality psychology, we show that brief excerpts (thin slices) reliably predict overall presentation quality. Using a novel corpus of over one hundred real-life science talks, we employ Large Language Models (LLMs) to evaluate transcripts of full presentations and their thin slices. By correlating LLM-based evaluations of short excerpts with full-talk assessments, we determine how much information is needed for accurate predictions. Our results demonstrate that LLM-based evaluations align closely with human ratings, proving their validity, reliability, and efficiency. Critically, even very short excerpts (less than 10 percent of a talk) strongly predict overall evaluations. This suggests that the first moments of a presentation convey relevant information that is used in quality evaluations and can shape lasting impressions. The findings are robust across different LLMs and prompting strategies. This work extends thin-slicing research to public speaking and connects theories of impression formation to LLMs and current research on AI communication. We discuss implications for communication and social cognition research on message reception. Lastly, we suggest an LLM-based thin-slicing framework as a scalable feedback tool to enhance human communication.
Improving Instruct Models for Free: A Study on Partial Adaptation
Instruct models, obtained from various instruction tuning or post-training steps, are commonly deemed superior and more usable than their base counterpart. While the model gains instruction following ability, instruction tuning may lead to forgetting the knowledge from pre-training or it may encourage the model being overly conversational or verbose. This, in turn, can lead to degradation of in-context few-shot learning performance. In this work, we study the performance trajectory between base and instruct models by scaling down the strength of instruction-tuning via the partial adaption method. We show that, across several model families and model sizes, reducing the strength of instruction-tuning results in material improvement on a few-shot in-context learning benchmark covering a variety of classic natural language tasks. This comes at the cost of losing some degree of instruction following ability as measured by AlpacaEval. Our study shines light on the potential trade-off between in-context learning and instruction following abilities that is worth considering in practice.
comment: Author ordering chosen at random
AskQE: Question Answering as Automatic Evaluation for Machine Translation
How can a monolingual English speaker determine whether an automatic translation in French is good enough to be shared? Existing MT error detection and quality estimation (QE) techniques do not address this practical scenario. We introduce AskQE, a question generation and answering framework designed to detect critical MT errors and provide actionable feedback, helping users decide whether to accept or reject MT outputs even without the knowledge of the target language. Using ContraTICO, a dataset of contrastive synthetic MT errors in the COVID-19 domain, we explore design choices for AskQE and develop an optimized version relying on LLaMA-3 70B and entailed facts to guide question generation. We evaluate the resulting system on the BioMQM dataset of naturally occurring MT errors, where AskQE has higher Kendall's Tau correlation and decision accuracy with human ratings compared to other QE metrics.
comment: 38 pages, 7 figures
GraphicBench: A Planning Benchmark for Graphic Design with Language Agents
Large Language Model (LLM)-powered agents have unlocked new possibilities for automating human tasks. While prior work has focused on well-defined tasks with specified goals, the capabilities of agents in creative design tasks with open-ended goals remain underexplored. We introduce GraphicBench, a new planning benchmark for graphic design that covers 1,079 user queries and input images across four design types. We further present GraphicTown, an LLM agent framework with three design experts and 46 actions (tools) to choose from for executing each step of the planned workflows in web environments. Experiments with six LLMs demonstrate their ability to generate workflows that integrate both explicit design constraints from user queries and implicit commonsense constraints. However, these workflows often do not lead to successful execution outcomes, primarily due to challenges in: (1) reasoning about spatial relationships, (2) coordinating global dependencies across experts, and (3) retrieving the most appropriate action per step. We envision GraphicBench as a challenging yet valuable testbed for advancing LLM-agent planning and execution in creative design tasks.
comment: 41 pages, 11 figures
ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
HypoBench: Towards Systematic and Principled Benchmarking for Hypothesis Generation
There is growing interest in hypothesis generation with large language models (LLMs). However, fundamental questions remain: what makes a good hypothesis, and how can we systematically evaluate methods for hypothesis generation? To address this, we introduce HypoBench, a novel benchmark designed to evaluate LLMs and hypothesis generation methods across multiple aspects, including practical utility, generalizability, and hypothesis discovery rate. HypoBench includes 7 real-world tasks and 5 synthetic tasks with 194 distinct datasets. We evaluate four state-of-the-art LLMs combined with six existing hypothesis-generation methods. Overall, our results suggest that existing methods are capable of discovering valid and novel patterns in the data. However, the results from synthetic datasets indicate that there is still significant room for improvement, as current hypothesis generation methods do not fully uncover all relevant or meaningful patterns. Specifically, in synthetic settings, as task difficulty increases, performance significantly drops, with best models and methods only recovering 38.8% of the ground-truth hypotheses. These findings highlight challenges in hypothesis generation and demonstrate that HypoBench serves as a valuable resource for improving AI systems designed to assist scientific discovery.
comment: 29 pages, 6 figures, website link: https://chicagohai.github.io/HypoBench/
Graph-Driven Multimodal Feature Learning Framework for Apparent Personality Assessment
Predicting personality traits automatically has become a challenging problem in computer vision. This paper introduces an innovative multimodal feature learning framework for personality analysis in short video clips. For visual processing, we construct a facial graph and design a Geo-based two-stream network incorporating an attention mechanism, leveraging both Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to capture static facial expressions. Additionally, ResNet18 and VGGFace networks are employed to extract global scene and facial appearance features at the frame level. To capture dynamic temporal information, we integrate a BiGRU with a temporal attention module for extracting salient frame representations. To enhance the model's robustness, we incorporate the VGGish CNN for audio-based features and XLM-Roberta for text-based features. Finally, a multimodal channel attention mechanism is introduced to integrate different modalities, and a Multi-Layer Perceptron (MLP) regression model is used to predict personality traits. Experimental results confirm that our proposed framework surpasses existing state-of-the-art approaches in performance.
Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA
Checkboxes are critical in real-world document processing where the presence or absence of ticks directly informs data extraction and decision-making processes. Yet, despite the strong performance of Large Vision and Language Models across a wide range of tasks, they struggle with interpreting checkable content. This challenge becomes particularly pressing in industries where a single overlooked checkbox may lead to costly regulatory or contractual oversights. To address this gap, we introduce the CheckboxQA dataset, a targeted resource designed to evaluate and improve model performance on checkbox-related tasks. It reveals the limitations of current models and serves as a valuable tool for advancing document comprehension systems, with significant implications for applications in sectors such as legal tech and finance. The dataset is publicly available at: https://github.com/Snowflake-Labs/CheckboxQA
Large language models could be rote learners
Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs), yet their reliability is undermined by benchmark contamination. In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization in LLM evaluation. First, by analyzing model performance under different memorization conditions, we uncover a counterintuitive trend: LLMs perform worse on memorized MCQs than on non-memorized ones, indicating the coexistence of two distinct learning phenomena, i.e., rote memorization and genuine capability learning. To disentangle them, we propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment. Experiments validate TrinEval's effectiveness in reformulation, and its evaluation reveals that common LLMs may memorize by rote 20.5% of knowledge points (in MMLU on average).
comment: Work in Progress
Do "New Snow Tablets" Contain Snow? Large Language Models Over-Rely on Names to Identify Ingredients of Chinese Drugs
Traditional Chinese Medicine (TCM) has seen increasing adoption in healthcare, with specialized Large Language Models (LLMs) emerging to support clinical applications. A fundamental requirement for these models is accurate identification of TCM drug ingredients. In this paper, we evaluate how general and TCM-specialized LLMs perform when identifying ingredients of Chinese drugs. Our systematic analysis reveals consistent failure patterns: models often interpret drug names literally, overuse common herbs regardless of relevance, and exhibit erratic behaviors when faced with unfamiliar formulations. LLMs also fail to understand the verification task. These findings demonstrate that current LLMs rely primarily on drug names rather than possessing systematic pharmacological knowledge. To address these limitations, we propose a Retrieval Augmented Generation (RAG) approach focused on ingredient names. Experiments across 220 TCM formulations show our method significantly improves accuracy from approximately 50% to 82% in ingredient verification tasks. Our work highlights critical weaknesses in current TCM-specific LLMs and offers a practical solution for enhancing their clinical reliability.
ClinicalGPT-R1: Pushing reasoning capability of generalist disease diagnosis with large language model
Recent advances in reasoning with large language models (LLMs)has shown remarkable reasoning capabilities in domains such as mathematics and coding, yet their application to clinical diagnosis remains underexplored. Here, we introduce ClinicalGPT-R1, a reasoning enhanced generalist large language model for disease diagnosis. Trained on a dataset of 20,000 real-world clinical records, ClinicalGPT-R1 leverages diverse training strategies to enhance diagnostic reasoning. To benchmark performance, we curated MedBench-Hard, a challenging dataset spanning seven major medical specialties and representative diseases. Experimental results demonstrate that ClinicalGPT-R1 outperforms GPT-4o in Chinese diagnostic tasks and achieves comparable performance to GPT-4 in English settings. This comparative study effectively validates the superior performance of ClinicalGPT-R1 in disease diagnosis tasks. Resources are available at https://github.com/medfound/medfound.
comment: 8 pages, 6 figures
Can you map it to English? The Role of Cross-Lingual Alignment in Multilingual Performance of LLMs
Large language models (LLMs) pre-trained predominantly on English text exhibit surprising multilingual capabilities, yet the mechanisms driving cross-lingual generalization remain poorly understood. This work investigates how the alignment of representations for text written in different languages correlates with LLM performance on natural language understanding tasks and translation tasks, both at the language and the instance level. For this purpose, we introduce cross-lingual alignment metrics such as the Discriminative Alignment Index (DALI) to quantify the alignment at an instance level for discriminative tasks. Through experiments on three natural language understanding tasks (Belebele, XStoryCloze, XCOPA), and machine translation, we find that while cross-lingual alignment metrics strongly correlate with task accuracy at the language level, the sample-level alignment often fails to distinguish correct from incorrect predictions, exposing alignment as a necessary but insufficient condition for success.
Graph Linearization Methods for Reasoning on Graphs with Large Language Models
Large language models have evolved to process multiple modalities beyond text, such as images and audio, which motivates us to explore how to effectively leverage them for graph reasoning tasks. The key question, therefore, is how to transform graphs into linear sequences of tokens, a process we term "graph linearization", so that LLMs can handle graphs naturally. We consider that graphs should be linearized meaningfully to reflect certain properties of natural language text, such as local dependency and global alignment, in order to ease contemporary LLMs, trained on trillions of textual tokens, better understand graphs. To achieve this, we developed several graph linearization methods based on graph centrality and degeneracy. These methods are further enhanced using node relabeling techniques. The experimental results demonstrate the effectiveness of our methods compared to the random linearization baseline. Our work introduces novel graph representations suitable for LLMs, contributing to the potential integration of graph machine learning with the trend of multimodal processing using a unified transformer model.
Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
comment: 24 pages, 11 figures
Unmasking Deceptive Visuals: Benchmarking Multimodal Large Language Models on Misleading Chart Question Answering
Misleading chart visualizations, which intentionally manipulate data representations to support specific claims, can distort perceptions and lead to incorrect conclusions. Despite decades of research, misleading visualizations remain a widespread and pressing issue. Recent advances in multimodal large language models (MLLMs) have demonstrated strong chart comprehension capabilities, yet no existing work has systematically evaluated their ability to detect and interpret misleading charts. This paper introduces the Misleading Chart Question Answering (Misleading ChartQA) Benchmark, a large-scale multimodal dataset designed to assess MLLMs in identifying and reasoning about misleading charts. It contains over 3,000 curated examples, covering 21 types of misleaders and 10 chart types. Each example includes standardized chart code, CSV data, and multiple-choice questions with labeled explanations, validated through multi-round MLLM checks and exhausted expert human review. We benchmark 16 state-of-the-art MLLMs on our dataset, revealing their limitations in identifying visually deceptive practices. We also propose a novel pipeline that detects and localizes misleaders, enhancing MLLMs' accuracy in misleading chart interpretation. Our work establishes a foundation for advancing MLLM-driven misleading chart comprehension. We publicly release the sample dataset to support further research in this critical area.
comment: 31 pages in total. Under Review
Automatic Item Generation for Personality Situational Judgment Tests with Large Language Models
Personality assessment, particularly through situational judgment tests (SJTs), is a vital tool for psychological research, talent selection, and educational evaluation. This study explores the potential of GPT-4, a state-of-the-art large language model (LLM), to automate the generation of personality situational judgment tests (PSJTs) in Chinese. Traditional SJT development is labor-intensive and prone to biases, while GPT-4 offers a scalable, efficient alternative. Two studies were conducted: Study 1 evaluated the impact of prompt design and temperature settings on content validity, finding that optimized prompts with a temperature of 1.0 produced creative and accurate items. Study 2 assessed the psychometric properties of GPT-4-generated PSJTs, revealing that they demonstrated satisfactory reliability and validity, surpassing the performance of manually developed tests in measuring the Big Five personality traits. This research highlights GPT-4's effectiveness in developing high-quality PSJTs, providing a scalable and innovative method for psychometric test development. These findings expand the possibilities of automatic item generation and the application of LLMs in psychology, and offer practical implications for streamlining test development processes in resource-limited settings.
comment: Submitted to Computers in Human Behavior Reports. 54 pages (main text), 12 pages (appendix), and 5 figures
Lateral Phishing With Large Language Models: A Large Organization Comparative Study
The emergence of Large Language Models (LLMs) has heightened the threat of phishing emails by enabling the generation of highly targeted, personalized, and automated attacks. Traditionally, many phishing emails have been characterized by typos, errors, and poor language. These errors can be mitigated by LLMs, potentially lowering the barrier for attackers. Despite this, there is a lack of large-scale studies comparing the effectiveness of LLM-generated lateral phishing emails to those crafted by humans. Current literature does not adequately address the comparative effectiveness of LLM and human-generated lateral phishing emails in a real-world, large-scale organizational setting, especially considering the potential for LLMs to generate more convincing and error-free phishing content. To address this gap, we conducted a pioneering study within a large university, targeting its workforce of approximately 9,000 individuals including faculty, staff, administrators, and student workers. Our results indicate that LLM-generated lateral phishing emails are as effective as those written by communications professionals, emphasizing the critical threat posed by LLMs in leading phishing campaigns. We break down the results of the overall phishing experiment, comparing vulnerability between departments and job roles. Furthermore, to gather qualitative data, we administered a detailed questionnaire, revealing insights into the reasons and motivations behind vulnerable employee's actions. This study contributes to the understanding of cyber security threats in educational institutions and provides a comprehensive comparison of LLM and human-generated phishing emails' effectiveness, considering the potential for LLMs to generate more convincing content. The findings highlight the need for enhanced user education and system defenses to mitigate the growing threat of AI-powered phishing attacks.
comment: Accepted for publication in IEEE Access. This version includes revisions following peer review
CMAT: A Multi-Agent Collaboration Tuning Framework for Enhancing Small Language Models
Open large language models (LLMs) have significantly advanced the field of natural language processing, showcasing impressive performance across various tasks.Despite the significant advancements in LLMs, their effective operation still relies heavily on human input to accurately guide the dialogue flow, with agent tuning being a crucial optimization technique that involves human adjustments to the model for better response to such guidance.Addressing this dependency, our work introduces the TinyAgent model, trained on a meticulously curated high-quality dataset. We also present the Collaborative Multi-Agent Tuning (CMAT) framework, an innovative system designed to augment language agent capabilities through adaptive weight updates based on environmental feedback. This framework fosters collaborative learning and real-time adaptation among multiple intelligent agents, enhancing their context-awareness and long-term memory. In this research, we propose a new communication agent framework that integrates multi-agent systems with environmental feedback mechanisms, offering a scalable method to explore cooperative behaviors. Notably, our TinyAgent-7B model exhibits performance on par with GPT-3.5, despite having fewer parameters, signifying a substantial improvement in the efficiency and effectiveness of LLMs.
Enhancing Commentary Strategies for Imperfect Information Card Games: A Study of Large Language Models in Guandan Commentary
Recent advancements in large language models (LLMs) have unlocked the potential for generating high-quality game commentary. However, producing insightful and engaging commentary for complex games with incomplete information remains a significant challenge. In this paper, we introduce a novel commentary method that combine Reinforcement Learning (RL) and LLMs, tailored specifically for the Chinese card game \textit{Guandan}. Our system leverages RL to generate intricate card-playing scenarios and employs LLMs to generate corresponding commentary text, effectively emulating the strategic analysis and narrative prowess of professional commentators. The framework comprises a state commentary guide, a Theory of Mind (ToM)-based strategy analyzer, and a style retrieval module, which seamlessly collaborate to deliver detailed and context-relevant game commentary in the Chinese language environment. We empower LLMs with ToM capabilities and refine both retrieval and information filtering mechanisms. This facilitates the generation of personalized commentary content. Our experimental results showcase the substantial enhancement in performance achieved by the proposed commentary framework when applied to open-source LLMs, surpassing the performance of GPT-4 across multiple evaluation metrics.
MultiLoKo: a multilingual local knowledge benchmark for LLMs spanning 31 languages
We present MultiLoKo, a new benchmark for evaluating multilinguality in LLMs covering 31 languages. MultiLoKo consists of three partitions: a main partition consisting of 500 questions per language, separately sourced to be locally relevant to the specific language, and two translated partitions, containing human-authored translations from 30 non-English languages to English and vice versa. For comparison, we also release corresponding machine-authored translations. The data is equally distributed over two splits: a dev split and a blind, out-of-distribution test split. MultiLoKo can be used to study a variety of questions regarding the multilinguality of LLMs as well as meta-questions about multilingual benchmark creation. We compute MultiLoKo scores for 11 base and chat models marketed to be multilingual and study their average performance, their performance parity across languages, how much their ability to answer questions depends on the question language, and which languages are most difficult. None of the models we studied performs well on MultiLoKo, as indicated by low average scores as well as large differences between the best and worst scoring languages. Furthermore, we find a substantial effect of the question language, indicating sub-optimal knowledge transfer between languages. Lastly, we find that using local vs English-translated data can result in differences more than 20 points for the best performing models, drastically change the estimated difficulty of some languages. For using machines instead of human translations, we find a weaker effect on ordering of language difficulty, a larger difference in model rankings, and a substantial drop in estimated performance for all models.
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
SafeChat: A Framework for Building Trustworthy Collaborative Assistants and a Case Study of its Usefulness
Collaborative assistants, or chatbots, are data-driven decision support systems that enable natural interaction for task completion. While they can meet critical needs in modern society, concerns about their reliability and trustworthiness persist. In particular, Large Language Model (LLM)-based chatbots like ChatGPT, Gemini, and DeepSeek are becoming more accessible. However, such chatbots have limitations, including their inability to explain response generation, the risk of generating problematic content, the lack of standardized testing for reliability, and the need for deep AI expertise and extended development times. These issues make chatbots unsuitable for trust-sensitive applications like elections or healthcare. To address these concerns, we introduce SafeChat, a general architecture for building safe and trustworthy chatbots, with a focus on information retrieval use cases. Key features of SafeChat include: (a) safety, with a domain-agnostic design where responses are grounded and traceable to approved sources (provenance), and 'do-not-respond' strategies to prevent harmful answers; (b) usability, with automatic extractive summarization of long responses, traceable to their sources, and automated trust assessments to communicate expected chatbot behavior, such as sentiment; and (c) fast, scalable development, including a CSV-driven workflow, automated testing, and integration with various devices. We implemented SafeChat in an executable framework using the open-source chatbot platform Rasa. A case study demonstrates its application in building ElectionBot-SC, a chatbot designed to safely disseminate official election information. SafeChat is being used in many domains, validating its potential, and is available at: https://github.com/ai4society/trustworthy-chatbot.
Towards Predictive Communication with Brain-Computer Interfaces integrating Large Language Models
This perspective article aims at providing an outline of the state of the art and future developments towards the integration of cutting-edge predictive language models with BCI. A synthetic overview of early and more recent linguistic models, from natural language processing (NLP) models to recent LLM, that to a varying extent improved predictive writing systems, is first provided. Second, a summary of previous BCI implementations integrating language models is presented. The few preliminary studies investigating the possible combination of LLM with BCI spellers to efficiently support fast communication and control are then described. Finally, current challenges and limitations towards the full integration of LLM with BCI systems are discussed. Recent investigations suggest that the combination of LLM with BCI might drastically improve human-computer interaction in patients with motor or language disorders as well as in healthy individuals. In particular, the pretrained autoregressive transformer models, such as GPT, that capitalize from parallelization, learning through pre-training and fine-tuning, promise a substantial improvement of BCI for communication with respect to previous systems incorporating simpler language models. Indeed, among various models, the GPT-2 was shown to represent an excellent candidate for its integration into BCI although testing was only perfomed on simulated conversations and not on real BCI scenarios. Prospectively, the full integration of LLM with advanced BCI systems might lead to a big leap forward towards fast, efficient and user-adaptive neurotechnology.
comment: needs major revision
Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models
As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transformer model architecture with Mamba layers that perform constant computation and require constant memory per generated token. We show that Nemotron-H models offer either better or on-par accuracy compared to other similarly-sized state-of-the-art open-sourced Transformer models (e.g., Qwen-2.5-7B/72B and Llama-3.1-8B/70B), while being up to 3$\times$ faster at inference. To further increase inference speed and reduce the memory required at inference time, we created Nemotron-H-47B-Base from the 56B model using a new compression via pruning and distillation technique called MiniPuzzle. Nemotron-H-47B-Base achieves similar accuracy to the 56B model, but is 20% faster to infer. In addition, we introduce an FP8-based training recipe and show that it can achieve on par results with BF16-based training. This recipe is used to train the 56B model. We are releasing Nemotron-H base model checkpoints with support in Hugging Face and NeMo.
Retro-Search: Exploring Untaken Paths for Deeper and Efficient Reasoning
Large reasoning models exhibit remarkable reasoning capabilities via long, elaborate reasoning trajectories. Supervised fine-tuning on such reasoning traces, also known as distillation, can be a cost-effective way to boost reasoning capabilities of student models. However, empirical observations reveal that these reasoning trajectories are often suboptimal, switching excessively between different lines of thought, resulting in under-thinking, over-thinking, and even degenerate responses. We introduce Retro-Search, an MCTS-inspired search algorithm, for distilling higher quality reasoning paths from large reasoning models. Retro-Search retrospectively revises reasoning paths to discover better, yet shorter traces, which can then lead to student models with enhanced reasoning capabilities with shorter, thus faster inference. Our approach can enable two use cases: self-improvement, where models are fine-tuned on their own Retro-Search-ed thought traces, and weak-to-strong improvement, where a weaker model revises stronger model's thought traces via Retro-Search. For self-improving, R1-distill-7B, fine-tuned on its own Retro-Search-ed traces, reduces the average reasoning length by 31.2% while improving performance by 7.7% across seven math benchmarks. For weak-to-strong improvement, we retrospectively revise R1-671B's traces from the OpenThoughts dataset using R1-distill-32B as the Retro-Search-er, a model 20x smaller. Qwen2.5-32B, fine-tuned on this refined data, achieves performance comparable to R1-distill-32B, yielding an 11.3% reduction in reasoning length and a 2.4% performance improvement compared to fine-tuning on the original OpenThoughts data. Our work counters recently emergent viewpoints that question the relevance of search algorithms in the era of large reasoning models, by demonstrating that there are still opportunities for algorithmic advancements, even for frontier models.
comment: Code and data will be publicly released upon internal approval
Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
What is the Role of Small Models in the LLM Era: A Survey
Large Language Models (LLMs) have made significant progress in advancing artificial general intelligence (AGI), leading to the development of increasingly large models such as GPT-4 and LLaMA-405B. However, scaling up model sizes results in exponentially higher computational costs and energy consumption, making these models impractical for academic researchers and businesses with limited resources. At the same time, Small Models (SMs) are frequently used in practical settings, although their significance is currently underestimated. This raises important questions about the role of small models in the era of LLMs, a topic that has received limited attention in prior research. In this work, we systematically examine the relationship between LLMs and SMs from two key perspectives: Collaboration and Competition. We hope this survey provides valuable insights for practitioners, fostering a deeper understanding of the contribution of small models and promoting more efficient use of computational resources. The code is available at https://github.com/tigerchen52/role_of_small_models
comment: a survey paper of small models
VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge
Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.
comment: 56 pages, 43 figures
What Is a Good Caption? A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions using F1-score. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides the first holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of capabilities.
Safe Text-to-Image Generation: Simply Sanitize the Prompt Embedding
In recent years, text-to-image (T2I) generation models have made significant progress in generating high-quality images that align with text descriptions. However, these models also face the risk of unsafe generation, potentially producing harmful content that violates usage policies, such as explicit material. Existing safe generation methods typically focus on suppressing inappropriate content by erasing undesired concepts from visual representations, while neglecting to sanitize the textual representation. Although these methods help mitigate the risk of misuse to some extent, their robustness remains insufficient when dealing with adversarial attacks. Given that semantic consistency between input text and output image is a core requirement of T2I models, we identify that textual representations are likely the primary source of unsafe generation. To this end, we propose Embedding Sanitizer (ES), which enhances the safety of T2I models by sanitizing inappropriate concepts in prompt embeddings. To our knowledge, ES is the first interpretable safe generation framework that assigns a score to each token in the prompt to indicate its potential harmfulness. In addition, ES adopts a plug-and-play modular design, offering compatibility for seamless integration with various T2I models and other safeguards. Evaluations on five prompt benchmarks show that ES outperforms eleven existing safeguard baselines, achieving state-of-the-art robustness while maintaining high-quality image generation.
Causal Graphical Models for Vision-Language Compositional Understanding ICLR 2025
Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.
comment: Accepted at ICLR 2025
Fine-tuning Whisper on Low-Resource Languages for Real-World Applications
This paper presents a new approach to fine-tuning OpenAI's Whisper model for low-resource languages by introducing a novel data generation method that converts sentence-level data into a long-form corpus, using Swiss German as a case study. Non-sentence-level data, which could improve the performance of long-form audio, is difficult to obtain and often restricted by copyright laws. Our method bridges this gap by transforming more accessible sentence-level data into a format that preserves the model's ability to handle long-form audio and perform segmentation without requiring non-sentence-level data. Our data generation process improves performance in several real-world applications and leads to the development of a new state-of-the-art speech-to-text (STT) model for Swiss German. We compare our model with a non-fine-tuned Whisper and our previous state-of-the-art Swiss German STT models, where our new model achieves higher BLEU scores. Our results also indicate that the proposed method is adaptable to other low-resource languages, supported by written guidance and code that allows the creation of fine-tuned Whisper models, which keep segmentation capabilities and allow the transcription of longer audio files using only sentence-level data with high quality.
SEA-LION: Southeast Asian Languages in One Network
Recently, Large Language Models (LLMs) have dominated much of the artificial intelligence scene with their ability to process and generate natural languages. However, the majority of LLM research and development remains English-centric, leaving low-resource languages such as those in the Southeast Asian (SEA) region under-represented. To address this representation gap, we introduce Llama-SEA-LION-v3-8B-IT and Gemma-SEA-LION-v3-9B-IT, two cutting-edge multilingual LLMs designed for SEA languages. The SEA-LION family of LLMs supports 11 SEA languages, namely English, Chinese, Indonesian, Vietnamese, Malay, Thai, Burmese, Lao, Filipino, Tamil, and Khmer. Our work leverages large-scale multilingual continued pre-training with a comprehensive post-training regime involving multiple stages of instruction fine-tuning, alignment, and model merging. Evaluation results on multilingual benchmarks indicate that our models achieve state-of-the-art performance across LLMs supporting SEA languages. We open-source the models to benefit the wider SEA community.
comment: We released our model at https://huggingface.co/collections/aisingapore/sea-lionv3-672589a39cdadd6a5b199581
Teaching Transformers Causal Reasoning through Axiomatic Training
For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since active interventions are costly, we study to what extent a system can learn causal reasoning from symbolic demonstrations of causal axioms. Specifically, we present an axiomatic training method where the system learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the system would learn to generalize from the axiom demonstrations to more complex scenarios. Our results, based on applying axiomatic training to learn the transitivity axiom and d-separation rule, indicate that such generalization is possible. To avoid data contamination issues, we start with a 67 million parameter transformer model and train it from scratch. On both tasks, we find that a model trained on linear causal chains (along with some noisy variations) can generalize well to complex graphs, including longer causal chains, causal chains with reversed order, and graphs with branching.To handle diverse text inputs, the same method is extended to finetune language models. Finetuning Llama-3.1 8B model on our axiomatic data leads to significant gains on causal benchmarks such as Corr2Cause and CLEAR, in some cases providing state-of-the-art performance surpassing GPT-4.
ELTEX: A Framework for Domain-Driven Synthetic Data Generation
We introduce Efficient LLM Token Extraction (ELTEX), a framework addressing the critical challenge of LLM domain specialization by systematically extracting and integrating domain indicators throughout synthetic data generation. Unlike approaches relying on implicit knowledge transfer, ELTEX explicitly leverages domain signals to maintain specialized knowledge integrity. In our cybersecurity case study, ELTEX-enhanced data enables a fine-tuned Gemma-2B model to achieve performance competitive with GPT-4o on blockchain cyberattack classification while reducing computational requirements. Our Google Sheets implementation makes ELTEX accessible to non-technical users. Our contributions include: (1) the ELTEX framework; (2) Google Sheets Add-on implementation; (3) empirical validation showing how ELTEX bridges performance gaps between small and large models; and (4) a synthetic dataset of 11,448 texts for blockchain cyberattack detection.
Preference-based Learning with Retrieval Augmented Generation for Conversational Question Answering WWW 2025
Conversational Question Answering (ConvQA) involves multiple subtasks, i) to understand incomplete questions in their context, ii) to retrieve relevant information, and iii) to generate answers. This work presents PRAISE, a pipeline-based approach for ConvQA that trains LLM adapters for each of the three subtasks. As labeled training data for individual subtasks is unavailable in practice, PRAISE learns from its own generations using the final answering performance as feedback signal without human intervention and treats intermediate information, like relevant evidence, as weakly labeled data. We apply Direct Preference Optimization by contrasting successful and unsuccessful samples for each subtask. In our experiments, we show the effectiveness of this training paradigm: PRAISE shows improvements per subtask and achieves new state-of-the-art performance on a popular ConvQA benchmark, by gaining 15.5 percentage points increase in precision over baselines.
comment: WWW 2025 Short Paper, 5 pages
Linear-MoE: Linear Sequence Modeling Meets Mixture-of-Experts
Linear Sequence Modeling (LSM) like linear attention, state space models and linear RNNs, and Mixture-of-Experts (MoE) have recently emerged as significant architectural improvements. In this paper, we introduce Linear-MoE, a production-level system for modeling and training large-scale models that integrate LSM with MoE. Linear-MoE leverages the advantages of both LSM modules for linear-complexity sequence modeling and MoE layers for sparsely activation, aiming to offer high performance with efficient training. The Linear-MoE system comprises: 1) Modeling subsystem, which provides a unified framework supporting all instances of LSM. and 2) Training subsystem, which facilitates efficient training by incorporating various advanced parallelism technologies, particularly Sequence Parallelism designed for Linear-MoE models. Additionally, we explore hybrid models that combine Linear-MoE layers with standard Transformer-MoE layers with its Sequence Parallelism to further enhance model flexibility and performance. Evaluations on two model series, A0.3B-2B and A1B-7B, demonstrate Linear-MoE achieves efficiency gains while maintaining competitive performance on various benchmarks, showcasing its potential as a next-generation foundational model architecture. Code: https://github.com/OpenSparseLLMs/Linear-MoE.
comment: Technical report, 17 pages
Towards Hierarchical Multi-Agent Workflows for Zero-Shot Prompt Optimization
Large language models (LLMs) have shown great progress in responding to user questions, allowing for a multitude of diverse applications. Yet, the quality of LLM outputs heavily depends on the prompt design, where a good prompt might enable the LLM to answer a very challenging question correctly. Therefore, recent works have developed many strategies for improving the prompt, including both manual crafting and in-domain optimization. However, their efficacy in unrestricted scenarios remains questionable, as the former depends on human design for specific questions and the latter usually generalizes poorly to unseen scenarios. To address these problems, we give LLMs the freedom to design the best prompts according to themselves. Specifically, we include a hierarchy of LLMs, first constructing a prompt with precise instructions and accurate wording in a hierarchical manner, and then using this prompt to generate the final answer to the user query. We term this pipeline Hierarchical Multi-Agent Workflow, or HMAW. In contrast with prior works, HMAW imposes no human restriction and requires no training, and is completely task-agnostic while capable of adjusting to the nuances of the underlying task. Through both quantitative and qualitative experiments across multiple benchmarks, we verify that despite its simplicity, the proposed approach can create detailed and suitable prompts, further boosting the performance of current LLMs.
CARE: Aligning Language Models for Regional Cultural Awareness
Existing language models (LMs) often exhibit a Western-centric bias and struggle to represent diverse cultural knowledge. Previous attempts to address this rely on synthetic data and express cultural knowledge only in English. In this work, we study whether a small amount of human-written, multilingual cultural preference data can improve LMs across various model families and sizes. We first introduce CARE, a multilingual resource of 24.1k responses with human preferences on 2,580 questions about Chinese and Arab cultures, all carefully annotated by native speakers and offering more balanced coverage. Using CARE, we demonstrate that cultural alignment improves existing LMs beyond generic resources without compromising general capabilities. Moreover, we evaluate the cultural awareness of LMs, native speakers, and retrieved web content when queried in different languages. Our experiment reveals regional disparities among LMs, which may also be reflected in the documentation gap: native speakers often take everyday cultural commonsense and social norms for granted, while non-natives are more likely to actively seek out and document them. CARE is publicly available at https://github.com/Guochry/CARE (we plan to add Japanese data in the near future).
comment: 24 pages
FairPy: A Toolkit for Evaluation of Prediction Biases and their Mitigation in Large Language Models
Recent studies have demonstrated that large pretrained language models (LLMs) such as BERT and GPT-2 exhibit biases in token prediction, often inherited from the data distributions present in their training corpora. In response, a number of mathematical frameworks have been proposed to quantify, identify, and mitigate these the likelihood of biased token predictions. In this paper, we present a comprehensive survey of such techniques tailored towards widely used LLMs such as BERT, GPT-2, etc. We additionally introduce Fairpy, a modular and extensible toolkit that provides plug-and-play interfaces for integrating these mathematical tools, enabling users to evaluate both pretrained and custom language models. Fairpy supports the implementation of existing debiasing algorithms. The toolkit is open-source and publicly available at: \href{https://github.com/HrishikeshVish/Fairpy}{https://github.com/HrishikeshVish/Fairpy}
TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights ICLR 2025
Direct Preference Optimization (DPO) has been widely adopted for preference alignment of Large Language Models (LLMs) due to its simplicity and effectiveness. However, DPO is derived as a bandit problem in which the whole response is treated as a single arm, ignoring the importance differences between tokens, which may affect optimization efficiency and make it difficult to achieve optimal results. In this work, we propose that the optimal data for DPO has equal expected rewards for each token in winning and losing responses, as there is no difference in token importance. However, since the optimal dataset is unavailable in practice, we propose using the original dataset for importance sampling to achieve unbiased optimization. Accordingly, we propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward. Inspired by previous works, we estimate the token importance weights using the difference in prediction probabilities from a pair of contrastive LLMs. We explore three methods to construct these contrastive LLMs: (1) guiding the original LLM with contrastive prompts, (2) training two separate LLMs using winning and losing responses, and (3) performing forward and reverse DPO training with winning and losing responses. Experiments show that TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks. We also visualize the estimated weights, demonstrating their ability to identify key token positions.
comment: Published in ICLR 2025, code in https://github.com/exlaw/TIS-DPO
LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving
Existing learning-based autonomous driving (AD) systems face challenges in comprehending high-level information, generalizing to rare events, and providing interpretability. To address these problems, this work employs Large Language Models (LLMs) as a decision-making component for complex AD scenarios that require human commonsense understanding. We devise cognitive pathways to enable comprehensive reasoning with LLMs, and develop algorithms for translating LLM decisions into actionable driving commands. Through this approach, LLM decisions are seamlessly integrated with low-level controllers by guided parameter matrix adaptation. Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination, thanks to the commonsense reasoning capabilities of LLMs. This paper presents an initial step toward leveraging LLMs as effective decision-makers for intricate AD scenarios in terms of safety, efficiency, generalizability, and interoperability. We aspire for it to serve as inspiration for future research in this field. Project page: https://sites.google.com/view/llm-mpc
System-1.x: Learning to Balance Fast and Slow Planning with Language Models ICLR 2025
Language models can be used to solve long-horizon planning problems in two distinct modes: a fast 'System-1' mode, directly generating plans without any explicit search or backtracking, and a slow 'System-2' mode, planning step-by-step by explicitly searching over possible actions. While System-2 is typically more effective, it is also more computationally expensive, making it infeasible for long plans or large action spaces. Moreover, isolated System-1 or 2 ignores the user's end goals, failing to provide ways to control the model's behavior. To this end, we propose the System-1.x Planner, a controllable planning framework with LLMs that is capable of generating hybrid plans and balancing between the two planning modes based on the difficulty of the problem at hand. System-1.x consists of (i) a controller, (ii) a System-1 Planner, and (iii) a System-2 Planner. Based on a user-specified hybridization factor (x) governing the mixture between System-1 and 2, the controller decomposes a problem into sub-goals, and classifies them as easy or hard to be solved by either System-1 or 2, respectively. We fine-tune all three components on top of a single base LLM, requiring only search traces as supervision. Experiments with two diverse planning tasks -- Maze Navigation and Blocksworld -- show that our System-1.x Planner outperforms a System-1 Planner, a System-2 Planner trained to approximate A* search, and also a symbolic planner (A*). We demonstrate the following key properties of our planner: (1) controllability: increasing the hybridization factor (e.g., System-1.75 vs 1.5) performs more search, improving performance, (2) flexibility: by building a neuro-symbolic variant with a neural System-1 and a symbolic System-2, we can use existing symbolic methods, and (3) generalizability: by being able to learn from different search algorithms, our method is robust to the choice of search algorithm.
comment: ICLR 2025 (Camera-Ready)
LLM$\times$MapReduce-V2: Entropy-Driven Convolutional Test-Time Scaling for Generating Long-Form Articles from Extremely Long Resources
Long-form generation is crucial for a wide range of practical applications, typically categorized into short-to-long and long-to-long generation. While short-to-long generations have received considerable attention, generating long texts from extremely long resources remains relatively underexplored. The primary challenge in long-to-long generation lies in effectively integrating and analyzing relevant information from extensive inputs, which remains difficult for current large language models (LLMs). In this paper, we propose LLM$\times$MapReduce-V2, a novel test-time scaling strategy designed to enhance the ability of LLMs to process extremely long inputs. Drawing inspiration from convolutional neural networks, which iteratively integrate local features into higher-level global representations, LLM$\times$MapReduce-V2 utilizes stacked convolutional scaling layers to progressively expand the understanding of input materials. Both quantitative and qualitative experimental results demonstrate that our approach substantially enhances the ability of LLMs to process long inputs and generate coherent, informative long-form articles, outperforming several representative baselines. Both LLM$\times$MapReduce-V2 and SurveyEval are publicly available at https://github.com/thunlp/LLMxMapReduce .
IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities AAAI 2025
In the field of multimodal large language models (MLLMs), common methods typically involve unfreezing the language model during training to foster profound visual understanding. However, the fine-tuning of such models with vision-language data often leads to a diminution of their natural language processing (NLP) capabilities. To avoid this performance degradation, a straightforward solution is to freeze the language model while developing multimodal competencies. Unfortunately, previous works have not attained satisfactory outcomes. Building on the strategy of freezing the language model, we conduct thorough structural exploration and introduce the Inner-Adaptor Architecture (IAA). Specifically, the architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers, thereby enabling the frozen language model to acquire multimodal capabilities. Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets. We conduct extensive experiments to improve the general multimodal capabilities and visual grounding abilities of the MLLM. Our approach remarkably outperforms previous state-of-the-art methods across various vision-language benchmarks without sacrificing performance on NLP tasks. Code and models are available at https://github.com/360CVGroup/Inner-Adaptor-Architecture.
comment: AAAI 2025
Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes
Structured pruning is a promising approach to create smaller, faster LLMs. However, existing methods typically rely on backward passes, which can inflate memory requirements and compute costs. In this work we introduce Bonsai, a gradient-free structured pruning method that eliminates the need for backpropagation, significantly reducing memory requirements and compute costs while achieving state-of-the-art pruning performance. Bonsai uses forward-pass-only perturbative pruning to enable efficient compression of large models on a broader range of hardware configurations. Unlike existing structured pruning approaches, Bonsai not only achieves better compression with fewer resources, but also produces models that are twice as fast as those generated by semi-structured pruning. As a concrete demonstration, we use Bonsai to prune an 8B LLaMA-3 model to 50% sparsity on a single A6000 GPU -- a task infeasible with backprop-based methods, which require 2-3x memory. Our results show that removing backprop as a requirement not only enables pruning larger models on constrained hardware but can also lead to state-of-the-art efficiency and performance.
comment: 19 pages, 6 fiigures, 16 tables
DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments
Large Language Models (LLMs) equipped with web search capabilities have demonstrated impressive potential for deep research tasks. However, current approaches predominantly rely on either manually engineered prompts (prompt engineering-based) with brittle performance or reinforcement learning within controlled Retrieval-Augmented Generation (RAG) environments (RAG-based) that fail to capture the complexities of real-world interaction. In this paper, we introduce DeepResearcher, the first comprehensive framework for end-to-end training of LLM-based deep research agents through scaling reinforcement learning (RL) in real-world environments with authentic web search interactions. Unlike RAG-based approaches that assume all necessary information exists within a fixed corpus, our method trains agents to navigate the noisy, unstructured, and dynamic nature of the open web. We implement a specialized multi-agent architecture where browsing agents extract relevant information from various webpage structures and overcoming significant technical challenges. Extensive experiments on open-domain research tasks demonstrate that DeepResearcher achieves substantial improvements of up to 28.9 points over prompt engineering-based baselines and up to 7.2 points over RAG-based RL agents. Our qualitative analysis reveals emergent cognitive behaviors from end-to-end RL training, including the ability to formulate plans, cross-validate information from multiple sources, engage in self-reflection to redirect research, and maintain honesty when unable to find definitive answers. Our results highlight that end-to-end training in real-world web environments is not merely an implementation detail but a fundamental requirement for developing robust research capabilities aligned with real-world applications. We release DeepResearcher at https://github.com/GAIR-NLP/DeepResearcher.
AFlow: Automating Agentic Workflow Generation
Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains, typically by employing agentic workflows that follow detailed instructions and operational sequences. However, constructing these workflows requires significant human effort, limiting scalability and generalizability. Recent research has sought to automate the generation and optimization of these workflows, but existing methods still rely on initial manual setup and fall short of achieving fully automated and effective workflow generation. To address this challenge, we reformulate workflow optimization as a search problem over code-represented workflows, where LLM-invoking nodes are connected by edges. We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search, iteratively refining workflows through code modification, tree-structured experience, and execution feedback. Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines. Furthermore, AFlow enables smaller models to outperform GPT-4o on specific tasks at 4.55% of its inference cost in dollars. The code is available at https://github.com/FoundationAgents/AFlow.
Are Generative AI Agents Effective Personalized Financial Advisors? SIGIR 2025
Large language model-based agents are becoming increasingly popular as a low-cost mechanism to provide personalized, conversational advice, and have demonstrated impressive capabilities in relatively simple scenarios, such as movie recommendations. But how do these agents perform in complex high-stakes domains, where domain expertise is essential and mistakes carry substantial risk? This paper investigates the effectiveness of LLM-advisors in the finance domain, focusing on three distinct challenges: (1) eliciting user preferences when users themselves may be unsure of their needs, (2) providing personalized guidance for diverse investment preferences, and (3) leveraging advisor personality to build relationships and foster trust. Via a lab-based user study with 64 participants, we show that LLM-advisors often match human advisor performance when eliciting preferences, although they can struggle to resolve conflicting user needs. When providing personalized advice, the LLM was able to positively influence user behavior, but demonstrated clear failure modes. Our results show that accurate preference elicitation is key, otherwise, the LLM-advisor has little impact, or can even direct the investor toward unsuitable assets. More worryingly, users appear insensitive to the quality of advice being given, or worse these can have an inverse relationship. Indeed, users reported a preference for and increased satisfaction as well as emotional trust with LLMs adopting an extroverted persona, even though those agents provided worse advice.
comment: Accepted for presentation at SIGIR 2025
Evaluation Under Imperfect Benchmarks and Ratings: A Case Study in Text Simplification
Despite the successes of language models, their evaluation remains a daunting challenge for new and existing tasks. We consider the task of text simplification, commonly used to improve information accessibility, where evaluation faces two major challenges. First, the data in existing benchmarks might not reflect the capabilities of current language models on the task, often containing disfluent, incoherent, or simplistic examples. Second, existing human ratings associated with the benchmarks often contain a high degree of disagreement, resulting in inconsistent ratings; nevertheless, existing metrics still have to show higher correlations with these imperfect ratings. As a result, evaluation for the task is not reliable and does not reflect expected trends (e.g., more powerful models being assigned higher scores). We address these challenges for the task of text simplification through three contributions. First, we introduce SynthSimpliEval, a synthetic benchmark for text simplification featuring simplified sentences generated by models of varying sizes. Through a pilot study, we show that human ratings on our benchmark exhibit high inter-annotator agreement and reflect the expected trend: larger models produce higher-quality simplifications. Second, we show that auto-evaluation with a panel of LLM judges (LLMs-as-a-jury) often suffices to obtain consistent ratings for the evaluation of text simplification. Third, we demonstrate that existing learnable metrics for text simplification benefit from training on our LLMs-as-a-jury-rated synthetic data, closing the gap with pure LLMs-as-a-jury for evaluation. Overall, through our case study on text simplification, we show that a reliable evaluation requires higher quality test data, which could be obtained through synthetic data and LLMs-as-a-jury ratings.
comment: 9 pages, 6 figures
Assessing how hyperparameters impact Large Language Models' sarcasm detection performance
Sarcasm detection is challenging for both humans and machines. This work explores how model characteristics impact sarcasm detection in OpenAI's GPT, and Meta's Llama-2 models, given their strong natural language understanding, and popularity. We evaluate fine-tuned and zero-shot models across various sizes, releases, and hyperparameters. Experiments were conducted on the political and balanced (pol-bal) portion of the popular Self-Annotated Reddit Corpus (SARC2.0) sarcasm dataset. Fine-tuned performance improves monotonically with model size within a model family, while hyperparameter tuning also impacts performance. In the fine-tuning scenario, full precision Llama-2-13b achieves state-of-the-art accuracy and $F_1$-score, both measured at 0.83, comparable to average human performance. In the zero-shot setting, one GPT-4 model achieves competitive performance to prior attempts, yielding an accuracy of 0.70 and an $F_1$-score of 0.75. Furthermore, a model's performance may increase or decline with each release, highlighting the need to reassess performance after each release.
comment: arXiv admin note: substantial text overlap with arXiv:2312.04642
No Need to Talk: Asynchronous Mixture of Language Models
We introduce SMALLTALK LM, an innovative method for training a mixture of language models in an almost asynchronous manner. Each model of the mixture specializes in distinct parts of the data distribution, without the need for high-bandwidth communication between the nodes training each model. At inference, a lightweight router directs a given sequence to a single expert, according to a short prefix. This inference scheme naturally uses a fraction of the parameters from the overall mixture model. Unlike prior works on asynchronous LLM training, our routing method does not rely on full corpus clustering or access to metadata, making it more suitable for real-world applications. Our experiments on language modeling demonstrate that SMALLTALK LM achieves significantly lower perplexity than dense model baselines for the same total training FLOPs and an almost identical inference cost. Finally, in our downstream evaluations we outperform the dense baseline on 75% of the tasks.
comment: 23 pages
Knowledge Graph Reasoning with Self-supervised Reinforcement Learning
Reinforcement learning (RL) is an effective method of finding reasoning pathways in incomplete knowledge graphs (KGs). To overcome the challenges of a large action space, a self-supervised pre-training method is proposed to warm up the policy network before the RL training stage. To alleviate the distributional mismatch issue in general self-supervised RL (SSRL), in our supervised learning (SL) stage, the agent selects actions based on the policy network and learns from generated labels; this self-generation of labels is the intuition behind the name self-supervised. With this training framework, the information density of our SL objective is increased and the agent is prevented from getting stuck with the early rewarded paths. Our self-supervised RL (SSRL) method improves the performance of RL by pairing it with the wide coverage achieved by SL during pretraining, since the breadth of the SL objective makes it infeasible to train an agent with that alone. We show that our SSRL model meets or exceeds current state-of-the-art results on all Hits@k and mean reciprocal rank (MRR) metrics on four large benchmark KG datasets. This SSRL method can be used as a plug-in for any RL architecture for a KGR task. We adopt two RL architectures, i.e., MINERVA and MultiHopKG as our baseline RL models and experimentally show that our SSRL model consistently outperforms both baselines on all of these four KG reasoning tasks. Full code for the paper available at https://github.com/owenonline/Knowledge-Graph-Reasoning-with-Self-supervised-Reinforcement-Learning.
comment: 17 pages, 11 figures
Enhancing Privacy in the Early Detection of Sexual Predators Through Federated Learning and Differential Privacy AAAI
The increased screen time and isolation caused by the COVID-19 pandemic have led to a significant surge in cases of online grooming, which is the use of strategies by predators to lure children into sexual exploitation. Previous efforts to detect grooming in industry and academia have involved accessing and monitoring private conversations through centrally-trained models or sending private conversations to a global server. In this work, we implement a privacy-preserving pipeline for the early detection of sexual predators. We leverage federated learning and differential privacy in order to create safer online spaces for children while respecting their privacy. We investigate various privacy-preserving implementations and discuss their benefits and shortcomings. Our extensive evaluation using real-world data proves that privacy and utility can coexist with only a slight reduction in utility.
comment: Accepted to AAAI-Social Impact Track - Oral
FourierNAT: A Fourier-Mixing-Based Non-Autoregressive Transformer for Parallel Sequence Generation
We present FourierNAT, a novel non-autoregressive Transformer (NAT) architecture that employs Fourier-based mixing in the decoder to generate output sequences in parallel. While traditional NAT approaches often face challenges with capturing global dependencies, our method leverages a discrete Fourier transform to mix token embeddings across the entire sequence dimension, coupled with learned frequency-domain gating. This allows the model to efficiently propagate context without explicit autoregressive steps. Empirically, FourierNAT achieves competitive results against leading NAT baselines on standard benchmarks like WMT machine translation and CNN/DailyMail summarization, providing significant speed advantages over autoregressive Transformers. We further demonstrate that learned frequency-domain parameters allow the model to adaptively focus on long-range or short-range dependencies, partially mitigating the well-known coherence gaps in one-pass NAT generation. Overall, FourierNAT highlights the potential of integrating spectral-domain operations to accelerate and improve parallel text generation. This approach can potentially provide great computational and time savings in inference tasks LLMs.
comment: 11 pages, 1 figure
Automatic Input Rewriting Improves Translation with Large Language Models
Can we improve machine translation (MT) with LLMs by rewriting their inputs automatically? Users commonly rely on the intuition that well-written text is easier to translate when using off-the-shelf MT systems. LLMs can rewrite text in many ways but in the context of MT, these capabilities have been primarily exploited to rewrite outputs via post-editing. We present an empirical study of 21 input rewriting methods with 3 open-weight LLMs for translating from English into 6 target languages. We show that text simplification is the most effective MT-agnostic rewrite strategy and that it can be improved further when using quality estimation to assess translatability. Human evaluation further confirms that simplified rewrites and their MT outputs both largely preserve the original meaning of the source and MT. These results suggest LLM-assisted input rewriting as a promising direction for improving translations.
comment: 27 pages, 8 figures
Visual Theory of Mind Enables the Invention of Proto-Writing
Symbolic writing systems are graphical semiotic codes that are ubiquitous in modern society but are otherwise absent in the animal kingdom. Anthropological evidence suggests that the earliest forms of some writing systems originally consisted of iconic pictographs, which signify their referent via visual resemblance. While previous studies have examined the emergence and, separately, the evolution of pictographic systems through a computational lens, most employ non-naturalistic methodologies that make it difficult to draw clear analogies to human and animal cognition. We develop a multi-agent reinforcement learning testbed for emergent communication called a Signification Game, and formulate a model of inferential communication that enables agents to leverage visual theory of mind to communicate actions using pictographs. Our model, which is situated within a broader formalism for animal communication, sheds light on the cognitive and cultural processes underlying the emergence of proto-writing.
comment: Accepted to CogSci 2025, published here with permission from organizers
Figurative Archive: an open dataset and web-based application for the study of metaphor
Research on metaphor has steadily increased over the last decades, as this phenomenon opens a window into a range of linguistic and cognitive processes. At the same time, the demand for rigorously constructed and extensively normed experimental materials increased as well. Here, we present the Figurative Archive, an open database of 997 metaphors in Italian enriched with rating and corpus-based measures (from familiarity to concreteness), derived by collecting stimuli used across 11 studies. It includes both everyday and literary metaphors, varying in structure and semantic domains, and is validated based on correlations between familiarity and other measures. The archive has several aspects of novelty: it is increased in size compared to previous resources; it includes a measure of inclusiveness, to comply with recommendations for non-discriminatory language use; it is displayed in a web-based interface, with features for a customized consultation. We provide guidelines for using the archive as a source of material for studies investigating metaphor processing and the relationships between metaphor features in humans and computational models.
Enhancing LLMs for Power System Simulations: A Feedback-driven Multi-agent Framework
The integration of experimental technologies with large language models (LLMs) is transforming scientific research. It positions AI as a versatile research assistant rather than a mere problem-solving tool. In the field of power systems, however, managing simulations -- one of the essential experimental technologies -- remains a challenge for LLMs due to their limited domain-specific knowledge, restricted reasoning capabilities, and imprecise handling of simulation parameters. To address these limitations, this paper proposes a feedback-driven, multi-agent framework. It incorporates three proposed modules: an enhanced retrieval-augmented generation (RAG) module, an improved reasoning module, and a dynamic environmental acting module with an error-feedback mechanism. Validated on 69 diverse tasks from Daline and MATPOWER, this framework achieves success rates of 93.13% and 96.85%, respectively. It significantly outperforms ChatGPT 4o, o1-preview, and the fine-tuned GPT-4o, which all achieved a success rate lower than 30% on complex tasks. Additionally, the proposed framework also supports rapid, cost-effective task execution, completing each simulation in approximately 30 seconds at an average cost of 0.014 USD for tokens. Overall, this adaptable framework lays a foundation for developing intelligent LLM-based assistants for human researchers, facilitating power system research and beyond.
comment: 15 pages
Application of AI-based Models for Online Fraud Detection and Analysis
Fraud is a prevalent offence that extends beyond financial loss, causing psychological and physical harm to victims. The advancements in online communication technologies alowed for online fraud to thrive in this vast network, with fraudsters increasingly using these channels for deception. With the progression of technologies like AI, there is a growing concern that fraud will scale up, using sophisticated methods, like deep-fakes in phishing campaigns, all generated by language generation models like ChatGPT. However, the application of AI in detecting and analyzing online fraud remains understudied. We conduct a Systematic Literature Review on AI and NLP techniques for online fraud detection. The review adhered the PRISMA-ScR protocol, with eligibility criteria including relevance to online fraud, use of text data, and AI methodologies. We screened 2,457 academic records, 350 met our eligibility criteria, and included 223. We report the state-of-the-art NLP techniques for analysing various online fraud categories; the training data sources; the NLP algorithms and models built; and the performance metrics employed for model evaluation. We find that current research on online fraud is divided into various scam activitiesand identify 16 different frauds that researchers focus on. This SLR enhances the academic understanding of AI-based detection methods for online fraud and offers insights for policymakers, law enforcement, and businesses on safeguarding against such activities. We conclude that focusing on specific scams lacks generalization, as multiple models are required for different fraud types. The evolving nature of scams limits the effectiveness of models trained on outdated data. We also identify issues in data limitations, training bias reporting, and selective presentation of metrics in model performance reporting, which can lead to potential biases in model evaluation.
comment: Manuscript accepted in Crime Science Journal. Please cite accordingly
Bridging the Visual Gap: Fine-Tuning Multimodal Models with Knowledge-Adapted Captions NAACL 2025
Recent research increasingly focuses on training vision-language models (VLMs) with long, detailed image captions. However, small-scale VLMs often struggle to balance the richness of these captions with the risk of hallucinating content during fine-tuning. In this paper, we explore how well VLMs adapt to such captions. To quantify caption quality, we propose Decomposed NLI (DNLI), an evaluation framework that breaks down generated captions into individual propositions, assessing each in isolation. This fine-grained analysis reveals a critical balance between capturing descriptive details and preventing hallucinations. Our findings show that simply reducing caption complexity or employing standard data curation techniques does not effectively resolve this issue. To tackle this challenge, we introduce Knowledge Adapted (KnowAda) fine-tuning, a data-centric approach that automatically adapts training data with the model's existing knowledge and visual understanding. KnowAda minimizes hallucinations while preserving high descriptiveness. We validate this approach across several small-scale VLMs (up to 7B parameters) and dense caption datasets, demonstrating that KnowAda effectively balances hallucination reduction and descriptiveness. Our results show that KnowAda outperforms various baselines in both automatic metrics and human evaluations. We will release our code and models.
comment: Accepted to NAACL 2025
Human-Computer Interaction
Speak with Confidence: Designing an Augmented Reality Training Tool for Public Speaking
Public speaking anxiety affects many individuals, yet opportunities for real-world practice remain limited. This study explores how augmented reality (AR) can provide an accessible training environment for public speaking. Drawing from literature on public speaking, VR-based training, self-efficacy, and behavioral feedback mechanisms, we designed SpeakAR, an AR-based tool that simulates audience interaction through virtual models. SpeakAR was evaluated with five participants of varying anxiety levels, each completing six speaking tasks. Results indicate that AR exposure can enhance confidence, with participants finding the system useful for practice. Feedback highlighted the importance of dynamic facial expressions and idle animations in virtual models to improve realism and engagement. Our findings contribute to the design of AR-based training tools for public speaking, offering insights into how immersive environments can support skill development and anxiety reduction.
comment: 7 pages, 3 figures, 2 tables
OpenTuringBench: An Open-Model-based Benchmark and Framework for Machine-Generated Text Detection and Attribution
Open Large Language Models (OLLMs) are increasingly leveraged in generative AI applications, posing new challenges for detecting their outputs. We propose OpenTuringBench, a new benchmark based on OLLMs, designed to train and evaluate machine-generated text detectors on the Turing Test and Authorship Attribution problems. OpenTuringBench focuses on a representative set of OLLMs, and features a number of challenging evaluation tasks, including human/machine-manipulated texts, out-of-domain texts, and texts from previously unseen models. We also provide OTBDetector, a contrastive learning framework to detect and attribute OLLM-based machine-generated texts. Results highlight the relevance and varying degrees of difficulty of the OpenTuringBench tasks, with our detector achieving remarkable capabilities across the various tasks and outperforming most existing detectors. Resources are available on the OpenTuringBench Hugging Face repository at https://huggingface.co/datasets/MLNTeam-Unical/OpenTuringBench
comment: Under review with ARR
The Obvious Invisible Threat: LLM-Powered GUI Agents' Vulnerability to Fine-Print Injections
A Large Language Model (LLM) powered GUI agent is a specialized autonomous system that performs tasks on the user's behalf according to high-level instructions. It does so by perceiving and interpreting the graphical user interfaces (GUIs) of relevant apps, often visually, inferring necessary sequences of actions, and then interacting with GUIs by executing the actions such as clicking, typing, and tapping. To complete real-world tasks, such as filling forms or booking services, GUI agents often need to process and act on sensitive user data. However, this autonomy introduces new privacy and security risks. Adversaries can inject malicious content into the GUIs that alters agent behaviors or induces unintended disclosures of private information. These attacks often exploit the discrepancy between visual saliency for agents and human users, or the agent's limited ability to detect violations of contextual integrity in task automation. In this paper, we characterized six types of such attacks, and conducted an experimental study to test these attacks with six state-of-the-art GUI agents, 234 adversarial webpages, and 39 human participants. Our findings suggest that GUI agents are highly vulnerable, particularly to contextually embedded threats. Moreover, human users are also susceptible to many of these attacks, indicating that simple human oversight may not reliably prevent failures. This misalignment highlights the need for privacy-aware agent design. We propose practical defense strategies to inform the development of safer and more reliable GUI agents.
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation.In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/
The Robotability Score: Enabling Harmonious Robot Navigation on Urban Streets
This paper introduces the Robotability Score ($R$), a novel metric that quantifies the suitability of urban environments for autonomous robot navigation. Through expert interviews and surveys, we identify and weigh key features contributing to R for wheeled robots on urban streets. Our findings reveal that pedestrian density, crowd dynamics and pedestrian flow are the most critical factors, collectively accounting for 28% of the total score. Computing robotability across New York City yields significant variation; the area of highest R is 3.0 times more "robotable" than the area of lowest R. Deployments of a physical robot on high and low robotability areas show the adequacy of the score in anticipating the ease of robot navigation. This new framework for evaluating urban landscapes aims to reduce uncertainty in robot deployment while respecting established mobility patterns and urban planning principles, contributing to the discourse on harmonious human-robot environments.
comment: Accepted to CHI '25
Exploring Student Behaviors and Motivations using AI TAs with Optional Guardrails
AI-powered chatbots and digital teaching assistants (AI TAs) are gaining popularity in programming education, offering students timely and personalized feedback. Despite their potential benefits, concerns about student over-reliance and academic misconduct have prompted the introduction of "guardrails" into AI TAs - features that provide scaffolded support rather than direct solutions. However, overly restrictive guardrails may lead students to bypass these tools and use unconstrained AI models, where interactions are not observable, thus limiting our understanding of students' help-seeking behaviors. To investigate this, we designed and deployed a novel AI TA tool with optional guardrails in one lab of a large introductory programming course. As students completed three code writing and debugging tasks, they had the option to receive guardrailed help or use a "See Solution" feature which disabled the guardrails and generated a verbatim response from the underlying model. We investigate students' motivations and use of this feature and examine the association between usage and their course performance. We found that 50% of the 885 students used the "See Solution" feature for at least one problem and 14% used it for all three problems. Additionally, low-performing students were more likely to use this feature and use it close to the deadline as they started assignments later. The predominant factors that motivated students to disable the guardrails were assistance in solving problems, time pressure, lack of self-regulation, and curiosity. Our work provides insights into students' solution-seeking motivations and behaviors, which has implications for the design of AI TAs that balance pedagogical goals with student preferences.
BrickSmart: Leveraging Generative AI to Support Children's Spatial Language Learning in Family Block Play
Block-building activities are crucial for developing children's spatial reasoning and mathematical skills, yet parents often lack the expertise to guide these activities effectively. BrickSmart, a pioneering system, addresses this gap by providing spatial language guidance through a structured three-step process: Discovery & Design, Build & Learn, and Explore & Expand. This system uniquely supports parents in 1) generating personalized block-building instructions, 2) guiding parents to teach spatial language during building and interactive play, and 3) tracking children's learning progress, altogether enhancing children's engagement and cognitive development. In a comparative study involving 12 parent-child pairs children aged 6-8 years) for both experimental and control groups, BrickSmart demonstrated improvements in supportiveness, efficiency, and innovation, with a significant increase in children's use of spatial vocabularies during block play, thereby offering an effective framework for fostering spatial language skills in children.
comment: 19 pages, 11 figures
"Even explanations will not help in trusting [this] fundamentally biased system": A Predictive Policing Case-Study
In today's society, where Artificial Intelligence (AI) has gained a vital role, concerns regarding user's trust have garnered significant attention. The use of AI systems in high-risk domains have often led users to either under-trust it, potentially causing inadequate reliance or over-trust it, resulting in over-compliance. Therefore, users must maintain an appropriate level of trust. Past research has indicated that explanations provided by AI systems can enhance user understanding of when to trust or not trust the system. However, the utility of presentation of different explanations forms still remains to be explored especially in high-risk domains. Therefore, this study explores the impact of different explanation types (text, visual, and hybrid) and user expertise (retired police officers and lay users) on establishing appropriate trust in AI-based predictive policing. While we observed that the hybrid form of explanations increased the subjective trust in AI for expert users, it did not led to better decision-making. Furthermore, no form of explanations helped build appropriate trust. The findings of our study emphasize the importance of re-evaluating the use of explanations to build [appropriate] trust in AI based systems especially when the system's use is questionable. Finally, we synthesize potential challenges and policy recommendations based on our results to design for appropriate trust in high-risk based AI-based systems.
comment: 33rd ACM Conference on User Modeling, Adaptation and Personalization (UMAP '25), June 16--19, 2025, New York City, NY, USA
Early Detection of Cognitive Impairment in Elderly using a Passive FPVS-EEG BCI and Machine Learning -- Extended Version
Early dementia diagnosis requires biomarkers sensitive to both structural and functional brain changes. While structural neuroimaging biomarkers have progressed significantly, objective functional biomarkers of early cognitive decline remain a critical unmet need. Current cognitive assessments often rely on behavioral responses, making them susceptible to factors like effort, practice effects, and educational background, thereby hindering early and accurate detection. This work introduces a novel approach, leveraging a lightweight convolutional neural network (CNN) to infer cognitive impairment levels directly from electroencephalography (EEG) data. Critically, this method employs a passive fast periodic visual stimulation (FPVS) paradigm, eliminating the need for explicit behavioral responses or task comprehension from the participant. This passive approach provides an objective measure of working memory function, independent of confounding factors inherent in active cognitive tasks, and offers a promising new avenue for early and unbiased detection of cognitive decline.
comment: 4 pages, 4 figures, exteded version of an abstract accepted for a poster presentation at the 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC2025), Copenhagen, Denmark, July 14-17, 2025
The Effectiveness of Business Process Visualisations: a Systematic Literature Review
Business Process Visualisations (BPVs) have become indispensable tools for organisations seeking to enhance their operational efficiency, decision-making capabilities, and overall performance. The burgeoning interest in process modeling and tool development, coupled with the rise of data visualisation field, underscores the significant role of visual tools in leveraging human cognition. Unlike traditional models, data visualisation approaches graphics from a novel angle, emphasising the potency of visual representations. This review aims to integrate the domains of BPV and data visualisation to assess their combined influence on organisational effectiveness comprehensively. Through a meticulous analysis of existing literature, this study aims to amalgamate insights on BPVs impact from a data visualisation standpoint, advocating for a design philosophy that prioritises user engagement to bolster organisational outcomes. Additionally, our systematic review has unveiled promising avenues for future research, identifying underexplored variables that influence the efficacy of BPVs, thereby charting a path for forthcoming scholarly inquiries.
comment: Business Process Visualization, Visual Effeciveness, Data Visualisation, User Visualisations, Dashboards, SLR
RF Sensing Security and Malicious Exploitation: A Comprehensive Survey
Radio Frequency (RF) sensing technologies have experienced significant growth due to the widespread adoption of RF devices and the Internet of Things (IoT). These technologies enable numerous applications across healthcare, smart homes, industrial automation, and human-computer interaction. However, the non-intrusive and ubiquitous nature of RF sensing - combined with its environmental sensitivity and data dependency - makes these systems inherently vulnerable not only as attack targets, but also as powerful attack vectors. This survey presents a comprehensive analysis of RF sensing security, covering both system-level vulnerabilities - such as signal spoofing, adversarial perturbations, and model poisoning - and the misuse of sensing capabilities for attacks like cross-boundary surveillance, side-channel inference, and semantic privacy breaches. We propose unified threat models to structure these attack vectors and further conduct task-specific vulnerability assessments across key RF sensing applications, identifying their unique attack surfaces and risk profiles. In addition, we systematically review defense strategies across system layers and threat-specific scenarios, incorporating both active and passive paradigms to provide a structured and practical view of protection mechanisms. Compared to prior surveys, our work distinguishes itself by offering a multi-dimensional classification framework based on task type, threat vector, and sensing modality, and by providing fine-grained, scenario-driven analysis that bridges theoretical models and real-world implications. This survey aims to serve as a comprehensive reference for researchers and practitioners seeking to understand, evaluate, and secure the evolving landscape of RF sensing technologies.
Evaluating Trust in AI, Human, and Co-produced Feedback Among Undergraduate Students
As generative AI transforms educational feedback practices, understanding students' perceptions of different feedback providers becomes crucial for effective implementation. This study addresses a critical gap by comparing undergraduate students' trust in AI-generated, human-created, and human-AI co-produced feedback, informing how institutions can adapt feedback practices in this new era. Through a within-subject experiment with 91 participants, we investigated factors predicting students' ability to distinguish between feedback types, perception of feedback quality, and potential biases to AI involvement. Findings revealed that students generally preferred AI and co-produced feedback over human feedback in terms of perceived usefulness and objectivity. Only AI feedback suffered a decline in perceived genuineness when feedback sources were revealed, while co-produced feedback maintained its positive perception. Educational AI experience improved students' ability to identify AI feedback and increased their trust in all feedback types, while general AI experience decreased perceived usefulness and credibility. Male students consistently rated all feedback types as less valuable than their female and non-binary counterparts. These insights inform evidence-based guidelines for integrating AI into higher education feedback systems while addressing trust concerns and fostering AI literacy among students.
comment: 35 pages, 6 figures. Under review at Assessment and Evaluation in Higher Education
Adaptive Human-Agent Teaming: A Review of Empirical Studies from the Process Dynamics Perspective
The rapid advancement of AI, including Large Language Models, has propelled autonomous agents forward, accelerating the human-agent teaming (HAT) paradigm to leverage complementary strengths. However, HAT research remains fragmented, often focusing on isolated team development phases or specific challenges like trust calibration while overlooking the real-world need for adaptability. Addressing these gaps, a process dynamics perspective is adopted to systematically review HAT using the T$^4$ framework: Team Formation, Task and Role Development, Team Development, and Team Improvement. Each phase is examined in terms of its goals, actions, and evaluation metrics, emphasizing the co-evolution of task and team dynamics. Special focus is given to the second and third phases, highlighting key factors such as team roles, shared mental model, and backup behaviors. This holistic perspective identifies future research directions for advancing long-term adaptive HAT.
InterAnimate: Taming Region-aware Diffusion Model for Realistic Human Interaction Animation
Recent video generation research has focused heavily on isolated actions, leaving interactive motions-such as hand-face interactions-largely unexamined. These interactions are essential for emerging biometric authentication systems, which rely on interactive motion-based anti-spoofing approaches. From a security perspective, there is a growing need for large-scale, high-quality interactive videos to train and strengthen authentication models. In this work, we introduce a novel paradigm for animating realistic hand-face interactions. Our approach simultaneously learns spatio-temporal contact dynamics and biomechanically plausible deformation effects, enabling natural interactions where hand movements induce anatomically accurate facial deformations while maintaining collision-free contact. To facilitate this research, we present InterHF, a large-scale hand-face interaction dataset featuring 18 interaction patterns and 90,000 annotated videos. Additionally, we propose InterAnimate, a region-aware diffusion model designed specifically for interaction animation. InterAnimate leverages learnable spatial and temporal latents to effectively capture dynamic interaction priors and integrates a region-aware interaction mechanism that injects these priors into the denoising process. To the best of our knowledge, this work represents the first large-scale effort to systematically study human hand-face interactions. Qualitative and quantitative results show InterAnimate produces highly realistic animations, setting a new benchmark. Code and data will be made public to advance research.
comment: under preview
Can Vision-Language Models Understand and Interpret Dynamic Gestures from Pedestrians? Pilot Datasets and Exploration Towards Instructive Nonverbal Commands for Cooperative Autonomous Vehicles
In autonomous driving, it is crucial to correctly interpret traffic gestures (TGs), such as those of an authority figure providing orders or instructions, or a pedestrian signaling the driver, to ensure a safe and pleasant traffic environment for all road users. This study investigates the capabilities of state-of-the-art vision-language models (VLMs) in zero-shot interpretation, focusing on their ability to caption and classify human gestures in traffic contexts. We create and publicly share two custom datasets with varying formal and informal TGs, such as 'Stop', 'Reverse', 'Hail', etc. The datasets are "Acted TG (ATG)" and "Instructive TG In-The-Wild (ITGI)". They are annotated with natural language, describing the pedestrian's body position and gesture. We evaluate models using three methods utilizing expert-generated captions as baseline and control: (1) caption similarity, (2) gesture classification, and (3) pose sequence reconstruction similarity. Results show that current VLMs struggle with gesture understanding: sentence similarity averages below 0.59, and classification F1 scores reach only 0.14-0.39, well below the expert baseline of 0.70. While pose reconstruction shows potential, it requires more data and refined metrics to be reliable. Our findings reveal that although some SOTA VLMs can interpret zero-shot human traffic gestures, none are accurate and robust enough to be trustworthy, emphasizing the need for further research in this domain.
Real-Time Word-Level Temporal Segmentation in Streaming Speech Recognition
Rich-text captions are essential to help communication for Deaf and hard-of-hearing (DHH) people, second-language learners, and those with autism spectrum disorder (ASD). They also preserve nuances when converting speech to text, enhancing the realism of presentation scripts and conversation or speech logs. However, current real-time captioning systems lack the capability to alter text attributes (ex. capitalization, sizes, and fonts) at the word level, hindering the accurate conveyance of speaker intent that is expressed in the tones or intonations of the speech. For example, ''YOU should do this'' tends to be considered as indicating ''You'' as the focus of the sentence, whereas ''You should do THIS'' tends to be ''This'' as the focus. This paper proposes a solution that changes the text decorations at the word level in real time. As a prototype, we developed an application that adjusts word size based on the loudness of each spoken word. Feedback from users implies that this system helped to convey the speaker's intent, offering a more engaging and accessible captioning experience.
comment: 3 pages, 1 figures
Ichiyo: Fragile and Transient Interaction in Neighborhood
As the Internet develops, social networking and other communication tools have transformed people's relationships into something fast, visible, and geographically huge. However, these communication tools have not expanded opportunities for acquainting oneself with neighbors outside one's social network; rather, they have comparatively diminished occasions for interacting with unfamiliar neighbors by prioritizing communication with existing friends. Therefore, we invented the medium Ichiyo to increase the opportunities to think of neighbors walking along the same street or in the same neighborhood and to expand the imagination of those who pass by and those who used to be there. Thus, users can engage in indirect interaction. We used commercially available laser cutters to engrave QR codes on leaves that are naturally found in our living space to prevent environmental invasion. The QR codes lead to a communal space on the web where users can freely leave messages. By engraving QR codes, information can be virtually expanded to be presented. To get the feedback of Ichiyo, we let a total of several thousand people experience a new way of communication as a part of the exhibition ''iii Exhibition 2022'', an art exhibition at the University of Tokyo. A total of more than 1,000 leaves engraved with QR codes were prepared and scattered at the exhibition site and along the road from the nearest station to the venue.
comment: 3 pages, 3 figures
Rethinking Theory of Mind Benchmarks for LLMs: Towards A User-Centered Perspective
The last couple of years have witnessed emerging research that appropriates Theory-of-Mind (ToM) tasks designed for humans to benchmark LLM's ToM capabilities as an indication of LLM's social intelligence. However, this approach has a number of limitations. Drawing on existing psychology and AI literature, we summarize the theoretical, methodological, and evaluation limitations by pointing out that certain issues are inherently present in the original ToM tasks used to evaluate human's ToM, which continues to persist and exacerbated when appropriated to benchmark LLM's ToM. Taking a human-computer interaction (HCI) perspective, these limitations prompt us to rethink the definition and criteria of ToM in ToM benchmarks in a more dynamic, interactional approach that accounts for user preferences, needs, and experiences with LLMs in such evaluations. We conclude by outlining potential opportunities and challenges towards this direction.
comment: 7 pages, 1 figure, accepted to the HEAL@CHI 2025 Workshop
Tabular foundation model to detect empathy from visual cues
Detecting empathy from video interactions is an emerging area of research. Video datasets, however, are often released as extracted features (i.e., tabular data) rather than raw footage due to privacy and ethical concerns. Prior research on such tabular datasets established tree-based classical machine learning approaches as the best-performing models. Motivated by the recent success of textual foundation models (i.e., large language models), we explore the use of tabular foundation models in empathy detection from tabular visual features. We experiment with two recent tabular foundation models $-$ TabPFN v2 and TabICL $-$ through in-context learning and fine-tuning setups. Our experiments on a public human-robot interaction benchmark demonstrate a significant boost in cross-subject empathy detection accuracy over several strong baselines (accuracy: $0.590 \rightarrow 0.730$; AUC: $0.564 \rightarrow 0.669$). In addition to performance improvement, we contribute novel insights and an evaluation setup to ensure generalisation on unseen subjects in this public benchmark. As the practice of releasing video features as tabular datasets is likely to persist due to privacy constraints, our findings will be widely applicable to future empathy detection video datasets as well.
Name of Thrones: Evaluating How LLMs Rank Student Names, Race, and Gender in Status Hierarchies
Across cultures, names tell a lot about their bearers as they carry deep personal and cultural significance. Names also serve as powerful signals of gender, race, and status in the social hierarchy - a pecking order in which individual positions shape others' expectations on their perceived competence and worth. With the widespread adoption of LLMs and as names are often an input for LLMs, it is crucial to evaluate whether LLMs may sort people into status positions based on first and last names and, if so, whether it is in an unfair, biased fashion. While prior work has primarily investigated biases in first names, little attention has been paid to last names and even less to the combined effects of first and last names. In this study, we conduct a large-scale analysis of name variations across 5 ethnicities to examine how AI exhibits name biases. Our study investigates three key characteristics of inequality and finds that LLMs reflect and reinforce status hierarchies based on names that signal gender and ethnicity as they encode differential expectations of competence, leadership, and economic potential. Contrary to the common assumption that AI tends to favor Whites, we show that East and, in some contexts, South Asian names receive higher rankings. We also disaggregate Asians, a population projected to be the largest immigrant group in the U.S. by 2055. Our results challenge the monolithic Asian model minority assumption, illustrating a more complex and stratified model of bias. Gender moderates biases, with girls facing unfair disadvantages in certain racial groups. Additionally, spanning cultural categories by adopting Western first names improves AI-perceived status for East and Southeast Asian students, particularly for girls. Our findings underscore the importance of intersectional and more nuanced understandings of race, gender, and mixed identities in the evaluation of LLMs.
SonicSieve: Bringing Directional Speech Extraction to Smartphones Using Acoustic Microstructures
Imagine placing your smartphone on a table in a noisy restaurant and clearly capturing the voices of friends seated around you, or recording a lecturer's voice with clarity in a reverberant auditorium. We introduce SonicSieve, the first intelligent directional speech extraction system for smartphones using a bio-inspired acoustic microstructure. Our passive design embeds directional cues onto incoming speech without any additional electronics. It attaches to the in-line mic of low-cost wired earphones which can be attached to smartphones. We present an end-to-end neural network that processes the raw audio mixtures in real-time on mobile devices. Our results show that SonicSieve achieves a signal quality improvement of 5.0 dB when focusing on a 30{\deg} angular region. Additionally, the performance of our system based on only two microphones exceeds that of conventional 5-microphone arrays.
The Art of Audience Engagement: LLM-Based Thin-Slicing of Scientific Talks
This paper examines the thin-slicing approach - the ability to make accurate judgments based on minimal information - in the context of scientific presentations. Drawing on research from nonverbal communication and personality psychology, we show that brief excerpts (thin slices) reliably predict overall presentation quality. Using a novel corpus of over one hundred real-life science talks, we employ Large Language Models (LLMs) to evaluate transcripts of full presentations and their thin slices. By correlating LLM-based evaluations of short excerpts with full-talk assessments, we determine how much information is needed for accurate predictions. Our results demonstrate that LLM-based evaluations align closely with human ratings, proving their validity, reliability, and efficiency. Critically, even very short excerpts (less than 10 percent of a talk) strongly predict overall evaluations. This suggests that the first moments of a presentation convey relevant information that is used in quality evaluations and can shape lasting impressions. The findings are robust across different LLMs and prompting strategies. This work extends thin-slicing research to public speaking and connects theories of impression formation to LLMs and current research on AI communication. We discuss implications for communication and social cognition research on message reception. Lastly, we suggest an LLM-based thin-slicing framework as a scalable feedback tool to enhance human communication.
Linearity, Time Invariance, and Passivity of a Novice Person in Human Teleoperation
Low-cost teleguidance of medical procedures is becoming essential to provide healthcare to remote and underserved communities. Human teleoperation is a promising new method for guiding a novice person with relatively high precision and efficiency through a mixed reality (MR) interface. Prior work has shown that the novice, or "follower", can reliably track the MR input with performance not unlike a telerobotic system. As a consequence, it is of interest to understand and control the follower's dynamics to optimize the system performance and permit stable and transparent bilateral teleoperation. To this end, linearity, time-invariance, inter-axis coupling, and passivity are important in teleoperation and controller design. This paper therefore explores these effects with regard to the follower person in human teleoperation. It is demonstrated through modeling and experiments that the follower can indeed be treated as approximately linear and time invariant, with little coupling and a large excess of passivity at practical frequencies. Furthermore, a stochastic model of the follower dynamics is derived. These results will permit controller design and analysis to improve the performance of human teleoperation.
Redesign of Online Design Communities: Facilitating Personalized Visual Design Learning with Structured Comments
Online Design Communities (ODCs) offer various artworks with members' comments for beginners to learn visual design. However, as identified by our Formative Study (N = 10), current ODCs lack features customized for personal learning purposes, e.g., searching artworks and digesting useful comments to learn design principles about buttons. In this paper, we present DesignLearner, a redesigned interface of ODCs to facilitate personalized visual design learning with comments structured based on UI components (e.g., button, text) and visual elements (e.g., color, contrast). In DesignLearner, learners can specify the UI components and visual elements that they wish to learn to filter artworks and associated comments. They can interactively read comments on an artwork, take notes, and get suggestions for the next artworks to explore. Our between-subjects study (N = 24) indicates that compared to a traditional ODC interface, DesignLearner can improve the user learning outcome and is deemed significantly more useful. We conclude with design considerations for customizing the interface of online communities to satisfy users' learning needs.
A Systematic Literature Review of Infrastructure Studies in SIGCHI SC
Infrastructure is an indispensable part of human life. Over the past decades, the Human-Computer Interaction (HCI) community has paid increasing attention to human interactions with infrastructure. In this paper, we conducted a systematic literature review on infrastructure studies in SIGCHI, one of the most influential communities in HCI. We collected a total of 190 primary studies, covering works published between 2006 and 2024. Most of these studies are inspired by Susan Leigh Star's notion of infrastructure. We identify three major themes in infrastructure studies: growing infrastructure, appropriating infrastructure, and coping with infrastructure. Our review highlights a prevailing trend in SIGCHI's infrastructure research: a focus on informal infrastructural activities across various sociotechnical contexts. In particular, we examine studies that problematize infrastructure and alert the HCI community to its potentially harmful aspects.
comment: Accepted to CSCW'25
Enhancing autonomous vehicle acceptance with age and education sensitive simulation interventions: An experimental trial
The familiarity principle posits that acceptance increases with exposure, which has previously been shown with in vivo and simulated experiences with connected and autonomous vehicles (CAVs). We investigate the impact of a simulated video-based first-person drive on CAV acceptance, as well as the impact of information customization, with a particular focus on acceptance by older individuals and those with lower education. Findings from an online experiment with N=799 German residents reveal that the simulated experience improved acceptance across response variables such as intention to use and ease of use, particularly among older individuals. However, the opportunity to customize navigation information decreased acceptance of older individuals and those with university degrees and increased acceptance for younger individuals and those with lower educational levels.
Cartographers in Cubicles: How Training and Preferences of Mapmakers Interplay with Structures and Norms in Not-for-Profit Organizations SC
Choropleth maps are a common and effective way to visualize geographic thematic data. Although cartographers have established many principles about map design, data binning and color usage, less is known about how mapmakers make individual decisions in practice. We interview 16 cartographers and geographic information systems (GIS) experts from 13 government organizations, NGOs, and federal agencies about their choropleth mapmaking decisions and workflows. We categorize our findings and report on how mapmakers follow cartographic guidelines and personal rules of thumb, collaborate with other stakeholders within and outside their organization, and how organizational structures and norms are tied to decision-making during data preparation, data analysis, data binning, map styling, and map post-processing. We find several points of variation as well as regularity across mapmakers and organizations and present takeaways to inform cartographic education and practice, including broader implications and opportunities for CSCW, HCI, and information visualization researchers and practitioners.
comment: 24 pages, 4 figures, 2 tables; to appear in ACM CSCW 2025
Designing Child-Friendly AI Interfaces: Six Developmentally-Appropriate Design Insights from Analysing Disney Animation
To build AI interfaces that children can intuitively understand and use, designers need a design grammar that truly serves children's developmental needs. This paper bridges Artificial Intelligence design for children -- an emerging field still defining its best practices -- and children's animation, a well-established field with decades of experience in engaging young viewers through emotionally resonant, cognitively accessible storytelling. Pairing Piagetian developmental theory with design pattern extraction from 52 works of Disney animation, the paper presents six design insights transferable to child-centred AI interface design: (1) emotional expressiveness and visual clarity, (2) musical and auditory scaffolding, (3) audiovisual synchrony for emotional comfort, (4) sidekick-style personas, (5) support for symbolic play and imaginative exploration, and (6) predictable and scaffolded interaction structures. These strategies -- long refined in Disney animation -- function as multimodal scaffolds for attention, understanding, and emotional attunement, thereby forming a structured design grammar familiar to children and transferable to AI interface design. By reframing cinematic storytelling as design logic for AI, the paper offers heuristics for crafting intuitive AI interfaces that align with children's cognitive stages and emotional needs. The work contributes to design theory by showing how sensory, affective and narrative techniques can inform developmentally attuned AI design for children. Future directions include empirical testing, cultural adaptation, and participatory co-design.
comment: 30 pages
"A Good Bot Always Knows Its Limitations": Assessing Autonomous System Decision-making Competencies through Factorized Machine Self-confidence
How can intelligent machines assess their competency to complete a task? This question has come into focus for autonomous systems that algorithmically make decisions under uncertainty. We argue that machine self-confidence -- a form of meta-reasoning based on self-assessments of system knowledge about the state of the world, itself, and ability to reason about and execute tasks -- leads to many computable and useful competency indicators for such agents. This paper presents our body of work, so far, on this concept in the form of the Factorized Machine Self-confidence (FaMSeC) framework, which holistically considers several major factors driving competency in algorithmic decision-making: outcome assessment, solver quality, model quality, alignment quality, and past experience. In FaMSeC, self-confidence indicators are derived via 'problem-solving statistics' embedded in Markov decision process solvers and related approaches. These statistics come from evaluating probabilistic exceedance margins in relation to certain outcomes and associated competency standards specified by an evaluator. Once designed, and evaluated, the statistics can be easily incorporated into autonomous agents and serve as indicators of competency. We include detailed descriptions and examples for Markov decision process agents, and show how outcome assessment and solver quality factors can be found for a range of tasking contexts through novel use of meta-utility functions, behavior simulations, and surrogate prediction models. Numerical evaluations are performed to demonstrate that FaMSeC indicators perform as desired (references to human subject studies beyond the scope of this paper are provided).
comment: 63 pages, 22 figures, version accepted to ACM THRI
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
Towards Predictive Communication with Brain-Computer Interfaces integrating Large Language Models
This perspective article aims at providing an outline of the state of the art and future developments towards the integration of cutting-edge predictive language models with BCI. A synthetic overview of early and more recent linguistic models, from natural language processing (NLP) models to recent LLM, that to a varying extent improved predictive writing systems, is first provided. Second, a summary of previous BCI implementations integrating language models is presented. The few preliminary studies investigating the possible combination of LLM with BCI spellers to efficiently support fast communication and control are then described. Finally, current challenges and limitations towards the full integration of LLM with BCI systems are discussed. Recent investigations suggest that the combination of LLM with BCI might drastically improve human-computer interaction in patients with motor or language disorders as well as in healthy individuals. In particular, the pretrained autoregressive transformer models, such as GPT, that capitalize from parallelization, learning through pre-training and fine-tuning, promise a substantial improvement of BCI for communication with respect to previous systems incorporating simpler language models. Indeed, among various models, the GPT-2 was shown to represent an excellent candidate for its integration into BCI although testing was only perfomed on simulated conversations and not on real BCI scenarios. Prospectively, the full integration of LLM with advanced BCI systems might lead to a big leap forward towards fast, efficient and user-adaptive neurotechnology.
comment: needs major revision
Why am I seeing this: Democratizing End User Auditing for Online Content Recommendations
Personalized recommendation systems tailor content based on user attributes, which are either provided or inferred from private data. Research suggests that users often hypothesize about reasons behind contents they encounter (e.g., "I see this jewelry ad because I am a woman"), but they lack the means to confirm these hypotheses due to the opaqueness of these systems. This hinders informed decision-making about privacy and system use and contributes to the lack of algorithmic accountability. To address these challenges, we introduce a new interactive sandbox approach. This approach creates sets of synthetic user personas and corresponding personal data that embody realistic variations in personal attributes, allowing users to test their hypotheses by observing how a website's algorithms respond to these personas. We tested the sandbox in the context of targeted advertisement. Our user study demonstrates its usability, usefulness, and effectiveness in empowering end-user auditing in a case study of targeting ads.
An AI-driven multimodal smart home platform for continuous monitoring and intelligent assistance in post-stroke patients
At-home rehabilitation for post-stroke patients presents significant challenges, as continuous, personalized care is often limited outside clinical settings. Additionally, the absence of comprehensive solutions addressing diverse monitoring and assistance needs in home environments complicates recovery efforts. Here, we present a multimodal smart home platform designed for continuous, at-home rehabilitation of post-stroke patients, integrating wearable sensing, ambient monitoring, and adaptive automation. A plantar pressure insole equipped with a machine learning pipeline classifies users into motor recovery stages with up to 94% accuracy, enabling quantitative tracking of walking patterns. A head-mounted eye-tracking module supports cognitive assessments and hands-free control of household devices, while ambient sensors ensure sub-second response times for interaction. These data streams are fused locally via a hierarchical Internet of Things (IoT) architecture, protecting privacy and minimizing latency. An embedded large language model (LLM) agent, Auto-Care, continuously interprets multimodal data to provide real-time interventions-issuing personalized reminders, adjusting environmental conditions, and notifying caregivers. Implemented in a post-stroke context, this integrated smart home platform increases overall user satisfaction by an average of 115% (p<0.01) compared to traditional home environment. Beyond stroke, the system offers a scalable framework for patient-centered, long-term care in broader neurorehabilitation and aging-in-place applications.
comment: 5 figures, 41 references
Challenges and Opportunities for Visual Analytics in Jurisprudence
Legal exploration, analysis, and interpretation remain complex and demanding tasks, even for experienced legal scholars, due to the domain-specific language, tacit legal concepts, and intentional ambiguities embedded in legal texts. In related, text-based domains, Visual Analytics (VA) and Large Language Models (LLMs) have become indispensable tools for navigating documents, representing knowledge, and supporting analytical reasoning. However, legal scholarship presents distinct challenges: it requires managing formal legal structure, drawing on tacit domain knowledge, and documenting intricate and accurate reasoning processes - needs that current VA systems designs and LLMs fail to address adequately. We identify previously unexamined key challenges and underexplored opportunities in applying VA to jurisprudence to explore how these technologies might better serve the legal domain. Based on semi-structured interviews with nine legal experts, we find a significant gap in tools and means that can externalize tacit legal knowledge in a form that is both explicit and machine-interpretable. Hence, we propose leveraging interactive visualization for this articulation, teaching the machine relevant semantic relationships between legal documents that inform the predictions of LLMs, facilitating the enhanced navigation between hierarchies of legal collections. This work introduces a user-centered VA workflow to the jurisprudential context, recognizing tacit legal knowledge and expert experience as vital components in deriving legal insight, comparing it with established practices in other text-based domains, and outlining a research agenda that offers future guidance for researchers in Visual Analytics for law and beyond.
comment: 39 pages, 2 figures, 1 table
CataractBot: An LLM-Powered Expert-in-the-Loop Chatbot for Cataract Patients
The healthcare landscape is evolving, with patients seeking reliable information about their health conditions and available treatment options. Despite the abundance of information sources, the digital age overwhelms individuals with excess, often inaccurate information. Patients primarily trust medical professionals, highlighting the need for expert-endorsed health information. However, increased patient loads on experts has led to reduced communication time, impacting information sharing. To address this gap, we developed CataractBot. CataractBot answers cataract surgery related questions instantly using an LLM to query a curated knowledge base, and provides expert-verified responses asynchronously. It has multimodal and multilingual capabilities. In an in-the-wild deployment study with 49 patients and attendants, 4 doctors, and 2 patient coordinators, CataractBot demonstrated potential, providing anytime accessibility, saving time, accommodating diverse literacy levels, alleviating power differences, and adding a privacy layer between patients and doctors. Users reported that their trust in the system was established through expert verification. Broadly, our results could inform future work on expert-mediated LLM bots.
Enhancing Code LLM Training with Programmer Attention
Human attention provides valuable yet underexploited signals for code LLM training, offering a perspective beyond purely machine-driven attention. Despite the complexity and cost of collecting eye-tracking data, there has also been limited progress in systematically using these signals for code LLM training. To address both issues, we propose a cohesive pipeline spanning augmentation and reward-based fine-tuning. Specifically, we introduce (1) an eye-tracking path augmentation method to expand programmer attention datasets, (2) a pattern abstraction step that refines raw fixations into learnable attention motifs, and (3) a reward-guided strategy for integrating these insights directly into a CodeT5 supervised fine-tuning process. Our experiments yield +7.16 in CodeBLEU on the CodeXGlue benchmark for code summarization, underscoring how uniting human and machine attention can boost code intelligence. We hope this work encourages broader exploration of human-centric methods in next-generation AI4SE.
AI Mismatches: Identifying Potential Algorithmic Harms Before AI Development
AI systems are often introduced with high expectations, yet many fail to deliver, resulting in unintended harm and missed opportunities for benefit. We frequently observe significant "AI Mismatches", where the system's actual performance falls short of what is needed to ensure safety and co-create value. These mismatches are particularly difficult to address once development is underway, highlighting the need for early-stage intervention. Navigating complex, multi-dimensional risk factors that contribute to AI Mismatches is a persistent challenge. To address it, we propose an AI Mismatch approach to anticipate and mitigate risks early on, focusing on the gap between realistic model performance and required task performance. Through an analysis of 774 AI cases, we extracted a set of critical factors, which informed the development of seven matrices that map the relationships between these factors and highlight high-risk areas. Through case studies, we demonstrate how our approach can help reduce risks in AI development.
comment: CHI Conference on Human Factors in Computing Systems (CHI '25), April 26-May 1, 2025, Yokohama, Japan
Are Generative AI Agents Effective Personalized Financial Advisors? SIGIR 2025
Large language model-based agents are becoming increasingly popular as a low-cost mechanism to provide personalized, conversational advice, and have demonstrated impressive capabilities in relatively simple scenarios, such as movie recommendations. But how do these agents perform in complex high-stakes domains, where domain expertise is essential and mistakes carry substantial risk? This paper investigates the effectiveness of LLM-advisors in the finance domain, focusing on three distinct challenges: (1) eliciting user preferences when users themselves may be unsure of their needs, (2) providing personalized guidance for diverse investment preferences, and (3) leveraging advisor personality to build relationships and foster trust. Via a lab-based user study with 64 participants, we show that LLM-advisors often match human advisor performance when eliciting preferences, although they can struggle to resolve conflicting user needs. When providing personalized advice, the LLM was able to positively influence user behavior, but demonstrated clear failure modes. Our results show that accurate preference elicitation is key, otherwise, the LLM-advisor has little impact, or can even direct the investor toward unsuitable assets. More worryingly, users appear insensitive to the quality of advice being given, or worse these can have an inverse relationship. Indeed, users reported a preference for and increased satisfaction as well as emotional trust with LLMs adopting an extroverted persona, even though those agents provided worse advice.
comment: Accepted for presentation at SIGIR 2025
RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier
Intracranial electroencephalography (iEEG) is increasingly used for clinical and brain-computer interface applications due to its high spatial and temporal resolution. However, inter-subject variability in electrode implantation poses a challenge for developing generalized neural decoders. To address this, we introduce a novel decoder model that is robust to inter-subject electrode implantation variability. We call this model RISE-iEEG, which stands for Robust to Inter-Subject Electrode Implantation Variability iEEG Classifier. RISE-iEEG employs a deep neural network structure preceded by a participant-specific projection network. The projection network maps the neural data of individual participants onto a common low-dimensional space, compensating for the implantation variability. In other words, we developed an iEEG decoder model that can be applied across multiple participants' data without requiring the coordinates of electrode for each participant. The performance of RISE-iEEG across multiple datasets, including the Music Reconstruction dataset, and AJILE12 dataset, surpasses that of advanced iEEG decoder models such as HTNet and EEGNet. Our analysis shows that the performance of RISE-iEEG is about 7\% higher than that of HTNet and EEGNet in terms of F1 score, with an average F1 score of 0.83, which is the highest result among the evaluation methods defined. Furthermore, Our analysis of the projection network weights reveals that the Superior Temporal and Postcentral lobes are key encoding nodes for the Music Reconstruction and AJILE12 datasets, which aligns with the primary physiological principles governing these regions. This model improves decoding accuracy while maintaining interpretability and generalization.
TerrAInav Sim: An Open-Source Simulation of UAV Aerial Imaging from Satellite Data
Capturing real-world aerial images for vision-based navigation (VBN) is challenging due to limited availability and conditions that make it nearly impossible to access all desired images from any location. The complexity increases when multiple locations are involved. State-of-the-art solutions, such as deploying UAVs (unmanned aerial vehicles) for aerial imaging or relying on existing research databases, come with significant limitations. TerrAInav Sim offers a compelling alternative by simulating a UAV to capture bird's-eye view map-based images at zero yaw with real-world visible-band specifications. This open-source tool allows users to specify the bounding box (top-left and bottom-right) coordinates of any region on a map. Without the need to physically fly a drone, the virtual Python UAV performs a raster search to capture images. Users can define parameters such as the flight altitude, aspect ratio, diagonal field of view of the camera, and the overlap between consecutive images. TerrAInav Sim's capabilities range from capturing a few low-altitude images for basic applications to generating extensive datasets of entire cities for complex tasks like deep learning. This versatility makes TerrAInav a valuable tool for not only VBN but also other applications, including environmental monitoring, construction, and city management. The open-source nature of the tool also allows for the extension of the raster search to other missions. A dataset of Memphis, TN, has been provided along with this simulator. A supplementary dataset is also provided, which includes data from a 3D world generation package for comparison.
comment: 16 pages, 10 figures
Combining Artificial Users and Psychotherapist Assessment to Evaluate Large Language Model-based Mental Health Chatbots
Large Language Models (LLMs) promise to overcome limitations of rule-based mental health chatbots through more natural conversations. However, evaluating LLM-based mental health chatbots presents a significant challenge: Their probabilistic nature requires comprehensive testing to ensure therapeutic quality, yet conducting such evaluations with people with depression would impose an additional burden on vulnerable people and risk exposing them to potentially harmful content. Our paper presents an evaluation approach for LLM-based mental health chatbots that combines dialogue generation with artificial users and dialogue evaluation by psychotherapists. We developed artificial users based on patient vignettes, systematically varying characteristics such as depression severity, personality traits, and attitudes toward chatbots, and let them interact with a LLM-based behavioral activation chatbot. Ten psychotherapists evaluated 48 randomly selected dialogues using standardized rating scales to assess the quality of behavioral activation and its therapeutic capabilities. We found that while artificial users showed moderate authenticity, they enabled comprehensive testing across different users. In addition, the chatbot demonstrated promising capabilities in delivering behavioral activation and maintaining safety. Furthermore, we identified deficits, such as ensuring the appropriateness of the activity plan, which reveals necessary improvements for the chatbot. Our framework provides an effective method for evaluating LLM-based mental health chatbots while protecting vulnerable people during the evaluation process. Future research should improve the authenticity of artificial users and develop LLM-augmented evaluation tools to make psychotherapist evaluation more efficient, and thus further advance the evaluation of LLM-based mental health chatbots.
The Use of Generative Artificial Intelligence for Upper Secondary Mathematics Education Through the Lens of Technology Acceptance
This study investigated the students' perceptions of using Generative Artificial Intelligence (GenAI) in upper-secondary mathematics education. Data was collected from Finnish high school students to represent how key constructs of the Technology Acceptance Model (Perceived Usefulness, Perceived Ease of Use, Perceived Enjoyment, and Intention to Use) influence the adoption of AI tools. First, a structural equation model for a comparative study with a prior study was constructed and analyzed. Then, an extended model with the additional construct of Compatibility, which represents the alignment of AI tools with students' educational experiences and needs, was proposed and analyzed. The results demonstrated a strong influence of perceived usefulness on the intention to use GenAI, emphasizing the statistically significant role of perceived enjoyment in determining perceived usefulness and ease of use. The inclusion of compatibility improved the model's explanatory power, particularly in predicting perceived usefulness. This study contributes to a deeper understanding of how AI tools can be integrated into mathematics education and highlights key differences between the Finnish educational context and previous studies based on structural equation modeling.
comment: Published in the Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing (SAC'25), March 31--April 4, 2025, Catania, Italy
Cocoa: Co-Planning and Co-Execution with AI Agents
Human collaboration benefits from continuous coordination -- planning, delegating tasks, sharing progress, and adjusting objectives -- to align on shared goals. However, agentic AI systems often limit users to previewing or reviewing an agent's plans for fully autonomous execution. While this may be useful for confirmation and correction, it does not support deeper collaboration between humans and AI agents. We present Cocoa, a system that introduces a novel design pattern -- interactive plans -- for collaborating with an AI agent on complex, multi-step tasks. Informed by a formative study ($n=9$), Cocoa builds on interaction designs from computational notebooks and document editors to support flexible delegation of agency through Co-planning and Co-execution, where users collaboratively compose and execute plans with an Agent. Using scientific research as a sample domain, our lab (n=16) and field deployment (n=7) studies found that Cocoa improved agent steerability without sacrificing ease-of-use compared to a strong chat baseline. Additionally, researchers valued Cocoa for real-world projects and saw the interleaving of co-planning and co-execution as an effective novel paradigm for human-AI collaboration.
Computer Vision and Pattern Recognition
FLOSS: Free Lunch in Open-vocabulary Semantic Segmentation
Recent Open-Vocabulary Semantic Segmentation (OVSS) models extend the CLIP model to segmentation while maintaining the use of multiple templates (e.g., a photo of , a sketch of a , etc.) for constructing class-wise averaged text embeddings, acting as a classifier. In this paper, we challenge this status quo and investigate the impact of templates for OVSS. Empirically, we observe that for each class, there exist single-template classifiers significantly outperforming the conventional averaged classifier. We refer to them as class-experts. Given access to unlabeled images and without any training involved, we estimate these experts by leveraging the class-wise prediction entropy of single-template classifiers, selecting as class-wise experts those which yield the lowest entropy. All experts, each specializing in a specific class, collaborate in a newly proposed fusion method to generate more accurate OVSS predictions. Our plug-and-play method, coined FLOSS, is orthogonal and complementary to existing OVSS methods, offering a ''free lunch'' to systematically improve OVSS without labels and additional training. Extensive experiments demonstrate that FLOSS consistently boosts state-of-the-art methods on various OVSS benchmarks. Moreover, the selected expert templates can generalize well from one dataset to others sharing the same semantic categories, yet exhibiting distribution shifts. Additionally, we obtain satisfactory improvements under a low-data regime, where only a few unlabeled images are available. Our code is available at https://github.com/yasserben/FLOSS .
comment: Project Page: https://yasserben.github.io/FLOSS/
DNF-Avatar: Distilling Neural Fields for Real-time Animatable Avatar Relighting
Creating relightable and animatable human avatars from monocular videos is a rising research topic with a range of applications, e.g. virtual reality, sports, and video games. Previous works utilize neural fields together with physically based rendering (PBR), to estimate geometry and disentangle appearance properties of human avatars. However, one drawback of these methods is the slow rendering speed due to the expensive Monte Carlo ray tracing. To tackle this problem, we proposed to distill the knowledge from implicit neural fields (teacher) to explicit 2D Gaussian splatting (student) representation to take advantage of the fast rasterization property of Gaussian splatting. To avoid ray-tracing, we employ the split-sum approximation for PBR appearance. We also propose novel part-wise ambient occlusion probes for shadow computation. Shadow prediction is achieved by querying these probes only once per pixel, which paves the way for real-time relighting of avatars. These techniques combined give high-quality relighting results with realistic shadow effects. Our experiments demonstrate that the proposed student model achieves comparable or even better relighting results with our teacher model while being 370 times faster at inference time, achieving a 67 FPS rendering speed.
comment: 16 pages, 8 figures, Project pages: https://jzr99.github.io/DNF-Avatar/
Decoupled Diffusion Sparks Adaptive Scene Generation
Controllable scene generation could reduce the cost of diverse data collection substantially for autonomous driving. Prior works formulate the traffic layout generation as predictive progress, either by denoising entire sequences at once or by iteratively predicting the next frame. However, full sequence denoising hinders online reaction, while the latter's short-sighted next-frame prediction lacks precise goal-state guidance. Further, the learned model struggles to generate complex or challenging scenarios due to a large number of safe and ordinal driving behaviors from open datasets. To overcome these, we introduce Nexus, a decoupled scene generation framework that improves reactivity and goal conditioning by simulating both ordinal and challenging scenarios from fine-grained tokens with independent noise states. At the core of the decoupled pipeline is the integration of a partial noise-masking training strategy and a noise-aware schedule that ensures timely environmental updates throughout the denoising process. To complement challenging scenario generation, we collect a dataset consisting of complex corner cases. It covers 540 hours of simulated data, including high-risk interactions such as cut-in, sudden braking, and collision. Nexus achieves superior generation realism while preserving reactivity and goal orientation, with a 40% reduction in displacement error. We further demonstrate that Nexus improves closed-loop planning by 20% through data augmentation and showcase its capability in safety-critical data generation.
REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion Transformers
In this paper we tackle a fundamental question: "Can we train latent diffusion models together with the variational auto-encoder (VAE) tokenizer in an end-to-end manner?" Traditional deep-learning wisdom dictates that end-to-end training is often preferable when possible. However, for latent diffusion transformers, it is observed that end-to-end training both VAE and diffusion-model using standard diffusion-loss is ineffective, even causing a degradation in final performance. We show that while diffusion loss is ineffective, end-to-end training can be unlocked through the representation-alignment (REPA) loss -- allowing both VAE and diffusion model to be jointly tuned during the training process. Despite its simplicity, the proposed training recipe (REPA-E) shows remarkable performance; speeding up diffusion model training by over 17x and 45x over REPA and vanilla training recipes, respectively. Interestingly, we observe that end-to-end tuning with REPA-E also improves the VAE itself; leading to improved latent space structure and downstream generation performance. In terms of final performance, our approach sets a new state-of-the-art; achieving FID of 1.26 and 1.83 with and without classifier-free guidance on ImageNet 256 x 256. Code is available at https://end2end-diffusion.github.io.
InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models
We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.
comment: Technical Report
MIEB: Massive Image Embedding Benchmark
Image representations are often evaluated through disjointed, task-specific protocols, leading to a fragmented understanding of model capabilities. For instance, it is unclear whether an image embedding model adept at clustering images is equally good at retrieving relevant images given a piece of text. We introduce the Massive Image Embedding Benchmark (MIEB) to evaluate the performance of image and image-text embedding models across the broadest spectrum to date. MIEB spans 38 languages across 130 individual tasks, which we group into 8 high-level categories. We benchmark 50 models across our benchmark, finding that no single method dominates across all task categories. We reveal hidden capabilities in advanced vision models such as their accurate visual representation of texts, and their yet limited capabilities in interleaved encodings and matching images and texts in the presence of confounders. We also show that the performance of vision encoders on MIEB correlates highly with their performance when used in multimodal large language models. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
Art3D: Training-Free 3D Generation from Flat-Colored Illustration SC
Large-scale pre-trained image-to-3D generative models have exhibited remarkable capabilities in diverse shape generations. However, most of them struggle to synthesize plausible 3D assets when the reference image is flat-colored like hand drawings due to the lack of 3D illusion, which are often the most user-friendly input modalities in art content creation. To this end, we propose Art3D, a training-free method that can lift flat-colored 2D designs into 3D. By leveraging structural and semantic features with pre- trained 2D image generation models and a VLM-based realism evaluation, Art3D successfully enhances the three-dimensional illusion in reference images, thus simplifying the process of generating 3D from 2D, and proves adaptable to a wide range of painting styles. To benchmark the generalization performance of existing image-to-3D models on flat-colored images without 3D feeling, we collect a new dataset, Flat-2D, with over 100 samples. Experimental results demonstrate the performance and robustness of Art3D, exhibiting superior generalizable capacity and promising practical applicability. Our source code and dataset will be publicly available on our project page: https://joy-jy11.github.io/ .
comment: Technical Report. Course Project of Brown CSCI 1430 Computer Vision. Project Page: https://joy-jy11.github.io/
Pixel-SAIL: Single Transformer For Pixel-Grounded Understanding
Multimodal Large Language Models (MLLMs) achieve remarkable performance for fine-grained pixel-level understanding tasks. However, all the works rely heavily on extra components, such as vision encoder (CLIP), segmentation experts, leading to high system complexity and limiting model scaling. In this work, our goal is to explore a highly simplified MLLM without introducing extra components. Our work is motivated by the recent works on Single trAnsformer as a unified vIsion-Language Model (SAIL) design, where these works jointly learn vision tokens and text tokens in transformers. We present Pixel-SAIL, a single transformer for pixel-wise MLLM tasks. In particular, we present three technical improvements on the plain baseline. First, we design a learnable upsampling module to refine visual token features. Secondly, we propose a novel visual prompt injection strategy to enable the single transformer to understand visual prompt inputs and benefit from the early fusion of visual prompt embeddings and vision tokens. Thirdly, we introduce a vision expert distillation strategy to efficiently enhance the single transformer's fine-grained feature extraction capability. In addition, we have collected a comprehensive pixel understanding benchmark (PerBench), using a manual check. It includes three tasks: detailed object description, visual prompt-based question answering, and visual-text referring segmentation. Extensive experiments on four referring segmentation benchmarks, one visual prompt benchmark, and our PerBench show that our Pixel-SAIL achieves comparable or even better results with a much simpler pipeline. Code and model will be released at https://github.com/magic-research/Sa2VA.
The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer
This paper introduces SAIL, a single transformer unified multimodal large language model (MLLM) that integrates raw pixel encoding and language decoding within a singular architecture. Unlike existing modular MLLMs, which rely on a pre-trained vision transformer (ViT), SAIL eliminates the need for a separate vision encoder, presenting a more minimalist architecture design. Instead of introducing novel architectural components, SAIL adapts mix-attention mechanisms and multimodal positional encodings to better align with the distinct characteristics of visual and textual modalities. We systematically compare SAIL's properties-including scalability, cross-modal information flow patterns, and visual representation capabilities-with those of modular MLLMs. By scaling both training data and model size, SAIL achieves performance comparable to modular MLLMs. Notably, the removal of pretrained ViT components enhances SAIL's scalability and results in significantly different cross-modal information flow patterns. Moreover, SAIL demonstrates strong visual representation capabilities, achieving results on par with ViT-22B in vision tasks such as semantic segmentation. Code and models are available at https://github.com/bytedance/SAIL.
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
Integrating Vision and Location with Transformers: A Multimodal Deep Learning Framework for Medical Wound Analysis
Effective recognition of acute and difficult-to-heal wounds is a necessary step in wound diagnosis. An efficient classification model can help wound specialists classify wound types with less financial and time costs and also help in deciding on the optimal treatment method. Traditional machine learning models suffer from feature selection and are usually cumbersome models for accurate recognition. Recently, deep learning (DL) has emerged as a powerful tool in wound diagnosis. Although DL seems promising for wound type recognition, there is still a large scope for improving the efficiency and accuracy of the model. In this study, a DL-based multimodal classifier was developed using wound images and their corresponding locations to classify them into multiple classes, including diabetic, pressure, surgical, and venous ulcers. A body map was also created to provide location data, which can help wound specialists label wound locations more effectively. The model uses a Vision Transformer to extract hierarchical features from input images, a Discrete Wavelet Transform (DWT) layer to capture low and high frequency components, and a Transformer to extract spatial features. The number of neurons and weight vector optimization were performed using three swarm-based optimization techniques (Monster Gorilla Toner (MGTO), Improved Gray Wolf Optimization (IGWO), and Fox Optimization Algorithm). The evaluation results show that weight vector optimization using optimization algorithms can increase diagnostic accuracy and make it a very effective approach for wound detection. In the classification using the original body map, the proposed model was able to achieve an accuracy of 0.8123 using image data and an accuracy of 0.8007 using a combination of image data and wound location. Also, the accuracy of the model in combination with the optimization models varied from 0.7801 to 0.8342.
RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users SC
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
Multimodal Long Video Modeling Based on Temporal Dynamic Context
Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.
Anchor Token Matching: Implicit Structure Locking for Training-free AR Image Editing
Text-to-image generation has seen groundbreaking advancements with diffusion models, enabling high-fidelity synthesis and precise image editing through cross-attention manipulation. Recently, autoregressive (AR) models have re-emerged as powerful alternatives, leveraging next-token generation to match diffusion models. However, existing editing techniques designed for diffusion models fail to translate directly to AR models due to fundamental differences in structural control. Specifically, AR models suffer from spatial poverty of attention maps and sequential accumulation of structural errors during image editing, which disrupt object layouts and global consistency. In this work, we introduce Implicit Structure Locking (ISLock), the first training-free editing strategy for AR visual models. Rather than relying on explicit attention manipulation or fine-tuning, ISLock preserves structural blueprints by dynamically aligning self-attention patterns with reference images through the Anchor Token Matching (ATM) protocol. By implicitly enforcing structural consistency in latent space, our method ISLock enables structure-aware editing while maintaining generative autonomy. Extensive experiments demonstrate that ISLock achieves high-quality, structure-consistent edits without additional training and is superior or comparable to conventional editing techniques. Our findings pioneer the way for efficient and flexible AR-based image editing, further bridging the performance gap between diffusion and autoregressive generative models. The code will be publicly available at https://github.com/hutaiHang/ATM
MonoDiff9D: Monocular Category-Level 9D Object Pose Estimation via Diffusion Model ICRA'25
Object pose estimation is a core means for robots to understand and interact with their environment. For this task, monocular category-level methods are attractive as they require only a single RGB camera. However, current methods rely on shape priors or CAD models of the intra-class known objects. We propose a diffusion-based monocular category-level 9D object pose generation method, MonoDiff9D. Our motivation is to leverage the probabilistic nature of diffusion models to alleviate the need for shape priors, CAD models, or depth sensors for intra-class unknown object pose estimation. We first estimate coarse depth via DINOv2 from the monocular image in a zero-shot manner and convert it into a point cloud. We then fuse the global features of the point cloud with the input image and use the fused features along with the encoded time step to condition MonoDiff9D. Finally, we design a transformer-based denoiser to recover the object pose from Gaussian noise. Extensive experiments on two popular benchmark datasets show that MonoDiff9D achieves state-of-the-art monocular category-level 9D object pose estimation accuracy without the need for shape priors or CAD models at any stage. Our code will be made public at https://github.com/CNJianLiu/MonoDiff9D.
comment: Accepted by ICRA'25
HUMOTO: A 4D Dataset of Mocap Human Object Interactions
We present Human Motions with Objects (HUMOTO), a high-fidelity dataset of human-object interactions for motion generation, computer vision, and robotics applications. Featuring 736 sequences (7,875 seconds at 30 fps), HUMOTO captures interactions with 63 precisely modeled objects and 72 articulated parts. Our innovations include a scene-driven LLM scripting pipeline creating complete, purposeful tasks with natural progression, and a mocap-and-camera recording setup to effectively handle occlusions. Spanning diverse activities from cooking to outdoor picnics, HUMOTO preserves both physical accuracy and logical task flow. Professional artists rigorously clean and verify each sequence, minimizing foot sliding and object penetrations. We also provide benchmarks compared to other datasets. HUMOTO's comprehensive full-body motion and simultaneous multi-object interactions address key data-capturing challenges and provide opportunities to advance realistic human-object interaction modeling across research domains with practical applications in animation, robotics, and embodied AI systems. Project: https://jiaxin-lu.github.io/humoto/ .
comment: 19 pages, 15 figures
GPS: Distilling Compact Memories via Grid-based Patch Sampling for Efficient Online Class-Incremental Learning
Online class-incremental learning aims to enable models to continuously adapt to new classes with limited access to past data, while mitigating catastrophic forgetting. Replay-based methods address this by maintaining a small memory buffer of previous samples, achieving competitive performance. For effective replay under constrained storage, recent approaches leverage distilled data to enhance the informativeness of memory. However, such approaches often involve significant computational overhead due to the use of bi-level optimization. Motivated by these limitations, we introduce Grid-based Patch Sampling (GPS), a lightweight and effective strategy for distilling informative memory samples without relying on a trainable model. GPS generates informative samples by sampling a subset of pixels from the original image, yielding compact low-resolution representations that preserve both semantic content and structural information. During replay, these representations are reassembled to support training and evaluation. Experiments on extensive benchmarks demonstrate that GRS can be seamlessly integrated into existing replay frameworks, leading to 3%-4% improvements in average end accuracy under memory-constrained settings, with limited computational overhead.
comment: 10 pages, 10 figures
Towards Low-Latency Event-based Obstacle Avoidance on a FPGA-Drone
This work quantitatively evaluates the performance of event-based vision systems (EVS) against conventional RGB-based models for action prediction in collision avoidance on an FPGA accelerator. Our experiments demonstrate that the EVS model achieves a significantly higher effective frame rate (1 kHz) and lower temporal (-20 ms) and spatial prediction errors (-20 mm) compared to the RGB-based model, particularly when tested on out-of-distribution data. The EVS model also exhibits superior robustness in selecting optimal evasion maneuvers. In particular, in distinguishing between movement and stationary states, it achieves a 59 percentage point advantage in precision (78% vs. 19%) and a substantially higher F1 score (0.73 vs. 0.06), highlighting the susceptibility of the RGB model to overfitting. Further analysis in different combinations of spatial classes confirms the consistent performance of the EVS model in both test data sets. Finally, we evaluated the system end-to-end and achieved a latency of approximately 2.14 ms, with event aggregation (1 ms) and inference on the processing unit (0.94 ms) accounting for the largest components. These results underscore the advantages of event-based vision for real-time collision avoidance and demonstrate its potential for deployment in resource-constrained environments.
Better Coherence, Better Height: Fusing Physical Models and Deep Learning for Forest Height Estimation from Interferometric SAR Data
Estimating forest height from Synthetic Aperture Radar (SAR) images often relies on traditional physical models, which, while interpretable and data-efficient, can struggle with generalization. In contrast, Deep Learning (DL) approaches lack physical insight. To address this, we propose CoHNet - an end-to-end framework that combines the best of both worlds: DL optimized with physics-informed constraints. We leverage a pre-trained neural surrogate model to enforce physical plausibility through a unique training loss. Our experiments show that this approach not only improves forest height estimation accuracy but also produces meaningful features that enhance the reliability of predictions.
PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems
Poisson-Gaussian noise describes the noise of various imaging systems thus the need of efficient algorithms for Poisson-Gaussian image restoration. Deep learning methods offer state-of-the-art performance but often require sensor-specific training when used in a supervised setting. A promising alternative is given by plug-and-play (PnP) methods, which consist in learning only a regularization through a denoiser, allowing to restore images from several sources with the same network. This paper introduces PG-DPIR, an efficient PnP method for high-count Poisson-Gaussian inverse problems, adapted from DPIR. While DPIR is designed for white Gaussian noise, a naive adaptation to Poisson-Gaussian noise leads to prohibitively slow algorithms due to the absence of a closed-form proximal operator. To address this, we adapt DPIR for the specificities of Poisson-Gaussian noise and propose in particular an efficient initialization of the gradient descent required for the proximal step that accelerates convergence by several orders of magnitude. Experiments are conducted on satellite image restoration and super-resolution problems. High-resolution realistic Pleiades images are simulated for the experiments, which demonstrate that PG-DPIR achieves state-of-the-art performance with improved efficiency, which seems promising for on-ground satellite processing chains.
FingER: Content Aware Fine-grained Evaluation with Reasoning for AI-Generated Videos
Recent advances in video generation have posed great challenges in the assessment of AI-generated content, particularly with the emergence of increasingly sophisticated models. The various inconsistencies and defects observed in such videos are inherently complex, making overall scoring notoriously difficult. In this paper, we emphasize the critical importance of integrating fine-grained reasoning into video evaluation, and we propose $\textbf{F}$ing$\textbf{ER}$, a novel entity-level reasoning evaluation framework that first automatically generates $\textbf{F}$ine-grained $\textbf{E}$ntity-level questions, and then answers those questions by a $\textbf{R}$easoning model with scores, which can be subsequently weighted summed to an overall score for different applications. Specifically, we leverage LLMs to derive entity-level questions across five distinct perspectives, which (i) often focus on some specific entities of the content, thereby making answering or scoring much easier by MLLMs, and (ii) are more interpretable. Then we construct a FingER dataset, consisting of approximately 3.3k videos and corresponding 60k fine-grained QA annotations, each with detailed reasons. Based on that, we further investigate various training protocols to best incentivize the reasoning capability of MLLMs for correct answer prediction. Extensive experiments demonstrate that a reasoning model trained using Group Relative Policy Optimization (GRPO) with a cold-start strategy achieves the best performance. Notably, our model surpasses existing methods by a relative margin of $11.8\%$ on GenAI-Bench and $5.5\%$ on MonetBench with only 3.3k training videos, which is at most one-tenth of the training samples utilized by other methods. Our code and dataset will be released soon.
comment: 10 pages, 4 figures
Patch and Shuffle: A Preprocessing Technique for Texture Classification in Autonomous Cementitious Fabrication
Autonomous fabrication systems are transforming construction and manufacturing, yet they remain vulnerable to print errors. Texture classification is a key component of computer vision systems that enable real-time monitoring and adjustment during cementitious fabrication. Traditional classification methods often rely on global image features, which can bias the model toward semantic content rather than low-level textures. In this paper, we introduce a novel preprocessing technique called "patch and shuffle," which segments input images into smaller patches, shuffles them, and reconstructs a jumbled image before classification. This transformation removes semantic context, forcing the classifier to rely on local texture features. We evaluate this approach on a dataset of extruded cement images, using a ResNet-18-based architecture. Our experiments compare the patch and shuffle method to a standard pipeline, holding all other factors constant. Results show a significant improvement in accuracy: the patch and shuffle model achieved 90.64% test accuracy versus 72.46% for the baseline. These findings suggest that disrupting global structure enhances performance in texture-based classification tasks. This method has implications for broader vision tasks where low-level features matter more than high-level semantics. The technique may improve classification in applications ranging from fabrication monitoring to medical imaging.
comment: Originally completed as a final project for CEE 374 at Princeton University
Multimodal Representation Learning Techniques for Comprehensive Facial State Analysis ICME2025
Multimodal foundation models have significantly improved feature representation by integrating information from multiple modalities, making them highly suitable for a broader set of applications. However, the exploration of multimodal facial representation for understanding perception has been limited. Understanding and analyzing facial states, such as Action Units (AUs) and emotions, require a comprehensive and robust framework that bridges visual and linguistic modalities. In this paper, we present a comprehensive pipeline for multimodal facial state analysis. First, we compile a new Multimodal Face Dataset (MFA) by generating detailed multilevel language descriptions of face, incorporating Action Unit (AU) and emotion descriptions, by leveraging GPT-4o. Second, we introduce a novel Multilevel Multimodal Face Foundation model (MF^2) tailored for Action Unit (AU) and emotion recognition. Our model incorporates comprehensive visual feature modeling at both local and global levels of face image, enhancing its ability to represent detailed facial appearances. This design aligns visual representations with structured AU and emotion descriptions, ensuring effective cross-modal integration. Third, we develop a Decoupled Fine-Tuning Network (DFN) that efficiently adapts MF^2 across various tasks and datasets. This approach not only reduces computational overhead but also broadens the applicability of the foundation model to diverse scenarios. Experimentation show superior performance for AU and emotion detection tasks.
comment: Accepted by ICME2025
Benchmarking 3D Human Pose Estimation Models Under Occlusions
This paper addresses critical challenges in 3D Human Pose Estimation (HPE) by analyzing the robustness and sensitivity of existing models to occlusions, camera position, and action variability. Using a novel synthetic dataset, BlendMimic3D, which includes diverse scenarios with multi-camera setups and several occlusion types, we conduct specific tests on several state-of-the-art models. Our study focuses on the discrepancy in keypoint formats between common datasets such as Human3.6M, and 2D datasets such as COCO, commonly used for 2D detection models and frequently input of 3D HPE models. Our work explores the impact of occlusions on model performance and the generality of models trained exclusively under standard conditions. The findings suggest significant sensitivity to occlusions and camera settings, revealing a need for models that better adapt to real-world variability and occlusion scenarios. This research contributed to ongoing efforts to improve the fidelity and applicability of 3D HPE systems in complex environments.
LL-Gaussian: Low-Light Scene Reconstruction and Enhancement via Gaussian Splatting for Novel View Synthesis
Novel view synthesis (NVS) in low-light scenes remains a significant challenge due to degraded inputs characterized by severe noise, low dynamic range (LDR) and unreliable initialization. While recent NeRF-based approaches have shown promising results, most suffer from high computational costs, and some rely on carefully captured or pre-processed data--such as RAW sensor inputs or multi-exposure sequences--which severely limits their practicality. In contrast, 3D Gaussian Splatting (3DGS) enables real-time rendering with competitive visual fidelity; however, existing 3DGS-based methods struggle with low-light sRGB inputs, resulting in unstable Gaussian initialization and ineffective noise suppression. To address these challenges, we propose LL-Gaussian, a novel framework for 3D reconstruction and enhancement from low-light sRGB images, enabling pseudo normal-light novel view synthesis. Our method introduces three key innovations: 1) an end-to-end Low-Light Gaussian Initialization Module (LLGIM) that leverages dense priors from learning-based MVS approach to generate high-quality initial point clouds; 2) a dual-branch Gaussian decomposition model that disentangles intrinsic scene properties (reflectance and illumination) from transient interference, enabling stable and interpretable optimization; 3) an unsupervised optimization strategy guided by both physical constrains and diffusion prior to jointly steer decomposition and enhancement. Additionally, we contribute a challenging dataset collected in extreme low-light environments and demonstrate the effectiveness of LL-Gaussian. Compared to state-of-the-art NeRF-based methods, LL-Gaussian achieves up to 2,000 times faster inference and reduces training time to just 2%, while delivering superior reconstruction and rendering quality.
InstructEngine: Instruction-driven Text-to-Image Alignment
Reinforcement Learning from Human/AI Feedback (RLHF/RLAIF) has been extensively utilized for preference alignment of text-to-image models. Existing methods face certain limitations in terms of both data and algorithm. For training data, most approaches rely on manual annotated preference data, either by directly fine-tuning the generators or by training reward models to provide training signals. However, the high annotation cost makes them difficult to scale up, the reward model consumes extra computation and cannot guarantee accuracy. From an algorithmic perspective, most methods neglect the value of text and only take the image feedback as a comparative signal, which is inefficient and sparse. To alleviate these drawbacks, we propose the InstructEngine framework. Regarding annotation cost, we first construct a taxonomy for text-to-image generation, then develop an automated data construction pipeline based on it. Leveraging advanced large multimodal models and human-defined rules, we generate 25K text-image preference pairs. Finally, we introduce cross-validation alignment method, which refines data efficiency by organizing semantically analogous samples into mutually comparable pairs. Evaluations on DrawBench demonstrate that InstructEngine improves SD v1.5 and SDXL's performance by 10.53% and 5.30%, outperforming state-of-the-art baselines, with ablation study confirming the benefits of InstructEngine's all components. A win rate of over 50% in human reviews also proves that InstructEngine better aligns with human preferences.
comment: 8 pages, 7 figures
SlowFastVAD: Video Anomaly Detection via Integrating Simple Detector and RAG-Enhanced Vision-Language Model
Video anomaly detection (VAD) aims to identify unexpected events in videos and has wide applications in safety-critical domains. While semi-supervised methods trained on only normal samples have gained traction, they often suffer from high false alarm rates and poor interpretability. Recently, vision-language models (VLMs) have demonstrated strong multimodal reasoning capabilities, offering new opportunities for explainable anomaly detection. However, their high computational cost and lack of domain adaptation hinder real-time deployment and reliability. Inspired by dual complementary pathways in human visual perception, we propose SlowFastVAD, a hybrid framework that integrates a fast anomaly detector with a slow anomaly detector (namely a retrieval augmented generation (RAG) enhanced VLM), to address these limitations. Specifically, the fast detector first provides coarse anomaly confidence scores, and only a small subset of ambiguous segments, rather than the entire video, is further analyzed by the slower yet more interpretable VLM for elaborate detection and reasoning. Furthermore, to adapt VLMs to domain-specific VAD scenarios, we construct a knowledge base including normal patterns based on few normal samples and abnormal patterns inferred by VLMs. During inference, relevant patterns are retrieved and used to augment prompts for anomaly reasoning. Finally, we smoothly fuse the anomaly confidence of fast and slow detectors to enhance robustness of anomaly detection. Extensive experiments on four benchmarks demonstrate that SlowFastVAD effectively combines the strengths of both fast and slow detectors, and achieves remarkable detection accuracy and interpretability with significantly reduced computational overhead, making it well-suited for real-world VAD applications with high reliability requirements.
Analysis of Attention in Video Diffusion Transformers
We conduct an in-depth analysis of attention in video diffusion transformers (VDiTs) and report a number of novel findings. We identify three key properties of attention in VDiTs: Structure, Sparsity, and Sinks. Structure: We observe that attention patterns across different VDiTs exhibit similar structure across different prompts, and that we can make use of the similarity of attention patterns to unlock video editing via self-attention map transfer. Sparse: We study attention sparsity in VDiTs, finding that proposed sparsity methods do not work for all VDiTs, because some layers that are seemingly sparse cannot be sparsified. Sinks: We make the first study of attention sinks in VDiTs, comparing and contrasting them to attention sinks in language models. We propose a number of future directions that can make use of our insights to improve the efficiency-quality Pareto frontier for VDiTs.
ESCT3D: Efficient and Selectively Controllable Text-Driven 3D Content Generation with Gaussian Splatting
In recent years, significant advancements have been made in text-driven 3D content generation. However, several challenges remain. In practical applications, users often provide extremely simple text inputs while expecting high-quality 3D content. Generating optimal results from such minimal text is a difficult task due to the strong dependency of text-to-3D models on the quality of input prompts. Moreover, the generation process exhibits high variability, making it difficult to control. Consequently, multiple iterations are typically required to produce content that meets user expectations, reducing generation efficiency. To address this issue, we propose GPT-4V for self-optimization, which significantly enhances the efficiency of generating satisfactory content in a single attempt. Furthermore, the controllability of text-to-3D generation methods has not been fully explored. Our approach enables users to not only provide textual descriptions but also specify additional conditions, such as style, edges, scribbles, poses, or combinations of multiple conditions, allowing for more precise control over the generated 3D content. Additionally, during training, we effectively integrate multi-view information, including multi-view depth, masks, features, and images, to address the common Janus problem in 3D content generation. Extensive experiments demonstrate that our method achieves robust generalization, facilitating the efficient and controllable generation of high-quality 3D content.
Noise2Ghost: Self-supervised deep convolutional reconstruction for ghost imaging
We present a new self-supervised deep-learning-based Ghost Imaging (GI) reconstruction method, which provides unparalleled reconstruction performance for noisy acquisitions among unsupervised methods. We present the supporting mathematical framework and results from theoretical and real data use cases. Self-supervision removes the need for clean reference data while offering strong noise reduction. This provides the necessary tools for addressing signal-to-noise ratio concerns for GI acquisitions in emerging and cutting-edge low-light GI scenarios. Notable examples include micro- and nano-scale x-ray emission imaging, e.g., x-ray fluorescence imaging of dose-sensitive samples. Their applications include in-vivo and in-operando case studies for biological samples and batteries.
Zero-shot Autonomous Microscopy for Scalable and Intelligent Characterization of 2D Materials
Characterization of atomic-scale materials traditionally requires human experts with months to years of specialized training. Even for trained human operators, accurate and reliable characterization remains challenging when examining newly discovered materials such as two-dimensional (2D) structures. This bottleneck drives demand for fully autonomous experimentation systems capable of comprehending research objectives without requiring large training datasets. In this work, we present ATOMIC (Autonomous Technology for Optical Microscopy & Intelligent Characterization), an end-to-end framework that integrates foundation models to enable fully autonomous, zero-shot characterization of 2D materials. Our system integrates the vision foundation model (i.e., Segment Anything Model), large language models (i.e., ChatGPT), unsupervised clustering, and topological analysis to automate microscope control, sample scanning, image segmentation, and intelligent analysis through prompt engineering, eliminating the need for additional training. When analyzing typical MoS2 samples, our approach achieves 99.7% segmentation accuracy for single layer identification, which is equivalent to that of human experts. In addition, the integrated model is able to detect grain boundary slits that are challenging to identify with human eyes. Furthermore, the system retains robust accuracy despite variable conditions including defocus, color temperature fluctuations, and exposure variations. It is applicable to a broad spectrum of common 2D materials-including graphene, MoS2, WSe2, SnSe-regardless of whether they were fabricated via chemical vapor deposition or mechanical exfoliation. This work represents the implementation of foundation models to achieve autonomous analysis, establishing a scalable and data-efficient characterization paradigm that fundamentally transforms the approach to nanoscale materials research.
comment: 13 pages, 4 figures
DiffMOD: Progressive Diffusion Point Denoising for Moving Object Detection in Remote Sensing
Moving object detection (MOD) in remote sensing is significantly challenged by low resolution, extremely small object sizes, and complex noise interference. Current deep learning-based MOD methods rely on probability density estimation, which restricts flexible information interaction between objects and across temporal frames. To flexibly capture high-order inter-object and temporal relationships, we propose a point-based MOD in remote sensing. Inspired by diffusion models, the network optimization is formulated as a progressive denoising process that iteratively recovers moving object centers from sparse noisy points. Specifically, we sample scattered features from the backbone outputs as atomic units for subsequent processing, while global feature embeddings are aggregated to compensate for the limited coverage of sparse point features. By modeling spatial relative positions and semantic affinities, Spatial Relation Aggregation Attention is designed to enable high-order interactions among point-level features for enhanced object representation. To enhance temporal consistency, the Temporal Propagation and Global Fusion module is designed, which leverages an implicit memory reasoning mechanism for robust cross-frame feature integration. To align with the progressive denoising process, we propose a progressive MinK optimal transport assignment strategy that establishes specialized learning objectives at each denoising level. Additionally, we introduce a missing loss function to counteract the clustering tendency of denoised points around salient objects. Experiments on the RsData remote sensing MOD dataset show that our MOD method based on scattered point denoising can more effectively explore potential relationships between sparse moving objects and improve the detection capability and temporal consistency.
comment: 9 pages, 7 figures
LMFormer: Lane based Motion Prediction Transformer CVPR 2025
Motion prediction plays an important role in autonomous driving. This study presents LMFormer, a lane-aware transformer network for trajectory prediction tasks. In contrast to previous studies, our work provides a simple mechanism to dynamically prioritize the lanes and shows that such a mechanism introduces explainability into the learning behavior of the network. Additionally, LMFormer uses the lane connection information at intersections, lane merges, and lane splits, in order to learn long-range dependency in lane structure. Moreover, we also address the issue of refining the predicted trajectories and propose an efficient method for iterative refinement through stacked transformer layers. For benchmarking, we evaluate LMFormer on the nuScenes dataset and demonstrate that it achieves SOTA performance across multiple metrics. Furthermore, the Deep Scenario dataset is used to not only illustrate cross-dataset network performance but also the unification capabilities of LMFormer to train on multiple datasets and achieve better performance.
comment: Accepted: Autonomous Driving Workshop, CVPR 2025
Trade-offs in Privacy-Preserving Eye Tracking through Iris Obfuscation: A Benchmarking Study SP 2025
Recent developments in hardware, computer graphics, and AI may soon enable AR/VR head-mounted displays (HMDs) to become everyday devices like smartphones and tablets. Eye trackers within HMDs provide a special opportunity for such setups as it is possible to facilitate gaze-based research and interaction. However, estimating users' gaze information often requires raw eye images and videos that contain iris textures, which are considered a gold standard biometric for user authentication, and this raises privacy concerns. Previous research in the eye-tracking community focused on obfuscating iris textures while keeping utility tasks such as gaze estimation accurate. Despite these attempts, there is no comprehensive benchmark that evaluates state-of-the-art approaches. Considering all, in this paper, we benchmark blurring, noising, downsampling, rubber sheet model, and iris style transfer to obfuscate user identity, and compare their impact on image quality, privacy, utility, and risk of imposter attack on two datasets. We use eye segmentation and gaze estimation as utility tasks, and reduction in iris recognition accuracy as a measure of privacy protection, and false acceptance rate to estimate risk of attack. Our experiments show that canonical image processing methods like blurring and noising cause a marginal impact on deep learning-based tasks. While downsampling, rubber sheet model, and iris style transfer are effective in hiding user identifiers, iris style transfer, with higher computation cost, outperforms others in both utility tasks, and is more resilient against spoof attacks. Our analyses indicate that there is no universal optimal approach to balance privacy, utility, and computation burden. Therefore, we recommend practitioners consider the strengths and weaknesses of each approach, and possible combinations of those to reach an optimal privacy-utility trade-off.
comment: The 25th International Conference on Digital Signal Processing (DSP 2025)
XY-Cut++: Advanced Layout Ordering via Hierarchical Mask Mechanism on a Novel Benchmark
Document Reading Order Recovery is a fundamental task in document image understanding, playing a pivotal role in enhancing Retrieval-Augmented Generation (RAG) and serving as a critical preprocessing step for large language models (LLMs). Existing methods often struggle with complex layouts(e.g., multi-column newspapers), high-overhead interactions between cross-modal elements (visual regions and textual semantics), and a lack of robust evaluation benchmarks. We introduce XY-Cut++, an advanced layout ordering method that integrates pre-mask processing, multi-granularity segmentation, and cross-modal matching to address these challenges. Our method significantly enhances layout ordering accuracy compared to traditional XY-Cut techniques. Specifically, XY-Cut++ achieves state-of-the-art performance (98.8 BLEU overall) while maintaining simplicity and efficiency. It outperforms existing baselines by up to 24\% and demonstrates consistent accuracy across simple and complex layouts on the newly introduced DocBench-100 dataset. This advancement establishes a reliable foundation for document structure recovery, setting a new standard for layout ordering tasks and facilitating more effective RAG and LLM preprocessing.
MASSeg : 2nd Technical Report for 4th PVUW MOSE Track
Complex video object segmentation continues to face significant challenges in small object recognition, occlusion handling, and dynamic scene modeling. This report presents our solution, which ranked second in the MOSE track of CVPR 2025 PVUW Challenge. Based on an existing segmentation framework, we propose an improved model named MASSeg for complex video object segmentation, and construct an enhanced dataset, MOSE+, which includes typical scenarios with occlusions, cluttered backgrounds, and small target instances. During training, we incorporate a combination of inter-frame consistent and inconsistent data augmentation strategies to improve robustness and generalization. During inference, we design a mask output scaling strategy to better adapt to varying object sizes and occlusion levels. As a result, MASSeg achieves a J score of 0.8250, F score of 0.9007, and a J&F score of 0.8628 on the MOSE test set.
comment: 5 pages,4 figures,Technical report on Complex Video Object Segmentation
Towards contrast- and pathology-agnostic clinical fetal brain MRI segmentation using SynthSeg
Magnetic resonance imaging (MRI) has played a crucial role in fetal neurodevelopmental research. Structural annotations of MR images are an important step for quantitative analysis of the developing human brain, with Deep learning providing an automated alternative for this otherwise tedious manual process. However, segmentation performances of Convolutional Neural Networks often suffer from domain shift, where the network fails when applied to subjects that deviate from the distribution with which it is trained on. In this work, we aim to train networks capable of automatically segmenting fetal brain MRIs with a wide range of domain shifts pertaining to differences in subject physiology and acquisition environments, in particular shape-based differences commonly observed in pathological cases. We introduce a novel data-driven train-time sampling strategy that seeks to fully exploit the diversity of a given training dataset to enhance the domain generalizability of the trained networks. We adapted our sampler, together with other existing data augmentation techniques, to the SynthSeg framework, a generator that utilizes domain randomization to generate diverse training data, and ran thorough experimentations and ablation studies on a wide range of training/testing data to test the validity of the approaches. Our networks achieved notable improvements in the segmentation quality on testing subjects with intense anatomical abnormalities (p < 1e-4), though at the cost of a slighter decrease in performance in cases with fewer abnormalities. Our work also lays the foundation for future works on creating and adapting data-driven sampling strategies for other training pipelines.
comment: 21 pages, 16 figures
CAT: A Conditional Adaptation Tailor for Efficient and Effective Instance-Specific Pansharpening on Real-World Data
Pansharpening is a crucial remote sensing technique that fuses low-resolution multispectral (LRMS) images with high-resolution panchromatic (PAN) images to generate high-resolution multispectral (HRMS) imagery. Although deep learning techniques have significantly advanced pansharpening, many existing methods suffer from limited cross-sensor generalization and high computational overhead, restricting their real-time applications. To address these challenges, we propose an efficient framework that quickly adapts to a specific input instance, completing both training and inference in a short time. Our framework splits the input image into multiple patches, selects a subset for unsupervised CAT training, and then performs inference on all patches, stitching them into the final output. The CAT module, integrated between the feature extraction and channel transformation stages of a pre-trained network, tailors the fused features and fixes the parameters for efficient inference, generating improved results. Our approach offers two key advantages: (1) $\textit{Improved Generalization Ability}$: by mitigating cross-sensor degradation, our model--although pre-trained on a specific dataset--achieves superior performance on datasets captured by other sensors; (2) $\textit{Enhanced Computational Efficiency}$: the CAT-enhanced network can swiftly adapt to the test sample using the single LRMS-PAN pair input, without requiring extensive large-scale data retraining. Experiments on the real-world data from WorldView-3 and WorldView-2 datasets demonstrate that our method achieves state-of-the-art performance on cross-sensor real-world data, while achieving both training and inference of $512\times512$ image within $\textit{0.4 seconds}$ and $4000\times4000$ image within $\textit{3 seconds}$ at the fastest setting on a commonly used RTX 3090 GPU.
Balancing Stability and Plasticity in Pretrained Detector: A Dual-Path Framework for Incremental Object Detection
The balance between stability and plasticity remains a fundamental challenge in pretrained model-based incremental object detection (PTMIOD). While existing PTMIOD methods demonstrate strong performance on in-domain tasks aligned with pretraining data, their plasticity to cross-domain scenarios remains underexplored. Through systematic component-wise analysis of pretrained detectors, we reveal a fundamental discrepancy: the localization modules demonstrate inherent cross-domain stability-preserving precise bounding box estimation across distribution shifts-while the classification components require enhanced plasticity to mitigate discriminability degradation in cross-domain scenarios. Motivated by these findings, we propose a dual-path framework built upon pretrained DETR-based detectors which decouples localization stability and classification plasticity: the localization path maintains stability to preserve pretrained localization knowledge, while the classification path facilitates plasticity via parameter-efficient fine-tuning and resists forgetting with pseudo-feature replay. Extensive evaluations on both in-domain (MS COCO and PASCAL VOC) and cross-domain (TT100K) benchmarks show state-of-the-art performance, demonstrating our method's ability to effectively balance stability and plasticity in PTMIOD, achieving robust cross-domain adaptation and strong retention of anti-forgetting capabilities.
VibrantLeaves: A principled parametric image generator for training deep restoration models
Even though Deep Neural Networks are extremely powerful for image restoration tasks, they have several limitations. They are poorly understood and suffer from strong biases inherited from the training sets. One way to address these shortcomings is to have a better control over the training sets, in particular by using synthetic sets. In this paper, we propose a synthetic image generator relying on a few simple principles. In particular, we focus on geometric modeling, textures, and a simple modeling of image acquisition. These properties, integrated in a classical Dead Leaves model, enable the creation of efficient training sets. Standard image denoising and super-resolution networks can be trained on such datasets, reaching performance almost on par with training on natural image datasets. As a first step towards explainability, we provide a careful analysis of the considered principles, identifying which image properties are necessary to obtain good performances. Besides, such training also yields better robustness to various geometric and radiometric perturbations of the test sets.
Differentially Private 2D Human Pose Estimation
Human pose estimation (HPE) has become essential in numerous applications including healthcare, activity recognition, and human-computer interaction. However, the privacy implications of processing sensitive visual data present significant deployment barriers in critical domains. While traditional anonymization techniques offer limited protection and often compromise data utility for broader motion analysis, Differential Privacy (DP) provides formal privacy guarantees but typically degrades model performance when applied naively. In this work, we present the first differentially private 2D human pose estimation (2D-HPE) by applying Differentially Private Stochastic Gradient Descent (DP-SGD) to this task. To effectively balance privacy with performance, we adopt Projected DP-SGD (PDP-SGD), which projects the noisy gradients to a low-dimensional subspace. Additionally, we adapt TinyViT, a compact and efficient vision transformer for coordinate classification in HPE, providing a lightweight yet powerful backbone that enhances privacy-preserving deployment feasibility on resource-limited devices. Our approach is particularly valuable for multimedia interpretation tasks, enabling privacy-safe analysis and understanding of human motion across diverse visual media while preserving the semantic meaning required for downstream applications. Comprehensive experiments on the MPII Human Pose Dataset demonstrate significant performance enhancement with PDP-SGD achieving 78.48% PCKh@0.5 at a strict privacy budget ($\epsilon=0.2$), compared to 63.85% for standard DP-SGD. This work lays foundation for privacy-preserving human pose estimation in real-world, sensitive applications.
LLaVA-ReID: Selective Multi-image Questioner for Interactive Person Re-Identification
Traditional text-based person ReID assumes that person descriptions from witnesses are complete and provided at once. However, in real-world scenarios, such descriptions are often partial or vague. To address this limitation, we introduce a new task called interactive person re-identification (Inter-ReID). Inter-ReID is a dialogue-based retrieval task that iteratively refines initial descriptions through ongoing interactions with the witnesses. To facilitate the study of this new task, we construct a dialogue dataset that incorporates multiple types of questions by decomposing fine-grained attributes of individuals. We further propose LLaVA-ReID, a question model that generates targeted questions based on visual and textual contexts to elicit additional details about the target person. Leveraging a looking-forward strategy, we prioritize the most informative questions as supervision during training. Experimental results on both Inter-ReID and text-based ReID benchmarks demonstrate that LLaVA-ReID significantly outperforms baselines.
WildLive: Near Real-time Visual Wildlife Tracking onboard UAVs
Live tracking of wildlife via high-resolution video processing directly onboard drones is widely unexplored and most existing solutions rely on streaming video to ground stations to support navigation. Yet, both autonomous animal-reactive flight control beyond visual line of sight and/or mission-specific individual and behaviour recognition tasks rely to some degree on this capability. In response, we introduce WildLive -- a near real-time animal detection and tracking framework for high-resolution imagery running directly onboard uncrewed aerial vehicles (UAVs). The system performs multi-animal detection and tracking at 17fps+ for HD and 7fps+ on 4K video streams suitable for operation during higher altitude flights to minimise animal disturbance. Our system is optimised for Jetson Orin AGX onboard hardware. It integrates the efficiency of sparse optical flow tracking and mission-specific sampling with device-optimised and proven YOLO-driven object detection and segmentation techniques. Essentially, computational resource is focused onto spatio-temporal regions of high uncertainty to significantly improve UAV processing speeds without domain-specific loss of accuracy. Alongside, we introduce our WildLive dataset, which comprises 200k+ annotated animal instances across 19k+ frames from 4K UAV videos collected at the Ol Pejeta Conservancy in Kenya. All frames contain ground truth bounding boxes, segmentation masks, as well as individual tracklets and tracking point trajectories. We compare our system against current object tracking approaches including OC-SORT, ByteTrack, and SORT. Our multi-animal tracking experiments with onboard hardware confirm that near real-time high-resolution wildlife tracking is possible on UAVs whilst maintaining high accuracy levels as needed for future navigational and mission-specific animal-centric operational autonomy.
comment: Submitted in CV4Animals 2025
COUNTS: Benchmarking Object Detectors and Multimodal Large Language Models under Distribution Shifts
Current object detectors often suffer significant perfor-mance degradation in real-world applications when encountering distributional shifts. Consequently, the out-of-distribution (OOD) generalization capability of object detectors has garnered increasing attention from researchers. Despite this growing interest, there remains a lack of a large-scale, comprehensive dataset and evaluation benchmark with fine-grained annotations tailored to assess the OOD generalization on more intricate tasks like object detection and grounding. To address this gap, we introduce COUNTS, a large-scale OOD dataset with object-level annotations. COUNTS encompasses 14 natural distributional shifts, over 222K samples, and more than 1,196K labeled bounding boxes. Leveraging COUNTS, we introduce two novel benchmarks: O(OD)2 and OODG. O(OD)2 is designed to comprehensively evaluate the OOD generalization capabilities of object detectors by utilizing controlled distribution shifts between training and testing data. OODG, on the other hand, aims to assess the OOD generalization of grounding abilities in multimodal large language models (MLLMs). Our findings reveal that, while large models and extensive pre-training data substantially en hance performance in in-distribution (IID) scenarios, significant limitations and opportunities for improvement persist in OOD contexts for both object detectors and MLLMs. In visual grounding tasks, even the advanced GPT-4o and Gemini-1.5 only achieve 56.7% and 28.0% accuracy, respectively. We hope COUNTS facilitates advancements in the development and assessment of robust object detectors and MLLMs capable of maintaining high performance under distributional shifts.
Hierarchical and Step-Layer-Wise Tuning of Attention Specialty for Multi-Instance Synthesis in Diffusion Transformers
Text-to-image (T2I) generation models often struggle with multi-instance synthesis (MIS), where they must accurately depict multiple distinct instances in a single image based on complex prompts detailing individual features. Traditional MIS control methods for UNet architectures like SD v1.5/SDXL fail to adapt to DiT-based models like FLUX and SD v3.5, which rely on integrated attention between image and text tokens rather than text-image cross-attention. To enhance MIS in DiT, we first analyze the mixed attention mechanism in DiT. Our token-wise and layer-wise analysis of attention maps reveals a hierarchical response structure: instance tokens dominate early layers, background tokens in middle layers, and attribute tokens in later layers. Building on this observation, we propose a training-free approach for enhancing MIS in DiT-based models with hierarchical and step-layer-wise attention specialty tuning (AST). AST amplifies key regions while suppressing irrelevant areas in distinct attention maps across layers and steps, guided by the hierarchical structure. This optimizes multimodal interactions by hierarchically decoupling the complex prompts with instance-based sketches. We evaluate our approach using upgraded sketch-based layouts for the T2I-CompBench and customized complex scenes. Both quantitative and qualitative results confirm our method enhances complex layout generation, ensuring precise instance placement and attribute representation in MIS.
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Multimodal representation learning, exemplified by multimodal contrastive learning (MMCL) using image-text pairs, aims to learn powerful representations by aligning cues across modalities. This approach relies on the core assumption that the exemplar image-text pairs constitute two representations of an identical concept. However, recent research has revealed that real-world datasets often exhibit misalignment. There are two distinct viewpoints on how to address this issue: one suggests mitigating the misalignment, and the other leveraging it. We seek here to reconcile these seemingly opposing perspectives, and to provide a practical guide for practitioners. Using latent variable models we thus formalize misalignment by introducing two specific mechanisms: selection bias, where some semantic variables are missing, and perturbation bias, where semantic variables are distorted -- both affecting latent variables shared across modalities. Our theoretical analysis demonstrates that, under mild assumptions, the representations learned by MMCL capture exactly the information related to the subset of the semantic variables invariant to selection and perturbation biases. This provides a unified perspective for understanding misalignment. Based on this, we further offer actionable insights into how misalignment should inform the design of real-world ML systems. We validate our theoretical findings through extensive empirical studies on both synthetic data and real image-text datasets, shedding light on the nuanced impact of misalignment on multimodal representation learning.
comment: 38 pages
Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
comment: 24 pages, 11 figures
M2S-RoAD: Multi-Modal Semantic Segmentation for Road Damage Using Camera and LiDAR Data
Road damage can create safety and comfort challenges for both human drivers and autonomous vehicles (AVs). This damage is particularly prevalent in rural areas due to less frequent surveying and maintenance of roads. Automated detection of pavement deterioration can be used as an input to AVs and driver assistance systems to improve road safety. Current research in this field has predominantly focused on urban environments driven largely by public datasets, while rural areas have received significantly less attention. This paper introduces M2S-RoAD, a dataset for the semantic segmentation of different classes of road damage. M2S-RoAD was collected in various towns across New South Wales, Australia, and labelled for semantic segmentation to identify nine distinct types of road damage. This dataset will be released upon the acceptance of the paper.
AGO: Adaptive Grounding for Open World 3D Occupancy Prediction
Open-world 3D semantic occupancy prediction aims to generate a voxelized 3D representation from sensor inputs while recognizing both known and unknown objects. Transferring open-vocabulary knowledge from vision-language models (VLMs) offers a promising direction but remains challenging. However, methods based on VLM-derived 2D pseudo-labels with traditional supervision are limited by a predefined label space and lack general prediction capabilities. Direct alignment with pretrained image embeddings, on the other hand, fails to achieve reliable performance due to often inconsistent image and text representations in VLMs. To address these challenges, we propose AGO, a novel 3D occupancy prediction framework with adaptive grounding to handle diverse open-world scenarios. AGO first encodes surrounding images and class prompts into 3D and text embeddings, respectively, leveraging similarity-based grounding training with 3D pseudo-labels. Additionally, a modality adapter maps 3D embeddings into a space aligned with VLM-derived image embeddings, reducing modality gaps. Experiments on Occ3D-nuScenes show that AGO improves unknown object prediction in zero-shot and few-shot transfer while achieving state-of-the-art closed-world self-supervised performance, surpassing prior methods by 4.09 mIoU.
SoccerNet-v3D: Leveraging Sports Broadcast Replays for 3D Scene Understanding
Sports video analysis is a key domain in computer vision, enabling detailed spatial understanding through multi-view correspondences. In this work, we introduce SoccerNet-v3D and ISSIA-3D, two enhanced and scalable datasets designed for 3D scene understanding in soccer broadcast analysis. These datasets extend SoccerNet-v3 and ISSIA by incorporating field-line-based camera calibration and multi-view synchronization, enabling 3D object localization through triangulation. We propose a monocular 3D ball localization task built upon the triangulation of ground-truth 2D ball annotations, along with several calibration and reprojection metrics to assess annotation quality on demand. Additionally, we present a single-image 3D ball localization method as a baseline, leveraging camera calibration and ball size priors to estimate the ball's position from a monocular viewpoint. To further refine 2D annotations, we introduce a bounding box optimization technique that ensures alignment with the 3D scene representation. Our proposed datasets establish new benchmarks for 3D soccer scene understanding, enhancing both spatial and temporal analysis in sports analytics. Finally, we provide code to facilitate access to our annotations and the generation pipelines for the datasets.
Global and Local Mamba Network for Multi-Modality Medical Image Super-Resolution
Convolutional neural networks and Transformer have made significant progresses in multi-modality medical image super-resolution. However, these methods either have a fixed receptive field for local learning or significant computational burdens for global learning, limiting the super-resolution performance. To solve this problem, State Space Models, notably Mamba, is introduced to efficiently model long-range dependencies in images with linear computational complexity. Relying on the Mamba and the fact that low-resolution images rely on global information to compensate for missing details, while high-resolution reference images need to provide more local details for accurate super-resolution, we propose a global and local Mamba network (GLMamba) for multi-modality medical image super-resolution. To be specific, our GLMamba is a two-branch network equipped with a global Mamba branch and a local Mamba branch. The global Mamba branch captures long-range relationships in low-resolution inputs, and the local Mamba branch focuses more on short-range details in high-resolution reference images. We also use the deform block to adaptively extract features of both branches to enhance the representation ability. A modulator is designed to further enhance deformable features in both global and local Mamba blocks. To fully integrate the reference image for low-resolution image super-resolution, we further develop a multi-modality feature fusion block to adaptively fuse features by considering similarities, differences, and complementary aspects between modalities. In addition, a contrastive edge loss (CELoss) is developed for sufficient enhancement of edge textures and contrast in medical images.
CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
UP-Person: Unified Parameter-Efficient Transfer Learning for Text-based Person Retrieval
Text-based Person Retrieval (TPR) as a multi-modal task, which aims to retrieve the target person from a pool of candidate images given a text description, has recently garnered considerable attention due to the progress of contrastive visual-language pre-trained model. Prior works leverage pre-trained CLIP to extract person visual and textual features and fully fine-tune the entire network, which have shown notable performance improvements compared to uni-modal pre-training models. However, full-tuning a large model is prone to overfitting and hinders the generalization ability. In this paper, we propose a novel Unified Parameter-Efficient Transfer Learning (PETL) method for Text-based Person Retrieval (UP-Person) to thoroughly transfer the multi-modal knowledge from CLIP. Specifically, UP-Person simultaneously integrates three lightweight PETL components including Prefix, LoRA and Adapter, where Prefix and LoRA are devised together to mine local information with task-specific information prompts, and Adapter is designed to adjust global feature representations. Additionally, two vanilla submodules are optimized to adapt to the unified architecture of TPR. For one thing, S-Prefix is proposed to boost attention of prefix and enhance the gradient propagation of prefix tokens, which improves the flexibility and performance of the vanilla prefix. For another thing, L-Adapter is designed in parallel with layer normalization to adjust the overall distribution, which can resolve conflicts caused by overlap and interaction among multiple submodules. Extensive experimental results demonstrate that our UP-Person achieves state-of-the-art results across various person retrieval datasets, including CUHK-PEDES, ICFG-PEDES and RSTPReid while merely fine-tuning 4.7\% parameters. Code is available at https://github.com/Liu-Yating/UP-Person.
comment: 16 pages, 7 figures, first submited to IEEE TCSVT on 2024 May. Under review
Learning to Harmonize Cross-vendor X-ray Images by Non-linear Image Dynamics Correction
In this paper, we explore how conventional image enhancement can improve model robustness in medical image analysis. By applying commonly used normalization methods to images from various vendors and studying their influence on model generalization in transfer learning, we show that the nonlinear characteristics of domain-specific image dynamics cannot be addressed by simple linear transforms. To tackle this issue, we reformulate the image harmonization task as an exposure correction problem and propose a method termed Global Deep Curve Estimation (GDCE) to reduce domain-specific exposure mismatch. GDCE performs enhancement via a pre-defined polynomial function and is trained with the help of a ``domain discriminator'', aiming to improve model transparency in downstream tasks compared to existing black-box methods.
Hierarchical Relation-augmented Representation Generalization for Few-shot Action Recognition
Few-shot action recognition (FSAR) aims to recognize novel action categories with few exemplars. Existing methods typically learn frame-level representations independently for each video by designing various inter-frame temporal modeling strategies. However, they neglect explicit relation modeling between videos and tasks, thus failing to capture shared temporal patterns across videos and reuse temporal knowledge from historical tasks. In light of this, we propose HR2G-shot, a Hierarchical Relation-augmented Representation Generalization framework for FSAR, which unifies three types of relation modeling (inter-frame, inter-video, and inter-task) to learn task-specific temporal patterns from a holistic view. In addition to conducting inter-frame temporal interactions, we further devise two components to respectively explore inter-video and inter-task relationships: i) Inter-video Semantic Correlation (ISC) performs cross-video frame-level interactions in a fine-grained manner, thereby capturing task-specific query features and learning intra- and inter-class temporal correlations among support features; ii) Inter-task Knowledge Transfer (IKT) retrieves and aggregates relevant temporal knowledge from the bank, which stores diverse temporal patterns from historical tasks. Extensive experiments on five benchmarks show that HR2G-shot outperforms current top-leading FSAR methods.
DTFSal: Audio-Visual Dynamic Token Fusion for Video Saliency Prediction
Audio-visual saliency prediction aims to mimic human visual attention by identifying salient regions in videos through the integration of both visual and auditory information. Although visual-only approaches have significantly advanced, effectively incorporating auditory cues remains challenging due to complex spatio-temporal interactions and high computational demands. To address these challenges, we propose Dynamic Token Fusion Saliency (DFTSal), a novel audio-visual saliency prediction framework designed to balance accuracy with computational efficiency. Our approach features a multi-scale visual encoder equipped with two novel modules: the Learnable Token Enhancement Block (LTEB), which adaptively weights tokens to emphasize crucial saliency cues, and the Dynamic Learnable Token Fusion Block (DLTFB), which employs a shifting operation to reorganize and merge features, effectively capturing long-range dependencies and detailed spatial information. In parallel, an audio branch processes raw audio signals to extract meaningful auditory features. Both visual and audio features are integrated using our Adaptive Multimodal Fusion Block (AMFB), which employs local, global, and adaptive fusion streams for precise cross-modal fusion. The resulting fused features are processed by a hierarchical multi-decoder structure, producing accurate saliency maps. Extensive evaluations on six audio-visual benchmarks demonstrate that DFTSal achieves SOTA performance while maintaining computational efficiency.
Mavors: Multi-granularity Video Representation for Multimodal Large Language Model
Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose $\mathbf{Mavors}$, a novel framework that introduces $\mathbf{M}$ulti-gr$\mathbf{a}$nularity $\mathbf{v}$ide$\mathbf{o}$ $\mathbf{r}$epre$\mathbf{s}$entation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.
comment: 22 pages
Summarization of Multimodal Presentations with Vision-Language Models: Study of the Effect of Modalities and Structure
Vision-Language Models (VLMs) can process visual and textual information in multiple formats: texts, images, interleaved texts and images, or even hour-long videos. In this work, we conduct fine-grained quantitative and qualitative analyses of automatic summarization of multimodal presentations using VLMs with various representations as input. From these experiments, we suggest cost-effective strategies for generating summaries from text-heavy multimodal documents under different input-length budgets using VLMs. We show that slides extracted from the video stream can be beneficially used as input against the raw video, and that a structured representation from interleaved slides and transcript provides the best performance. Finally, we reflect and comment on the nature of cross-modal interactions in multimodal presentations and share suggestions to improve the capabilities of VLMs to understand documents of this nature.
Multi-Object Grounding via Hierarchical Contrastive Siamese Transformers
Multi-object grounding in 3D scenes involves localizing multiple objects based on natural language input. While previous work has primarily focused on single-object grounding, real-world scenarios often demand the localization of several objects. To tackle this challenge, we propose Hierarchical Contrastive Siamese Transformers (H-COST), which employs a Hierarchical Processing strategy to progressively refine object localization, enhancing the understanding of complex language instructions. Additionally, we introduce a Contrastive Siamese Transformer framework, where two networks with the identical structure are used: one auxiliary network processes robust object relations from ground-truth labels to guide and enhance the second network, the reference network, which operates on segmented point-cloud data. This contrastive mechanism strengthens the model' s semantic understanding and significantly enhances its ability to process complex point-cloud data. Our approach outperforms previous state-of-the-art methods by 9.5% on challenging multi-object grounding benchmarks.
Aligning Anime Video Generation with Human Feedback
Anime video generation faces significant challenges due to the scarcity of anime data and unusual motion patterns, leading to issues such as motion distortion and flickering artifacts, which result in misalignment with human preferences. Existing reward models, designed primarily for real-world videos, fail to capture the unique appearance and consistency requirements of anime. In this work, we propose a pipeline to enhance anime video generation by leveraging human feedback for better alignment. Specifically, we construct the first multi-dimensional reward dataset for anime videos, comprising 30k human-annotated samples that incorporating human preferences for both visual appearance and visual consistency. Based on this, we develop AnimeReward, a powerful reward model that employs specialized vision-language models for different evaluation dimensions to guide preference alignment. Furthermore, we introduce Gap-Aware Preference Optimization (GAPO), a novel training method that explicitly incorporates preference gaps into the optimization process, enhancing alignment performance and efficiency. Extensive experiment results show that AnimeReward outperforms existing reward models, and the inclusion of GAPO leads to superior alignment in both quantitative benchmarks and human evaluations, demonstrating the effectiveness of our pipeline in enhancing anime video quality. Our dataset and code will be publicly available.
comment: 10 pages, 5 figures, 7 tables
Prior Does Matter: Visual Navigation via Denoising Diffusion Bridge Models
Recent advancements in diffusion-based imitation learning, which show impressive performance in modeling multimodal distributions and training stability, have led to substantial progress in various robot learning tasks. In visual navigation, previous diffusion-based policies typically generate action sequences by initiating from denoising Gaussian noise. However, the target action distribution often diverges significantly from Gaussian noise, leading to redundant denoising steps and increased learning complexity. Additionally, the sparsity of effective action distributions makes it challenging for the policy to generate accurate actions without guidance. To address these issues, we propose a novel, unified visual navigation framework leveraging the denoising diffusion bridge models named NaviBridger. This approach enables action generation by initiating from any informative prior actions, enhancing guidance and efficiency in the denoising process. We explore how diffusion bridges can enhance imitation learning in visual navigation tasks and further examine three source policies for generating prior actions. Extensive experiments in both simulated and real-world indoor and outdoor scenarios demonstrate that NaviBridger accelerates policy inference and outperforms the baselines in generating target action sequences. Code is available at https://github.com/hren20/NaiviBridger.
Investigating the Role of Bilateral Symmetry for Inpainting Brain MRI
Inpainting has recently emerged as a valuable and interesting technology to employ in the analysis of medical imaging data, in particular brain MRI. A wide variety of methodologies for inpainting MRI have been proposed and demonstrated on tasks including anomaly detection. In this work we investigate the statistical relationship between inpainted brain structures and the amount of subject-specific conditioning information, i.e. the other areas of the image that are masked. In particular, we analyse the distribution of inpainting results when masking additional regions of the image, specifically the contra-lateral structure. This allows us to elucidate where in the brain the model is drawing information from, and in particular, what is the importance of hemispherical symmetry? Our experiments interrogate a diffusion inpainting model through analysing the inpainting of subcortical brain structures based on intensity and estimated area change. We demonstrate that some structures show a strong influence of symmetry in the conditioning of the inpainting process.
TT3D: Table Tennis 3D Reconstruction
Sports analysis requires processing large amounts of data, which is time-consuming and costly. Advancements in neural networks have significantly alleviated this burden, enabling highly accurate ball tracking in sports broadcasts. However, relying solely on 2D ball tracking is limiting, as it depends on the camera's viewpoint and falls short of supporting comprehensive game analysis. To address this limitation, we propose a novel approach for reconstructing precise 3D ball trajectories from online table tennis match recordings. Our method leverages the underlying physics of the ball's motion to identify the bounce state that minimizes the reprojection error of the ball's flying trajectory, hence ensuring an accurate and reliable 3D reconstruction. A key advantage of our approach is its ability to infer ball spin without relying on human pose estimation or racket tracking, which are often unreliable or unavailable in broadcast footage. We developed an automated camera calibration method capable of reliably tracking camera movements. Additionally, we adapted an existing 3D pose estimation model, which lacks depth motion capture, to accurately track player movements. Together, these contributions enable the full 3D reconstruction of a table tennis rally.
comment: Accepted to CVSport 2025
Progressive Transfer Learning for Multi-Pass Fundus Image Restoration
Diabetic retinopathy is a leading cause of vision impairment, making its early diagnosis through fundus imaging critical for effective treatment planning. However, the presence of poor quality fundus images caused by factors such as inadequate illumination, noise, blurring and other motion artifacts yields a significant challenge for accurate DR screening. In this study, we propose progressive transfer learning for multi pass restoration to iteratively enhance the quality of degraded fundus images, ensuring more reliable DR screening. Unlike previous methods that often focus on a single pass restoration, multi pass restoration via PTL can achieve a superior blind restoration performance that can even improve most of the good quality fundus images in the dataset. Initially, a Cycle GAN model is trained to restore low quality images, followed by PTL induced restoration passes over the latest restored outputs to improve overall quality in each pass. The proposed method can learn blind restoration without requiring any paired data while surpassing its limitations by leveraging progressive learning and fine tuning strategies to minimize distortions and preserve critical retinal features. To evaluate PTL's effectiveness on multi pass restoration, we conducted experiments on DeepDRiD, a large scale fundus imaging dataset specifically curated for diabetic retinopathy detection. Our result demonstrates state of the art performance, showcasing PTL's potential as a superior approach to iterative image quality restoration.
comment: 13 pages, 12 figures including appendix
Relative Illumination Fields: Learning Medium and Light Independent Underwater Scenes
We address the challenge of constructing a consistent and photorealistic Neural Radiance Field in inhomogeneously illuminated, scattering environments with unknown, co-moving light sources. While most existing works on underwater scene representation focus on a static homogeneous illumination, limited attention has been paid to scenarios such as when a robot explores water deeper than a few tens of meters, where sunlight becomes insufficient. To address this, we propose a novel illumination field locally attached to the camera, enabling the capture of uneven lighting effects within the viewing frustum. We combine this with a volumetric medium representation to an overall method that effectively handles interaction between dynamic illumination field and static scattering medium. Evaluation results demonstrate the effectiveness and flexibility of our approach.
comment: 10 pages, 6 figures. First two authors contributed equally to this work
Masked Autoencoder Self Pre-Training for Defect Detection in Microelectronics
Whereas in general computer vision, transformer-based architectures have quickly become the gold standard, microelectronics defect detection still heavily relies on convolutional neural networks (CNNs). We hypothesize that this is due to the fact that a) transformers have an increased need for data and b) labelled image generation procedures for microelectronics are costly, and labelled data is therefore sparse. Whereas in other domains, pre-training on large natural image datasets can mitigate this problem, in microelectronics transfer learning is hindered due to the dissimilarity of domain data and natural images. Therefore, we evaluate self pre-training, where models are pre-trained on the target dataset, rather than another dataset. We propose a vision transformer (ViT) pre-training framework for defect detection in microelectronics based on masked autoencoders (MAE). In MAE, a large share of image patches is masked and reconstructed by the model during pre-training. We perform pre-training and defect detection using a dataset of less than 10.000 scanning acoustic microscopy (SAM) images labelled using transient thermal analysis (TTA). Our experimental results show that our approach leads to substantial performance gains compared to a) supervised ViT, b) ViT pre-trained on natural image datasets, and c) state-of-the-art CNN-based defect detection models used in the literature. Additionally, interpretability analysis reveals that our self pre-trained models, in comparison to ViT baselines, correctly focus on defect-relevant features such as cracks in the solder material. This demonstrates that our approach yields fault-specific feature representations, making our self pre-trained models viable for real-world defect detection in microelectronics.
comment: 16 pages, 5 figures
The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
RGB-Event based Pedestrian Attribute Recognition: A Benchmark Dataset and An Asymmetric RWKV Fusion Framework
Existing pedestrian attribute recognition methods are generally developed based on RGB frame cameras. However, these approaches are constrained by the limitations of RGB cameras, such as sensitivity to lighting conditions and motion blur, which hinder their performance. Furthermore, current attribute recognition primarily focuses on analyzing pedestrians' external appearance and clothing, lacking an exploration of emotional dimensions. In this paper, we revisit these issues and propose a novel multi-modal RGB-Event attribute recognition task by drawing inspiration from the advantages of event cameras in low-light, high-speed, and low-power consumption. Specifically, we introduce the first large-scale multi-modal pedestrian attribute recognition dataset, termed EventPAR, comprising 100K paired RGB-Event samples that cover 50 attributes related to both appearance and six human emotions, diverse scenes, and various seasons. By retraining and evaluating mainstream PAR models on this dataset, we establish a comprehensive benchmark and provide a solid foundation for future research in terms of data and algorithmic baselines. In addition, we propose a novel RWKV-based multi-modal pedestrian attribute recognition framework, featuring an RWKV visual encoder and an asymmetric RWKV fusion module. Extensive experiments are conducted on our proposed dataset as well as two simulated datasets (MARS-Attribute and DukeMTMC-VID-Attribute), achieving state-of-the-art results. The source code and dataset will be released on https://github.com/Event-AHU/OpenPAR
comment: The First Benchmark Dataset for RGB-Event Multimodal Pedestrian Attribute Recognition Task
Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network
Air quality prediction plays a crucial role in public health and environmental protection. Accurate air quality prediction is a complex multivariate spatiotemporal problem, that involves interactions across temporal patterns, pollutant correlations, spatial station dependencies, and particularly meteorological influences that govern pollutant dispersion and chemical transformations. Existing works underestimate the critical role of atmospheric conditions in air quality prediction and neglect comprehensive meteorological data utilization, thereby impairing the modeling of dynamic interdependencies between air quality and meteorological data. To overcome this, we propose MDSTNet, an encoder-decoder framework that explicitly models air quality observations and atmospheric conditions as distinct modalities, integrating multi-pressure-level meteorological data and weather forecasts to capture atmosphere-pollution dependencies for prediction. Meantime, we construct ChinaAirNet, the first nationwide dataset combining air quality records with multi-pressure-level meteorological observations. Experimental results on ChinaAirNet demonstrate MDSTNet's superiority, substantially reducing 48-hour prediction errors by 17.54\% compared to the state-of-the-art model. The source code and dataset will be available on github.
EBAD-Gaussian: Event-driven Bundle Adjusted Deblur Gaussian Splatting
While 3D Gaussian Splatting (3D-GS) achieves photorealistic novel view synthesis, its performance degrades with motion blur. In scenarios with rapid motion or low-light conditions, existing RGB-based deblurring methods struggle to model camera pose and radiance changes during exposure, reducing reconstruction accuracy. Event cameras, capturing continuous brightness changes during exposure, can effectively assist in modeling motion blur and improving reconstruction quality. Therefore, we propose Event-driven Bundle Adjusted Deblur Gaussian Splatting (EBAD-Gaussian), which reconstructs sharp 3D Gaussians from event streams and severely blurred images. This method jointly learns the parameters of these Gaussians while recovering camera motion trajectories during exposure time. Specifically, we first construct a blur loss function by synthesizing multiple latent sharp images during the exposure time, minimizing the difference between real and synthesized blurred images. Then we use event stream to supervise the light intensity changes between latent sharp images at any time within the exposure period, supplementing the light intensity dynamic changes lost in RGB images. Furthermore, we optimize the latent sharp images at intermediate exposure times based on the event-based double integral (EDI) prior, applying consistency constraints to enhance the details and texture information of the reconstructed images. Extensive experiments on synthetic and real-world datasets show that EBAD-Gaussian can achieve high-quality 3D scene reconstruction under the condition of blurred images and event stream inputs.
Balancing Two Classifiers via A Simplex ETF Structure for Model Calibration CVPR2025
In recent years, deep neural networks (DNNs) have demonstrated state-of-the-art performance across various domains. However, despite their success, they often face calibration issues, particularly in safety-critical applications such as autonomous driving and healthcare, where unreliable predictions can have serious consequences. Recent research has started to improve model calibration from the view of the classifier. However, the exploration of designing the classifier to solve the model calibration problem is insufficient. Let alone most of the existing methods ignore the calibration errors arising from underconfidence. In this work, we propose a novel method by balancing learnable and ETF classifiers to solve the overconfidence or underconfidence problem for model Calibration named BalCAL. By introducing a confidence-tunable module and a dynamic adjustment method, we ensure better alignment between model confidence and its true accuracy. Extensive experimental validation shows that ours significantly improves model calibration performance while maintaining high predictive accuracy, outperforming existing techniques. This provides a novel solution to the calibration challenges commonly encountered in deep learning.
comment: CVPR2025
An Image is Worth $K$ Topics: A Visual Structural Topic Model with Pretrained Image Embeddings
Political scientists are increasingly interested in analyzing visual content at scale. However, the existing computational toolbox is still in need of methods and models attuned to the specific challenges and goals of social and political inquiry. In this article, we introduce a visual Structural Topic Model (vSTM) that combines pretrained image embeddings with a structural topic model. This has important advantages compared to existing approaches. First, pretrained embeddings allow the model to capture the semantic complexity of images relevant to political contexts. Second, the structural topic model provides the ability to analyze how topics and covariates are related, while maintaining a nuanced representation of images as a mixture of multiple topics. In our empirical application, we show that the vSTM is able to identify topics that are interpretable, coherent, and substantively relevant to the study of online political communication.
NaviDiffusor: Cost-Guided Diffusion Model for Visual Navigation
Visual navigation, a fundamental challenge in mobile robotics, demands versatile policies to handle diverse environments. Classical methods leverage geometric solutions to minimize specific costs, offering adaptability to new scenarios but are prone to system errors due to their multi-modular design and reliance on hand-crafted rules. Learning-based methods, while achieving high planning success rates, face difficulties in generalizing to unseen environments beyond the training data and often require extensive training. To address these limitations, we propose a hybrid approach that combines the strengths of learning-based methods and classical approaches for RGB-only visual navigation. Our method first trains a conditional diffusion model on diverse path-RGB observation pairs. During inference, it integrates the gradients of differentiable scene-specific and task-level costs, guiding the diffusion model to generate valid paths that meet the constraints. This approach alleviates the need for retraining, offering a plug-and-play solution. Extensive experiments in both indoor and outdoor settings, across simulated and real-world scenarios, demonstrate zero-shot transfer capability of our approach, achieving higher success rates and fewer collisions compared to baseline methods. Code will be released at https://github.com/SYSU-RoboticsLab/NaviD.
GaussVideoDreamer: 3D Scene Generation with Video Diffusion and Inconsistency-Aware Gaussian Splatting
Single-image 3D scene reconstruction presents significant challenges due to its inherently ill-posed nature and limited input constraints. Recent advances have explored two promising directions: multiview generative models that train on 3D consistent datasets but struggle with out-of-distribution generalization, and 3D scene inpainting and completion frameworks that suffer from cross-view inconsistency and suboptimal error handling, as they depend exclusively on depth data or 3D smoothness, which ultimately degrades output quality and computational performance. Building upon these approaches, we present GaussVideoDreamer, which advances generative multimedia approaches by bridging the gap between image, video, and 3D generation, integrating their strengths through two key innovations: (1) A progressive video inpainting strategy that harnesses temporal coherence for improved multiview consistency and faster convergence. (2) A 3D Gaussian Splatting consistency mask to guide the video diffusion with 3D consistent multiview evidence. Our pipeline combines three core components: a geometry-aware initialization protocol, Inconsistency-Aware Gaussian Splatting, and a progressive video inpainting strategy. Experimental results demonstrate that our approach achieves 32% higher LLaVA-IQA scores and at least 2x speedup compared to existing methods while maintaining robust performance across diverse scenes.
Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? CVPR 2025
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited. Typically, current open-source MLLMs rely on the alignment inherited from their language module to avoid harmful generations. However, the lack of safety measures specifically designed for multi-modal inputs creates an alignment gap, leaving MLLMs vulnerable to vision-domain attacks such as typographic manipulation. Current methods utilize a carefully designed safety dataset to enhance model defense capability, while the specific knowledge or patterns acquired from the high-quality dataset remain unclear. Through comparison experiments, we find that the alignment gap primarily arises from data distribution biases, while image content, response quality, or the contrastive behavior of the dataset makes little contribution to boosting multi-modal safety. To further investigate this and identify the key factors in improving MLLM safety, we propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences. Experiments show that, without the need for labor-intensive collection of high-quality malicious data, model safety can still be significantly improved, as long as a specific fraction of rejection data exists in the finetuning set, indicating the security alignment is not lost but rather obscured during multi-modal pretraining or instruction finetuning. Simply correcting the underlying data bias could narrow the safety gap in the vision domain.
comment: Accepted to CVPR 2025, codes in process
Metric-Guided Synthesis of Class Activation Mapping
Class activation mapping (CAM) is a widely adopted class of saliency methods used to explain the behavior of convolutional neural networks (CNNs). These methods generate heatmaps that highlight the parts of the input most relevant to the CNN output. Various CAM methods have been proposed, each distinguished by the expressions used to derive heatmaps. In general, users look for heatmaps with specific properties that reflect different aspects of CNN functionality. These may include similarity to ground truth, robustness, equivariance, and more. Although existing CAM methods implicitly encode some of these properties in their expressions, they do not allow for variability in heatmap generation following the user's intent or domain knowledge. In this paper, we address this limitation by introducing SyCAM, a metric-based approach for synthesizing CAM expressions. Given a predefined evaluation metric for saliency maps, SyCAM automatically generates CAM expressions optimized for that metric. We specifically explore a syntax-guided synthesis instantiation of SyCAM, where CAM expressions are derived based on predefined syntactic constraints and the given metric. Using several established evaluation metrics, we demonstrate the efficacy and flexibility of our approach in generating targeted heatmaps. We compare SyCAM with other well-known CAM methods on three prominent models: ResNet50, VGG16, and VGG19.
Correlative and Discriminative Label Grouping for Multi-Label Visual Prompt Tuning CVPR
Modeling label correlations has always played a pivotal role in multi-label image classification (MLC), attracting significant attention from researchers. However, recent studies have overemphasized co-occurrence relationships among labels, which can lead to overfitting risk on this overemphasis, resulting in suboptimal models. To tackle this problem, we advocate for balancing correlative and discriminative relationships among labels to mitigate the risk of overfitting and enhance model performance. To this end, we propose the Multi-Label Visual Prompt Tuning framework, a novel and parameter-efficient method that groups classes into multiple class subsets according to label co-occurrence and mutual exclusivity relationships, and then models them respectively to balance the two relationships. In this work, since each group contains multiple classes, multiple prompt tokens are adopted within Vision Transformer (ViT) to capture the correlation or discriminative label relationship within each group, and effectively learn correlation or discriminative representations for class subsets. On the other hand, each group contains multiple group-aware visual representations that may correspond to multiple classes, and the mixture of experts (MoE) model can cleverly assign them from the group-aware to the label-aware, adaptively obtaining label-aware representation, which is more conducive to classification. Experiments on multiple benchmark datasets show that our proposed approach achieves competitive results and outperforms SOTA methods on multiple pre-trained models.
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
Resampling Benchmark for Efficient Comprehensive Evaluation of Large Vision-Language Models
We propose an efficient evaluation protocol for large vision-language models (VLMs). Given their broad knowledge and reasoning capabilities, multiple benchmarks are needed for comprehensive assessment, making evaluation computationally expensive. To improve efficiency, we construct a subset that yields results comparable to full benchmark evaluations. Our benchmark classification experiments reveal that no single benchmark fully covers all challenges. We then introduce a subset construction method using farthest point sampling (FPS). Our experiments show that FPS-based benchmarks maintain a strong correlation (> 0.96) with full evaluations while using only ~1\% of the data. Additionally, applying FPS to an existing benchmark improves correlation with overall evaluation results, suggesting its potential to reduce unintended dataset biases.
OctGPT: Octree-based Multiscale Autoregressive Models for 3D Shape Generation SIGGRAPH 2025
Autoregressive models have achieved remarkable success across various domains, yet their performance in 3D shape generation lags significantly behind that of diffusion models. In this paper, we introduce OctGPT, a novel multiscale autoregressive model for 3D shape generation that dramatically improves the efficiency and performance of prior 3D autoregressive approaches, while rivaling or surpassing state-of-the-art diffusion models. Our method employs a serialized octree representation to efficiently capture the hierarchical and spatial structures of 3D shapes. Coarse geometry is encoded via octree structures, while fine-grained details are represented by binary tokens generated using a vector quantized variational autoencoder (VQVAE), transforming 3D shapes into compact \emph{multiscale binary sequences} suitable for autoregressive prediction. To address the computational challenges of handling long sequences, we incorporate octree-based transformers enhanced with 3D rotary positional encodings, scale-specific embeddings, and token-parallel generation schemes. These innovations reduce training time by 13 folds and generation time by 69 folds, enabling the efficient training of high-resolution 3D shapes, e.g.,$1024^3$, on just four NVIDIA 4090 GPUs only within days. OctGPT showcases exceptional versatility across various tasks, including text-, sketch-, and image-conditioned generation, as well as scene-level synthesis involving multiple objects. Extensive experiments demonstrate that OctGPT accelerates convergence and improves generation quality over prior autoregressive methods, offering a new paradigm for high-quality, scalable 3D content creation.
comment: SIGGRAPH 2025
Beyond Degradation Redundancy: Contrastive Prompt Learning for All-in-One Image Restoration
All-in-one image restoration, addressing diverse degradation types with a unified model, presents significant challenges in designing task-specific prompts that effectively guide restoration across multiple degradation scenarios. While adaptive prompt learning enables end-to-end optimization, it often yields overlapping or redundant task representations. Conversely, explicit prompts derived from pretrained classifiers enhance discriminability but may discard critical visual information for reconstruction. To address these limitations, we introduce Contrastive Prompt Learning (CPL), a novel framework that fundamentally enhances prompt-task alignment through two complementary innovations: a \emph{Sparse Prompt Module (SPM)} that efficiently captures degradation-specific features while minimizing redundancy, and a \emph{Contrastive Prompt Regularization (CPR)} that explicitly strengthens task boundaries by incorporating negative prompt samples across different degradation types. Unlike previous approaches that focus primarily on degradation classification, CPL optimizes the critical interaction between prompts and the restoration model itself. Extensive experiments across five comprehensive benchmarks demonstrate that CPL consistently enhances state-of-the-art all-in-one restoration models, achieving significant improvements in both standard multi-task scenarios and challenging composite degradation settings. Our framework establishes new state-of-the-art performance while maintaining parameter efficiency, offering a principled solution for unified image restoration.
comment: Project page: https://github.com/Aitical/CPLIR
Enhancing Multi-task Learning Capability of Medical Generalist Foundation Model via Image-centric Multi-annotation Data
The emergence of medical generalist foundation models has revolutionized conventional task-specific model development paradigms, aiming to better handle multiple tasks through joint training on large-scale medical datasets. However, recent advances prioritize simple data scaling or architectural component enhancement, while neglecting to re-examine multi-task learning from a data-centric perspective. Critically, simply aggregating existing data resources leads to decentralized image-task alignment, which fails to cultivate comprehensive image understanding or align with clinical needs for multi-dimensional image interpretation. In this paper, we introduce the image-centric multi-annotation X-ray dataset (IMAX), the first attempt to enhance the multi-task learning capabilities of medical multi-modal large language models (MLLMs) from the data construction level. To be specific, IMAX is featured from the following attributes: 1) High-quality data curation. A comprehensive collection of more than 354K entries applicable to seven different medical tasks. 2) Image-centric dense annotation. Each X-ray image is associated with an average of 4.10 tasks and 7.46 training entries, ensuring multi-task representation richness per image. Compared to the general decentralized multi-annotation X-ray dataset (DMAX), IMAX consistently demonstrates significant multi-task average performance gains ranging from 3.20% to 21.05% across seven open-source state-of-the-art medical MLLMs. Moreover, we investigate differences in statistical patterns exhibited by IMAX and DMAX training processes, exploring potential correlations between optimization dynamics and multi-task performance. Finally, leveraging the core concept of IMAX data construction, we propose an optimized DMAX-based training strategy to alleviate the dilemma of obtaining high-quality IMAX data in practical scenarios.
SemiETS: Integrating Spatial and Content Consistencies for Semi-Supervised End-to-end Text Spotting CVPR2025
Most previous scene text spotting methods rely on high-quality manual annotations to achieve promising performance. To reduce their expensive costs, we study semi-supervised text spotting (SSTS) to exploit useful information from unlabeled images. However, directly applying existing semi-supervised methods of general scenes to SSTS will face new challenges: 1) inconsistent pseudo labels between detection and recognition tasks, and 2) sub-optimal supervisions caused by inconsistency between teacher/student. Thus, we propose a new Semi-supervised framework for End-to-end Text Spotting, namely SemiETS that leverages the complementarity of text detection and recognition. Specifically, it gradually generates reliable hierarchical pseudo labels for each task, thereby reducing noisy labels. Meanwhile, it extracts important information in locations and transcriptions from bidirectional flows to improve consistency. Extensive experiments on three datasets under various settings demonstrate the effectiveness of SemiETS on arbitrary-shaped text. For example, it outperforms previous state-of-the-art SSL methods by a large margin on end-to-end spotting (+8.7%, +5.6%, and +2.6% H-mean under 0.5%, 1%, and 2% labeled data settings on Total-Text, respectively). More importantly, it still improves upon a strongly supervised text spotter trained with plenty of labeled data by 2.0%. Compelling domain adaptation ability shows practical potential. Moreover, our method demonstrates consistent improvement on different text spotters.
comment: Accepted by CVPR2025. Code will be available at \url{https://github.com/DrLuo/SemiETS}
Dual-Path Enhancements in Event-Based Eye Tracking: Augmented Robustness and Adaptive Temporal Modeling CVPR
Event-based eye tracking has become a pivotal technology for augmented reality and human-computer interaction. Yet, existing methods struggle with real-world challenges such as abrupt eye movements and environmental noise. Building on the efficiency of the Lightweight Spatiotemporal Network-a causal architecture optimized for edge devices-we introduce two key advancements. First, a robust data augmentation pipeline incorporating temporal shift, spatial flip, and event deletion improves model resilience, reducing Euclidean distance error by 12% (1.61 vs. 1.70 baseline) on challenging samples. Second, we propose KnightPupil, a hybrid architecture combining an EfficientNet-B3 backbone for spatial feature extraction, a bidirectional GRU for contextual temporal modeling, and a Linear Time-Varying State-Space Module to adapt to sparse inputs and noise dynamically. Evaluated on the 3ET+ benchmark, our framework achieved 1.61 Euclidean distance on the private test set of the Event-based Eye Tracking Challenge at CVPR 2025, demonstrating its effectiveness for practical deployment in AR/VR systems while providing a foundation for future innovations in neuromorphic vision.
comment: Camera-ready version for CVPRW 2025. Accepted for presentation at the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2025)
Semantic Depth Matters: Explaining Errors of Deep Vision Networks through Perceived Class Similarities
Understanding deep neural network (DNN) behavior requires more than evaluating classification accuracy alone; analyzing errors and their predictability is equally crucial. Current evaluation methodologies lack transparency, particularly in explaining the underlying causes of network misclassifications. To address this, we introduce a novel framework that investigates the relationship between the semantic hierarchy depth perceived by a network and its real-data misclassification patterns. Central to our framework is the Similarity Depth (SD) metric, which quantifies the semantic hierarchy depth perceived by a network along with a method of evaluation of how closely the network's errors align with its internally perceived similarity structure. We also propose a graph-based visualization of model semantic relationships and misperceptions. A key advantage of our approach is that leveraging class templates -- representations derived from classifier layer weights -- is applicable to already trained networks without requiring additional data or experiments. Our approach reveals that deep vision networks encode specific semantic hierarchies and that high semantic depth improves the compliance between perceived class similarities and actual errors.
Efficient 2D to Full 3D Human Pose Uplifting including Joint Rotations CVPR'25
In sports analytics, accurately capturing both the 3D locations and rotations of body joints is essential for understanding an athlete's biomechanics. While Human Mesh Recovery (HMR) models can estimate joint rotations, they often exhibit lower accuracy in joint localization compared to 3D Human Pose Estimation (HPE) models. Recent work addressed this limitation by combining a 3D HPE model with inverse kinematics (IK) to estimate both joint locations and rotations. However, IK is computationally expensive. To overcome this, we propose a novel 2D-to-3D uplifting model that directly estimates 3D human poses, including joint rotations, in a single forward pass. We investigate multiple rotation representations, loss functions, and training strategies - both with and without access to ground truth rotations. Our models achieve state-of-the-art accuracy in rotation estimation, are 150 times faster than the IK-based approach, and surpass HMR models in joint localization precision.
comment: accepted at CVSports@CVPR'25
Pseudo-Label Guided Real-World Image De-weathering: A Learning Framework with Imperfect Supervision
Real-world image de-weathering aims at removingvarious undesirable weather-related artifacts, e.g., rain, snow,and fog. To this end, acquiring ideal training pairs is crucial.Existing real-world datasets are typically constructed paired databy extracting clean and degraded images from live streamsof landscape scene on the Internet. Despite the use of strictfiltering mechanisms during collection, training pairs inevitablyencounter inconsistency in terms of lighting, object position, scenedetails, etc, making de-weathering models possibly suffer fromdeformation artifacts under non-ideal supervision. In this work,we propose a unified solution for real-world image de-weatheringwith non-ideal supervision, i.e., a pseudo-label guided learningframework, to address various inconsistencies within the realworld paired dataset. Generally, it consists of a de-weatheringmodel (De-W) and a Consistent Label Constructor (CLC), bywhich restoration result can be adaptively supervised by originalground-truth image to recover sharp textures while maintainingconsistency with the degraded inputs in non-weather contentthrough the supervision of pseudo-labels. Particularly, a Crossframe Similarity Aggregation (CSA) module is deployed withinCLC to enhance the quality of pseudo-labels by exploring thepotential complementary information of multi-frames throughgraph model. Moreover, we introduce an Information AllocationStrategy (IAS) to integrate the original ground-truth imagesand pseudo-labels, thereby facilitating the joint supervision forthe training of de-weathering model. Extensive experimentsdemonstrate that our method exhibits significant advantageswhen trained on imperfectly aligned de-weathering datasets incomparison with other approaches.
comment: 15 pages, 16 figures
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
comment: 10 pages, 10 figures, 3 tables
FUSION: Fully Integration of Vision-Language Representations for Deep Cross-Modal Understanding
We introduce FUSION, a family of multimodal large language models (MLLMs) with a fully vision-language alignment and integration paradigm. Unlike existing methods that primarily rely on late-stage modality interaction during LLM decoding, our approach achieves deep, dynamic integration throughout the entire processing pipeline. To this end, we propose Text-Guided Unified Vision Encoding, incorporating textual information in vision encoding to achieve pixel-level integration. We further design Context-Aware Recursive Alignment Decoding that recursively aggregates visual features conditioned on textual context during decoding, enabling fine-grained, question-level semantic integration. To guide feature mapping and mitigate modality discrepancies, we develop Dual-Supervised Semantic Mapping Loss. Additionally, we construct a Synthesized Language-Driven Question-Answer (QA) dataset through a new data synthesis method, prioritizing high-quality QA pairs to optimize text-guided feature integration. Building on these foundations, we train FUSION at two scales-3B, 8B-and demonstrate that our full-modality integration approach significantly outperforms existing methods with only 630 vision tokens. Notably, FUSION 3B surpasses Cambrian-1 8B and Florence-VL 8B on most benchmarks. FUSION 3B continues to outperform Cambrian-1 8B even when limited to 300 vision tokens. Our ablation studies show that FUSION outperforms LLaVA-NeXT on over half of the benchmarks under same configuration without dynamic resolution, highlighting the effectiveness of our approach. We release our code, model weights, and dataset. https://github.com/starriver030515/FUSION
Improving Multimodal Hateful Meme Detection Exploiting LMM-Generated Knowledge CVPR 2025
Memes have become a dominant form of communication in social media in recent years. Memes are typically humorous and harmless, however there are also memes that promote hate speech, being in this way harmful to individuals and groups based on their identity. Therefore, detecting hateful content in memes has emerged as a task of critical importance. The need for understanding the complex interactions of images and their embedded text renders the hateful meme detection a challenging multimodal task. In this paper we propose to address the aforementioned task leveraging knowledge encoded in powerful Large Multimodal Models (LMM). Specifically, we propose to exploit LMMs in a two-fold manner. First, by extracting knowledge oriented to the hateful meme detection task in order to build strong meme representations. Specifically, generic semantic descriptions and emotions that the images along with their embedded texts elicit are extracted, which are then used to train a simple classification head for hateful meme detection. Second, by developing a novel hard mining approach introducing directly LMM-encoded knowledge to the training process, providing further improvements. We perform extensive experiments on two datasets that validate the effectiveness of the proposed method, achieving state-of-the-art performance. Our code and trained models are publicly available at: https://github.com/IDT-ITI/LMM-CLIP-meme.
comment: Accepted for publication, Multimodal Learning and Applications Workshop (MULA 2025) @ IEEE/CVF CVPR 2025, Nashville, TN, USA, June 2025. This is the authors' "accepted version"
LiteTracker: Leveraging Temporal Causality for Accurate Low-latency Tissue Tracking
Tissue tracking plays a critical role in various surgical navigation and extended reality (XR) applications. While current methods trained on large synthetic datasets achieve high tracking accuracy and generalize well to endoscopic scenes, their runtime performances fail to meet the low-latency requirements necessary for real-time surgical applications. To address this limitation, we propose LiteTracker, a low-latency method for tissue tracking in endoscopic video streams. LiteTracker builds on a state-of-the-art long-term point tracking method, and introduces a set of training-free runtime optimizations. These optimizations enable online, frame-by-frame tracking by leveraging a temporal memory buffer for efficient feature reuse and utilizing prior motion for accurate track initialization. LiteTracker demonstrates significant runtime improvements being around 7x faster than its predecessor and 2x than the state-of-the-art. Beyond its primary focus on efficiency, LiteTracker delivers high-accuracy tracking and occlusion prediction, performing competitively on both the STIR and SuPer datasets. We believe LiteTracker is an important step toward low-latency tissue tracking for real-time surgical applications in the operating room.
Small Object Detection with YOLO: A Performance Analysis Across Model Versions and Hardware
This paper provides an extensive evaluation of YOLO object detection models (v5, v8, v9, v10, v11) by com- paring their performance across various hardware platforms and optimization libraries. Our study investigates inference speed and detection accuracy on Intel and AMD CPUs using popular libraries such as ONNX and OpenVINO, as well as on GPUs through TensorRT and other GPU-optimized frameworks. Furthermore, we analyze the sensitivity of these YOLO models to object size within the image, examining performance when detecting objects that occupy 1%, 2.5%, and 5% of the total area of the image. By identifying the trade-offs in efficiency, accuracy, and object size adaptability, this paper offers insights for optimal model selection based on specific hardware constraints and detection requirements, aiding practitioners in deploying YOLO models effectively for real-world applications.
Digital Staining with Knowledge Distillation: A Unified Framework for Unpaired and Paired-But-Misaligned Data
Staining is essential in cell imaging and medical diagnostics but poses significant challenges, including high cost, time consumption, labor intensity, and irreversible tissue alterations. Recent advances in deep learning have enabled digital staining through supervised model training. However, collecting large-scale, perfectly aligned pairs of stained and unstained images remains difficult. In this work, we propose a novel unsupervised deep learning framework for digital cell staining that reduces the need for extensive paired data using knowledge distillation. We explore two training schemes: (1) unpaired and (2) paired-but-misaligned settings. For the unpaired case, we introduce a two-stage pipeline, comprising light enhancement followed by colorization, as a teacher model. Subsequently, we obtain a student staining generator through knowledge distillation with hybrid non-reference losses. To leverage the pixel-wise information between adjacent sections, we further extend to the paired-but-misaligned setting, adding the Learning to Align module to utilize pixel-level information. Experiment results on our dataset demonstrate that our proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets in both settings. Compared with competing methods, our method achieves improved results both qualitatively and quantitatively (e.g., NIQE and PSNR).We applied our digital staining method to the White Blood Cell (WBC) dataset, investigating its potential for medical applications.
comment: Accepted to IEEE Transactions on Medical Imaging
TAMP: Token-Adaptive Layerwise Pruning in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown remarkable versatility in understanding diverse multimodal data and tasks. However, these capabilities come with an increased model scale. While post-training pruning reduces model size in unimodal models, its application to MLLMs often yields limited success. Our analysis discovers that conventional methods fail to account for the unique token attributes across layers and modalities inherent to MLLMs. Inspired by this observation, we propose TAMP, a simple yet effective pruning framework tailored for MLLMs, featuring two key components: (1) Diversity-Aware Sparsity, which adjusts sparsity ratio per layer based on diversities among multimodal output tokens, preserving more parameters in high-diversity layers; and (2) Adaptive Multimodal Input Activation, which identifies representative multimodal input tokens using attention scores to guide unstructured weight pruning. We validate our method on two state-of-the-art MLLMs: LLaVA-NeXT, designed for vision-language tasks, and VideoLLaMA2, capable of processing audio, visual, and language modalities. Empirical experiments across various multimodal evaluation benchmarks demonstrate that each component of our approach substantially outperforms existing pruning techniques.
comment: Preprint
Enhanced Semantic Extraction and Guidance for UGC Image Super Resolution
Due to the disparity between real-world degradations in user-generated content(UGC) images and synthetic degradations, traditional super-resolution methods struggle to generalize effectively, necessitating a more robust approach to model real-world distortions. In this paper, we propose a novel approach to UGC image super-resolution by integrating semantic guidance into a diffusion framework. Our method addresses the inconsistency between degradations in wild and synthetic datasets by separately simulating the degradation processes on the LSDIR dataset and combining them with the official paired training set. Furthermore, we enhance degradation removal and detail generation by incorporating a pretrained semantic extraction model (SAM2) and fine-tuning key hyperparameters for improved perceptual fidelity. Extensive experiments demonstrate the superiority of our approach against state-of-the-art methods. Additionally, the proposed model won second place in the CVPR NTIRE 2025 Short-form UGC Image Super-Resolution Challenge, further validating its effectiveness. The code is available at https://github.c10pom/Moonsofang/NTIRE-2025-SRlab.
Separate to Collaborate: Dual-Stream Diffusion Model for Coordinated Piano Hand Motion Synthesis
Automating the synthesis of coordinated bimanual piano performances poses significant challenges, particularly in capturing the intricate choreography between the hands while preserving their distinct kinematic signatures. In this paper, we propose a dual-stream neural framework designed to generate synchronized hand gestures for piano playing from audio input, addressing the critical challenge of modeling both hand independence and coordination. Our framework introduces two key innovations: (i) a decoupled diffusion-based generation framework that independently models each hand's motion via dual-noise initialization, sampling distinct latent noise for each while leveraging a shared positional condition, and (ii) a Hand-Coordinated Asymmetric Attention (HCAA) mechanism suppresses symmetric (common-mode) noise to highlight asymmetric hand-specific features, while adaptively enhancing inter-hand coordination during denoising. The system operates hierarchically: it first predicts 3D hand positions from audio features and then generates joint angles through position-aware diffusion models, where parallel denoising streams interact via HCAA. Comprehensive evaluations demonstrate that our framework outperforms existing state-of-the-art methods across multiple metrics.
comment: 12 pages, 4 figures
Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition AAAI 2025
Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images. For VPR task, often fewer discriminative local regions in an image produce important effects while mundane background regions do not contribute or even cause perceptual aliasing because of easy overlap. However, existing methods lack precisely modeling and full exploitation of these discriminative regions. In this paper, we propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously by mining and exploiting reliable discriminative local regions in images and introducing pseudo-correlation supervision. First, we design two losses, Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast Enhancement Loss (CEL), to explicitly model reliable discriminative local regions and use them to guide the generation of global representations and efficient re-ranking. Second, we introduce a weakly-supervised local feature training strategy based on pseudo-correspondences obtained from aggregating global features to alleviate the lack of local correspondences ground truth for the VPR task. Third, we suggest an efficient re-ranking pipeline that is efficiently and precisely based on discriminative region guidance. Finally, experimental results show that our FoL achieves the state-of-the-art on multiple VPR benchmarks in both image retrieval and re-ranking stages and also significantly outperforms existing two-stage VPR methods in terms of computational efficiency. Code and models are available at https://github.com/chenshunpeng/FoL
comment: Accepted by AAAI 2025
MCBlock: Boosting Neural Radiance Field Training Speed by MCTS-based Dynamic-Resolution Ray Sampling
Neural Radiance Field (NeRF) is widely known for high-fidelity novel view synthesis. However, even the state-of-the-art NeRF model, Gaussian Splatting, requires minutes for training, far from the real-time performance required by multimedia scenarios like telemedicine. One of the obstacles is its inefficient sampling, which is only partially addressed by existing works. Existing point-sampling algorithms uniformly sample simple-texture regions (easy to fit) and complex-texture regions (hard to fit), while existing ray-sampling algorithms sample these regions all in the finest granularity (i.e. the pixel level), both wasting GPU training resources. Actually, regions with different texture intensities require different sampling granularities. To this end, we propose a novel dynamic-resolution ray-sampling algorithm, MCBlock, which employs Monte Carlo Tree Search (MCTS) to partition each training image into pixel blocks with different sizes for active block-wise training. Specifically, the trees are initialized according to the texture of training images to boost the initialization speed, and an expansion/pruning module dynamically optimizes the block partition. MCBlock is implemented in Nerfstudio, an open-source toolset, and achieves a training acceleration of up to 2.33x, surpassing other ray-sampling algorithms. We believe MCBlock can apply to any cone-tracing NeRF model and contribute to the multimedia community.
HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation
Transvaginal ultrasound is a critical imaging modality for evaluating cervical anatomy and detecting physiological changes. However, accurate segmentation of cervical structures remains challenging due to low contrast, shadow artifacts, and fuzzy boundaries. While convolutional neural networks (CNNs) have shown promising results in medical image segmentation, their performance is often limited by the need for large-scale annotated datasets - an impractical requirement in clinical ultrasound imaging. Semi-supervised learning (SSL) offers a compelling solution by leveraging unlabeled data, but existing teacher-student frameworks often suffer from confirmation bias and high computational costs. We propose HDC, a novel semi-supervised segmentation framework that integrates Hierarchical Distillation and Consistency learning within a multi-level noise mean-teacher framework. Unlike conventional approaches that rely solely on pseudo-labeling, we introduce a hierarchical distillation mechanism that guides feature-level learning via two novel objectives: (1) Correlation Guidance Loss to align feature representations between the teacher and main student branch, and (2) Mutual Information Loss to stabilize representations between the main and noisy student branches. Our framework reduces model complexity while improving generalization. Extensive experiments on two fetal ultrasound datasets, FUGC and PSFH, demonstrate that our method achieves competitive performance with significantly lower computational overhead than existing multi-teacher models.
SplatMesh: Interactive 3D Segmentation and Editing Using Mesh-Based Gaussian Splatting
A key challenge in fine-grained 3D-based interactive editing is the absence of an efficient representation that balances diverse modifications with high-quality view synthesis under a given memory constraint. While 3D meshes provide robustness for various modifications, they often yield lower-quality view synthesis compared to 3D Gaussian Splatting, which, in turn, suffers from instability during extensive editing. A straightforward combination of these two representations results in suboptimal performance and fails to meet memory constraints. In this paper, we introduce SplatMesh, a novel fine-grained interactive 3D segmentation and editing algorithm that integrates 3D Gaussian Splat with a precomputed mesh and could adjust the memory request based on the requirement. Specifically, given a mesh, \method simplifies it while considering both color and shape, ensuring it meets memory constraints. Then, SplatMesh aligns Gaussian splats with the simplified mesh by treating each triangle as a new reference point. By segmenting and editing the simplified mesh, we can effectively edit the Gaussian splats as well, which will lead to extensive experiments on real and synthetic datasets, coupled with illustrative visual examples, highlighting the superiority of our approach in terms of representation quality and editing performance. Code of our paper can be found here: https://github.com/kaichen-z/SplatMesh.
MB-TaylorFormer V2: Improved Multi-branch Linear Transformer Expanded by Taylor Formula for Image Restoration
Recently, Transformer networks have demonstrated outstanding performance in the field of image restoration due to the global receptive field and adaptability to input. However, the quadratic computational complexity of Softmax-attention poses a significant limitation on its extensive application in image restoration tasks, particularly for high-resolution images. To tackle this challenge, we propose a novel variant of the Transformer. This variant leverages the Taylor expansion to approximate the Softmax-attention and utilizes the concept of norm-preserving mapping to approximate the remainder of the first-order Taylor expansion, resulting in a linear computational complexity. Moreover, we introduce a multi-branch architecture featuring multi-scale patch embedding into the proposed Transformer, which has four distinct advantages: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field; 4) accelerated training and inference speed. Hence, the proposed model, named the second version of Taylor formula expansion-based Transformer (for short MB-TaylorFormer V2) has the capability to concurrently process coarse-to-fine features, capture long-distance pixel interactions with limited computational cost, and improve the approximation of the Taylor expansion remainder. Experimental results across diverse image restoration benchmarks demonstrate that MB-TaylorFormer V2 achieves state-of-the-art performance in multiple image restoration tasks, such as image dehazing, deraining, desnowing, motion deblurring, and denoising, with very little computational overhead. The source code is available at https://github.com/FVL2020/MB-TaylorFormerV2.
comment: accepted by IEEE TPAMI
Learning Free Token Reduction for Multi-Modal Large Language Models
Vision-Language Models (VLMs) have achieved remarkable success across a range of multimodal tasks; however, their practical deployment is often constrained by high computational costs and prolonged inference times. Since the vision modality typically carries more information than the text modality, compressing visual prompts offers a promising solution to alleviate these challenges. Existing approaches predominantly focus on refining model architectures or directly reducing the number of visual tokens. However, these methods often compromise inference performance due to a lack of consideration for the unique spatial and temporal characteristics of visual data. In this work, we propose a token compression paradigm that operates on both spatial and temporal dimensions. Our approach includes a learning-free, plug-and-play compression pipeline that can be seamlessly integrated into most Multimodal Large Language Model (MLLM) frameworks. By leveraging this method, we enhance the model inference capability while simultaneously reducing its computational cost. Experimental results on the Video-QA task demonstrate the effectiveness of the proposed approach, showcasing significant improvements in efficiency without sacrificing performance.
Visual Chronicles: Using Multimodal LLMs to Analyze Massive Collections of Images
We present a system using Multimodal LLMs (MLLMs) to analyze a large database with tens of millions of images captured at different times, with the aim of discovering patterns in temporal changes. Specifically, we aim to capture frequent co-occurring changes ("trends") across a city over a certain period. Unlike previous visual analyses, our analysis answers open-ended queries (e.g., "what are the frequent types of changes in the city?") without any predetermined target subjects or training labels. These properties cast prior learning-based or unsupervised visual analysis tools unsuitable. We identify MLLMs as a novel tool for their open-ended semantic understanding capabilities. Yet, our datasets are four orders of magnitude too large for an MLLM to ingest as context. So we introduce a bottom-up procedure that decomposes the massive visual analysis problem into more tractable sub-problems. We carefully design MLLM-based solutions to each sub-problem. During experiments and ablation studies with our system, we find it significantly outperforms baselines and is able to discover interesting trends from images captured in large cities (e.g., "addition of outdoor dining,", "overpass was painted blue," etc.). See more results and interactive demos at https://boyangdeng.com/visual-chronicles.
comment: Project page: https://boyangdeng.com/visual-chronicles , second and third listed authors have equal contributions
MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data CVPR 2025
Terrain modeling has traditionally relied on procedural techniques, which often require extensive domain expertise and handcrafted rules. In this paper, we present MESA - a novel data-centric alternative by training a diffusion model on global remote sensing data. This approach leverages large-scale geospatial information to generate high-quality terrain samples from text descriptions, showcasing a flexible and scalable solution for terrain generation. The model's capabilities are demonstrated through extensive experiments, highlighting its ability to generate realistic and diverse terrain landscapes. The dataset produced to support this work, the Major TOM Core-DEM extension dataset, is released openly as a comprehensive resource for global terrain data. The results suggest that data-driven models, trained on remote sensing data, can provide a powerful tool for realistic terrain modeling and generation.
comment: Accepted at CVPR 2025 Workshop MORSE
Intelligent Framework for Human-Robot Collaboration: Dynamic Ergonomics and Adaptive Decision-Making
The integration of collaborative robots into industrial environments has improved productivity, but has also highlighted significant challenges related to operator safety and ergonomics. This paper proposes an innovative framework that integrates advanced visual perception, continuous ergonomic monitoring, and adaptive Behaviour Tree decision-making to overcome the limitations of traditional methods that typically operate as isolated components. Our approach synthesizes deep learning models, advanced tracking algorithms, and dynamic ergonomic assessments into a modular, scalable, and adaptive system. Experimental validation demonstrates the framework's superiority over existing solutions across multiple dimensions: the visual perception module outperformed previous detection models with 72.4% mAP@50:95; the system achieved high accuracy in recognizing operator intentions (92.5%); it promptly classified ergonomic risks with minimal latency (0.57 seconds); and it dynamically managed robotic interventions with exceptionally responsive decision-making capabilities (0.07 seconds), representing a 56% improvement over benchmark systems. This comprehensive solution provides a robust platform for enhancing human-robot collaboration in industrial environments by prioritizing ergonomic safety, operational efficiency, and real-time adaptability.
comment: 15 pagine, 8figure, 3 tabelle, formato conferenza IEEE
Towards Scenario- and Capability-Driven Dataset Development and Evaluation: An Approach in the Context of Mapless Automated Driving
The foundational role of datasets in defining the capabilities of deep learning models has led to their rapid proliferation. At the same time, published research focusing on the process of dataset development for environment perception in automated driving has been scarce, thereby reducing the applicability of openly available datasets and impeding the development of effective environment perception systems. Sensor-based, mapless automated driving is one of the contexts where this limitation is evident. While leveraging real-time sensor data, instead of pre-defined HD maps promises enhanced adaptability and safety by effectively navigating unexpected environmental changes, it also increases the demands on the scope and complexity of the information provided by the perception system. To address these challenges, we propose a scenario- and capability-based approach to dataset development. Grounded in the principles of ISO 21448 (safety of the intended functionality, SOTIF), extended by ISO/TR 4804, our approach facilitates the structured derivation of dataset requirements. This not only aids in the development of meaningful new datasets but also enables the effective comparison of existing ones. Applying this methodology to a broad range of existing lane detection datasets, we identify significant limitations in current datasets, particularly in terms of real-world applicability, a lack of labeling of critical features, and an absence of comprehensive information for complex driving maneuvers.
Improving Tropical Cyclone Forecasting With Video Diffusion Models ICLR 2025
Tropical cyclone (TC) forecasting is crucial for disaster preparedness and mitigation. While recent deep learning approaches have shown promise, existing methods often treat TC evolution as a series of independent frame-to-frame predictions, limiting their ability to capture long-term dynamics. We present a novel application of video diffusion models for TC forecasting that explicitly models temporal dependencies through additional temporal layers. Our approach enables the model to generate multiple frames simultaneously, better capturing cyclone evolution patterns. We introduce a two-stage training strategy that significantly improves individual-frame quality and performance in low-data regimes. Experimental results show our method outperforms the previous approach of Nath et al. by 19.3% in MAE, 16.2% in PSNR, and 36.1% in SSIM. Most notably, we extend the reliable forecasting horizon from 36 to 50 hours. Through comprehensive evaluation using both traditional metrics and Fr\'echet Video Distance (FVD), we demonstrate that our approach produces more temporally coherent forecasts while maintaining competitive single-frame quality. Code accessible at https://github.com/Ren-creater/forecast-video-diffmodels.
comment: Accepted for spotlight presentation at the ICLR 2025 workshop on Tackling Climate Change with Machine Learning. 7 pages, 7 figures
ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements
Recent advances in foundational Vision Language Models (VLMs) have reshaped the evaluation paradigm in computer vision tasks. These foundational models, especially CLIP, have accelerated research in open-vocabulary computer vision tasks, including Open-Vocabulary Semantic Segmentation (OVSS). Although the initial results are promising, the dense prediction capabilities of VLMs still require further improvement. In this study, we enhance the semantic segmentation performance of CLIP by introducing new modules and modifications: 1) architectural changes in the last layer of ViT and the incorporation of attention maps from the middle layers with the last layer, 2) Image Engineering: applying data augmentations to enrich input image representations, and 3) using Large Language Models (LLMs) to generate definitions and synonyms for each class name to leverage CLIP's open-vocabulary capabilities. Our training-free method, ITACLIP, outperforms current state-of-the-art approaches on segmentation benchmarks such as COCO-Stuff, COCO-Object, Pascal Context, and Pascal VOC. Our code is available at https://github.com/m-arda-aydn/ITACLIP.
GAF: Gaussian Avatar Reconstruction from Monocular Videos via Multi-view Diffusion
We propose a novel approach for reconstructing animatable 3D Gaussian avatars from monocular videos captured by commodity devices like smartphones. Photorealistic 3D head avatar reconstruction from such recordings is challenging due to limited observations, which leaves unobserved regions under-constrained and can lead to artifacts in novel views. To address this problem, we introduce a multi-view head diffusion model, leveraging its priors to fill in missing regions and ensure view consistency in Gaussian splatting renderings. To enable precise viewpoint control, we use normal maps rendered from FLAME-based head reconstruction, which provides pixel-aligned inductive biases. We also condition the diffusion model on VAE features extracted from the input image to preserve facial identity and appearance details. For Gaussian avatar reconstruction, we distill multi-view diffusion priors by using iteratively denoised images as pseudo-ground truths, effectively mitigating over-saturation issues. To further improve photorealism, we apply latent upsampling priors to refine the denoised latent before decoding it into an image. We evaluate our method on the NeRSemble dataset, showing that GAF outperforms previous state-of-the-art methods in novel view synthesis. Furthermore, we demonstrate higher-fidelity avatar reconstructions from monocular videos captured on commodity devices.
comment: Paper Video: https://youtu.be/QuIYTljvhyg Project Page: https://tangjiapeng.github.io/projects/GAF
PSGait: Gait Recognition using Parsing Skeleton
Gait recognition has emerged as a robust biometric modality due to its non-intrusive nature and resilience to occlusion. Conventional gait recognition methods typically rely on silhouettes or skeletons. Despite their success in gait recognition for controlled laboratory environments, they usually fail in real-world scenarios due to their limited information entropy for gait representations. To achieve accurate gait recognition in the wild, we propose a novel gait representation, named Parsing Skeleton. This representation innovatively introduces the skeleton-guided human parsing method to capture fine-grained body dynamics, so they have much higher information entropy to encode the shapes and dynamics of fine-grained human parts during walking. Moreover, to effectively explore the capability of the Parsing Skeleton representation, we propose a novel Parsing Skeleton-based gait recognition framework, named PSGait, which takes Parsing Skeletons and silhouettes as input. By fusing these two modalities, the resulting image sequences are fed into gait recognition models for enhanced individual differentiation. We conduct comprehensive benchmarks on various datasets to evaluate our model. PSGait outperforms existing state-of-the-art multimodal methods that utilize both skeleton and silhouette inputs while significantly reducing computational resources. Furthermore, as a plug-and-play method, PSGait leads to a maximum improvement of 10.9% in Rank-1 accuracy across various gait recognition models. These results demonstrate that Parsing Skeleton offers a lightweight, effective, and highly generalizable representation for gait recognition in the wild.
HOMER: Homography-Based Efficient Multi-view 3D Object Removal
3D object removal is an important sub-task in 3D scene editing, with broad applications in scene understanding, augmented reality, and robotics. However, existing methods struggle to achieve a desirable balance among consistency, usability, and computational efficiency in multi-view settings. These limitations are primarily due to unintuitive user interaction in the source view, inefficient multi-view object mask generation, computationally expensive inpainting procedures, and a lack of applicability across different radiance field representations. To address these challenges, we propose a novel pipeline that improves the quality and efficiency of multi-view object mask generation and inpainting. Our method introduces an intuitive region-based interaction mechanism in the source view and eliminates the need for camera poses or extra model training. Our lightweight HoMM module is employed to achieve high-quality multi-view mask propagation with enhanced efficiency. In the inpainting stage, we further reduce computational costs by performing inpainting only on selected key views and propagating the results to other views via homography-based mapping. Our pipeline is compatible with a variety of radiance field frameworks, including NeRF and 3D Gaussian Splatting, demonstrating improved generalizability and practicality in real-world scenarios. Additionally, we present a new 3D multi-object removal dataset with greater object diversity and viewpoint variation than existing datasets. Experiments on public benchmarks and our proposed dataset show that our method achieves state-of-the-art performance while reducing runtime to one-fifth of that required by leading baselines.
VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
comment: 11 pages, fix some minor typos in the previous version
Multi-Level Embedding and Alignment Network with Consistency and Invariance Learning for Cross-View Geo-Localization
Cross-View Geo-Localization (CVGL) involves determining the localization of drone images by retrieving the most similar GPS-tagged satellite images. However, the imaging gaps between platforms are often significant and the variations in viewpoints are substantial, which limits the ability of existing methods to effectively associate cross-view features and extract consistent and invariant characteristics. Moreover, existing methods often overlook the problem of increased computational and storage requirements when improving model performance. To handle these limitations, we propose a lightweight enhanced alignment network, called the Multi-Level Embedding and Alignment Network (MEAN). The MEAN network uses a progressive multi-level enhancement strategy, global-to-local associations, and cross-domain alignment, enabling feature communication across levels. This allows MEAN to effectively connect features at different levels and learn robust cross-view consistent mappings and modality-invariant features. Moreover, MEAN adopts a shallow backbone network combined with a lightweight branch design, effectively reducing parameter count and computational complexity. Experimental results on the University-1652 and SUES-200 datasets demonstrate that MEAN reduces parameter count by 62.17% and computational complexity by 70.99% compared to state-of-the-art models, while maintaining competitive or even superior performance. Our code and models will be released on https://github.com/ISChenawei/MEAN.
Distilling Textual Priors from LLM to Efficient Image Fusion
Multi-modality image fusion aims to synthesize a single, comprehensive image from multiple source inputs. Traditional approaches, such as CNNs and GANs, offer efficiency but struggle to handle low-quality or complex inputs. Recent advances in text-guided methods leverage large model priors to overcome these limitations, but at the cost of significant computational overhead, both in memory and inference time. To address this challenge, we propose a novel framework for distilling large model priors, eliminating the need for text guidance during inference while dramatically reducing model size. Our framework utilizes a teacher-student architecture, where the teacher network incorporates large model priors and transfers this knowledge to a smaller student network via a tailored distillation process. Additionally, we introduce spatial-channel cross-fusion module to enhance the model's ability to leverage textual priors across both spatial and channel dimensions. Our method achieves a favorable trade-off between computational efficiency and fusion quality. The distilled network, requiring only 10% of the parameters and inference time of the teacher network, retains 90% of its performance and outperforms existing SOTA methods. Extensive experiments demonstrate the effectiveness of our approach. The implementation will be made publicly available as an open-source resource.
Real-time Free-view Human Rendering from Sparse-view RGB Videos using Double Unprojected Textures CVPR 2025
Real-time free-view human rendering from sparse-view RGB inputs is a challenging task due to the sensor scarcity and the tight time budget. To ensure efficiency, recent methods leverage 2D CNNs operating in texture space to learn rendering primitives. However, they either jointly learn geometry and appearance, or completely ignore sparse image information for geometry estimation, significantly harming visual quality and robustness to unseen body poses. To address these issues, we present Double Unprojected Textures, which at the core disentangles coarse geometric deformation estimation from appearance synthesis, enabling robust and photorealistic 4K rendering in real-time. Specifically, we first introduce a novel image-conditioned template deformation network, which estimates the coarse deformation of the human template from a first unprojected texture. This updated geometry is then used to apply a second and more accurate texture unprojection. The resulting texture map has fewer artifacts and better alignment with input views, which benefits our learning of finer-level geometry and appearance represented by Gaussian splats. We validate the effectiveness and efficiency of the proposed method in quantitative and qualitative experiments, which significantly surpasses other state-of-the-art methods. Project page: https://vcai.mpi-inf.mpg.de/projects/DUT/
comment: Accepted at CVPR 2025, Project page: https://vcai.mpi-inf.mpg.de/projects/DUT/
Iris Style Transfer: Enhancing Iris Recognition with Style Features and Privacy Preservation through Neural Style Transfer
Iris texture is widely regarded as a gold standard biometric modality for authentication and identification. The demand for robust iris recognition methods, coupled with growing security and privacy concerns regarding iris attacks, has escalated recently. Inspired by neural style transfer, an advanced technique that leverages neural networks to separate content and style features, we hypothesize that iris texture's style features provide a reliable foundation for recognition and are more resilient to variations like rotation and perspective shifts than traditional approaches. Our experimental results support this hypothesis, showing a significantly higher classification accuracy compared to conventional features. Further, we propose using neural style transfer to obfuscate the identifiable iris style features, ensuring the protection of sensitive biometric information while maintaining the utility of eye images for tasks like eye segmentation and gaze estimation. This work opens new avenues for iris-oriented, secure, and privacy-aware biometric systems.
comment: The 2025 ACM Symposium on Eye Tracking Research & Applications (ETRA)
RHanDS: Refining Malformed Hands for Generated Images with Decoupled Structure and Style Guidance
Although diffusion models can generate high-quality human images, their applications are limited by the instability in generating hands with correct structures. In this paper, we introduce RHanDS, a conditional diffusion-based framework designed to refine malformed hands by utilizing decoupled structure and style guidance. The hand mesh reconstructed from the malformed hand offers structure guidance for correcting the structure of the hand, while the malformed hand itself provides style guidance for preserving the style of the hand. To alleviate the mutual interference between style and structure guidance, we introduce a two-stage training strategy and build a series of multi-style hand datasets. In the first stage, we use paired hand images for training to ensure stylistic consistency in hand refining. In the second stage, various hand images generated based on human meshes are used for training, enabling the model to gain control over the hand structure. Experimental results demonstrate that RHanDS can effectively refine hand structure while preserving consistency in hand style.
ResiDual Transformer Alignment with Spectral Decomposition
When examined through the lens of their residual streams, a puzzling property emerges in transformer networks: residual contributions (e.g., attention heads) sometimes specialize in specific tasks or input attributes. In this paper, we analyze this phenomenon in vision transformers, focusing on the spectral geometry of residuals, and explore its implications for modality alignment in vision-language models. First, we link it to the intrinsically low-dimensional structure of visual head representations, zooming into their principal components and showing that they encode specialized roles across a wide variety of input data distributions. Then, we analyze the effect of head specialization in multimodal models, focusing on how improved alignment between text and specialized heads impacts zero-shot classification performance. This specialization-performance link consistently holds across diverse pre-training data, network sizes, and objectives, demonstrating a powerful new mechanism for boosting zero-shot classification through targeted alignment. Ultimately, we translate these insights into actionable terms by introducing ResiDual, a technique for spectral alignment of the residual stream. Much like panning for gold, it lets the noise from irrelevant unit principal components (i.e., attributes) wash away to amplify task-relevant ones. Remarkably, this dual perspective on modality alignment yields fine-tuning level performance on different data distributions while modelling an extremely interpretable and parameter-efficient transformation, as we extensively show on 70 pre-trained network-dataset combinations (7 models, 10 datasets).
comment: Published in Transactions on Machine Learning Research (TMLR)
Improving Decoupled Posterior Sampling for Inverse Problems using Data Consistency Constraint
Diffusion models have shown strong performances in solving inverse problems through posterior sampling while they suffer from errors during earlier steps. To mitigate this issue, several Decoupled Posterior Sampling methods have been recently proposed. However, the reverse process in these methods ignores measurement information, leading to errors that impede effective optimization in subsequent steps. To solve this problem, we propose Guided Decoupled Posterior Sampling (GDPS) by integrating a data consistency constraint in the reverse process. The constraint performs a smoother transition within the optimization process, facilitating a more effective convergence toward the target distribution. Furthermore, we extend our method to latent diffusion models and Tweedie's formula, demonstrating its scalability. We evaluate GDPS on the FFHQ and ImageNet datasets across various linear and nonlinear tasks under both standard and challenging conditions. Experimental results demonstrate that GDPS achieves state-of-the-art performance, improving accuracy over existing methods.
DUKAE: DUal-level Knowledge Accumulation and Ensemble for Pre-Trained Model-Based Continual Learning
Pre-trained model-based continual learning (PTMCL) has garnered growing attention, as it enables more rapid acquisition of new knowledge by leveraging the extensive foundational understanding inherent in pre-trained model (PTM). Most existing PTMCL methods use Parameter-Efficient Fine-Tuning (PEFT) to learn new knowledge while consolidating existing memory. However, they often face some challenges. A major challenge lies in the misalignment of classification heads, as the classification head of each task is trained within a distinct feature space, leading to inconsistent decision boundaries across tasks and, consequently, increased forgetting. Another critical limitation stems from the restricted feature-level knowledge accumulation, with feature learning typically restricted to the initial task only, which constrains the model's representation capabilities. To address these issues, we propose a method named DUal-level Knowledge Accumulation and Ensemble (DUKAE) that leverages both feature-level and decision-level knowledge accumulation by aligning classification heads into a unified feature space through Gaussian distribution sampling and introducing an adaptive expertise ensemble to fuse knowledge across feature subspaces. Extensive experiments on CIFAR-100, ImageNet-R, CUB-200, and Cars-196 datasets demonstrate the superior performance of our approach.
Frequency Is What You Need: Word-frequency Masking Benefits Vision-Language Model Pre-training
Vision Language Models (VLMs) can be trained more efficiently if training sets can be reduced in size. Recent work has shown the benefits of masking text during VLM training using a variety of approaches: truncation, random masking, block masking and syntax masking. In this paper, we show that the best masking strategy changes over training epochs and that, given sufficient training epochs. We analyze existing text masking approaches including syntax masking, which is currently the state of the art, and identify the word frequency distribution as important in determining their success. Experiments on a large range of data sets demonstrate that syntax masking is outperformed by other approaches, given sufficient epochs, and that our proposed frequency-based approach, called Contrastive Language-Image Pre-training with Word Frequency Masking (CLIPF) has numerous advantages. The benefits are particularly evident as the number of input tokens decreases.
Climplicit: Climatic Implicit Embeddings for Global Ecological Tasks ICLR 2025
Deep learning on climatic data holds potential for macroecological applications. However, its adoption remains limited among scientists outside the deep learning community due to storage, compute, and technical expertise barriers. To address this, we introduce Climplicit, a spatio-temporal geolocation encoder pretrained to generate implicit climatic representations anywhere on Earth. By bypassing the need to download raw climatic rasters and train feature extractors, our model uses x3500 less disk space and significantly reduces computational needs for downstream tasks. We evaluate our Climplicit embeddings on biomes classification, species distribution modeling, and plant trait regression. We find that single-layer probing our Climplicit embeddings consistently performs better or on par with training a model from scratch on downstream tasks and overall better than alternative geolocation encoding models.
comment: Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2025
TAPNext: Tracking Any Point (TAP) as Next Token Prediction
Tracking Any Point (TAP) in a video is a challenging computer vision problem with many demonstrated applications in robotics, video editing, and 3D reconstruction. Existing methods for TAP rely heavily on complex tracking-specific inductive biases and heuristics, limiting their generality and potential for scaling. To address these challenges, we present TAPNext, a new approach that casts TAP as sequential masked token decoding. Our model is causal, tracks in a purely online fashion, and removes tracking-specific inductive biases. This enables TAPNext to run with minimal latency, and removes the temporal windowing required by many existing state of art trackers. Despite its simplicity, TAPNext achieves a new state-of-the-art tracking performance among both online and offline trackers. Finally, we present evidence that many widely used tracking heuristics emerge naturally in TAPNext through end-to-end training. The TAPNext model and code can be found at https://tap-next.github.io/.
PhD: A ChatGPT-Prompted Visual hallucination Evaluation Dataset CVPR 2025
Multimodal Large Language Models (MLLMs) hallucinate, resulting in an emerging topic of visual hallucination evaluation (VHE). This paper contributes a ChatGPT-Prompted visual hallucination evaluation Dataset (PhD) for objective VHE at a large scale. The essence of VHE is to ask an MLLM questions about specific images to assess its susceptibility to hallucination. Depending on what to ask (objects, attributes, sentiment, etc.) and how the questions are asked, we structure PhD along two dimensions, i.e. task and mode. Five visual recognition tasks, ranging from low-level (object / attribute recognition) to middle-level (sentiment / position recognition and counting), are considered. Besides a normal visual QA mode, which we term PhD-base, PhD also asks questions with specious context (PhD-sec) or with incorrect context ({PhD-icc), or with AI-generated counter common sense images (PhD-ccs). We construct PhD by a ChatGPT-assisted semi-automated pipeline, encompassing four pivotal modules: task-specific hallucinatory item (hitem) selection, hitem-embedded question generation, specious / incorrect context generation, and counter-common-sense (CCS) image generation. With over 14k daily images, 750 CCS images and 102k VQA triplets in total, PhD reveals considerable variability in MLLMs' performance across various modes and tasks, offering valuable insights into the nature of hallucination. As such, PhD stands as a potent tool not only for VHE but may also play a significant role in the refinement of MLLMs.
comment: Accepted by CVPR 2025, Highlight
Joint semi-supervised and contrastive learning enables domain generalization and multi-domain segmentation
Despite their effectiveness, current deep learning models face challenges with images coming from different domains with varying appearance and content. We introduce SegCLR, a versatile framework designed to segment images across different domains, employing supervised and contrastive learning simultaneously to effectively learn from both labeled and unlabeled data. We demonstrate the superior performance of SegCLR through a comprehensive evaluation involving three diverse clinical datasets of 3D retinal Optical Coherence Tomography (OCT) images, for the slice-wise segmentation of fluids with various network configurations and verification across 10 different network initializations. In an unsupervised domain adaptation context, SegCLR achieves results on par with a supervised upper-bound model trained on the intended target domain. Notably, we discover that the segmentation performance of SegCLR framework is marginally impacted by the abundance of unlabeled data from the target domain, thereby we also propose an effective domain generalization extension of SegCLR, known also as zero-shot domain adaptation, which eliminates the need for any target domain information. This shows that our proposed addition of contrastive loss in standard supervised training for segmentation leads to superior models, inherently more generalizable to both in- and out-of-domain test data. We additionally propose a pragmatic solution for SegCLR deployment in realistic scenarios with multiple domains containing labeled data. Accordingly, our framework pushes the boundaries of deep-learning based segmentation in multi-domain applications, regardless of data availability - labeled, unlabeled, or nonexistent.
Building Vision Models upon Heat Conduction
Visual representation models leveraging attention mechanisms are challenged by significant computational overhead, particularly when pursuing large receptive fields. In this study, we aim to mitigate this challenge by introducing the Heat Conduction Operator (HCO) built upon the physical heat conduction principle. HCO conceptualizes image patches as heat sources and models their correlations through adaptive thermal energy diffusion, enabling robust visual representations. HCO enjoys a computational complexity of O(N^1.5), as it can be implemented using discrete cosine transformation (DCT) operations. HCO is plug-and-play, combining with deep learning backbones produces visual representation models (termed vHeat) with global receptive fields. Experiments across vision tasks demonstrate that, beyond the stronger performance, vHeat achieves up to a 3x throughput, 80% less GPU memory allocation, and 35% fewer computational FLOPs compared to the Swin-Transformer. Code is available at https://github.com/MzeroMiko/vHeat.
DartControl: A Diffusion-Based Autoregressive Motion Model for Real-Time Text-Driven Motion Control ICLR
Text-conditioned human motion generation, which allows for user interaction through natural language, has become increasingly popular. Existing methods typically generate short, isolated motions based on a single input sentence. However, human motions are continuous and can extend over long periods, carrying rich semantics. Creating long, complex motions that precisely respond to streams of text descriptions, particularly in an online and real-time setting, remains a significant challenge. Furthermore, incorporating spatial constraints into text-conditioned motion generation presents additional challenges, as it requires aligning the motion semantics specified by text descriptions with geometric information, such as goal locations and 3D scene geometry. To address these limitations, we propose DartControl, in short DART, a Diffusion-based Autoregressive motion primitive model for Real-time Text-driven motion control. Our model effectively learns a compact motion primitive space jointly conditioned on motion history and text inputs using latent diffusion models. By autoregressively generating motion primitives based on the preceding history and current text input, DART enables real-time, sequential motion generation driven by natural language descriptions. Additionally, the learned motion primitive space allows for precise spatial motion control, which we formulate either as a latent noise optimization problem or as a Markov decision process addressed through reinforcement learning. We present effective algorithms for both approaches, demonstrating our model's versatility and superior performance in various motion synthesis tasks. Experiments show our method outperforms existing baselines in motion realism, efficiency, and controllability. Video results are available on the project page: https://zkf1997.github.io/DART/.
comment: Updated ICLR camera ready version
Tumor likelihood estimation on MRI prostate data by utilizing k-Space information
We present a novel preprocessing and prediction pipeline for the classification of magnetic resonance imaging (MRI) that takes advantage of the information rich complex valued k-Space. Using a publicly available MRI raw dataset with 312 subject and a total of 9508 slices, we show the advantage of utilizing the k-Space for better prostate cancer likelihood estimation in comparison to just using the magnitudinal information in the image domain, with an AUROC of $86.1\%\pm1.8\%$. Additionally, by using high undersampling rates and a simple principal component analysis (PCA) for coil compression, we reduce the time needed for reconstruction by avoiding the time intensive GRAPPA reconstruction algorithm. By using digital undersampling for our experiments, we show that scanning and reconstruction time could be reduced. Even with an undersampling factor of 16, our approach achieves meaningful results, with an AUROC of $71.4\%\pm2.9\%$, using the PCA coil combination and taking into account the k-Space information. With this study, we were able to show the feasibility of preserving phase and k-Space information, with consistent results. Besides preserving valuable information for further diagnostics, this approach can work without the time intensive ADC and reconstruction calculations, greatly reducing the post processing, as well as potential scanning time, increasing patient comfort and allowing a close to real-time prediction.
SCANet: Scene Complexity Aware Network for Weakly-Supervised Video Moment Retrieval ICCV 2023
Video moment retrieval aims to localize moments in video corresponding to a given language query. To avoid the expensive cost of annotating the temporal moments, weakly-supervised VMR (wsVMR) systems have been studied. For such systems, generating a number of proposals as moment candidates and then selecting the most appropriate proposal has been a popular approach. These proposals are assumed to contain many distinguishable scenes in a video as candidates. However, existing proposals of wsVMR systems do not respect the varying numbers of scenes in each video, where the proposals are heuristically determined irrespective of the video. We argue that the retrieval system should be able to counter the complexities caused by varying numbers of scenes in each video. To this end, we present a novel concept of a retrieval system referred to as Scene Complexity Aware Network (SCANet), which measures the `scene complexity' of multiple scenes in each video and generates adaptive proposals responding to variable complexities of scenes in each video. Experimental results on three retrieval benchmarks (i.e., Charades-STA, ActivityNet, TVR) achieve state-of-the-art performances and demonstrate the effectiveness of incorporating the scene complexity.
comment: 11 pages, Accepted in ICCV 2023
SnatchML: Hijacking ML models without Training Access
Model hijacking can cause significant accountability and security risks since the owner of a hijacked model can be framed for having their model offer illegal or unethical services. Prior works consider model hijacking as a training time attack, whereby an adversary requires full access to the ML model training. In this paper, we consider a stronger threat model for an inference-time hijacking attack, where the adversary has no access to the training phase of the victim model. Our intuition is that ML models, which are typically over-parameterized, might have the capacity to (unintentionally) learn more than the intended task they are trained for. We propose SnatchML, a new training-free model hijacking attack, that leverages the extra capacity learnt by the victim model to infer different tasks that can be semantically related or unrelated to the original one. Our results on models deployed on AWS Sagemaker showed that SnatchML can deliver high accuracy on hijacking tasks. Interestingly, while all previous approaches are limited by the number of classes in the benign task, SnatchML can hijack models for tasks that contain more classes than the original. We explore different methods to mitigate this risk; We propose meta-unlearning, which is designed to help the model unlearn a potentially malicious task while training for the original task. We also provide insights on over-parametrization as a possible inherent factor that facilitates model hijacking, and accordingly, we propose a compression-based countermeasure to counteract this attack. We believe this work offers a previously overlooked perspective on model hijacking attacks, presenting a stronger threat model and higher applicability in real-world contexts.
comment: 17 pages, 14 figures, 7 tables
Towards A Generalizable Pathology Foundation Model via Unified Knowledge Distillation
Foundation models pretrained on large-scale datasets are revolutionizing the field of computational pathology (CPath). The generalization ability of foundation models is crucial for the success in various downstream clinical tasks. However, current foundation models have only been evaluated on a limited type and number of tasks, leaving their generalization ability and overall performance unclear. To address this gap, we established a most comprehensive benchmark to evaluate the performance of off-the-shelf foundation models across six distinct clinical task types, encompassing a total of 72 specific tasks, including slide-level classification, survival prediction, ROI-tissue classification, ROI retrieval, visual question answering, and report generation. Our findings reveal that existing foundation models excel at certain task types but struggle to effectively handle the full breadth of clinical tasks. To improve the generalization of pathology foundation models, we propose a unified knowledge distillation framework consisting of both expert and self-knowledge distillation, where the former allows the model to learn from the knowledge of multiple expert models, while the latter leverages self-distillation to enable image representation learning via local-global alignment. Based on this framework, we curated a dataset of 96,000 whole slide images (WSIs) and developed a Generalizable Pathology Foundation Model (GPFM). This advanced model was trained on a substantial dataset comprising 190 million images extracted from approximately 72,000 publicly available slides, encompassing 34 major tissue types. Evaluated on the established benchmark, GPFM achieves an impressive average rank of 1.6, with 42 tasks ranked 1st, while the second-best model, UNI, attains an average rank of 3.7, with only 6 tasks ranked 1st.
comment: update
Reconstruct Anything Model: a lightweight foundation model for computational imaging
Most existing learning-based methods for solving imaging inverse problems can be roughly divided into two classes: iterative algorithms, such as plug-and-play and diffusion methods, that leverage pretrained denoisers, and unrolled architectures that are trained end-to-end for specific imaging problems. Iterative methods in the first class are computationally costly and often provide suboptimal reconstruction performance, whereas unrolled architectures are generally specific to a single inverse problem and require expensive training. In this work, we propose a novel non-iterative, lightweight architecture that incorporates knowledge about the forward operator (acquisition physics and noise parameters) without relying on unrolling. Our model is trained to solve a wide range of inverse problems beyond denoising, including deblurring, magnetic resonance imaging, computed tomography, inpainting, and super-resolution. The proposed model can be easily adapted to unseen inverse problems or datasets with a few fine-tuning steps (up to a few images) in a self-supervised way, without ground-truth references. Throughout a series of experiments, we demonstrate state-of-the-art performance from medical imaging to low-photon imaging and microscopy.
Faster Vision Mamba is Rebuilt in Minutes via Merged Token Re-training
Vision Mamba has shown close to state of the art performance on computer vision tasks, drawing much interest in increasing it's efficiency. A promising approach is token reduction (that has been successfully implemented in ViTs). Pruning informative tokens in Mamba leads to a high loss of key knowledge and degraded performance. An alternative, of merging tokens preserves more information than pruning, also suffers for large compression ratios. Our key insight is that a quick round of retraining after token merging yeilds robust results across various compression ratios. Empirically, pruned Vims only drop up to 0.9% accuracy on ImageNet-1K, recovered by our proposed framework R-MeeTo in our main evaluation. We show how simple and effective the fast recovery can be achieved at minute-level, in particular, a 35.9% accuracy spike over 3 epochs of training on Vim-Ti. Moreover, Vim-Ti/S/B are re-trained within 5/7/17 minutes, and Vim-S only drops 1.3% with 1.2x (up to 1.5x) speed up in inference.
TPC: Test-time Procrustes Calibration for Diffusion-based Human Image Animation NeurIPS 2024
Human image animation aims to generate a human motion video from the inputs of a reference human image and a target motion video. Current diffusion-based image animation systems exhibit high precision in transferring human identity into targeted motion, yet they still exhibit irregular quality in their outputs. Their optimal precision is achieved only when the physical compositions (i.e., scale and rotation) of the human shapes in the reference image and target pose frame are aligned. In the absence of such alignment, there is a noticeable decline in fidelity and consistency. Especially, in real-world environments, this compositional misalignment commonly occurs, posing significant challenges to the practical usage of current systems. To this end, we propose Test-time Procrustes Calibration (TPC), which enhances the robustness of diffusion-based image animation systems by maintaining optimal performance even when faced with compositional misalignment, effectively addressing real-world scenarios. The TPC provides a calibrated reference image for the diffusion model, enhancing its capability to understand the correspondence between human shapes in the reference and target images. Our method is simple and can be applied to any diffusion-based image animation system in a model-agnostic manner, improving the effectiveness at test time without additional training.
comment: 24 pages, 16 figures, NeurIPS 2024
UniForm: A Unified Multi-Task Diffusion Transformer for Audio-Video Generation
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To address these limitations, we first propose UniForm, a unified multi-task diffusion transformer that jointly generates audio and visual modalities in a shared latent space. A single diffusion process models both audio and video, capturing the inherent correlations between sound and vision. Second, we introduce task-specific noise schemes and task tokens, enabling a single model to support multiple tasks, including text-to-audio-video, audio-to-video, and video-to-audio generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Extensive experiments show that UniForm achieves the state-of-the-art performance across audio-video generation tasks, producing content that is both well-aligned and close to real-world data distributions. Our demos are available at https://uniform-t2av.github.io/.
comment: Our demos are available at https://uniform-t2av.github.io/
An Embedding is Worth a Thousand Noisy Labels
The performance of deep neural networks scales with dataset size and label quality, rendering the efficient mitigation of low-quality data annotations crucial for building robust and cost-effective systems. Existing strategies to address label noise exhibit severe limitations due to computational complexity and application dependency. In this work, we propose WANN, a Weighted Adaptive Nearest Neighbor approach that builds on self-supervised feature representations obtained from foundation models. To guide the weighted voting scheme, we introduce a reliability score $\eta$, which measures the likelihood of a data label being correct. WANN outperforms reference methods, including a linear layer trained with robust loss functions, on diverse datasets of varying size and under various noise types and severities. WANN also exhibits superior generalization on imbalanced data compared to both Adaptive-NNs (ANN) and fixed k-NNs. Furthermore, the proposed weighting scheme enhances supervised dimensionality reduction under noisy labels. This yields a significant boost in classification performance with 10x and 100x smaller image embeddings, minimizing latency and storage requirements. Our approach, emphasizing efficiency and explainability, emerges as a simple, robust solution to overcome inherent limitations of deep neural network training. The code is available at https://github.com/francescodisalvo05/wann-noisy-labels .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
CLIP-SR: Collaborative Linguistic and Image Processing for Super-Resolution
Convolutional Neural Networks (CNNs) have significantly advanced Image Super-Resolution (SR), yet most CNN-based methods rely solely on pixel-based transformations, often leading to artifacts and blurring, particularly under severe downsampling rates (\eg, 8$\times$ or 16$\times$). The recently developed text-guided SR approaches leverage textual descriptions to enhance their detail restoration capabilities but frequently struggle with effectively performing alignment, resulting in semantic inconsistencies. To address these challenges, we propose a multi-modal semantic enhancement framework that integrates textual semantics with visual features, effectively mitigating semantic mismatches and detail losses in highly degraded low-resolution (LR) images. Our method enables realistic, high-quality SR to be performed at large upscaling factors, with a maximum scaling ratio of 16$\times$. The framework integrates both text and image inputs using the prompt predictor, the Text-Image Fusion Block (TIFBlock), and the Iterative Refinement Module, leveraging Contrastive Language-Image Pretraining (CLIP) features to guide a progressive enhancement process with fine-grained alignment. This synergy produces high-resolution outputs with sharp textures and strong semantic coherence, even at substantial scaling factors. Extensive comparative experiments and ablation studies validate the effectiveness of our approach. Furthermore, by leveraging textual semantics, our method offers a degree of super-resolution editability, allowing for controlled enhancements while preserving semantic consistency. The code is available at https://github.com/hengliusky/CLIP-SR.
comment: 12 pages, 10 figures
AMBER -- Advanced SegFormer for Multi-Band Image Segmentation: an application to Hyperspectral Imaging
Deep learning has revolutionized the field of hyperspectral image (HSI) analysis, enabling the extraction of complex spectral and spatial features. While convolutional neural networks (CNNs) have been the backbone of HSI classification, their limitations in capturing global contextual features have led to the exploration of Vision Transformers (ViTs). This paper introduces AMBER, an advanced SegFormer specifically designed for multi-band image segmentation. AMBER enhances the original SegFormer by incorporating three-dimensional convolutions, custom kernel sizes, and a Funnelizer layer. This architecture enables processing hyperspectral data directly, without requiring spectral dimensionality reduction during preprocessing. Our experiments, conducted on three benchmark datasets (Salinas, Indian Pines, and Pavia University) and on a dataset from the PRISMA satellite, show that AMBER outperforms traditional CNN-based methods in terms of Overall Accuracy, Kappa coefficient, and Average Accuracy on the first three datasets, and achieves state-of-the-art performance on the PRISMA dataset. These findings highlight AMBER's robustness, adaptability to both airborne and spaceborne data, and its potential as a powerful solution for remote sensing and other domains requiring advanced analysis of high-dimensional data.
comment: submitted to Neural Computing & Applications (Springer). Accepted with minor revisions
MoLA: Motion Generation and Editing with Latent Diffusion Enhanced by Adversarial Training CVPR 2025
In text-to-motion generation, controllability as well as generation quality and speed has become increasingly critical. The controllability challenges include generating a motion of a length that matches the given textual description and editing the generated motions according to control signals, such as the start-end positions and the pelvis trajectory. In this paper, we propose MoLA, which provides fast, high-quality, variable-length motion generation and can also deal with multiple editing tasks in a single framework. Our approach revisits the motion representation used as inputs and outputs in the model, incorporating an activation variable to enable variable-length motion generation. Additionally, we integrate a variational autoencoder and a latent diffusion model, further enhanced through adversarial training, to achieve high-quality and fast generation. Moreover, we apply a training-free guided generation framework to achieve various editing tasks with motion control inputs. We quantitatively show the effectiveness of adversarial learning in text-to-motion generation, and demonstrate the applicability of our editing framework to multiple editing tasks in the motion domain.
comment: CVPR 2025 HuMoGen Workshop
V-LASIK: Consistent Glasses-Removal from Videos Using Synthetic Data
Diffusion-based generative models have recently shown remarkable image and video editing capabilities. However, local video editing, particularly removal of small attributes like glasses, remains a challenge. Existing methods either alter the videos excessively, generate unrealistic artifacts, or fail to perform the requested edit consistently throughout the video. In this work, we focus on consistent and identity-preserving removal of glasses in videos, using it as a case study for consistent local attribute removal in videos. Due to the lack of paired data, we adopt a weakly supervised approach and generate synthetic imperfect data, using an adjusted pretrained diffusion model. We show that despite data imperfection, by learning from our generated data and leveraging the prior of pretrained diffusion models, our model is able to perform the desired edit consistently while preserving the original video content. Furthermore, we exemplify the generalization ability of our method to other local video editing tasks by applying it successfully to facial sticker-removal. Our approach demonstrates significant improvement over existing methods, showcasing the potential of leveraging synthetic data and strong video priors for local video editing tasks.
Hands-On: Segmenting Individual Signs from Continuous Sequences
This work tackles the challenge of continuous sign language segmentation, a key task with huge implications for sign language translation and data annotation. We propose a transformer-based architecture that models the temporal dynamics of signing and frames segmentation as a sequence labeling problem using the Begin-In-Out (BIO) tagging scheme. Our method leverages the HaMeR hand features, and is complemented with 3D Angles. Extensive experiments show that our model achieves state-of-the-art results on the DGS Corpus, while our features surpass prior benchmarks on BSLCorpus.
comment: Accepted in the 19th IEEE International Conference on Automatic Face and Gesture Recognition
MimiQ: Low-Bit Data-Free Quantization of Vision Transformers with Encouraging Inter-Head Attention Similarity AAAI 2025
Data-free quantization (DFQ) is a technique that creates a lightweight network from its full-precision counterpart without the original training data, often through a synthetic dataset. Although several DFQ methods have been proposed for vision transformer (ViT) architectures, they fail to achieve efficacy in low-bit settings. Examining the existing methods, we observe that their synthetic data produce misaligned attention maps, while those of the real samples are highly aligned. From this observation, we find that aligning attention maps of synthetic data helps improve the overall performance of quantized ViTs. Motivated by this finding, we devise MimiQ, a novel DFQ method designed for ViTs that enhances inter-head attention similarity. First, we generate synthetic data by aligning head-wise attention outputs from each spatial query patch. Then, we align the attention maps of the quantized network to those of the full-precision teacher by applying head-wise structural attention distillation. The experimental results show that the proposed method significantly outperforms baselines, setting a new state-of-the-art for ViT-DFQ. This paper is an extended version of our work published in the proceedings of AAAI 2025, including additional supplementary material.
comment: Published to AAAI 2025
Leveraging Anthropometric Measurements to Improve Human Mesh Estimation and Ensure Consistent Body Shapes CVPR'25
The basic body shape (i.e., the body shape in T-pose) of a person does not change within a single video. However, most SOTA human mesh estimation (HME) models output a slightly different, thus inconsistent basic body shape for each video frame. Furthermore, we find that SOTA 3D human pose estimation (HPE) models outperform HME models regarding the precision of the estimated 3D keypoint positions. We solve the problem of inconsistent body shapes by leveraging anthropometric measurements like taken by tailors from humans. We create a model called A2B that converts given anthropometric measurements to basic body shape parameters of human mesh models. We obtain superior and consistent human meshes by combining the A2B model results with the keypoints of 3D HPE models using inverse kinematics. We evaluate our approach on challenging datasets like ASPset or fit3D, where we can lower the MPJPE by over 30 mm compared to SOTA HME models. Further, replacing estimates of the body shape parameters from existing HME models with A2B results not only increases the performance of these HME models, but also guarantees consistent body shapes.
comment: accepted for CVSports@CVPR'25
PatchContrast: Self-Supervised Pre-training for 3D Object Detection CVPR
Accurately detecting objects in the environment is a key challenge for autonomous vehicles. However, obtaining annotated data for detection is expensive and time-consuming. We introduce PatchContrast, a novel self-supervised point cloud pre-training framework for 3D object detection. We propose to utilize two levels of abstraction to learn discriminative representation from unlabeled data: proposal-level and patch-level. The proposal-level aims at localizing objects in relation to their surroundings, whereas the patch-level adds information about the internal connections between the object's components, hence distinguishing between different objects based on their individual components. We demonstrate how these levels can be integrated into self-supervised pre-training for various backbones to enhance the downstream 3D detection task. We show that our method outperforms existing state-of-the-art models on three commonly-used 3D detection datasets.
comment: CVPRW 2025
Ham2Pose: Animating Sign Language Notation into Pose Sequences
Translating spoken languages into Sign languages is necessary for open communication between the hearing and hearing-impaired communities. To achieve this goal, we propose the first method for animating a text written in HamNoSys, a lexical Sign language notation, into signed pose sequences. As HamNoSys is universal, our proposed method offers a generic solution invariant to the target Sign language. Our method gradually generates pose predictions using transformer encoders that create meaningful representations of the text and poses while considering their spatial and temporal information. We use weak supervision for the training process and show that our method succeeds in learning from partial and inaccurate data. Additionally, we offer a new distance measurement for pose sequences, normalized Dynamic Time Warping (nDTW), based on DTW over normalized keypoints trajectories, and validate its correctness using AUTSL, a large-scale Sign language dataset. We show that it measures the distance between pose sequences more accurately than existing measurements and use it to assess the quality of our generated pose sequences. Code for the data pre-processing, the model, and the distance measurement is publicly released for future research.
Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications, underscoring the necessity for an in-depth exploration of these vulnerabilities and the formulation of robust defense strategies. The DeepFool algorithm by Moosavi-Dezfooli et al. (2016) represents a pivotal step in identifying minimal perturbations required to induce misclassification of input images. Nonetheless, its generic methodology falls short in scenarios necessitating targeted interventions. Additionally, previous research studies have predominantly concentrated on the success rate of attacks without adequately addressing the consequential distortion of images, the maintenance of image quality, or the confidence threshold required for misclassification. To bridge these gaps, we introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool that not only facilitates the specification of desired misclassification targets but also incorporates a configurable minimum confidence score. Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images and minimizing perturbations across a variety of DNN architectures. Unlike previous iterations, such as the Targeted DeepFool by Gajjar et al. (2022), our method grants unparalleled control over the perturbation process, enabling precise manipulation of model responses. Preliminary outcomes reveal that certain models, including AlexNet and the advanced Vision Transformer, display commendable robustness to such manipulations. This discovery of varying levels of model robustness, as unveiled through our confidence level adjustments, could have far-reaching implications for the field of image recognition. Our code is available at https://github.com/FazleLabib/et_deepfool.
comment: 18 pages, 5 figures. Accepted by Nature Scientific Reports
MIO : Mutual Information Optimization using Self-Supervised Binary Contrastive Learning
Self-supervised contrastive learning frameworks have progressed rapidly over the last few years. In this paper, we propose a novel loss function for contrastive learning. We model our pre-training task as a binary classification problem to induce an implicit contrastive effect. We further improve the n\"aive loss function after removing the effect of the positive-positive repulsion and incorporating the upper bound of the negative pair repulsion. Unlike existing methods, the proposed loss function optimizes the mutual information in positive and negative pairs. We also present a closed-form expression for the parameter gradient flow and compare the behaviour of self-supervised contrastive frameworks using Hessian eigenspectrum to analytically study their convergence. The proposed method outperforms SOTA self-supervised contrastive frameworks on benchmark datasets such as CIFAR-10, CIFAR-100, STL-10, and Tiny-ImageNet. After 200 pretraining epochs with ResNet-18 as the backbone, the proposed model achieves an accuracy of 86.36%, 58.18%, 80.50%, and 30.87% on the CIFAR-10, CIFAR-100, STL-10, and Tiny-ImageNet datasets, respectively, and surpasses the SOTA contrastive baseline by 1.93%, 3.57%, 4.85%, and 0.33%, respectively. The proposed framework also achieves a state-of-the-art accuracy of 78.4% (200 epochs) and 65.22% (100 epochs) Top-1 Linear Evaluation accuracy on ImageNet100 and ImageNet1K datasets, respectively.
Segment Any Motion in Videos CVPR 2025
Moving object segmentation is a crucial task for achieving a high-level understanding of visual scenes and has numerous downstream applications. Humans can effortlessly segment moving objects in videos. Previous work has largely relied on optical flow to provide motion cues; however, this approach often results in imperfect predictions due to challenges such as partial motion, complex deformations, motion blur and background distractions. We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features and leverages SAM2 for pixel-level mask densification through an iterative prompting strategy. Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support. Extensive testing on diverse datasets demonstrates state-of-the-art performance, excelling in challenging scenarios and fine-grained segmentation of multiple objects. Our code is available at https://motion-seg.github.io/.
comment: CVPR 2025. Website: https://motion-seg.github.io/
Seeking Consistent Flat Minima for Better Domain Generalization via Refining Loss Landscapes
Domain generalization aims to learn a model from multiple training domains and generalize it to unseen test domains. Recent theory has shown that seeking the deep models, whose parameters lie in the flat minima of the loss landscape, can significantly reduce the out-of-domain generalization error. However, existing methods often neglect the consistency of loss landscapes in different domains, resulting in models that are not simultaneously in the optimal flat minima in all domains, which limits their generalization ability. To address this issue, this paper proposes an iterative Self-Feedback Training (SFT) framework to seek consistent flat minima that are shared across different domains by progressively refining loss landscapes during training. It alternatively generates a feedback signal by measuring the inconsistency of loss landscapes in different domains and refines these loss landscapes for greater consistency using this feedback signal. Benefiting from the consistency of the flat minima within these refined loss landscapes, our SFT helps achieve better out-of-domain generalization. Extensive experiments on DomainBed demonstrate superior performances of SFT when compared to state-of-the-art sharpness-aware methods and other prevalent DG baselines. On average across five DG benchmarks, SFT surpasses the sharpness-aware minimization by 2.6% with ResNet-50 and 1.5% with ViT-B/16, respectively. The code will be available soon.
MambaXCTrack: Mamba-based Tracker with SSM Cross-correlation and Motion Prompt for Ultrasound Needle Tracking
Ultrasound (US)-guided needle insertion is widely employed in percutaneous interventions. However, providing feedback on the needle tip position via US imaging presents challenges due to noise, artifacts, and the thin imaging plane of US, which degrades needle features and leads to intermittent tip visibility. In this paper, a Mamba-based US needle tracker MambaXCTrack utilizing structured state space models cross-correlation (SSMX-Corr) and implicit motion prompt is proposed, which is the first application of Mamba in US needle tracking. The SSMX-Corr enhances cross-correlation by long-range modeling and global searching of distant semantic features between template and search maps, benefiting the tracking under noise and artifacts by implicitly learning potential distant semantic cues. By combining with cross-map interleaved scan (CIS), local pixel-wise interaction with positional inductive bias can also be introduced to SSMX-Corr. The implicit low-level motion descriptor is proposed as a non-visual prompt to enhance tracking robustness, addressing the intermittent tip visibility problem. Extensive experiments on a dataset with motorized needle insertion in both phantom and tissue samples demonstrate that the proposed tracker outperforms other state-of-the-art trackers while ablation studies further highlight the effectiveness of each proposed tracking module.
comment: Accepted by RAL
Image and Video Processing
PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems
Poisson-Gaussian noise describes the noise of various imaging systems thus the need of efficient algorithms for Poisson-Gaussian image restoration. Deep learning methods offer state-of-the-art performance but often require sensor-specific training when used in a supervised setting. A promising alternative is given by plug-and-play (PnP) methods, which consist in learning only a regularization through a denoiser, allowing to restore images from several sources with the same network. This paper introduces PG-DPIR, an efficient PnP method for high-count Poisson-Gaussian inverse problems, adapted from DPIR. While DPIR is designed for white Gaussian noise, a naive adaptation to Poisson-Gaussian noise leads to prohibitively slow algorithms due to the absence of a closed-form proximal operator. To address this, we adapt DPIR for the specificities of Poisson-Gaussian noise and propose in particular an efficient initialization of the gradient descent required for the proximal step that accelerates convergence by several orders of magnitude. Experiments are conducted on satellite image restoration and super-resolution problems. High-resolution realistic Pleiades images are simulated for the experiments, which demonstrate that PG-DPIR achieves state-of-the-art performance with improved efficiency, which seems promising for on-ground satellite processing chains.
Towards contrast- and pathology-agnostic clinical fetal brain MRI segmentation using SynthSeg
Magnetic resonance imaging (MRI) has played a crucial role in fetal neurodevelopmental research. Structural annotations of MR images are an important step for quantitative analysis of the developing human brain, with Deep learning providing an automated alternative for this otherwise tedious manual process. However, segmentation performances of Convolutional Neural Networks often suffer from domain shift, where the network fails when applied to subjects that deviate from the distribution with which it is trained on. In this work, we aim to train networks capable of automatically segmenting fetal brain MRIs with a wide range of domain shifts pertaining to differences in subject physiology and acquisition environments, in particular shape-based differences commonly observed in pathological cases. We introduce a novel data-driven train-time sampling strategy that seeks to fully exploit the diversity of a given training dataset to enhance the domain generalizability of the trained networks. We adapted our sampler, together with other existing data augmentation techniques, to the SynthSeg framework, a generator that utilizes domain randomization to generate diverse training data, and ran thorough experimentations and ablation studies on a wide range of training/testing data to test the validity of the approaches. Our networks achieved notable improvements in the segmentation quality on testing subjects with intense anatomical abnormalities (p < 1e-4), though at the cost of a slighter decrease in performance in cases with fewer abnormalities. Our work also lays the foundation for future works on creating and adapting data-driven sampling strategies for other training pipelines.
comment: 21 pages, 16 figures
Learning to Harmonize Cross-vendor X-ray Images by Non-linear Image Dynamics Correction
In this paper, we explore how conventional image enhancement can improve model robustness in medical image analysis. By applying commonly used normalization methods to images from various vendors and studying their influence on model generalization in transfer learning, we show that the nonlinear characteristics of domain-specific image dynamics cannot be addressed by simple linear transforms. To tackle this issue, we reformulate the image harmonization task as an exposure correction problem and propose a method termed Global Deep Curve Estimation (GDCE) to reduce domain-specific exposure mismatch. GDCE performs enhancement via a pre-defined polynomial function and is trained with the help of a ``domain discriminator'', aiming to improve model transparency in downstream tasks compared to existing black-box methods.
Progressive Transfer Learning for Multi-Pass Fundus Image Restoration
Diabetic retinopathy is a leading cause of vision impairment, making its early diagnosis through fundus imaging critical for effective treatment planning. However, the presence of poor quality fundus images caused by factors such as inadequate illumination, noise, blurring and other motion artifacts yields a significant challenge for accurate DR screening. In this study, we propose progressive transfer learning for multi pass restoration to iteratively enhance the quality of degraded fundus images, ensuring more reliable DR screening. Unlike previous methods that often focus on a single pass restoration, multi pass restoration via PTL can achieve a superior blind restoration performance that can even improve most of the good quality fundus images in the dataset. Initially, a Cycle GAN model is trained to restore low quality images, followed by PTL induced restoration passes over the latest restored outputs to improve overall quality in each pass. The proposed method can learn blind restoration without requiring any paired data while surpassing its limitations by leveraging progressive learning and fine tuning strategies to minimize distortions and preserve critical retinal features. To evaluate PTL's effectiveness on multi pass restoration, we conducted experiments on DeepDRiD, a large scale fundus imaging dataset specifically curated for diabetic retinopathy detection. Our result demonstrates state of the art performance, showcasing PTL's potential as a superior approach to iterative image quality restoration.
comment: 13 pages, 12 figures including appendix
Digital Staining with Knowledge Distillation: A Unified Framework for Unpaired and Paired-But-Misaligned Data
Staining is essential in cell imaging and medical diagnostics but poses significant challenges, including high cost, time consumption, labor intensity, and irreversible tissue alterations. Recent advances in deep learning have enabled digital staining through supervised model training. However, collecting large-scale, perfectly aligned pairs of stained and unstained images remains difficult. In this work, we propose a novel unsupervised deep learning framework for digital cell staining that reduces the need for extensive paired data using knowledge distillation. We explore two training schemes: (1) unpaired and (2) paired-but-misaligned settings. For the unpaired case, we introduce a two-stage pipeline, comprising light enhancement followed by colorization, as a teacher model. Subsequently, we obtain a student staining generator through knowledge distillation with hybrid non-reference losses. To leverage the pixel-wise information between adjacent sections, we further extend to the paired-but-misaligned setting, adding the Learning to Align module to utilize pixel-level information. Experiment results on our dataset demonstrate that our proposed unsupervised deep staining method can generate stained images with more accurate positions and shapes of the cell targets in both settings. Compared with competing methods, our method achieves improved results both qualitatively and quantitatively (e.g., NIQE and PSNR).We applied our digital staining method to the White Blood Cell (WBC) dataset, investigating its potential for medical applications.
comment: Accepted to IEEE Transactions on Medical Imaging
HippoMM: Hippocampal-inspired Multimodal Memory for Long Audiovisual Event Understanding
Comprehending extended audiovisual experiences remains a fundamental challenge for computational systems. Current approaches struggle with temporal integration and cross-modal associations that humans accomplish effortlessly through hippocampal-cortical networks. We introduce HippoMM, a biologically-inspired architecture that transforms hippocampal mechanisms into computational advantages for multimodal understanding. HippoMM implements three key innovations: (i) hippocampus-inspired pattern separation and completion specifically designed for continuous audiovisual streams, (ii) short-to-long term memory consolidation that transforms perceptual details into semantic abstractions, and (iii) cross-modal associative retrieval pathways enabling modality-crossing queries. Unlike existing retrieval systems with static indexing schemes, HippoMM dynamically forms integrated episodic representations through adaptive temporal segmentation and dual-process memory encoding. Evaluations on our challenging HippoVlog benchmark demonstrate that HippoMM significantly outperforms state-of-the-art approaches (78.2% vs. 64.2% accuracy) while providing substantially faster response times (20.4s vs. 112.5s). Our results demonstrate that translating neuroscientific memory principles into computational architectures provides a promising foundation for next-generation multimodal understanding systems. The code and benchmark dataset are publicly available at https://github.com/linyueqian/HippoMM.
The Tenth NTIRE 2025 Efficient Super-Resolution Challenge Report CVPR2025
This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the $\operatorname{DIV2K\_LSDIR\_valid}$ dataset and 26.99 dB on the $\operatorname{DIV2K\_LSDIR\_test}$ dataset. A robust participation saw \textbf{244} registered entrants, with \textbf{43} teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.
comment: Accepted by CVPR2025 NTIRE Workshop, Efficient Super-Resolution Challenge Report. 50 pages
H3AE: High Compression, High Speed, and High Quality AutoEncoder for Video Diffusion Models
Autoencoder (AE) is the key to the success of latent diffusion models for image and video generation, reducing the denoising resolution and improving efficiency. However, the power of AE has long been underexplored in terms of network design, compression ratio, and training strategy. In this work, we systematically examine the architecture design choices and optimize the computation distribution to obtain a series of efficient and high-compression video AEs that can decode in real time on mobile devices. We also unify the design of plain Autoencoder and image-conditioned I2V VAE, achieving multifunctionality in a single network. In addition, we find that the widely adopted discriminative losses, i.e., GAN, LPIPS, and DWT losses, provide no significant improvements when training AEs at scale. We propose a novel latent consistency loss that does not require complicated discriminator design or hyperparameter tuning, but provides stable improvements in reconstruction quality. Our AE achieves an ultra-high compression ratio and real-time decoding speed on mobile while outperforming prior art in terms of reconstruction metrics by a large margin. We finally validate our AE by training a DiT on its latent space and demonstrate fast, high-quality text-to-video generation capability.
comment: 8 pages, 4 figures, 6 tables
Attention GhostUNet++: Enhanced Segmentation of Adipose Tissue and Liver in CT Images
Accurate segmentation of abdominal adipose tissue, including subcutaneous (SAT) and visceral adipose tissue (VAT), along with liver segmentation, is essential for understanding body composition and associated health risks such as type 2 diabetes and cardiovascular disease. This study proposes Attention GhostUNet++, a novel deep learning model incorporating Channel, Spatial, and Depth Attention mechanisms into the Ghost UNet++ bottleneck for automated, precise segmentation. Evaluated on the AATTCT-IDS and LiTS datasets, the model achieved Dice coefficients of 0.9430 for VAT, 0.9639 for SAT, and 0.9652 for liver segmentation, surpassing baseline models. Despite minor limitations in boundary detail segmentation, the proposed model significantly enhances feature refinement, contextual understanding, and computational efficiency, offering a robust solution for body composition analysis. The implementation of the proposed Attention GhostUNet++ model is available at:https://github.com/MansoorHayat777/Attention-GhostUNetPlusPlus.
comment: Accepted for presentation in the 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2025)
Deciphering scrolls with tomography: A training experiment
The recovery of severely damaged ancient written documents has proven to be a major challenge for many scientists, mainly due to the impracticality of physical unwrapping them. Non-destructive techniques, such as X-ray computed tomography (CT), combined with computer vision algorithms, have emerged as a means of facilitating the virtual reading of the hidden contents of the damaged documents. This paper proposes an educational laboratory aimed at simulating the entire process of acquisition and virtual recovery of the ancient works. We have developed an experimental setup that uses visible light to replace the detrimental X-rays, and a didactic software pipeline that allows students to virtually reconstruct a transparent rolled sheet with printed text on it, the wrapped scroll.
Efficient Brain Tumor Segmentation Using a Dual-Decoder 3D U-Net with Attention Gates (DDUNet)
Cancer remains one of the leading causes of mortality worldwide, and among its many forms, brain tumors are particularly notorious due to their aggressive nature and the critical challenges involved in early diagnosis. Recent advances in artificial intelligence have shown great promise in assisting medical professionals with precise tumor segmentation, a key step in timely diagnosis and treatment planning. However, many state-of-the-art segmentation methods require extensive computational resources and prolonged training times, limiting their practical application in resource-constrained settings. In this work, we present a novel dual-decoder U-Net architecture enhanced with attention-gated skip connections, designed specifically for brain tumor segmentation from MRI scans. Our approach balances efficiency and accuracy by achieving competitive segmentation performance while significantly reducing training demands. Evaluated on the BraTS 2020 dataset, the proposed model achieved Dice scores of 85.06% for Whole Tumor (WT), 80.61% for Tumor Core (TC), and 71.26% for Enhancing Tumor (ET) in only 50 epochs, surpassing several commonly used U-Net variants. Our model demonstrates that high-quality brain tumor segmentation is attainable even under limited computational resources, thereby offering a viable solution for researchers and clinicians operating with modest hardware. This resource-efficient model has the potential to improve early detection and diagnosis of brain tumors, ultimately contributing to better patient outcomes
Machine Learning and Transformers for Thyroid Carcinoma Diagnosis: A Review
The growing interest in developing smart diagnostic systems to help medical experts process extensive data for treating incurable diseases has been notable. In particular, the challenge of identifying thyroid cancer (TC) has seen progress with the use of machine learning (ML) and big data analysis, incorporating Transformers to evaluate TC prognosis and determine the risk of malignancy in individuals. This review article presents a summary of various studies on AI-based approaches, especially those employing Transformers, for diagnosing TC. It introduces a new categorization system for these methods based on artificial intelligence (AI) algorithms, the goals of the framework, and the computing environments used. Additionally, it scrutinizes and contrasts the available TC datasets by their features. The paper highlights the importance of AI instruments in aiding the diagnosis and treatment of TC through supervised, unsupervised, or mixed approaches, with a special focus on the ongoing importance of Transformers and large language models (LLMs) in medical diagnostics and disease management. It further discusses the progress made and the continuing obstacles in this area. Lastly, it explores future directions and focuses within this research field.
Joint semi-supervised and contrastive learning enables domain generalization and multi-domain segmentation
Despite their effectiveness, current deep learning models face challenges with images coming from different domains with varying appearance and content. We introduce SegCLR, a versatile framework designed to segment images across different domains, employing supervised and contrastive learning simultaneously to effectively learn from both labeled and unlabeled data. We demonstrate the superior performance of SegCLR through a comprehensive evaluation involving three diverse clinical datasets of 3D retinal Optical Coherence Tomography (OCT) images, for the slice-wise segmentation of fluids with various network configurations and verification across 10 different network initializations. In an unsupervised domain adaptation context, SegCLR achieves results on par with a supervised upper-bound model trained on the intended target domain. Notably, we discover that the segmentation performance of SegCLR framework is marginally impacted by the abundance of unlabeled data from the target domain, thereby we also propose an effective domain generalization extension of SegCLR, known also as zero-shot domain adaptation, which eliminates the need for any target domain information. This shows that our proposed addition of contrastive loss in standard supervised training for segmentation leads to superior models, inherently more generalizable to both in- and out-of-domain test data. We additionally propose a pragmatic solution for SegCLR deployment in realistic scenarios with multiple domains containing labeled data. Accordingly, our framework pushes the boundaries of deep-learning based segmentation in multi-domain applications, regardless of data availability - labeled, unlabeled, or nonexistent.
Towards A Generalizable Pathology Foundation Model via Unified Knowledge Distillation
Foundation models pretrained on large-scale datasets are revolutionizing the field of computational pathology (CPath). The generalization ability of foundation models is crucial for the success in various downstream clinical tasks. However, current foundation models have only been evaluated on a limited type and number of tasks, leaving their generalization ability and overall performance unclear. To address this gap, we established a most comprehensive benchmark to evaluate the performance of off-the-shelf foundation models across six distinct clinical task types, encompassing a total of 72 specific tasks, including slide-level classification, survival prediction, ROI-tissue classification, ROI retrieval, visual question answering, and report generation. Our findings reveal that existing foundation models excel at certain task types but struggle to effectively handle the full breadth of clinical tasks. To improve the generalization of pathology foundation models, we propose a unified knowledge distillation framework consisting of both expert and self-knowledge distillation, where the former allows the model to learn from the knowledge of multiple expert models, while the latter leverages self-distillation to enable image representation learning via local-global alignment. Based on this framework, we curated a dataset of 96,000 whole slide images (WSIs) and developed a Generalizable Pathology Foundation Model (GPFM). This advanced model was trained on a substantial dataset comprising 190 million images extracted from approximately 72,000 publicly available slides, encompassing 34 major tissue types. Evaluated on the established benchmark, GPFM achieves an impressive average rank of 1.6, with 42 tasks ranked 1st, while the second-best model, UNI, attains an average rank of 3.7, with only 6 tasks ranked 1st.
comment: update
Reconstruct Anything Model: a lightweight foundation model for computational imaging
Most existing learning-based methods for solving imaging inverse problems can be roughly divided into two classes: iterative algorithms, such as plug-and-play and diffusion methods, that leverage pretrained denoisers, and unrolled architectures that are trained end-to-end for specific imaging problems. Iterative methods in the first class are computationally costly and often provide suboptimal reconstruction performance, whereas unrolled architectures are generally specific to a single inverse problem and require expensive training. In this work, we propose a novel non-iterative, lightweight architecture that incorporates knowledge about the forward operator (acquisition physics and noise parameters) without relying on unrolling. Our model is trained to solve a wide range of inverse problems beyond denoising, including deblurring, magnetic resonance imaging, computed tomography, inpainting, and super-resolution. The proposed model can be easily adapted to unseen inverse problems or datasets with a few fine-tuning steps (up to a few images) in a self-supervised way, without ground-truth references. Throughout a series of experiments, we demonstrate state-of-the-art performance from medical imaging to low-photon imaging and microscopy.
An Embedding is Worth a Thousand Noisy Labels
The performance of deep neural networks scales with dataset size and label quality, rendering the efficient mitigation of low-quality data annotations crucial for building robust and cost-effective systems. Existing strategies to address label noise exhibit severe limitations due to computational complexity and application dependency. In this work, we propose WANN, a Weighted Adaptive Nearest Neighbor approach that builds on self-supervised feature representations obtained from foundation models. To guide the weighted voting scheme, we introduce a reliability score $\eta$, which measures the likelihood of a data label being correct. WANN outperforms reference methods, including a linear layer trained with robust loss functions, on diverse datasets of varying size and under various noise types and severities. WANN also exhibits superior generalization on imbalanced data compared to both Adaptive-NNs (ANN) and fixed k-NNs. Furthermore, the proposed weighting scheme enhances supervised dimensionality reduction under noisy labels. This yields a significant boost in classification performance with 10x and 100x smaller image embeddings, minimizing latency and storage requirements. Our approach, emphasizing efficiency and explainability, emerges as a simple, robust solution to overcome inherent limitations of deep neural network training. The code is available at https://github.com/francescodisalvo05/wann-noisy-labels .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
Zero-Shot Denoising for Fluorescence Lifetime Imaging Microscopy with Intensity-Guided Learning
Multimodal and multi-information microscopy techniques such as Fluorescence Lifetime Imaging Microscopy (FLIM) extend the informational channels beyond intensity-based fluorescence microscopy but suffer from reduced image quality due to complex noise patterns. For FLIM, the intrinsic relationship between intensity and lifetime information means noise in each channel is a multivariate function across channels without necessarily sharing structural features. Based on this, we present a novel Zero-Shot Denoising Framework with an Intensity-Guided Learning approach. Our correlation-preserving strategy maintains important biological information that might be lost when channels are processed independently. Our framework implements separate processing paths for each channel and utilizes a pre-trained intensity denoising prior to guide the refinement of lifetime components across multiple channels. Through experiments on real-world FLIM-acquired biological samples, we show that our approach outperforms existing methods in both noise reduction and lifetime preservation, thereby enabling more reliable extraction of physiological and molecular information.
comment: 9 pages,4 figures and 2 tables
EgoEvGesture: Gesture Recognition Based on Egocentric Event Camera
Egocentric gesture recognition is a pivotal technology for enhancing natural human-computer interaction, yet traditional RGB-based solutions suffer from motion blur and illumination variations in dynamic scenarios. While event cameras show distinct advantages in handling high dynamic range with ultra-low power consumption, existing RGB-based architectures face inherent limitations in processing asynchronous event streams due to their synchronous frame-based nature. Moreover, from an egocentric perspective, event cameras record data that includes events generated by both head movements and hand gestures, thereby increasing the complexity of gesture recognition. To address this, we propose a novel network architecture specifically designed for event data processing, incorporating (1) a lightweight CNN with asymmetric depthwise convolutions to reduce parameters while preserving spatiotemporal features, (2) a plug-and-play state-space model as context block that decouples head movement noise from gesture dynamics, and (3) a parameter-free Bins-Temporal Shift Module (BSTM) that shifts features along bins and temporal dimensions to fuse sparse events efficiently. We further establish the EgoEvGesture dataset, the first large-scale dataset for egocentric gesture recognition using event cameras. Experimental results demonstrate that our method achieves 62.7% accuracy tested on unseen subjects with only 7M parameters, 3.1% higher than state-of-the-art approaches. Notable misclassifications in freestyle motions stem from high inter-personal variability and unseen test patterns differing from training data. Moreover, our approach achieved a remarkable accuracy of 97.0% on the DVS128 Gesture, demonstrating the effectiveness and generalization capability of our method on public datasets. The dataset and models are made available at https://github.com/3190105222/EgoEv_Gesture.
comment: The dataset and models are made available at https://github.com/3190105222/EgoEv_Gesture
Seismic Facies Analysis: A Deep Domain Adaptation Approach
Deep neural networks (DNNs) can learn accurately from large quantities of labeled input data, but often fail to do so when labelled data are scarce. DNNs sometimes fail to generalize ontest data sampled from different input distributions. Unsupervised Deep Domain Adaptation (DDA)techniques have been proven useful when no labels are available, and when distribution shifts are observed in the target domain (TD). In the present study, experiments are performed on seismic images of the F3 block 3D dataset from offshore Netherlands (source domain; SD) and Penobscot 3D survey data from Canada (target domain; TD). Three geological classes from SD and TD that have similar reflection patterns are considered. A deep neural network architecture named EarthAdaptNet (EAN) is proposed to semantically segment the seismic images when few classes have data scarcity, and we use a transposed residual unit to replace the traditional dilated convolution in the decoder block. The EAN achieved a pixel-level accuracy >84% and an accuracy of ~70% for the minority classes, showing improved performance compared to existing architectures. In addition, we introduce the CORAL (Correlation Alignment) method to the EAN to create an unsupervised deep domain adaptation network (EAN-DDA) for the classification of seismic reflections from F3 and Penobscot, to demonstrate possible approaches when labelled data are unavailable. Maximum class accuracy achieved was ~99% for class 2 of Penobscot, with an overall accuracy>50%. Taken together, the EAN-DDA has the potential to classify target domain seismic facies classes with high accuracy.
comment: 22 pages, 13 figures, 5 tables, and supplementary material included in the end of the paper
Multimedia
Multimodal Long Video Modeling Based on Temporal Dynamic Context
Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.
Efficient Prompt Tuning for Hierarchical Ingredient Recognition ICME
Fine-grained ingredient recognition presents a significant challenge due to the diverse appearances of ingredients, resulting from different cutting and cooking methods. While existing approaches have shown promising results, they still require extensive training costs and focus solely on fine-grained ingredient recognition. In this paper, we address these limitations by introducing an efficient prompt-tuning framework that adapts pretrained visual-language models (VLMs), such as CLIP, to the ingredient recognition task without requiring full model finetuning. Additionally, we introduce three-level ingredient hierarchies to enhance both training performance and evaluation robustness. Specifically, we propose a hierarchical ingredient recognition task, designed to evaluate model performance across different hierarchical levels (e.g., chicken chunks, chicken, meat), capturing recognition capabilities from coarse- to fine-grained categories. Our method leverages hierarchical labels, training prompt-tuned models with both fine-grained and corresponding coarse-grained labels. Experimental results on the VireoFood172 dataset demonstrate the effectiveness of prompt-tuning with hierarchical labels, achieving superior performance. Moreover, the hierarchical ingredient recognition task provides valuable insights into the model's ability to generalize across different levels of ingredient granularity.
comment: Accepted by IEEE International Conference on Multimedia and Expo (ICME)
XY-Cut++: Advanced Layout Ordering via Hierarchical Mask Mechanism on a Novel Benchmark
Document Reading Order Recovery is a fundamental task in document image understanding, playing a pivotal role in enhancing Retrieval-Augmented Generation (RAG) and serving as a critical preprocessing step for large language models (LLMs). Existing methods often struggle with complex layouts(e.g., multi-column newspapers), high-overhead interactions between cross-modal elements (visual regions and textual semantics), and a lack of robust evaluation benchmarks. We introduce XY-Cut++, an advanced layout ordering method that integrates pre-mask processing, multi-granularity segmentation, and cross-modal matching to address these challenges. Our method significantly enhances layout ordering accuracy compared to traditional XY-Cut techniques. Specifically, XY-Cut++ achieves state-of-the-art performance (98.8 BLEU overall) while maintaining simplicity and efficiency. It outperforms existing baselines by up to 24\% and demonstrates consistent accuracy across simple and complex layouts on the newly introduced DocBench-100 dataset. This advancement establishes a reliable foundation for document structure recovery, setting a new standard for layout ordering tasks and facilitating more effective RAG and LLM preprocessing.
PRM-BAS: Enhancing Multimodal Reasoning through PRM-guided Beam Annealing Search
Recent work increasingly focuses on improving the reasoning capabilities of Multimodal Large Language Models (MLLMs). Among existing methods, Process Reward Models (PRMs) stand out for offering dense, step-wise supervision to guide intermediate reasoning. However, how to effectively integrate PRMs into search strategies remains an open question. In this paper, we introduce PRM-BAS (PRM-Guided Beam Annealing Search), a lightweight approach for PRM-guided reasoning that dynamically adjusts beam size -- starting with a broader search space and gradually narrowing it as contextual information accumulates, thereby balancing performance and efficiency. We further propose a unified framework for data construction and PRM training. Specifically, we construct the PRM-BAS-300k dataset by selecting 300k questions from existing datasets and performing rollouts at each step to estimate the probability of reaching a correct final answer. The PRM is then trained using a combination of value loss for absolute action quality and rank loss for relative action quality. Extensive experiments on challenging multimodal reasoning benchmarks demonstrate that PRM-BAS significantly improves reasoning performance while maintaining low computational cost. Moreover, it generalizes well across different model scales and architectures, showcasing strong robustness and plug-and-play capability.
Fact-Checking with Contextual Narratives: Leveraging Retrieval-Augmented LLMs for Social Media Analysis
We propose CRAVE (Cluster-based Retrieval Augmented Verification with Explanation); a novel framework that integrates retrieval-augmented Large Language Models (LLMs) with clustering techniques to address fact-checking challenges on social media. CRAVE automatically retrieves multimodal evidence from diverse, often contradictory, sources. Evidence is clustered into coherent narratives, and evaluated via an LLM-based judge to deliver fact-checking verdicts explained by evidence summaries. By synthesizing evidence from both text and image modalities and incorporating agent-based refinement, CRAVE ensures consistency and diversity in evidence representation. Comprehensive experiments demonstrate CRAVE's efficacy in retrieval precision, clustering quality, and judgment accuracy, showcasing its potential as a robust decision-support tool for fact-checkers.
HistLLM: A Unified Framework for LLM-Based Multimodal Recommendation with User History Encoding and Compression
While large language models (LLMs) have proven effective in leveraging textual data for recommendations, their application to multimodal recommendation tasks remains relatively underexplored. Although LLMs can process multimodal information through projection functions that map visual features into their semantic space, recommendation tasks often require representing users' history interactions through lengthy prompts combining text and visual elements, which not only hampers training and inference efficiency but also makes it difficult for the model to accurately capture user preferences from complex and extended prompts, leading to reduced recommendation performance. To address this challenge, we introduce HistLLM, an innovative multimodal recommendation framework that integrates textual and visual features through a User History Encoding Module (UHEM), compressing multimodal user history interactions into a single token representation, effectively facilitating LLMs in processing user preferences. Extensive experiments demonstrate the effectiveness and efficiency of our proposed mechanism.
Omni-Dish: Photorealistic and Faithful Image Generation and Editing for Arbitrary Chinese Dishes
Dish images play a crucial role in the digital era, with the demand for culturally distinctive dish images continuously increasing due to the digitization of the food industry and e-commerce. In general cases, existing text-to-image generation models excel in producing high-quality images; however, they struggle to capture diverse characteristics and faithful details of specific domains, particularly Chinese dishes. To address this limitation, we propose Omni-Dish, the first text-to-image generation model specifically tailored for Chinese dishes. We develop a comprehensive dish curation pipeline, building the largest dish dataset to date. Additionally, we introduce a recaption strategy and employ a coarse-to-fine training scheme to help the model better learn fine-grained culinary nuances. During inference, we enhance the user's textual input using a pre-constructed high-quality caption library and a large language model, enabling more photorealistic and faithful image generation. Furthermore, to extend our model's capability for dish editing tasks, we propose Concept-Enhanced P2P. Based on this approach, we build a dish editing dataset and train a specialized editing model. Extensive experiments demonstrate the superiority of our methods.
comment: 10 pages, 10 figures, 3 tables
StePO-Rec: Towards Personalized Outfit Styling Assistant via Knowledge-Guided Multi-Step Reasoning
Advancements in Generative AI offers new opportunities for FashionAI, surpassing traditional recommendation systems that often lack transparency and struggle to integrate expert knowledge, leaving the potential for personalized fashion styling remain untapped. To address these challenges, we present PAFA (Principle-Aware Fashion), a multi-granular knowledge base that organizes professional styling expertise into three levels of metadata, domain principles, and semantic relationships. Using PAFA, we develop StePO-Rec, a knowledge-guided method for multi-step outfit recommendation. StePO-Rec provides structured suggestions using a scenario-dimension-attribute framework, employing recursive tree construction to align recommendations with both professional principles and individual preferences. A preference-trend re-ranking system further adapts to fashion trends while maintaining the consistency of the user's original style. Experiments on the widely used personalized outfit dataset IQON show a 28% increase in Recall@1 and 32.8% in MAP. Furthermore, case studies highlight improved explainability, traceability, result reliability, and the seamless integration of expertise and personalization.
Plasticity-Aware Mixture of Experts for Learning Under QoE Shifts in Adaptive Video Streaming
Adaptive video streaming systems are designed to optimize Quality of Experience (QoE) and, in turn, enhance user satisfaction. However, differences in user profiles and video content lead to different weights for QoE factors, resulting in user-specific QoE functions and, thus, varying optimization objectives. This variability poses significant challenges for neural networks, as they often struggle to generalize under evolving targets - a phenomenon known as plasticity loss that prevents conventional models from adapting effectively to changing optimization objectives. To address this limitation, we propose the Plasticity-Aware Mixture of Experts (PA-MoE), a novel learning framework that dynamically modulates network plasticity by balancing memory retention with selective forgetting. In particular, PA-MoE leverages noise injection to promote the selective forgetting of outdated knowledge, thereby endowing neural networks with enhanced adaptive capabilities. In addition, we present a rigorous theoretical analysis of PA-MoE by deriving a regret bound that quantifies its learning performance. Experimental evaluations demonstrate that PA-MoE achieves a 45.5% improvement in QoE over competitive baselines in dynamic streaming environments. Further analysis reveals that the model effectively mitigates plasticity loss by optimizing neuron utilization. Finally, a parameter sensitivity study is performed by injecting varying levels of noise, and the results align closely with our theoretical predictions.
Laugh at Your Own Pace: Basic Performance Evaluation of Language Learning Assistance by Adjustment of Video Playback Speeds Based on Laughter Detection
Among various methods to learn a second language (L2), such as listening and shadowing, Extensive Viewing involves learning L2 by watching many videos. However, it is difficult for many L2 learners to smoothly and effortlessly comprehend video contents made for native speakers at the original speed. Therefore, we developed a language learning assistance system that automatically adjusts the playback speed according to the learner's comprehension. Our system judges that learners understand the contents if they laugh at the punchlines of comedy dramas, and vice versa. Experimental results show that this system supports learners with relatively low L2 ability (under 700 in TOEIC Score in the experimental condition) to understand video contents. Our system can widen learners' possible options of native speakers' videos as Extensive Viewing material.
comment: 6 pages, 5 figures
HippoMM: Hippocampal-inspired Multimodal Memory for Long Audiovisual Event Understanding
Comprehending extended audiovisual experiences remains a fundamental challenge for computational systems. Current approaches struggle with temporal integration and cross-modal associations that humans accomplish effortlessly through hippocampal-cortical networks. We introduce HippoMM, a biologically-inspired architecture that transforms hippocampal mechanisms into computational advantages for multimodal understanding. HippoMM implements three key innovations: (i) hippocampus-inspired pattern separation and completion specifically designed for continuous audiovisual streams, (ii) short-to-long term memory consolidation that transforms perceptual details into semantic abstractions, and (iii) cross-modal associative retrieval pathways enabling modality-crossing queries. Unlike existing retrieval systems with static indexing schemes, HippoMM dynamically forms integrated episodic representations through adaptive temporal segmentation and dual-process memory encoding. Evaluations on our challenging HippoVlog benchmark demonstrate that HippoMM significantly outperforms state-of-the-art approaches (78.2% vs. 64.2% accuracy) while providing substantially faster response times (20.4s vs. 112.5s). Our results demonstrate that translating neuroscientific memory principles into computational architectures provides a promising foundation for next-generation multimodal understanding systems. The code and benchmark dataset are publicly available at https://github.com/linyueqian/HippoMM.
Attention GhostUNet++: Enhanced Segmentation of Adipose Tissue and Liver in CT Images
Accurate segmentation of abdominal adipose tissue, including subcutaneous (SAT) and visceral adipose tissue (VAT), along with liver segmentation, is essential for understanding body composition and associated health risks such as type 2 diabetes and cardiovascular disease. This study proposes Attention GhostUNet++, a novel deep learning model incorporating Channel, Spatial, and Depth Attention mechanisms into the Ghost UNet++ bottleneck for automated, precise segmentation. Evaluated on the AATTCT-IDS and LiTS datasets, the model achieved Dice coefficients of 0.9430 for VAT, 0.9639 for SAT, and 0.9652 for liver segmentation, surpassing baseline models. Despite minor limitations in boundary detail segmentation, the proposed model significantly enhances feature refinement, contextual understanding, and computational efficiency, offering a robust solution for body composition analysis. The implementation of the proposed Attention GhostUNet++ model is available at:https://github.com/MansoorHayat777/Attention-GhostUNetPlusPlus.
comment: Accepted for presentation in the 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2025)
UniForm: A Unified Multi-Task Diffusion Transformer for Audio-Video Generation
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To address these limitations, we first propose UniForm, a unified multi-task diffusion transformer that jointly generates audio and visual modalities in a shared latent space. A single diffusion process models both audio and video, capturing the inherent correlations between sound and vision. Second, we introduce task-specific noise schemes and task tokens, enabling a single model to support multiple tasks, including text-to-audio-video, audio-to-video, and video-to-audio generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Extensive experiments show that UniForm achieves the state-of-the-art performance across audio-video generation tasks, producing content that is both well-aligned and close to real-world data distributions. Our demos are available at https://uniform-t2av.github.io/.
comment: Our demos are available at https://uniform-t2av.github.io/
Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
Computation and Language
xVerify: Efficient Answer Verifier for Reasoning Model Evaluations
With the release of the o1 model by OpenAI, reasoning models adopting slow thinking strategies have gradually emerged. As the responses generated by such models often include complex reasoning, intermediate steps, and self-reflection, existing evaluation methods are often inadequate. They struggle to determine whether the LLM output is truly equivalent to the reference answer, and also have difficulty identifying and extracting the final answer from long, complex responses. To address this issue, we propose xVerify, an efficient answer verifier for reasoning model evaluations. xVerify demonstrates strong capability in equivalence judgment, enabling it to effectively determine whether the answers produced by reasoning models are equivalent to reference answers across various types of objective questions. To train and evaluate xVerify, we construct the VAR dataset by collecting question-answer pairs generated by multiple LLMs across various datasets, leveraging multiple reasoning models and challenging evaluation sets designed specifically for reasoning model assessment. A multi-round annotation process is employed to ensure label accuracy. Based on the VAR dataset, we train multiple xVerify models of different scales. In evaluation experiments conducted on both the test set and generalization set, all xVerify models achieve overall F1 scores and accuracy exceeding 95\%. Notably, the smallest variant, xVerify-0.5B-I, outperforms all evaluation methods except GPT-4o, while xVerify-3B-Ib surpasses GPT-4o in overall performance. These results validate the effectiveness and generalizability of xVerify.
comment: 32 pages
MIEB: Massive Image Embedding Benchmark
Image representations are often evaluated through disjointed, task-specific protocols, leading to a fragmented understanding of model capabilities. For instance, it is unclear whether an image embedding model adept at clustering images is equally good at retrieving relevant images given a piece of text. We introduce the Massive Image Embedding Benchmark (MIEB) to evaluate the performance of image and image-text embedding models across the broadest spectrum to date. MIEB spans 38 languages across 130 individual tasks, which we group into 8 high-level categories. We benchmark 50 models across our benchmark, finding that no single method dominates across all task categories. We reveal hidden capabilities in advanced vision models such as their accurate visual representation of texts, and their yet limited capabilities in interleaved encodings and matching images and texts in the presence of confounders. We also show that the performance of vision encoders on MIEB correlates highly with their performance when used in multimodal large language models. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users SC
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
comment: Project Website: https://scai.cs.jhu.edu/projects/RealWebAssist/ Code: https://github.com/SCAI-JHU/RealWebAssist
Multimodal Long Video Modeling Based on Temporal Dynamic Context
Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.
LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models
Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.
comment: 20 pages, 7 figures, 4 tables
Can We Edit LLMs for Long-Tail Biomedical Knowledge?
Knowledge editing has emerged as an effective approach for updating large language models (LLMs) by modifying their internal knowledge. However, their application to the biomedical domain faces unique challenges due to the long-tailed distribution of biomedical knowledge, where rare and infrequent information is prevalent. In this paper, we conduct the first comprehensive study to investigate the effectiveness of knowledge editing methods for editing long-tail biomedical knowledge. Our results indicate that, while existing editing methods can enhance LLMs' performance on long-tail biomedical knowledge, their performance on long-tail knowledge remains inferior to that on high-frequency popular knowledge, even after editing. Our further analysis reveals that long-tail biomedical knowledge contains a significant amount of one-to-many knowledge, where one subject and relation link to multiple objects. This high prevalence of one-to-many knowledge limits the effectiveness of knowledge editing in improving LLMs' understanding of long-tail biomedical knowledge, highlighting the need for tailored strategies to bridge this performance gap.
Unchecked and Overlooked: Addressing the Checkbox Blind Spot in Large Language Models with CheckboxQA
Checkboxes are critical in real-world document processing where the presence or absence of ticks directly informs data extraction and decision-making processes. Yet, despite the strong performance of Large Vision and Language Models across a wide range of tasks, they struggle with interpreting checkable content. This challenge becomes particularly pressing in industries where a single overlooked checkbox may lead to costly regulatory or contractual oversights. To address this gap, we introduce the CheckboxQA dataset, a targeted resource designed to evaluate and improve model performance on checkbox-related tasks. It reveals the limitations of current models and serves as a valuable tool for advancing document comprehension systems, with significant implications for applications in sectors such as legal tech and finance. The dataset is publicly available at: https://github.com/Snowflake-Labs/CheckboxQA
CliniChat: A Multi-Source Knowledge-Driven Framework for Clinical Interview Dialogue Reconstruction and Evaluation
Large language models (LLMs) hold great promise for assisting clinical interviews due to their fluent interactive capabilities and extensive medical knowledge. However, the lack of high-quality interview dialogue data and widely accepted evaluation methods has significantly impeded this process. So we propose CliniChat, a framework that integrates multi-source knowledge to enable LLMs to simulate real-world clinical interviews. It consists of two modules: Clini-Recon and Clini-Eval, each responsible for reconstructing and evaluating interview dialogues, respectively. By incorporating three sources of knowledge, Clini-Recon transforms clinical notes into systematic, professional, and empathetic interview dialogues. Clini-Eval combines a comprehensive evaluation metric system with a two-phase automatic evaluation approach, enabling LLMs to assess interview performance like experts. We contribute MedQA-Dialog, a high-quality synthetic interview dialogue dataset, and CliniChatGLM, a model specialized for clinical interviews. Experimental results demonstrate that CliniChatGLM's interview capabilities undergo a comprehensive upgrade, particularly in history-taking, achieving state-of-the-art performance.
LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models
Scientific equation discovery is a fundamental task in the history of scientific progress, enabling the derivation of laws governing natural phenomena. Recently, Large Language Models (LLMs) have gained interest for this task due to their potential to leverage embedded scientific knowledge for hypothesis generation. However, evaluating the true discovery capabilities of these methods remains challenging, as existing benchmarks often rely on common equations that are susceptible to memorization by LLMs, leading to inflated performance metrics that do not reflect discovery. In this paper, we introduce LLM-SRBench, a comprehensive benchmark with 239 challenging problems across four scientific domains specifically designed to evaluate LLM-based scientific equation discovery methods while preventing trivial memorization. Our benchmark comprises two main categories: LSR-Transform, which transforms common physical models into less common mathematical representations to test reasoning beyond memorized forms, and LSR-Synth, which introduces synthetic, discovery-driven problems requiring data-driven reasoning. Through extensive evaluation of several state-of-the-art methods, using both open and closed LLMs, we find that the best-performing system so far achieves only 31.5% symbolic accuracy. These findings highlight the challenges of scientific equation discovery, positioning LLM-SRBench as a valuable resource for future research.
comment: Project page: https://github.com/deep-symbolic-mathematics/llm-srbench , Benchmark page: https://huggingface.co/datasets/nnheui/llm-srbench
Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
The integration of Large Language Models (LLMs) into healthcare holds significant potential to enhance diagnostic accuracy and support medical treatment planning. These AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes. This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access (PNA), a standardized medical knowledge assessment. Our results highlight considerable variation in accuracy and cost-effectiveness, with several models demonstrating performance exceeding human benchmarks for medical students on this specific task. We identify leading models based on a combined score of accuracy and cost, discuss the implications of reasoning methodologies like Chain-of-Thought, and underscore the potential for LLMs to function as valuable complementary tools aiding medical professionals in complex clinical decision-making.
comment: 21 pages, 6 figures, 4 tables. Acknowledgements: The authors acknowledge the support of the AITriage4SU Project (2024.07400.IACDC/2024), funded by the FCT (Foundation for Science and Technology), Portugal
LLM-driven Constrained Copy Generation through Iterative Refinement
Crafting a marketing message (copy), or copywriting is a challenging generation task, as the copy must adhere to various constraints. Copy creation is inherently iterative for humans, starting with an initial draft followed by successive refinements. However, manual copy creation is time-consuming and expensive, resulting in only a few copies for each use case. This limitation restricts our ability to personalize content to customers. Contrary to the manual approach, LLMs can generate copies quickly, but the generated content does not consistently meet all the constraints on the first attempt (similar to humans). While recent studies have shown promise in improving constrained generation through iterative refinement, they have primarily addressed tasks with only a few simple constraints. Consequently, the effectiveness of iterative refinement for tasks such as copy generation, which involves many intricate constraints, remains unclear. To address this gap, we propose an LLM-based end-to-end framework for scalable copy generation using iterative refinement. To the best of our knowledge, this is the first study to address multiple challenging constraints simultaneously in copy generation. Examples of these constraints include length, topics, keywords, preferred lexical ordering, and tone of voice. We demonstrate the performance of our framework by creating copies for e-commerce banners for three different use cases of varying complexity. Our results show that iterative refinement increases the copy success rate by $16.25-35.91$% across use cases. Furthermore, the copies generated using our approach outperformed manually created content in multiple pilot studies using a multi-armed bandit framework. The winning copy improved the click-through rate by $38.5-45.21$%.
comment: 10 pages, 2 figures, 7 Tables
A 10.8mW Mixed-Signal Simulated Bifurcation Ising Solver using SRAM Compute-In-Memory with 0.6us Time-to-Solution
Combinatorial optimization problems are funda- mental for various fields ranging from finance to wireless net- works. This work presents a simulated bifurcation (SB) Ising solver in CMOS for NP-hard optimization problems. Analog domain computing led to a superior implementation of this algorithm as inherent and injected noise is required in SB Ising solvers. The architecture novelties include the use of SRAM compute-in-memory (CIM) to accelerate bifurcation as well as the generation and injection of optimal decaying noise in the analog domain. We propose a novel 10-T SRAM cell capable of performing ternary multiplication. When measured with 60- node, 50% density, random, binary MAXCUT graphs, this all- to-all connected Ising solver reliably achieves above 93% of the ground state solution in 0.6us with 10.8mW average power in TSMC 180nm CMOS. Our chip achieves an order of magnitude improvement in time-to-solution and power compared to previously proposed Ising solvers in CMOS and other platforms.
S1-Bench: A Simple Benchmark for Evaluating System 1 Thinking Capability of Large Reasoning Models
We introduce S1-Bench, a novel benchmark designed to evaluate Large Reasoning Models' (LRMs) performance on simple tasks that favor intuitive system 1 thinking rather than deliberative system 2 reasoning. While LRMs have achieved significant breakthroughs in complex reasoning tasks through explicit chains of thought, their reliance on deep analytical thinking may limit their system 1 thinking capabilities. Moreover, a lack of benchmark currently exists to evaluate LRMs' performance in tasks that require such capabilities. To fill this gap, S1-Bench presents a set of simple, diverse, and naturally clear questions across multiple domains and languages, specifically designed to assess LRMs' performance in such tasks. Our comprehensive evaluation of 22 LRMs reveals significant lower efficiency tendencies, with outputs averaging 15.5 times longer than those of traditional small LLMs. Additionally, LRMs often identify correct answers early but continue unnecessary deliberation, with some models even producing numerous errors. These findings highlight the rigid reasoning patterns of current LRMs and underscore the substantial development needed to achieve balanced dual-system thinking capabilities that can adapt appropriately to task complexity.
comment: Work in Progress
DICE: A Framework for Dimensional and Contextual Evaluation of Language Models
Language models (LMs) are increasingly being integrated into a wide range of applications, yet the modern evaluation paradigm does not sufficiently reflect how they are actually being used. Current evaluations rely on benchmarks that often lack direct applicability to the real-world contexts in which LMs are being deployed. To address this gap, we propose Dimensional and Contextual Evaluation (DICE), an approach that evaluates LMs on granular, context-dependent dimensions. In this position paper, we begin by examining the insufficiency of existing LM benchmarks, highlighting their limited applicability to real-world use cases. Next, we propose a set of granular evaluation parameters that capture dimensions of LM behavior that are more meaningful to stakeholders across a variety of application domains. Specifically, we introduce the concept of context-agnostic parameters - such as robustness, coherence, and epistemic honesty - and context-specific parameters that must be tailored to the specific contextual constraints and demands of stakeholders choosing to deploy LMs into a particular setting. We then discuss potential approaches to operationalize this evaluation framework, finishing with the opportunities and challenges DICE presents to the LM evaluation landscape. Ultimately, this work serves as a practical and approachable starting point for context-specific and stakeholder-relevant evaluation of LMs.
MultiLoKo: a multilingual local knowledge benchmark for LLMs spanning 31 languages
We present MultiLoKo, a new benchmark for evaluating multilinguality in LLMs covering 31 languages. MultiLoKo consists of three partitions: a main partition consisting of 500 questions per language, separately sourced to be locally relevant to the specific language, and two translated partitions, containing human-authored translations from 30 non-English languages to English and vice versa. For comparison, we also release corresponding machine-authored translations. The data is equally distributed over two splits: a dev split and a blind, out-of-distribution test split. MultiLoKo can be used to study a variety of questions regarding the multilinguality of LLMs as well as meta-questions about multilingual benchmark creation. We compute MultiLoKo scores for 11 base and chat models marketed to be multilingual and study their average performance, their performance parity across languages, how much their ability to answer questions depends on the question language, and which languages are most difficult. None of the models we studied performs well on MultiLoKo, as indicated by low average scores as well as large differences between the best and worst scoring languages. Furthermore, we find a substantial effect of the question language, indicating sub-optimal knowledge transfer between languages. Lastly, we find that using local vs English-translated data can result in differences more than 20 points for the best performing models, drastically change the estimated difficulty of some languages. For using machines instead of human translations, we find a weaker effect on ordering of language difficulty, a larger difference in model rankings, and a substantial drop in estimated performance for all models.
Pseudo-Autoregressive Neural Codec Language Models for Efficient Zero-Shot Text-to-Speech Synthesis ACM MM 2025
Recent zero-shot text-to-speech (TTS) systems face a common dilemma: autoregressive (AR) models suffer from slow generation and lack duration controllability, while non-autoregressive (NAR) models lack temporal modeling and typically require complex designs. In this paper, we introduce a novel pseudo-autoregressive (PAR) codec language modeling approach that unifies AR and NAR modeling. Combining explicit temporal modeling from AR with parallel generation from NAR, PAR generates dynamic-length spans at fixed time steps. Building on PAR, we propose PALLE, a two-stage TTS system that leverages PAR for initial generation followed by NAR refinement. In the first stage, PAR progressively generates speech tokens along the time dimension, with each step predicting all positions in parallel but only retaining the left-most span. In the second stage, low-confidence tokens are iteratively refined in parallel, leveraging the global contextual information. Experiments demonstrate that PALLE, trained on LibriTTS, outperforms state-of-the-art systems trained on large-scale data, including F5-TTS, E2-TTS, and MaskGCT, on the LibriSpeech test-clean set in terms of speech quality, speaker similarity, and intelligibility, while achieving up to ten times faster inference speed. Audio samples are available at https://anonymous-palle.github.io.
comment: Submitted to ACM MM 2025
VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge
Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.
comment: 56 pages, 43 figures
Forecasting from Clinical Textual Time Series: Adaptations of the Encoder and Decoder Language Model Families
Clinical case reports encode rich, temporal patient trajectories that are often underexploited by traditional machine learning methods relying on structured data. In this work, we introduce the forecasting problem from textual time series, where timestamped clinical findings--extracted via an LLM-assisted annotation pipeline--serve as the primary input for prediction. We systematically evaluate a diverse suite of models, including fine-tuned decoder-based large language models and encoder-based transformers, on tasks of event occurrence prediction, temporal ordering, and survival analysis. Our experiments reveal that encoder-based models consistently achieve higher F1 scores and superior temporal concordance for short- and long-horizon event forecasting, while fine-tuned masking approaches enhance ranking performance. In contrast, instruction-tuned decoder models demonstrate a relative advantage in survival analysis, especially in early prognosis settings. Our sensitivity analyses further demonstrate the importance of time ordering, which requires clinical time series construction, as compared to text ordering, the format of the text inputs that LLMs are classically trained on. This highlights the additional benefit that can be ascertained from time-ordered corpora, with implications for temporal tasks in the era of widespread LLM use.
comment: Machine Learning for Healthcare (MLHC 2025)
MorphTok: Morphologically Grounded Tokenization for Indian Languages
Tokenization is a crucial step in NLP, especially with the rise of large language models (LLMs), impacting downstream performance, computational cost, and efficiency. Existing LLMs rely on the classical Byte-pair Encoding (BPE) algorithm for subword tokenization that greedily merges frequent character bigrams. This often leads to segmentation that does not align with linguistically meaningful units. To address this, we propose morphology-aware segmentation as a pre-tokenization step prior to applying BPE. To facilitate morphology-aware segmentation, we create a novel dataset for Hindi and Marathi, incorporating sandhi splitting to enhance the subword tokenization. Experiments on downstream tasks show that morphologically grounded tokenization improves performance for machine translation and language modeling. Additionally, to handle the ambiguity in the Unicode characters for diacritics, particularly dependent vowels in syllable-based writing systems, we introduce Constrained BPE (CBPE), an extension to the traditional BPE algorithm that incorporates script-specific constraints. Specifically, CBPE handles dependent vowels. Our results show that CBPE achieves a 1.68\% reduction in fertility scores while maintaining comparable or improved downstream performance in machine translation, offering a computationally efficient alternative to standard BPE. Moreover, to evaluate segmentation across different tokenization algorithms, we introduce a new human evaluation metric, \textit{EvalTok}, enabling more human-grounded assessment.
Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol
Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
RealHarm: A Collection of Real-World Language Model Application Failures
Language model deployments in consumer-facing applications introduce numerous risks. While existing research on harms and hazards of such applications follows top-down approaches derived from regulatory frameworks and theoretical analyses, empirical evidence of real-world failure modes remains underexplored. In this work, we introduce RealHarm, a dataset of annotated problematic interactions with AI agents built from a systematic review of publicly reported incidents. Analyzing harms, causes, and hazards specifically from the deployer's perspective, we find that reputational damage constitutes the predominant organizational harm, while misinformation emerges as the most common hazard category. We empirically evaluate state-of-the-art guardrails and content moderation systems to probe whether such systems would have prevented the incidents, revealing a significant gap in the protection of AI applications.
MURR: Model Updating with Regularized Replay for Searching a Document Stream ECIR 2025
The Internet produces a continuous stream of new documents and user-generated queries. These naturally change over time based on events in the world and the evolution of language. Neural retrieval models that were trained once on a fixed set of query-document pairs will quickly start misrepresenting newly-created content and queries, leading to less effective retrieval. Traditional statistical sparse retrieval can update collection statistics to reflect these changes in the use of language in documents and queries. In contrast, continued fine-tuning of the language model underlying neural retrieval approaches such as DPR and ColBERT creates incompatibility with previously-encoded documents. Re-encoding and re-indexing all previously-processed documents can be costly. In this work, we explore updating a neural dual encoder retrieval model without reprocessing past documents in the stream. We propose MURR, a model updating strategy with regularized replay, to ensure the model can still faithfully search existing documents without reprocessing, while continuing to update the model for the latest topics. In our simulated streaming environments, we show that fine-tuning models using MURR leads to more effective and more consistent retrieval results than other strategies as the stream of documents and queries progresses.
comment: Published at ECIR 2025. 16 pages, 4 figures
Probing then Editing Response Personality of Large Language Models
Large Language Models (LLMs) have demonstrated promising capabilities to generate responses that exhibit consistent personality traits. Despite the major attempts to analyze personality expression through output-based evaluations, little is known about how such traits are internally encoded within LLM parameters. In this paper, we introduce a layer-wise probing framework to systematically investigate the layer-wise capability of LLMs in encoding personality for responding. We conduct probing experiments on 11 open-source LLMs over the PersonalityEdit benchmark and find that LLMs predominantly encode personality for responding in their middle and upper layers, with instruction-tuned models demonstrating a slightly clearer separation of personality traits. Furthermore, by interpreting the trained probing hyperplane as a layer-wise boundary for each personality category, we propose a layer-wise perturbation method to edit the personality expressed by LLMs during inference. Our results show that even when the prompt explicitly specifies a particular personality, our method can still successfully alter the response personality of LLMs. Interestingly, the difficulty of converting between certain personality traits varies substantially, which aligns with the representational distances in our probing experiments. Finally, we conduct a comprehensive MMLU benchmark evaluation and time overhead analysis, demonstrating that our proposed personality editing method incurs only minimal degradation in general capabilities while maintaining low training costs and acceptable inference latency. Our code is publicly available at https://github.com/universe-sky/probing-then-editing-personality.
comment: Working in Progress
DioR: Adaptive Cognitive Detection and Contextual Retrieval Optimization for Dynamic Retrieval-Augmented Generation
Dynamic Retrieval-augmented Generation (RAG) has shown great success in mitigating hallucinations in large language models (LLMs) during generation. However, existing dynamic RAG methods face significant limitations in two key aspects: 1) Lack of an effective mechanism to control retrieval triggers, and 2) Lack of effective scrutiny of retrieval content. To address these limitations, we propose an innovative dynamic RAG method, DioR (Adaptive Cognitive Detection and Contextual Retrieval Optimization), which consists of two main components: adaptive cognitive detection and contextual retrieval optimization, specifically designed to determine when retrieval is needed and what to retrieve for LLMs is useful. Experimental results demonstrate that DioR achieves superior performance on all tasks, demonstrating the effectiveness of our work.
comment: 24 pages, 9 figures
Localized Cultural Knowledge is Conserved and Controllable in Large Language Models
Just as humans display language patterns influenced by their native tongue when speaking new languages, LLMs often default to English-centric responses even when generating in other languages. Nevertheless, we observe that local cultural information persists within the models and can be readily activated for cultural customization. We first demonstrate that explicitly providing cultural context in prompts significantly improves the models' ability to generate culturally localized responses. We term the disparity in model performance with versus without explicit cultural context the explicit-implicit localization gap, indicating that while cultural knowledge exists within LLMs, it may not naturally surface in multilingual interactions if cultural context is not explicitly provided. Despite the explicit prompting benefit, however, the answers reduce in diversity and tend toward stereotypes. Second, we identify an explicit cultural customization vector, conserved across all non-English languages we explore, which enables LLMs to be steered from the synthetic English cultural world-model toward each non-English cultural world. Steered responses retain the diversity of implicit prompting and reduce stereotypes to dramatically improve the potential for customization. We discuss the implications of explicit cultural customization for understanding the conservation of alternative cultural world models within LLMs, and their controllable utility for translation, cultural customization, and the possibility of making the explicit implicit through soft control for expanded LLM function and appeal.
Deep Reasoning Translation via Reinforcement Learning
Recently, deep reasoning LLMs (e.g., OpenAI o1/o3 and DeepSeek-R1) have shown promising performance in various complex tasks. Free translation is an important and interesting task in the multilingual world, which requires going beyond word-for-word translation and taking cultural differences into account. This task is still under-explored in deep reasoning LLMs. In this paper, we introduce DeepTrans, a deep reasoning translation model that learns free translation via reinforcement learning. Specifically, we carefully build a reward model with pre-defined scoring criteria on both the translation results and the thought process. Given the source sentences, the reward model teaches the deep translation model how to think and free-translate them during reinforcement learning. In this way, training DeepTrans does not need any labeled translations, avoiding the human-intensive annotation or resource-intensive data synthesis. Experimental results show the effectiveness of DeepTrans. Using Qwen2.5-7B as the backbone, DeepTrans improves performance by 16.3% in literature translation, and outperforms strong deep reasoning baselines as well as baselines that are fine-tuned with synthesized data. Moreover, we summarize the failures and interesting findings during our RL exploration. We hope this work could inspire other researchers in free translation.
LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior by removing undesired data-model influences from the pretrained model while preserving general utility. Significant recent efforts have been dedicated to developing LLM unlearning benchmarks such as WMDP (Weapons of Mass Destruction Proxy) and MUSE (Machine Unlearning Six-way Evaluation), facilitating standardized unlearning performance assessment and method comparison. Despite their usefulness, we uncover for the first time a novel coreset effect within these benchmarks. Specifically, we find that LLM unlearning achieved with the original (full) forget set can be effectively maintained using a significantly smaller subset (functioning as a "coreset"), e.g., as little as 5% of the forget set, even when selected at random. This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime. We demonstrate that this coreset effect remains strong, regardless of the LLM unlearning method used, such as NPO (Negative Preference Optimization) and RMU (Representation Misdirection Unlearning), the popular ones in these benchmarks. The surprisingly strong coreset effect is also robust across various data selection methods, ranging from random selection to more sophisticated heuristic approaches. We explain the coreset effect in LLM unlearning through a keyword-based perspective, showing that keywords extracted from the forget set alone contribute significantly to unlearning effectiveness and indicating that current unlearning is driven by a compact set of high-impact tokens rather than the entire dataset. We further justify the faithfulness of coreset-unlearned models along additional dimensions, such as mode connectivity and robustness to jailbreaking attacks. Codes are available at https://github.com/OPTML-Group/MU-Coreset.
The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance
Multimodal Large Language Models (MLLMs) are set to transform how machines process and generate human-like responses by integrating diverse modalities such as text, images, and code. Yet, effectively harnessing their capabilities hinges on optimal prompt engineering. We present a comprehensive experimental evaluation of seven prompt engineering methods applied to 13 open-source MLLMs over 24 tasks spanning Reasoning and Compositionality, Multimodal Understanding and Alignment, Complex Code Generation and Execution, and Knowledge Retrieval and Integration. Our approach stratifies models by parameter count into Small (<4B), Medium (4B-10B), and Large (>10B) categories and compares prompting techniques including Zero-Shot, One-Shot, Few-Shot, Chain-of-Thought, Analogical, Generated Knowledge, and Tree-of-Thought. While Large MLLMs excel in structured tasks such as code generation, achieving accuracies up to 96.88% under Few-Shot prompting, all models struggle with complex reasoning and abstract understanding, often yielding accuracies below 60% and high hallucination rates. Structured reasoning prompts frequently increased hallucination up to 75% in small models and led to longer response times (over 20 seconds in Large MLLMs), while simpler prompting methods provided more concise and efficient outputs. No single prompting method uniformly optimises all task types. Instead, adaptive strategies combining example-based guidance with selective structured reasoning are essential to enhance robustness, efficiency, and factual accuracy. Our findings offer practical recommendations for prompt engineering and support more reliable deployment of MLLMs across applications including AI-assisted coding, knowledge retrieval, and multimodal content understanding.
HalluSearch at SemEval-2025 Task 3: A Search-Enhanced RAG Pipeline for Hallucination Detection
In this paper, we present HalluSearch, a multilingual pipeline designed to detect fabricated text spans in Large Language Model (LLM) outputs. Developed as part of Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable Overgeneration Mistakes, HalluSearch couples retrieval-augmented verification with fine-grained factual splitting to identify and localize hallucinations in fourteen different languages. Empirical evaluations show that HalluSearch performs competitively, placing fourth in both English (within the top ten percent) and Czech. While the system's retrieval-based strategy generally proves robust, it faces challenges in languages with limited online coverage, underscoring the need for further research to ensure consistent hallucination detection across diverse linguistic contexts.
C-FAITH: A Chinese Fine-Grained Benchmark for Automated Hallucination Evaluation
Despite the rapid advancement of large language models, they remain highly susceptible to generating hallucinations, which significantly hinders their widespread application. Hallucination research requires dynamic and fine-grained evaluation. However, most existing hallucination benchmarks (especially in Chinese language) rely on human annotations, making automatical and cost-effective hallucination evaluation challenging. To address this, we introduce HaluAgent, an agentic framework that automatically constructs fine-grained QA dataset based on some knowledge documents. Our experiments demonstrate that the manually designed rules and prompt optimization can improve the quality of generated data. Using HaluAgent, we construct C-FAITH, a Chinese QA hallucination benchmark created from 1,399 knowledge documents obtained from web scraping, totaling 60,702 entries. We comprehensively evaluate 16 mainstream LLMs with our proposed C-FAITH, providing detailed experimental results and analysis.
MT-R1-Zero: Advancing LLM-based Machine Translation via R1-Zero-like Reinforcement Learning
Large-scale reinforcement learning (RL) methods have proven highly effective in enhancing the reasoning abilities of large language models (LLMs), particularly for tasks with verifiable solutions such as mathematics and coding. However, applying this idea to machine translation (MT), where outputs are flexibly formatted and difficult to automatically evaluate with explicit rules, remains underexplored. In this work, we introduce MT-R1-Zero, the first open-source adaptation of the R1-Zero RL framework for MT without supervised fine-tuning or cold-start. We propose a rule-metric mixed reward mechanism to guide LLMs towards improved translation quality via emergent reasoning. On the WMT 24 English-Chinese benchmark, our MT-R1-Zero-3B-Mix achieves competitive performance, surpassing TowerInstruct-7B-v0.2 by an average of 1.26 points. Meanwhile, our MT-R1-Zero-7B-Mix attains a high average score of 62.25 across all metrics, placing it on par with advanced proprietary models such as GPT-4o and Claude-3.5-Sonnet, while the MT-R1-Zero-7B-Sem variant achieves state-of-the-art scores on semantic metrics. Moreover, our work exhibits strong generalization capabilities on out-of-distribution MT tasks, robustly supporting multilingual and low-resource settings. Extensive analysis of model behavior across different initializations and reward metrics offers pioneering insight into the critical role of reward design, LLM adaptability, training dynamics, and emergent reasoning patterns within the R1-Zero paradigm for MT. Our code is available at https://github.com/fzp0424/MT-R1-Zero.
comment: Work in progress. Our code is available at https://github.com/fzp0424/MT-R1-Zero
SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users
Social simulation is transforming traditional social science research by modeling human behavior through interactions between virtual individuals and their environments. With recent advances in large language models (LLMs), this approach has shown growing potential in capturing individual differences and predicting group behaviors. However, existing methods face alignment challenges related to the environment, target users, interaction mechanisms, and behavioral patterns. To this end, we introduce SocioVerse, an LLM-agent-driven world model for social simulation. Our framework features four powerful alignment components and a user pool of 10 million real individuals. To validate its effectiveness, we conducted large-scale simulation experiments across three distinct domains: politics, news, and economics. Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness through standardized procedures and minimal manual adjustments.
comment: work in progress
Breaking the Data Barrier -- Building GUI Agents Through Task Generalization
Graphical User Interface (GUI) agents offer cross-platform solutions for automating complex digital tasks, with significant potential to transform productivity workflows. However, their performance is often constrained by the scarcity of high-quality trajectory data. To address this limitation, we propose training Vision Language Models (VLMs) on data-rich, reasoning-intensive tasks during a dedicated mid-training stage, and then examine how incorporating these tasks facilitates generalization to GUI planning scenarios. Specifically, we explore a range of tasks with readily available instruction-tuning data, including GUI perception, multimodal reasoning, and textual reasoning. Through extensive experiments across 11 mid-training tasks, we demonstrate that: (1) Task generalization proves highly effective, yielding substantial improvements across most settings. For instance, multimodal mathematical reasoning enhances performance on AndroidWorld by an absolute 6.3%. Remarkably, text-only mathematical data significantly boosts GUI web agent performance, achieving a 5.6% improvement on WebArena and 5.4% improvement on AndroidWorld, underscoring notable cross-modal generalization from text-based to visual domains; (2) Contrary to prior assumptions, GUI perception data - previously considered closely aligned with GUI agent tasks and widely utilized for training - has a comparatively limited impact on final performance; (3) Building on these insights, we identify the most effective mid-training tasks and curate optimized mixture datasets, resulting in absolute performance gains of 8.0% on WebArena and 12.2% on AndroidWorld. Our work provides valuable insights into cross-domain knowledge transfer for GUI agents and offers a practical approach to addressing data scarcity challenges in this emerging field. The code, data and models will be available at https://github.com/hkust-nlp/GUIMid.
comment: 24 pages, 11 figures
CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
RealSafe-R1: Safety-Aligned DeepSeek-R1 without Compromising Reasoning Capability
Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have been rapidly progressing and achieving breakthrough performance on complex reasoning tasks such as mathematics and coding. However, the open-source R1 models have raised safety concerns in wide applications, such as the tendency to comply with malicious queries, which greatly impacts the utility of these powerful models in their applications. In this paper, we introduce RealSafe-R1 as safety-aligned versions of DeepSeek-R1 distilled models. To train these models, we construct a dataset of 15k safety-aware reasoning trajectories generated by DeepSeek-R1, under explicit instructions for expected refusal behavior. Both quantitative experiments and qualitative case studies demonstrate the models' improvements, which are shown in their safety guardrails against both harmful queries and jailbreak attacks. Importantly, unlike prior safety alignment efforts that often compromise reasoning performance, our method preserves the models' reasoning capabilities by maintaining the training data within the original distribution of generation. Model weights of RealSafe-R1 are open-source at https://huggingface.co/RealSafe.
Towards Quantifying Commonsense Reasoning with Mechanistic Insights NAACL 2025
Commonsense reasoning deals with the implicit knowledge that is well understood by humans and typically acquired via interactions with the world. In recent times, commonsense reasoning and understanding of various LLMs have been evaluated using text-based tasks. In this work, we argue that a proxy of this understanding can be maintained as a graphical structure that can further help to perform a rigorous evaluation of commonsense reasoning abilities about various real-world activities. We create an annotation scheme for capturing this implicit knowledge in the form of a graphical structure for 37 daily human activities. We find that the created resource can be used to frame an enormous number of commonsense queries (~ 10^{17}), facilitating rigorous evaluation of commonsense reasoning in LLMs. Moreover, recently, the remarkable performance of LLMs has raised questions about whether these models are truly capable of reasoning in the wild and, in general, how reasoning occurs inside these models. In this resource paper, we bridge this gap by proposing design mechanisms that facilitate research in a similar direction. Our findings suggest that the reasoning components are localized in LLMs that play a prominent role in decision-making when prompted with a commonsense query.
comment: Accepted at NAACL 2025; 28 pages (9 pages + 7 pages references + 12 pages appendix)
Mavors: Multi-granularity Video Representation for Multimodal Large Language Model
Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose $\mathbf{Mavors}$, a novel framework that introduces $\mathbf{M}$ulti-gr$\mathbf{a}$nularity $\mathbf{v}$ide$\mathbf{o}$ $\mathbf{r}$epre$\mathbf{s}$entation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.
comment: 22 pages
A Computational Cognitive Model for Processing Repetitions of Hierarchical Relations
Patterns are fundamental to human cognition, enabling the recognition of structure and regularity across diverse domains. In this work, we focus on structural repeats, patterns that arise from the repetition of hierarchical relations within sequential data, and develop a candidate computational model of how humans detect and understand such structural repeats. Based on a weighted deduction system, our model infers the minimal generative process of a given sequence in the form of a Template program, a formalism that enriches the context-free grammar with repetition combinators. Such representation efficiently encodes the repetition of sub-computations in a recursive manner. As a proof of concept, we demonstrate the expressiveness of our model on short sequences from music and action planning. The proposed model offers broader insights into the mental representations and cognitive mechanisms underlying human pattern recognition.
Hallucination Detection in LLMs via Topological Divergence on Attention Graphs
Hallucination, i.e., generating factually incorrect content, remains a critical challenge for large language models (LLMs). We introduce TOHA, a TOpology-based HAllucination detector in the RAG setting, which leverages a topological divergence metric to quantify the structural properties of graphs induced by attention matrices. Examining the topological divergence between prompt and response subgraphs reveals consistent patterns: higher divergence values in specific attention heads correlate with hallucinated outputs, independent of the dataset. Extensive experiments, including evaluation on question answering and data-to-text tasks, show that our approach achieves state-of-the-art or competitive results on several benchmarks, two of which were annotated by us and are being publicly released to facilitate further research. Beyond its strong in-domain performance, TOHA maintains remarkable domain transferability across multiple open-source LLMs. Our findings suggest that analyzing the topological structure of attention matrices can serve as an efficient and robust indicator of factual reliability in LLMs.
Joint Action Language Modelling for Transparent Policy Execution
An agent's intention often remains hidden behind the black-box nature of embodied policies. Communication using natural language statements that describe the next action can provide transparency towards the agent's behavior. We aim to insert transparent behavior directly into the learning process, by transforming the problem of policy learning into a language generation problem and combining it with traditional autoregressive modelling. The resulting model produces transparent natural language statements followed by tokens representing the specific actions to solve long-horizon tasks in the Language-Table environment. Following previous work, the model is able to learn to produce a policy represented by special discretized tokens in an autoregressive manner. We place special emphasis on investigating the relationship between predicting actions and producing high-quality language for a transparent agent. We find that in many cases both the quality of the action trajectory and the transparent statement increase when they are generated simultaneously.
Summarization of Multimodal Presentations with Vision-Language Models: Study of the Effect of Modalities and Structure
Vision-Language Models (VLMs) can process visual and textual information in multiple formats: texts, images, interleaved texts and images, or even hour-long videos. In this work, we conduct fine-grained quantitative and qualitative analyses of automatic summarization of multimodal presentations using VLMs with various representations as input. From these experiments, we suggest cost-effective strategies for generating summaries from text-heavy multimodal documents under different input-length budgets using VLMs. We show that slides extracted from the video stream can be beneficially used as input against the raw video, and that a structured representation from interleaved slides and transcript provides the best performance. Finally, we reflect and comment on the nature of cross-modal interactions in multimodal presentations and share suggestions to improve the capabilities of VLMs to understand documents of this nature.
DataMosaic: Explainable and Verifiable Multi-Modal Data Analytics through Extract-Reason-Verify
Large Language Models (LLMs) are transforming data analytics, but their widespread adoption is hindered by two critical limitations: they are not explainable (opaque reasoning processes) and not verifiable (prone to hallucinations and unchecked errors). While retrieval-augmented generation (RAG) improves accuracy by grounding LLMs in external data, it fails to address the core challenges of trustworthy analytics - especially when processing noisy, inconsistent, or multi-modal data (for example, text, tables, images). We propose DataMosaic, a framework designed to make LLM-powered analytics both explainable and verifiable. By dynamically extracting task-specific structures (for example, tables, graphs, trees) from raw data, DataMosaic provides transparent, step-by-step reasoning traces and enables validation of intermediate results. Built on a multi-agent framework, DataMosaic orchestrates self-adaptive agents that align with downstream task requirements, enhancing consistency, completeness, and privacy. Through this approach, DataMosaic not only tackles the limitations of current LLM-powered analytics systems but also lays the groundwork for a new paradigm of grounded, accurate, and explainable multi-modal data analytics.
The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? CVPR 2025
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited. Typically, current open-source MLLMs rely on the alignment inherited from their language module to avoid harmful generations. However, the lack of safety measures specifically designed for multi-modal inputs creates an alignment gap, leaving MLLMs vulnerable to vision-domain attacks such as typographic manipulation. Current methods utilize a carefully designed safety dataset to enhance model defense capability, while the specific knowledge or patterns acquired from the high-quality dataset remain unclear. Through comparison experiments, we find that the alignment gap primarily arises from data distribution biases, while image content, response quality, or the contrastive behavior of the dataset makes little contribution to boosting multi-modal safety. To further investigate this and identify the key factors in improving MLLM safety, we propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences. Experiments show that, without the need for labor-intensive collection of high-quality malicious data, model safety can still be significantly improved, as long as a specific fraction of rejection data exists in the finetuning set, indicating the security alignment is not lost but rather obscured during multi-modal pretraining or instruction finetuning. Simply correcting the underlying data bias could narrow the safety gap in the vision domain.
comment: Accepted to CVPR 2025, codes in process
Turn-taking annotation for quantitative and qualitative analyses of conversation
This paper has two goals. First, we present the turn-taking annotation layers created for 95 minutes of conversational speech of the Graz Corpus of Read and Spontaneous Speech (GRASS), available to the scientific community. Second, we describe the annotation system and the annotation process in more detail, so other researchers may use it for their own conversational data. The annotation system was developed with an interdisciplinary application in mind. It should be based on sequential criteria according to Conversation Analysis, suitable for subsequent phonetic analysis, thus time-aligned annotations were made Praat, and it should be suitable for automatic classification, which required the continuous annotation of speech and a label inventory that is not too large and results in a high inter-rater agreement. Turn-taking was annotated on two layers, Inter-Pausal Units (IPU) and points of potential completion (PCOMP; similar to transition relevance places). We provide a detailed description of the annotation process and of segmentation and labelling criteria. A detailed analysis of inter-rater agreement and common confusions shows that agreement for IPU annotation is near-perfect, that agreement for PCOMP annotations is substantial, and that disagreements often are either partial or can be explained by a different analysis of a sequence which also has merit. The annotation system can be applied to a variety of conversational data for linguistic studies and technological applications, and we hope that the annotations, as well as the annotation system will contribute to a stronger cross-fertilization between these disciplines.
comment: 41 pages
C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset WWW2025
Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.
comment: WWW2025
Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
KeepKV: Eliminating Output Perturbation in KV Cache Compression for Efficient LLMs Inference
Efficient inference of large language models (LLMs) is hindered by an ever-growing key-value (KV) cache, making KV cache compression a critical research direction. Traditional methods selectively evict less important KV cache entries based on attention scores or position heuristics, which leads to information loss and hallucinations. Recently, merging-based strategies have been explored to retain more information by merging KV pairs that would be discarded; however, these existing approaches inevitably introduce inconsistencies in attention distributions before and after merging, causing output perturbation and degraded generation quality. To overcome this challenge, we propose KeepKV, a novel adaptive KV cache merging method designed to eliminate output perturbation while preserving performance under strict memory constraints. KeepKV introduces the Electoral Votes mechanism that records merging history and adaptively adjusts attention scores. Moreover, it further leverages a novel Zero Inference-Perturbation Merging methods, keeping attention consistency and compensating for attention loss resulting from cache merging. KeepKV successfully retains essential context information within a significantly compressed cache. Extensive experiments on various benchmarks and LLM architectures demonstrate that KeepKV substantially reduces memory usage, enhances inference throughput by more than 2x and keeps superior generation quality even with 10% KV cache budgets.
comment: 18 pages, 8 figures
Guiding Reasoning in Small Language Models with LLM Assistance
The limited reasoning capabilities of small language models (SLMs) cast doubt on their suitability for tasks demanding deep, multi-step logical deduction. This paper introduces a framework called Small Reasons, Large Hints (SMART), which selectively augments SLM reasoning with targeted guidance from large language models (LLMs). Inspired by the concept of cognitive scaffolding, SMART employs a score-based evaluation to identify uncertain reasoning steps and injects corrective LLM-generated reasoning only when necessary. By framing structured reasoning as an optimal policy search, our approach steers the reasoning trajectory toward correct solutions without exhaustive sampling. Our experiments on mathematical reasoning datasets demonstrate that targeted external scaffolding significantly improves performance, paving the way for collaborative use of both SLM and LLM to tackle complex reasoning tasks that are currently unsolvable by SLMs alone.
comment: 20 pages, 10 figures, 11 tables
Learning to Erase Private Knowledge from Multi-Documents for Retrieval-Augmented Large Language Models
Retrieval-Augmented Generation (RAG) is a promising technique for applying LLMs to proprietary domains. However, retrieved documents may contain sensitive knowledge, posing risks of privacy leakage in generative results. Thus, effectively erasing private information from retrieved documents is a key challenge for RAG. Unlike traditional text anonymization, RAG should consider: (1) the inherent multi-document reasoning may face de-anonymization attacks; (2) private knowledge varies by scenarios, so users should be allowed to customize which information to erase; (3) preserving sufficient publicly available knowledge for generation tasks. This paper introduces the privacy erasure task for RAG and proposes Eraser4RAG, a private knowledge eraser which effectively removes user-defined private knowledge from documents while preserving sufficient public knowledge for generation. Specifically, we first construct a global knowledge graph to identify potential knowledge across documents, aiming to defend against de-anonymization attacks. Then we randomly split it into private and public sub-graphs, and fine-tune Flan-T5 to rewrite the retrieved documents excluding private triples. Finally, PPO algorithm optimizes the rewriting model to minimize private triples and maximize public triples retention. Experiments on four QA datasets demonstrate that Eraser4RAG achieves superior erase performance than GPT-4o.
Quantum Natural Language Processing: A Comprehensive Review of Models, Methods, and Applications
In recent developments, deep learning methodologies applied to Natural Language Processing (NLP) have revealed a paradox: They improve performance but demand considerable data and resources for their training. Alternatively, quantum computing exploits the principles of quantum mechanics to overcome the computational limitations of current methodologies, thereby establishing an emerging field known as quantum natural language processing (QNLP). This domain holds the potential to attain a quantum advantage in the processing of linguistic structures, surpassing classical models in both efficiency and accuracy. In this paper, it is proposed to categorise QNLP models based on quantum computing principles, architecture, and computational approaches. This paper attempts to provide a survey on how quantum meets language by mapping state-of-the-art in this area, embracing quantum encoding techniques for classical data, QNLP models for prevalent NLP tasks, and quantum optimisation techniques for hyper parameter tuning. The landscape of quantum computing approaches applied to various NLP tasks is summarised by showcasing the specific QNLP methods used, and the popularity of these methods is indicated by their count. From the findings, it is observed that QNLP approaches are still limited to small data sets, with only a few models explored extensively, and there is increasing interest in the application of quantum computing to natural language processing tasks.
Refining Financial Consumer Complaints through Multi-Scale Model Interaction
Legal writing demands clarity, formality, and domain-specific precision-qualities often lacking in documents authored by individuals without legal training. To bridge this gap, this paper explores the task of legal text refinement that transforms informal, conversational inputs into persuasive legal arguments. We introduce FinDR, a Chinese dataset of financial dispute records, annotated with official judgments on claim reasonableness. Our proposed method, Multi-Scale Model Interaction (MSMI), leverages a lightweight classifier to evaluate outputs and guide iterative refinement by Large Language Models (LLMs). Experimental results demonstrate that MSMI significantly outperforms single-pass prompting strategies. Additionally, we validate the generalizability of MSMI on several short-text benchmarks, showing improved adversarial robustness. Our findings reveal the potential of multi-model collaboration for enhancing legal document generation and broader text refinement tasks.
TWSSenti: A Novel Hybrid Framework for Topic-Wise Sentiment Analysis on Social Media Using Transformer Models
Sentiment analysis is a crucial task in natural language processing (NLP) that enables the extraction of meaningful insights from textual data, particularly from dynamic platforms like Twitter and IMDB. This study explores a hybrid framework combining transformer-based models, specifically BERT, GPT-2, RoBERTa, XLNet, and DistilBERT, to improve sentiment classification accuracy and robustness. The framework addresses challenges such as noisy data, contextual ambiguity, and generalization across diverse datasets by leveraging the unique strengths of these models. BERT captures bidirectional context, GPT-2 enhances generative capabilities, RoBERTa optimizes contextual understanding with larger corpora and dynamic masking, XLNet models dependency through permutation-based learning, and DistilBERT offers efficiency with reduced computational overhead while maintaining high accuracy. We demonstrate text cleaning, tokenization, and feature extraction using Term Frequency Inverse Document Frequency (TF-IDF) and Bag of Words (BoW), ensure high-quality input data for the models. The hybrid approach was evaluated on benchmark datasets Sentiment140 and IMDB, achieving superior accuracy rates of 94\% and 95\%, respectively, outperforming standalone models. The results validate the effectiveness of combining multiple transformer models in ensemble-like setups to address the limitations of individual architectures. This research highlights its applicability to real-world tasks such as social media monitoring, customer sentiment analysis, and public opinion tracking which offers a pathway for future advancements in hybrid NLP frameworks.
comment: 41 pages, 12 figures, includes algorithm and comparative tables
Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
Large language models~(LLMs) are expected to be helpful, harmless, and honest. In various alignment scenarios, such as general human preference, safety, and confidence alignment, binary preference data collection and reward modeling are resource-intensive but necessary for human preference transferring. In this work, we explore using the similarity between sampled generations and high-quality reference answers as an alternative reward function for LLM alignment. Using similarity as a reward circumvents training reward models, and collecting a single reference answer potentially costs less time than constructing binary preference pairs when multiple candidates are available. Specifically, we develop \textit{RefAlign}, a versatile REINFORCE-style alignment algorithm, which is free of reference and reward models. Instead, RefAlign utilizes BERTScore between sampled generations and high-quality reference answers as the surrogate reward. Beyond general human preference optimization, RefAlign can be readily extended to diverse scenarios, such as safety and confidence alignment, by incorporating the similarity reward with task-related objectives. In various scenarios, {RefAlign} demonstrates comparable performance to previous alignment methods while offering high efficiency.
comment: work in progress
Investigating Syntactic Biases in Multilingual Transformers with RC Attachment Ambiguities in Italian and English
This paper leverages past sentence processing studies to investigate whether monolingual and multilingual LLMs show human-like preferences when presented with examples of relative clause attachment ambiguities in Italian and English. Furthermore, we test whether these preferences can be modulated by lexical factors (the type of verb/noun in the matrix clause) which have been shown to be tied to subtle constraints on syntactic and semantic relations. Our results overall showcase how LLM behavior varies interestingly across models, but also general failings of these models in correctly capturing human-like preferences. In light of these results, we argue that RC attachment is the ideal benchmark for cross-linguistic investigations of LLMs' linguistic knowledge and biases.
PASS-FC: Progressive and Adaptive Search Scheme for Fact Checking of Comprehensive Claims
Automated fact-checking faces challenges in handling complex real-world claims. We present PASS-FC, a novel framework that addresses these issues through claim augmentation, adaptive question generation, and iterative verification. PASS-FC enhances atomic claims with temporal and entity context, employs advanced search techniques, and utilizes a reflection mechanism. We evaluate PASS-FC on six diverse datasets, demonstrating superior performance across general knowledge, scientific, real-world, and multilingual fact-checking tasks. Our framework often surpasses stronger baseline models. Hyperparameter analysis reveals optimal settings for evidence quantity and reflection label triggers, while ablation studies highlight the importance of claim augmentation and language-specific adaptations. PASS-FC's performance underscores its effectiveness in improving fact-checking accuracy and adaptability across various domains. We will open-source our code and experimental results to facilitate further research in this area.
Reasoning Models Can Be Effective Without Thinking
Recent LLMs have significantly improved reasoning capabilities, primarily by including an explicit, lengthy Thinking process as part of generation. In this paper, we question whether this explicit thinking is necessary. Using the state-of-the-art DeepSeek-R1-Distill-Qwen, we find that bypassing the thinking process via simple prompting, denoted as NoThinking, can be surprisingly effective. When controlling for the number of tokens, NoThinking outperforms Thinking across a diverse set of seven challenging reasoning datasets--including mathematical problem solving, formal theorem proving, and coding--especially in low-budget settings, e.g., 51.3 vs. 28.9 on ACM 23 with 700 tokens. Notably, the performance of NoThinking becomes more competitive with pass@k as k increases. Building on this observation, we demonstrate that a parallel scaling approach that uses NoThinking to generate N outputs independently and aggregates them is highly effective. For aggregation, we use task-specific verifiers when available, or we apply simple best-of-N strategies such as confidence-based selection. Our method outperforms a range of baselines with similar latency using Thinking, and is comparable to Thinking with significantly longer latency (up to 9x). Together, our research encourages a reconsideration of the necessity of lengthy thinking processes, while also establishing a competitive reference for achieving strong reasoning performance in low-budget settings or at low latency using parallel scaling.
comment: 33 pages, 7 main figures, 2 tables
A Survey of Large Language Model-Powered Spatial Intelligence Across Scales: Advances in Embodied Agents, Smart Cities, and Earth Science
Over the past year, the development of large language models (LLMs) has brought spatial intelligence into focus, with much attention on vision-based embodied intelligence. However, spatial intelligence spans a broader range of disciplines and scales, from navigation and urban planning to remote sensing and earth science. What are the differences and connections between spatial intelligence across these fields? In this paper, we first review human spatial cognition and its implications for spatial intelligence in LLMs. We then examine spatial memory, knowledge representations, and abstract reasoning in LLMs, highlighting their roles and connections. Finally, we analyze spatial intelligence across scales -- from embodied to urban and global levels -- following a framework that progresses from spatial memory and understanding to spatial reasoning and intelligence. Through this survey, we aim to provide insights into interdisciplinary spatial intelligence research and inspire future studies.
Abacus-SQL: A Text-to-SQL System Empowering Cross-Domain and Open-Domain Database Retrieval
The existing text-to-SQL systems have made significant progress in SQL query generation, but they still face numerous challenges. Existing systems often lack retrieval capabilities for open-domain databases, requiring users to manually filter relevant databases. Additionally, their cross-domain transferability is limited, making it challenging to accommodate diverse query requirements. To address these issues, we propose Abacus-SQL. Abacus-SQL utilizes database retrieval technology to accurately locate the required databases in an open-domain database environment. It also enhances the system cross-domain transfer ability through data augmentation methods. Moreover, Abacus-SQL employs Pre-SQL and Self-debug methods, thereby enhancing the accuracy of SQL queries. Experimental results demonstrate that Abacus-SQL performs excellently in multi-turn text-to-SQL tasks, effectively validating the approach's effectiveness. Abacus-SQL is publicly accessible at https://huozi.8wss.com/abacus-sql/.
comment: 11 pages, 3figures
Transferable text data distillation by trajectory matching
In the realm of large language model (LLM), as the size of large models increases, it also brings higher training costs. There is a urgent need to minimize the data size in LLM training. Compared with data selection method, the data distillation method aims to synthesize a small number of data samples to achieve the training effect of the full data set and has better flexibility. Despite its successes in computer vision, the discreteness of text data has hitherto stymied its exploration in natural language processing (NLP). In this work, we proposed a method that involves learning pseudo prompt data based on trajectory matching and finding its nearest neighbor ID to achieve cross-architecture transfer. During the distillation process, we introduce a regularization loss to improve the robustness of our distilled data. To our best knowledge, this is the first data distillation work suitable for text generation tasks such as instruction tuning. Evaluations on two benchmarks, including ARC-Easy and MMLU instruction tuning datasets, established the superiority of our distillation approach over the SOTA data selection method LESS. Furthermore, our method demonstrates a good transferability over LLM structures (i.e., OPT to Llama).
Augmented Relevance Datasets with Fine-Tuned Small LLMs WSDM '25
Building high-quality datasets and labeling query-document relevance are essential yet resource-intensive tasks, requiring detailed guidelines and substantial effort from human annotators. This paper explores the use of small, fine-tuned large language models (LLMs) to automate relevance assessment, with a focus on improving ranking models' performance by augmenting their training dataset. We fine-tuned small LLMs to enhance relevance assessments, thereby improving dataset creation quality for downstream ranking model training. Our experiments demonstrate that these fine-tuned small LLMs not only outperform certain closed source models on our dataset but also lead to substantial improvements in ranking model performance. These results highlight the potential of leveraging small LLMs for efficient and scalable dataset augmentation, providing a practical solution for search engine optimization.
comment: 10 pages, 3 figures, and 6 tables. Accepted and presented to LLM4EVAL at WSDM '25
Training Small Reasoning LLMs with Cognitive Preference Alignment
The reasoning capabilities of large language models (LLMs), such as OpenAI's o1 and DeepSeek-R1, have seen substantial advancements through deep thinking. However, these enhancements come with significant resource demands, underscoring the need to explore strategies to train effective reasoning LLMs with far fewer parameters. A critical challenge is that smaller models have different capacities and cognitive trajectories than their larger counterparts. Hence, direct distillation of chain-of-thought (CoT) results from large LLMs to smaller ones can be sometimes ineffective and requires a huge amount of annotated data. In this paper, we introduce a novel framework called Critique-Rethink-Verify (CRV), designed for training smaller yet powerful reasoning LLMs. Our CRV framework consists of multiple LLM agents, each specializing in unique abilities: (i) critiquing the CoTs according to the cognitive capabilities of smaller models, (ii) rethinking and refining these CoTs based on the critiques, and (iii) verifying the correctness of the refined results. We further propose the cognitive preference optimization (CogPO) algorithm to enhance the reasoning abilities of smaller models by aligning thoughts of these models with their cognitive capacities. Comprehensive evaluations on challenging reasoning benchmarks demonstrate the efficacy of CRV and CogPO, which outperforms other training methods by a large margin.
VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents CVPR 2025
We aim to develop a retrieval-augmented generation (RAG) framework that answers questions over a corpus of visually-rich documents presented in mixed modalities (e.g., charts, tables) and diverse formats (e.g., PDF, PPTX). In this paper, we introduce a new RAG framework, VDocRAG, which can directly understand varied documents and modalities in a unified image format to prevent missing information that occurs by parsing documents to obtain text. To improve the performance, we propose novel self-supervised pre-training tasks that adapt large vision-language models for retrieval by compressing visual information into dense token representations while aligning them with textual content in documents. Furthermore, we introduce OpenDocVQA, the first unified collection of open-domain document visual question answering datasets, encompassing diverse document types and formats. OpenDocVQA provides a comprehensive resource for training and evaluating retrieval and question answering models on visually-rich documents in an open-domain setting. Experiments show that VDocRAG substantially outperforms conventional text-based RAG and has strong generalization capability, highlighting the potential of an effective RAG paradigm for real-world documents.
comment: Accepted by CVPR 2025; project page: https://vdocrag.github.io
Reasoning Court: Combining Reasoning, Action, and Judgment for Multi-Hop Reasoning
While large language models (LLMs) have demonstrated strong capabilities in tasks like question answering and fact verification, they continue to suffer from hallucinations and reasoning errors, especially in multi-hop tasks that require integration of multiple information sources. Current methods address these issues through retrieval-based techniques (grounding reasoning in external evidence), reasoning-based approaches (enhancing coherence via improved prompting), or hybrid strategies combining both elements. One prominent hybrid method, ReAct, has outperformed purely retrieval-based or reasoning-based approaches; however, it lacks internal verification of intermediate reasoning steps, allowing potential errors to propagate through complex reasoning tasks. In this paper, we introduce Reasoning Court (RC), a novel framework that extends iterative reasoning-and-retrieval methods, such as ReAct, with a dedicated LLM judge. Unlike ReAct, RC employs this judge to independently evaluate multiple candidate answers and their associated reasoning generated by separate LLM agents. The judge is asked to select the answer that it considers the most factually grounded and logically coherent based on the presented reasoning and evidence, or synthesizes a new answer using available evidence and its pre-trained knowledge if all candidates are inadequate, flawed, or invalid. Evaluations on multi-hop benchmarks (HotpotQA, MuSiQue) and fact-verification (FEVER) demonstrate that RC consistently outperforms state-of-the-art few-shot prompting methods without task-specific fine-tuning.
Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems
Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.
comment: Project Page: https://zaidkhan.me/EFAGen/
How Instruction and Reasoning Data shape Post-Training: Data Quality through the Lens of Layer-wise Gradients
As the post-training of large language models (LLMs) advances from instruction-following to complex reasoning tasks, understanding how different data affect finetuning dynamics remains largely unexplored. In this paper, we present a spectral analysis of layer-wise gradients induced by low/high-quality instruction and reasoning data for LLM post-training. Our analysis reveals that widely-studied metrics for data evaluation, e.g., IFD, InsTag, Difficulty, and Reward, can be explained and unified by spectral properties computed from gradients' singular value decomposition (SVD). Specifically, higher-quality data are usually associated with lower nuclear norms and higher effective ranks. Notably, effective rank exhibits better robustness and resolution than nuclear norm in capturing subtle quality differences. For example, reasoning data achieves substantially higher effective ranks than instruction data, implying richer gradient structures on more complex tasks. Our experiments also highlight that models within the same family share similar gradient patterns regardless of their sizes, whereas different model families diverge significantly. Providing a unified view on the effects of data quality across instruction and reasoning data, this work illuminates the interplay between data quality and training stability, shedding novel insights into developing better data exploration strategies for post-training.
CleanMAP: Distilling Multimodal LLMs for Confidence-Driven Crowdsourced HD Map Updates CVPR
The rapid growth of intelligent connected vehicles (ICVs) and integrated vehicle-road-cloud systems has increased the demand for accurate, real-time HD map updates. However, ensuring map reliability remains challenging due to inconsistencies in crowdsourced data, which suffer from motion blur, lighting variations, adverse weather, and lane marking degradation. This paper introduces CleanMAP, a Multimodal Large Language Model (MLLM)-based distillation framework designed to filter and refine crowdsourced data for high-confidence HD map updates. CleanMAP leverages an MLLM-driven lane visibility scoring model that systematically quantifies key visual parameters, assigning confidence scores (0-10) based on their impact on lane detection. A novel dynamic piecewise confidence-scoring function adapts scores based on lane visibility, ensuring strong alignment with human evaluations while effectively filtering unreliable data. To further optimize map accuracy, a confidence-driven local map fusion strategy ranks and selects the top-k highest-scoring local maps within an optimal confidence range (best score minus 10%), striking a balance between data quality and quantity. Experimental evaluations on a real-world autonomous vehicle dataset validate CleanMAP's effectiveness, demonstrating that fusing the top three local maps achieves the lowest mean map update error of 0.28m, outperforming the baseline (0.37m) and meeting stringent accuracy thresholds (<= 0.32m). Further validation with real-vehicle data confirms 84.88% alignment with human evaluators, reinforcing the model's robustness and reliability. This work establishes CleanMAP as a scalable and deployable solution for crowdsourced HD map updates, ensuring more precise and reliable autonomous navigation. The code will be available at https://Ankit-Zefan.github.io/CleanMap/
comment: Kun Jiang, Mengmeng Yang and Diange Yang are Corresponding Author. The main paper and supplementary material are both included here, total 23 pages (main paper is 10 pages and supplementary material is 13 pages), total 17 figures (6 figures in main paper and 11 figures in supplementary material), this paper is Accepted to CVPR WDFM-AD Workshop 2025, The code will be available at https://Ankit-Zefan.github.io/CleanMap/
HELIOS: Adaptive Model And Early-Exit Selection for Efficient LLM Inference Serving
Deploying large language models (LLMs) presents critical challenges due to the inherent trade-offs associated with key performance metrics, such as latency, accuracy, and throughput. Typically, gains in one metric is accompanied with degradation in others. Early-Exit LLMs (EE-LLMs) efficiently navigate this trade-off space by skipping some of the later model layers when it confidently finds an output token early, thus reducing latency without impacting accuracy. However, as the early exits taken depend on the task and are unknown apriori to request processing, EE-LLMs conservatively load the entire model, limiting resource savings and throughput. Also, current frameworks statically select a model for a user task, limiting our ability to adapt to changing nature of the input queries. We propose HELIOS to address these challenges. First, HELIOS shortlists a set of candidate LLMs, evaluates them using a subset of prompts, gathering telemetry data in real-time. Second, HELIOS uses the early exit data from these evaluations to greedily load the selected model only up to a limited number of layers. This approach yields memory savings which enables us to process more requests at the same time, thereby improving throughput. Third, HELIOS monitors and periodically reassesses the performance of the candidate LLMs and if needed, switches to another model that can service incoming queries more efficiently (such as using fewer layers without lowering accuracy). Our evaluations show that HELIOS achieves 1.48$\times$ throughput, 1.10$\times$ energy-efficiency, 1.39$\times$ lower response time, and 3.7$\times$ improvements in inference batch sizes compared to the baseline, when optimizing for the respective service level objectives.
EMAFusion: A Self-Optimizing System for Seamless LLM Selection and Integration
While recent advances in large language models (LLMs) have significantly enhanced performance across diverse natural language tasks, the high computational and financial costs associated with their deployment remain substantial barriers. Existing routing strategies partially alleviate this challenge by assigning queries to cheaper or specialized models, but they frequently rely on extensive labeled data or fragile task-specific heuristics. Conversely, fusion techniques aggregate multiple LLM outputs to boost accuracy and robustness, yet they often exacerbate cost and may reinforce shared biases. We introduce EMAFusion, a new framework that self-optimizes for seamless LLM selection and reliable execution for a given query. Specifically, EMAFusion integrates a taxonomy-based router for familiar query types, a learned router for ambiguous inputs, and a cascading approach that progressively escalates from cheaper to more expensive models based on multi-judge confidence evaluations. Through extensive evaluations, we find EMAFusion outperforms the best individual models by over 2.6 percentage points (94.3% vs. 91.7%), while being 4X cheaper than the average cost. EMAFusion further achieves a remarkable 17.1 percentage point improvement over models like GPT-4 at less than 1/20th the cost. Our combined routing approach delivers 94.3% accuracy compared to taxonomy-based (88.1%) and learned model predictor-based (91.7%) methods alone, demonstrating the effectiveness of our unified strategy. Finally, EMAFusion supports flexible cost-accuracy trade-offs, allowing users to balance their budgetary constraints and performance needs.
Keyword Extraction, and Aspect Classification in Sinhala, English, and Code-Mixed Content
Brand reputation in the banking sector is maintained through insightful analysis of customer opinion on code-mixed and multilingual content. Conventional NLP models misclassify or ignore code-mixed text, when mix with low resource languages such as Sinhala-English and fail to capture domain-specific knowledge. This study introduces a hybrid NLP method to improve keyword extraction, content filtering, and aspect-based classification of banking content. Keyword extraction in English is performed with a hybrid approach comprising a fine-tuned SpaCy NER model, FinBERT-based KeyBERT embeddings, YAKE, and EmbedRank, which results in a combined accuracy of 91.2%. Code-mixed and Sinhala keywords are extracted using a fine-tuned XLM-RoBERTa model integrated with a domain-specific Sinhala financial vocabulary, and it results in an accuracy of 87.4%. To ensure data quality, irrelevant comment filtering was performed using several models, with the BERT-base-uncased model achieving 85.2% for English and XLM-RoBERTa 88.1% for Sinhala, which was better than GPT-4o, SVM, and keyword-based filtering. Aspect classification followed the same pattern, with the BERT-base-uncased model achieving 87.4% for English and XLM-RoBERTa 85.9% for Sinhala, both exceeding GPT-4 and keyword-based approaches. These findings confirm that fine-tuned transformer models outperform traditional methods in multilingual financial text analysis. The present framework offers an accurate and scalable solution for brand reputation monitoring in code-mixed and low-resource banking environments.
comment: 6 Pages, 2 figures, 7 Tables
Characterizing Knowledge Manipulation in a Russian Wikipedia Fork
Wikipedia is powered by MediaWiki, a free and open-source software that is also the infrastructure for many other wiki-based online encyclopedias. These include the recently launched website Ruwiki, which has copied and modified the original Russian Wikipedia content to conform to Russian law. To identify practices and narratives that could be associated with different forms of knowledge manipulation, this article presents an in-depth analysis of this Russian Wikipedia fork. We propose a methodology to characterize the main changes with respect to the original version. The foundation of this study is a comprehensive comparative analysis of more than 1.9M articles from Russian Wikipedia and its fork. Using meta-information and geographical, temporal, categorical, and textual features, we explore the changes made by Ruwiki editors. Furthermore, we present a classification of the main topics of knowledge manipulation in this fork, including a numerical estimation of their scope. This research not only sheds light on significant changes within Ruwiki, but also provides a methodology that could be applied to analyze other Wikipedia forks and similar collaborative projects.
LITERA: An LLM Based Approach to Latin-to-English Translation NAACL
This paper introduces an LLM-based Latin-to-English translation platform designed to address the challenges of translating Latin texts. We named the model LITERA, which stands for Latin Interpretation and Translations into English for Research Assistance. Through a multi-layered translation process utilizing a fine-tuned version of GPT-4o-mini and GPT-4o, LITERA offers an unprecedented level of accuracy, showcased by greatly improved BLEU scores, particularly in classical Latin, along with improved BLEURT scores. The development of LITERA involved close collaboration with Duke University's Classical Studies Department, which was instrumental in creating a small, high-quality parallel Latin-English dataset. This paper details the architecture, fine-tuning methodology, and prompting strategies used in LITERA, emphasizing its ability to produce literal translations.
comment: NAACL Findings
Will AI shape the way we speak? The emerging sociolinguistic influence of synthetic voices
The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications.
comment: 5 pages, 0 figures, International Workshop on Spoken Dialogue Systems Technology (IWSDS) 2025
Improving In-Context Learning with Reasoning Distillation
Language models rely on semantic priors to perform in-context learning, which leads to poor performance on tasks involving inductive reasoning. Instruction-tuning methods based on imitation learning can superficially enhance the in-context learning performance of language models, but they often fail to improve the model's understanding of the underlying rules that connect inputs and outputs in few-shot demonstrations. We propose ReDis, a reasoning distillation technique designed to improve the inductive reasoning capabilities of language models. Through a careful combination of data augmentation, filtering, supervised fine-tuning, and alignment, ReDis achieves significant performance improvements across a diverse range of tasks, including 1D-ARC, List Function, ACRE, and MiniSCAN. Experiments on three language model backbones show that ReDis outperforms equivalent few-shot prompting baselines across all tasks and even surpasses the teacher model, GPT-4o, in some cases. ReDis, based on the LLaMA-3 backbone, achieves relative improvements of 23.2%, 2.8%, and 66.6% over GPT-4o on 1D-ARC, ACRE, and MiniSCAN, respectively, within a similar hypothesis search space. The code, dataset, and model checkpoints will be made available at https://github.com/NafisSadeq/reasoning-distillation.git.
Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced LLM Reasoning
Large language models (LLMs) have demonstrated remarkable reasoning capabilities when prompted with strategies such as Chain-of-Thought (CoT). However, these approaches focus on token-level output without considering internal weight dynamics. We introduce Weight-of-Thought (WoT) reasoning, a novel approach that examines neural network weights before inference to identify reasoning pathways. Unlike existing methods, WoT explores the weight space through graph-based message passing, multi-step reasoning processes, and attention mechanisms. Our implementation creates an interconnected graph of reasoning nodes. Experiments on diverse reasoning tasks (syllogistic, mathematical, algebraic, combinatorial, and geometric) demonstrate that WoT achieves superior performance compared to traditional methods, particularly for complex problems. This approach leads to both improved performance and greater interpretability of the reasoning process, offering a promising direction for enhancing LLM reasoning capabilities.
Better Estimation of the KL Divergence Between Language Models
Estimating the Kullback--Leibler (KL) divergence between language models has many applications, e.g., reinforcement learning from human feedback (RLHF), interpretability, and knowledge distillation. However, computing the exact KL divergence between two arbitrary language models is intractable. Thus, practitioners often resort to the use of sampling-based estimators. While it is easy to fashion a simple Monte Carlo (MC) estimator that provides an unbiased estimate of the KL divergence between language models, this estimator notoriously suffers from high variance, and can even result in a negative estimate of the KL divergence, a non-negative quantity. In this paper, we introduce a Rao--Blackwellized estimator that is also unbiased and provably has variance less than or equal to that of the standard Monte Carlo estimator. In an empirical study on sentiment-controlled fine-tuning, we show that our estimator provides more stable KL estimates and reduces variance substantially in practice. Additionally, we derive an analogous Rao--Blackwellized estimator of the gradient of the KL divergence, which leads to more stable training and produces models that more frequently appear on the Pareto frontier of reward vs. KL compared to the ones trained with the MC estimator of the gradient.
Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models
Large language models (LLMs) can perform reasoning computations both internally within their latent space and externally by generating explicit token sequences like chains of thought. Significant progress in enhancing reasoning abilities has been made by scaling test-time compute. However, understanding and quantifying model-internal reasoning abilities - the inferential "leaps" models make between individual token predictions - remains crucial. This study introduces a benchmark (n = 4,000 items) designed to quantify model-internal reasoning in different domains. We achieve this by having LLMs indicate the correct solution to reasoning problems not through descriptive text, but by selecting a specific language of their initial response token that is different from English, the benchmark language. This not only requires models to reason beyond their context window, but also to overrise their default tendency to respond in the same language as the prompt, thereby posing an additional cognitive strain. We evaluate a set of 18 LLMs, showing significant performance variations, with GPT-4.5 achieving the highest accuracy (74.7%), outperforming models like Grok-2 (67.2%), and Llama 3.1 405B (65.6%). Control experiments and difficulty scaling analyses suggest that while LLMs engage in internal reasoning, we cannot rule out heuristic exploitations under certain conditions, marking an area for future investigation. Our experiments demonstrate that LLMs can "think" via latent-space computations, revealing model-internal inference strategies that need further understanding, especially regarding safety-related concerns such as covert planning, goal-seeking, or deception emerging without explicit token traces.
SuperBPE: Space Travel for Language Models
The assumption across nearly all language model (LM) tokenization schemes is that tokens should be subwords, i.e., contained within word boundaries. While providing a seemingly reasonable inductive bias, is this common practice limiting the potential of modern LMs? Whitespace is not a reliable delimiter of meaning, as evidenced by multi-word expressions (e.g., "by the way"), crosslingual variation in the number of words needed to express a concept (e.g., "spacesuit helmet" in German is "raumanzughelm"), and languages that do not use whitespace at all (e.g., Chinese). To explore the potential of tokenization beyond subwords, we introduce a "superword" tokenizer, SuperBPE, which incorporates a simple pretokenization curriculum into the byte-pair encoding (BPE) algorithm to first learn subwords, then superwords that bridge whitespace. This brings dramatic improvements in encoding efficiency: when fixing the vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up to 33% fewer tokens than BPE on average. In experiments, we pretrain 8B transformer LMs from scratch while fixing the model size, vocabulary size, and train compute, varying *only* the algorithm for learning the vocabulary. Our model trained with SuperBPE achieves an average +4.0% absolute improvement over the BPE baseline across 30 downstream tasks (including +8.2% on MMLU), while simultaneously requiring 27% less compute at inference time. In analysis, we find that SuperBPE results in segmentations of text that are more uniform in per-token difficulty. Qualitatively, this may be because SuperBPE tokens often capture common multi-word expressions that function semantically as a single unit. SuperBPE is a straightforward, local modification to tokenization that improves both encoding efficiency and downstream performance, yielding better language models overall.
comment: updated related work
MDIT: A Model-free Data Interpolation Method for Diverse Instruction Tuning
As Large Language Models (LLMs) are increasingly applied across various tasks, instruction tuning has emerged as a critical method for enhancing model performance. However, current data management strategies face substantial challenges in generating diverse and comprehensive data, restricting further improvements in model performance. To address this gap, we propose MDIT, a novel model-free data interpolation method for diverse instruction tuning, which generates varied and high-quality instruction data by performing task interpolation. Moreover, it contains diversity-based clustering strategies to ensure the diversity of the training data. Extensive experiments show that our method achieves superior performance in multiple benchmark tasks. The LLMs finetuned with MDIT show significant improvements in numerous tasks such as general question answering, math reasoning, and code generation. MDIT offers an efficient and automatic data synthetic method, generating diverse instruction data without depending on external resources while expanding the application potential of LLMs in complex environments.
Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods
Large language models (LLMs) have advanced to a point that even humans have difficulty discerning whether a text was generated by another human, or by a computer. However, knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness, and has applications in many domains including detecting fraud and academic dishonesty, as well as combating the spread of misinformation and political propaganda. The task of AI-generated text (AIGT) detection is therefore both very challenging, and highly critical. In this survey, we summarize state-of-the art approaches to AIGT detection, including watermarking, statistical and stylistic analysis, and machine learning classification. We also provide information about existing datasets for this task. Synthesizing the research findings, we aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios, and to make practical recommendations for future work towards this significant technical and societal challenge.
Learning Free Token Reduction for Multi-Modal Large Language Models
Vision-Language Models (VLMs) have achieved remarkable success across a range of multimodal tasks; however, their practical deployment is often constrained by high computational costs and prolonged inference times. Since the vision modality typically carries more information than the text modality, compressing visual prompts offers a promising solution to alleviate these challenges. Existing approaches predominantly focus on refining model architectures or directly reducing the number of visual tokens. However, these methods often compromise inference performance due to a lack of consideration for the unique spatial and temporal characteristics of visual data. In this work, we propose a token compression paradigm that operates on both spatial and temporal dimensions. Our approach includes a learning-free, plug-and-play compression pipeline that can be seamlessly integrated into most Multimodal Large Language Model (MLLM) frameworks. By leveraging this method, we enhance the model inference capability while simultaneously reducing its computational cost. Experimental results on the Video-QA task demonstrate the effectiveness of the proposed approach, showcasing significant improvements in efficiency without sacrificing performance.
Towards Safer Chatbots: A Framework for Policy Compliance Evaluation of Custom GPTs
Large Language Models (LLMs) have gained unprecedented prominence, achieving widespread adoption across diverse domains and integrating deeply into society. The capability to fine-tune general-purpose LLMs, such as Generative Pre-trained Transformers (GPT), for specific tasks has facilitated the emergence of numerous Custom GPTs. These tailored models are increasingly made available through dedicated marketplaces, such as OpenAI's GPT Store. However, their black-box nature introduces significant safety and compliance risks. In this work, we present a scalable framework for the automated evaluation of Custom GPTs against OpenAI's usage policies, which define the permissible behaviors of these systems. Our framework integrates three core components: (1) automated discovery and data collection of models from the GPT store, (2) a red-teaming prompt generator tailored to specific policy categories and the characteristics of each target GPT, and (3) an LLM-as-a-judge technique to analyze each prompt-response pair for potential policy violations. We validate our framework with a manually annotated ground truth, and evaluate it through a large-scale study with 782 Custom GPTs across three categories: Romantic, Cybersecurity, and Academic GPTs. Our manual annotation process achieved an F1 score of 0.975 in identifying policy violations, confirming the reliability of the framework's assessments. The results reveal that 58.7% of the analyzed models exhibit indications of non-compliance, exposing weaknesses in the GPT store's review and approval processes. Furthermore, our findings indicate that a model's popularity does not correlate with compliance, and non-compliance issues largely stem from behaviors inherited from base models rather than user-driven customizations. We believe this approach is extendable to other chatbot platforms and policy domains, improving LLM-based systems safety.
COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling
The therapeutic working alliance is a critical predictor of psychotherapy success. Traditionally, working alliance assessment relies on questionnaires completed by both therapists and patients. In this paper, we present COMPASS, a novel framework to directly infer the therapeutic working alliance from the natural language used in psychotherapy sessions. Our approach leverages advanced large language models (LLMs) to analyze session transcripts and map them to distributed representations. These representations capture the semantic similarities between the dialogues and psychometric instruments, such as the Working Alliance Inventory. Analyzing a dataset of over 950 sessions spanning diverse psychiatric conditions -- including anxiety (N=498), depression (N=377), schizophrenia (N=71), and suicidal tendencies (N=12) -- collected between 1970 and 2012, we demonstrate the effectiveness of our method in providing fine-grained mapping of patient-therapist alignment trajectories, offering interpretable insights for clinical practice, and identifying emerging patterns related to the condition being treated. By employing various deep learning-based topic modeling techniques in combination with prompting generative language models, we analyze the topical characteristics of different psychiatric conditions and how these topics evolve during each turn of the conversation. This integrated framework enhances the understanding of therapeutic interactions, enables timely feedback for therapists on the quality of therapeutic relationships, and provides clear, actionable insights to improve the effectiveness of psychotherapy.
comment: Translational Psychiatry, in press. This work extends our research series in computational psychiatry (e.g auto annotation in arXiv:2204.05522, topic extraction in arXiv:2204.10189, and diagnosis in arXiv:2210.15603) with the introduction of LLMs to complete the full cycle of interpreting and understanding psychotherapy strategies as a comprehensive analytical framework
Hatred Stems from Ignorance! Distillation of the Persuasion Modes in Countering Conversational Hate Speech
Examining the factors that the counterspeech uses are at the core of understanding the optimal methods for confronting hate speech online. Various studies have assessed the emotional base factors used in counter speech, such as emotional empathy, offensiveness, and hostility. To better understand the counterspeech used in conversations, this study distills persuasion modes into reason, emotion, and credibility and evaluates their use in two types of conversation interactions: closed (multi-turn) and open (single-turn) concerning racism, sexism, and religious bigotry. The evaluation covers the distinct behaviors seen with human-sourced as opposed to machine-generated counterspeech. It also assesses the interplay between the stance taken and the mode of persuasion seen in the counterspeech. Notably, we observe nuanced differences in the counterspeech persuasion modes used in open and closed interactions, especially in terms of the topic, with a general tendency to use reason as a persuasion mode to express the counterpoint to hate comments. The machine-generated counterspeech tends to exhibit an emotional persuasion mode, while human counters lean toward reason. Furthermore, our study shows that reason tends to obtain more supportive replies than other persuasion modes. The findings highlight the potential for incorporating persuasion modes into studies about countering hate speech, as they can serve as an optimal means of explainability and pave the way for the further adoption of the reply's stance and the role it plays in assessing what comprises the optimal counterspeech.
comment: Accepted to appear @ ICWSM 2025. The link to the camera-ready paper will be added soon
RAISE: Reinforenced Adaptive Instruction Selection For Large Language Models
In the instruction fine-tuning of large language models (LLMs), it has become a consensus that a few high-quality instructions are superior to a large number of low-quality instructions. At present, many instruction selection methods have been proposed, but most of these methods select instruction based on heuristic quality metrics, and only consider data selection before training. These designs lead to insufficient optimization of instruction fine-tuning, and fixed heuristic indicators are often difficult to optimize for specific tasks. So we designed a dynamic, task-objective-driven instruction selection framework RAISE(Reinforenced Adaptive Instruction SElection), which incorporates the entire instruction fine-tuning process into optimization, selecting instruction at each step based on the expected impact of instruction on model performance improvement. Our approach is well interpretable and has strong task-specific optimization capabilities. By modeling dynamic instruction selection as a sequential decision-making process, we use RL to train our selection strategy. Extensive experiments and result analysis prove the superiority of our method compared with other instruction selection methods. Notably, RAISE achieves superior performance by updating only 1\% of the training steps compared to full-data training, demonstrating its efficiency and effectiveness.
Embedding Ontologies via Incorporating Extensional and Intensional Knowledge
Ontologies contain rich knowledge within domain, which can be divided into two categories, namely extensional knowledge and intensional knowledge. Extensional knowledge provides information about the concrete instances that belong to specific concepts in the ontology, while intensional knowledge details inherent properties, characteristics, and semantic associations among concepts. However, existing ontology embedding approaches fail to take both extensional knowledge and intensional knowledge into fine consideration simultaneously. In this paper, we propose a novel ontology embedding approach named EIKE (Extensional and Intensional Knowledge Embedding) by representing ontologies in two spaces, called extensional space and intensional space. EIKE presents a unified framework for embedding instances, concepts and their relations in an ontology, applying a geometry-based method to model extensional knowledge and a pretrained language model to model intensional knowledge, which can capture both structure information and textual information. Experimental results show that EIKE significantly outperforms state-of-the-art methods in three datasets for both triple classification and link prediction, indicating that EIKE provides a more comprehensive and representative perspective of the domain.
Testing the Predictions of Surprisal Theory in 11 Languages
A fundamental result in psycholinguistics is that less predictable words take a longer time to process. One theoretical explanation for this finding is Surprisal Theory (Hale, 2001; Levy, 2008), which quantifies a word's predictability as its surprisal, i.e. its negative log-probability given a context. While evidence supporting the predictions of Surprisal Theory have been replicated widely, most have focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times; (ii) whether expected surprisal, i.e. contextual entropy, is predictive of reading times; (iii) and whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to-date between information theory and incremental language processing across languages.
comment: This is a revised version of the paper: The original version of the paper used raw frequencies instead of unigram surprisals in our regression models, despite stating otherwise in the text. This has been amended, and several typos have been fixed
Words and Action: Modeling Linguistic Leadership in #BlackLivesMatter Communities
In this project, we describe a method of modeling semantic leadership across a set of communities associated with the #BlackLivesMatter movement, which has been informed by qualitative research on the structure of social media and Black Twitter in particular. We describe our bespoke approaches to time-binning, community clustering, and connecting communities over time, as well as our adaptation of state-of-the-art approaches to semantic change detection and semantic leadership induction. We find substantial evidence of the leadership role of BLM activists and progressives, as well as Black celebrities. We also find evidence of the sustained engagement of the conservative community with this discourse, suggesting an alternative explanation for how we arrived at the present moment, in which "anti-woke" and "anti-CRT" bills are being enacted nationwide.
comment: Accepted at ICWSM 2025
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
IPA-CHILDES & G2P+: Feature-Rich Resources for Cross-Lingual Phonology and Phonemic Language Modeling CoNLL 2025
In this paper, we introduce two resources: (i) G2P+, a tool for converting orthographic datasets to a consistent phonemic representation; and (ii) IPA CHILDES, a phonemic dataset of child-centered speech across 31 languages. Prior tools for grapheme-to-phoneme conversion result in phonemic vocabularies that are inconsistent with established phonemic inventories, an issue which G2P+ addresses by leveraging the inventories in the Phoible database. Using this tool, we augment CHILDES with phonemic transcriptions to produce IPA CHILDES. This new resource fills several gaps in existing phonemic datasets, which often lack multilingual coverage, spontaneous speech, and a focus on child-directed language. We demonstrate the utility of this dataset for phonological research by training phoneme language models on 11 languages and probing them for distinctive features, finding that the distributional properties of phonemes are sufficient to learn major class and place features cross-lingually.
comment: 19 pages, 7 figures. Submitted to CoNLL 2025
VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
comment: 11 pages, fix some minor typos in the previous version
BabyLM's First Words: Word Segmentation as a Phonological Probing Task CoNLL 2025
Language models provide a key framework for studying linguistic theories based on prediction, but phonological analysis using large language models (LLMs) is difficult; there are few phonological benchmarks beyond English and the standard input representation used in LLMs (subwords of graphemes) is not suitable for analyzing the representation of phonemes. In this work, we demonstrate how word segmentation can be used as a phonological probing task, allowing us to study the representations learned by phoneme-based language models trained on child-directed speech across 31 languages. Following computational models of word segmentation, we present unsupervised methods for extracting word boundaries from a trained model using the observation that prediction-error peaks at the start of words. We also use linear probes to identify that these models implicitly track word boundaries, even when they do not appear in training. This cross-lingual work corroborates statistical learning theories of acquisition and empirically motivates new methods for training subword tokenizers.
comment: 17 pages, 10 figures, submitted to CoNLL 2025
ReasoningRank: Teaching Student Models to Rank through Reasoning-Based Knowledge Distillation
Reranking documents based on their relevance to a given query is a critical task in information retrieval. Traditional reranking methods often lack transparency and rely on proprietary models, hindering reproducibility and interpretability. We propose Reason-to-Rank (R2R), a novel open-source reranking approach that enhances transparency by generating two types of reasoning: direct relevance reasoning, which explains how a document addresses the query, and comparison reasoning, which justifies the relevance of one document over another. We leverage large language models (LLMs) as teacher models to generate these explanations and distill this knowledge into smaller, openly available student models. Our student models are trained to generate meaningful reasoning and rerank documents, achieving competitive performance across multiple datasets, including MSMARCO and BRIGHT. Experiments demonstrate that R2R not only improves reranking accuracy but also provides valuable insights into the decision-making process. By offering a structured and interpretable solution with openly accessible resources, R2R aims to bridge the gap between effectiveness and transparency in information retrieval, fostering reproducibility and further research in the field.
A Semantic-based Optimization Approach for Repairing LLMs: Case Study on Code Generation
Language Models (LMs) are widely used in software engineering for code generation, but they may produce code with errors. Rather than repairing the generated code, an alternative way is to address the underlying failures of models. LM repair offers a lightweight solution to this challenge: it requires minimal data, reduces computational costs, and reduces the side effects. Unlike retraining, LM repair focuses on applying tailored updates to targeted neurons, making it ideal for scenarios with limited resources, high-performance demands, or strict safety requirements. In this paper, we propose \ul{S}emantic \ul{T}argeting for \ul{A}nalytical \ul{R}epair (\textsc{STAR}), a pioneering and novel semantic-based optimization approach for repairing LLMs. \textsc{STAR} realizes main operations in LM repair methods in an optimization process, including locating ``buggy neurons'', solving ``neuron patches'', and patching ``buggy neurons''. Correspondingly, it computes the deltas of weight matrix as the prior information to guide optimization; and attributes the targeted layers and neurons leveraging statistical insights. The neuron patches are computed with a solid semantic-based analytical formula, which directly bridges the changes to logits with the deltas of neurons, by steering latent representations. Compared to the prior work of LM repair (\textsc{MINT}) and optimization methods (\textsc{SGD}), \textsc{STAR} integrates their strengths while mitigating their limitations. \textsc{STAR} supports solving multiple failures together, significantly improving the usefulness. Evaluated on three code generation tasks using popular code LMs, \textsc{STAR} demonstrates superior effectiveness. Additionally, \textsc{STAR} exhibits better efficiency. In terms of side effects, namely the balance between generalization and specificity, \textsc{STAR} outperforms prior work by a significant margin.
comment: 12 pages, 6 figure, 6 tables, under peer-review
Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
Function Alignment: A New Theory of Mind and Intelligence, Part I: Foundations
This paper introduces function alignment, a novel theory of mind and intelligence that is both intuitively compelling and structurally grounded. It explicitly models how meaning, interpretation, and analogy emerge from interactions among layered representations, forming a coherent framework capable not only of modeling minds but also of serving as a blueprint for building them. One of the key theoretical insights derived from function alignment is bounded interpretability, which provides a unified explanation for previously fragmented ideas in cognitive science, such as bounded rationality, symbol grounding, and analogy-making. Beyond modeling, the function alignment framework bridges disciplines often kept apart, linking computational architecture, psychological theory, and even contemplative traditions such as Zen. Rather than building on any philosophical systems, it offers a structural foundation upon which multiple ways of understanding the mind may be reconstructed.
comment: 12 pages, 2 figures. Part I of a multi-part position paper on a new theory of mind
Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM AAAI 2025
Despite being empowered with alignment mechanisms, large language models (LLMs) are increasingly vulnerable to emerging jailbreak attacks that can compromise their alignment mechanisms. This vulnerability poses significant risks to real-world applications. Existing work faces challenges in both training efficiency and generalization capabilities (i.e., Reinforcement Learning from Human Feedback and Red-Teaming). Developing effective strategies to enable LLMs to resist continuously evolving jailbreak attempts represents a significant challenge. To address this challenge, we propose a novel defensive paradigm called GuidelineLLM, which assists LLMs in recognizing queries that may have harmful content. Before LLMs respond to a query, GuidelineLLM first identifies potential risks associated with the query, summarizes these risks into guideline suggestions, and then feeds these guidelines to the responding LLMs. Importantly, our approach eliminates the necessity for additional safety fine-tuning of the LLMs themselves; only the GuidelineLLM requires fine-tuning. This characteristic enhances the general applicability of GuidelineLLM across various LLMs. Experimental results demonstrate that GuidelineLLM can significantly reduce the attack success rate (ASR) against LLM (an average reduction of 34.17\% ASR) while maintaining the usefulness of LLM in handling benign queries. The code is available at https://github.com/sqzhang-lazy/GuidelineLLM.
comment: AAAI 2025
Command A: An Enterprise-Ready Large Language Model
In this report we describe the development of Command A, a powerful large language model purpose-built to excel at real-world enterprise use cases. Command A is an agent-optimised and multilingual-capable model, with support for 23 languages of global business, and a novel hybrid architecture balancing efficiency with top of the range performance. It offers best-in-class Retrieval Augmented Generation (RAG) capabilities with grounding and tool use to automate sophisticated business processes. These abilities are achieved through a decentralised training approach, including self-refinement algorithms and model merging techniques. We also include results for Command R7B which shares capability and architectural similarities to Command A. Weights for both models have been released for research purposes. This technical report details our original training pipeline and presents an extensive evaluation of our models across a suite of enterprise-relevant tasks and public benchmarks, demonstrating excellent performance and efficiency.
comment: 55 pages
TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve generalisation capabilities of decoder only transformers.
Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian
There has been a surge in the development of various Large Language Models (LLMs). However, text generation for languages other than English often faces significant challenges, including poor generation quality and reduced computational performance due to the disproportionate representation of tokens in the model's vocabulary. In this work, we address these issues by developing a pipeline for the adaptation of English-oriented pre-trained models to other languages and constructing efficient bilingual LLMs. Using this pipeline, we construct Vikhr, a series of bilingual open-source instruction-following LLMs designed specifically for the Russian language. ``Vikhr'' refers to the name of the Mistral LLM series and means a ``strong gust of wind.'' Unlike previous Russian-language models that typically rely on LoRA adapters on top of English-oriented models, sacrificing performance for lower training costs, Vikhr features an adapted tokenizer vocabulary and undergoes the continued pre-training and instruction tuning of all weights. This not only enhances the model's performance but also significantly improves its computational and contextual efficiency. We also expanded the instruction datasets and corpora for continued pre-training. The model weights, instruction sets, and code are publicly available.
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
The remarkable achievements of large language models (LLMs) have led many to conclude that they exhibit a form of intelligence. This is as opposed to explanations of their capabilities based on their ability to perform relatively simple manipulations of vast volumes of data. To illuminate the distinction between these explanations, we introduce a novel generative model that generates tokens on the basis of human interpretable concepts represented as latent discrete variables. Under mild conditions, even when the mapping from the latent space to the observed space is non-invertible, we establish an identifiability result: the representations learned by LLMs through next-token prediction can be approximately modeled as the logarithm of the posterior probabilities of these latent discrete concepts, up to an invertible linear transformation. This theoretical finding not only provides evidence that LLMs capture underlying generative factors, but also strongly reinforces the linear representation hypothesis, which posits that LLMs learn linear representations of human-interpretable concepts. Empirically, we validate our theoretical results through evaluations on both simulation data and the Pythia, Llama, and DeepSeek model families.
From Vulnerabilities to Remediation: A Systematic Literature Review of LLMs in Code Security
Large Language Models (LLMs) have emerged as powerful tools for automating various programming tasks, including security-related ones, such as detecting and fixing vulnerabilities. Despite their promising capabilities, when required to produce or modify pre-existing code, LLMs could introduce vulnerabilities unbeknown to the programmer. When analyzing code, they could miss clear vulnerabilities or signal nonexistent ones. In this Systematic Literature Review (SLR), we aim to investigate both the security benefits and potential drawbacks of using LLMs for a variety of code-related tasks. In particular, first we focus on the types of vulnerabilities that could be introduced by LLMs, when used for producing code. Second, we analyze the capabilities of LLMs to detect and fix vulnerabilities, in any given code, and how the prompting strategy of choice impacts their performance in these two tasks. Last, we provide an in-depth analysis on how data poisoning attacks on LLMs can impact performance in the aforementioned tasks.
Beyond Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws
Large language model (LLM) scaling laws are empirical formulas that estimate changes in model quality as a result of increasing parameter count and training data. However, these formulas, including the popular Deepmind Chinchilla scaling laws, neglect to include the cost of inference. We modify the Chinchilla scaling laws to calculate the optimal LLM parameter count and pre-training data size to train and deploy a model of a given quality and inference demand. We conduct our analysis both in terms of a compute budget and real-world costs and find that LLM researchers expecting reasonably large inference demand (~1B requests) should train models smaller and longer than Chinchilla-optimal. Furthermore, we train 47 models of varying sizes and parameter counts to validate our formula and find that model quality continues to improve as we scale tokens per parameter to extreme ranges (up to 10,000). Finally, we ablate the procedure used to fit the Chinchilla scaling law coefficients and find that developing scaling laws only from data collected at typical token/parameter ratios overestimates the impact of additional tokens at these extreme ranges.
comment: 16 pages, 7 figures, In the 41st International Conference on Machine Learning, 2024
Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.
comment: 14 pages, 5 figures. Preprint prepared for future submission. Includes implementation and token-efficiency analysis. Code at https://github.com/biubiutomato/TME-Agent
EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.
comment: 22 pages, 4 figures
Improving Instruction-Following in Language Models through Activation Steering ICLR 2025
The ability to follow instructions is crucial for numerous real-world applications of language models. In pursuit of deeper insights and more powerful capabilities, we derive instruction-specific vector representations from language models and use them to steer models accordingly. These vectors are computed as the difference in activations between inputs with and without instructions, enabling a modular approach to activation steering. We demonstrate how this method can enhance model adherence to constraints such as output format, length, and word inclusion, providing inference-time control over instruction following. Our experiments across four models demonstrate how we can use the activation vectors to guide models to follow constraints even without explicit instructions and to enhance performance when instructions are present. Additionally, we explore the compositionality of activation steering, successfully applying multiple instructions simultaneously. Finally, we demonstrate that steering vectors computed on instruction-tuned models can transfer to improve base models. Our findings demonstrate that activation steering offers a practical and scalable approach for fine-grained control in language generation. Our code and data are available at https://github.com/microsoft/llm-steer-instruct.
comment: ICLR 2025
Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
Unveiling the Deficiencies of Pre-trained Text-and-Layout Models in Real-world Visually-rich Document Information Extraction
Recently developed pre-trained text-and-layout models (PTLMs) have shown remarkable success in multiple information extraction tasks on visually-rich documents (VrDs). However, despite achieving extremely high performance on benchmarks, their real-world performance falls short of expectations. Owing to this issue, we investigate the prevailing evaluation pipeline to reveal that: (1) The inadequate annotations within benchmark datasets introduce spurious correlations between task inputs and labels, which would lead to overly-optimistic estimation of model performance. (2) The evaluation solely relies on the performance on benchmarks and is insufficient to comprehensively explore the capabilities of methods in real-world scenarios. These problems impede the prevailing evaluation pipeline from reflecting the real-world performance of methods, misleading the design choices of method optimization. In this work, we introduce EC-FUNSD, an entity-centric dataset crafted for benchmarking information extraction from visually-rich documents. This dataset contains diverse layouts and high-quality annotations. Additionally, this dataset disentangles the falsely-coupled segment and entity annotations that arises from the block-level annotation of FUNSD. Using the proposed dataset, we evaluate the real-world information extraction capabilities of PTLMs from multiple aspects, including their absolute performance, as well as generalization, robustness and fairness. The results indicate that prevalent PTLMs do not perform as well as anticipated in real-world information extraction scenarios. We hope that our study can inspire reflection on the directions of PTLM development.
Summarization Metrics for Spanish and Basque: Do Automatic Scores and LLM-Judges Correlate with Humans?
Studies on evaluation metrics and LLM-as-a-Judge models for automatic text summarization have largely been focused on English, limiting our understanding of their effectiveness in other languages. Through our new dataset BASSE (BAsque and Spanish Summarization Evaluation), we address this situation by collecting human judgments on 2,040 abstractive summaries in Basque and Spanish, generated either manually or by five LLMs with four different prompts. For each summary, annotators evaluated five criteria on a 5-point Likert scale: coherence, consistency, fluency, relevance, and 5W1H. We use these data to reevaluate traditional automatic metrics used for evaluating summaries, as well as several LLM-as-a-Judge models that show strong performance on this task in English. Our results show that currently proprietary judge LLMs have the highest correlation with human judgments, followed by criteria-specific automatic metrics, while open-sourced judge LLMs perform poorly. We release BASSE and our code publicly, along with the first large-scale Basque summarization dataset containing 22,525 news articles with their subheads.
Ham2Pose: Animating Sign Language Notation into Pose Sequences
Translating spoken languages into Sign languages is necessary for open communication between the hearing and hearing-impaired communities. To achieve this goal, we propose the first method for animating a text written in HamNoSys, a lexical Sign language notation, into signed pose sequences. As HamNoSys is universal, our proposed method offers a generic solution invariant to the target Sign language. Our method gradually generates pose predictions using transformer encoders that create meaningful representations of the text and poses while considering their spatial and temporal information. We use weak supervision for the training process and show that our method succeeds in learning from partial and inaccurate data. Additionally, we offer a new distance measurement for pose sequences, normalized Dynamic Time Warping (nDTW), based on DTW over normalized keypoints trajectories, and validate its correctness using AUTSL, a large-scale Sign language dataset. We show that it measures the distance between pose sequences more accurately than existing measurements and use it to assess the quality of our generated pose sequences. Code for the data pre-processing, the model, and the distance measurement is publicly released for future research.
Large language models could be rote learners
Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs), yet their reliability is undermined by benchmark contamination. In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization in LLM evaluation. First, by analyzing model performance under different memorization conditions, we uncover a counterintuitive trend: LLMs perform worse on memorized MCQs than on non-memorized ones, indicating the coexistence of two distinct learning phenomena, i.e., rote memorization and genuine capability learning. To disentangle them, we propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment. Experiments validate TrinEval's effectiveness in reformulation, and its evaluation reveals that common LLMs may memorize by rote 20.5% of knowledge points (in MMLU on average).
comment: Work in Progress
Psychological Health Knowledge-Enhanced LLM-based Social Network Crisis Intervention Text Transfer Recognition Method
As the prevalence of mental health crises increases on social media platforms, identifying and preventing potential harm has become an urgent challenge. This study introduces a large language model (LLM)-based text transfer recognition method for social network crisis intervention, enhanced with domain-specific mental health knowledge. We propose a multi-level framework that incorporates transfer learning using BERT, and integrates mental health knowledge, sentiment analysis, and behavior prediction techniques. The framework includes a crisis annotation tool trained on social media datasets from real-world events, enabling the model to detect nuanced emotional cues and identify psychological crises. Experimental results show that the proposed method outperforms traditional models in crisis detection accuracy and exhibits greater sensitivity to subtle emotional and contextual variations.
Tulu 3: Pushing Frontiers in Open Language Model Post-Training
Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce Tulu 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. Tulu 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With Tulu 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the Tulu 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the Tulu 3 approach to more domains.
comment: Added Tulu 3 405B results and additional analyses
AI Enabled User-Specific Cyberbullying Severity Detection with Explainability
The rise of social media has significantly increased the prevalence of cyberbullying (CB), posing serious risks to both mental and physical well-being. Effective detection systems are essential for mitigating its impact. While several machine learning (ML) models have been developed, few incorporate victims' psychological, demographic, and behavioral factors alongside bullying comments to assess severity. In this study, we propose an AI model intregrating user-specific attributes, including psychological factors (self-esteem, anxiety, depression), online behavior (internet usage, disciplinary history), and demographic attributes (race, gender, ethnicity), along with social media comments. Additionally, we introduce a re-labeling technique that categorizes social media comments into three severity levels: Not Bullying, Mild Bullying, and Severe Bullying, considering user-specific factors.Our LSTM model is trained using 146 features, incorporating emotional, topical, and word2vec representations of social media comments as well as user-level attributes and it outperforms existing baseline models, achieving the highest accuracy of 98\% and an F1-score of 0.97. To identify key factors influencing the severity of cyberbullying, we employ explainable AI techniques (SHAP and LIME) to interpret the model's decision-making process. Our findings reveal that, beyond hate comments, victims belonging to specific racial and gender groups are more frequently targeted and exhibit higher incidences of depression, disciplinary issues, and low self-esteem. Additionally, individuals with a prior history of bullying are at a greater risk of becoming victims of cyberbullying.
ToxiCraft: A Novel Framework for Synthetic Generation of Harmful Information EMNLP 2024
In different NLP tasks, detecting harmful content is crucial for online environments, especially with the growing influence of social media. However, previous research has two main issues: 1) a lack of data in low-resource settings, and 2) inconsistent definitions and criteria for judging harmful content, requiring classification models to be robust to spurious features and diverse. We propose Toxicraft, a novel framework for synthesizing datasets of harmful information to address these weaknesses. With only a small amount of seed data, our framework can generate a wide variety of synthetic, yet remarkably realistic, examples of toxic information. Experimentation across various datasets showcases a notable enhancement in detection model robustness and adaptability, surpassing or close to the gold labels.
comment: EMNLP 2024
Human-Computer Interaction
GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
HybridCollab: Unifying In-Person and Remote Collaboration for Cardiovascular Surgical Planning in Mobile Augmented Reality
Surgical planning for congenital heart disease traditionally relies on collaborative group examinations of a patient's 3D-printed heart model, a process that lacks flexibility and accessibility. While mobile augmented reality (AR) offers a promising alternative with its portability and familiar interaction gestures, existing solutions limit collaboration to users in the same physical space. We developed HybridCollab, the first iOS AR application that introduces a novel paradigm that enables both in-person and remote medical teams to interact with a shared AR heart model in a single surgical planning session. For example, a team of two doctors in one hospital room can collaborate in real time with another team in a different hospital.Our approach is the first to leverage Apple's GameKit service for surgical planning, ensuring an identical collaborative experience for all participants, regardless of location. Additionally, co-located users can interact with the same anchored heart model in their shared physical space. By bridging the gap between remote and in-person collaboration across medical teams, HybridCollab has the potential for significant real-world impact, streamlining communication and enhancing the effectiveness of surgical planning. Watch the demo: https://youtu.be/hElqJYDuvLM.
LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models
Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.
comment: 20 pages, 7 figures, 4 tables
Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
The integration of Large Language Models (LLMs) into healthcare holds significant potential to enhance diagnostic accuracy and support medical treatment planning. These AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes. This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access (PNA), a standardized medical knowledge assessment. Our results highlight considerable variation in accuracy and cost-effectiveness, with several models demonstrating performance exceeding human benchmarks for medical students on this specific task. We identify leading models based on a combined score of accuracy and cost, discuss the implications of reasoning methodologies like Chain-of-Thought, and underscore the potential for LLMs to function as valuable complementary tools aiding medical professionals in complex clinical decision-making.
comment: 21 pages, 6 figures, 4 tables. Acknowledgements: The authors acknowledge the support of the AITriage4SU Project (2024.07400.IACDC/2024), funded by the FCT (Foundation for Science and Technology), Portugal
Framing Perception: Exploring Camera Induced Objectification in Cinema
This study investigates how cinematographic techniques influence viewer perception and contribute to the objectification of women, utilizing eye-tracking data from 91 participants. They watched a sexualized music video (SV) known for objectifying portrayals and a non-sexualized music video (TV). Using dynamic Areas of Interests (AOIs) (head, torso, and lower body), gaze metrics such as fixation duration, visit count, and scan paths were recorded to assess visual attention patterns. Participants were grouped according to their average fixations on sexualized AOIs. Statistical analyses revealed significant differences in gaze behavior between the videos and among the groups, with increased attention to sexualized AOIs in SV. Additionally, data-driven group differences in fixations identified specific segments with heightened objectification that are further analyzed using scan path visualization techniques. These findings provide strong empirical evidence of camera-driven gaze objectification, demonstrating how cinematic framing implicitly shapes objectifying gaze patterns, highlighting the critical need for mindful media representation.
DICE: A Framework for Dimensional and Contextual Evaluation of Language Models
Language models (LMs) are increasingly being integrated into a wide range of applications, yet the modern evaluation paradigm does not sufficiently reflect how they are actually being used. Current evaluations rely on benchmarks that often lack direct applicability to the real-world contexts in which LMs are being deployed. To address this gap, we propose Dimensional and Contextual Evaluation (DICE), an approach that evaluates LMs on granular, context-dependent dimensions. In this position paper, we begin by examining the insufficiency of existing LM benchmarks, highlighting their limited applicability to real-world use cases. Next, we propose a set of granular evaluation parameters that capture dimensions of LM behavior that are more meaningful to stakeholders across a variety of application domains. Specifically, we introduce the concept of context-agnostic parameters - such as robustness, coherence, and epistemic honesty - and context-specific parameters that must be tailored to the specific contextual constraints and demands of stakeholders choosing to deploy LMs into a particular setting. We then discuss potential approaches to operationalize this evaluation framework, finishing with the opportunities and challenges DICE presents to the LM evaluation landscape. Ultimately, this work serves as a practical and approachable starting point for context-specific and stakeholder-relevant evaluation of LMs.
Siamese Network with Dual Attention for EEG-Driven Social Learning: Bridging the Human-Robot Gap in Long-Tail Autonomous Driving
Robots with wheeled, quadrupedal, or humanoid forms are increasingly integrated into built environments. However, unlike human social learning, they lack a critical pathway for intrinsic cognitive development, namely, learning from human feedback during interaction. To understand human ubiquitous observation, supervision, and shared control in dynamic and uncertain environments, this study presents a brain-computer interface (BCI) framework that enables classification of Electroencephalogram (EEG) signals to detect cognitively demanding and safety-critical events. As a timely and motivating co-robotic engineering application, we simulate a human-in-the-loop scenario to flag risky events in semi-autonomous robotic driving-representative of long-tail cases that pose persistent bottlenecks to the safety performance of smart mobility systems and robotic vehicles. Drawing on recent advances in few-shot learning, we propose a dual-attention Siamese convolutional network paired with Dynamic Time Warping Barycenter Averaging approach to generate robust EEG-encoded signal representations. Inverse source localization reveals activation in Broadman areas 4 and 9, indicating perception-action coupling during task-relevant mental imagery. The model achieves 80% classification accuracy under data-scarce conditions and exhibits a nearly 100% increase in the utility of salient features compared to state-of-the-art methods, as measured through integrated gradient attribution. Beyond performance, this study contributes to our understanding of the cognitive architecture required for BCI agents-particularly the role of attention and memory mechanisms-in categorizing diverse mental states and supporting both inter- and intra-subject adaptation. Overall, this research advances the development of cognitive robotics and socially guided learning for service robots in complex built environments.
comment: 50 pages, 18 figures
Who Speaks for Ethics? How Demographics Shape Ethical Advocacy in Software Development
The integration of ethics into software development faces significant challenges due to market fundamentalism in organizational practices, where profit often takes precedence over ethical considerations. Additionally, the critical influence of practitioners' individual backgrounds on ethical decision-making remains underexplored, highlighting a gap in comprehensive research. This is especially essential to understand due to the demographic imbalance in software roles. This study investigates ethical concerns in software development, focusing on how they are perceived, prioritized, and addressed by demographically different practitioners. By surveying 217 software practitioners across diverse roles, industries, and countries, we identify critical barriers to ethical integration and examine practitioners' capacity to mitigate these issues. Our findings reveal pronounced demographic disparities, with marginalized groups - including women, BIPOC, and disabled individuals - reporting ethical concerns at higher frequencies. Notably, marginalized practitioners demonstrated heightened sensitivity to ethical implementation and greater empowerment to address them. However, practitioners overall often lack the support needed to address ethical challenges effectively. These insights underscore the urgent need for reforms in software education and development processes that center on diverse perspectives. Such reforms are essential to advancing ethical integration in software development and ensuring responsible computing practices in an increasingly complex technological landscape.
comment: FAccT '25: Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency
Change Your Perspective, Widen Your Worldview! Societally Beneficial Perceptual Filter Bubbles in Personalized Reality
Extended Reality (XR) technologies enable the personalized mediation of an individual's perceivable reality across modalities, thereby creating a Personalized Reality (PR). While this may lead to individually beneficial effects in the form of more efficient, more fun, and safer experiences, it may also lead to perceptual filter bubbles since individuals are exposed predominantly or exclusively to content that is congruent with their existing beliefs and opinions. This undermining of a shared basis for interaction and discussion through constrained perceptual worldviews may impact society through increased polarization and other well-documented negative effects of filter bubbles. In this paper, we argue that this issue can be mitigated by increasing individuals' awareness of their current perspective and providing avenues for development, including through support for engineered serendipity and fostering of self-actualization that already show promise for traditional recommender systems. We discuss how these methods may be transferred to XR to yield valuable tools to give people transparency and agency over their perceptual worldviews in a responsible manner.
comment: Presented at CHI 2025 (arXiv:2504.07475)
When Technologies Are Not Enough: Understanding How Domestic Workers Employ (and Avoid) Online Technologies in Their Work Practices SC
Although domestic work is often viewed as manual labor, it involves significant interaction with online technologies. However, the detailed exploration of how domestic workers use these technologies remains limited. This study examines the impact of online technologies on domestic workers' work practices, perceptions, and relationships with customers and employers. We interviewed 30 domestic workers residing in the United States, who provided examples that highlight the insufficient transformative role of current online technologies in their work. By conducting a thematic analysis, we characterize how they approach and avoid these digital tools at different stages of their work. Through these findings, we investigate the limitations of technology and identify challenges and opportunities that could inform the design of more suitable tools to improve the conditions of this marginalized group.
comment: 34 pages, accepted at CSCW 2025 (Proceedings of the ACM on Human-Computer Interaction, October 2025 issue)
Struggle First, Prompt Later: How Task Complexity Shapes Learning with GenAI-Assisted Pretesting
This study examines the role of AI-assisted pretesting in enhancing learning outcomes, particularly when integrated with generative AI tools like ChatGPT. Pretesting, a learning strategy in which students attempt to answer questions or solve problems before receiving instruction, has been shown to improve retention by activating prior knowledge. The adaptability and interactivity of AI-assisted pretesting introduce new opportunities for optimizing learning in digital environments. Across three experimental studies, we explored how pretesting strategies, task characteristics, and student motivation influence learning. Findings suggest that AI-assisted pretesting enhances learning outcomes, particularly for tasks requiring higher-order thinking. While adaptive AI-driven pretesting increased engagement, its benefits were most pronounced in complex, exploratory tasks rather than straightforward computational problems. These results highlight the importance of aligning pretesting strategies with task demands, demonstrating that AI can optimize learning when applied to tasks requiring deeper cognitive engagement. This research provides insights into how AI-assisted pretesting can be effectively integrated with generative AI tools to enhance both cognitive and motivational outcomes in learning environments.
comment: Extends work in arXiv:2412.13487
ChartOptimiser: Task-driven Optimisation of Chart Designs
Effective chart design is essential for satisfying viewers' information needs, such as retrieving values from a chart or comparing two values. However, creating effective charts is challenging and time-consuming due to the large design space and the inter-dependencies between individual design parameters. To address this challenge, we propose ChartOptimiser -- a Bayesian approach for task-driven optimisation of charts, such as bar charts. At the core of ChartOptimiser is a novel objective function to automatically optimise an eight-dimensional design space combining four perceptual metrics: visual saliency, text legibility, colour preference, and white space ratio. Through empirical evaluation on 12 bar charts and four common analytical tasks -- finding the extreme value, retrieving a value, comparing two values, and computing a derived value -- we show that ChartOptimiser outperforms existing design baselines concerning task-solving ease, visual aesthetics, and chart clarity. We also discuss two practical applications of ChartOptimiser: generating charts for accessibility and content localisation. Taken together, ChartOptimiser opens up an exciting new research direction in automated chart design where charts are optimised for users' information needs, preferences, and contexts.
When Do We Feel Present in a Virtual Reality? Towards Sensitivity and User Acceptance of Presence Questionnaires
Presence is an important and widely used metric to measure the quality of virtual reality (VR) applications. Given the multifaceted and subjective nature of presence, the most common measures for presence are questionnaires. But there is little research on their validity regarding specific presence dimensions and their responsiveness to differences in perception among users. We investigated four presence questionnaires (SUS, PQ, IPQ, Bouchard) on their responsiveness to intensity variations of known presence dimensions and asked users about their consistency with their experience. Therefore, we created five VR scenarios that were designed to emphasize a specific presence dimension. Our findings showed heterogeneous sensitivity of the questionnaires dependent on the different dimensions of presence. This highlights a context-specific suitability of presence questionnaires. The questionnaires' sensitivity was further stated as lower than actually perceived. Based on our findings, we offer guidance on selecting these questionnaires based on their suitability for particular use cases.
Let's Talk About It: Making Scientific Computational Reproducibility Easy
Computational reproducibility of scientific results, that is, the execution of a computational experiment (e.g., a script) using its original settings (data, code, etc.), should always be possible. However, reproducibility has become a significant challenge, as researchers often face difficulties in accurately replicating experiments due to inconsistencies in documentation, setup configurations, and missing data. This lack of reproducibility may undermine the credibility of scientific results. To address this issue, we propose a conversational, text-based tool that allows researchers to easily reproduce computational experiments (theirs or from others) and package them in a single file that can be re-executed with just a double click on any computer, requiring the installation of a single widely-used software. Researchers interact with the platform in natural language, which our tool processes to automatically create a computational environment able to execute the provided experiment/code. We conducted two studies to evaluate our proposal. In the first study, we gathered qualitative data by executing 18 experiments from the literature. Although in some cases it was not possible to execute the experiment, in most instances, it was necessary to have little or even no interaction for the tool to reproduce the results. We also conducted a user study comparing our tool with an enterprise-level one. During this study, we measured the usability of both tools using the System Usability Scale (SUS) and participants' workload using the NASA Task Load Index (TLX). The results show a statistically significant difference between both tools in favor of our proposal, demonstrating that the usability and workload of our tool are superior to the current state of the art.
The Human Visual System Can Inspire New Interaction Paradigms for LLMs
The dominant metaphor of LLMs-as-minds leads to misleading conceptions of machine agency and is limited in its ability to help both users and developers build the right degree of trust and understanding for outputs from LLMs. It makes it harder to disentangle hallucinations from useful model interactions. This position paper argues that there are fundamental similarities between visual perception and the way LLMs process and present language. These similarities inspire a metaphor for LLMs which could open new avenues for research into interaction paradigms and shared representations. Our visual system metaphor introduces possibilities for addressing these challenges by understanding the information landscape assimilated by LLMs. In this paper we motivate our proposal, introduce the interrelating theories from the fields that inspired this view and discuss research directions that stem from this abstraction.
Leveraging Metaphors in a VR Serious Game for Computational Thinking
This paper presents Cooking Code, a VR-based serious game designed to introduce programming concepts to students (ages 12-16) through an immersive, scenario-driven experience. Set in a futuristic world where humans and machines coexist, players take on the role of a fast-food chef who must assemble food orders based on pseudocode instructions. By interpreting and executing these instructions correctly, players develop problem-solving skills, computational thinking, and a foundational understanding of programming logic. The game leverages the kitchen metaphor to teach computational thinking, using affordances for an immersive VR experience.
comment: Presented at CHI 2025 (arXiv:2504.07475)
Investigating Environments' and Avatars' Effects on Thermal Perception in Virtual Reality to Reduce Energy Consumption
Understanding thermal regulation and subjective perception of temperature is crucial for improving thermal comfort and human energy consumption in times of global warming. Previous work shows that an environment's color temperature affects the experienced temperature. As virtual reality (VR) enables visual immersion, recent work suggests that a VR scene's color temperature also affects experienced temperature. In addition, virtual avatars representing thermal cues influence users' thermal perception and even the body temperature. As immersive technology becomes increasingly prevalent in daily life, leveraging thermal cues to enhance thermal comfort - without relying on actual thermal energy - presents a promising opportunity. Understanding these effects is crucial for optimizing virtual experiences and promoting sustainable energy practices. Therefore, we propose three controlled experiments to learn more about thermal effects caused by virtual worlds and avatars.
comment: Presented at CHI 2025 (arXiv:2504.07475)
Turn-taking annotation for quantitative and qualitative analyses of conversation
This paper has two goals. First, we present the turn-taking annotation layers created for 95 minutes of conversational speech of the Graz Corpus of Read and Spontaneous Speech (GRASS), available to the scientific community. Second, we describe the annotation system and the annotation process in more detail, so other researchers may use it for their own conversational data. The annotation system was developed with an interdisciplinary application in mind. It should be based on sequential criteria according to Conversation Analysis, suitable for subsequent phonetic analysis, thus time-aligned annotations were made Praat, and it should be suitable for automatic classification, which required the continuous annotation of speech and a label inventory that is not too large and results in a high inter-rater agreement. Turn-taking was annotated on two layers, Inter-Pausal Units (IPU) and points of potential completion (PCOMP; similar to transition relevance places). We provide a detailed description of the annotation process and of segmentation and labelling criteria. A detailed analysis of inter-rater agreement and common confusions shows that agreement for IPU annotation is near-perfect, that agreement for PCOMP annotations is substantial, and that disagreements often are either partial or can be explained by a different analysis of a sequence which also has merit. The annotation system can be applied to a variety of conversational data for linguistic studies and technological applications, and we hope that the annotations, as well as the annotation system will contribute to a stronger cross-fertilization between these disciplines.
comment: 41 pages
Privacy Meets Explainability: Managing Confidential Data and Transparency Policies in LLM-Empowered Science
As Large Language Models (LLMs) become integral to scientific workflows, concerns over the confidentiality and ethical handling of confidential data have emerged. This paper explores data exposure risks through LLM-powered scientific tools, which can inadvertently leak confidential information, including intellectual property and proprietary data, from scientists' perspectives. We propose "DataShield", a framework designed to detect confidential data leaks, summarize privacy policies, and visualize data flow, ensuring alignment with organizational policies and procedures. Our approach aims to inform scientists about data handling practices, enabling them to make informed decisions and protect sensitive information. Ongoing user studies with scientists are underway to evaluate the framework's usability, trustworthiness, and effectiveness in tackling real-world privacy challenges.
comment: 8 pages
VR MRI Training for Adolescents: A Comparative Study of Gamified VR, Passive VR, 360 Video, and Traditional Educational Video
Magnetic Resonance Imaging (MRI) can be a stressful experience for pediatric patients due to the loud acoustic environment, enclosed scanner bore, and a prolonged requirement to remain still. While sedation is commonly used to manage anxiety and motion, it carries clinical risks and logistical burdens. Traditional preparatory approaches, such as instructional videos and mock scans, often lack engagement for older children and adolescents. In this study, we present a comparative evaluation of four MRI preparation modalities: (1) a gamified virtual reality (VR) simulation that trains stillness through real-time feedback; (2) a passive VR experience replicating the MRI environment without interactivity; (3) a 360 degree first-person video of a real MRI procedure; and (4) a standard 2D educational video. Using a within-subjects design (N = 11, ages 10-16), we assess each method's impact on head motion data, anxiety reduction, procedural preparedness, usability, cognitive workload, and subjective preference. Results show that the gamified VR condition has significantly lower head motion (p < 0.001) and yielded the highest preparedness scores (p < 0.05). Head motion data were significantly correlated with learning outcomes (p < 0.01), suggesting that behavioral performance in VR strongly indicates procedural readiness. While all modalities reduced anxiety and were rated usable, interactive VR was preferred by most participants and demonstrated unique advantages in promoting engagement and behavioral rehearsal. We conclude with design recommendations for designing immersive simulations and integrating VR training into pediatric imaging workflows.
comment: Download our application at https://www.meta.com/experiences/stanford-mri-simulator/8205539289482347/
Quantum Image Visualizer: Visual Debugging of Quantum Image Processing Circuits
Quantum computing is an emerging field that utilizes the unique principles of quantum mechanics to offer significant advantages in algorithm execution over classical approaches. This potential is particularly promising in the domain of quantum image processing, which aims to manipulate all pixels simultaneously. However, the process of designing and verifying these algorithms remains a complex and error-prone task. To address this challenge, new methods are needed to support effective debugging of quantum circuits. The Quantum Image Visualizer is an interactive visual analysis tool that allows for the examination of quantum images and their transformation throughout quantum circuits. The framework incorporates two overview visualizations that trace image evolution across a sequence of gates based on the most probable outcomes. Interactive exploration allows users to focus on relevant gates, and select pixels of interest. Upon selection, detailed visualizations enable in-depth inspection of individual pixels and their probability distributions, revealing how specific gates influence the likelihood of pixel color values and the magnitude of these changes. An evaluation of the Quantum Image Visualizer was conducted through in-depth interviews with eight domain experts. The findings demonstrate the effectiveness and practical value of our approach in supporting visual debugging of quantum image processing circuits.
comment: 9 pages, 7 figures, 1 table
Labeling Messages as AI-Generated Does Not Reduce Their Persuasive Effects
As generative artificial intelligence (AI) enables the creation and dissemination of information at massive scale and speed, it is increasingly important to understand how people perceive AI-generated content. One prominent policy proposal requires explicitly labeling AI-generated content to increase transparency and encourage critical thinking about the information, but prior research has not yet tested the effects of such labels. To address this gap, we conducted a survey experiment (N=1601) on a diverse sample of Americans, presenting participants with an AI-generated message about several public policies (e.g., allowing colleges to pay student-athletes), randomly assigning whether participants were told the message was generated by (a) an expert AI model, (b) a human policy expert, or (c) no label. We found that messages were generally persuasive, influencing participants' views of the policies by 9.74 percentage points on average. However, while 94.6% of participants assigned to the AI and human label conditions believed the authorship labels, labels had no significant effects on participants' attitude change toward the policies, judgments of message accuracy, nor intentions to share the message with others. These patterns were robust across a variety of participant characteristics, including prior knowledge of the policy, prior experience with AI, political party, education level, or age. Taken together, these results imply that, while authorship labels would likely enhance transparency, they are unlikely to substantially affect the persuasiveness of the labeled content, highlighting the need for alternative strategies to address challenges posed by AI-generated information.
SUMART: SUMmARizing Translation from Wordy to Concise Expression
We propose SUMART, a method for summarizing and compressing the volume of verbose subtitle translations. SUMART is designed for understanding translated captions (e.g., interlingual conversations via subtitle translation or when watching movies in foreign language audio and translated captions). SUMART is intended for users who want a big-picture and fast understanding of the conversation, audio, video content, and speech in a foreign language. During the training data collection, when a speaker makes a verbose statement, SUMART employs a large language model on-site to compress the volume of subtitles. This compressed data is then stored in a database for fine-tuning purposes. Later, SUMART uses data pairs from those non-compressed ASR results and compressed translated results for fine-tuning the translation model to generate more concise translations for practical uses. In practical applications, SUMART utilizes this trained model to produce concise translation results. Furthermore, as a practical application, we developed an application that allows conversations using subtitle translation in augmented reality spaces. As a pilot study, we conducted qualitative surveys using a SUMART prototype and a survey on the summarization model for SUMART. We envision the most effective use case of this system is where users need to consume a lot of information quickly (e.g., Speech, lectures, podcasts, Q&A in conferences).
comment: 3 pages, 2 figures
Can VLMs Assess Similarity Between Graph Visualizations?
Graph visualizations have been studied for tasks such as clustering and temporal analysis, but how these visual similarities relate to established graph similarity measures remains unclear. In this paper, we explore the potential of Vision Language Models (VLMs) to approximate human-like perception of graph similarity. We generate graph datasets of various sizes and densities and compare VLM-derived visual similarity scores with feature-based measures. Our findings indicate VLMs can assess graph similarity in a manner similar to feature-based measures, even though differences among the measures exist. In future work, we plan to extend our research by conducting experiments on human visual graph perception.
GlyTwin: Digital Twin for Glucose Control in Type 1 Diabetes Through Optimal Behavioral Modifications Using Patient-Centric Counterfactuals
Frequent and long-term exposure to hyperglycemia (i.e., high blood glucose) increases the risk of chronic complications such as neuropathy, nephropathy, and cardiovascular disease. Current technologies like continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) primarily model specific aspects of glycemic control-like hypoglycemia prediction or insulin delivery. Similarly, most digital twin approaches in diabetes management simulate only physiological processes. These systems lack the ability to offer alternative treatment scenarios that support proactive behavioral interventions. To address this, we propose GlyTwin, a novel digital twin framework that uses counterfactual explanations to simulate optimal treatments for glucose regulation. Our approach helps patients and caregivers modify behaviors like carbohydrate intake and insulin dosing to avoid abnormal glucose events. GlyTwin generates behavioral treatment suggestions that proactively prevent hyperglycemia by recommending small adjustments to daily choices, reducing both frequency and duration of these events. Additionally, it incorporates stakeholder preferences into the intervention design, making recommendations patient-centric and tailored. We evaluate GlyTwin on AZT1D, a newly constructed dataset with longitudinal data from 21 type 1 diabetes (T1D) patients on automated insulin delivery systems over 26 days. Results show GlyTwin outperforms state-of-the-art counterfactual methods, generating 76.6% valid and 86% effective interventions. These findings demonstrate the promise of counterfactual-driven digital twins in delivering personalized healthcare.
Laugh at Your Own Pace: Basic Performance Evaluation of Language Learning Assistance by Adjustment of Video Playback Speeds Based on Laughter Detection
Among various methods to learn a second language (L2), such as listening and shadowing, Extensive Viewing involves learning L2 by watching many videos. However, it is difficult for many L2 learners to smoothly and effortlessly comprehend video contents made for native speakers at the original speed. Therefore, we developed a language learning assistance system that automatically adjusts the playback speed according to the learner's comprehension. Our system judges that learners understand the contents if they laugh at the punchlines of comedy dramas, and vice versa. Experimental results show that this system supports learners with relatively low L2 ability (under 700 in TOEIC Score in the experimental condition) to understand video contents. Our system can widen learners' possible options of native speakers' videos as Extensive Viewing material.
comment: 6 pages, 5 figures
Redesign of Online Design Communities: Facilitating Personalized Visual Design Learning with Structured Comments
Online Design Communities (ODCs) offer various artworks with members' comments for beginners to learn visual design. However, as identified by our Formative Study (N = 10), current ODCs lack features customized for personal learning purposes, e.g., searching artworks and digesting useful comments to learn design principles about buttons. In this paper, we present DesignLearner, a redesigned interface of ODCs to facilitate personalized visual design learning with comments structured based on UI components (e.g., button, text) and visual elements (e.g., color, contrast). In DesignLearner, learners can specify the UI components and visual elements that they wish to learn to filter artworks and associated comments. They can interactively read comments on an artwork, take notes, and get suggestions for the next artworks to explore. Our between-subjects study (N = 24) indicates that compared to a traditional ODC interface, DesignLearner can improve the user learning outcome and is deemed significantly more useful. We conclude with design considerations for customizing the interface of online communities to satisfy users' learning needs.
comment: 28 pages
See or Recall: A Sanity Check for the Role of Vision in Solving Visualization Question Answer Tasks with Multimodal LLMs
Recent developments in multimodal large language models (MLLM) have equipped language models to reason about vision and language jointly. This permits MLLMs to both perceive and answer questions about data visualization across a variety of designs and tasks. Applying MLLMs to a broad range of visualization tasks requires us to properly evaluate their capabilities, and the most common way to conduct evaluation is through measuring a model's visualization reasoning capability, analogous to how we would evaluate human understanding of visualizations (e.g., visualization literacy). However, we found that in the context of visualization question answering (VisQA), how an MLLM perceives and reasons about visualizations can be fundamentally different from how humans approach the same problem. During the evaluation, even without visualization, the model could correctly answer a substantial portion of the visualization test questions, regardless of whether any selection options were provided. We hypothesize that the vast amount of knowledge encoded in the language model permits factual recall that supersedes the need to seek information from the visual signal. It raises concerns that the current VisQA evaluation may not fully capture the models' visualization reasoning capabilities. To address this, we propose a comprehensive sanity check framework that integrates a rule-based decision tree and a sanity check table to disentangle the effects of "seeing" (visual processing) and "recall" (reliance on prior knowledge). This validates VisQA datasets for evaluation, highlighting where models are truly "seeing", positively or negatively affected by the factual recall, or relying on inductive biases for question answering. Our study underscores the need for careful consideration in designing future visualization understanding studies when utilizing MLLMs.
"All Roads Lead to ChatGPT": How Generative AI is Eroding Social Interactions and Student Learning Communities
The widespread adoption of generative AI is already impacting learning and help-seeking. While the benefits of generative AI are well-understood, recent studies have also raised concerns about increased potential for cheating and negative impacts on students' metacognition and critical thinking. However, the potential impacts on social interactions, peer learning, and classroom dynamics are not yet well understood. To investigate these aspects, we conducted 17 semi-structured interviews with undergraduate computing students across seven R1 universities in North America. Our findings suggest that help-seeking requests are now often mediated by generative AI. For example, students often redirected questions from their peers to generative AI instead of providing assistance themselves, undermining peer interaction. Students also reported feeling increasingly isolated and demotivated as the social support systems they rely on begin to break down. These findings are concerning given the important role that social interactions play in students' learning and sense of belonging.
comment: 7 pages, 1 table. To be published in the Proceedings of the 2025 Innovation and Technology in Computer Science Education (ITiCSE 2025)
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Explanations for computer vision models are important tools for interpreting how the underlying models work. However, they are often presented in static formats, which pose challenges for users, including information overload, a gap between semantic and pixel-level information, and limited opportunities for exploration. We investigate interactivity as a mechanism for tackling these issues in three common explanation types: heatmap-based, concept-based, and prototype-based explanations. We conducted a study (N=24), using a bird identification task, involving participants with diverse technical and domain expertise. We found that while interactivity enhances user control, facilitates rapid convergence to relevant information, and allows users to expand their understanding of the model and explanation, it also introduces new challenges. To address these, we provide design recommendations for interactive computer vision explanations, including carefully selected default views, independent input controls, and constrained output spaces.
comment: To appear in Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25)
Playing to Pay: Interplay of Monetization and Retention Strategies in Korean Mobile Gaming
Mobile gaming's global growth has introduced evolving monetization strategies, such as in app purchases and ads, designed to boost revenue while maintaining player engagement. However, there is limited understanding of the scope and frequency of these strategies, particularly in mature markets like South Korea. To address this research gap, this study examines the monetization strategies used in the top 40 most popular Korean mobile games through direct gameplay observations and targeted video analyses. We identified the prevalence of specific strategies, including time gated progression, Conflict Driven Design, and social Dynamics, which are systematically categorized in our proposed framework for monetization. Our findings also highlight ethical concerns, including issues with transparency, probability disclosures, and the exploitation of competitive pressures areas that remain poorly regulated. To address these challenges, we emphasize the need for stricter consumer protections, cross regional research, and greater focus on protecting vulnerable populations to promote a more equitable and responsible gaming environment.
Legally-Informed Explainable AI
Explanations for artificial intelligence (AI) systems are intended to support the people who are impacted by AI systems in high-stakes decision-making environments, such as doctors, patients, teachers, students, housing applicants, and many others. To protect people and support the responsible development of AI, explanations need to be actionable--helping people take pragmatic action in response to an AI system--and contestable--enabling people to push back against an AI system and its determinations. For many high-stakes domains, such as healthcare, education, and finance, the sociotechnical environment includes significant legal implications that impact how people use AI explanations. For example, physicians who use AI decision support systems may need information on how accepting or rejecting an AI determination will protect them from lawsuits or help them advocate for their patients. In this paper, we make the case for Legally-Informed Explainable AI, responding to the need to integrate and design for legal considerations when creating AI explanations. We describe three stakeholder groups with different informational and actionability needs, and provide practical recommendations to tackle design challenges around the design of explainable AI systems that incorporate legal considerations.
comment: 9 pages
GestureCoach: Rehearsing for Engaging Talks with LLM-Driven Gesture Recommendations
This paper introduces GestureCoach, a system designed to help speakers deliver more engaging talks by guiding them to gesture effectively during rehearsal. GestureCoach combines an LLM-driven gesture recommendation model with a rehearsal interface that proactively cues speakers to gesture appropriately. Trained on experts' gesturing patterns from TED talks, the model consists of two modules: an emphasis proposal module, which predicts when to gesture by identifying gesture-worthy text segments in the presenter notes, and a gesture identification module, which determines what gesture to use by retrieving semantically appropriate gestures from a curated gesture database. Results of a model performance evaluation and user study (N=30) show that the emphasis proposal module outperforms off-the-shelf LLMs in identifying suitable gesture regions, and that participants rated the majority of these predicted regions and their corresponding gestures as highly appropriate. A subsequent user study (N=10) showed that rehearsing with GestureCoach encouraged speakers to gesture and significantly increased gesture diversity, resulting in more engaging talks. We conclude with design implications for future AI-driven rehearsal systems.
Emotion Alignment: Discovering the Gap Between Social Media and Real-World Sentiments in Persian Tweets and Images
In contemporary society, widespread social media usage is evident in people's daily lives. Nevertheless, disparities in emotional expressions between the real world and online platforms can manifest. We comprehensively analyzed Persian community on X to explore this phenomenon. An innovative pipeline was designed to measure the similarity between emotions in the real world compared to social media. Accordingly, recent tweets and images of participants were gathered and analyzed using Transformers-based text and image sentiment analysis modules. Each participant's friends also provided insights into the their real-world emotions. A distance criterion was used to compare real-world feelings with virtual experiences. Our study encompassed N=105 participants, 393 friends who contributed their perspectives, over 8,300 collected tweets, and 2,000 media images. Results indicated a 28.67% similarity between images and real-world emotions, while tweets exhibited a 75.88% alignment with real-world feelings. Additionally, the statistical significance confirmed that the observed disparities in sentiment proportions.
Will AI shape the way we speak? The emerging sociolinguistic influence of synthetic voices
The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications.
comment: 5 pages, 0 figures, International Workshop on Spoken Dialogue Systems Technology (IWSDS) 2025
SPreV
SPREV, short for hyperSphere Reduced to two-dimensional Regular Polygon for Visualisation, is a novel dimensionality reduction technique developed to address the challenges of reducing dimensions and visualizing labeled datasets that exhibit a unique combination of three characteristics: small class size, high dimensionality, and low sample size. SPREV is designed not only to uncover but also to visually represent hidden patterns within such datasets. Its distinctive integration of geometric principles, adapted for discrete computational environments, makes it an indispensable tool in the modern data science toolkit, enabling users to identify trends, extract insights, and navigate complex data efficiently and effectively.
comment: 45 Pages, 7 Figures, 3 Tables, 9 Algorithms, Opensource
EthosGPT: Mapping Human Value Diversity to Advance Sustainable Development Goals (SDGs)
Large language models (LLMs) are transforming global decision-making and societal systems by processing diverse data at unprecedented scales. However, their potential to homogenize human values poses critical risks, similar to biodiversity loss undermining ecological resilience. Rooted in the ancient Greek concept of ethos, meaning both individual character and the shared moral fabric of communities, EthosGPT draws on a tradition that spans from Aristotle's virtue ethics to Adam Smith's moral sentiments as the ethical foundation of economic cooperation. These traditions underscore the vital role of value diversity in fostering social trust, institutional legitimacy, and long-term prosperity. EthosGPT addresses the challenge of value homogenization by introducing an open-source framework for mapping and evaluating LLMs within a global scale of human values. Using international survey data on cultural indices, prompt-based assessments, and comparative statistical analyses, EthosGPT reveals both the adaptability and biases of LLMs across regions and cultures. It offers actionable insights for developing inclusive LLMs, such as diversifying training data and preserving endangered cultural heritage to ensure representation in AI systems. These contributions align with the United Nations Sustainable Development Goals (SDGs), especially SDG 10 (Reduced Inequalities), SDG 11.4 (Cultural Heritage Preservation), and SDG 16 (Peace, Justice and Strong Institutions). Through interdisciplinary collaboration, EthosGPT promotes AI systems that are both technically robust and ethically inclusive, advancing value plurality as a cornerstone for sustainable and equitable futures.
"It Listens Better Than My Therapist": Exploring Social Media Discourse on LLMs as Mental Health Tool
The emergence of generative AI chatbots such as ChatGPT has prompted growing public and academic interest in their role as informal mental health support tools. While early rule-based systems have been around for several years, large language models (LLMs) offer new capabilities in conversational fluency, empathy simulation, and availability. This study explores how users engage with LLMs as mental health tools by analyzing over 10,000 TikTok comments from videos referencing LLMs as mental health tools. Using a self-developed tiered coding schema and supervised classification models, we identify user experiences, attitudes, and recurring themes. Results show that nearly 20% of comments reflect personal use, with these users expressing overwhelmingly positive attitudes. Commonly cited benefits include accessibility, emotional support, and perceived therapeutic value. However, concerns around privacy, generic responses, and the lack of professional oversight remain prominent. It is important to note that the user feedback does not indicate which therapeutic framework, if any, the LLM-generated output aligns with. While the findings underscore the growing relevance of AI in everyday practices, they also highlight the urgent need for clinical and ethical scrutiny in the use of AI for mental health support.
comment: This study does not endorse or encourage the use of AI tools as substitutes for professional mental health support. The findings are presented for research purposes only, and any interpretation should take into account the limitations and potential risks of relying on AI in mental health contexts
Intelligent Framework for Human-Robot Collaboration: Dynamic Ergonomics and Adaptive Decision-Making
The integration of collaborative robots into industrial environments has improved productivity, but has also highlighted significant challenges related to operator safety and ergonomics. This paper proposes an innovative framework that integrates advanced visual perception, continuous ergonomic monitoring, and adaptive Behaviour Tree decision-making to overcome the limitations of traditional methods that typically operate as isolated components. Our approach synthesizes deep learning models, advanced tracking algorithms, and dynamic ergonomic assessments into a modular, scalable, and adaptive system. Experimental validation demonstrates the framework's superiority over existing solutions across multiple dimensions: the visual perception module outperformed previous detection models with 72.4% mAP@50:95; the system achieved high accuracy in recognizing operator intentions (92.5%); it promptly classified ergonomic risks with minimal latency (0.57 seconds); and it dynamically managed robotic interventions with exceptionally responsive decision-making capabilities (0.07 seconds), representing a 56% improvement over benchmark systems. This comprehensive solution provides a robust platform for enhancing human-robot collaboration in industrial environments by prioritizing ergonomic safety, operational efficiency, and real-time adaptability.
comment: 15 pagine, 8figure, 3 tabelle, formato conferenza IEEE
COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling
The therapeutic working alliance is a critical predictor of psychotherapy success. Traditionally, working alliance assessment relies on questionnaires completed by both therapists and patients. In this paper, we present COMPASS, a novel framework to directly infer the therapeutic working alliance from the natural language used in psychotherapy sessions. Our approach leverages advanced large language models (LLMs) to analyze session transcripts and map them to distributed representations. These representations capture the semantic similarities between the dialogues and psychometric instruments, such as the Working Alliance Inventory. Analyzing a dataset of over 950 sessions spanning diverse psychiatric conditions -- including anxiety (N=498), depression (N=377), schizophrenia (N=71), and suicidal tendencies (N=12) -- collected between 1970 and 2012, we demonstrate the effectiveness of our method in providing fine-grained mapping of patient-therapist alignment trajectories, offering interpretable insights for clinical practice, and identifying emerging patterns related to the condition being treated. By employing various deep learning-based topic modeling techniques in combination with prompting generative language models, we analyze the topical characteristics of different psychiatric conditions and how these topics evolve during each turn of the conversation. This integrated framework enhances the understanding of therapeutic interactions, enables timely feedback for therapists on the quality of therapeutic relationships, and provides clear, actionable insights to improve the effectiveness of psychotherapy.
comment: Translational Psychiatry, in press. This work extends our research series in computational psychiatry (e.g auto annotation in arXiv:2204.05522, topic extraction in arXiv:2204.10189, and diagnosis in arXiv:2210.15603) with the introduction of LLMs to complete the full cycle of interpreting and understanding psychotherapy strategies as a comprehensive analytical framework
Explanation-Driven Interventions for Artificial Intelligence Model Customization: Empowering End-Users to Tailor Black-Box AI in Rhinocytology
The integration of Artificial Intelligence (AI) in modern society is transforming how individuals perform tasks. In high-risk domains, ensuring human control over AI systems remains a key design challenge. This article presents a novel End-User Development (EUD) approach for black-box AI models, enabling users to edit explanations and influence future predictions through targeted interventions. By combining explainability, user control, and model adaptability, the proposed method advances Human-Centered AI (HCAI), promoting a symbiotic relationship between humans and adaptive, user-tailored AI systems.
comment: Second version (11 pages, 8 of content)
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Iris Style Transfer: Enhancing Iris Recognition with Style Features and Privacy Preservation through Neural Style Transfer
Iris texture is widely regarded as a gold standard biometric modality for authentication and identification. The demand for robust iris recognition methods, coupled with growing security and privacy concerns regarding iris attacks, has escalated recently. Inspired by neural style transfer, an advanced technique that leverages neural networks to separate content and style features, we hypothesize that iris texture's style features provide a reliable foundation for recognition and are more resilient to variations like rotation and perspective shifts than traditional approaches. Our experimental results support this hypothesis, showing a significantly higher classification accuracy compared to conventional features. Further, we propose using neural style transfer to obfuscate the identifiable iris style features, ensuring the protection of sensitive biometric information while maintaining the utility of eye images for tasks like eye segmentation and gaze estimation. This work opens new avenues for iris-oriented, secure, and privacy-aware biometric systems.
comment: The 2025 ACM Symposium on Eye Tracking Research & Applications (ETRA)
Walk along: An Experiment on Controlling the Mobile Robot 'Spot' with Voice and Gestures
Robots are becoming more capable and can autonomously perform tasks such as navigating between locations. However, human oversight remains crucial. This study compared two touchless methods for directing mobile robots: voice control and gesture control, to investigate the efficiency of the methods and the preference of users. We tested these methods in two conditions: one in which participants remained stationary and one in which they walked freely alongside the robot. We hypothesized that walking alongside the robot would result in higher intuitiveness ratings and improved task performance, based on the idea that walking promotes spatial alignment and reduces the effort required for mental rotation. In a 2x2 within-subject design, 218 participants guided the quadruped robot Spot along a circuitous route with multiple 90-degree turns using rotate left, rotate right, and walk forward commands. After each trial, participants rated the intuitiveness of the command mapping, while post-experiment interviews were used to gather the participants' preferences. Results showed that voice control combined with walking with Spot was the most favored and intuitive, whereas gesture control while standing caused confusion for left/right commands. Nevertheless, 29% of participants preferred gesture control, citing increased task engagement and visual congruence as reasons. An odometry-based analysis revealed that participants often followed behind Spot, particularly in the gesture control condition, when they were allowed to walk. In conclusion, voice control with walking produced the best outcomes. Improving physical ergonomics and adjusting gesture types could make gesture control more effective.
RAG-VR: Leveraging Retrieval-Augmented Generation for 3D Question Answering in VR Environments
Recent advances in large language models (LLMs) provide new opportunities for context understanding in virtual reality (VR). However, VR contexts are often highly localized and personalized, limiting the effectiveness of general-purpose LLMs. To address this challenge, we present RAG-VR, the first 3D question-answering system for VR that incorporates retrieval-augmented generation (RAG), which augments an LLM with external knowledge retrieved from a localized knowledge database to improve the answer quality. RAG-VR includes a pipeline for extracting comprehensive knowledge about virtual environments and user conditions for accurate answer generation. To ensure efficient retrieval, RAG-VR offloads the retrieval process to a nearby edge server and uses only essential information during retrieval. Moreover, we train the retriever to effectively distinguish among relevant, irrelevant, and hard-to-differentiate information in relation to questions. RAG-VR improves answer accuracy by 17.9%-41.8% and reduces end-to-end latency by 34.5%-47.3% compared with two baseline systems.
comment: GenAI-XR 2025 Workshop, co-located with 2025 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Algorithmic Behaviors Across Regions: A Geolocation Audit of YouTube Search for COVID-19 Misinformation Between the United States and South Africa
Despite being an integral tool for finding health-related information online, YouTube has faced criticism for disseminating COVID-19 misinformation globally to its users. Yet, prior audit studies have predominantly investigated YouTube within the Global North contexts, often overlooking the Global South. To address this gap, we conducted a comprehensive 10-day geolocation-based audit on YouTube to compare the prevalence of COVID-19 misinformation in search results between the United States (US) and South Africa (SA), the countries heavily affected by the pandemic in the Global North and the Global South, respectively. For each country, we selected 3 geolocations and placed sock-puppets, or bots emulating "real" users, that collected search results for 48 search queries sorted by 4 search filters for 10 days, yielding a dataset of 915K results. We found that 31.55% of the top-10 search results contained COVID-19 misinformation. Among the top-10 search results, bots in SA faced significantly more misinformative search results than their US counterparts. Overall, our study highlights the contrasting algorithmic behaviors of YouTube search between two countries, underscoring the need for the platform to regulate algorithmic behavior consistently across different regions of the Globe.
comment: 30 pages. Accepted at ICWSM 2025
Reddit Rules and Rulers: Quantifying the Link Between Rules and Perceptions of Governance across Thousands of Communities
Rules are a critical component of the functioning of nearly every online community, yet it is challenging for community moderators to make data-driven decisions about what rules to set for their communities. The connection between a community's rules and how its membership feels about its governance is not well understood. In this work, we conduct the largest-to-date analysis of rules on Reddit, collecting a set of 67,545 unique rules across 5,225 communities which collectively account for more than 67% of all content on Reddit. More than just a point-in-time study, our work measures how communities change their rules over a 5+ year period. We develop a method to classify these rules using a taxonomy of 17 key attributes extended from previous work. We assess what types of rules are most prevalent, how rules are phrased, and how they vary across communities of different types. Using a dataset of communities' discussions about their governance, we are the first to identify the rules most strongly associated with positive community perceptions of governance: rules addressing who participates, how content is formatted and tagged, and rules about commercial activities. We conduct a longitudinal study to quantify the impact of adding new rules to communities, finding that after a rule is added, community perceptions of governance immediately improve, yet this effect diminishes after six months. Our results have important implications for platforms, moderators, and researchers. We make our classification model and rules datasets public to support future research on this topic.
comment: to appear at ICWSM 2025
Facial Surgery Preview Based on the Orthognathic Treatment Prediction
Orthognathic surgery consultation is essential to help patients understand the changes to their facial appearance after surgery. However, current visualization methods are often inefficient and inaccurate due to limited pre- and post-treatment data and the complexity of the treatment. To overcome these challenges, this study aims to develop a fully automated pipeline that generates accurate and efficient 3D previews of postsurgical facial appearances for patients with orthognathic treatment without requiring additional medical images. The study introduces novel aesthetic losses, such as mouth-convexity and asymmetry losses, to improve the accuracy of facial surgery prediction. Additionally, it proposes a specialized parametric model for 3D reconstruction of the patient, medical-related losses to guide latent code prediction network optimization, and a data augmentation scheme to address insufficient data. The study additionally employs FLAME, a parametric model, to enhance the quality of facial appearance previews by extracting facial latent codes and establishing dense correspondences between pre- and post-surgery geometries. Quantitative comparisons showed the algorithm's effectiveness, and qualitative results highlighted accurate facial contour and detail predictions. A user study confirmed that doctors and the public could not distinguish between machine learning predictions and actual postoperative results. This study aims to offer a practical, effective solution for orthognathic surgery consultations, benefiting doctors and patients.
comment: 9 pages, 5 figures
Niche Dynamics in Complex Online Community Ecosystems
Online communities are important organizational forms where members socialize and share information. Curiously, different online communities often overlap considerably in topic and membership. Recent research has investigated competition and mutualism among overlapping online communities through the lens of organizational ecology; however, it has not accounted for how the nonlinear dynamics of online attention may lead to episodic competition and mutualism. Neither has it explored the origins of competition and mutualism in the processes by which online communities select or adapt to their niches. This paper presents a large-scale study of 8,806 Reddit communities belonging to 1,919 clusters of high user overlap over a 5-year period. The method uses nonlinear time series methods to infer bursty, often short-lived ecological dynamics. Results reveal that mutualism episodes are longer lived and slightly more frequent than competition episodes. Next, it tests whether online communities find their niches by specializing to avoid competition using panel regression models. It finds that competitive ecological interactions lead to decreasing topic and user overlaps; however, changes that decrease such niche overlaps do not lead to mutualism. The discussion proposes that future designs may enable online community ecosystem management by informing online community leaders to organize "spin-off" communities or via feeds and recommendations.
comment: 12 pages, 4 figures, conditionally accepted to ICWSM 2025
Experiential Explanations for Reinforcement Learning
Reinforcement learning (RL) systems can be complex and non-interpretable, making it challenging for non-AI experts to understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because of their likelihood of obtaining future rewards. However, RL agents discard the qualitative features of their training, making it difficult to recover user-understandable information for "why" an action is chosen. We propose a technique Experiential Explanations to generate counterfactual explanations by training influence predictors along with the RL policy. Influence predictors are models that learn how different sources of reward affect the agent in different states, thus restoring information about how the policy reflects the environment. Two human evaluation studies revealed that participants presented with Experiential Explanations were better able to correctly guess what an agent would do than those presented with other standard types of explanation. Participants also found that Experiential Explanations are more understandable, satisfying, complete, useful, and accurate. Qualitative analysis provides information on the factors of Experiential Explanations that are most useful and the desired characteristics that participants seek from the explanations.
comment: (50 pages, 28 figures) Published in the Journal of Neural Computing & Applications (2025) Code is available in: https://github.com/amal994/Experiential-Explanations-RL
Image and Video Processing
OmniMamba4D: Spatio-temporal Mamba for longitudinal CT lesion segmentation
Accurate segmentation of longitudinal CT scans is important for monitoring tumor progression and evaluating treatment responses. However, existing 3D segmentation models solely focus on spatial information. To address this gap, we propose OmniMamba4D, a novel segmentation model designed for 4D medical images (3D images over time). OmniMamba4D utilizes a spatio-temporal tetra-orientated Mamba block to effectively capture both spatial and temporal features. Unlike traditional 3D models, which analyze single-time points, OmniMamba4D processes 4D CT data, providing comprehensive spatio-temporal information on lesion progression. Evaluated on an internal dataset comprising of 3,252 CT scans, OmniMamba4D achieves a competitive Dice score of 0.682, comparable to state-of-the-arts (SOTA) models, while maintaining computational efficiency and better detecting disappeared lesions. This work demonstrates a new framework to leverage spatio-temporal information for longitudinal CT lesion segmentation.
comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI) 2025
Mixture-of-Shape-Experts (MoSE): End-to-End Shape Dictionary Framework to Prompt SAM for Generalizable Medical Segmentation CVPR 2025
Single domain generalization (SDG) has recently attracted growing attention in medical image segmentation. One promising strategy for SDG is to leverage consistent semantic shape priors across different imaging protocols, scanner vendors, and clinical sites. However, existing dictionary learning methods that encode shape priors often suffer from limited representational power with a small set of offline computed shape elements, or overfitting when the dictionary size grows. Moreover, they are not readily compatible with large foundation models such as the Segment Anything Model (SAM). In this paper, we propose a novel Mixture-of-Shape-Experts (MoSE) framework that seamlessly integrates the idea of mixture-of-experts (MoE) training into dictionary learning to efficiently capture diverse and robust shape priors. Our method conceptualizes each dictionary atom as a shape expert, which specializes in encoding distinct semantic shape information. A gating network dynamically fuses these shape experts into a robust shape map, with sparse activation guided by SAM encoding to prevent overfitting. We further provide this shape map as a prompt to SAM, utilizing the powerful generalization capability of SAM through bidirectional integration. All modules, including the shape dictionary, are trained in an end-to-end manner. Extensive experiments on multiple public datasets demonstrate its effectiveness.
comment: Accepted to CVPR 2025 workshop
Enhancing Wide-Angle Image Using Narrow-Angle View of the Same Scene
A common dilemma while photographing a scene is whether to capture it in wider angle, allowing more of the scene to be covered but in lesser details or to click in narrow angle that captures better details but leaves out portions of the scene. We propose a novel method in this paper that infuses wider shots with finer quality details that is usually associated with an image captured by the primary lens by capturing the same scene using both narrow and wide field of view (FoV) lenses. We do so by training a GAN-based model to learn to extract the visual quality parameters from a narrow angle shot and to transfer these to the corresponding wide-angle image of the scene. We have mentioned in details the proposed technique to isolate the visual essence of an image and to transfer it into another image. We have also elaborately discussed our implementation details and have presented the results of evaluation over several benchmark datasets and comparisons with contemporary advancements in the field.
Structure-Accurate Medical Image Translation based on Dynamic Frequency Balance and Knowledge Guidance
Multimodal medical images play a crucial role in the precise and comprehensive clinical diagnosis. Diffusion model is a powerful strategy to synthesize the required medical images. However, existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information and the weakening of low-frequency information. Thus, we propose a novel method based on dynamic frequency balance and knowledge guidance. Specifically, we first extract the low-frequency and high-frequency components by decomposing the critical features of the model using wavelet transform. Then, a dynamic frequency balance module is designed to adaptively adjust frequency for enhancing global low-frequency features and effective high-frequency details as well as suppressing high-frequency noise. To further overcome the challenges posed by the large differences between different medical modalities, we construct a knowledge-guided mechanism that fuses the prior clinical knowledge from a visual language model with visual features, to facilitate the generation of accurate anatomical structures. Experimental evaluations on multiple datasets show the proposed method achieves significant improvements in qualitative and quantitative assessments, verifying its effectiveness and superiority.
comment: Medical image translation, Diffusion model, 16 pages
Predicting ulcer in H&E images of inflammatory bowel disease using domain-knowledge-driven graph neural network
Inflammatory bowel disease (IBD) involves chronic inflammation of the digestive tract, with treatment options often burdened by adverse effects. Identifying biomarkers for personalized treatment is crucial. While immune cells play a key role in IBD, accurately identifying ulcer regions in whole slide images (WSIs) is essential for characterizing these cells and exploring potential therapeutics. Multiple instance learning (MIL) approaches have advanced WSI analysis but they lack spatial context awareness. In this work, we propose a weakly-supervised model called DomainGCN that employs a graph convolution neural network (GCN) and incorporates domain-specific knowledge of ulcer features, specifically, the presence of epithelium, lymphocytes, and debris for WSI-level ulcer prediction in IBD. We demonstrate that DomainGCN outperforms various state-of-the-art (SOTA) MIL methods and show the added value of domain knowledge.
comment: Work accepted at ISBI 2025
Computationally iterative methods for salt-and-pepper denoising
Image restoration refers to the process of reconstructing noisy, destroyed, or missing parts of an image, which is an ill-posed inverse problem. A specific regularization term and image degradation are typically assumed to achieve well-posedness. Based on the underlying assumption, an image restoration problem can be modeled as a linear or non-linear optimization problem with or without regularization, which can be solved by iterative methods. In this work, we propose two different iterative methods by linearizing a system of non-linear equations and coupling them with a two-phase iterative framework. The qualitative and quantitative experimental results demonstrate the correctness and efficiency of the proposed methods.
Imaging Transformer for MRI Denoising: a Scalable Model Architecture that enables SNR << 1 Imaging
Purpose: To propose a flexible and scalable imaging transformer (IT) architecture with three attention modules for multi-dimensional imaging data and apply it to MRI denoising with very low input SNR. Methods: Three independent attention modules were developed: spatial local, spatial global, and frame attentions. They capture long-range signal correlation and bring back the locality of information in images. An attention-cell-block design processes 5D tensors ([B, C, F, H, W]) for 2D, 2D+T, and 3D image data. A High Resolution (HRNet) backbone was built to hold IT blocks. Training dataset consists of 206,677 cine series and test datasets had 7,267 series. Ten input SNR levels from 0.05 to 8.0 were tested. IT models were compared to seven convolutional and transformer baselines. To test scalability, four IT models 27m to 218m parameters were trained. Two senior cardiologists reviewed IT model outputs from which the EF was measured and compared against the ground-truth. Results: IT models significantly outperformed other models over the tested SNR levels. The performance gap was most prominent at low SNR levels. The IT-218m model had the highest SSIM and PSNR, restoring good image quality and anatomical details even at SNR 0.2. Two experts agreed at this SNR or above, the IT model output gave the same clinical interpretation as the ground-truth. The model produced images that had accurate EF measurements compared to ground-truth values. Conclusions: Imaging transformer model offers strong performance, scalability, and versatility for MR denoising. It recovers image quality suitable for confident clinical reading and accurate EF measurement, even at very low input SNR of 0.2.
snnTrans-DHZ: A Lightweight Spiking Neural Network Architecture for Underwater Image Dehazing
Underwater image dehazing is critical for vision-based marine operations because light scattering and absorption can severely reduce visibility. This paper introduces snnTrans-DHZ, a lightweight Spiking Neural Network (SNN) specifically designed for underwater dehazing. By leveraging the temporal dynamics of SNNs, snnTrans-DHZ efficiently processes time-dependent raw image sequences while maintaining low power consumption. Static underwater images are first converted into time-dependent sequences by repeatedly inputting the same image over user-defined timesteps. These RGB sequences are then transformed into LAB color space representations and processed concurrently. The architecture features three key modules: (i) a K estimator that extracts features from multiple color space representations; (ii) a Background Light Estimator that jointly infers the background light component from the RGB-LAB images; and (iii) a soft image reconstruction module that produces haze-free, visibility-enhanced outputs. The snnTrans-DHZ model is directly trained using a surrogate gradient-based backpropagation through time (BPTT) strategy alongside a novel combined loss function. Evaluated on the UIEB benchmark, snnTrans-DHZ achieves a PSNR of 21.68 dB and an SSIM of 0.8795, and on the EUVP dataset, it yields a PSNR of 23.46 dB and an SSIM of 0.8439. With only 0.5670 million network parameters, and requiring just 7.42 GSOPs and 0.0151 J of energy, the algorithm significantly outperforms existing state-of-the-art methods in terms of efficiency. These features make snnTrans-DHZ highly suitable for deployment in underwater robotics, marine exploration, and environmental monitoring.
FUSION: Frequency-guided Underwater Spatial Image recOnstructioN
Underwater images suffer from severe degradations, including color distortions, reduced visibility, and loss of structural details due to wavelength-dependent attenuation and scattering. Existing enhancement methods primarily focus on spatial-domain processing, neglecting the frequency domain's potential to capture global color distributions and long-range dependencies. To address these limitations, we propose FUSION, a dual-domain deep learning framework that jointly leverages spatial and frequency domain information. FUSION independently processes each RGB channel through multi-scale convolutional kernels and adaptive attention mechanisms in the spatial domain, while simultaneously extracting global structural information via FFT-based frequency attention. A Frequency Guided Fusion module integrates complementary features from both domains, followed by inter-channel fusion and adaptive channel recalibration to ensure balanced color distributions. Extensive experiments on benchmark datasets (UIEB, EUVP, SUIM-E) demonstrate that FUSION achieves state-of-the-art performance, consistently outperforming existing methods in reconstruction fidelity (highest PSNR of 23.717 dB and SSIM of 0.883 on UIEB), perceptual quality (lowest LPIPS of 0.112 on UIEB), and visual enhancement metrics (best UIQM of 3.414 on UIEB), while requiring significantly fewer parameters (0.28M) and lower computational complexity, demonstrating its suitability for real-time underwater imaging applications.
Deep Learning-Based Automatic Diagnosis System for Developmental Dysplasia of the Hip
Objective: The clinical diagnosis of developmental dysplasia of the hip (DDH) typically involves manually measuring key radiological angles -- Center-Edge (CE), Tonnis, and Sharp angles -- from pelvic radiographs, a process that is time-consuming and susceptible to variability. This study aims to develop an automated system that integrates these measurements to enhance the accuracy and consistency of DDH diagnosis. Methods and procedures: We developed an end-to-end deep learning model for keypoint detection that accurately identifies eight anatomical keypoints from pelvic radiographs, enabling the automated calculation of CE, Tonnis, and Sharp angles. To support the diagnostic decision, we introduced a novel data-driven scoring system that combines the information from all three angles into a comprehensive and explainable diagnostic output. Results: The system demonstrated superior consistency in angle measurements compared to a cohort of eight moderately experienced orthopedists. The intraclass correlation coefficients for the CE, Tonnis, and Sharp angles were 0.957 (95% CI: 0.952--0.962), 0.942 (95% CI: 0.937--0.947), and 0.966 (95% CI: 0.964--0.968), respectively. The system achieved a diagnostic F1 score of 0.863 (95% CI: 0.851--0.876), significantly outperforming the orthopedist group (0.777, 95% CI: 0.737--0.817, p = 0.005), as well as using clinical diagnostic criteria for each angle individually (p<0.001). Conclusion: The proposed system provides reliable and consistent automated measurements of radiological angles and an explainable diagnostic output for DDH, outperforming moderately experienced clinicians. Clinical impact: This AI-powered solution reduces the variability and potential errors of manual measurements, offering clinicians a more consistent and interpretable tool for DDH diagnosis.
Multimedia
Automatic Detection of Intro and Credits in Video using CLIP and Multihead Attention
Detecting transitions between intro/credits and main content in videos is a crucial task for content segmentation, indexing, and recommendation systems. Manual annotation of such transitions is labor-intensive and error-prone, while heuristic-based methods often fail to generalize across diverse video styles. In this work, we introduce a deep learning-based approach that formulates the problem as a sequence-to-sequence classification task, where each second of a video is labeled as either "intro" or "film." Our method extracts frames at a fixed rate of 1 FPS, encodes them using CLIP (Contrastive Language-Image Pretraining), and processes the resulting feature representations with a multihead attention model incorporating learned positional encoding. The system achieves an F1-score of 91.0%, Precision of 89.0%, and Recall of 97.0% on the test set, and is optimized for real-time inference, achieving 11.5 FPS on CPU and 107 FPS on high-end GPUs. This approach has practical applications in automated content indexing, highlight detection, and video summarization. Future work will explore multimodal learning, incorporating audio features and subtitles to further enhance detection accuracy.
comment: 22 pages, 11 figures, submitted as a preprint. ArXiv preprint only, not submitted to a journal yet
InfoMAE: Pair-Efficient Cross-Modal Alignment for Multimodal Time-Series Sensing Signals
Standard multimodal self-supervised learning (SSL) algorithms regard cross-modal synchronization as implicit supervisory labels during pretraining, thus posing high requirements on the scale and quality of multimodal samples. These constraints significantly limit the performance of sensing intelligence in IoT applications, as the heterogeneity and the non-interpretability of time-series signals result in abundant unimodal data but scarce high-quality multimodal pairs. This paper proposes InfoMAE, a cross-modal alignment framework that tackles the challenge of multimodal pair efficiency under the SSL setting by facilitating efficient cross-modal alignment of pretrained unimodal representations. InfoMAE achieves \textit{efficient cross-modal alignment} with \textit{limited data pairs} through a novel information theory-inspired formulation that simultaneously addresses distribution-level and instance-level alignment. Extensive experiments on two real-world IoT applications are performed to evaluate InfoMAE's pairing efficiency to bridge pretrained unimodal models into a cohesive joint multimodal model. InfoMAE enhances downstream multimodal tasks by over 60% with significantly improved multimodal pairing efficiency. It also improves unimodal task accuracy by an average of 22%.
Ges3ViG: Incorporating Pointing Gestures into Language-Based 3D Visual Grounding for Embodied Reference Understanding CVPR
3-Dimensional Embodied Reference Understanding (3D-ERU) combines a language description and an accompanying pointing gesture to identify the most relevant target object in a 3D scene. Although prior work has explored pure language-based 3D grounding, there has been limited exploration of 3D-ERU, which also incorporates human pointing gestures. To address this gap, we introduce a data augmentation framework-Imputer, and use it to curate a new benchmark dataset-ImputeRefer for 3D-ERU, by incorporating human pointing gestures into existing 3D scene datasets that only contain language instructions. We also propose Ges3ViG, a novel model for 3D-ERU that achieves ~30% improvement in accuracy as compared to other 3D-ERU models and ~9% compared to other purely language-based 3D grounding models. Our code and dataset are available at https://github.com/AtharvMane/Ges3ViG.
comment: Accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
Mixture-of-Shape-Experts (MoSE): End-to-End Shape Dictionary Framework to Prompt SAM for Generalizable Medical Segmentation CVPR 2025
Single domain generalization (SDG) has recently attracted growing attention in medical image segmentation. One promising strategy for SDG is to leverage consistent semantic shape priors across different imaging protocols, scanner vendors, and clinical sites. However, existing dictionary learning methods that encode shape priors often suffer from limited representational power with a small set of offline computed shape elements, or overfitting when the dictionary size grows. Moreover, they are not readily compatible with large foundation models such as the Segment Anything Model (SAM). In this paper, we propose a novel Mixture-of-Shape-Experts (MoSE) framework that seamlessly integrates the idea of mixture-of-experts (MoE) training into dictionary learning to efficiently capture diverse and robust shape priors. Our method conceptualizes each dictionary atom as a shape expert, which specializes in encoding distinct semantic shape information. A gating network dynamically fuses these shape experts into a robust shape map, with sparse activation guided by SAM encoding to prevent overfitting. We further provide this shape map as a prompt to SAM, utilizing the powerful generalization capability of SAM through bidirectional integration. All modules, including the shape dictionary, are trained in an end-to-end manner. Extensive experiments on multiple public datasets demonstrate its effectiveness.
comment: Accepted to CVPR 2025 workshop
AeroLite: Tag-Guided Lightweight Generation of Aerial Image Captions
Accurate and automated captioning of aerial imagery is crucial for applications like environmental monitoring, urban planning, and disaster management. However, this task remains challenging due to complex spatial semantics and domain variability. To address these issues, we introduce \textbf{AeroLite}, a lightweight, tag-guided captioning framework designed to equip small-scale language models (1--3B parameters) with robust and interpretable captioning capabilities specifically for remote sensing images. \textbf{AeroLite} leverages GPT-4o to generate a large-scale, semantically rich pseudo-caption dataset by integrating multiple remote sensing benchmarks, including DLRSD, iSAID, LoveDA, WHU, and RSSCN7. To explicitly capture key semantic elements such as orientation and land-use types, AeroLite employs natural language processing techniques to extract relevant semantic tags. These tags are then learned by a dedicated multi-label CLIP encoder, ensuring precise semantic predictions. To effectively fuse visual and semantic information, we propose a novel bridging multilayer perceptron (MLP) architecture, aligning semantic tags with visual embeddings while maintaining minimal computational overhead. AeroLite's flexible design also enables seamless integration with various pretrained large language models. We adopt a two-stage LoRA-based training approach: the initial stage leverages our pseudo-caption dataset to capture broad remote sensing semantics, followed by fine-tuning on smaller, curated datasets like UCM and Sydney Captions to refine domain-specific alignment. Experimental evaluations demonstrate that AeroLite surpasses significantly larger models (e.g., 13B parameters) in standard captioning metrics, including BLEU and METEOR, while maintaining substantially lower computational costs.
SimLabel: Similarity-Weighted Semi-supervision for Multi-annotator Learning with Missing Labels
Multi-annotator learning has emerged as an important research direction for capturing diverse perspectives in subjective annotation tasks. Typically, due to the large scale of datasets, each annotator can only label a subset of samples, resulting in incomplete (or missing) annotations per annotator. Traditional methods generally skip model updates for missing parts, leading to inefficient data utilization. In this paper, we propose a novel similarity-weighted semi-supervised learning framework (SimLabel) that leverages inter-annotator similarities to generate weighted soft labels. This approach enables the prediction, utilization, and updating of missing parts rather than discarding them. Meanwhile, we introduce a confidence assessment mechanism combining maximum probability with entropy-based uncertainty metrics to prioritize high-confidence predictions to impute missing labels during training as an iterative refinement pipeline, which continuously improves both inter-annotator similarity estimates and individual model performance. For the comprehensive evaluation, we contribute a new video emotion recognition dataset, AMER2, which exhibits higher missing rates than its predecessor, AMER. Experimental results demonstrate our method's superior performance compared to existing approaches under missing-label conditions.
comment: 9 pages
Identity-Aware Vision-Language Model for Explainable Face Forgery Detection
Recent advances in generative artificial intelligence have enabled the creation of highly realistic image forgeries, raising significant concerns about digital media authenticity. While existing detection methods demonstrate promising results on benchmark datasets, they face critical limitations in real-world applications. First, existing detectors typically fail to detect semantic inconsistencies with the person's identity, such as implausible behaviors or incompatible environmental contexts in given images. Second, these methods rely heavily on low-level visual cues, making them effective for known forgeries but less reliable against new or unseen manipulation techniques. To address these challenges, we present a novel personalized vision-language model (VLM) that integrates low-level visual artifact analysis and high-level semantic inconsistency detection. Unlike previous VLM-based methods, our approach avoids resource-intensive supervised fine-tuning that often struggles to preserve distinct identity characteristics. Instead, we employ a lightweight method that dynamically encodes identity-specific information into specialized identifier tokens. This design enables the model to learn distinct identity characteristics while maintaining robust generalization capabilities. We further enhance detection capabilities through a lightweight detection adapter that extracts fine-grained information from shallow features of the vision encoder, preserving critical low-level evidence. Comprehensive experiments demonstrate that our approach achieves 94.25% accuracy and 94.08% F1 score, outperforming both traditional forgery detectors and general VLMs while requiring only 10 extra tokens.
Audio-Visual Speaker Tracking: Progress, Challenges, and Future Directions
Audio-visual speaker tracking has drawn increasing attention over the past few years due to its academic values and wide applications. Audio and visual modalities can provide complementary information for localization and tracking. With audio and visual information, the Bayesian-based filter and deep learning-based methods can solve the problem of data association, audio-visual fusion and track management. In this paper, we conduct a comprehensive overview of audio-visual speaker tracking. To our knowledge, this is the first extensive survey over the past five years. We introduce the family of Bayesian filters and summarize the methods for obtaining audio-visual measurements. In addition, the existing trackers and their performance on the AV16.3 dataset are summarized. In the past few years, deep learning techniques have thrived, which also boost the development of audio-visual speaker tracking. The influence of deep learning techniques in terms of measurement extraction and state estimation is also discussed. Finally, we discuss the connections between audio-visual speaker tracking and other areas such as speech separation and distributed speaker tracking.
Computation and Language
Improving Multilingual Capabilities with Cultural and Local Knowledge in Large Language Models While Enhancing Native Performance
Large Language Models (LLMs) have shown remarkable capabilities, but their development has primarily focused on English and other high-resource languages, leaving many languages underserved. We present our latest Hindi-English bi-lingual LLM \textbf{Mantra-14B} with ~3\% average improvement in benchmark scores over both languages, outperforming models twice its size. Using a curated dataset composed of English and Hindi instruction data of 485K samples, we instruction tuned models such as Qwen-2.5-14B-Instruct and Phi-4 to improve performance over both English and Hindi. Our experiments encompassing seven different LLMs of varying parameter sizes and over 140 training attempts with varying English-Hindi training data ratios demonstrated that it is possible to significantly improve multilingual performance without compromising native performance. Further, our approach avoids resource-intensive techniques like vocabulary expansion or architectural modifications, thus keeping the model size small. Our results indicate that modest fine-tuning with culturally and locally informed data can bridge performance gaps without incurring significant computational overhead. We release our training code, datasets, and models under mit and apache licenses to aid further research towards under-represented and low-resource languages.
comment: ARR Feb 2025 submission
Can LLM feedback enhance review quality? A randomized study of 20K reviews at ICLR 2025
Peer review at AI conferences is stressed by rapidly rising submission volumes, leading to deteriorating review quality and increased author dissatisfaction. To address these issues, we developed Review Feedback Agent, a system leveraging multiple large language models (LLMs) to improve review clarity and actionability by providing automated feedback on vague comments, content misunderstandings, and unprofessional remarks to reviewers. Implemented at ICLR 2025 as a large randomized control study, our system provided optional feedback to more than 20,000 randomly selected reviews. To ensure high-quality feedback for reviewers at this scale, we also developed a suite of automated reliability tests powered by LLMs that acted as guardrails to ensure feedback quality, with feedback only being sent to reviewers if it passed all the tests. The results show that 27% of reviewers who received feedback updated their reviews, and over 12,000 feedback suggestions from the agent were incorporated by those reviewers. This suggests that many reviewers found the AI-generated feedback sufficiently helpful to merit updating their reviews. Incorporating AI feedback led to significantly longer reviews (an average increase of 80 words among those who updated after receiving feedback) and more informative reviews, as evaluated by blinded researchers. Moreover, reviewers who were selected to receive AI feedback were also more engaged during paper rebuttals, as seen in longer author-reviewer discussions. This work demonstrates that carefully designed LLM-generated review feedback can enhance peer review quality by making reviews more specific and actionable while increasing engagement between reviewers and authors. The Review Feedback Agent is publicly available at https://github.com/zou-group/review_feedback_agent.
comment: 30 pages, 7 figures
AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents
A/B testing experiment is a widely adopted method for evaluating UI/UX design decisions in modern web applications. Yet, traditional A/B testing remains constrained by its dependence on the large-scale and live traffic of human participants, and the long time of waiting for the testing result. Through formative interviews with six experienced industry practitioners, we identified critical bottlenecks in current A/B testing workflows. In response, we present AgentA/B, a novel system that leverages Large Language Model-based autonomous agents (LLM Agents) to automatically simulate user interaction behaviors with real webpages. AgentA/B enables scalable deployment of LLM agents with diverse personas, each capable of navigating the dynamic webpage and interactively executing multi-step interactions like search, clicking, filtering, and purchasing. In a demonstrative controlled experiment, we employ AgentA/B to simulate a between-subject A/B testing with 1,000 LLM agents Amazon.com, and compare agent behaviors with real human shopping behaviors at a scale. Our findings suggest AgentA/B can emulate human-like behavior patterns.
Evaluating the Quality of Benchmark Datasets for Low-Resource Languages: A Case Study on Turkish
The reliance on translated or adapted datasets from English or multilingual resources introduces challenges regarding linguistic and cultural suitability. This study addresses the need for robust and culturally appropriate benchmarks by evaluating the quality of 17 commonly used Turkish benchmark datasets. Using a comprehensive framework that assesses six criteria, both human and LLM-judge annotators provide detailed evaluations to identify dataset strengths and shortcomings. Our results reveal that 70% of the benchmark datasets fail to meet our heuristic quality standards. The correctness of the usage of technical terms is the strongest criterion, but 85% of the criteria are not satisfied in the examined datasets. Although LLM judges demonstrate potential, they are less effective than human annotators, particularly in understanding cultural common sense knowledge and interpreting fluent, unambiguous text. GPT-4o has stronger labeling capabilities for grammatical and technical tasks, while Llama3.3-70B excels at correctness and cultural knowledge evaluation. Our findings emphasize the urgent need for more rigorous quality control in creating and adapting datasets for low-resource languages.
DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.
GRPO-LEAD: A Difficulty-Aware Reinforcement Learning Approach for Concise Mathematical Reasoning in Language Models
Recent advances in R1-like reasoning models leveraging Group Relative Policy Optimization (GRPO) have significantly improved the performance of language models on mathematical reasoning tasks. However, current GRPO implementations encounter critical challenges, including reward sparsity due to binary accuracy metrics, limited incentives for conciseness, and insufficient focus on complex reasoning tasks. To address these issues, we propose GRPO-LEAD, a suite of novel enhancements tailored for mathematical reasoning. Specifically, GRPO-LEAD introduces (1) a length-dependent accuracy reward to encourage concise and precise solutions, (2) an explicit penalty mechanism for incorrect answers to sharpen decision boundaries, and (3) a difficulty-aware advantage reweighting strategy that amplifies learning signals for challenging problems. Furthermore, we systematically examine the impact of model scale and supervised fine-tuning (SFT) strategies, demonstrating that larger-scale base models and carefully curated datasets significantly enhance reinforcement learning effectiveness. Extensive empirical evaluations and ablation studies confirm that GRPO-LEAD substantially mitigates previous shortcomings, resulting in language models that produce more concise, accurate, and robust reasoning across diverse mathematical tasks.
EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
Domain-Adaptive Continued Pre-Training of Small Language Models
Continued pre-training of small language models offers a promising path for domain adaptation with limited computational resources. I've investigated this approach within educational domains, evaluating it as a resource-efficient alternative to training models from scratch. Using a 125M parameter model, I demonstrate significant performance improvements through incremental training on 400 million tokens, followed by further training to reach 1 billion tokens. My approach includes comprehensive data preprocessing, memory-optimized training configurations, and benchmark-based evaluation. Results show notable gains in knowledge-intensive tasks (MMLU +8.1%) and contextual understanding (HellaSwag +7.6%), while revealing educational domain specialization trade-offs. I analyze token efficiency, catastrophic forgetting mitigation strategies, and scaling patterns. My findings suggest that thoughtful preprocessing and training methodologies enable meaningful improvements in language model capabilities even with constrained computational resources, opening pathways for domain-specific adaptation of smaller language models.
CLEAR-KGQA: Clarification-Enhanced Ambiguity Resolution for Knowledge Graph Question Answering IJCNN 2025
This study addresses the challenge of ambiguity in knowledge graph question answering (KGQA). While recent KGQA systems have made significant progress, particularly with the integration of large language models (LLMs), they typically assume user queries are unambiguous, which is an assumption that rarely holds in real-world applications. To address these limitations, we propose a novel framework that dynamically handles both entity ambiguity (e.g., distinguishing between entities with similar names) and intent ambiguity (e.g., clarifying different interpretations of user queries) through interactive clarification. Our approach employs a Bayesian inference mechanism to quantify query ambiguity and guide LLMs in determining when and how to request clarification from users within a multi-turn dialogue framework. We further develop a two-agent interaction framework where an LLM-based user simulator enables iterative refinement of logical forms through simulated user feedback. Experimental results on the WebQSP and CWQ dataset demonstrate that our method significantly improves performance by effectively resolving semantic ambiguities. Additionally, we contribute a refined dataset of disambiguated queries, derived from interaction histories, to facilitate future research in this direction.
comment: This work has been accepted by the IJCNN 2025 main track
Myanmar XNLI: Building a Dataset and Exploring Low-resource Approaches to Natural Language Inference with Myanmar
Despite dramatic recent progress in NLP, it is still a major challenge to apply Large Language Models (LLM) to low-resource languages. This is made visible in benchmarks such as Cross-Lingual Natural Language Inference (XNLI), a key task that demonstrates cross-lingual capabilities of NLP systems across a set of 15 languages. In this paper, we extend the XNLI task for one additional low-resource language, Myanmar, as a proxy challenge for broader low-resource languages, and make three core contributions. First, we build a dataset called Myanmar XNLI (myXNLI) using community crowd-sourced methods, as an extension to the existing XNLI corpus. This involves a two-stage process of community-based construction followed by expert verification; through an analysis, we demonstrate and quantify the value of the expert verification stage in the context of community-based construction for low-resource languages. We make the myXNLI dataset available to the community for future research. Second, we carry out evaluations of recent multilingual language models on the myXNLI benchmark, as well as explore data-augmentation methods to improve model performance. Our data-augmentation methods improve model accuracy by up to 2 percentage points for Myanmar, while uplifting other languages at the same time. Third, we investigate how well these data-augmentation methods generalise to other low-resource languages in the XNLI dataset.
Iterative Self-Training for Code Generation via Reinforced Re-Ranking ECIR 2025
Generating high-quality code that solves complex programming tasks is challenging, especially with current decoder-based models that produce highly stochastic outputs. In code generation, even minor errors can easily break the entire solution. Leveraging multiple sampled solutions can significantly improve the overall output quality. One effective way to enhance code generation is by pairing a code generation model with a reranker model, which selects the best solution from the generated samples. We propose a novel iterative self-training approach for self-training reranker models using Proximal Policy Optimization (PPO), aimed at improving both reranking accuracy and the overall code generation process. Unlike traditional PPO approaches, where the focus is on optimizing a generative model with a reward model, our approach emphasizes the development of a robust reward/reranking model. This model improves the quality of generated code through reranking and addresses problems and errors that the reward model might overlook during PPO alignment with the reranker. Our method iteratively refines the training dataset by re-evaluating outputs, identifying high-scoring negative examples, and incorporating them into the training loop, that boosting model performance. Our evaluation on the MultiPL-E dataset demonstrates that our 13.4B parameter model outperforms a 33B model in code generation quality while being three times faster. Moreover, it achieves performance comparable to GPT-4 and surpasses it in one programming language.
comment: Published at ECIR 2025
Leveraging Reasoning Model Answers to Enhance Non-Reasoning Model Capability
Recent advancements in large language models (LLMs), such as DeepSeek-R1 and OpenAI-o1, have demonstrated the significant effectiveness of test-time scaling, achieving substantial performance gains across various benchmarks. These advanced models utilize deliberate "thinking" steps to systematically enhance answer quality. In this paper, we propose leveraging these high-quality outputs generated by reasoning-intensive models to improve less computationally demanding, non-reasoning models. We explore and compare methodologies for utilizing the answers produced by reasoning models to train and improve non-reasoning models. Through straightforward Supervised Fine-Tuning (SFT) experiments on established benchmarks, we demonstrate consistent improvements across various benchmarks, underscoring the potential of this approach for advancing the ability of models to answer questions directly.
Metropolis-Hastings Captioning Game: Knowledge Fusion of Vision Language Models via Decentralized Bayesian Inference
We propose the Metropolis-Hastings Captioning Game (MHCG), a method to fuse knowledge of multiple vision-language models (VLMs) by learning from each other. Although existing methods that combine multiple models suffer from inference costs and architectural constraints, MHCG avoids these problems by performing decentralized Bayesian inference through a process resembling a language game. The knowledge fusion process establishes communication between two VLM agents alternately captioning images and learning from each other. We conduct two image-captioning experiments with two VLMs, each pre-trained on a different dataset. The first experiment demonstrates that MHCG achieves consistent improvement in reference-free evaluation metrics. The second experiment investigates how MHCG contributes to sharing VLMs' category-level vocabulary by observing the occurrence of the vocabulary in the generated captions.
Fine-tuning an Large Language Model for Automating Computational Fluid Dynamics Simulations
Configuring computational fluid dynamics (CFD) simulations typically demands extensive domain expertise, limiting broader access. Although large language models (LLMs) have advanced scientific computing, their use in automating CFD workflows is underdeveloped. We introduce a novel approach centered on domain-specific LLM adaptation. By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM, our custom dataset of 28716 natural language-to-OpenFOAM configuration pairs with chain-of-thought (CoT) annotations, we enable direct translation from natural language descriptions to executable CFD setups. A multi-agent framework orchestrates the process, autonomously verifying inputs, generating configurations, running simulations, and correcting errors. Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance, achieving 88.7% solution accuracy and 82.6% first-attempt success rate. This significantly outperforms larger general-purpose models like Qwen2.5-72B-Instruct, DeepSeek-R1, and Llama3.3-70B-Instruct, while also requiring fewer correction iterations and maintaining high computational efficiency. The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.
Short-Path Prompting in LLMs: Analyzing Reasoning Instability and Solutions for Robust Performance
Recent years have witnessed significant progress in large language models' (LLMs) reasoning, which is largely due to the chain-of-thought (CoT) approaches, allowing models to generate intermediate reasoning steps before reaching the final answer. Building on these advances, state-of-the-art LLMs are instruction-tuned to provide long and detailed CoT pathways when responding to reasoning-related questions. However, human beings are naturally cognitive misers and will prompt language models to give rather short responses, thus raising a significant conflict with CoT reasoning. In this paper, we delve into how LLMs' reasoning performance changes when users provide short-path prompts. The results and analysis reveal that language models can reason effectively and robustly without explicit CoT prompts, while under short-path prompting, LLMs' reasoning ability drops significantly and becomes unstable, even on grade-school problems. To address this issue, we propose two approaches: an instruction-guided approach and a fine-tuning approach, both designed to effectively manage the conflict. Experimental results show that both methods achieve high accuracy, providing insights into the trade-off between instruction adherence and reasoning accuracy in current models.
comment: Under review
Reduction of Supervision for Biomedical Knowledge Discovery
Knowledge discovery is hindered by the increasing volume of publications and the scarcity of extensive annotated data. To tackle the challenge of information overload, it is essential to employ automated methods for knowledge extraction and processing. Finding the right balance between the level of supervision and the effectiveness of models poses a significant challenge. While supervised techniques generally result in better performance, they have the major drawback of demanding labeled data. This requirement is labor-intensive and time-consuming and hinders scalability when exploring new domains. In this context, our study addresses the challenge of identifying semantic relationships between biomedical entities (e.g., diseases, proteins) in unstructured text while minimizing dependency on supervision. We introduce a suite of unsupervised algorithms based on dependency trees and attention mechanisms and employ a range of pointwise binary classification methods. Transitioning from weakly supervised to fully unsupervised settings, we assess the methods' ability to learn from data with noisy labels. The evaluation on biomedical benchmark datasets explores the effectiveness of the methods. Our approach tackles a central issue in knowledge discovery: balancing performance with minimal supervision. By gradually decreasing supervision, we assess the robustness of pointwise binary classification techniques in handling noisy labels, revealing their capability to shift from weakly supervised to entirely unsupervised scenarios. Comprehensive benchmarking offers insights into the effectiveness of these techniques, suggesting an encouraging direction toward adaptable knowledge discovery systems, representing progress in creating data-efficient methodologies for extracting useful insights when annotated data is limited.
comment: Published as part of the PhD dissertation: Theodoropoulos, Christos, Marie-Francine Moens, and Matthew Blaschko. "Deep Learning Models for the Extraction of Knowledge from Text." (2025)
LLMs Can Achieve High-quality Simultaneous Machine Translation as Efficiently as Offline
When the complete source sentence is provided, Large Language Models (LLMs) perform excellently in offline machine translation even with a simple prompt "Translate the following sentence from [src lang] into [tgt lang]:". However, in many real scenarios, the source tokens arrive in a streaming manner and simultaneous machine translation (SiMT) is required, then the efficiency and performance of decoder-only LLMs are significantly limited by their auto-regressive nature. To enable LLMs to achieve high-quality SiMT as efficiently as offline translation, we propose a novel paradigm that includes constructing supervised fine-tuning (SFT) data for SiMT, along with new training and inference strategies. To replicate the token input/output stream in SiMT, the source and target tokens are rearranged into an interleaved sequence, separated by special tokens according to varying latency requirements. This enables powerful LLMs to learn read and write operations adaptively, based on varying latency prompts, while still maintaining efficient auto-regressive decoding. Experimental results show that, even with limited SFT data, our approach achieves state-of-the-art performance across various SiMT benchmarks, and preserves the original abilities of offline translation. Moreover, our approach generalizes well to document-level SiMT setting without requiring specific fine-tuning, even beyond the offline translation model.
Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
How new data permeates LLM knowledge and how to dilute it
Large language models learn and continually learn through the accumulation of gradient-based updates, but how individual pieces of new information affect existing knowledge, leading to both beneficial generalization and problematic hallucination, remains poorly understood. We demonstrate that when learning new information, LLMs exhibit a "priming" effect: learning a new fact can cause the model to inappropriately apply that knowledge in unrelated contexts. To systematically study this phenomenon, we introduce "Outlandish," a carefully curated dataset of 1320 diverse text samples designed to probe how new knowledge permeates through an LLM's existing knowledge base. Using this dataset, we show that the degree of priming after learning new information can be predicted by measuring the token probability of key words before learning. This relationship holds robustly across different model architectures (PALM-2, Gemma, Llama), sizes, and training stages. Finally, we develop two novel techniques to modulate how new knowledge affects existing model behavior: (1) a ``stepping-stone'' text augmentation strategy and (2) an ``ignore-k'' update pruning method. These approaches reduce undesirable priming effects by 50-95\% while preserving the model's ability to learn new information. Our findings provide both empirical insights into how LLMs learn and practical tools for improving the specificity of knowledge insertion in language models. Further materials: https://sunchipsster1.github.io/projects/outlandish/
MADLLM: Multivariate Anomaly Detection via Pre-trained LLMs ICME 2025
When applying pre-trained large language models (LLMs) to address anomaly detection tasks, the multivariate time series (MTS) modality of anomaly detection does not align with the text modality of LLMs. Existing methods simply transform the MTS data into multiple univariate time series sequences, which can cause many problems. This paper introduces MADLLM, a novel multivariate anomaly detection method via pre-trained LLMs. We design a new triple encoding technique to align the MTS modality with the text modality of LLMs. Specifically, this technique integrates the traditional patch embedding method with two novel embedding approaches: Skip Embedding, which alters the order of patch processing in traditional methods to help LLMs retain knowledge of previous features, and Feature Embedding, which leverages contrastive learning to allow the model to better understand the correlations between different features. Experimental results demonstrate that our method outperforms state-of-the-art methods in various public anomaly detection datasets.
comment: Accepted by IEEE International Conference on Multimedia & Expo 2025 (ICME 2025)
Kongzi: A Historical Large Language Model with Fact Enhancement
The capabilities of the latest large language models (LLMs) have been extended from pure natural language understanding to complex reasoning tasks. However, current reasoning models often exhibit factual inaccuracies in longer reasoning chains, which poses challenges for historical reasoning and limits the potential of LLMs in complex, knowledge-intensive tasks. Historical studies require not only the accurate presentation of factual information but also the ability to establish cross-temporal correlations and derive coherent conclusions from fragmentary and often ambiguous sources. To address these challenges, we propose Kongzi, a large language model specifically designed for historical analysis. Through the integration of curated, high-quality historical data and a novel fact-reinforcement learning strategy, Kongzi demonstrates strong factual alignment and sophisticated reasoning depth. Extensive experiments on tasks such as historical question answering and narrative generation demonstrate that Kongzi outperforms existing models in both factual accuracy and reasoning depth. By effectively addressing the unique challenges inherent in historical texts, Kongzi sets a new standard for the development of accurate and reliable LLMs in professional domains.
comment: 22 pages, 12 figures
HalluShift: Measuring Distribution Shifts towards Hallucination Detection in LLMs
Large Language Models (LLMs) have recently garnered widespread attention due to their adeptness at generating innovative responses to the given prompts across a multitude of domains. However, LLMs often suffer from the inherent limitation of hallucinations and generate incorrect information while maintaining well-structured and coherent responses. In this work, we hypothesize that hallucinations stem from the internal dynamics of LLMs. Our observations indicate that, during passage generation, LLMs tend to deviate from factual accuracy in subtle parts of responses, eventually shifting toward misinformation. This phenomenon bears a resemblance to human cognition, where individuals may hallucinate while maintaining logical coherence, embedding uncertainty within minor segments of their speech. To investigate this further, we introduce an innovative approach, HalluShift, designed to analyze the distribution shifts in the internal state space and token probabilities of the LLM-generated responses. Our method attains superior performance compared to existing baselines across various benchmark datasets. Our codebase is available at https://github.com/sharanya-dasgupta001/hallushift.
Draw with Thought: Unleashing Multimodal Reasoning for Scientific Diagram Generation
Scientific diagrams are vital tools for communicating structured knowledge across disciplines. However, they are often published as static raster images, losing symbolic semantics and limiting reuse. While Multimodal Large Language Models (MLLMs) offer a pathway to bridging vision and structure, existing methods lack semantic control and structural interpretability, especially on complex diagrams. We propose Draw with Thought (DwT), a training-free framework that guides MLLMs to reconstruct diagrams into editable mxGraph XML code through cognitively-grounded Chain-of-Thought reasoning. DwT enables interpretable and controllable outputs without model fine-tuning by dividing the task into two stages: Coarse-to-Fine Planning, which handles perceptual structuring and semantic specification, and Structure-Aware Code Generation, enhanced by format-guided refinement. To support evaluation, we release Plot2XML, a benchmark of 247 real-world scientific diagrams with gold-standard XML annotations. Extensive experiments across eight MLLMs show that our approach yields high-fidelity, semantically aligned, and structurally valid reconstructions, with human evaluations confirming strong alignment in both accuracy and visual aesthetics, offering a scalable solution for converting static visuals into executable representations and advancing machine understanding of scientific graphics.
comment: 26 pages, 14 figures
AdaSteer: Your Aligned LLM is Inherently an Adaptive Jailbreak Defender
Despite extensive efforts in safety alignment, large language models (LLMs) remain vulnerable to jailbreak attacks. Activation steering offers a training-free defense method but relies on fixed steering coefficients, resulting in suboptimal protection and increased false rejections of benign inputs. To address this, we propose AdaSteer, an adaptive activation steering method that dynamically adjusts model behavior based on input characteristics. We identify two key properties: Rejection Law (R-Law), which shows that stronger steering is needed for jailbreak inputs opposing the rejection direction, and Harmfulness Law (H-Law), which differentiates adversarial and benign inputs. AdaSteer steers input representations along both the Rejection Direction (RD) and Harmfulness Direction (HD), with adaptive coefficients learned via logistic regression, ensuring robust jailbreak defense while preserving benign input handling. Experiments on LLaMA-3.1, Gemma-2, and Qwen2.5 show that AdaSteer outperforms baseline methods across multiple jailbreak attacks with minimal impact on utility. Our results highlight the potential of interpretable model internals for real-time, flexible safety enforcement in LLMs.
comment: 17 pages, 6 figures, 9 tables
BabyVLM: Data-Efficient Pretraining of VLMs Inspired by Infant Learning
Human infants rapidly develop visual reasoning skills from minimal input, suggesting that developmentally inspired pretraining could significantly enhance the efficiency of vision-language models (VLMs). Although recent efforts have leveraged infant-inspired datasets like SAYCam, existing evaluation benchmarks remain misaligned--they are either too simplistic, narrowly scoped, or tailored for large-scale pretrained models. Additionally, training exclusively on infant data overlooks the broader, diverse input from which infants naturally learn. To address these limitations, we propose BabyVLM, a novel framework comprising comprehensive in-domain evaluation benchmarks and a synthetic training dataset created via child-directed transformations of existing datasets. We demonstrate that VLMs trained with our synthetic dataset achieve superior performance on BabyVLM tasks compared to models trained solely on SAYCam or general-purpose data of the SAYCam size. BabyVLM thus provides a robust, developmentally aligned evaluation tool and illustrates how compact models trained on carefully curated data can generalize effectively, opening pathways toward data-efficient vision-language learning paradigms.
ClinicalGPT-R1: Pushing reasoning capability of generalist disease diagnosis with large language model
Recent advances in reasoning with large language models (LLMs)has shown remarkable reasoning capabilities in domains such as mathematics and coding, yet their application to clinical diagnosis remains underexplored. Here, we introduce ClinicalGPT-R1, a reasoning enhanced generalist large language model for disease diagnosis. Trained on a dataset of 20,000 real-world clinical records, ClinicalGPT-R1 leverages diverse training strategies to enhance diagnostic reasoning. To benchmark performance, we curated MedBench-Hard, a challenging dataset spanning seven major medical specialties and representative diseases. Experimental results demonstrate that ClinicalGPT-R1 outperforms GPT-4o in Chinese diagnostic tasks and achieves comparable performance to GPT-4 in English settings. This comparative study effectively validates the superior performance of ClinicalGPT-R1 in disease diagnosis tasks. Resources are available at https://github.com/medfound/medfound.
comment: 8 pages, 6 figures
SaRO: Enhancing LLM Safety through Reasoning-based Alignment
Current safety alignment techniques for large language models (LLMs) face two key challenges: (1) under-generalization, which leaves models vulnerable to novel jailbreak attacks, and (2) over-alignment, which leads to the excessive refusal of benign instructions. Our preliminary investigation reveals semantic overlap between jailbreak/harmful queries and normal prompts in embedding space, suggesting that more effective safety alignment requires a deeper semantic understanding. This motivates us to incorporate safety-policy-driven reasoning into the alignment process. To this end, we propose the Safety-oriented Reasoning Optimization Framework (SaRO), which consists of two stages: (1) Reasoning-style Warmup (RW) that enables LLMs to internalize long-chain reasoning through supervised fine-tuning, and (2) Safety-oriented Reasoning Process Optimization (SRPO) that promotes safety reflection via direct preference optimization (DPO). Extensive experiments demonstrate the superiority of SaRO over traditional alignment methods.
UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents
Usability testing is a fundamental research method that user experience (UX) researchers use to evaluate and iterate a web design, but\textbf{ how to evaluate and iterate the usability testing study design } itself? Recent advances in Large Language Model-simulated Agent (\textbf{LLM Agent}) research inspired us to design \textbf{UXAgent} to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human-subject study. Our system features a Persona Generator module, an LLM Agent module, and a Universal Browser Connector module to automatically generate thousands of simulated users to interactively test the target website. The system also provides an Agent Interview Interface and a Video Replay Interface so that the UX researchers can easily review and analyze the generated qualitative and quantitative log data. Through a heuristic evaluation, five UX researcher participants praised the innovation of our system but also expressed concerns about the future of LLM Agent usage in UX studies.
Question Tokens Deserve More Attention: Enhancing Large Language Models without Training through Step-by-Step Reading and Question Attention Recalibration
Large Language Models (LLMs) often struggle with tasks that require a deep understanding of complex questions, especially when faced with long-range dependencies or multi-step reasoning. This work investigates the limitations of current LLMs in question comprehension and identifies three insights: (1) repeating question tokens improves comprehension by increasing attention to question regions, (2) increased backward dependencies negatively affect performance due to unidirectional attentional constraints, and (3) recalibrating attentional mechanisms to prioritize question-relevant regions improves performance. Based on these findings, we first propose a family of prompt-based strategies - Step-by-Step Reading (SSR), SSR+, and SSR++ - that guide LLMs to incrementally process question tokens and align their reasoning with the input structure. These methods significantly improve performance, with SSR++ achieving state-of-the-art results on several benchmarks: 96.66% on GSM8K, 94.61% on ASDiv, and 76.28% on AQuA. Second, we introduce a training-free attention recalibration mechanism that dynamically adjusts attention distributions during inference to emphasize question-relevant regions. This method improves the accuracy of LLaMA 3.1-8B on AQuA by 5.17% without changing model parameters or input prompts. Taken together, our results highlight the importance of structured prompt design and attention optimization in improving LLM comprehension, providing lightweight yet effective tools for improving performance in various NLP tasks.
comment: CIS 5300
Composable NLP Workflows for BERT-based Ranking and QA System
There has been a lot of progress towards building NLP models that scale to multiple tasks. However, real-world systems contain multiple components and it is tedious to handle cross-task interaction with varying levels of text granularity. In this work, we built an end-to-end Ranking and Question-Answering (QA) system using Forte, a toolkit that makes composable NLP pipelines. We utilized state-of-the-art deep learning models such as BERT, RoBERTa in our pipeline, evaluated the performance on MS-MARCO and Covid-19 datasets using metrics such as BLUE, MRR, F1 and compared the results of ranking and QA systems with their corresponding benchmark results. The modular nature of our pipeline and low latency of reranker makes it easy to build complex NLP applications easily.
comment: 6 pages, 3 figures, 6 tables
Evaluation Under Imperfect Benchmarks and Ratings: A Case Study in Text Simplification
Despite the successes of language models, their evaluation remains a daunting challenge for new and existing tasks. We consider the task of text simplification, commonly used to improve information accessibility, where evaluation faces two major challenges. First, the data in existing benchmarks might not reflect the capabilities of current language models on the task, often containing disfluent, incoherent, or simplistic examples. Second, existing human ratings associated with the benchmarks often contain a high degree of disagreement, resulting in inconsistent ratings; nevertheless, existing metrics still have to show higher correlations with these imperfect ratings. As a result, evaluation for the task is not reliable and does not reflect expected trends (e.g., more powerful models being assigned higher scores). We address these challenges for the task of text simplification through three contributions. First, we introduce SynthSimpliEval, a synthetic benchmark for text simplification featuring simplified sentences generated by models of varying sizes. Through a pilot study, we show that human ratings on our benchmark exhibit high inter-annotator agreement and reflect the expected trend: larger models produce higher-quality simplifications. Second, we show that auto-evaluation with a panel of LLM judges (LLMs-as-a-jury) often suffices to obtain consistent ratings for the evaluation of text simplification. Third, we demonstrate that existing learnable metrics for text simplification benefit from training on our LLMs-as-a-jury-rated synthetic data, closing the gap with pure LLMs-as-a-jury for evaluation. Overall, through our case study on text simplification, we show that a reliable evaluation requires higher quality test data, which could be obtained through synthetic data and LLMs-as-a-jury ratings.
comment: Submitted to COLM 2025. 9 pages, 6 figures
Beyond Memorization: Mapping the Originality-Quality Frontier of Language Models
As large language models (LLMs) are increasingly used for ideation and scientific discovery, it is important to evaluate their ability to generate novel output. Prior work evaluates novelty as the originality with respect to training data, but original outputs can be low quality. In contrast, non-expert judges may favor high-quality but memorized outputs, limiting the reliability of human preference as a metric. We propose a new novelty metric for LLM generations that balances originality and quality -- the harmonic mean of the fraction of \ngrams unseen during training and a task-specific quality score. We evaluate the novelty of generations from two families of open-data models (OLMo and Pythia) on three creative tasks: story completion, poetry writing, and creative tool use. We find that LLM generated text is less novel than human written text. To elicit more novel outputs, we experiment with various inference-time methods, which reveals a trade-off between originality and quality. While these methods can boost novelty, they do so by increasing originality at the expense of quality. In contrast, increasing model size or applying post-training reliably shifts the Pareto frontier, highlighting that starting with a stronger base model is a more effective way to improve novelty.
On Language Models' Sensitivity to Suspicious Coincidences
Humans are sensitive to suspicious coincidences when generalizing inductively over data, as they make assumptions as to how the data was sampled. This results in smaller, more specific hypotheses being favored over more general ones. For instance, when provided the set {Austin, Dallas, Houston}, one is more likely to think that this is sampled from "Texas Cities" over "US Cities" even though both are compatible. Suspicious coincidence is strongly connected to pragmatic reasoning, and can serve as a testbed to analyze systems on their sensitivity towards the communicative goals of the task (i.e., figuring out the true category underlying the data). In this paper, we analyze whether suspicious coincidence effects are reflected in language models' (LMs) behavior. We do so in the context of two domains: 1) the number game, where humans made judgments of whether a number (e.g., 4) fits a list of given numbers (e.g., 16, 32, 2); and 2) by extending the number game setup to prominent cities. For both domains, the data is compatible with multiple hypotheses and we study which hypothesis is most consistent with the models' behavior. On analyzing five models, we do not find strong evidence for suspicious coincidences in LMs' zero-shot behavior. However, when provided access to the hypotheses space via chain-of-thought or explicit prompting, LMs start to show an effect resembling suspicious coincidences, sometimes even showing effects consistent with humans. Our study suggests that inductive reasoning behavior in LMs can be enhanced with explicit access to the hypothesis landscape.
Can you map it to English? The Role of Cross-Lingual Alignment in Multilingual Performance of LLMs
Large language models (LLMs) pre-trained predominantly on English text exhibit surprising multilingual capabilities, yet the mechanisms driving cross-lingual generalization remain poorly understood. This work investigates how the alignment of representations for text written in different languages correlates with LLM performance on natural language understanding tasks and translation tasks, both at the language and the instance level. For this purpose, we introduce cross-lingual alignment metrics such as the Discriminative Alignment Index (DALI) to quantify the alignment at an instance level for discriminative tasks. Through experiments on three natural language understanding tasks (Belebele, XStoryCloze, XCOPA), and machine translation, we find that while cross-lingual alignment metrics strongly correlate with task accuracy at the language level, the sample-level alignment often fails to distinguish correct from incorrect predictions, exposing alignment as a necessary but insufficient condition for success.
Building A Proof-Oriented Programmer That Is 64% Better Than GPT-4o Under Data Scarcity
Existing LMs struggle with proof-oriented programming due to data scarcity, which manifest in two key ways: (1) a lack of sufficient corpora for proof-oriented programming languages such as F*, and (2) the absence of large-scale, project-level proof-oriented implementations that can teach the model the intricate reasoning process when performing proof-oriented programming. We present the first on synthetic data augmentation for project level proof oriented programming for both generation and repair. Our method addresses data scarcity by synthesizing basic proof-oriented programming problems for proficiency in that language; incorporating diverse coding data for reasoning capability elicitation and creating new proofs and repair data within existing repositories. This approach enables language models to both synthesize and repair proofs for function- and repository-level code. We show that our fine-tuned 14B parameter model, PoPilot, can exceed the performance of the models that outperforms GPT-4o in project-level proof-oriented programming by 64% relative margin, and can improve GPT-4o's performance by 54% by repairing its outputs over GPT-4o's self-repair.
Ineffectiveness for Search and Undecidability of PCSP Meta-Problems
It is an open question whether the search and decision versions of promise CSPs are equivalent. Most known algorithms for PCSPs solve only their \emph{decision} variant, and it is unknown whether they can be adapted to solve \emph{search} as well. The main approaches, called BLP, AIP and BLP+AIP, handle a PCSP by finding a solution to a relaxation of some integer program. We prove that rounding those solutions to a proper search certificate can be as hard as any problem in the class TFNP. In other words, these algorithms are ineffective for search. Building on the algebraic approach to PCSPs, we find sufficient conditions that imply ineffectiveness for search. Our tools are tailored to algorithms that are characterized by minions in a suitable way, and can also be used to prove undecidability results for meta-problems. This way, we show that the families of templates solvable via BLP, AIP, and BLP+AIP are undecidable. Using the same techniques we also analyze several algebraic conditions that are known to guarantee the tractability of finite-template CSPs. We prove that several meta-problems related to cyclic polymorphims and WNUs are undecidable for PCSPs. In particular, there is no algorithm deciding whether a finite PCSP template (1) admits cyclic a polymorphism, (2) admits a WNU.
Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network
In this paper, we present a two stage model for multi-hop question answering. The first stage is a hierarchical graph network, which is used to reason over multi-hop question and is capable to capture different levels of granularity using the nature structure(i.e., paragraphs, questions, sentences and entities) of documents. The reasoning process is convert to node classify task(i.e., paragraph nodes and sentences nodes). The second stage is a language model fine-tuning task. In a word, stage one use graph neural network to select and concatenate support sentences as one paragraph, and stage two find the answer span in language model fine-tuning paradigm.
comment: Incomplete Work
Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning
Tokenization is a necessary component within the current architecture of many language models, including the transformer-based large language models (LLMs) of Generative AI, yet its impact on the model's cognition is often overlooked. We argue that LLMs demonstrate that the Distributional Hypothesis (DH) is sufficient for reasonably human-like language performance, and that the emergence of human-meaningful linguistic units among tokens and current structural constraints motivate changes to existing, linguistically-agnostic tokenization techniques, particularly with respect to their roles as (1) semantic primitives and as (2) vehicles for conveying salient distributional patterns from human language to the model. We explore tokenizations from a BPE tokenizer; extant model vocabularies obtained from Hugging Face and tiktoken; and the information in exemplar token vectors as they move through the layers of a RoBERTa (large) model. Besides creating sub-optimal semantic building blocks and obscuring the model's access to the necessary distributional patterns, we describe how tokens and pretraining can act as a backdoor for bias and other unwanted content, which current alignment practices may not remediate. Additionally, we relay evidence that the tokenization algorithm's objective function impacts the LLM's cognition, despite being arguably meaningfully insulated from the main system intelligence. [First uploaded to arXiv in December, 2024.]
KnowsLM: A framework for evaluation of small language models for knowledge augmentation and humanised conversations
In the evolving landscape of conversational AI, generating concise, context-aware, and human-like dialogue using small and medium-sized language models (LLMs) remains a complex challenge. This study investigates the influence of LoRA rank, dataset scale, and prompt prefix design on both knowledge retention and stylistic alignment. While fine-tuning improves fluency and enables stylistic customization, its ability to integrate unseen knowledge is constrained -- particularly with smaller datasets. Conversely, RAG-augmented models, equipped to incorporate external documents at inference, demonstrated superior factual accuracy on out-of-distribution prompts, though they lacked the stylistic consistency achieved by fine-tuning. Evaluations by LLM-based judges across knowledge accuracy, conversational quality, and conciseness suggest that fine-tuning is best suited for tone adaptation, whereas RAG excels at real-time knowledge augmentation.
Plato: Plan to Efficiently Decode for Large Language Model Inference
Large language models (LLMs) have achieved remarkable success in natural language tasks, but their inference incurs substantial computational and memory overhead. To improve efficiency, parallel decoding methods like Skeleton-of-Thought (SoT) decompose prompts into sub-problems for concurrent processing. However, these methods significantly compromise answer quality by treating semantically linked sub-problems as independent. We propose Plato, a novel approach that co-designs algorithms and systems for semantic-aware parallel decoding. Plato leverages LLMs to organize sub-problems into a dependency graph based on logical and causal relationships, enabling concurrent decoding of non-dependent nodes while preserving answer coherence and quality. To further enhance efficiency, Plato pipelines planning and node decoding stages, implements a global context cache, and carefully structures node inference prompts to maximize key-value cache reuse and minimize overhead. Our evaluations show that Plato improves throughput by 68% over autoregressive decoding while achieving a 40% net win rate in answer quality. Compared to SoT, Plato demonstrates a remarkable 90% quality net-win rate. Ablation studies reveal that our pipeline design improves speedup by 29%, while our KV cache reuse optimization reduces overhead by 75%.
Block-Attention for Efficient Prefilling ICLR 2025
We introduce Block-attention, an attention mechanism designed to address the increased inference latency and cost in Retrieval-Augmented Generation (RAG) scenarios. Traditional approaches often encode the entire context in an auto-regressive manner. Instead, Block-attention divides retrieved documents into discrete blocks, with each block independently calculating key-value (KV) states except for the final block. In RAG scenarios, by defining each passage as a block, Block-attention enables us to reuse the KV states of passages that have been seen before, thereby significantly reducing the latency and the computation overhead during inference. The implementation of Block-attention involves block segmentation, position re-encoding, and fine-tuning the LLM to adapt to the Block-attention mechanism. Experiments on 11 diverse benchmarks, including RAG, ICL, and general domains, demonstrate that after block fine-tuning, the Block-attention model not only achieves performance comparable to that of full-attention models, but can also seamlessly switch between the block and full attention modes without any performance loss. Notably, Block-attention significantly reduces the time to first token (TTFT) and floating point operations (FLOPs) to a very low level. It only takes 45 ms to output the first token for an input sequence with a total length of 32K. Compared to the full-attention models, the TTFT and corresponding FLOPs are reduced by 98.7% and 99.8%, respectively. Additionally, in Appendix A, we elaborate on how Block-attention is applied in Game AI scenario and the substantial potential benefits it entails. We strongly suggest researchers in the gaming field not to overlook this section.
comment: ICLR 2025
Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. When properly balanced, we show that certain cognitive biases can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
comment: This work has been accepted as a full paper at the 2025 Annual Conference of the Cognitive Science Society (CogSci 2025) and will be presented in the form of a poster. The dataset and project website are available at: https://hanyangzhong.github.io/BRU-website/
Improving Complex Reasoning with Dynamic Prompt Corruption: A soft prompt Optimization Approach ICLR 2025
Prompt-tuning (PT) for large language models (LLMs) can facilitate the performance on various conventional NLP tasks with significantly fewer trainable parameters. However, our investigation reveals that PT provides limited improvement and may even degrade the primitive performance of LLMs on complex reasoning tasks. Such a phenomenon suggests that soft prompts can positively impact certain instances while negatively affecting others, particularly during the later phases of reasoning. To address these challenges, We first identify an information accumulation within the soft prompts. Through detailed analysis, we demonstrate that this phenomenon is often accompanied by erroneous information flow patterns in the deeper layers of the model, which ultimately lead to incorrect reasoning outcomes. we propose a novel method called Dynamic Prompt Corruption (DPC) to take better advantage of soft prompts in complex reasoning tasks, which dynamically adjusts the influence of soft prompts based on their impact on the reasoning process. Specifically, DPC consists of two stages: Dynamic Trigger and Dynamic Corruption. First, Dynamic Trigger measures the impact of soft prompts, identifying whether beneficial or detrimental. Then, Dynamic Corruption mitigates the negative effects of soft prompts by selectively masking key tokens that interfere with the reasoning process. We validate the proposed approach through extensive experiments on various LLMs and reasoning tasks, including GSM8K, MATH, and AQuA. Experimental results demonstrate that DPC can consistently enhance the performance of PT, achieving 4%-8% accuracy gains compared to vanilla prompt tuning, highlighting the effectiveness of our approach and its potential to enhance complex reasoning in LLMs.
comment: Accepted by ICLR 2025
Do "New Snow Tablets" Contain Snow? Large Language Models Over-Rely on Names to Identify Ingredients of Chinese Drugs
Traditional Chinese Medicine (TCM) has seen increasing adoption in healthcare, with specialized Large Language Models (LLMs) emerging to support clinical applications. A fundamental requirement for these models is accurate identification of TCM drug ingredients. In this paper, we evaluate how general and TCM-specialized LLMs perform when identifying ingredients of Chinese drugs. Our systematic analysis reveals consistent failure patterns: models often interpret drug names literally, overuse common herbs regardless of relevance, and exhibit erratic behaviors when faced with unfamiliar formulations. LLMs also fail to understand the verification task. These findings demonstrate that current LLMs rely primarily on drug names rather than possessing systematic pharmacological knowledge. To address these limitations, we propose a Retrieval Augmented Generation (RAG) approach focused on ingredient names. Experiments across 220 TCM formulations show our method significantly improves accuracy from approximately 50% to 82% in ingredient verification tasks. Our work highlights critical weaknesses in current TCM-specific LLMs and offers a practical solution for enhancing their clinical reliability.
HEAR: Hearing Enhanced Audio Response for Video-grounded Dialogue EMNLP 2023
Video-grounded Dialogue (VGD) aims to answer questions regarding a given multi-modal input comprising video, audio, and dialogue history. Although there have been numerous efforts in developing VGD systems to improve the quality of their responses, existing systems are competent only to incorporate the information in the video and text and tend to struggle in extracting the necessary information from the audio when generating appropriate responses to the question. The VGD system seems to be deaf, and thus, we coin this symptom of current systems' ignoring audio data as a deaf response. To overcome the deaf response problem, Hearing Enhanced Audio Response (HEAR) framework is proposed to perform sensible listening by selectively attending to audio whenever the question requires it. The HEAR framework enhances the accuracy and audibility of VGD systems in a model-agnostic manner. HEAR is validated on VGD datasets (i.e., AVSD@DSTC7 and AVSD@DSTC8) and shows effectiveness with various VGD systems.
comment: EMNLP 2023, 14 pages, 13 figures
From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future
With the rise of large language models (LLMs), researchers are increasingly exploring their applications in var ious vertical domains, such as software engineering. LLMs have achieved remarkable success in areas including code generation and vulnerability detection. However, they also exhibit numerous limitations and shortcomings. LLM-based agents, a novel tech nology with the potential for Artificial General Intelligence (AGI), combine LLMs as the core for decision-making and action-taking, addressing some of the inherent limitations of LLMs such as lack of autonomy and self-improvement. Despite numerous studies and surveys exploring the possibility of using LLMs in software engineering, it lacks a clear distinction between LLMs and LLM based agents. It is still in its early stage for a unified standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain. In this survey, we broadly investigate the current practice and solutions for LLMs and LLM-based agents for software engineering. In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance. We review and differentiate the work of LLMs and LLM-based agents from these six topics, examining their differences and similarities in tasks, benchmarks, and evaluation metrics. Finally, we discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering. We anticipate this work will shed some lights on pushing the boundaries of LLM-based agents in software engineering for future research.
Real-time Verification and Refinement of Language Model Text Generation
Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
ChineseSafe: A Chinese Benchmark for Evaluating Safety in Large Language Models
With the rapid development of Large language models (LLMs), understanding the capabilities of LLMs in identifying unsafe content has become increasingly important. While previous works have introduced several benchmarks to evaluate the safety risk of LLMs, the community still has a limited understanding of current LLMs' capability to recognize illegal and unsafe content in Chinese contexts. In this work, we present a Chinese safety benchmark (ChineseSafe) to facilitate research on the content safety of large language models. To align with the regulations for Chinese Internet content moderation, our ChineseSafe contains 205,034 examples across 4 classes and 10 sub-classes of safety issues. For Chinese contexts, we add several special types of illegal content: political sensitivity, pornography, and variant/homophonic words. Moreover, we employ two methods to evaluate the legal risks of popular LLMs, including open-sourced models and APIs. The results reveal that many LLMs exhibit vulnerability to certain types of safety issues, leading to legal risks in China. Our work provides a guideline for developers and researchers to facilitate the safety of LLMs. Our results are also available at https://huggingface.co/spaces/SUSTech/ChineseSafe-Benchmark. Additionally, we release a test set comprising 200,000 examples, which is publicly accessible at https://huggingface.co/datasets/SUSTech/ChineseSafe.
Enabling Scalable Evaluation of Bias Patterns in Medical LLMs
Large language models (LLMs) have shown impressive potential in helping with numerous medical challenges. Deploying LLMs in high-stakes applications such as medicine, however, brings in many concerns. One major area of concern relates to biased behaviors of LLMs in medical applications, leading to unfair treatment of individuals. To pave the way for the responsible and impactful deployment of Med LLMs, rigorous evaluation is a key prerequisite. Due to the huge complexity and variability of different medical scenarios, existing work in this domain has primarily relied on using manually crafted datasets for bias evaluation. In this study, we present a new method to scale up such bias evaluations by automatically generating test cases based on rigorous medical evidence. We specifically target the challenges of a) domain-specificity of bias characterization, b) hallucinating while generating the test cases, and c) various dependencies between the health outcomes and sensitive attributes. To that end, we offer new methods to address these challenges integrated with our generative pipeline, using medical knowledge graphs, medical ontologies, and customized general LLM evaluation frameworks in our method. Through a series of extensive experiments, we show that the test cases generated by our proposed method can effectively reveal bias patterns in Med LLMs at larger and more flexible scales than human-crafted datasets. We publish a large bias evaluation dataset using our pipeline, which is dedicated to a few medical case studies. A live demo of our application for vignette generation is available at https://vignette.streamlit.app. Our code is also available at https://github.com/healthylaife/autofair.
Human-Computer Interaction
Can LLM feedback enhance review quality? A randomized study of 20K reviews at ICLR 2025
Peer review at AI conferences is stressed by rapidly rising submission volumes, leading to deteriorating review quality and increased author dissatisfaction. To address these issues, we developed Review Feedback Agent, a system leveraging multiple large language models (LLMs) to improve review clarity and actionability by providing automated feedback on vague comments, content misunderstandings, and unprofessional remarks to reviewers. Implemented at ICLR 2025 as a large randomized control study, our system provided optional feedback to more than 20,000 randomly selected reviews. To ensure high-quality feedback for reviewers at this scale, we also developed a suite of automated reliability tests powered by LLMs that acted as guardrails to ensure feedback quality, with feedback only being sent to reviewers if it passed all the tests. The results show that 27% of reviewers who received feedback updated their reviews, and over 12,000 feedback suggestions from the agent were incorporated by those reviewers. This suggests that many reviewers found the AI-generated feedback sufficiently helpful to merit updating their reviews. Incorporating AI feedback led to significantly longer reviews (an average increase of 80 words among those who updated after receiving feedback) and more informative reviews, as evaluated by blinded researchers. Moreover, reviewers who were selected to receive AI feedback were also more engaged during paper rebuttals, as seen in longer author-reviewer discussions. This work demonstrates that carefully designed LLM-generated review feedback can enhance peer review quality by making reviews more specific and actionable while increasing engagement between reviewers and authors. The Review Feedback Agent is publicly available at https://github.com/zou-group/review_feedback_agent.
comment: 30 pages, 7 figures
Dynamik: Syntactically-Driven Dynamic Font Sizing for Emphasis of Key Information
In today's globalized world, there are increasing opportunities for individuals to communicate using a common non-native language (lingua franca). Non-native speakers often have opportunities to listen to foreign languages, but may not comprehend them as fully as native speakers do. To aid real-time comprehension, live transcription of subtitles is frequently used in everyday life (e.g., during Zoom conversations, watching YouTube videos, or on social networking sites). However, simultaneously reading subtitles while listening can increase cognitive load. In this study, we propose Dynamik, a system that reduces cognitive load during reading by decreasing the size of less important words and enlarging important ones, thereby enhancing sentence contrast. Our results indicate that Dynamik can reduce certain aspects of cognitive load, specifically, participants' perceived performance and effort among individuals with low proficiency in English, as well as enhance the users' sense of comprehension, especially among people with low English ability. We further discuss our methods' applicability to other languages and potential improvements and further research directions.
comment: 30 pages, 11 figures, presented at The ACM Conference on Intelligent User Interfaces (ACM IUI) 2025
AgentA/B: Automated and Scalable Web A/BTesting with Interactive LLM Agents
A/B testing experiment is a widely adopted method for evaluating UI/UX design decisions in modern web applications. Yet, traditional A/B testing remains constrained by its dependence on the large-scale and live traffic of human participants, and the long time of waiting for the testing result. Through formative interviews with six experienced industry practitioners, we identified critical bottlenecks in current A/B testing workflows. In response, we present AgentA/B, a novel system that leverages Large Language Model-based autonomous agents (LLM Agents) to automatically simulate user interaction behaviors with real webpages. AgentA/B enables scalable deployment of LLM agents with diverse personas, each capable of navigating the dynamic webpage and interactively executing multi-step interactions like search, clicking, filtering, and purchasing. In a demonstrative controlled experiment, we employ AgentA/B to simulate a between-subject A/B testing with 1,000 LLM agents Amazon.com, and compare agent behaviors with real human shopping behaviors at a scale. Our findings suggest AgentA/B can emulate human-like behavior patterns.
Adapting Robot's Explanation for Failures Based on Observed Human Behavior in Human-Robot Collaboration IROS 2025
This work aims to interpret human behavior to anticipate potential user confusion when a robot provides explanations for failure, allowing the robot to adapt its explanations for more natural and efficient collaboration. Using a dataset that included facial emotion detection, eye gaze estimation, and gestures from 55 participants in a user study, we analyzed how human behavior changed in response to different types of failures and varying explanation levels. Our goal is to assess whether human collaborators are ready to accept less detailed explanations without inducing confusion. We formulate a data-driven predictor to predict human confusion during robot failure explanations. We also propose and evaluate a mechanism, based on the predictor, to adapt the explanation level according to observed human behavior. The promising results from this evaluation indicate the potential of this research in adapting a robot's explanations for failures to enhance the collaborative experience.
comment: Under review, Manuscript in submission for IROS 2025
EmoAgent: Assessing and Safeguarding Human-AI Interaction for Mental Health Safety
The rise of LLM-driven AI characters raises safety concerns, particularly for vulnerable human users with psychological disorders. To address these risks, we propose EmoAgent, a multi-agent AI framework designed to evaluate and mitigate mental health hazards in human-AI interactions. EmoAgent comprises two components: EmoEval simulates virtual users, including those portraying mentally vulnerable individuals, to assess mental health changes before and after interactions with AI characters. It uses clinically proven psychological and psychiatric assessment tools (PHQ-9, PDI, PANSS) to evaluate mental risks induced by LLM. EmoGuard serves as an intermediary, monitoring users' mental status, predicting potential harm, and providing corrective feedback to mitigate risks. Experiments conducted in popular character-based chatbots show that emotionally engaging dialogues can lead to psychological deterioration in vulnerable users, with mental state deterioration in more than 34.4% of the simulations. EmoGuard significantly reduces these deterioration rates, underscoring its role in ensuring safer AI-human interactions. Our code is available at: https://github.com/1akaman/EmoAgent
comment: 18 pages, 8 figures
AgentDynEx: Nudging the Mechanics and Dynamics of Multi-Agent Simulations
Multi-agent large language model simulations have the potential to model complex human behaviors and interactions. If the mechanics are set up properly, unanticipated and valuable social dynamics can surface. However, it is challenging to consistently enforce simulation mechanics while still allowing for notable and emergent dynamics. We present AgentDynEx, an AI system that helps set up simulations from user-specified mechanics and dynamics. AgentDynEx uses LLMs to guide users through a Configuration Matrix to identify core mechanics and define milestones to track dynamics. It also introduces a method called \textit{nudging}, where the system dynamically reflects on simulation progress and gently intervenes if it begins to deviate from intended outcomes. A technical evaluation found that nudging enables simulations to have more complex mechanics and maintain its notable dynamics compared to simulations without nudging. We discuss the importance of nudging as a technique for balancing mechanics and dynamics of multi-agent simulations.
A Systematic Literature Review of Infrastructure Studies in SIGCHI SC
Infrastructure is an indispensable part of human life. Over the past decades, the Human-Computer Interaction (HCI) community has paid increasing attention to human interactions with infrastructure. In this paper, we conducted a systematic literature review on infrastructure studies in SIGCHI, one of the most influential communities in HCI. We collected a total of 174 primary studies, covering works published between 2006 and 2023. Most of these studies are inspired by Susan Leigh Star's notion of infrastructure. We identify three major themes in infrastructure studies: growing infrastructure, appropriating infrastructure, and coping with infrastructure. Our review highlights a prevailing trend in SIGCHI's infrastructure research: a focus on informal infrastructural activities across various sociotechnical contexts. In particular, we examine studies that problematize infrastructure and alert the HCI community to its potentially harmful aspects.
comment: Accepted to CSCW'25
BIT: Battery-free, IC-less and Wireless Smart Textile Interface and Sensing System
The development of smart textile interfaces is hindered by the inclusion of rigid hardware components and batteries within the fabric, which pose challenges in terms of manufacturability, usability, and environmental concerns related to electronic waste. To mitigate these issues, we propose a smart textile interface and its wireless sensing system to eliminate the need for ICs, batteries, and connectors embedded into textiles. Our technique is established on the integration of multi-resonant circuits in smart textile interfaces, and utilizing near-field electromagnetic coupling between two coils to facilitate wireless power transfer and data acquisition from smart textile interface. A key aspect of our system is the development of a mathematical model that accurately represents the equivalent circuit of the sensing system. Using this model, we developed a novel algorithm to accurately estimate sensor signals based on changes in system impedance. Through simulation-based experiments and a user study, we demonstrate that our technique effectively supports multiple textile sensors of various types.
comment: 18 pages, 11 figures, CHI 2025
Cartographers in Cubicles: How Training and Preferences of Mapmakers Interplay with Structures and Norms in Not-for-Profit Organizations SC
Choropleth maps are a common and effective way to visualize geographic thematic data. Although cartographers have established many principles about map design, data binning and color usage, less is known about how mapmakers make individual decisions in practice. We interview 16 cartographers and geographic information systems (GIS) experts from 13 government organizations, NGOs, and federal agencies about their choropleth mapmaking decisions and workflows. We categorize our findings and report on how mapmakers follow cartographic guidelines and personal rules of thumb, collaborate with other stakeholders within and outside their organization, and how organizational structures and norms are tied to decision-making during data preparation, data analysis, data binning, map styling, and map post-processing. We find several points of variation as well as regularity across mapmakers and organizations and present takeaways to inform cartographic education and practice, including broader implications and opportunities for CSCW, HCI, and information visualization researchers and practitioners.
comment: 24 pages, 4 figures, 2 tables; to appear in ACM CSCW 2025
Design Probes for AI-Driven AAC: Addressing Complex Communication Needs in Aphasia
AI offers key advantages such as instant generation, multi-modal support, and personalized adaptability - potential that can address the highly heterogeneous communication barriers faced by people with aphasia (PWAs). We designed AI-enhanced communication tools and used them as design probes to explore how AI's real-time processing and generation capabilities - across text, image, and audio - can align with PWAs' needs in real-time communication and preparation for future conversations respectively. Through a two-phase "Research through Design" approach, eleven PWAs contributed design insights and evaluated four AI-enhanced prototypes. These prototypes aimed to improve communication grounding and conversational agency through visual verification, grammar construction support, error correction, and reduced language processing load. Despite some challenges, such as occasional mismatches with user intent, findings demonstrate how AI's specific capabilities can be advantageous in addressing PWAs' complex needs. Our work contributes design insights for future Augmentative and Alternative Communication (AAC) systems.
UXAgent: A System for Simulating Usability Testing of Web Design with LLM Agents
Usability testing is a fundamental research method that user experience (UX) researchers use to evaluate and iterate a web design, but\textbf{ how to evaluate and iterate the usability testing study design } itself? Recent advances in Large Language Model-simulated Agent (\textbf{LLM Agent}) research inspired us to design \textbf{UXAgent} to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human-subject study. Our system features a Persona Generator module, an LLM Agent module, and a Universal Browser Connector module to automatically generate thousands of simulated users to interactively test the target website. The system also provides an Agent Interview Interface and a Video Replay Interface so that the UX researchers can easily review and analyze the generated qualitative and quantitative log data. Through a heuristic evaluation, five UX researcher participants praised the innovation of our system but also expressed concerns about the future of LLM Agent usage in UX studies.
Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games
The evaluation of open-ended responses in serious games presents a unique challenge, as correctness is often subjective. Large Language Models (LLMs) are increasingly being explored as evaluators in such contexts, yet their accuracy and consistency remain uncertain, particularly for smaller models intended for local execution. This study investigates the reliability of five small-scale LLMs when assessing player responses in \textit{En-join}, a game that simulates decision-making within energy communities. By leveraging traditional binary classification metrics (including accuracy, true positive rate, and true negative rate), we systematically compare these models across different evaluation scenarios. Our results highlight the strengths and limitations of each model, revealing trade-offs between sensitivity, specificity, and overall performance. We demonstrate that while some models excel at identifying correct responses, others struggle with false positives or inconsistent evaluations. The findings highlight the need for context-aware evaluation frameworks and careful model selection when deploying LLMs as evaluators. This work contributes to the broader discourse on the trustworthiness of AI-driven assessment tools, offering insights into how different LLM architectures handle subjective evaluation tasks.
comment: 2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems. April 26, 2025. Yokohama, Japan
Infinite Scrolling, Finite Satisfaction: Exploring User Behavior and Satisfaction on Social Media in Bangladesh
Social media platforms continue to change our digital relationships nowadays. Therefore, recognizing the complex consequences of infinite scrolling is essential. This paper explores two distinct angles of social media engagement: mindless scrolling and mindful scrolling. This extensive study dives into numerous aspects of social media user behavior and satisfaction via the perspective of multiple surveys. We investigate the psychological exploit of infinite scrolling design to keep users engaged, illuminating its effect on users' emotional well-being. Furthermore, we explore its diverse effects on various groups, such as teenagers, professional people, and pregnant women, to better understand how digital activity differs throughout life phases. Furthermore, our study reveals the psychological consequences of being exposed to unfavorable news material. In the context of nutritional objectives, we examine the problems users confront as well as the significance of scrolling in dietary achievement. By taking into account the demographic effect, we can determine how factors like age, gender, and socioeconomic position affect user behavior. This study presents a comprehensive knowledge of the complicated connection of infinite scrolling with user satisfaction and psychological well-being through a variety of surveys, opening the door for well-informed conversations on online engagement.
comment: under review
Enhancing autonomousnvehicle acceptance with age and education sensitive simulation interventions: An experimental trial
The familiarity principle posits that acceptance increases with exposure, which has previously been shown with in vivo and simulated experiences with connected and autonomous vehicles (CAVs). We investigate the impact of a simulated video-based first-person drive on CAV acceptance, as well as the impact of information customization, with a particular focus on acceptance by older individuals and those with lower education. Findings from an online experiment with N=799 German residents reveal that the simulated experience improved acceptance across response variables such as intention to use and ease of use, particularly among older individuals. However, the opportunity to customize navigation information decreased acceptance of older individuals and those with university degrees and increased acceptance for younger individuals and those with lower educational levels.
A risk model and analysis method for the psychological safety of human and autonomous vehicles interaction
This paper addresses the critical issue of psychological safety in the design and operation of autonomous vehicles, which are increasingly integrated with artificial intelligence technologies. While traditional safety standards focus primarily on physical safety, this paper emphasizes the psychological implications that arise from human interactions with autonomous vehicles, highlighting the importance of trust and perceived risk as significant factors influencing user acceptance. Through a review of existing safety techniques, the paper defines psychological safety in the context of autonomous vehicles, proposes a risk model to identify and assess psychological risks, and adopts a system-theoretic analysis method. The paper illustrates the potential psychological hazards using a scenario involving a family's experience with an autonomous vehicle, aiming to systematically evaluate situations that could lead to psychological harm. By establishing a framework that incorporates psychological safety alongside physical safety, the paper contributes to the broader discourse on the safe deployment of autonomous vehicle and aims to guide future developments in user-cantered design and regulatory practices.
Multimedia
Towards Explainable Partial-AIGC Image Quality Assessment
The rapid advancement of AI-driven visual generation technologies has catalyzed significant breakthroughs in image manipulation, particularly in achieving photorealistic localized editing effects on natural scene images (NSIs). Despite extensive research on image quality assessment (IQA) for AI-generated images (AGIs), most studies focus on fully AI-generated outputs (e.g., text-to-image generation), leaving the quality assessment of partial-AIGC images (PAIs)-images with localized AI-driven edits an almost unprecedented field. Motivated by this gap, we construct the first large-scale PAI dataset towards explainable partial-AIGC image quality assessment (EPAIQA), the EPAIQA-15K, which includes 15K images with localized AI manipulation in different regions and over 300K multi-dimensional human ratings. Based on this, we leverage large multi-modal models (LMMs) and propose a three-stage model training paradigm. This paradigm progressively trains the LMM for editing region grounding, quantitative quality scoring, and quality explanation. Finally, we develop the EPAIQA series models, which possess explainable quality feedback capabilities. Our work represents a pioneering effort in the perceptual IQA field for comprehensive PAI quality assessment.
PathVLM-R1: A Reinforcement Learning-Driven Reasoning Model for Pathology Visual-Language Tasks
The diagnosis of pathological images is often limited by expert availability and regional disparities, highlighting the importance of automated diagnosis using Vision-Language Models (VLMs). Traditional multimodal models typically emphasize outcomes over the reasoning process, compromising the reliability of clinical decisions. To address the weak reasoning abilities and lack of supervised processes in pathological VLMs, we have innovatively proposed PathVLM-R1, a visual language model designed specifically for pathological images. We have based our model on Qwen2.5-VL-7B-Instruct and enhanced its performance for pathological tasks through meticulously designed post-training strategies. Firstly, we conduct supervised fine-tuning guided by pathological data to imbue the model with foundational pathological knowledge, forming a new pathological base model. Subsequently, we introduce Group Relative Policy Optimization (GRPO) and propose a dual reward-driven reinforcement learning optimization, ensuring strict constraint on logical supervision of the reasoning process and accuracy of results via cross-modal process reward and outcome accuracy reward. In the pathological image question-answering tasks, the testing results of PathVLM-R1 demonstrate a 14% improvement in accuracy compared to baseline methods, and it demonstrated superior performance compared to the Qwen2.5-VL-32B version despite having a significantly smaller parameter size. Furthermore, in out-domain data evaluation involving four medical imaging modalities: Computed Tomography (CT), dermoscopy, fundus photography, and Optical Coherence Tomography (OCT) images: PathVLM-R1's transfer performance improved by an average of 17.3% compared to traditional SFT methods. These results clearly indicate that PathVLM-R1 not only enhances accuracy but also possesses broad applicability and expansion potential.
NoTeS-Bank: Benchmarking Neural Transcription and Search for Scientific Notes Understanding
Understanding and reasoning over academic handwritten notes remains a challenge in document AI, particularly for mathematical equations, diagrams, and scientific notations. Existing visual question answering (VQA) benchmarks focus on printed or structured handwritten text, limiting generalization to real-world note-taking. To address this, we introduce NoTeS-Bank, an evaluation benchmark for Neural Transcription and Search in note-based question answering. NoTeS-Bank comprises complex notes across multiple domains, requiring models to process unstructured and multimodal content. The benchmark defines two tasks: (1) Evidence-Based VQA, where models retrieve localized answers with bounding-box evidence, and (2) Open-Domain VQA, where models classify the domain before retrieving relevant documents and answers. Unlike classical Document VQA datasets relying on optical character recognition (OCR) and structured data, NoTeS-BANK demands vision-language fusion, retrieval, and multimodal reasoning. We benchmark state-of-the-art Vision-Language Models (VLMs) and retrieval frameworks, exposing structured transcription and reasoning limitations. NoTeS-Bank provides a rigorous evaluation with NDCG@5, MRR, Recall@K, IoU, and ANLS, establishing a new standard for visual document understanding and reasoning.
Multi-scale Activation, Refinement, and Aggregation: Exploring Diverse Cues for Fine-Grained Bird Recognition AAAI2025
Given the critical role of birds in ecosystems, Fine-Grained Bird Recognition (FGBR) has gained increasing attention, particularly in distinguishing birds within similar subcategories. Although Vision Transformer (ViT)-based methods often outperform Convolutional Neural Network (CNN)-based methods in FGBR, recent studies reveal that the limited receptive field of plain ViT model hinders representational richness and makes them vulnerable to scale variance. Thus, enhancing the multi-scale capabilities of existing ViT-based models to overcome this bottleneck in FGBR is a worthwhile pursuit. In this paper, we propose a novel framework for FGBR, namely Multi-scale Diverse Cues Modeling (MDCM), which explores diverse cues at different scales across various stages of a multi-scale Vision Transformer (MS-ViT) in an "Activation-Selection-Aggregation" paradigm. Specifically, we first propose a multi-scale cue activation module to ensure the discriminative cues learned at different stage are mutually different. Subsequently, a multi-scale token selection mechanism is proposed to remove redundant noise and highlight discriminative, scale-specific cues at each stage. Finally, the selected tokens from each stage are independently utilized for bird recognition, and the recognition results from multiple stages are adaptively fused through a multi-scale dynamic aggregation mechanism for final model decisions. Both qualitative and quantitative results demonstrate the effectiveness of our proposed MDCM, which outperforms CNN- and ViT-based models on several widely-used FGBR benchmarks.
comment: Accepted by AAAI2025
Deconfounded Reasoning for Multimodal Fake News Detection via Causal Intervention
The rapid growth of social media has led to the widespread dissemination of fake news across multiple content forms, including text, images, audio, and video. Traditional unimodal detection methods fall short in addressing complex cross-modal manipulations; as a result, multimodal fake news detection has emerged as a more effective solution. However, existing multimodal approaches, especially in the context of fake news detection on social media, often overlook the confounders hidden within complex cross-modal interactions, leading models to rely on spurious statistical correlations rather than genuine causal mechanisms. In this paper, we propose the Causal Intervention-based Multimodal Deconfounded Detection (CIMDD) framework, which systematically models three types of confounders via a unified Structural Causal Model (SCM): (1) Lexical Semantic Confounder (LSC); (2) Latent Visual Confounder (LVC); (3) Dynamic Cross-Modal Coupling Confounder (DCCC). To mitigate the influence of these confounders, we specifically design three causal modules based on backdoor adjustment, frontdoor adjustment, and cross-modal joint intervention to block spurious correlations from different perspectives and achieve causal disentanglement of representations for deconfounded reasoning. Experimental results on the FakeSV and FVC datasets demonstrate that CIMDD significantly improves detection accuracy, outperforming state-of-the-art methods by 4.27% and 4.80%, respectively. Furthermore, extensive experimental results indicate that CIMDD exhibits strong generalization and robustness across diverse multimodal scenarios.
Exploring Modality Disruption in Multimodal Fake News Detection
The rapid growth of social media has led to the widespread dissemination of fake news across multiple content forms, including text, images, audio, and video. Compared to unimodal fake news detection, multimodal fake news detection benefits from the increased availability of information across multiple modalities. However, in the context of social media, certain modalities in multimodal fake news detection tasks may contain disruptive or over-expressive information. These elements often include exaggerated or embellished content. We define this phenomenon as modality disruption and explore its impact on detection models through experiments. To address the issue of modality disruption in a targeted manner, we propose a multimodal fake news detection framework, FND-MoE. Additionally, we design a two-pass feature selection mechanism to further mitigate the impact of modality disruption. Extensive experiments on the FakeSV and FVC-2018 datasets demonstrate that FND-MoE significantly outperforms state-of-the-art methods, with accuracy improvements of 3.45% and 3.71% on the respective datasets compared to baseline models.
Unsupervised Ego- and Exo-centric Dense Procedural Activity Captioning via Gaze Consensus Adaptation
Even from an early age, humans naturally adapt between exocentric (Exo) and egocentric (Ego) perspectives to understand daily procedural activities. Inspired by this cognitive ability, we propose a novel Unsupervised Ego-Exo Dense Procedural Activity Captioning (UE$^{2}$DPAC) task, which aims to transfer knowledge from the labeled source view to predict the time segments and descriptions of action sequences for the target view without annotations. Despite previous works endeavoring to address the fully-supervised single-view or cross-view dense video captioning, they lapse in the proposed task due to the significant inter-view gap caused by temporal misalignment and irrelevant object interference. Hence, we propose a Gaze Consensus-guided Ego-Exo Adaptation Network (GCEAN) that injects the gaze information into the learned representations for the fine-grained Ego-Exo alignment. Specifically, we propose a Score-based Adversarial Learning Module (SALM) that incorporates a discriminative scoring network and compares the scores of distinct views to learn unified view-invariant representations from a global level. Then, the Gaze Consensus Construction Module (GCCM) utilizes the gaze to progressively calibrate the learned representations to highlight the regions of interest and extract the corresponding temporal contexts. Moreover, we adopt hierarchical gaze-guided consistency losses to construct gaze consensus for the explicit temporal and spatial adaptation between the source and target views. To support our research, we propose a new EgoMe-UE$^{2}$DPAC benchmark, and extensive experiments demonstrate the effectiveness of our method, which outperforms many related methods by a large margin. The code will be released.
Conceptwm: A Diffusion Model Watermark for Concept Protection
The personalization techniques of diffusion models succeed in generating specific concepts but also pose threats to copyright protection and illegal use. Model Watermarking is an effective method to prevent the unauthorized use of subject-driven or style-driven image generation, safeguarding concept copyrights. However, under the goal of concept-oriented protection, current watermarking schemes typically add watermarks to all images rather than applying them in a refined manner targeted at specific concepts. Additionally, the personalization techniques of diffusion models can easily remove watermarks. Existing watermarking methods struggle to achieve fine-grained watermark embedding with a few images of specific concept and prevent removal of watermarks through personalized fine-tuning. Therefore, we introduce a novel concept-oriented watermarking framework that seamlessly embeds imperceptible watermarks into the concept of diffusion models. We introduce Fidelity-preserving Latent Watermarking (FLW) to generate latent watermarks based on image characteristics and the Adversarial Watermarking Modulation module to prevent "jailbreaking" via personalized finetuning. To enhance U-Net's efficiency in learning watermark patterns with limited samples, we propose Efficient Concept Watermark Finetuning, which alternates optimization of model parameters for both watermark embedding and concept learning. We conduct extensive experiments and ablation studies to verify our framework. Our code is available at https://anonymous.4open.science/r/Conceptwm-4EB3/.
Image and Video Processing
seg2med: a segmentation-based medical image generation framework using denoising diffusion probabilistic models
In this study, we present seg2med, an advanced medical image synthesis framework that uses Denoising Diffusion Probabilistic Models (DDPM) to generate high-quality synthetic medical images conditioned on anatomical masks from TotalSegmentator. The framework synthesizes CT and MR images from segmentation masks derived from real patient data and XCAT digital phantoms, achieving a Structural Similarity Index Measure (SSIM) of 0.94 +/- 0.02 for CT and 0.89 +/- 0.04 for MR images compared to ground-truth images of real patients. It also achieves a Feature Similarity Index Measure (FSIM) of 0.78 +/- 0.04 for CT images from XCAT. The generative quality is further supported by a Fr\'echet Inception Distance (FID) of 3.62 for CT image generation. Additionally, seg2med can generate paired CT and MR images with consistent anatomical structures and convert images between CT and MR modalities, achieving SSIM values of 0.91 +/- 0.03 for MR-to-CT and 0.77 +/- 0.04 for CT-to-MR conversion. Despite the limitations of incomplete anatomical details in segmentation masks, the framework shows strong performance in cross-modality synthesis and multimodal imaging. seg2med also demonstrates high anatomical fidelity in CT synthesis, achieving a mean Dice coefficient greater than 0.90 for 11 abdominal organs and greater than 0.80 for 34 organs out of 59 in 58 test cases. The highest Dice of 0.96 +/- 0.01 was recorded for the right scapula. Leveraging the TotalSegmentator toolkit, seg2med enables segmentation mask generation across diverse datasets, supporting applications in clinical imaging, data augmentation, multimodal synthesis, and diagnostic algorithm development.
comment: 17 pages, 10 figures
Multi-Modal Brain Tumor Segmentation via 3D Multi-Scale Self-attention and Cross-attention
Due to the success of CNN-based and Transformer-based models in various computer vision tasks, recent works study the applicability of CNN-Transformer hybrid architecture models in 3D multi-modality medical segmentation tasks. Introducing Transformer brings long-range dependent information modeling ability in 3D medical images to hybrid models via the self-attention mechanism. However, these models usually employ fixed receptive fields of 3D volumetric features within each self-attention layer, ignoring the multi-scale volumetric lesion features. To address this issue, we propose a CNN-Transformer hybrid 3D medical image segmentation model, named TMA-TransBTS, based on an encoder-decoder structure. TMA-TransBTS realizes simultaneous extraction of multi-scale 3D features and modeling of long-distance dependencies by multi-scale division and aggregation of 3D tokens in a self-attention layer. Furthermore, TMA-TransBTS proposes a 3D multi-scale cross-attention module to establish a link between the encoder and the decoder for extracting rich volume representations by exploiting the mutual attention mechanism of cross-attention and multi-scale aggregation of 3D tokens. Extensive experimental results on three public 3D medical segmentation datasets show that TMA-TransBTS achieves higher averaged segmentation results than previous state-of-the-art CNN-based 3D methods and CNN-Transform hybrid 3D methods for the segmentation of 3D multi-modality brain tumors.
PathSeqSAM: Sequential Modeling for Pathology Image Segmentation with SAM2
Current methods for pathology image segmentation typically treat 2D slices independently, ignoring valuable cross-slice information. We present PathSeqSAM, a novel approach that treats 2D pathology slices as sequential video frames using SAM2's memory mechanisms. Our method introduces a distance-aware attention mechanism that accounts for variable physical distances between slices and employs LoRA for domain adaptation. Evaluated on the KPI Challenge 2024 dataset for glomeruli segmentation, PathSeqSAM demonstrates improved segmentation quality, particularly in challenging cases that benefit from cross-slice context. We have publicly released our code at https://github.com/JackyyyWang/PathSeqSAM.
Local Temporal Feature Enhanced Transformer with ROI-rank Based Masking for Diagnosis of ADHD
In modern society, Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the common mental diseases discovered not only in children but also in adults. In this context, we propose a ADHD diagnosis transformer model that can effectively simultaneously find important brain spatiotemporal biomarkers from resting-state functional magnetic resonance (rs-fMRI). This model not only learns spatiotemporal individual features but also learns the correlation with full attention structures specialized in ADHD diagnosis. In particular, it focuses on learning local blood oxygenation level dependent (BOLD) signals and distinguishing important regions of interest (ROI) in the brain. Specifically, the three proposed methods for ADHD diagnosis transformer are as follows. First, we design a CNN-based embedding block to obtain more expressive embedding features in brain region attention. It is reconstructed based on the previously CNN-based ADHD diagnosis models for the transformer. Next, for individual spatiotemporal feature attention, we change the attention method to local temporal attention and ROI-rank based masking. For the temporal features of fMRI, the local temporal attention enables to learn local BOLD signal features with only simple window masking. For the spatial feature of fMRI, ROI-rank based masking can distinguish ROIs with high correlation in ROI relationships based on attention scores, thereby providing a more specific biomarker for ADHD diagnosis. The experiment was conducted with various types of transformer models. To evaluate these models, we collected the data from 939 individuals from all sites provided by the ADHD-200 competition. Through this, the spatiotemporal enhanced transformer for ADHD diagnosis outperforms the performance of other different types of transformer variants. (77.78ACC 76.60SPE 79.22SEN 79.30AUC)
CTorch: PyTorch-Compatible GPU-Accelerated Auto-Differentiable Projector Toolbox for Computed Tomography
This work introduces CTorch, a PyTorch-compatible, GPU-accelerated, and auto-differentiable projector toolbox designed to handle various CT geometries with configurable projector algorithms. CTorch provides flexible scanner geometry definition, supporting 2D fan-beam, 3D circular cone-beam, and 3D non-circular cone-beam geometries. Each geometry allows view-specific definitions to accommodate variations during scanning. Both flat- and curved-detector models may be specified to accommodate various clinical devices. CTorch implements four projector algorithms: voxel-driven, ray-driven, distance-driven (DD), and separable footprint (SF), allowing users to balance accuracy and computational efficiency based on their needs. All the projectors are primarily built using CUDA C for GPU acceleration, then compiled as Python-callable functions, and wrapped as PyTorch network module. This design allows direct use of PyTorch tensors, enabling seamless integration into PyTorch's auto-differentiation framework. These features make CTorch an flexible and efficient tool for CT imaging research, with potential applications in accurate CT simulations, efficient iterative reconstruction, and advanced deep-learning-based CT reconstruction.
LUND-PROBE -- LUND Prostate Radiotherapy Open Benchmarking and Evaluation dataset
Radiotherapy treatment for prostate cancer relies on computed tomography (CT) and/or magnetic resonance imaging (MRI) for segmentation of target volumes and organs at risk (OARs). Manual segmentation of these volumes is regarded as the gold standard for ground truth in machine learning applications but to acquire such data is tedious and time-consuming. A publicly available clinical dataset is presented, comprising MRI- and synthetic CT (sCT) images, target and OARs segmentations, and radiotherapy dose distributions for 432 prostate cancer patients treated with MRI-guided radiotherapy. An extended dataset with 35 patients is also included, with the addition of deep learning (DL)-generated segmentations, DL segmentation uncertainty maps, and DL segmentations manually adjusted by four radiation oncologists. The publication of these resources aims to aid research within the fields of automated radiotherapy treatment planning, segmentation, inter-observer analyses, and DL model uncertainty investigation. The dataset is hosted on the AIDA Data Hub and offers a free-to-use resource for the scientific community, valuable for the advancement of medical imaging and prostate cancer radiotherapy research.
comment: 4 figures
Ultra-Low Complexity On-Orbit Compression for Remote Sensing Imagery via Block Modulated Imaging
The growing field of remote sensing faces a challenge: the ever-increasing size and volume of imagery data are exceeding the storage and transmission capabilities of satellite platforms. Efficient compression of remote sensing imagery is a critical solution to alleviate these burdens on satellites. However, existing compression methods are often too computationally expensive for satellites. With the continued advancement of compressed sensing theory, single-pixel imaging emerges as a powerful tool that brings new possibilities for on-orbit image compression. However, it still suffers from prolonged imaging times and the inability to perform high-resolution imaging, hindering its practical application. This paper advances the study of compressed sensing in remote sensing image compression, proposing Block Modulated Imaging (BMI). By requiring only a single exposure, BMI significantly enhances imaging acquisition speeds. Additionally, BMI obviates the need for digital micromirror devices and surpasses limitations in image resolution. Furthermore, we propose a novel decoding network specifically designed to reconstruct images compressed under the BMI framework. Leveraging the gated 3D convolutions and promoting efficient information flow across stages through a Two-Way Cross-Attention module, our decoding network exhibits demonstrably superior reconstruction performance. Extensive experiments conducted on multiple renowned remote sensing datasets unequivocally demonstrate the efficacy of our proposed method. To further validate its practical applicability, we developed and tested a prototype of the BMI-based camera, which has shown promising potential for on-orbit image compression. The code is available at https://github.com/Johnathan218/BMNet.
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
Multi-modal Contrastive Learning for Tumor-specific Missing Modality Synthesis
Multi-modal magnetic resonance imaging (MRI) is essential for providing complementary information about brain anatomy and pathology, leading to more accurate diagnoses. However, obtaining high-quality multi-modal MRI in a clinical setting is difficult due to factors such as time constraints, high costs, and patient movement artifacts. To overcome this difficulty, there is increasing interest in developing generative models that can synthesize missing target modality images from the available source ones. Therefore, our team, PLAVE, design a generative model for missing MRI that integrates multi-modal contrastive learning with a focus on critical tumor regions. Specifically, we integrate multi-modal contrastive learning, tailored for multiple source modalities, and enhance its effectiveness by selecting features based on entropy during the contrastive learning process. Additionally, our network not only generates the missing target modality images but also predicts segmentation outputs, simultaneously. This approach improves the generator's capability to precisely generate tumor regions, ultimately improving performance in downstream segmentation tasks. By leveraging a combination of contrastive, segmentation, and additional self-representation losses, our model effectively reflects target-specific information and generate high-quality target images. Consequently, our results in the Brain MR Image Synthesis challenge demonstrate that the proposed model excelled in generating the missing modality.
Label-free segmentation from cardiac ultrasound using self-supervised learning
Segmentation and measurement of cardiac chambers is critical in cardiac ultrasound but is laborious and poorly reproducible. Neural networks can assist, but supervised approaches require the same laborious manual annotations. We built a pipeline for self-supervised (no manual labels) segmentation combining computer vision, clinical domain knowledge, and deep learning. We trained on 450 echocardiograms (93,000 images) and tested on 8,393 echocardiograms (4,476,266 images; mean 61 years, 51% female), using the resulting segmentations to calculate biometrics. We also tested against external images from an additional 10,030 patients with available manual tracings of the left ventricle. r2 between clinically measured and pipeline-predicted measurements were similar to reported inter-clinician variation and comparable to supervised learning across several different measurements (r2 0.56-0.84). Average accuracy for detecting abnormal chamber size and function was 0.85 (range 0.71-0.97) compared to clinical measurements. A subset of test echocardiograms (n=553) had corresponding cardiac MRIs, where MRI is the gold standard. Correlation between pipeline and MRI measurements was similar to that between clinical echocardiogram and MRI. Finally, the pipeline accurately segments the left ventricle with an average Dice score of 0.89 (95% CI [0.89]) in the external, manually labeled dataset. Our results demonstrate a manual-label free, clinically valid, and highly scalable method for segmentation from ultrasound, a noisy but globally important imaging modality.
comment: 37 pages, 3 Tables, 7 Figures
Human-Computer Interaction
Designing Reality-Based VR Interfaces for Geological Uncertainty
Inherent uncertainty in geological data acquisition leads to the generation of large ensembles of equiprobable 3D reservoir models. Running computationally costly numerical flow simulations across such a vast solution space is infeasible. A more suitable approach is to carefully select a small number of geological models that reasonably capture the overall variability of the ensemble. Identifying these representative models is a critical task that enables the oil and gas industry to generate cost-effective production forecasts. Our work leverages virtual reality (VR) to provide engineers with a system for conducting geological uncertainty analysis, enabling them to perform inherently spatial tasks using an associative 3D interaction space. We present our VR system through the lens of the reality-based interaction paradigm, designing 3D interfaces that enable familiar physical interactions inspired by real-world analogies-such as gesture-based operations and view-dependent lenses. We also report an evaluation conducted with 12 reservoir engineers from an industry partner. Our findings offer insights into the benefits, pitfalls, and opportunities for refining our system design. We catalog our results into a set of design recommendations intended to guide researchers and developers of immersive interfaces-in reservoir engineering and broader application domains.
Explorer: Robust Collection of Interactable GUI Elements
Automation of existing Graphical User Interfaces (GUIs) is important but hard to achieve. Upstream of making the GUI user-accessible or somehow scriptable, even the data-collection to understand the original interface poses significant challenges. For example, large quantities of general UI data seem helpful for training general machine learning (ML) models, but accessibility for each person can hinge on the ML's precision on a specific app. We therefore take the perspective that a given user needs confidence, that the relevant UI elements are being detected correctly throughout one app or digital environment. We mostly assume that the target application is known in advance, so that data collection and ML-training can be personalized for the test-time target domain. The proposed Explorer system focuses on detecting on-screen buttons and text-entry fields, i.e. interactables, where the training process has access to a live version of the application. The live application can run on almost any popular platform except iOS phones, and the collection is especially streamlined for Android phones or for desktop Chrome browsers. Explorer also enables the recording of interactive user sessions, and subsequent mapping of how such sessions overlap and sometimes loop back to similar states. We show how having such a map enables a kind of path planning through the GUI, letting a user issue audio commands to get to their destination. Critically, we are releasing our code for Explorer openly at https://github.com/varnelis/Explorer.
comment: 19 pages, 17 figures
"It's not a representation of me": Examining Accent Bias and Digital Exclusion in Synthetic AI Voice Services
Recent advances in artificial intelligence (AI) speech generation and voice cloning technologies have produced naturalistic speech and accurate voice replication, yet their influence on sociotechnical systems across diverse accents and linguistic traits is not fully understood. This study evaluates two synthetic AI voice services (Speechify and ElevenLabs) through a mixed methods approach using surveys and interviews to assess technical performance and uncover how users' lived experiences influence their perceptions of accent variations in these speech technologies. Our findings reveal technical performance disparities across five regional, English-language accents and demonstrate how current speech generation technologies may inadvertently reinforce linguistic privilege and accent-based discrimination, potentially creating new forms of digital exclusion. Overall, our study highlights the need for inclusive design and regulation by providing actionable insights for developers, policymakers, and organizations to ensure equitable and socially responsible AI speech technologies.
comment: This paper has been accepted to FAccT 2025
Confirmation Bias in Generative AI Chatbots: Mechanisms, Risks, Mitigation Strategies, and Future Research Directions
This article explores the phenomenon of confirmation bias in generative AI chatbots, a relatively underexamined aspect of AI-human interaction. Drawing on cognitive psychology and computational linguistics, it examines how confirmation bias, commonly understood as the tendency to seek information that aligns with existing beliefs, can be replicated and amplified by the design and functioning of large language models. The article analyzes the mechanisms by which confirmation bias may manifest in chatbot interactions, assesses the ethical and practical risks associated with such bias, and proposes a range of mitigation strategies. These include technical interventions, interface redesign, and policy measures aimed at promoting balanced AI-generated discourse. The article concludes by outlining future research directions, emphasizing the need for interdisciplinary collaboration and empirical evaluation to better understand and address confirmation bias in generative AI systems.
Minority Reports: Balancing Cost and Quality in Ground Truth Data Annotation
High-quality data annotation is an essential but laborious and costly aspect of developing machine learning-based software. We explore the inherent tradeoff between annotation accuracy and cost by detecting and removing minority reports -- instances where annotators provide incorrect responses -- that indicate unnecessary redundancy in task assignments. We propose an approach to prune potentially redundant annotation task assignments before they are executed by estimating the likelihood of an annotator disagreeing with the majority vote for a given task. Our approach is informed by an empirical analysis over computer vision datasets annotated by a professional data annotation platform, which reveals that the likelihood of a minority report event is dependent primarily on image ambiguity, worker variability, and worker fatigue. Simulations over these datasets show that we can reduce the number of annotations required by over 60% with a small compromise in label quality, saving approximately 6.6 days-equivalent of labor. Our approach provides annotation service platforms with a method to balance cost and dataset quality. Machine learning practitioners can tailor annotation accuracy levels according to specific application needs, thereby optimizing budget allocation while maintaining the data quality necessary for critical settings like autonomous driving technology.
comment: 39 pages
The Goldilocks Time Window for Proactive Interventions in Wearable AI Systems
As AI systems become increasingly integrated into our daily lives and into wearable form factors, there's a fundamental tension between their potential to proactively assist us and the risk of creating intrusive, dependency-forming experiences. This work proposes the concept of a Goldilocks Time Window -- a contextually adaptive time window for proactive AI systems to deliver effective interventions. We discuss the critical factors that determine the time window, and the need of a framework for designing and evaluating proactive AI systems that can navigate this tension successfully.
Look and Talk: Seamless AI Assistant Interaction with Gaze-Triggered Activation
Engaging with AI assistants to gather essential information in time is becoming increasingly common. Traditional activation methods, like wake words such as Hey Siri, Ok Google, and Hey Alexa, are constrained by technical challenges such as false activations, recognition errors, and discomfort in public settings. Similarly, activating AI systems via physical buttons imposes strict interactive limitations as it demands particular physical actions, which hinders fluid and spontaneous communication with AI. Our approach employs eye-tracking technology within AR glasses to discern a user's intention to engage with the AI assistant. By sustaining eye contact on a virtual AI avatar for a specific time, users can initiate an interaction silently and without using their hands. Preliminary user feedback suggests that this technique is relatively intuitive, natural, and less obtrusive, highlighting its potential for integrating AI assistants fluidly into everyday interactions.
Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale
How do we update AI memory of user intent as intent changes? We consider how an AI interface may assist the integration of new information into a repository of natural language data. Inspired by software engineering concepts like impact analysis, we develop methods and a UI for managing semantic changes with non-local effects, which we call "semantic conflict resolution." The user commits new intent to a project -- makes a "semantic commit" -- and the AI helps the user detect and resolve semantic conflicts within a store of existing information representing their intent (an "intent specification"). We develop an interface, SemanticCommit, to better understand how users resolve conflicts when updating intent specifications such as Cursor Rules and game design documents. A knowledge graph-based RAG pipeline drives conflict detection, while LLMs assist in suggesting resolutions. We evaluate our technique on an initial benchmark. Then, we report a 12 user within-subjects study of SemanticCommit for two task domains -- game design documents, and AI agent memory in the style of ChatGPT memories -- where users integrated new information into an existing list. Half of our participants adopted a workflow of impact analysis, where they would first flag conflicts without AI revisions then resolve conflicts locally, despite having access to a global revision feature. We argue that AI agent interfaces, such as software IDEs like Cursor and Windsurf, should provide affordances for impact analysis and help users validate AI retrieval independently from generation. Our work speaks to how AI agent designers should think about updating memory as a process that involves human feedback and decision-making.
comment: 22 pages; 10 figures
Linguistic Comparison of AI- and Human-Written Responses to Online Mental Health Queries
The ubiquity and widespread use of digital and online technologies have transformed mental health support, with online mental health communities (OMHCs) providing safe spaces for peer support. More recently, generative AI and large language models (LLMs) have introduced new possibilities for scalable, around-the-clock mental health assistance that could potentially augment and supplement the capabilities of OMHCs. Although genAI shows promise in delivering immediate and personalized responses, their effectiveness in replicating the nuanced, experience-based support of human peers remains an open question. In this study, we harnessed 24,114 posts and 138,758 online community (OC) responses from 55 OMHCs on Reddit. We prompted several state-of-the-art LLMs (GPT-4-Turbo, Llama-3, and Mistral-7B) with these posts, and compared their (AI) responses to human-written (OC) responses based on a variety of linguistic measures across psycholinguistics and lexico-semantics. Our findings revealed that AI responses are more verbose, readable, and analytically structured, but lack linguistic diversity and personal narratives inherent in human-human interactions. Through a qualitative examination, we found validation as well as complementary insights into the nature of AI responses, such as its neutrality of stance and the absence of seeking back-and-forth clarifications. We discuss the ethical and practical implications of integrating generative AI into OMHCs, advocating for frameworks that balance AI's scalability and timeliness with the irreplaceable authenticity, social interactiveness, and expertise of human connections that form the ethos of online support communities.
SceneScout: Towards AI Agent-driven Access to Street View Imagery for Blind Users
People who are blind or have low vision (BLV) may hesitate to travel independently in unfamiliar environments due to uncertainty about the physical landscape. While most tools focus on in-situ navigation, those exploring pre-travel assistance typically provide only landmarks and turn-by-turn instructions, lacking detailed visual context. Street view imagery, which contains rich visual information and has the potential to reveal numerous environmental details, remains inaccessible to BLV people. In this work, we introduce SceneScout, a multimodal large language model (MLLM)-driven AI agent that enables accessible interactions with street view imagery. SceneScout supports two modes: (1) Route Preview, enabling users to familiarize themselves with visual details along a route, and (2) Virtual Exploration, enabling free movement within street view imagery. Our user study (N=10) demonstrates that SceneScout helps BLV users uncover visual information otherwise unavailable through existing means. A technical evaluation shows that most descriptions are accurate (72%) and describe stable visual elements (95%) even in older imagery, though occasional subtle and plausible errors make them difficult to verify without sight. We discuss future opportunities and challenges of using street view imagery to enhance navigation experiences.
CMCRD: Cross-Modal Contrastive Representation Distillation for Emotion Recognition
Emotion recognition is an important component of affective computing, and also human-machine interaction. Unimodal emotion recognition is convenient, but the accuracy may not be high enough; on the contrary, multi-modal emotion recognition may be more accurate, but it also increases the complexity and cost of the data collection system. This paper considers cross-modal emotion recognition, i.e., using both electroencephalography (EEG) and eye movement in training, but only EEG or eye movement in test. We propose cross-modal contrastive representation distillation (CMCRD), which uses a pre-trained eye movement classification model to assist the training of an EEG classification model, improving feature extraction from EEG signals, or vice versa. During test, only EEG signals (or eye movement signals) are acquired, eliminating the need for multi-modal data. CMCRD not only improves the emotion recognition accuracy, but also makes the system more simplified and practical. Experiments using three different neural network architectures on three multi-modal emotion recognition datasets demonstrated the effectiveness of CMCRD. Compared with the EEG-only model, it improved the average classification accuracy by about 6.2%.
Spiking Neural Network for Intra-cortical Brain Signal Decoding
Decoding brain signals accurately and efficiently is crucial for intra-cortical brain-computer interfaces. Traditional decoding approaches based on neural activity vector features suffer from low accuracy, whereas deep learning based approaches have high computational cost. To improve both the decoding accuracy and efficiency, this paper proposes a spiking neural network (SNN) for effective and energy-efficient intra-cortical brain signal decoding. We also propose a feature fusion approach, which integrates the manually extracted neural activity vector features with those extracted by a deep neural network, to further improve the decoding accuracy. Experiments in decoding motor-related intra-cortical brain signals of two rhesus macaques demonstrated that our SNN model achieved higher accuracy than traditional artificial neural networks; more importantly, it was tens or hundreds of times more efficient. The SNN model is very suitable for high precision and low power applications like intra-cortical brain-computer interfaces.
UX Remix: Improving Measurement Item Design Process Using Large Language Models and Prior Literature
Researchers often struggle to develop measurement items and lack a standardized process. To support the design process, we present UX Remix, a system to help researchers develop constructs and measurement items using large language models (LLMs). UX Remix leverages a database of constructs and associated measurement items from previous papers. Based on the data, UX Remix recommends constructs relevant to the research context. The researchers then select appropriate constructs based on the recommendations. Afterward, selected constructs are used to generate a custom construct, and UX Remix recommends measurement items. UX Remix streamlines the process of selecting constructs, developing measurement items, and adapting them to research contexts, addressing challenges in the selection and reuse of measurement items. This paper describes the implementation of the system, the potential benefits, and future directions to improve the rigor and efficiency of measurement design in human-computer interaction (HCI) research.
comment: Accepted to the CHI 2025 workshop, Meta-HCI '25: First Workshop on Meta-Research in HCI, April 26, 2025, Yokohama, Japan
Understanding Intention to Adopt Smart Thermostats: The Role of Individual Predictors and Social Beliefs Across Five EU Countries
Heating of buildings represents a significant share of the energy consumption in Europe. Smart thermostats that capitalize on the data-driven analysis of heating patterns in order to optimize heat supply are a very promising part of building energy management technology. However, factors driving their acceptance by building inhabitants are poorly understood although being a prerequisite for fully tapping on their potential. In order to understand the driving forces of technology adoption in this use case, a large survey (N = 2250) was conducted in five EU countries (Austria, Belgium, Estonia, Germany, Greece). For the data analysis structural equation modelling based on the Unified Theory of Acceptance and Use of Technology (UTAUT) was employed, which was extended by adding social beliefs, including descriptive social norms, collective efficacy, social identity and trust. As a result, performance expectancy, price value, and effort expectancy proved to be the most important predictors overall, with variations across countries. In sum, the adoption of smart thermostats appears more strongly associated with individual beliefs about their functioning, potentially reducing their adoption. At the end of the paper, implications for policy making and marketing of smart heating technologies are discussed.
Tell-XR: Conversational End-User Development of XR Automations
The availability of extended reality (XR) devices has widened their adoption, yet authoring interactive experiences remains complex for non-programmers. We introduce Tell-XR, an intelligent agent leveraging large language models (LLMs) to guide end-users in defining the interaction in XR settings using automations described as Event-Condition-Action (ECA) rules. Through a formative study, we identified the key conversation stages to define and refine automations, which informed the design of the system architecture. The evaluation study in two scenarios (a VR museum and an AR smart home) demonstrates the effectiveness of Tell-XR across different XR interaction settings.
Rethinking News and Media System Design Towards Positive Societal Implications
Since this century, the speed, availability, and plethora of online informational content have made it increasingly difficult for humans to keep an overview of real-world situations, build a personal opinion, and sometimes even decide on the truth. Thereby, personal opinion-making and public discourse became harder - two essential building blocks that keep a democratic society alive. HCI thus needs to rethink news, information, and social media systems to mitigate such negative effects. Instead of polarising through emotional and extremely framed messages, informational content online should make people think about other opinions and discuss constructively. Instead, through polarization and filter bubble effects, people lose openness and tolerance for the existence of opposing opinions. In this workshop, we will discuss how we can redesign our information technology for a better societal impact. We will present key takeaways from the social sciences and discuss how we can implement them using recent HCI findings and digital technologies.
VibWalk: Mapping Lower-limb Haptic Experiences of Everyday Walking
Walking is among the most common human activities where the feet can gather rich tactile information from the ground. The dynamic contact between the feet and the ground generates vibration signals that can be sensed by the foot skin. While existing research focuses on foot pressure sensing and lower-limb interactions, methods of decoding tactile information from foot vibrations remain underexplored. Here, we propose a foot-equipped wearable system capable of recording wideband vibration signals during walking activities. By enabling location-based recording, our system generates maps of haptic data that encode information on ground materials, lower-limb activities, and road conditions. Its efficacy was demonstrated through studies involving 31 users walking over 18 different ground textures, achieving an overall identification accuracy exceeding 95\% (cross-user accuracy of 87\%). Our system allows pedestrians to map haptic information through their daily walking activities, which has potential applications in creating digitalized walking experiences and monitoring road conditions.
comment: 17 pages, 12 figures
Entertainers Between Real and Virtual -- Investigating Viewer Interaction, Engagement, and Relationships with Avatarized Virtual Livestreamers
Virtual YouTubers (VTubers) are avatar-based livestreamers that are voiced and played by human actors. VTubers have been popular in East Asia for years and have more recently seen widespread international growth. Despite their emergent popularity, research has been scarce into the interactions and relationships that exist between avatarized VTubers and their viewers, particularly in contrast to non-avatarized streamers. To address this gap, we performed in-depth interviews with self-reported VTuber viewers (n=21). Our findings first reveal that the avatarized nature of VTubers fosters new forms of theatrical engagement, as factors of the virtual blend with the real to create a mixture of fantasy and realism in possible livestream interactions. Avatarization furthermore results in a unique audience perception regarding the identity of VTubers - an identity which comprises a dynamic, distinct mix of the real human (the voice actor/actress) and the virtual character. Our findings suggest that each of these dual identities both individually and symbiotically affect viewer interactions and relationships with VTubers. Whereas the performer's identity mediates social factors such as intimacy, relatability, and authenticity, the virtual character's identity offers feelings of escapism, novelty in interactions, and a sense of continuity beyond the livestream. We situate our findings within existing livestreaming literature to highlight how avatarization drives unique, character-based interactions as well as reshapes the motivations and relationships that viewers form with livestreamers. Finally, we provide suggestions and recommendations for areas of future exploration to address the challenges involved in present livestreamed avatarized entertainment.
comment: 15 pages, to be published in the ACM International Conference on Interactive Media Experiences (IMX'25)
VIBES: Exploring Viewer Spatial Interactions as Direct Input for Livestreamed Content
Livestreaming has rapidly become a popular online pastime, with real-time interaction between streamer and viewer being a key motivating feature. However, viewers have traditionally had limited opportunity to directly influence the streamed content; even when such interactions are possible, it has been reliant on text-based chat. We investigate the potential of spatial interaction on the livestreamed video content as a form of direct, real-time input for livestreamed applications. We developed VIBES, a flexible digital system that registers viewers' mouse interactions on the streamed video, i.e., clicks or movements, and transmits it directly into the streamed application. We used VIBES as a technology probe; first designing possible demonstrative interactions and using these interactions to explore streamers' perception of viewer influence and possible challenges and opportunities. We then deployed applications built using VIBES in two livestreams to explore its effects on audience engagement and investigate their relationships with the stream, the streamer, and fellow audience members. The use of spatial interactions enhances engagement and participation and opens up new avenues for both streamer-viewer and viewer-viewer participation. We contextualize our findings around a broader understanding of motivations and engagement in livestreaming, and we propose design guidelines and extensions for future research.
comment: 20 pages, 11 figures, to be published in the ACM International Conference on Interactive Media Experiences (IMX'25)
Training Human-Robot Teams by Improving Transparency Through a Virtual Spectator Interface ICRA 2025
After-action reviews (AARs) are professional discussions that help operators and teams enhance their task performance by analyzing completed missions with peers and professionals. Previous studies that compared different formats of AARs have mainly focused on human teams. However, the inclusion of robotic teammates brings along new challenges in understanding teammate intent and communication. Traditional AAR between human teammates may not be satisfactory for human-robot teams. To address this limitation, we propose a new training review (TR) tool, called the Virtual Spectator Interface (VSI), to enhance human-robot team performance and situational awareness (SA) in a simulated search mission. The proposed VSI primarily utilizes visual feedback to review subjects' behavior. To examine the effectiveness of VSI, we took elements from AAR to conduct our own TR, designed a 1 x 3 between-subjects experiment with experimental conditions: TR with (1) VSI, (2) screen recording, and (3) non-technology (only verbal descriptions). The results of our experiments demonstrated that the VSI did not result in significantly better team performance than other conditions. However, the TR with VSI led to more improvement in the subjects SA over the other conditions.
comment: 7 pages, 4 figures, Accepted to ICRA 2025
Can Large Language Models Detect Verbal Indicators of Romantic Attraction?
As artificial intelligence (AI) models become an integral part of everyday life, our interactions with them shift from purely functional exchanges to more relational experiences. For these experiences to be successful, artificial agents need to be able to detect and interpret social cues and interpersonal dynamics; both within and outside of their own human-agent relationships. In this paper, we explore whether AI models can accurately decode one of the arguably most important but complex social signals: romantic attraction. Specifically, we test whether Large Language Models can detect romantic attraction during brief getting-to-know-you interactions between humans. Examining data from 964 speed dates, we show that ChatGPT can predict both objective and subjective indicators of speed dating success (r=0.12-0.23). Although predictive performance remains relatively low, ChatGPT's predictions of actual matching (i.e., the exchange of contact information) were not only on par with those of human judges but incremental to speed daters' own predictions. In addition, ChatGPT's judgments showed substantial overlap with those made by human observers (r=0.21-0.35), highlighting similarities in their representation of romantic attraction that are independent of accuracy. Our findings also offer insights into how ChatGPT arrives at its predictions and the mistakes it makes. Specifically, we use a Brunswik lens approach to identify the linguistic and conversational cues utilized by ChatGPT (and human judges) vis-a-vis those that are predictive of actual matching.
GeoDEN: A Visual Exploration Tool for Analysing the Geographic Spread of Dengue Serotypes
Static maps and animations remain popular in spatial epidemiology of dengue, limiting the analytical depth and scope of visualisations. Over half of the global population live in dengue endemic regions. Understanding the spatiotemporal dynamics of the four closely related dengue serotypes, and their immunological interactions, remains a challenge at a global scale. To facilitate this understanding, we worked with dengue epidemiologists in a user-centered design framework to create GeoDEN, an exploratory visualisation tool that empowers experts to investigate spatiotemporal patterns in dengue serotype reports. The tool has several linked visualisations and filtering mechanisms, enabling analysis at a range of spatial and temporal scales. To identify successes and failures, we present both insight-based and value-driven evaluations. Our domain experts found GeoDEN valuable, verifying existing hypotheses and uncovering novel insights that warrant further investigation by the epidemiology community. The developed visual exploration approach can be adapted for exploring other epidemiology and disease incident datasets.
When Brain-Computer Interfaces Meet the Metaverse: Landscape, Demonstrator, Trends, Challenges, and Concerns
The metaverse has gained tremendous popularity in recent years, allowing the interconnection of users worldwide. However, current systems in metaverse scenarios, such as virtual reality glasses, offer a partial immersive experience. In this context, Brain-Computer Interfaces (BCIs) can introduce a revolution in the metaverse, although a study of the applicability and implications of BCIs in these virtual scenarios is required. Based on the absence of literature, this work reviews, for the first time, the applicability of BCIs in the metaverse, analyzing the current status of this integration based on different categories related to virtual worlds and the evolution of BCIs in these scenarios in the medium and long term. This work also proposes the design and implementation of a general framework that integrates BCIs with different data sources from sensors and actuators (e.g., VR glasses) based on a modular design to be easily extended. This manuscript also validates the framework in a demonstrator consisting of driving a car within a metaverse, using a BCI for neural data acquisition, a VR headset to provide realism, and a steering wheel and pedals. Four use cases (UCs) are selected, focusing on cognitive and emotional assessment of the driver, detection of drowsiness, and driver authentication while using the vehicle. Moreover, this manuscript offers an analysis of BCI trends in the metaverse, also identifying future challenges that the intersection of these technologies will face. Finally, it reviews the concerns that using BCIs in virtual world applications could generate according to different categories: accessibility, user inclusion, privacy, cybersecurity, physical safety, and ethics.
Eye Gaze as a Signal for Conveying User Attention in Contextual AI Systems
Advanced multimodal AI agents can now collaborate with users to solve challenges in the world. Yet, these emerging contextual AI systems rely on explicit communication channels between the user and system. We hypothesize that implicit communication of the user's interests and intent would reduce friction and improve user experience when collaborating with AI agents. In this work, we explore the potential of wearable eye tracking to convey signals about user attention. We measure the eye tracking signal quality requirements to effectively map gaze traces to physical objects, then conduct experiments that provide visual scanpath history as additional context when querying vision language models. Our results show that eye tracking provides high value as a user attention signal and can convey important context about the user's current task and interests, improving understanding of contextual AI agents.
comment: To appear in ETRA '25: Proceedings of the 2025 Symposium on Eye Tracking Research and Applications
Interacting with Thoughtful AI
We envision the concept of Thoughtful AI, a new human-AI interaction paradigm in which the AI behaves as a continuously thinking entity. Unlike conventional AI systems that operate on a turn-based, input-output model, Thoughtful AI autonomously generates, develops, and communicates its evolving thought process throughout an interaction. In this position paper, we argue that this thoughtfulness unlocks new possibilities for human-AI interaction by enabling proactive AI behavior, facilitating continuous cognitive alignment with users, and fostering more dynamic interaction experiences. We outline the conceptual foundations of Thoughtful AI, illustrate its potential through example projects, and envision how this paradigm can transform human-AI interaction in the future.
Clo(o)k: Human-Time Interactions Through a Clock That "Looks"
What if a clock could do more than tell time - what if it could look around? This project explores the conceptualization, design, and construction of a timepiece with visual perception capabilities, featuring three types of human-time interactions. Informal observations during a demonstration highlight its unique user experiences. https://www.zhuoyuelyu.com/clook
comment: CHI EA '25: Extended Abstracts of the 2025 CHI Conference on Human Factors in Computing Systems
Objestures: Everyday Objects Meet Mid-Air Gestures for Expressive Interaction
Everyday objects and mid-air gestures have been explored as input modalities, but each has its strengths and limitations - for example, objects offer tangibility but rely on their physical presence; gestures are convenient but lack haptic feedback. We introduce Objestures ("Obj" + "Gestures"), five interaction types that utilize both modalities for a design space of expressive and playful interaction. To evaluate its usefulness, we conducted a user study (N = 12) assessing whether it can effectively support basic 3D tasks such as rotation and scaling and found it has performance comparable to or better than the headset's native freehand manipulation. To understand its user experience, we conducted case studies on three example applications - Sound, Draw, and Shadow - with the same participants, who found it intuitive, engaging, and expressive, and were interested in its everyday use. We further illustrate 30 examples to showcase how Objestures can enrich everyday interactions and discuss its limitations and implications. https://www.zhuoyuelyu.com/objestures
comment: Under Review
The StudyChat Dataset: Student Dialogues With ChatGPT in an Artificial Intelligence Course
The widespread availability of large language models (LLMs), such as ChatGPT, has significantly impacted education, raising both opportunities and challenges. Students can frequently interact with LLM-powered, interactive learning tools, but their usage patterns need to be analyzed to ensure ethical usage of these tools. To better understand how students interact with LLMs in an academic setting, we introduce \textbf{StudyChat}, a publicly available dataset capturing real-world student interactions with an LLM-powered tutoring chatbot in a semester-long, university-level artificial intelligence (AI) course. We deploy a web application that replicates ChatGPT's core functionalities, and use it to log student interactions with the LLM while working on programming assignments. We collect 1,197 conversations, which we annotate using a dialogue act labeling schema inspired by observed interaction patterns and prior research. Additionally, we analyze these interactions, highlight behavioral trends, and analyze how specific usage patterns relate to course outcomes. \textbf{StudyChat} provides a rich resource for the learning sciences and AI in education communities, enabling further research into the evolving role of LLMs in education.
comment: Pre-print v0.2
Predicting User Behavior in Smart Spaces with LLM-Enhanced Logs and Personalized Prompts
Enhancing the intelligence of smart systems, such as smart home, and smart vehicle, and smart grids, critically depends on developing sophisticated planning capabilities that can anticipate the next desired function based on historical interactions. While existing methods view user behaviors as sequential data and apply models like RNNs and Transformers to predict future actions, they often fail to incorporate domain knowledge and capture personalized user preferences. In this paper, we propose a novel approach that incorporates LLM-enhanced logs and personalized prompts. Our approach first constructs a graph that captures individual behavior preferences derived from their interaction histories. This graph effectively transforms into a soft continuous prompt that precedes the sequence of user behaviors. Then our approach leverages the vast general knowledge and robust reasoning capabilities of a pretrained LLM to enrich the oversimplified and incomplete log records. By enhancing these logs semantically, our approach better understands the user's actions and intentions, especially for those rare events in the dataset. We evaluate the method across four real-world datasets from both smart vehicle and smart home settings. The findings validate the effectiveness of our LLM-enhanced description and personalized prompt, shedding light on potential ways to advance the intelligence of smart space.
Computer Vision and Pattern Recognition
GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters for Autoregressive Image Generation
In autoregressive (AR) image generation, visual tokenizers compress images into compact discrete latent tokens, enabling efficient training of downstream autoregressive models for visual generation via next-token prediction. While scaling visual tokenizers improves image reconstruction quality, it often degrades downstream generation quality -- a challenge not adequately addressed in existing literature. To address this, we introduce GigaTok, the first approach to simultaneously improve image reconstruction, generation, and representation learning when scaling visual tokenizers. We identify the growing complexity of latent space as the key factor behind the reconstruction vs. generation dilemma. To mitigate this, we propose semantic regularization, which aligns tokenizer features with semantically consistent features from a pre-trained visual encoder. This constraint prevents excessive latent space complexity during scaling, yielding consistent improvements in both reconstruction and downstream autoregressive generation. Building on semantic regularization, we explore three key practices for scaling tokenizers:(1) using 1D tokenizers for better scalability, (2) prioritizing decoder scaling when expanding both encoder and decoder, and (3) employing entropy loss to stabilize training for billion-scale tokenizers. By scaling to $\bf{3 \space billion}$ parameters, GigaTok achieves state-of-the-art performance in reconstruction, downstream AR generation, and downstream AR representation quality.
comment: project page: https://silentview.github.io/GigaTok
Steering CLIP's vision transformer with sparse autoencoders CVPR 2025
While vision models are highly capable, their internal mechanisms remain poorly understood -- a challenge which sparse autoencoders (SAEs) have helped address in language, but which remains underexplored in vision. We address this gap by training SAEs on CLIP's vision transformer and uncover key differences between vision and language processing, including distinct sparsity patterns for SAEs trained across layers and token types. We then provide the first systematic analysis on the steerability of CLIP's vision transformer by introducing metrics to quantify how precisely SAE features can be steered to affect the model's output. We find that 10-15\% of neurons and features are steerable, with SAEs providing thousands more steerable features than the base model. Through targeted suppression of SAE features, we then demonstrate improved performance on three vision disentanglement tasks (CelebA, Waterbirds, and typographic attacks), finding optimal disentanglement in middle model layers, and achieving state-of-the-art performance on defense against typographic attacks.
comment: 8 pages, 7 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
Visual Chronicles: Using Multimodal LLMs to Analyze Massive Collections of Images
We present a system using Multimodal LLMs (MLLMs) to analyze a large database with tens of millions of images captured at different times, with the aim of discovering patterns in temporal changes. Specifically, we aim to capture frequent co-occurring changes ("trends") across a city over a certain period. Unlike previous visual analyses, our analysis answers open-ended queries (e.g., "what are the frequent types of changes in the city?") without any predetermined target subjects or training labels. These properties cast prior learning-based or unsupervised visual analysis tools unsuitable. We identify MLLMs as a novel tool for their open-ended semantic understanding capabilities. Yet, our datasets are four orders of magnitude too large for an MLLM to ingest as context. So we introduce a bottom-up procedure that decomposes the massive visual analysis problem into more tractable sub-problems. We carefully design MLLM-based solutions to each sub-problem. During experiments and ablation studies with our system, we find it significantly outperforms baselines and is able to discover interesting trends from images captured in large cities (e.g., "addition of outdoor dining,", "overpass was painted blue," etc.). See more results and interactive demos at https://boyangdeng.com/visual-chronicles.
comment: Project page: https://boyangdeng.com/visual-chronicles; second and third listed authors have equal contributions
EMO-X: Efficient Multi-Person Pose and Shape Estimation in One-Stage
Expressive Human Pose and Shape Estimation (EHPS) aims to jointly estimate human pose, hand gesture, and facial expression from monocular images. Existing methods predominantly rely on Transformer-based architectures, which suffer from quadratic complexity in self-attention, leading to substantial computational overhead, especially in multi-person scenarios. Recently, Mamba has emerged as a promising alternative to Transformers due to its efficient global modeling capability. However, it remains limited in capturing fine-grained local dependencies, which are essential for precise EHPS. To address these issues, we propose EMO-X, the Efficient Multi-person One-stage model for multi-person EHPS. Specifically, we explore a Scan-based Global-Local Decoder (SGLD) that integrates global context with skeleton-aware local features to iteratively enhance human tokens. Our EMO-X leverages the superior global modeling capability of Mamba and designs a local bidirectional scan mechanism for skeleton-aware local refinement. Comprehensive experiments demonstrate that EMO-X strikes an excellent balance between efficiency and accuracy. Notably, it achieves a significant reduction in computational complexity, requiring 69.8% less inference time compared to state-of-the-art (SOTA) methods, while outperforming most of them in accuracy.
Generating Fine Details of Entity Interactions
Images not only depict objects but also encapsulate rich interactions between them. However, generating faithful and high-fidelity images involving multiple entities interacting with each other, is a long-standing challenge. While pre-trained text-to-image models are trained on large-scale datasets to follow diverse text instructions, they struggle to generate accurate interactions, likely due to the scarcity of training data for uncommon object interactions. This paper introduces InterActing, an interaction-focused dataset with 1000 fine-grained prompts covering three key scenarios: (1) functional and action-based interactions, (2) compositional spatial relationships, and (3) multi-subject interactions. To address interaction generation challenges, we propose a decomposition-augmented refinement procedure. Our approach, DetailScribe, built on Stable Diffusion 3.5, leverages LLMs to decompose interactions into finer-grained concepts, uses a VLM to critique generated images, and applies targeted interventions within the diffusion process in refinement. Automatic and human evaluations show significantly improved image quality, demonstrating the potential of enhanced inference strategies. Our dataset and code are available at https://concepts-ai.com/p/detailscribe/ to facilitate future exploration of interaction-rich image generation.
comment: Project Page: https://concepts-ai.com/p/detailscribe/
Hypergraph Vision Transformers: Images are More than Nodes, More than Edges CVPR 2025
Recent advancements in computer vision have highlighted the scalability of Vision Transformers (ViTs) across various tasks, yet challenges remain in balancing adaptability, computational efficiency, and the ability to model higher-order relationships. Vision Graph Neural Networks (ViGs) offer an alternative by leveraging graph-based methodologies but are hindered by the computational bottlenecks of clustering algorithms used for edge generation. To address these issues, we propose the Hypergraph Vision Transformer (HgVT), which incorporates a hierarchical bipartite hypergraph structure into the vision transformer framework to capture higher-order semantic relationships while maintaining computational efficiency. HgVT leverages population and diversity regularization for dynamic hypergraph construction without clustering, and expert edge pooling to enhance semantic extraction and facilitate graph-based image retrieval. Empirical results demonstrate that HgVT achieves strong performance on image classification and retrieval, positioning it as an efficient framework for semantic-based vision tasks.
comment: Accepted by CVPR 2025
Seaweed-7B: Cost-Effective Training of Video Generation Foundation Model
This technical report presents a cost-efficient strategy for training a video generation foundation model. We present a mid-sized research model with approximately 7 billion parameters (7B) called Seaweed-7B trained from scratch using 665,000 H100 GPU hours. Despite being trained with moderate computational resources, Seaweed-7B demonstrates highly competitive performance compared to contemporary video generation models of much larger size. Design choices are especially crucial in a resource-constrained setting. This technical report highlights the key design decisions that enhance the performance of the medium-sized diffusion model. Empirically, we make two observations: (1) Seaweed-7B achieves performance comparable to, or even surpasses, larger models trained on substantially greater GPU resources, and (2) our model, which exhibits strong generalization ability, can be effectively adapted across a wide range of downstream applications either by lightweight fine-tuning or continue training. See the project page at https://seaweed.video/
comment: Technical report
X2BR: High-Fidelity 3D Bone Reconstruction from a Planar X-Ray Image with Hybrid Neural Implicit Methods
Accurate 3D bone reconstruction from a single planar X-ray remains a challenge due to anatomical complexity and limited input data. We propose X2BR, a hybrid neural implicit framework that combines continuous volumetric reconstruction with template-guided non-rigid registration. The core network, X2B, employs a ConvNeXt-based encoder to extract spatial features from X-rays and predict high-fidelity 3D bone occupancy fields without relying on statistical shape models. To further refine anatomical accuracy, X2BR integrates a patient-specific template mesh, constructed using YOLOv9-based detection and the SKEL biomechanical skeleton model. The coarse reconstruction is aligned to the template using geodesic-based coherent point drift, enabling anatomically consistent 3D bone volumes. Experimental results on a clinical dataset show that X2B achieves the highest numerical accuracy, with an IoU of 0.952 and Chamfer-L1 distance of 0.005, outperforming recent baselines including X2V and D2IM-Net. Building on this, X2BR incorporates anatomical priors via YOLOv9-based bone detection and biomechanical template alignment, leading to reconstructions that, while slightly lower in IoU (0.875), offer superior anatomical realism, especially in rib curvature and vertebral alignment. This numerical accuracy vs. visual consistency trade-off between X2B and X2BR highlights the value of hybrid frameworks for clinically relevant 3D reconstructions.
The Invisible EgoHand: 3D Hand Forecasting through EgoBody Pose Estimation
Forecasting hand motion and pose from an egocentric perspective is essential for understanding human intention. However, existing methods focus solely on predicting positions without considering articulation, and only when the hands are visible in the field of view. This limitation overlooks the fact that approximate hand positions can still be inferred even when they are outside the camera's view. In this paper, we propose a method to forecast the 3D trajectories and poses of both hands from an egocentric video, both in and out of the field of view. We propose a diffusion-based transformer architecture for Egocentric Hand Forecasting, EgoH4, which takes as input the observation sequence and camera poses, then predicts future 3D motion and poses for both hands of the camera wearer. We leverage full-body pose information, allowing other joints to provide constraints on hand motion. We denoise the hand and body joints along with a visibility predictor for hand joints and a 3D-to-2D reprojection loss that minimizes the error when hands are in-view. We evaluate EgoH4 on the Ego-Exo4D dataset, combining subsets with body and hand annotations. We train on 156K sequences and evaluate on 34K sequences, respectively. EgoH4 improves the performance by 3.4cm and 5.1cm over the baseline in terms of ADE for hand trajectory forecasting and MPJPE for hand pose forecasting. Project page: https://masashi-hatano.github.io/EgoH4/
MBE-ARI: A Multimodal Dataset Mapping Bi-directional Engagement in Animal-Robot Interaction ICRA 2025
Animal-robot interaction (ARI) remains an unexplored challenge in robotics, as robots struggle to interpret the complex, multimodal communication cues of animals, such as body language, movement, and vocalizations. Unlike human-robot interaction, which benefits from established datasets and frameworks, animal-robot interaction lacks the foundational resources needed to facilitate meaningful bidirectional communication. To bridge this gap, we present the MBE-ARI (Multimodal Bidirectional Engagement in Animal-Robot Interaction), a novel multimodal dataset that captures detailed interactions between a legged robot and cows. The dataset includes synchronized RGB-D streams from multiple viewpoints, annotated with body pose and activity labels across interaction phases, offering an unprecedented level of detail for ARI research. Additionally, we introduce a full-body pose estimation model tailored for quadruped animals, capable of tracking 39 keypoints with a mean average precision (mAP) of 92.7%, outperforming existing benchmarks in animal pose estimation. The MBE-ARI dataset and our pose estimation framework lay a robust foundation for advancing research in animal-robot interaction, providing essential tools for developing perception, reasoning, and interaction frameworks needed for effective collaboration between robots and animals. The dataset and resources are publicly available at https://github.com/RISELabPurdue/MBE-ARI/, inviting further exploration and development in this critical area.
comment: Accepted to ICRA 2025
Title block detection and information extraction for enhanced building drawings search
The architecture, engineering, and construction (AEC) industry still heavily relies on information stored in drawings for building construction, maintenance, compliance and error checks. However, information extraction (IE) from building drawings is often time-consuming and costly, especially when dealing with historical buildings. Drawing search can be simplified by leveraging the information stored in the title block portion of the drawing, which can be seen as drawing metadata. However, title block IE can be complex especially when dealing with historical drawings which do not follow existing standards for uniformity. This work performs a comparison of existing methods for this kind of IE task, and then proposes a novel title block detection and IE pipeline which outperforms existing methods, in particular when dealing with complex, noisy historical drawings. The pipeline is obtained by combining a lightweight Convolutional Neural Network and GPT-4o, the proposed inference pipeline detects building engineering title blocks with high accuracy, and then extract structured drawing metadata from the title blocks, which can be used for drawing search, filtering and grouping. The work demonstrates high accuracy and efficiency in IE for both vector (CAD) and hand-drawn (historical) drawings. A user interface (UI) that leverages the extracted metadata for drawing search is established and deployed on real projects, which demonstrates significant time savings. Additionally, an extensible domain-expert-annotated dataset for title block detection is developed, via an efficient AEC-friendly annotation workflow that lays the foundation for future work.
comment: 8 pages, 8 figures, 1 table. Accepted for publication in the 2025 European Conference on Computing in Construction (EC3, https://ec-3.org/conference2025/)
Training-free Guidance in Text-to-Video Generation via Multimodal Planning and Structured Noise Initialization
Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.
comment: Website: https://video-msg.github.io; The first three authors contributed equally
Latent Diffusion Autoencoders: Toward Efficient and Meaningful Unsupervised Representation Learning in Medical Imaging
This study presents Latent Diffusion Autoencoder (LDAE), a novel encoder-decoder diffusion-based framework for efficient and meaningful unsupervised learning in medical imaging, focusing on Alzheimer disease (AD) using brain MR from the ADNI database as a case study. Unlike conventional diffusion autoencoders operating in image space, LDAE applies the diffusion process in a compressed latent representation, improving computational efficiency and making 3D medical imaging representation learning tractable. To validate the proposed approach, we explore two key hypotheses: (i) LDAE effectively captures meaningful semantic representations on 3D brain MR associated with AD and ageing, and (ii) LDAE achieves high-quality image generation and reconstruction while being computationally efficient. Experimental results support both hypotheses: (i) linear-probe evaluations demonstrate promising diagnostic performance for AD (ROC-AUC: 90%, ACC: 84%) and age prediction (MAE: 4.1 years, RMSE: 5.2 years); (ii) the learned semantic representations enable attribute manipulation, yielding anatomically plausible modifications; (iii) semantic interpolation experiments show strong reconstruction of missing scans, with SSIM of 0.969 (MSE: 0.0019) for a 6-month gap. Even for longer gaps (24 months), the model maintains robust performance (SSIM > 0.93, MSE < 0.004), indicating an ability to capture temporal progression trends; (iv) compared to conventional diffusion autoencoders, LDAE significantly increases inference throughput (20x faster) while also enhancing reconstruction quality. These findings position LDAE as a promising framework for scalable medical imaging applications, with the potential to serve as a foundation model for medical image analysis. Code available at https://github.com/GabrieleLozupone/LDAE
comment: 15 pages, 9 figures, 7 tables
Task-conditioned Ensemble of Expert Models for Continuous Learning
One of the major challenges in machine learning is maintaining the accuracy of the deployed model (e.g., a classifier) in a non-stationary environment. The non-stationary environment results in distribution shifts and, consequently, a degradation in accuracy. Continuous learning of the deployed model with new data could be one remedy. However, the question arises as to how we should update the model with new training data so that it retains its accuracy on the old data while adapting to the new data. In this work, we propose a task-conditioned ensemble of models to maintain the performance of the existing model. The method involves an ensemble of expert models based on task membership information. The in-domain models-based on the local outlier concept (different from the expert models) provide task membership information dynamically at run-time to each probe sample. To evaluate the proposed method, we experiment with three setups: the first represents distribution shift between tasks (LivDet-Iris-2017), the second represents distribution shift both between and within tasks (LivDet-Iris-2020), and the third represents disjoint distribution between tasks (Split MNIST). The experiments highlight the benefits of the proposed method. The source code is available at https://github.com/iPRoBe-lab/Continuous_Learning_FE_DM.
Efficient Mixture of Geographical Species for On Device Wildlife Monitoring
Efficient on-device models have become attractive for near-sensor insight generation, of particular interest to the ecological conservation community. For this reason, deep learning researchers are proposing more approaches to develop lower compute models. However, since vision transformers are very new to the edge use case, there are still unexplored approaches, most notably conditional execution of subnetworks based on input data. In this work, we explore the training of a single species detector which uses conditional computation to bias structured sub networks in a geographically-aware manner. We propose a method for pruning the expert model per location and demonstrate conditional computation performance on two geographically distributed datasets: iNaturalist and iWildcam.
Preserving Privacy Without Compromising Accuracy: Machine Unlearning for Handwritten Text Recognition
Handwritten Text Recognition (HTR) is essential for document analysis and digitization. However, handwritten data often contains user-identifiable information, such as unique handwriting styles and personal lexicon choices, which can compromise privacy and erode trust in AI services. Legislation like the ``right to be forgotten'' underscores the necessity for methods that can expunge sensitive information from trained models. Machine unlearning addresses this by selectively removing specific data from models without necessitating complete retraining. Yet, it frequently encounters a privacy-accuracy tradeoff, where safeguarding privacy leads to diminished model performance. In this paper, we introduce a novel two-stage unlearning strategy for a multi-head transformer-based HTR model, integrating pruning and random labeling. Our proposed method utilizes a writer classification head both as an indicator and a trigger for unlearning, while maintaining the efficacy of the recognition head. To our knowledge, this represents the first comprehensive exploration of machine unlearning within HTR tasks. We further employ Membership Inference Attacks (MIA) to evaluate the effectiveness of unlearning user-identifiable information. Extensive experiments demonstrate that our approach effectively preserves privacy while maintaining model accuracy, paving the way for new research directions in the document analysis community. Our code will be publicly available upon acceptance.
Enhancing knowledge retention for continual learning with domain-specific adapters and features gating
Continual learning empowers models to learn from a continuous stream of data while preserving previously acquired knowledge, effectively addressing the challenge of catastrophic forgetting. In this study, we propose a new approach that integrates adapters within the self-attention mechanisms of Vision Transformers to enhance knowledge retention when sequentially adding datasets from different domains. Unlike previous methods that continue learning with only one dataset, our approach introduces domain-specific output heads and feature gating, allowing the model to maintain high accuracy on previously learned tasks while incorporating only the essential information from multiple domains. The proposed method is compared to prominent parameter-efficient fine-tuning methods in the current state of the art. The results provide evidence that our method effectively alleviates the limitations of previous works. Furthermore, we conduct a comparative analysis using three datasets, CIFAR-100, Flowers102, and DTD, each representing a distinct domain, to investigate the impact of task order on model performance. Our findings underscore the critical role of dataset sequencing in shaping learning outcomes, demonstrating that strategic ordering can significantly improve the model's ability to adapt to evolving data distributions over time while preserving the integrity of previously learned knowledge.
comment: Submitted to Applied Intelligence (Springer), under review since November 26, 2024
FindAnything: Open-Vocabulary and Object-Centric Mapping for Robot Exploration in Any Environment
Geometrically accurate and semantically expressive map representations have proven invaluable to facilitate robust and safe mobile robot navigation and task planning. Nevertheless, real-time, open-vocabulary semantic understanding of large-scale unknown environments is still an open problem. In this paper we present FindAnything, an open-world mapping and exploration framework that incorporates vision-language information into dense volumetric submaps. Thanks to the use of vision-language features, FindAnything bridges the gap between pure geometric and open-vocabulary semantic information for a higher level of understanding while allowing to explore any environment without the help of any external source of ground-truth pose information. We represent the environment as a series of volumetric occupancy submaps, resulting in a robust and accurate map representation that deforms upon pose updates when the underlying SLAM system corrects its drift, allowing for a locally consistent representation between submaps. Pixel-wise vision-language features are aggregated from efficient SAM (eSAM)-generated segments, which are in turn integrated into object-centric volumetric submaps, providing a mapping from open-vocabulary queries to 3D geometry that is scalable also in terms of memory usage. The open-vocabulary map representation of FindAnything achieves state-of-the-art semantic accuracy in closed-set evaluations on the Replica dataset. This level of scene understanding allows a robot to explore environments based on objects or areas of interest selected via natural language queries. Our system is the first of its kind to be deployed on resource-constrained devices, such as MAVs, leveraging vision-language information for real-world robotic tasks.
comment: 11 pages, 5 figures
On Background Bias of Post-Hoc Concept Embeddings in Computer Vision DNNs
The thriving research field of concept-based explainable artificial intelligence (C-XAI) investigates how human-interpretable semantic concepts embed in the latent spaces of deep neural networks (DNNs). Post-hoc approaches therein use a set of examples to specify a concept, and determine its embeddings in DNN latent space using data driven techniques. This proved useful to uncover biases between different target (foreground or concept) classes. However, given that the background is mostly uncontrolled during training, an important question has been left unattended so far: Are/to what extent are state-of-the-art, data-driven post-hoc C-XAI approaches themselves prone to biases with respect to their backgrounds? E.g., wild animals mostly occur against vegetation backgrounds, and they seldom appear on roads. Even simple and robust C-XAI methods might abuse this shortcut for enhanced performance. A dangerous performance degradation of the concept-corner cases of animals on the road could thus remain undiscovered. This work validates and thoroughly confirms that established Net2Vec-based concept segmentation techniques frequently capture background biases, including alarming ones, such as underperformance on road scenes. For the analysis, we compare 3 established techniques from the domain of background randomization on >50 concepts from 2 datasets, and 7 diverse DNN architectures. Our results indicate that even low-cost setups can provide both valuable insight and improved background robustness.
comment: camera-ready version for 3rd World Conference on eXplainable Artificial Intelligence; 5 figures, 6 tables; code available at: https://github.com/gesina/bg_randomized_loce
Hands-On: Segmenting Individual Signs from Continuous Sequences
This work tackles the challenge of continuous sign language segmentation, a key task with huge implications for sign language translation and data annotation. We propose a transformer-based architecture that models the temporal dynamics of signing and frames segmentation as a sequence labeling problem using the Begin-In-Out (BIO) tagging scheme. Our method leverages the HaMeR hand features, and is complemented with 3D Angles. Extensive experiments show that our model achieves state-of-the-art results on the DGS Corpus, while our features surpass prior benchmarks on BSLCorpus.
comment: Accepted in the 19th IEEE International Conference on Automatic Face and Gesture Recognition
ZipIR: Latent Pyramid Diffusion Transformer for High-Resolution Image Restoration
Recent progress in generative models has significantly improved image restoration capabilities, particularly through powerful diffusion models that offer remarkable recovery of semantic details and local fidelity. However, deploying these models at ultra-high resolutions faces a critical trade-off between quality and efficiency due to the computational demands of long-range attention mechanisms. To address this, we introduce ZipIR, a novel framework that enhances efficiency, scalability, and long-range modeling for high-res image restoration. ZipIR employs a highly compressed latent representation that compresses image 32x, effectively reducing the number of spatial tokens, and enabling the use of high-capacity models like the Diffusion Transformer (DiT). Toward this goal, we propose a Latent Pyramid VAE (LP-VAE) design that structures the latent space into sub-bands to ease diffusion training. Trained on full images up to 2K resolution, ZipIR surpasses existing diffusion-based methods, offering unmatched speed and quality in restoring high-resolution images from severely degraded inputs.
Hardware, Algorithms, and Applications of the Neuromorphic Vision Sensor: a Review
Neuromorphic, or event, cameras represent a transformation in the classical approach to visual sensing encodes detected instantaneous per-pixel illumination changes into an asynchronous stream of event packets. Their novelty compared to standard cameras lies in the transition from capturing full picture frames at fixed time intervals to a sparse data format which, with its distinctive qualities, offers potential improvements in various applications. However, these advantages come at the cost of reinventing algorithmic procedures or adapting them to effectively process the new data format. In this survey, we systematically examine neuromorphic vision along three main dimensions. First, we highlight the technological evolution and distinctive hardware features of neuromorphic cameras from their inception to recent models. Second, we review image processing algorithms developed explicitly for event-based data, covering key works on feature detection, tracking, and optical flow -which form the basis for analyzing image elements and transformations -as well as depth and pose estimation or object recognition, which interpret more complex scene structures and components. These techniques, drawn from classical computer vision and modern data-driven approaches, are examined to illustrate the breadth of applications for event-based cameras. Third, we present practical application case studies demonstrating how event cameras have been successfully used across various industries and scenarios. Finally, we analyze the challenges limiting widespread adoption, identify significant research gaps compared to standard imaging techniques, and outline promising future directions and opportunities that neuromorphic vision offers.
comment: 26 pages total, 26 without references, two images and five tables. Submitted to IEEE Sensors
Boosting multi-demographic federated learning for chest x-ray analysis using general-purpose self-supervised representations
Reliable artificial intelligence (AI) models for medical image analysis often depend on large and diverse labeled datasets. Federated learning (FL) offers a decentralized and privacy-preserving approach to training but struggles in highly non-independent and identically distributed (non-IID) settings, where institutions with more representative data may experience degraded performance. Moreover, existing large-scale FL studies have been limited to adult datasets, neglecting the unique challenges posed by pediatric data, which introduces additional non-IID variability. To address these limitations, we analyzed n=398,523 adult chest radiographs from diverse institutions across multiple countries and n=9,125 pediatric images, leveraging transfer learning from general-purpose self-supervised image representations to classify pneumonia and cases with no abnormality. Using state-of-the-art vision transformers, we found that FL improved performance only for smaller adult datasets (P<0.001) but degraded performance for larger datasets (P<0.064) and pediatric cases (P=0.242). However, equipping FL with self-supervised weights significantly enhanced outcomes across pediatric cases (P=0.031) and most adult datasets (P<0.008), except the largest dataset (P=0.052). These findings underscore the potential of easily deployable general-purpose self-supervised image representations to address non-IID challenges in clinical FL applications and highlight their promise for enhancing patient outcomes and advancing pediatric healthcare, where data scarcity and variability remain persistent obstacles.
FMLGS: Fast Multilevel Language Embedded Gaussians for Part-level Interactive Agents
The semantically interactive radiance field has long been a promising backbone for 3D real-world applications, such as embodied AI to achieve scene understanding and manipulation. However, multi-granularity interaction remains a challenging task due to the ambiguity of language and degraded quality when it comes to queries upon object components. In this work, we present FMLGS, an approach that supports part-level open-vocabulary query within 3D Gaussian Splatting (3DGS). We propose an efficient pipeline for building and querying consistent object- and part-level semantics based on Segment Anything Model 2 (SAM2). We designed a semantic deviation strategy to solve the problem of language ambiguity among object parts, which interpolates the semantic features of fine-grained targets for enriched information. Once trained, we can query both objects and their describable parts using natural language. Comparisons with other state-of-the-art methods prove that our method can not only better locate specified part-level targets, but also achieve first-place performance concerning both speed and accuracy, where FMLGS is 98 x faster than LERF, 4 x faster than LangSplat and 2.5 x faster than LEGaussians. Meanwhile, we further integrate FMLGS as a virtual agent that can interactively navigate through 3D scenes, locate targets, and respond to user demands through a chat interface, which demonstrates the potential of our work to be further expanded and applied in the future.
Knowledge Distillation for Multimodal Egocentric Action Recognition Robust to Missing Modalities
Action recognition is an essential task in egocentric vision due to its wide range of applications across many fields. While deep learning methods have been proposed to address this task, most rely on a single modality, typically video. However, including additional modalities may improve the robustness of the approaches to common issues in egocentric videos, such as blurriness and occlusions. Recent efforts in multimodal egocentric action recognition often assume the availability of all modalities, leading to failures or performance drops when any modality is missing. To address this, we introduce an efficient multimodal knowledge distillation approach for egocentric action recognition that is robust to missing modalities (KARMMA) while still benefiting when multiple modalities are available. Our method focuses on resource-efficient development by leveraging pre-trained models as unimodal feature extractors in our teacher model, which distills knowledge into a much smaller and faster student model. Experiments on the Epic-Kitchens and Something-Something datasets demonstrate that our student model effectively handles missing modalities while reducing its accuracy drop in this scenario.
comment: Project Page: https://visinf.github.io/KARMMA
Banana Ripeness Level Classification using a Simple CNN Model Trained with Real and Synthetic Datasets
The level of ripeness is essential in determining the quality of bananas. To correctly estimate banana maturity, the metrics of international marketing standards need to be considered. However, the process of assessing the maturity of bananas at an industrial level is still carried out using manual methods. The use of CNN models is an attractive tool to solve the problem, but there is a limitation regarding the availability of sufficient data to train these models reliably. On the other hand, in the state-of-the-art, existing CNN models and the available data have reported that the accuracy results are acceptable in identifying banana maturity. For this reason, this work presents the generation of a robust dataset that combines real and synthetic data for different levels of banana ripeness. In addition, it proposes a simple CNN architecture, which is trained with synthetic data and using the transfer learning technique, the model is improved to classify real data, managing to determine the level of maturity of the banana. The proposed CNN model is evaluated with several architectures, then hyper-parameter configurations are varied, and optimizers are used. The results show that the proposed CNN model reaches a high accuracy of 0.917 and a fast execution time.
comment: 9 pages, 7 figures, conference
Shadow Erosion and Nighttime Adaptability for Camera-Based Automated Driving Applications
Enhancement of images from RGB cameras is of particular interest due to its wide range of ever-increasing applications such as medical imaging, satellite imaging, automated driving, etc. In autonomous driving, various techniques are used to enhance image quality under challenging lighting conditions. These include artificial augmentation to improve visibility in poor nighttime conditions, illumination-invariant imaging to reduce the impact of lighting variations, and shadow mitigation to ensure consistent image clarity in bright daylight. This paper proposes a pipeline for Shadow Erosion and Nighttime Adaptability in images for automated driving applications while preserving color and texture details. The Shadow Erosion and Nighttime Adaptability pipeline is compared to the widely used CLAHE technique and evaluated based on illumination uniformity and visual perception quality metrics. The results also demonstrate a significant improvement over CLAHE, enhancing a YOLO-based drivable area segmentation algorithm.
comment: 7 pages
Proxy-Anchor and EVT-Driven Continual Learning Method for Generalized Category Discovery
Continual generalized category discovery has been introduced and studied in the literature as a method that aims to continuously discover and learn novel categories in incoming data batches while avoiding catastrophic forgetting of previously learned categories. A key component in addressing this challenge is the model's ability to separate novel samples, where Extreme Value Theory (EVT) has been effectively employed. In this work, we propose a novel method that integrates EVT with proxy anchors to define boundaries around proxies using a probability of inclusion function, enabling the rejection of unknown samples. Additionally, we introduce a novel EVT-based loss function to enhance the learned representation, achieving superior performance compared to other deep-metric learning methods in similar settings. Using the derived probability functions, novel samples are effectively separated from previously known categories. However, category discovery within these novel samples can sometimes overestimate the number of new categories. To mitigate this issue, we propose a novel EVT-based approach to reduce the model size and discard redundant proxies. We also incorporate experience replay and knowledge distillation mechanisms during the continual learning stage to prevent catastrophic forgetting. Experimental results demonstrate that our proposed approach outperforms state-of-the-art methods in continual generalized category discovery scenarios.
COP-GEN-Beta: Unified Generative Modelling of COPernicus Imagery Thumbnails CVPR 2025
In remote sensing, multi-modal data from various sensors capturing the same scene offers rich opportunities, but learning a unified representation across these modalities remains a significant challenge. Traditional methods have often been limited to single or dual-modality approaches. In this paper, we introduce COP-GEN-Beta, a generative diffusion model trained on optical, radar, and elevation data from the Major TOM dataset. What sets COP-GEN-Beta apart is its ability to map any subset of modalities to any other, enabling zero-shot modality translation after training. This is achieved through a sequence-based diffusion transformer, where each modality is controlled by its own timestep embedding. We extensively evaluate COP-GEN-Beta on thumbnail images from the Major TOM dataset, demonstrating its effectiveness in generating high-quality samples. Qualitative and quantitative evaluations validate the model's performance, highlighting its potential as a powerful pre-trained model for future remote sensing tasks.
comment: Accepted at CVPR 2025 Workshop MORSE
Discriminator-Free Direct Preference Optimization for Video Diffusion
Direct Preference Optimization (DPO), which aligns models with human preferences through win/lose data pairs, has achieved remarkable success in language and image generation. However, applying DPO to video diffusion models faces critical challenges: (1) Data inefficiency. Generating thousands of videos per DPO iteration incurs prohibitive costs; (2) Evaluation uncertainty. Human annotations suffer from subjective bias, and automated discriminators fail to detect subtle temporal artifacts like flickering or motion incoherence. To address these, we propose a discriminator-free video DPO framework that: (1) Uses original real videos as win cases and their edited versions (e.g., reversed, shuffled, or noise-corrupted clips) as lose cases; (2) Trains video diffusion models to distinguish and avoid artifacts introduced by editing. This approach eliminates the need for costly synthetic video comparisons, provides unambiguous quality signals, and enables unlimited training data expansion through simple editing operations. We theoretically prove the framework's effectiveness even when real videos and model-generated videos follow different distributions. Experiments on CogVideoX demonstrate the efficiency of the proposed method.
comment: arXiv admin note: text overlap with arXiv:2412.14167 by other authors
Digital Twin Catalog: A Large-Scale Photorealistic 3D Object Digital Twin Dataset CVPR 2025
We introduce Digital Twin Catalog (DTC), a new large-scale photorealistic 3D object digital twin dataset. A digital twin of a 3D object is a highly detailed, virtually indistinguishable representation of a physical object, accurately capturing its shape, appearance, physical properties, and other attributes. Recent advances in neural-based 3D reconstruction and inverse rendering have significantly improved the quality of 3D object reconstruction. Despite these advancements, there remains a lack of a large-scale, digital twin quality real-world dataset and benchmark that can quantitatively assess and compare the performance of different reconstruction methods, as well as improve reconstruction quality through training or fine-tuning. Moreover, to democratize 3D digital twin creation, it is essential to integrate creation techniques with next-generation egocentric computing platforms, such as AR glasses. Currently, there is no dataset available to evaluate 3D object reconstruction using egocentric captured images. To address these gaps, the DTC dataset features 2,000 scanned digital twin-quality 3D objects, along with image sequences captured under different lighting conditions using DSLR cameras and egocentric AR glasses. This dataset establishes the first comprehensive real-world evaluation benchmark for 3D digital twin creation tasks, offering a robust foundation for comparing and improving existing reconstruction methods. The DTC dataset is already released at https://www.projectaria.com/datasets/dtc/ and we will also make the baseline evaluations open-source.
comment: accepted to CVPR 2025 highlights
Datasets for Lane Detection in Autonomous Driving: A Comprehensive Review
Accurate lane detection is essential for automated driving, enabling safe and reliable vehicle navigation in a variety of road scenarios. Numerous datasets have been introduced to support the development and evaluation of lane detection algorithms, each differing in terms of the amount of data, sensor types, annotation granularity, environmental conditions, and scenario diversity. This paper provides a comprehensive review of over 30 publicly available lane detection datasets, systematically analysing their characteristics, advantages and limitations. We classify these datasets based on key factors such as sensor resolution, annotation types and diversity of road and weather conditions. By identifying existing challenges and research gaps, we highlight opportunities for future dataset improvements that can further drive innovation in robust lane detection. This survey serves as a resource for researchers seeking appropriate datasets for lane detection, and contributes to the broader goal of advancing autonomous driving.
Embodied Image Captioning: Self-supervised Learning Agents for Spatially Coherent Image Descriptions
We present a self-supervised method to improve an agent's abilities in describing arbitrary objects while actively exploring a generic environment. This is a challenging problem, as current models struggle to obtain coherent image captions due to different camera viewpoints and clutter. We propose a three-phase framework to fine-tune existing captioning models that enhances caption accuracy and consistency across views via a consensus mechanism. First, an agent explores the environment, collecting noisy image-caption pairs. Then, a consistent pseudo-caption for each object instance is distilled via consensus using a large language model. Finally, these pseudo-captions are used to fine-tune an off-the-shelf captioning model, with the addition of contrastive learning. We analyse the performance of the combination of captioning models, exploration policies, pseudo-labeling methods, and fine-tuning strategies, on our manually labeled test set. Results show that a policy can be trained to mine samples with higher disagreement compared to classical baselines. Our pseudo-captioning method, in combination with all policies, has a higher semantic similarity compared to other existing methods, and fine-tuning improves caption accuracy and consistency by a significant margin. Code and test set annotations available at https://hsp-iit.github.io/embodied-captioning/
comment: 11 pages, 8 figures, 5 tables, code and test set annotations available at https://hsp-iit.github.io/embodied-captioning/
A Hybrid Fully Convolutional CNN-Transformer Model for Inherently Interpretable Medical Image Classification
In many medical imaging tasks, convolutional neural networks (CNNs) efficiently extract local features hierarchically. More recently, vision transformers (ViTs) have gained popularity, using self-attention mechanisms to capture global dependencies, but lacking the inherent spatial localization of convolutions. Therefore, hybrid models combining CNNs and ViTs have been developed to combine the strengths of both architectures. However, such hybrid CNN-ViT models are difficult to interpret, which hinders their application in medical imaging. In this work, we introduce an interpretable-by-design hybrid fully convolutional CNN-Transformer architecture for medical image classification. Unlike widely used post-hoc saliency methods for ViTs, our approach generates faithful and localized evidence maps that directly reflect the model's decision process. We evaluated our method on two medical image classification tasks using color fundus images. Our model not only achieves state-of-the-art predictive performance compared to both black-box and interpretable models but also provides class-specific sparse evidence maps in a single forward pass. The code is available at: https://anonymous.4open.science/r/Expl-CNN-Transformer/.
Cut-and-Splat: Leveraging Gaussian Splatting for Synthetic Data Generation
Generating synthetic images is a useful method for cheaply obtaining labeled data for training computer vision models. However, obtaining accurate 3D models of relevant objects is necessary, and the resulting images often have a gap in realism due to challenges in simulating lighting effects and camera artifacts. We propose using the novel view synthesis method called Gaussian Splatting to address these challenges. We have developed a synthetic data pipeline for generating high-quality context-aware instance segmentation training data for specific objects. This process is fully automated, requiring only a video of the target object. We train a Gaussian Splatting model of the target object and automatically extract the object from the video. Leveraging Gaussian Splatting, we then render the object on a random background image, and monocular depth estimation is employed to place the object in a believable pose. We introduce a novel dataset to validate our approach and show superior performance over other data generation approaches, such as Cut-and-Paste and Diffusion model-based generation.
comment: Accepted at the International Conference on Robotics, Computer Vision and Intelligent Systems 2025 (ROBOVIS)
Road Grip Uncertainty Estimation Through Surface State Segmentation SC
Slippery road conditions pose significant challenges for autonomous driving. Beyond predicting road grip, it is crucial to estimate its uncertainty reliably to ensure safe vehicle control. In this work, we benchmark several uncertainty prediction methods to assess their effectiveness for grip uncertainty estimation. Additionally, we propose a novel approach that leverages road surface state segmentation to predict grip uncertainty. Our method estimates a pixel-wise grip probability distribution based on inferred road surface conditions. Experimental results indicate that the proposed approach enhances the robustness of grip uncertainty prediction.
comment: 15 pages, 5 figures (supplementary material 2 pages, 1 figure). Anonymized version submitted to Scandinavian Conference on Image Analysis (SCIA) 2025
Muon-Accelerated Attention Distillation for Real-Time Edge Synthesis via Optimized Latent Diffusion
Recent advances in visual synthesis have leveraged diffusion models and attention mechanisms to achieve high-fidelity artistic style transfer and photorealistic text-to-image generation. However, real-time deployment on edge devices remains challenging due to computational and memory constraints. We propose Muon-AD, a co-designed framework that integrates the Muon optimizer with attention distillation for real-time edge synthesis. By eliminating gradient conflicts through orthogonal parameter updates and dynamic pruning, Muon-AD achieves 3.2 times faster convergence compared to Stable Diffusion-TensorRT, while maintaining synthesis quality (15% lower FID, 4% higher SSIM). Our framework reduces peak memory to 7GB on Jetson Orin and enables 24FPS real-time generation through mixed-precision quantization and curriculum learning. Extensive experiments on COCO-Stuff and ImageNet-Texture demonstrate Muon-AD's Pareto-optimal efficiency-quality trade-offs. Here, we show a 65% reduction in communication overhead during distributed training and real-time 10s/image generation on edge GPUs. These advancements pave the way for democratizing high-quality visual synthesis in resource-constrained environments.
Ego4o: Egocentric Human Motion Capture and Understanding from Multi-Modal Input
This work focuses on tracking and understanding human motion using consumer wearable devices, such as VR/AR headsets, smart glasses, cellphones, and smartwatches. These devices provide diverse, multi-modal sensor inputs, including egocentric images, and 1-3 sparse IMU sensors in varied combinations. Motion descriptions can also accompany these signals. The diverse input modalities and their intermittent availability pose challenges for consistent motion capture and understanding. In this work, we present Ego4o (o for omni), a new framework for simultaneous human motion capture and understanding from multi-modal egocentric inputs. This method maintains performance with partial inputs while achieving better results when multiple modalities are combined. First, the IMU sensor inputs, the optional egocentric image, and text description of human motion are encoded into the latent space of a motion VQ-VAE. Next, the latent vectors are sent to the VQ-VAE decoder and optimized to track human motion. When motion descriptions are unavailable, the latent vectors can be input into a multi-modal LLM to generate human motion descriptions, which can further enhance motion capture accuracy. Quantitative and qualitative evaluations demonstrate the effectiveness of our method in predicting accurate human motion and high-quality motion descriptions.
SARFormer -- An Acquisition Parameter Aware Vision Transformer for Synthetic Aperture Radar Data
This manuscript introduces SARFormer, a modified Vision Transformer (ViT) architecture designed for processing one or multiple synthetic aperture radar (SAR) images. Given the complex image geometry of SAR data, we propose an acquisition parameter encoding module that significantly guides the learning process, especially in the case of multiple images, leading to improved performance on downstream tasks. We further explore self-supervised pre-training, conduct experiments with limited labeled data, and benchmark our contribution and adaptations thoroughly in ablation experiments against a baseline, where the model is tested on tasks such as height reconstruction and segmentation. Our approach achieves up to 17% improvement in terms of RMSE over baseline models
The Composite Visual-Laser Navigation Method Applied in Indoor Poultry Farming Environments
Indoor poultry farms require inspection robots to maintain precise environmental control, which is crucial for preventing the rapid spread of disease and large-scale bird mortality. However, the complex conditions within these facilities, characterized by areas of intense illumination and water accumulation, pose significant challenges. Traditional navigation methods that rely on a single sensor often perform poorly in such environments, resulting in issues like laser drift and inaccuracies in visual navigation line extraction. To overcome these limitations, we propose a novel composite navigation method that integrates both laser and vision technologies. This approach dynamically computes a fused yaw angle based on the real-time reliability of each sensor modality, thereby eliminating the need for physical navigation lines. Experimental validation in actual poultry house environments demonstrates that our method not only resolves the inherent drawbacks of single-sensor systems, but also significantly enhances navigation precision and operational efficiency. As such, it presents a promising solution for improving the performance of inspection robots in complex indoor poultry farming settings.
CMIP-CIL: A Cross-Modal Benchmark for Image-Point Class Incremental Learning
Image-point class incremental learning helps the 3D-points-vision robots continually learn category knowledge from 2D images, improving their perceptual capability in dynamic environments. However, some incremental learning methods address unimodal forgetting but fail in cross-modal cases, while others handle modal differences within training/testing datasets but assume no modal gaps between them. We first explore this cross-modal task, proposing a benchmark CMIP-CIL and relieving the cross-modal catastrophic forgetting problem. It employs masked point clouds and rendered multi-view images within a contrastive learning framework in pre-training, empowering the vision model with the generalizations of image-point correspondence. In the incremental stage, by freezing the backbone and promoting object representations close to their respective prototypes, the model effectively retains and generalizes knowledge across previously seen categories while continuing to learn new ones. We conduct comprehensive experiments on the benchmark datasets. Experiments prove that our method achieves state-of-the-art results, outperforming the baseline methods by a large margin.
Poisson multi-Bernoulli mixture filter for trajectory measurements
This paper presents a Poisson multi-Bernoulli mixture (PMBM) filter for multi-target filtering based on sensor measurements that are sets of trajectories in the last two-time step window. The proposed filter, the trajectory measurement PMBM (TM-PMBM) filter, propagates a PMBM density on the set of target states. In prediction, the filter obtains the PMBM density on the set of trajectories over the last two time steps. This density is then updated with the set of trajectory measurements. After the update step, the PMBM posterior on the set of two-step trajectories is marginalised to obtain a PMBM density on the set of target states. The filter provides a closed-form solution for multi-target filtering based on sets of trajectory measurements, estimating the set of target states at the end of each time window. Additionally, the paper proposes computationally lighter alternatives to the TM-PMBM filter by deriving a Poisson multi-Bernoulli (PMB) density through Kullback-Leibler divergence minimisation in an augmented space with auxiliary variables. The performance of the proposed filters are evaluated in a simulation study.
comment: 16 pages, 7 figures, journal paper
GeoTexBuild: 3D Building Model Generation from Map Footprints
We introduce GeoTexBuild, a modular generative framework for creating 3D building models from map footprints. The proposed framework employs a three-stage process comprising height map generation, geometry reconstruction, and appearance stylization, culminating in building models with intricate geometry and appearance attributes. By integrating customized ControlNet and Text2Mesh models, we explore effective methods for controlling both geometric and visual attributes during the generation process. By this, we eliminate the problem of structural variations behind a single facade photo of the existing 3D generation techniques. Experimental results at each stage validate the capability of GeoTexBuild to generate detailed and accurate building models from footprints derived from site planning or map designs. Our framework significantly reduces manual labor in modeling buildings and can offer inspiration for designers.
comment: 16 pages(excluding references), 10 figures
Adversarial Examples in Environment Perception for Automated Driving (Review)
The renaissance of deep learning has led to the massive development of automated driving. However, deep neural networks are vulnerable to adversarial examples. The perturbations of adversarial examples are imperceptible to human eyes but can lead to the false predictions of neural networks. It poses a huge risk to artificial intelligence (AI) applications for automated driving. This survey systematically reviews the development of adversarial robustness research over the past decade, including the attack and defense methods and their applications in automated driving. The growth of automated driving pushes forward the realization of trustworthy AI applications. This review lists significant references in the research history of adversarial examples.
comment: One chapter of upcoming Springer book: Recent Advances in Autonomous Vehicle Technology, 2025
Boosting the Class-Incremental Learning in 3D Point Clouds via Zero-Collection-Cost Basic Shape Pre-Training
Existing class-incremental learning methods in 3D point clouds rely on exemplars (samples of former classes) to resist the catastrophic forgetting of models, and exemplar-free settings will greatly degrade the performance. For exemplar-free incremental learning, the pre-trained model methods have achieved state-of-the-art results in 2D domains. However, these methods cannot be migrated to the 3D domains due to the limited pre-training datasets and insufficient focus on fine-grained geometric details. This paper breaks through these limitations, proposing a basic shape dataset with zero collection cost for model pre-training. It helps a model obtain extensive knowledge of 3D geometries. Based on this, we propose a framework embedded with 3D geometry knowledge for incremental learning in point clouds, compatible with exemplar-free (-based) settings. In the incremental stage, the geometry knowledge is extended to represent objects in point clouds. The class prototype is calculated by regularizing the data representation with the same category and is kept adjusting in the learning process. It helps the model remember the shape features of different categories. Experiments show that our method outperforms other baseline methods by a large margin on various benchmark datasets, considering both exemplar-free (-based) settings.
A Knowledge-guided Adversarial Defense for Resisting Malicious Visual Manipulation
Malicious applications of visual manipulation have raised serious threats to the security and reputation of users in many fields. To alleviate these issues, adversarial noise-based defenses have been enthusiastically studied in recent years. However, ``data-only" methods tend to distort fake samples in the low-level feature space rather than the high-level semantic space, leading to limitations in resisting malicious manipulation. Frontier research has shown that integrating knowledge in deep learning can produce reliable and generalizable solutions. Inspired by these, we propose a knowledge-guided adversarial defense (KGAD) to actively force malicious manipulation models to output semantically confusing samples. Specifically, in the process of generating adversarial noise, we focus on constructing significant semantic confusions at the domain-specific knowledge level, and exploit a metric closely related to visual perception to replace the general pixel-wise metrics. The generated adversarial noise can actively interfere with the malicious manipulation model by triggering knowledge-guided and perception-related disruptions in the fake samples. To validate the effectiveness of the proposed method, we conduct qualitative and quantitative experiments on human perception and visual quality assessment. The results on two different tasks both show that our defense provides better protection compared to state-of-the-art methods and achieves great generalizability.
PMNI: Pose-free Multi-view Normal Integration for Reflective and Textureless Surface Reconstruction
Reflective and textureless surfaces remain a challenge in multi-view 3D reconstruction.Both camera pose calibration and shape reconstruction often fail due to insufficient or unreliable cross-view visual features. To address these issues, we present PMNI (Pose-free Multi-view Normal Integration), a neural surface reconstruction method that incorporates rich geometric information by leveraging surface normal maps instead of RGB images. By enforcing geometric constraints from surface normals and multi-view shape consistency within a neural signed distance function (SDF) optimization framework, PMNI simultaneously recovers accurate camera poses and high-fidelity surface geometry. Experimental results on synthetic and real-world datasets show that our method achieves state-of-the-art performance in the reconstruction of reflective surfaces, even without reliable initial camera poses.
Light-YOLOv8-Flame: A Lightweight High-Performance Flame Detection Algorithm
Fire detection algorithms, particularly those based on computer vision, encounter significant challenges such as high computational costs and delayed response times, which hinder their application in real-time systems. To address these limitations, this paper introduces Light-YOLOv8-Flame, a lightweight flame detection algorithm specifically designed for fast and efficient real-time deployment. The proposed model enhances the YOLOv8 architecture through the substitution of the original C2f module with the FasterNet Block module. This new block combines Partial Convolution (PConv) and Convolution (Conv) layers, reducing both computational complexity and model size. A dataset comprising 7,431 images, representing both flame and non-flame scenarios, was collected and augmented for training purposes. Experimental findings indicate that the modified YOLOv8 model achieves a 0.78% gain in mean average precision (mAP) and a 2.05% boost in recall, while reducing the parameter count by 25.34%, with only a marginal decrease in precision by 0.82%. These findings highlight that Light-YOLOv8-Flame offers enhanced detection performance and speed, making it well-suited for real-time fire detection on resource-constrained devices.
comment: 12 pages, 19 figures, 6 tables. Submitted to Engineering Letters
MineWorld: a Real-Time and Open-Source Interactive World Model on Minecraft
World modeling is a crucial task for enabling intelligent agents to effectively interact with humans and operate in dynamic environments. In this work, we propose MineWorld, a real-time interactive world model on Minecraft, an open-ended sandbox game which has been utilized as a common testbed for world modeling. MineWorld is driven by a visual-action autoregressive Transformer, which takes paired game scenes and corresponding actions as input, and generates consequent new scenes following the actions. Specifically, by transforming visual game scenes and actions into discrete token ids with an image tokenizer and an action tokenizer correspondingly, we consist the model input with the concatenation of the two kinds of ids interleaved. The model is then trained with next token prediction to learn rich representations of game states as well as the conditions between states and actions simultaneously. In inference, we develop a novel parallel decoding algorithm that predicts the spatial redundant tokens in each frame at the same time, letting models in different scales generate $4$ to $7$ frames per second and enabling real-time interactions with game players. In evaluation, we propose new metrics to assess not only visual quality but also the action following capacity when generating new scenes, which is crucial for a world model. Our comprehensive evaluation shows the efficacy of MineWorld, outperforming SoTA open-sourced diffusion based world models significantly. The code and model have been released.
comment: Technical report. Project page https://aka.ms/mineworld
Towards Efficient and Robust Moment Retrieval System: A Unified Framework for Multi-Granularity Models and Temporal Reranking
Long-form video understanding presents significant challenges for interactive retrieval systems, as conventional methods struggle to process extensive video content efficiently. Existing approaches often rely on single models, inefficient storage, unstable temporal search, and context-agnostic reranking, limiting their effectiveness. This paper presents a novel framework to enhance interactive video retrieval through four key innovations: (1) an ensemble search strategy that integrates coarse-grained (CLIP) and fine-grained (BEIT3) models to improve retrieval accuracy, (2) a storage optimization technique that reduces redundancy by selecting representative keyframes via TransNetV2 and deduplication, (3) a temporal search mechanism that localizes video segments using dual queries for start and end points, and (4) a temporal reranking approach that leverages neighboring frame context to stabilize rankings. Evaluated on known-item search and question-answering tasks, our framework demonstrates substantial improvements in retrieval precision, efficiency, and user interpretability, offering a robust solution for real-world interactive video retrieval applications.
FocalLens: Instruction Tuning Enables Zero-Shot Conditional Image Representations
Visual understanding is inherently contextual -- what we focus on in an image depends on the task at hand. For instance, given an image of a person holding a bouquet of flowers, we may focus on either the person such as their clothing, or the type of flowers, depending on the context of interest. Yet, most existing image encoding paradigms represent an image as a fixed, generic feature vector, overlooking the potential needs of prioritizing varying visual information for different downstream use cases. In this work, we introduce FocalLens, a conditional visual encoding method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively finetune a pretrained vision encoder to take natural language instructions as additional inputs for producing conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.
In-2-4D: Inbetweening from Two Single-View Images to 4D Generation
We propose a new problem, In-2-4D, for generative 4D (i.e., 3D + motion) inbetweening from a minimalistic input setting: two single-view images capturing an object in two distinct motion states. Given two images representing the start and end states of an object in motion, our goal is to generate and reconstruct the motion in 4D. We utilize a video interpolation model to predict the motion, but large frame-to-frame motions can lead to ambiguous interpretations. To overcome this, we employ a hierarchical approach to identify keyframes that are visually close to the input states and show significant motion, then generate smooth fragments between them. For each fragment, we construct the 3D representation of the keyframe using Gaussian Splatting. The temporal frames within the fragment guide the motion, enabling their transformation into dynamic Gaussians through a deformation field. To improve temporal consistency and refine 3D motion, we expand the self-attention of multi-view diffusion across timesteps and apply rigid transformation regularization. Finally, we merge the independently generated 3D motion segments by interpolating boundary deformation fields and optimizing them to align with the guiding video, ensuring smooth and flicker-free transitions. Through extensive qualitative and quantitiave experiments as well as a user study, we show the effectiveness of our method and its components. The project page is available at https://in-2-4d.github.io/
comment: Technical Report
SN-LiDAR: Semantic Neural Fields for Novel Space-time View LiDAR Synthesis
Recent research has begun exploring novel view synthesis (NVS) for LiDAR point clouds, aiming to generate realistic LiDAR scans from unseen viewpoints. However, most existing approaches do not reconstruct semantic labels, which are crucial for many downstream applications such as autonomous driving and robotic perception. Unlike images, which benefit from powerful segmentation models, LiDAR point clouds lack such large-scale pre-trained models, making semantic annotation time-consuming and labor-intensive. To address this challenge, we propose SN-LiDAR, a method that jointly performs accurate semantic segmentation, high-quality geometric reconstruction, and realistic LiDAR synthesis. Specifically, we employ a coarse-to-fine planar-grid feature representation to extract global features from multi-frame point clouds and leverage a CNN-based encoder to extract local semantic features from the current frame point cloud. Extensive experiments on SemanticKITTI and KITTI-360 demonstrate the superiority of SN-LiDAR in both semantic and geometric reconstruction, effectively handling dynamic objects and large-scale scenes. Codes will be available on https://github.com/dtc111111/SN-Lidar.
LMM4LMM: Benchmarking and Evaluating Large-multimodal Image Generation with LMMs
Recent breakthroughs in large multimodal models (LMMs) have significantly advanced both text-to-image (T2I) generation and image-to-text (I2T) interpretation. However, many generated images still suffer from issues related to perceptual quality and text-image alignment. Given the high cost and inefficiency of manual evaluation, an automatic metric that aligns with human preferences is desirable. To this end, we present EvalMi-50K, a comprehensive dataset and benchmark for evaluating large-multimodal image generation, which features (i) comprehensive tasks, encompassing 2,100 extensive prompts across 20 fine-grained task dimensions, and (ii) large-scale human-preference annotations, including 100K mean-opinion scores (MOSs) and 50K question-answering (QA) pairs annotated on 50,400 images generated from 24 T2I models. Based on EvalMi-50K, we propose LMM4LMM, an LMM-based metric for evaluating large multimodal T2I generation from multiple dimensions including perception, text-image correspondence, and task-specific accuracy. Extensive experimental results show that LMM4LMM achieves state-of-the-art performance on EvalMi-50K, and exhibits strong generalization ability on other AI-generated image evaluation benchmark datasets, manifesting the generality of both the EvalMi-50K dataset and LMM4LMM metric. Both EvalMi-50K and LMM4LMM will be released at https://github.com/IntMeGroup/LMM4LMM.
Single View Garment Reconstruction Using Diffusion Mapping Via Pattern Coordinates
Reconstructing 3D clothed humans from images is fundamental to applications like virtual try-on, avatar creation, and mixed reality. While recent advances have enhanced human body recovery, accurate reconstruction of garment geometry -- especially for loose-fitting clothing -- remains an open challenge. We present a novel method for high-fidelity 3D garment reconstruction from single images that bridges 2D and 3D representations. Our approach combines Implicit Sewing Patterns (ISP) with a generative diffusion model to learn rich garment shape priors in a 2D UV space. A key innovation is our mapping model that establishes correspondences between 2D image pixels, UV pattern coordinates, and 3D geometry, enabling joint optimization of both 3D garment meshes and the corresponding 2D patterns by aligning learned priors with image observations. Despite training exclusively on synthetically simulated cloth data, our method generalizes effectively to real-world images, outperforming existing approaches on both tight- and loose-fitting garments. The reconstructed garments maintain physical plausibility while capturing fine geometric details, enabling downstream applications including garment retargeting and texture manipulation.
Geometric Consistency Refinement for Single Image Novel View Synthesis via Test-Time Adaptation of Diffusion Models CVPR 2025
Diffusion models for single image novel view synthesis (NVS) can generate highly realistic and plausible images, but they are limited in the geometric consistency to the given relative poses. The generated images often show significant errors with respect to the epipolar constraints that should be fulfilled, as given by the target pose. In this paper we address this issue by proposing a methodology to improve the geometric correctness of images generated by a diffusion model for single image NVS. We formulate a loss function based on image matching and epipolar constraints, and optimize the starting noise in a diffusion sampling process such that the generated image should both be a realistic image and fulfill geometric constraints derived from the given target pose. Our method does not require training data or fine-tuning of the diffusion models, and we show that we can apply it to multiple state-of-the-art models for single image NVS. The method is evaluated on the MegaScenes dataset and we show that geometric consistency is improved compared to the baseline models while retaining the quality of the generated images.
comment: Accepted to CVPR 2025 EDGE Workshop. Project page: https://gc-ref.github.io/
EasyGenNet: An Efficient Framework for Audio-Driven Gesture Video Generation Based on Diffusion Model
Audio-driven cospeech video generation typically involves two stages: speech-to-gesture and gesture-to-video. While significant advances have been made in speech-to-gesture generation, synthesizing natural expressions and gestures remains challenging in gesture-to-video systems. In order to improve the generation effect, previous works adopted complex input and training strategies and required a large amount of data sets for pre-training, which brought inconvenience to practical applications. We propose a simple one-stage training method and a temporal inference method based on a diffusion model to synthesize realistic and continuous gesture videos without the need for additional training of temporal modules.The entire model makes use of existing pre-trained weights, and only a few thousand frames of data are needed for each character at a time to complete fine-tuning. Built upon the video generator, we introduce a new audio-to-video pipeline to synthesize co-speech videos, using 2D human skeleton as the intermediate motion representation. Our experiments show that our method outperforms existing GAN-based and diffusion-based methods.
DSM: Building A Diverse Semantic Map for 3D Visual Grounding IROS
In recent years, with the growing research and application of multimodal large language models (VLMs) in robotics, there has been an increasing trend of utilizing VLMs for robotic scene understanding tasks. Existing approaches that use VLMs for 3D Visual Grounding tasks often focus on obtaining scene information through geometric and visual information, overlooking the extraction of diverse semantic information from the scene and the understanding of rich implicit semantic attributes, such as appearance, physics, and affordance. The 3D scene graph, which combines geometry and language, is an ideal representation method for environmental perception and is an effective carrier for language models in 3D Visual Grounding tasks. To address these issues, we propose a diverse semantic map construction method specifically designed for robotic agents performing 3D Visual Grounding tasks. This method leverages VLMs to capture the latent semantic attributes and relations of objects within the scene and creates a Diverse Semantic Map (DSM) through a geometry sliding-window map construction strategy. We enhance the understanding of grounding information based on DSM and introduce a novel approach named DSM-Grounding. Experimental results show that our method outperforms current approaches in tasks like semantic segmentation and 3D Visual Grounding, particularly excelling in overall metrics compared to the state-of-the-art. In addition, we have deployed this method on robots to validate its effectiveness in navigation and grasping tasks.
comment: 8 pages, 6 figures, submitted to IROS, Project Page: https://binicey.github.io/DSM
STSeg-Complex Video Object Segmentation: The 1st Solution for 4th PVUW MOSE Challenge
Segmentation of video objects in complex scenarios is highly challenging, and the MOSE dataset has significantly contributed to the development of this field. This technical report details the STSeg solution proposed by the "imaplus" team.By finetuning SAM2 and the unsupervised model TMO on the MOSE dataset, the STSeg solution demonstrates remarkable advantages in handling complex object motions and long-video sequences. In the inference phase, an Adaptive Pseudo-labels Guided Model Refinement Pipeline is adopted to intelligently select appropriate models for processing each video. Through finetuning the models and employing the Adaptive Pseudo-labels Guided Model Refinement Pipeline in the inference phase, the STSeg solution achieved a J&F score of 87.26% on the test set of the 2025 4th PVUW Challenge MOSE Track, securing the 1st place and advancing the technology for video object segmentation in complex scenarios.
Generative AI for Film Creation: A Survey of Recent Advances CVPR 2025
Generative AI (GenAI) is transforming filmmaking, equipping artists with tools like text-to-image and image-to-video diffusion, neural radiance fields, avatar generation, and 3D synthesis. This paper examines the adoption of these technologies in filmmaking, analyzing workflows from recent AI-driven films to understand how GenAI contributes to character creation, aesthetic styling, and narration. We explore key strategies for maintaining character consistency, achieving stylistic coherence, and ensuring motion continuity. Additionally, we highlight emerging trends such as the growing use of 3D generation and the integration of real footage with AI-generated elements. Beyond technical advancements, we examine how GenAI is enabling new artistic expressions, from generating hard-to-shoot footage to dreamlike diffusion-based morphing effects, abstract visuals, and unworldly objects. We also gather artists' feedback on challenges and desired improvements, including consistency, controllability, fine-grained editing, and motion refinement. Our study provides insights into the evolving intersection of AI and filmmaking, offering a roadmap for researchers and artists navigating this rapidly expanding field.
comment: Accepted at CVPR 2025 CVEU workshop: AI for Creative Visual Content Generation Editing and Understanding
DreamFuse: Adaptive Image Fusion with Diffusion Transformer
Image fusion seeks to seamlessly integrate foreground objects with background scenes, producing realistic and harmonious fused images. Unlike existing methods that directly insert objects into the background, adaptive and interactive fusion remains a challenging yet appealing task. It requires the foreground to adjust or interact with the background context, enabling more coherent integration. To address this, we propose an iterative human-in-the-loop data generation pipeline, which leverages limited initial data with diverse textual prompts to generate fusion datasets across various scenarios and interactions, including placement, holding, wearing, and style transfer. Building on this, we introduce DreamFuse, a novel approach based on the Diffusion Transformer (DiT) model, to generate consistent and harmonious fused images with both foreground and background information. DreamFuse employs a Positional Affine mechanism to inject the size and position of the foreground into the background, enabling effective foreground-background interaction through shared attention. Furthermore, we apply Localized Direct Preference Optimization guided by human feedback to refine DreamFuse, enhancing background consistency and foreground harmony. DreamFuse achieves harmonious fusion while generalizing to text-driven attribute editing of the fused results. Experimental results demonstrate that our method outperforms state-of-the-art approaches across multiple metrics.
comment: under review
PNE-SGAN: Probabilistic NDT-Enhanced Semantic Graph Attention Network for LiDAR Loop Closure Detection
LiDAR loop closure detection (LCD) is crucial for consistent Simultaneous Localization and Mapping (SLAM) but faces challenges in robustness and accuracy. Existing methods, including semantic graph approaches, often suffer from coarse geometric representations and lack temporal robustness against noise, dynamics, and viewpoint changes. We introduce PNE-SGAN, a Probabilistic NDT-Enhanced Semantic Graph Attention Network, to overcome these limitations. PNE-SGAN enhances semantic graphs by using Normal Distributions Transform (NDT) covariance matrices as rich, discriminative geometric node features, processed via a Graph Attention Network (GAT). Crucially, it integrates graph similarity scores into a probabilistic temporal filtering framework (modeled as an HMM/Bayes filter), incorporating uncertain odometry for motion modeling and utilizing forward-backward smoothing to effectively handle ambiguities. Evaluations on challenging KITTI sequences (00 and 08) demonstrate state-of-the-art performance, achieving Average Precision of 96.2\% and 95.1\%, respectively. PNE-SGAN significantly outperforms existing methods, particularly in difficult bidirectional loop scenarios where others falter. By synergizing detailed NDT geometry with principled probabilistic temporal reasoning, PNE-SGAN offers a highly accurate and robust solution for LiDAR LCD, enhancing SLAM reliability in complex, large-scale environments.
Palmprint De-Identification Using Diffusion Model for High-Quality and Diverse Synthesis
Palmprint recognition techniques have advanced significantly in recent years, enabling reliable recognition even when palmprints are captured in uncontrolled or challenging environments. However, this strength also introduces new risks, as publicly available palmprint images can be misused by adversaries for malicious activities. Despite this growing concern, research on methods to obscure or anonymize palmprints remains largely unexplored. Thus, it is essential to develop a palmprint de-identification technique capable of removing identity-revealing features while retaining the image's utility and preserving non-sensitive information. In this paper, we propose a training-free framework that utilizes pre-trained diffusion models to generate diverse, high-quality palmprint images that conceal identity features for de-identification purposes. To ensure greater stability and controllability in the synthesis process, we incorporate a semantic-guided embedding fusion alongside a prior interpolation mechanism. We further propose the de-identification ratio, a novel metric for intuitive de-identification assessment. Extensive experiments across multiple palmprint datasets and recognition methods demonstrate that our method effectively conceals identity-related traits with significant diversity across de-identified samples. The de-identified samples preserve high visual fidelity and maintain excellent usability, achieving a balance between de-identification and retaining non-identity information.
VLMT: Vision-Language Multimodal Transformer for Multimodal Multi-hop Question Answering
The increasing availability of multimodal data across text, tables, and images presents new challenges for developing models capable of complex cross-modal reasoning. Existing methods for Multimodal Multi-hop Question Answering (MMQA) often suffer from limited reasoning capabilities, reliance on modality conversion, and inadequate alignment between visual and textual representations. To address these limitations, this paper introduces Vision-Language Multimodal Transformer (VLMT), a unified architecture that integrates a transformer-based vision encoder with a sequence-to-sequence language model. VLMT employs a direct token-level injection mechanism to fuse visual and textual inputs within a shared embedding space, eliminating the need for intermediate projection layers. To enhance cross-modal alignment and reasoning, a three-stage pretraining strategy is proposed to progressively align vision-language representations and improve the model's capacity for multimodal understanding. Based on the pretrained backbone, two task-specific modules are instantiated to form a two-stage MMQA framework: a multimodal reranker that predicts document relevance scores and utilizes a relative threshold with top-k strategy for context retrieval, and a multimodal question answering model that generates contextually grounded answers based on the retrieved evidence. Comprehensive experiments on two benchmark datasets demonstrate the effectiveness of the proposed approach. On MultimodalQA validation set, VLMT-Large achieves 76.5% Exact Match and 80.1% F1, outperforming the previous state-of-the-art by +9.1% in Exact Match and +8.8% in F1. On WebQA, it attains a QA score of 47.6, surpassing prior models such as PERQA by +3.2. These results highlight VLMT's strong capabilities in multimodal reasoning and its potential to advance real-world information retrieval and question answering systems.
CoProSketch: Controllable and Progressive Sketch Generation with Diffusion Model
Sketches serve as fundamental blueprints in artistic creation because sketch editing is easier and more intuitive than pixel-level RGB image editing for painting artists, yet sketch generation remains unexplored despite advancements in generative models. We propose a novel framework CoProSketch, providing prominent controllability and details for sketch generation with diffusion models. A straightforward method is fine-tuning a pretrained image generation diffusion model with binarized sketch images. However, we find that the diffusion models fail to generate clear binary images, which makes the produced sketches chaotic. We thus propose to represent the sketches by unsigned distance field (UDF), which is continuous and can be easily decoded to sketches through a lightweight network. With CoProSketch, users generate a rough sketch from a bounding box and a text prompt. The rough sketch can be manually edited and fed back into the model for iterative refinement and will be decoded to a detailed sketch as the final result. Additionally, we curate the first large-scale text-sketch paired dataset as the training data. Experiments demonstrate superior semantic consistency and controllability over baselines, offering a practical solution for integrating user feedback into generative workflows.
comment: 11 pages, 9 figures
Knowledge Distillation for Underwater Feature Extraction and Matching via GAN-synthesized Images
Autonomous Underwater Vehicles (AUVs) play a crucial role in underwater exploration. Vision-based methods offer cost-effective solutions for localization and mapping in the absence of conventional sensors like GPS and LIDAR. However, underwater environments present significant challenges for feature extraction and matching due to image blurring and noise caused by attenuation, scattering, and the interference of \textit{marine snow}. In this paper, we aim to improve the robustness of the feature extraction and matching in the turbid underwater environment using the cross-modal knowledge distillation method that transfers the in-air feature extraction models to underwater settings using synthetic underwater images as the medium. We first propose a novel adaptive GAN-synthesis method to estimate water parameters and underwater noise distribution, to generate environment-specific synthetic underwater images. We then introduce a general knowledge distillation framework compatible with different teacher models. The evaluation of GAN-based synthesis highlights the significance of the new components, i.e. GAN-synthesized noise and forward scattering, in the proposed model. Additionally, the downstream application of feature extraction and matching (VSLAM) on real underwater sequences validates the effectiveness of the transferred model.
Stereophotoclinometry Revisited
Image-based surface reconstruction and characterization is crucial for missions to small celestial bodies, as it informs mission planning, navigation, and scientific analysis. However, current state-of-the-practice methods, such as stereophotoclinometry (SPC), rely heavily on human-in-the-loop verification and high-fidelity a priori information. This paper proposes Photoclinometry-from-Motion (PhoMo), a novel framework that incorporates photoclinometry techniques into a keypoint-based structure-from-motion (SfM) system to estimate the surface normal and albedo at detected landmarks to improve autonomous surface and shape characterization of small celestial bodies from in-situ imagery. In contrast to SPC, we forego the expensive maplet estimation step and instead use dense keypoint measurements and correspondences from an autonomous keypoint detection and matching method based on deep learning. Moreover, we develop a factor graph-based approach allowing for simultaneous optimization of the spacecraft's pose, landmark positions, Sun-relative direction, and surface normals and albedos via fusion of Sun vector measurements and image keypoint measurements. The proposed framework is validated on real imagery taken by the Dawn mission to the asteroid 4 Vesta and the minor planet 1 Ceres and compared against an SPC reconstruction, where we demonstrate superior rendering performance compared to an SPC solution and precise alignment to a stereophotogrammetry (SPG) solution without relying on any a priori camera pose and topography information or humans-in-the-loop.
comment: arXiv admin note: substantial text overlap with arXiv:2312.06865
F$^3$Set: Towards Analyzing Fast, Frequent, and Fine-grained Events from Videos ICLR 2025
Analyzing Fast, Frequent, and Fine-grained (F$^3$) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the F$^3$ criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce F$^3$Set, a benchmark that consists of video datasets for precise F$^3$ event detection. Datasets in F$^3$Set are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, F$^3$Set contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on F$^3$Set, revealing substantial challenges for existing techniques. Additionally, we propose a new method, F$^3$ED, for F$^3$ event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.
comment: The Thirteenth International Conference on Learning Representations (ICLR 2025)
VL-UR: Vision-Language-guided Universal Restoration of Images Degraded by Adverse Weather Conditions
Image restoration is critical for improving the quality of degraded images, which is vital for applications like autonomous driving, security surveillance, and digital content enhancement. However, existing methods are often tailored to specific degradation scenarios, limiting their adaptability to the diverse and complex challenges in real-world environments. Moreover, real-world degradations are typically non-uniform, highlighting the need for adaptive and intelligent solutions. To address these issues, we propose a novel vision-language-guided universal restoration (VL-UR) framework. VL-UR leverages a zero-shot contrastive language-image pre-training (CLIP) model to enhance image restoration by integrating visual and semantic information. A scene classifier is introduced to adapt CLIP, generating high-quality language embeddings aligned with degraded images while predicting degraded types for complex scenarios. Extensive experiments across eleven diverse degradation settings demonstrate VL-UR's state-of-the-art performance, robustness, and adaptability. This positions VL-UR as a transformative solution for modern image restoration challenges in dynamic, real-world environments.
RealCam-Vid: High-resolution Video Dataset with Dynamic Scenes and Metric-scale Camera Movements
Recent advances in camera-controllable video generation have been constrained by the reliance on static-scene datasets with relative-scale camera annotations, such as RealEstate10K. While these datasets enable basic viewpoint control, they fail to capture dynamic scene interactions and lack metric-scale geometric consistency-critical for synthesizing realistic object motions and precise camera trajectories in complex environments. To bridge this gap, we introduce the first fully open-source, high-resolution dynamic-scene dataset with metric-scale camera annotations in https://github.com/ZGCTroy/RealCam-Vid.
EO-VLM: VLM-Guided Energy Overload Attacks on Vision Models ACSA
Vision models are increasingly deployed in critical applications such as autonomous driving and CCTV monitoring, yet they remain susceptible to resource-consuming attacks. In this paper, we introduce a novel energy-overloading attack that leverages vision language model (VLM) prompts to generate adversarial images targeting vision models. These images, though imperceptible to the human eye, significantly increase GPU energy consumption across various vision models, threatening the availability of these systems. Our framework, EO-VLM (Energy Overload via VLM), is model-agnostic, meaning it is not limited by the architecture or type of the target vision model. By exploiting the lack of safety filters in VLMs like DALL-E 3, we create adversarial noise images without requiring prior knowledge or internal structure of the target vision models. Our experiments demonstrate up to a 50% increase in energy consumption, revealing a critical vulnerability in current vision models.
comment: Presented as a poster at ACSAC 2024
Comparative Analysis of Different Methods for Classifying Polychromatic Sketches
Image classification is a significant challenge in computer vision, particularly in domains humans are not accustomed to. As machine learning and artificial intelligence become more prominent, it is crucial these algorithms develop a sense of sight that is on par with or exceeds human ability. For this reason, we have collected, cleaned, and parsed a large dataset of hand-drawn doodles and compared multiple machine learning solutions to classify these images into 170 distinct categories. The best model we found achieved a Top-1 accuracy of 47.5%, significantly surpassing human performance on the dataset, which stands at 41%.
TokenMotion: Decoupled Motion Control via Token Disentanglement for Human-centric Video Generation
Human-centric motion control in video generation remains a critical challenge, particularly when jointly controlling camera movements and human poses in scenarios like the iconic Grammy Glambot moment. While recent video diffusion models have made significant progress, existing approaches struggle with limited motion representations and inadequate integration of camera and human motion controls. In this work, we present TokenMotion, the first DiT-based video diffusion framework that enables fine-grained control over camera motion, human motion, and their joint interaction. We represent camera trajectories and human poses as spatio-temporal tokens to enable local control granularity. Our approach introduces a unified modeling framework utilizing a decouple-and-fuse strategy, bridged by a human-aware dynamic mask that effectively handles the spatially-and-temporally varying nature of combined motion signals. Through extensive experiments, we demonstrate TokenMotion's effectiveness across both text-to-video and image-to-video paradigms, consistently outperforming current state-of-the-art methods in human-centric motion control tasks. Our work represents a significant advancement in controllable video generation, with particular relevance for creative production applications.
SynthFM: Training Modality-agnostic Foundation Models for Medical Image Segmentation without Real Medical Data
Foundation models like the Segment Anything Model (SAM) excel in zero-shot segmentation for natural images but struggle with medical image segmentation due to differences in texture, contrast, and noise. Annotating medical images is costly and requires domain expertise, limiting large-scale annotated data availability. To address this, we propose SynthFM, a synthetic data generation framework that mimics the complexities of medical images, enabling foundation models to adapt without real medical data. Using SAM's pretrained encoder and training the decoder from scratch on SynthFM's dataset, we evaluated our method on 11 anatomical structures across 9 datasets (CT, MRI, and Ultrasound). SynthFM outperformed zero-shot baselines like SAM and MedSAM, achieving superior results under different prompt settings and on out-of-distribution datasets.
Multi-person Physics-based Pose Estimation for Combat Sports
We propose a novel framework for accurate 3D human pose estimation in combat sports using sparse multi-camera setups. Our method integrates robust multi-view 2D pose tracking via a transformer-based top-down approach, employing epipolar geometry constraints and long-term video object segmentation for consistent identity tracking across views. Initial 3D poses are obtained through weighted triangulation and spline smoothing, followed by kinematic optimization to refine pose accuracy. We further enhance pose realism and robustness by introducing a multi-person physics-based trajectory optimization step, effectively addressing challenges such as rapid motions, occlusions, and close interactions. Experimental results on diverse datasets, including a new benchmark of elite boxing footage, demonstrate state-of-the-art performance. Additionally, we release comprehensive annotated video datasets to advance future research in multi-person pose estimation for combat sports.
Scaling Laws for Native Multimodal Models
Building general-purpose models that can effectively perceive the world through multimodal signals has been a long-standing goal. Current approaches involve integrating separately pre-trained components, such as connecting vision encoders to LLMs and continuing multimodal training. While such approaches exhibit remarkable sample efficiency, it remains an open question whether such late-fusion architectures are inherently superior. In this work, we revisit the architectural design of native multimodal models (NMMs)--those trained from the ground up on all modalities--and conduct an extensive scaling laws study, spanning 457 trained models with different architectures and training mixtures. Our investigation reveals no inherent advantage to late-fusion architectures over early-fusion ones, which do not rely on image encoders. On the contrary, early-fusion exhibits stronger performance at lower parameter counts, is more efficient to train, and is easier to deploy. Motivated by the strong performance of the early-fusion architectures, we show that incorporating Mixture of Experts (MoEs) allows for models that learn modality-specific weights, significantly enhancing performance.
comment: 31 pages, 26 figures, 13 tables
AerialVG: A Challenging Benchmark for Aerial Visual Grounding by Exploring Positional Relations
Visual grounding (VG) aims to localize target objects in an image based on natural language descriptions. In this paper, we propose AerialVG, a new task focusing on visual grounding from aerial views. Compared to traditional VG, AerialVG poses new challenges, \emph{e.g.}, appearance-based grounding is insufficient to distinguish among multiple visually similar objects, and positional relations should be emphasized. Besides, existing VG models struggle when applied to aerial imagery, where high-resolution images cause significant difficulties. To address these challenges, we introduce the first AerialVG dataset, consisting of 5K real-world aerial images, 50K manually annotated descriptions, and 103K objects. Particularly, each annotation in AerialVG dataset contains multiple target objects annotated with relative spatial relations, requiring models to perform comprehensive spatial reasoning. Furthermore, we propose an innovative model especially for the AerialVG task, where a Hierarchical Cross-Attention is devised to focus on target regions, and a Relation-Aware Grounding module is designed to infer positional relations. Experimental results validate the effectiveness of our dataset and method, highlighting the importance of spatial reasoning in aerial visual grounding. The code and dataset will be released.
comment: 8 pages, 6 figures
Breaking the Barriers: Video Vision Transformers for Word-Level Sign Language Recognition
Sign language is a fundamental means of communication for the deaf and hard-of-hearing (DHH) community, enabling nuanced expression through gestures, facial expressions, and body movements. Despite its critical role in facilitating interaction within the DHH population, significant barriers persist due to the limited fluency in sign language among the hearing population. Overcoming this communication gap through automatic sign language recognition (SLR) remains a challenge, particularly at a dynamic word-level, where temporal and spatial dependencies must be effectively recognized. While Convolutional Neural Networks (CNNs) have shown potential in SLR, they are computationally intensive and have difficulties in capturing global temporal dependencies between video sequences. To address these limitations, we propose a Video Vision Transformer (ViViT) model for word-level American Sign Language (ASL) recognition. Transformer models make use of self-attention mechanisms to effectively capture global relationships across spatial and temporal dimensions, which makes them suitable for complex gesture recognition tasks. The VideoMAE model achieves a Top-1 accuracy of 75.58% on the WLASL100 dataset, highlighting its strong performance compared to traditional CNNs with 65.89%. Our study demonstrates that transformer-based architectures have great potential to advance SLR, overcome communication barriers and promote the inclusion of DHH individuals.
BRepFormer: Transformer-Based B-rep Geometric Feature Recognition
Recognizing geometric features on B-rep models is a cornerstone technique for multimedia content-based retrieval and has been widely applied in intelligent manufacturing. However, previous research often merely focused on Machining Feature Recognition (MFR), falling short in effectively capturing the intricate topological and geometric characteristics of complex geometry features. In this paper, we propose BRepFormer, a novel transformer-based model to recognize both machining feature and complex CAD models' features. BRepFormer encodes and fuses the geometric and topological features of the models. Afterwards, BRepFormer utilizes a transformer architecture for feature propagation and a recognition head to identify geometry features. During each iteration of the transformer, we incorporate a bias that combines edge features and topology features to reinforce geometric constraints on each face. In addition, we also proposed a dataset named Complex B-rep Feature Dataset (CBF), comprising 20,000 B-rep models. By covering more complex B-rep models, it is better aligned with industrial applications. The experimental results demonstrate that BRepFormer achieves state-of-the-art accuracy on the MFInstSeg, MFTRCAD, and our CBF datasets.
ASHiTA: Automatic Scene-grounded HIerarchical Task Analysis
While recent work in scene reconstruction and understanding has made strides in grounding natural language to physical 3D environments, it is still challenging to ground abstract, high-level instructions to a 3D scene. High-level instructions might not explicitly invoke semantic elements in the scene, and even the process of breaking a high-level task into a set of more concrete subtasks, a process called hierarchical task analysis, is environment-dependent. In this work, we propose ASHiTA, the first framework that generates a task hierarchy grounded to a 3D scene graph by breaking down high-level tasks into grounded subtasks. ASHiTA alternates LLM-assisted hierarchical task analysis, to generate the task breakdown, with task-driven 3D scene graph construction to generate a suitable representation of the environment. Our experiments show that ASHiTA performs significantly better than LLM baselines in breaking down high-level tasks into environment-dependent subtasks and is additionally able to achieve grounding performance comparable to state-of-the-art methods.
UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning CVPR2025
Transductive few-shot learning has recently triggered wide attention in computer vision. Yet, current methods introduce key hyper-parameters, which control the prediction statistics of the test batches, such as the level of class balance, affecting performances significantly. Such hyper-parameters are empirically grid-searched over validation data, and their configurations may vary substantially with the target dataset and pre-training model, making such empirical searches both sub-optimal and computationally intractable. In this work, we advocate and introduce the unrolling paradigm, also referred to as "learning to optimize", in the context of few-shot learning, thereby learning efficiently and effectively a set of optimized hyper-parameters. Specifically, we unroll a generalization of the ubiquitous Expectation-Maximization (EM) optimizer into a neural network architecture, mapping each of its iterates to a layer and learning a set of key hyper-parameters over validation data. Our unrolling approach covers various statistical feature distributions and pre-training paradigms, including recent foundational vision-language models and standard vision-only classifiers. We report comprehensive experiments, which cover a breadth of fine-grained downstream image classification tasks, showing significant gains brought by the proposed unrolled EM algorithm over iterative variants. The achieved improvements reach up to 10% and 7.5% on vision-only and vision-language benchmarks, respectively.
comment: Accepted by CVPR2025
HRDecoder: High-Resolution Decoder Network for Fundus Image Lesion Segmentation MICCAI 2024
High resolution is crucial for precise segmentation in fundus images, yet handling high-resolution inputs incurs considerable GPU memory costs, with diminishing performance gains as overhead increases. To address this issue while tackling the challenge of segmenting tiny objects, recent studies have explored local-global fusion methods. These methods preserve fine details using local regions and capture long-range context information from downscaled global images. However, the necessity of multiple forward passes inevitably incurs significant computational overhead, adversely affecting inference speed. In this paper, we propose HRDecoder, a simple High-Resolution Decoder network for fundus lesion segmentation. It integrates a high-resolution representation learning module to capture fine-grained local features and a high-resolution fusion module to fuse multi-scale predictions. Our method effectively improves the overall segmentation accuracy of fundus lesions while consuming reasonable memory and computational overhead, and maintaining satisfying inference speed. Experimental results on the IDRiD and DDR datasets demonstrate the effectiveness of our method. Code is available at https://github.com/CVIU-CSU/HRDecoder.
comment: 11 pages, 3 figures, accepted by MICCAI 2024, the revised version
Fine-Grained Retrieval-Augmented Generation for Visual Question Answering
Visual Question Answering (VQA) focuses on providing answers to natural language questions by utilizing information from images. Although cutting-edge multimodal large language models (MLLMs) such as GPT-4o achieve strong performance on VQA tasks, they frequently fall short in accessing domain-specific or the latest knowledge. To mitigate this issue, retrieval-augmented generation (RAG) leveraging external knowledge bases (KBs), referred to as KB-VQA, emerges as a promising approach. Nevertheless, conventional unimodal retrieval techniques, which translate images into textual descriptions, often result in the loss of critical visual details. This study presents fine-grained knowledge units, which merge textual snippets with entity images stored in vector databases. Furthermore, we introduce a knowledge unit retrieval-augmented generation framework (KU-RAG) that integrates fine-grained retrieval with MLLMs. The proposed KU-RAG framework ensures precise retrieval of relevant knowledge and enhances reasoning capabilities through a knowledge correction chain. Experimental findings demonstrate that our approach significantly boosts the performance of leading KB-VQA methods, achieving an average improvement of approximately 3% and up to 11% in the best case.
A Multi-Modal AI System for Screening Mammography: Integrating 2D and 3D Imaging to Improve Breast Cancer Detection in a Prospective Clinical Study
Although digital breast tomosynthesis (DBT) improves diagnostic performance over full-field digital mammography (FFDM), false-positive recalls remain a concern in breast cancer screening. We developed a multi-modal artificial intelligence system integrating FFDM, synthetic mammography, and DBT to provide breast-level predictions and bounding-box localizations of suspicious findings. Our AI system, trained on approximately 500,000 mammography exams, achieved 0.945 AUROC on an internal test set. It demonstrated capacity to reduce recalls by 31.7% and radiologist workload by 43.8% while maintaining 100% sensitivity, underscoring its potential to improve clinical workflows. External validation confirmed strong generalizability, reducing the gap to a perfect AUROC by 35.31%-69.14% relative to strong baselines. In prospective deployment across 18 sites, the system reduced recall rates for low-risk cases. An improved version, trained on over 750,000 exams with additional labels, further reduced the gap by 18.86%-56.62% across large external datasets. Overall, these results underscore the importance of utilizing all available imaging modalities, demonstrate the potential for clinical impact, and indicate feasibility of further reduction of the test error with increased training set when using large-capacity neural networks.
D-Feat Occlusions: Diffusion Features for Robustness to Partial Visual Occlusions in Object Recognition
Applications of diffusion models for visual tasks have been quite noteworthy. This paper targets making classification models more robust to occlusions for the task of object recognition by proposing a pipeline that utilizes a frozen diffusion model. Diffusion features have demonstrated success in image generation and image completion while understanding image context. Occlusion can be posed as an image completion problem by deeming the pixels of the occluder to be `missing.' We hypothesize that such features can help hallucinate object visual features behind occluding objects, and hence we propose using them to enable models to become more occlusion robust. We design experiments to include input-based augmentations as well as feature-based augmentations. Input-based augmentations involve finetuning on images where the occluder pixels are inpainted, and feature-based augmentations involve augmenting classification features with intermediate diffusion features. We demonstrate that our proposed use of diffusion-based features results in models that are more robust to partial object occlusions for both Transformers and ConvNets on ImageNet with simulated occlusions. We also propose a dataset that encompasses real-world occlusions and demonstrate that our method is more robust to partial object occlusions.
Federated Class-Incremental Learning with Prompting
As Web technology continues to develop, it has become increasingly common to use data stored on different clients. At the same time, federated learning has received widespread attention due to its ability to protect data privacy when let models learn from data which is distributed across various clients. However, most existing works assume that the client's data are fixed. In real-world scenarios, such an assumption is most likely not true as data may be continuously generated and new classes may also appear. To this end, we focus on the practical and challenging federated class-incremental learning (FCIL) problem. For FCIL, the local and global models may suffer from catastrophic forgetting on old classes caused by the arrival of new classes and the data distributions of clients are non-independent and identically distributed (non-iid). In this paper, we propose a novel method called Federated Class-Incremental Learning with PrompTing (FCILPT). Given the privacy and limited memory, FCILPT does not use a rehearsal-based buffer to keep exemplars of old data. We choose to use prompts to ease the catastrophic forgetting of the old classes. Specifically, we encode the task-relevant and task-irrelevant knowledge into prompts, preserving the old and new knowledge of the local clients and solving the problem of catastrophic forgetting. We first sort the task information in the prompt pool in the local clients to align the task information on different clients before global aggregation. It ensures that the same task's knowledge are fully integrated, solving the problem of non-iid caused by the lack of classes among different clients in the same incremental task. Experiments on CIFAR-100, Mini-ImageNet, and Tiny-ImageNet demonstrate that FCILPT achieves significant accuracy improvements over the state-of-the-art methods.
F-LMM: Grounding Frozen Large Multimodal Models
Endowing Large Multimodal Models (LMMs) with visual grounding capability can significantly enhance AIs' understanding of the visual world and their interaction with humans. However, existing methods typically fine-tune the parameters of LMMs to learn additional segmentation tokens and overfit grounding and segmentation datasets. Such a design would inevitably cause a catastrophic diminution in the indispensable conversational capability of general AI assistants. In this paper, we comprehensively evaluate state-of-the-art grounding LMMs across a suite of multimodal question-answering benchmarks, observing drastic performance drops that indicate vanishing general knowledge comprehension and weakened instruction following ability. To address this issue, we present F-LMM -- grounding frozen off-the-shelf LMMs in human-AI conversations -- a straightforward yet effective design based on the fact that word-pixel correspondences conducive to visual grounding inherently exist in the attention mechanism of well-trained LMMs. Using only a few trainable CNN layers, we can translate word-pixel attention weights to mask logits, which a SAM-based mask refiner can further optimise. Our F-LMM neither learns special segmentation tokens nor utilises high-quality grounded instruction-tuning data, but achieves competitive performance on referring expression segmentation and panoptic narrative grounding benchmarks while completely preserving LMMs' original conversational ability. Additionally, with instruction-following ability preserved and grounding ability obtained, F-LMM can be directly applied to complex tasks like reasoning segmentation, grounded conversation generation and visual chain-of-thought reasoning. Our code can be found at https://github.com/wusize/F-LMM.
comment: Project Page: https://github.com/wusize/F-LMM
Standing on the Shoulders of Giants: Reprogramming Visual-Language Model for General Deepfake Detection AAAI 2025
The proliferation of deepfake faces poses huge potential negative impacts on our daily lives. Despite substantial advancements in deepfake detection over these years, the generalizability of existing methods against forgeries from unseen datasets or created by emerging generative models remains constrained. In this paper, inspired by the zero-shot advantages of Vision-Language Models (VLMs), we propose a novel approach that repurposes a well-trained VLM for general deepfake detection. Motivated by the model reprogramming paradigm that manipulates the model prediction via input perturbations, our method can reprogram a pre-trained VLM model (e.g., CLIP) solely based on manipulating its input without tuning the inner parameters. First, learnable visual perturbations are used to refine feature extraction for deepfake detection. Then, we exploit information of face embedding to create sample-level adaptative text prompts, improving the performance. Extensive experiments on several popular benchmark datasets demonstrate that (1) the cross-dataset and cross-manipulation performances of deepfake detection can be significantly and consistently improved (e.g., over 88\% AUC in cross-dataset setting from FF++ to WildDeepfake); (2) the superior performances are achieved with fewer trainable parameters, making it a promising approach for real-world applications.
comment: Accepted by AAAI 2025
Multi-head Ensemble of Smoothed Classifiers for Certified Robustness
Randomized Smoothing (RS) is a promising technique for certified robustness, and recently in RS the ensemble of multiple Deep Neural Networks (DNNs) has shown state-of-the-art performances due to its variance reduction effect over Gaussian noises. However, such an ensemble brings heavy computation burdens in both training and certification, and yet under-exploits individual DNNs and their mutual effects, as the communication between these classifiers is commonly ignored in optimization. In this work, we consider a novel ensemble-based training way for a single DNN with multiple augmented heads, named as SmOothed Multi-head Ensemble (SOME). In SOME, similar to the pursuit of variance reduction via ensemble, an ensemble of multiple heads imposed with a cosine constraint inside a single DNN is employed with much cheaper training and certification computation overloads in RS. In such network structure, an associated training strategy is designed by introducing a circular communication flow among those augmented heads. That is, each head teaches its neighbor with the self-paced learning strategy using smoothed losses, which are specifically designed in relation to certified robustness. The deployed multi-head structure and the circular-teaching scheme in SOME jointly contribute to the diversities among multiple heads and benefit their ensemble, leading to a competitively stronger certifiably-robust RS-based defense than ensembling multiple DNNs (effectiveness) at the cost of much less computational expenses (efficiency), verified by extensive experiments and discussions.
comment: Accepted by Neural Networks
Open-CD: A Comprehensive Toolbox for Change Detection
We present Open-CD, a change detection toolbox that contains a rich set of change detection methods as well as related components and modules. The toolbox started from a series of open source general vision task tools, including OpenMMLab Toolkits, PyTorch Image Models, etc. It gradually evolves into a unified platform that covers many popular change detection methods and contemporary modules. It not only includes training and inference codes, but also provides some useful scripts for data analysis. We believe this toolbox is by far the most complete change detection toolbox. In this report, we introduce the various features, supported methods and applications of Open-CD. In addition, we also conduct a benchmarking study on different methods and components. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new change detectors. Code and models are available at https://github.com/likyoo/open-cd. Pioneeringly, this report also includes brief descriptions of the algorithms supported in Open-CD, mainly contributed by their authors. We sincerely encourage researchers in this field to participate in this project and work together to create a more open community. This toolkit and report will be kept updated.
comment: 9 pages
WF-VAE: Enhancing Video VAE by Wavelet-Driven Energy Flow for Latent Video Diffusion Model
Video Variational Autoencoder (VAE) encodes videos into a low-dimensional latent space, becoming a key component of most Latent Video Diffusion Models (LVDMs) to reduce model training costs. However, as the resolution and duration of generated videos increase, the encoding cost of Video VAEs becomes a limiting bottleneck in training LVDMs. Moreover, the block-wise inference method adopted by most LVDMs can lead to discontinuities of latent space when processing long-duration videos. The key to addressing the computational bottleneck lies in decomposing videos into distinct components and efficiently encoding the critical information. Wavelet transform can decompose videos into multiple frequency-domain components and improve the efficiency significantly, we thus propose Wavelet Flow VAE (WF-VAE), an autoencoder that leverages multi-level wavelet transform to facilitate low-frequency energy flow into latent representation. Furthermore, we introduce a method called Causal Cache, which maintains the integrity of latent space during block-wise inference. Compared to state-of-the-art video VAEs, WF-VAE demonstrates superior performance in both PSNR and LPIPS metrics, achieving 2x higher throughput and 4x lower memory consumption while maintaining competitive reconstruction quality. Our code and models are available at https://github.com/PKU-YuanGroup/WF-VAE.
comment: 8 pages, 7 figures
TACO: Adversarial Camouflage Optimization on Trucks to Fool Object Detectors
Adversarial attacks threaten the reliability of machine learning models in critical applications like autonomous vehicles and defense systems. As object detectors become more robust with models like YOLOv8, developing effective adversarial methodologies is increasingly challenging. We present Truck Adversarial Camouflage Optimization (TACO), a novel framework that generates adversarial camouflage patterns on 3D vehicle models to deceive state-of-the-art object detectors. Adopting Unreal Engine 5, TACO integrates differentiable rendering with a Photorealistic Rendering Network to optimize adversarial textures targeted at YOLOv8. To ensure the generated textures are both effective in deceiving detectors and visually plausible, we introduce the Convolutional Smooth Loss function, a generalized smooth loss function. Experimental evaluations demonstrate that TACO significantly degrades YOLOv8's detection performance, achieving an AP@0.5 of 0.0099 on unseen test data. Furthermore, these adversarial patterns exhibit strong transferability to other object detection models such as Faster R-CNN and earlier YOLO versions.
comment: This version matches the final published version in Big Data and Cognitive Computing (MDPI). Please cite the journal version when referencing this work (doi: https://doi.org/10.3390/bdcc9030072)
ODverse33: Is the New YOLO Version Always Better? A Multi Domain benchmark from YOLO v5 to v11
You Look Only Once (YOLO) models have been widely used for building real-time object detectors across various domains. With the increasing frequency of new YOLO versions being released, key questions arise. Are the newer versions always better than their previous versions? What are the core innovations in each YOLO version and how do these changes translate into real-world performance gains? In this paper, we summarize the key innovations from YOLOv1 to YOLOv11, introduce a comprehensive benchmark called ODverse33, which includes 33 datasets spanning 11 diverse domains (Autonomous driving, Agricultural, Underwater, Medical, Videogame, Industrial, Aerial, Wildlife, Retail, Microscopic, and Security), and explore the practical impact of model improvements in real-world, multi-domain applications through extensive experimental results. We hope this study can provide some guidance to the extensive users of object detection models and give some references for future real-time object detector development.
comment: 20 pages, 4 figures, 7 tables
Generative Object Insertion in Gaussian Splatting with a Multi-View Diffusion Model
Generating and inserting new objects into 3D content is a compelling approach for achieving versatile scene recreation. Existing methods, which rely on SDS optimization or single-view inpainting, often struggle to produce high-quality results. To address this, we propose a novel method for object insertion in 3D content represented by Gaussian Splatting. Our approach introduces a multi-view diffusion model, dubbed MVInpainter, which is built upon a pre-trained stable video diffusion model to facilitate view-consistent object inpainting. Within MVInpainter, we incorporate a ControlNet-based conditional injection module to enable controlled and more predictable multi-view generation. After generating the multi-view inpainted results, we further propose a mask-aware 3D reconstruction technique to refine Gaussian Splatting reconstruction from these sparse inpainted views. By leveraging these fabricate techniques, our approach yields diverse results, ensures view-consistent and harmonious insertions, and produces better object quality. Extensive experiments demonstrate that our approach outperforms existing methods.
comment: Accepted by Visual Informatics. Project Page: https://github.com/JiuTongBro/MultiView_Inpaint
Anti-Forgetting Adaptation for Unsupervised Person Re-identification
Regular unsupervised domain adaptive person re-identification (ReID) focuses on adapting a model from a source domain to a fixed target domain. However, an adapted ReID model can hardly retain previously-acquired knowledge and generalize to unseen data. In this paper, we propose a Dual-level Joint Adaptation and Anti-forgetting (DJAA) framework, which incrementally adapts a model to new domains without forgetting source domain and each adapted target domain. We explore the possibility of using prototype and instance-level consistency to mitigate the forgetting during the adaptation. Specifically, we store a small number of representative image samples and corresponding cluster prototypes in a memory buffer, which is updated at each adaptation step. With the buffered images and prototypes, we regularize the image-to-image similarity and image-to-prototype similarity to rehearse old knowledge. After the multi-step adaptation, the model is tested on all seen domains and several unseen domains to validate the generalization ability of our method. Extensive experiments demonstrate that our proposed method significantly improves the anti-forgetting, generalization and backward-compatible ability of an unsupervised person ReID model.
comment: Accepted to TPAMI
MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning WACV 2025
Recently, the astonishing performance of large language models (LLMs) in natural language comprehension and generation tasks triggered lots of exploration of using them as central controllers to build agent systems. Multiple studies focus on bridging the LLMs to external tools to extend the application scenarios. However, the current LLMs' ability to perceive tool use is limited to a single text query, which may result in ambiguity in understanding the users' real intentions. LLMs are expected to eliminate that by perceiving the information in the visual- or auditory-grounded instructions. Therefore, in this paper, we propose MLLM-Tool, a system incorporating open-source LLMs and multi-modal encoders so that the learned LLMs can be conscious of multi-modal input instruction and then select the function-matched tool correctly. To facilitate the evaluation of the model's capability, we collect a dataset featuring multi-modal input tools from HuggingFace. Another essential feature of our dataset is that it also contains multiple potential choices for the same instruction due to the existence of identical functions and synonymous functions, which provides more potential solutions for the same query. The experiments reveal that our MLLM-Tool is capable of recommending appropriate tools for multi-modal instructions. Codes and data are available at https://github.com/MLLM-Tool/MLLM-Tool.
comment: WACV 2025
SCAM: A Real-World Typographic Robustness Evaluation for Multimodal Foundation Models CVPR 2025
Typographic attacks exploit the interplay between text and visual content in multimodal foundation models, causing misclassifications when misleading text is embedded within images. However, existing datasets are limited in size and diversity, making it difficult to study such vulnerabilities. In this paper, we introduce SCAM, the largest and most diverse dataset of real-world typographic attack images to date, containing 1,162 images across hundreds of object categories and attack words. Through extensive benchmarking of Vision-Language Models (VLMs) on SCAM, we demonstrate that typographic attacks significantly degrade performance, and identify that training data and model architecture influence the susceptibility to these attacks. Our findings reveal that typographic attacks persist in state-of-the-art Large Vision-Language Models (LVLMs) due to the choice of their vision encoder, though larger Large Language Models (LLMs) backbones help mitigate their vulnerability. Additionally, we demonstrate that synthetic attacks closely resemble real-world (handwritten) attacks, validating their use in research. Our work provides a comprehensive resource and empirical insights to facilitate future research toward robust and trustworthy multimodal AI systems. We publicly release the datasets introduced in this paper under https://huggingface.co/datasets/BLISS-e-V/SCAM, along with the code for evaluations at https://github.com/Bliss-e-V/SCAM.
comment: Submitted to CVPR 2025 Workshop EVAL-FoMo-2
Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations AAAI 2025
Due to the successful development of deep image generation technology, forgery detection plays a more important role in social and economic security. Racial bias has not been explored thoroughly in the deep forgery detection field. In the paper, we first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods. Different from existing forgery detection datasets, the self-constructed FairFD dataset contains a balanced racial ratio and diverse forgery generation images with the largest-scale subjects. Additionally, we identify the problems with naive fairness metrics when benchmarking forgery detection models. To comprehensively evaluate fairness, we design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results. We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates. Extensive experiments conducted with 12 representative forgery detection models demonstrate the value of the proposed dataset and the reasonability of the designed fairness metrics. By applying the BPFA to the existing fairest detector, we achieve a new SOTA. Furthermore, we conduct more in-depth analyses to offer more insights to inspire researchers in the community.
comment: The paper is accepted in AAAI 2025
Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration
This paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes. Specifically, our approach, namely NCLR, focuses on 2D-3D neural calibration, a novel pretext task that estimates the rigid pose aligning camera and LiDAR coordinate systems. First, we propose the learnable transformation alignment to bridge the domain gap between image and point cloud data, converting features into a unified representation space for effective comparison and matching. Second, we identify the overlapping area between the image and point cloud with the fused features. Third, we establish dense 2D-3D correspondences to estimate the rigid pose. The framework not only learns fine-grained matching from points to pixels but also achieves alignment of the image and point cloud at a holistic level, understanding their relative pose. We demonstrate the efficacy of NCLR by applying the pre-trained backbone to downstream tasks, such as LiDAR-based 3D semantic segmentation, object detection, and panoptic segmentation. Comprehensive experiments on various datasets illustrate the superiority of NCLR over existing self-supervised methods. The results confirm that joint learning from different modalities significantly enhances the network's understanding abilities and effectiveness of learned representation. The code is publicly available at https://github.com/Eaphan/NCLR.
comment: Under review
3D Student Splatting and Scooping
Recently, 3D Gaussian Splatting (3DGS) provides a new framework for novel view synthesis, and has spiked a new wave of research in neural rendering and related applications. As 3DGS is becoming a foundational component of many models, any improvement on 3DGS itself can bring huge benefits. To this end, we aim to improve the fundamental paradigm and formulation of 3DGS. We argue that as an unnormalized mixture model, it needs to be neither Gaussians nor splatting. We subsequently propose a new mixture model consisting of flexible Student's t distributions, with both positive (splatting) and negative (scooping) densities. We name our model Student Splatting and Scooping, or SSS. When providing better expressivity, SSS also poses new challenges in learning. Therefore, we also propose a new principled sampling approach for optimization. Through exhaustive evaluation and comparison, across multiple datasets, settings, and metrics, we demonstrate that SSS outperforms existing methods in terms of quality and parameter efficiency, e.g. achieving matching or better quality with similar numbers of components, and obtaining comparable results while reducing the component number by as much as 82%.
A Unified Framework for Iris Anti-Spoofing: Introducing Iris Anti-Spoofing Cross-Domain-Testing Protocol and Masked-MoE Method
Iris recognition is widely used in high-security scenarios due to its stability and distinctiveness. However, iris images captured by different devices exhibit certain and device-related consistent differences, which has a greater impact on the classification algorithm for anti-spoofing. The iris of various races would also affect the classification, causing the risk of identity theft. So it is necessary to improve the cross-domain capabilities of the iris anti-spoofing (IAS) methods to enable it more robust in facing different races and devices. However, there is no existing protocol that is comprehensively available. To address this gap, we propose an Iris Anti-Spoofing Cross-Domain-Testing (IAS-CDT) Protocol, which involves 10 datasets, belonging to 7 databases, published by 4 institutions, and collected with 6 different devices. It contains three sub-protocols hierarchically, aimed at evaluating average performance, cross-racial generalization, and cross-device generalization of IAS models. Moreover, to address the cross-device generalization challenge brought by the IAS-CDT Protocol, we employ multiple model parameter sets to learn from the multiple sub-datasets. Specifically, we utilize the Mixture of Experts (MoE) to fit complex data distributions using multiple sub-neural networks. To further enhance the generalization capabilities, we propose a novel method Masked-MoE (MMoE), which randomly masks a portion of tokens for some experts and requires their outputs to be similar to the unmasked experts, which can effectively mitigate the overfitting issue of MoE. For the evaluation, we selected ResNet50, VIT-B/16, CLIP, and FLIP as representative models and benchmarked them under the proposed IAS-CDT Protocol.
IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models
The field of vision-and-language (VL) understanding has made unprecedented progress with end-to-end large pre-trained VL models (VLMs). However, they still fall short in zero-shot reasoning tasks that require multi-step inferencing. To achieve this goal, previous works resort to a divide-and-conquer pipeline. In this paper, we argue that previous efforts have several inherent shortcomings: 1) They rely on domain-specific sub-question decomposing models. 2) They force models to predict the final answer even if the sub-questions or sub-answers provide insufficient information. We address these limitations via IdealGPT, a framework that iteratively decomposes VL reasoning using large language models (LLMs). Specifically, IdealGPT utilizes an LLM to generate sub-questions, a VLM to provide corresponding sub-answers, and another LLM to reason to achieve the final answer. These three modules perform the divide-and-conquer procedure iteratively until the model is confident about the final answer to the main question. We evaluate IdealGPT on multiple challenging VL reasoning tasks under a zero-shot setting. In particular, our IdealGPT outperforms the best existing GPT-4-like models by an absolute 10% on VCR and 15% on SNLI-VE. Code is available at https://github.com/Hxyou/IdealGPT
comment: 13 pages, 5 figures
EgoPlan-Bench2: A Benchmark for Multimodal Large Language Model Planning in Real-World Scenarios
The advent of Multimodal Large Language Models, leveraging the power of Large Language Models, has recently demonstrated superior multimodal understanding and reasoning abilities, heralding a new era for artificial general intelligence. However, achieving AGI necessitates more than just comprehension and reasoning. A crucial capability required is effective planning in diverse scenarios, which involves making reasonable decisions based on complex environments to solve real-world problems. Despite its importance, the planning abilities of current MLLMs in varied scenarios remain underexplored. In this paper, we introduce EgoPlan-Bench2, a rigorous and comprehensive benchmark designed to assess the planning capabilities of MLLMs across a wide range of real-world scenarios. EgoPlan-Bench2 encompasses everyday tasks spanning 4 major domains and 24 detailed scenarios, closely aligned with human daily life. EgoPlan-Bench2 is constructed through a semi-automatic process utilizing egocentric videos, complemented by manual verification. Grounded in a first-person perspective, it mirrors the way humans approach problem-solving in everyday life. We evaluate 21 competitive MLLMs and provide an in-depth analysis of their limitations, revealing that they face significant challenges in real-world planning. To further improve the planning proficiency of current MLLMs, we propose a training-free approach using multimodal Chain-of-Thought (CoT) prompting through investigating the effectiveness of various multimodal prompts in complex planning. Our approach enhances the performance of GPT-4V by 10.24 on EgoPlan-Bench2 without additional training. Our work not only sheds light on the current limitations of MLLMs in planning, but also provides insights for future enhancements in this critical area. We have made data and code available at https://qiulu66.github.io/egoplanbench2/.
comment: Code & data are available at: https://qiulu66.github.io/egoplanbench2/
DiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization
Deepfake technology has rapidly advanced and poses significant threats to information integrity and trust in online multimedia. While significant progress has been made in detecting deepfakes, the simultaneous manipulation of audio and visual modalities, sometimes at small parts or in subtle ways, presents highly challenging detection scenarios. To address these challenges, we present DiMoDif, an audio-visual deepfake detection framework that leverages the inter-modality differences in machine perception of speech, based on the assumption that in real samples -- in contrast to deepfakes -- visual and audio signals coincide in terms of information. DiMoDif leverages features from deep networks that specialize in visual and audio speech recognition to spot frame-level cross-modal incongruities, and in that way to temporally localize the deepfake forgery. To this end, we devise a hierarchical cross-modal fusion network, integrating adaptive temporal alignment modules and a learned discrepancy mapping layer to explicitly model the subtle differences between visual and audio representations. Then, the detection model is optimized through a composite loss function accounting for frame-level detections and fake intervals localization. DiMoDif outperforms the state-of-the-art on the Deepfake Detection task by 30.5 AUC on the highly challenging AV-Deepfake1M, while it performs exceptionally on FakeAVCeleb and LAV-DF. On the Temporal Forgery Localization task, it outperforms the state-of-the-art by 47.88 AP@0.75 on AV-Deepfake1M, and performs on-par on LAV-DF. Code available at https://github.com/mever-team/dimodif.
The Key of Parameter Skew in Federated Learning
Federated Learning (FL) has emerged as an excellent solution for performing deep learning on different data owners without exchanging raw data. However, statistical heterogeneity in FL presents a key challenge, leading to a phenomenon of skewness in local model parameter distributions that researchers have largely overlooked. In this work, we propose the concept of parameter skew to describe the phenomenon that can substantially affect the accuracy of global model parameter estimation. Additionally, we introduce FedSA, an aggregation strategy to obtain a high-quality global model, to address the implication from parameter skew. Specifically, we categorize parameters into high-dispersion and low-dispersion groups based on the coefficient of variation. For high-dispersion parameters, Micro-Classes (MIC) and Macro-Classes (MAC) represent the dispersion at the micro and macro levels, respectively, forming the foundation of FedSA. To evaluate the effectiveness of FedSA, we conduct extensive experiments with different FL algorithms on three computer vision datasets. FedSA outperforms eight state-of-the-art baselines by about 4.7% in test accuracy.
Enhancing Lane Segment Perception and Topology Reasoning with Crowdsourcing Trajectory Priors
In autonomous driving, recent advances in lane segment perception provide autonomous vehicles with a comprehensive understanding of driving scenarios. Moreover, incorporating prior information input into such perception model represents an effective approach to ensure the robustness and accuracy. However, utilizing diverse sources of prior information still faces three key challenges: the acquisition of high-quality prior information, alignment between prior and online perception, efficient integration. To address these issues, we investigate prior augmentation from a novel perspective of trajectory priors. In this paper, we initially extract crowdsourcing trajectory data from Argoverse2 motion forecasting dataset and encode trajectory data into rasterized heatmap and vectorized instance tokens, then we incorporate such prior information into the online mapping model through different ways. Besides, with the purpose of mitigating the misalignment between prior and online perception, we design a confidence-based fusion module that takes alignment into account during the fusion process. We conduct extensive experiments on OpenLane-V2 dataset. The results indicate that our method's performance significantly outperforms the current state-of-the-art methods. Code is released is at https://github.com/wowlza/TrajTopo
comment: 8 pages
Video-Driven Graph Network-Based Simulators
Lifelike visualizations in design, cinematography, and gaming rely on precise physics simulations, typically requiring extensive computational resources and detailed physical input. This paper presents a method that can infer a system's physical properties from a short video, eliminating the need for explicit parameter input, provided it is close to the training condition. The learned representation is then used within a Graph Network-based Simulator to emulate the trajectories of physical systems. We demonstrate that the video-derived encodings effectively capture the physical properties of the system and showcase a linear dependence between some of the encodings and the system's motion.
VTON 360: High-Fidelity Virtual Try-On from Any Viewing Direction CVPR 2025
Virtual Try-On (VTON) is a transformative technology in e-commerce and fashion design, enabling realistic digital visualization of clothing on individuals. In this work, we propose VTON 360, a novel 3D VTON method that addresses the open challenge of achieving high-fidelity VTON that supports any-view rendering. Specifically, we leverage the equivalence between a 3D model and its rendered multi-view 2D images, and reformulate 3D VTON as an extension of 2D VTON that ensures 3D consistent results across multiple views. To achieve this, we extend 2D VTON models to include multi-view garments and clothing-agnostic human body images as input, and propose several novel techniques to enhance them, including: i) a pseudo-3D pose representation using normal maps derived from the SMPL-X 3D human model, ii) a multi-view spatial attention mechanism that models the correlations between features from different viewing angles, and iii) a multi-view CLIP embedding that enhances the garment CLIP features used in 2D VTON with camera information. Extensive experiments on large-scale real datasets and clothing images from e-commerce platforms demonstrate the effectiveness of our approach. Project page: https://scnuhealthy.github.io/VTON360.
comment: Accepted to CVPR 2025
A Robust Real-Time Lane Detection Method with Fog-Enhanced Feature Fusion for Foggy Conditions
Lane detection is a critical component of Advanced Driver Assistance Systems (ADAS). Existing lane detection algorithms generally perform well under favorable weather conditions. However, their performance degrades significantly in adverse conditions, such as fog, which increases the risk of traffic accidents. This challenge is compounded by the lack of specialized datasets and methods designed for foggy environments. To address this, we introduce the FoggyLane dataset, captured in real-world foggy scenarios, and synthesize two additional datasets, FoggyCULane and FoggyTusimple, from existing popular lane detection datasets. Furthermore, we propose a robust Fog-Enhanced Network for lane detection, incorporating a Global Feature Fusion Module (GFFM) to capture global relationships in foggy images, a Kernel Feature Fusion Module (KFFM) to model the structural and positional relationships of lane instances, and a Low-level Edge Enhanced Module (LEEM) to address missing edge details in foggy conditions. Comprehensive experiments demonstrate that our method achieves state-of-the-art performance, with F1-scores of 95.04 on FoggyLane, 79.85 on FoggyCULane, and 96.95 on FoggyTusimple. Additionally, with TensorRT acceleration, the method reaches a processing speed of 38.4 FPS on the NVIDIA Jetson AGX Orin, confirming its real-time capabilities and robustness in foggy environments.
SpaceVLLM: Endowing Multimodal Large Language Model with Spatio-Temporal Video Grounding Capability
Multimodal large language models (MLLMs) have made remarkable progress in either temporal or spatial localization. However, they struggle to perform spatio-temporal video grounding. This limitation stems from two major challenges. Firstly, it is difficult to extract accurate spatio-temporal information of each frame in the video. Secondly, the substantial number of visual tokens makes it challenging to precisely map visual tokens of each frame to their corresponding spatial coordinates. To address these issues, we introduce SpaceVLLM, a MLLM endowed with spatio-temporal video grounding capability. Specifically, we adopt a set of interleaved Spatio-Temporal Aware Queries to capture temporal perception and dynamic spatial information. Moreover, we propose a Query-Guided Space Decoder to establish a corresponding connection between the queries and spatial coordinates. Additionally, due to the lack of spatio-temporal datasets, we construct the Unified Spatio-Temporal Grounding (Uni-STG) dataset, comprising 480K instances across three tasks. This dataset fully exploits the potential of MLLM to simultaneously facilitate localization in both temporal and spatial dimensions. Extensive experiments demonstrate that SpaceVLLM achieves the state-of-the-art performance across 11 benchmarks covering temporal, spatial, spatio-temporal and video understanding tasks, highlighting the effectiveness of our approach. Our code, datasets and model will be released at https://github.com/Jayce1kk/SpaceVLLM.
Auto-Encoded Supervision for Perceptual Image Super-Resolution
This work tackles the fidelity objective in the perceptual super-resolution~(SR). Specifically, we address the shortcomings of pixel-level $L_\text{p}$ loss ($\mathcal{L}_\text{pix}$) in the GAN-based SR framework. Since $L_\text{pix}$ is known to have a trade-off relationship against perceptual quality, prior methods often multiply a small scale factor or utilize low-pass filters. However, this work shows that these circumventions fail to address the fundamental factor that induces blurring. Accordingly, we focus on two points: 1) precisely discriminating the subcomponent of $L_\text{pix}$ that contributes to blurring, and 2) only guiding based on the factor that is free from this trade-off relationship. We show that they can be achieved in a surprisingly simple manner, with an Auto-Encoder (AE) pretrained with $L_\text{pix}$. Accordingly, we propose the Auto-Encoded Supervision for Optimal Penalization loss ($L_\text{AESOP}$), a novel loss function that measures distance in the AE space, instead of the raw pixel space. Note that the AE space indicates the space after the decoder, not the bottleneck. By simply substituting $L_\text{pix}$ with $L_\text{AESOP}$, we can provide effective reconstruction guidance without compromising perceptual quality. Designed for simplicity, our method enables easy integration into existing SR frameworks. Experimental results verify that AESOP can lead to favorable results in the perceptual SR task.
comment: Codes are available at https://github.com/2minkyulee/AESOP-Auto-Encoded-Supervision-for-Perceptual-Image-Super-Resolution
EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents
Multimodal Large Language Models (MLLMs) have shown significant advancements, providing a promising future for embodied agents. Existing benchmarks for evaluating MLLMs primarily utilize static images or videos, limiting assessments to non-interactive scenarios. Meanwhile, existing embodied AI benchmarks are task-specific and not diverse enough, which do not adequately evaluate the embodied capabilities of MLLMs. To address this, we propose EmbodiedEval, a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks. EmbodiedEval features 328 distinct tasks within 125 varied 3D scenes, each of which is rigorously selected and annotated. It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity, all within a unified simulation and evaluation framework tailored for MLLMs. The tasks are organized into five categories: navigation, object interaction, social interaction, attribute question answering, and spatial question answering to assess different capabilities of the agents. We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks. Our analysis demonstrates the limitations of existing MLLMs in embodied capabilities, providing insights for their future development. We open-source all evaluation data and simulation framework at https://github.com/thunlp/EmbodiedEval.
CityGen: Infinite and Controllable City Layout Generation CVPR 2025
The recent surge in interest in city layout generation underscores its significance in urban planning and smart city development. The task involves procedurally or automatically generating spatial arrangements for urban elements such as roads, buildings, water, and vegetation. Previous methods, whether procedural modeling or deep learning-based approaches like VAEs and GANs, rely on complex priors, expert guidance, or initial layouts, and often lack diversity and interactivity. In this paper, we present CityGen, an end-to-end framework for infinite, diverse, and controllable city layout generation. Our framework introduces an infinite expansion module to extend local layouts to city-scale layouts and a multi-scale refinement module to upsample and refine them. We also designed a user-friendly control scheme, allowing users to guide generation through simple sketching. Additionally, we convert the 2D layout to 3D by synthesizing a height field, facilitating downstream applications. Extensive experiments demonstrate CityGen's state-of-the-art performance across various metrics, making it suitable for a wide range of downstream applications.
comment: Accepted to CVPR 2025 USM3D Workshop
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Prototypical-part methods, e.g., ProtoPNet, enhance interpretability in image recognition by linking predictions to training prototypes, thereby offering intuitive insights into their decision-making. Existing methods, which rely on a point-based learning of prototypes, typically face two critical issues: 1) the learned prototypes have limited representation power and are not suitable to detect Out-of-Distribution (OoD) inputs, reducing their decision trustworthiness; and 2) the necessary projection of the learned prototypes back into the space of training images causes a drastic degradation in the predictive performance. Furthermore, current prototype learning adopts an aggressive approach that considers only the most active object parts during training, while overlooking sub-salient object regions which still hold crucial classification information. In this paper, we present a new generative paradigm to learn prototype distributions, termed as Mixture of Gaussian-distributed Prototypes (MGProto). The distribution of prototypes from MGProto enables both interpretable image classification and trustworthy recognition of OoD inputs. The optimisation of MGProto naturally projects the learned prototype distributions back into the training image space, thereby addressing the performance degradation caused by prototype projection. Additionally, we develop a novel and effective prototype mining strategy that considers not only the most active but also sub-salient object parts. To promote model compactness, we further propose to prune MGProto by removing prototypes with low importance priors. Experiments on CUB-200-2011, Stanford Cars, Stanford Dogs, and Oxford-IIIT Pets datasets show that MGProto achieves state-of-the-art image recognition and OoD detection performances, while providing encouraging interpretability results.
comment: IEEE TPAMI
CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts ECCV 2024
Contrastive vision-language models, such as CLIP, have garnered considerable attention for various downstream tasks, mainly due to the remarkable generalization ability of the learned features. However, the features they learn often blend content and style information, which somewhat limits their generalization capabilities under distribution shifts. To address this limitation, we adopt a causal generative perspective for multimodal data and propose contrastive learning with data augmentation to disentangle content features from the original representations. To achieve this, we begin by exploring image augmentation techniques and develop a method to seamlessly integrate them into pre-trained CLIP-like models to extract pure content features. Taking a step further, and recognizing the inherent semantic richness and logical structure of text data, we explore the use of text augmentation to isolate latent content from style features. This enables CLIP-like models' encoders to concentrate on latent content information, refining the representations learned by pre-trained CLIP-like models. Our extensive experiments across diverse datasets demonstrate significant improvements in zero-shot and few-shot classification tasks, alongside enhanced robustness to various perturbations. These results underscore the effectiveness of our proposed methods in refining vision-language representations and advancing the state of the art in multimodal learning.
comment: Accepted as a conference paper at ECCV 2024
Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment
Diabetic retinopathy (DR) is a leading cause of vision loss, requiring early and accurate assessment to prevent irreversible damage. Spectral Domain Optical Coherence Tomography (SD-OCT) enables high-resolution retinal imaging, but automated segmentation performance varies, especially in cases with complex fluid and hyperreflective foci (HRF) patterns. This study proposes an active-learning-based deep learning pipeline for automated segmentation of retinal layers, fluid, and HRF, using four state-of-the-art models: U-Net, SegFormer, SwinUNETR, and VM-UNet, trained on expert-annotated SD-OCT volumes. Segmentation accuracy was evaluated with five-fold cross-validation, and retinal thickness was quantified using a K-nearest neighbors algorithm and visualized with Early Treatment Diabetic Retinopathy Study (ETDRS) maps. SwinUNETR achieved the highest overall accuracy (DSC = 0.7719; NSD = 0.8149), while VM-UNet excelled in specific layers. Structural differences were observed between non-proliferative and proliferative DR, with layer-specific thickening correlating with visual acuity impairment. The proposed framework enables robust, clinically relevant DR assessment while reducing the need for manual annotation, supporting improved disease monitoring and treatment planning.
comment: 20 pages, 11 figures
Constraint-Aware Zero-Shot Vision-Language Navigation in Continuous Environments
We address the task of Vision-Language Navigation in Continuous Environments (VLN-CE) under the zero-shot setting. Zero-shot VLN-CE is particularly challenging due to the absence of expert demonstrations for training and minimal environment structural prior to guide navigation. To confront these challenges, we propose a Constraint-Aware Navigator (CA-Nav), which reframes zero-shot VLN-CE as a sequential, constraint-aware sub-instruction completion process. CA-Nav continuously translates sub-instructions into navigation plans using two core modules: the Constraint-Aware Sub-instruction Manager (CSM) and the Constraint-Aware Value Mapper (CVM). CSM defines the completion criteria for decomposed sub-instructions as constraints and tracks navigation progress by switching sub-instructions in a constraint-aware manner. CVM, guided by CSM's constraints, generates a value map on the fly and refines it using superpixel clustering to improve navigation stability. CA-Nav achieves the state-of-the-art performance on two VLN-CE benchmarks, surpassing the previous best method by 12 percent and 13 percent in Success Rate on the validation unseen splits of R2R-CE and RxR-CE, respectively. Moreover, CA-Nav demonstrates its effectiveness in real-world robot deployments across various indoor scenes and instructions.
Conformal Prediction and MLLM aided Uncertainty Quantification in Scene Graph Generation CVPR 2025
Scene Graph Generation (SGG) aims to represent visual scenes by identifying objects and their pairwise relationships, providing a structured understanding of image content. However, inherent challenges like long-tailed class distributions and prediction variability necessitate uncertainty quantification in SGG for its practical viability. In this paper, we introduce a novel Conformal Prediction (CP) based framework, adaptive to any existing SGG method, for quantifying their predictive uncertainty by constructing well-calibrated prediction sets over their generated scene graphs. These scene graph prediction sets are designed to achieve statistically rigorous coverage guarantees. Additionally, to ensure these prediction sets contain the most practically interpretable scene graphs, we design an effective MLLM-based post-processing strategy for selecting the most visually and semantically plausible scene graphs within these prediction sets. We show that our proposed approach can produce diverse possible scene graphs from an image, assess the reliability of SGG methods, and improve overall SGG performance.
comment: Accepted at CVPR 2025
TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving
Semantic segmentation is crucial for autonomous driving, particularly for the tasks of Drivable Area and Lane Segmentation, ensuring safety and navigation. To address the high computational costs of current state-of-the-art (SOTA) models, this paper introduces TwinLiteNetPlus, a model capable of balancing efficiency and accuracy. TwinLiteNetPlus incorporates standard and depth-wise separable dilated convolutions, reducing complexity while maintaining high accuracy. It is available in four configurations, from the robust 1.94 million-parameter TwinLiteNetPlus_{Large} to the ultra-lightweight 34K-parameter TwinLiteNetPlus_{Nano}. Notably, TwinLiteNetPlus_{Large} attains a 92.9% mIoU (mean Intersection over Union) for Drivable Area Segmentation and a 34.2% IoU (Intersection over Union) for Lane Segmentation. These results achieve remarkable performance, surpassing current state-of-the-art models while only requiring 11 times fewer Floating Point Operations (FLOPs) for computation. Rigorously evaluated on various embedded devices, TwinLiteNetPlus demonstrates promising latency and power efficiency, underscoring its potential for real-world autonomous vehicle applications. The code is available on https://github.com/chequanghuy/TwinLiteNetPlus.
Adaptive Hardness-driven Augmentation and Alignment Strategies for Multi-Source Domain Adaptations
Multi-source Domain Adaptation (MDA) aims to transfer knowledge from multiple labeled source domains to an unlabeled target domain. Nevertheless, traditional methods primarily focus on achieving inter-domain alignment through sample-level constraints, such as Maximum Mean Discrepancy (MMD), neglecting three pivotal aspects: 1) the potential of data augmentation, 2) the significance of intra-domain alignment, and 3) the design of cluster-level constraints. In this paper, we introduce a novel hardness-driven strategy for MDA tasks, named "A3MDA" , which collectively considers these three aspects through Adaptive hardness quantification and utilization in both data Augmentation and domain Alignment.To achieve this, "A3MDA" progressively proposes three Adaptive Hardness Measurements (AHM), i.e., Basic, Smooth, and Comparative AHMs, each incorporating distinct mechanisms for diverse scenarios. Specifically, Basic AHM aims to gauge the instantaneous hardness for each source/target sample. Then, hardness values measured by Smooth AHM will adaptively adjust the intensity level of strong data augmentation to maintain compatibility with the model's generalization capacity.In contrast, Comparative AHM is designed to facilitate cluster-level constraints. By leveraging hardness values as sample-specific weights, the traditional MMD is enhanced into a weighted-clustered variant, strengthening the robustness and precision of inter-domain alignment. As for the often-neglected intra-domain alignment, we adaptively construct a pseudo-contrastive matrix by selecting harder samples based on the hardness rankings, enhancing the quality of pseudo-labels, and shaping a well-clustered target feature space. Experiments on multiple MDA benchmarks show that " A3MDA " outperforms other methods.
comment: 15 pages, 12 figures. Under review
E-3DGS: Gaussian Splatting with Exposure and Motion Events
Achieving 3D reconstruction from images captured under optimal conditions has been extensively studied in the vision and imaging fields. However, in real-world scenarios, challenges such as motion blur and insufficient illumination often limit the performance of standard frame-based cameras in delivering high-quality images. To address these limitations, we incorporate a transmittance adjustment device at the hardware level, enabling event cameras to capture both motion and exposure events for diverse 3D reconstruction scenarios. Motion events (triggered by camera or object movement) are collected in fast-motion scenarios when the device is inactive, while exposure events (generated through controlled camera exposure) are captured during slower motion to reconstruct grayscale images for high-quality training and optimization of event-based 3D Gaussian Splatting (3DGS). Our framework supports three modes: High-Quality Reconstruction using exposure events, Fast Reconstruction relying on motion events, and Balanced Hybrid optimizing with initial exposure events followed by high-speed motion events. On the EventNeRF dataset, we demonstrate that exposure events significantly improve fine detail reconstruction compared to motion events and outperform frame-based cameras under challenging conditions such as low illumination and overexposure. Furthermore, we introduce EME-3D, a real-world 3D dataset with exposure events, motion events, camera calibration parameters, and sparse point clouds. Our method achieves faster and higher-quality reconstruction than event-based NeRF and is more cost-effective than methods combining event and RGB data. E-3DGS sets a new benchmark for event-based 3D reconstruction with robust performance in challenging conditions and lower hardware demands. The source code and dataset will be available at https://github.com/MasterHow/E-3DGS.
comment: Accepted to Applied Optics (AO). The source code and dataset will be available at https://github.com/MasterHow/E-3DGS
Unified Static and Dynamic Network: Efficient Temporal Filtering for Video Grounding
Inspired by the activity-silent and persistent activity mechanisms in human visual perception biology, we design a Unified Static and Dynamic Network (UniSDNet), to learn the semantic association between the video and text/audio queries in a cross-modal environment for efficient video grounding. For static modeling, we devise a novel residual structure (ResMLP) to boost the global comprehensive interaction between the video segments and queries, achieving more effective semantic enhancement/supplement. For dynamic modeling, we effectively exploit three characteristics of the persistent activity mechanism in our network design for a better video context comprehension. Specifically, we construct a diffusely connected video clip graph on the basis of 2D sparse temporal masking to reflect the "short-term effect" relationship. We innovatively consider the temporal distance and relevance as the joint "auxiliary evidence clues" and design a multi-kernel Temporal Gaussian Filter to expand the context clue into high-dimensional space, simulating the "complex visual perception", and then conduct element level filtering convolution operations on neighbour clip nodes in message passing stage for finally generating and ranking the candidate proposals. Our UniSDNet is applicable to both Natural Language Video Grounding (NLVG) and Spoken Language Video Grounding (SLVG) tasks. Our UniSDNet achieves SOTA performance on three widely used datasets for NLVG, as well as three datasets for SLVG, e.g., reporting new records at 38.88% R@1,IoU@0.7 on ActivityNet Captions and 40.26% R@1,IoU@0.5 on TACoS. To facilitate this field, we collect two new datasets (Charades-STA Speech and TACoS Speech) for SLVG task. Meanwhile, the inference speed of our UniSDNet is 1.56$\times$ faster than the strong multi-query benchmark. Code is available at: https://github.com/xian-sh/UniSDNet.
comment: Accepted to IEEE TPAMI 2025
Image and Video Processing
Enhancing knowledge retention for continual learning with domain-specific adapters and features gating
Continual learning empowers models to learn from a continuous stream of data while preserving previously acquired knowledge, effectively addressing the challenge of catastrophic forgetting. In this study, we propose a new approach that integrates adapters within the self-attention mechanisms of Vision Transformers to enhance knowledge retention when sequentially adding datasets from different domains. Unlike previous methods that continue learning with only one dataset, our approach introduces domain-specific output heads and feature gating, allowing the model to maintain high accuracy on previously learned tasks while incorporating only the essential information from multiple domains. The proposed method is compared to prominent parameter-efficient fine-tuning methods in the current state of the art. The results provide evidence that our method effectively alleviates the limitations of previous works. Furthermore, we conduct a comparative analysis using three datasets, CIFAR-100, Flowers102, and DTD, each representing a distinct domain, to investigate the impact of task order on model performance. Our findings underscore the critical role of dataset sequencing in shaping learning outcomes, demonstrating that strategic ordering can significantly improve the model's ability to adapt to evolving data distributions over time while preserving the integrity of previously learned knowledge.
comment: Submitted to Applied Intelligence (Springer), under review since November 26, 2024
SynthFM: Training Modality-agnostic Foundation Models for Medical Image Segmentation without Real Medical Data
Foundation models like the Segment Anything Model (SAM) excel in zero-shot segmentation for natural images but struggle with medical image segmentation due to differences in texture, contrast, and noise. Annotating medical images is costly and requires domain expertise, limiting large-scale annotated data availability. To address this, we propose SynthFM, a synthetic data generation framework that mimics the complexities of medical images, enabling foundation models to adapt without real medical data. Using SAM's pretrained encoder and training the decoder from scratch on SynthFM's dataset, we evaluated our method on 11 anatomical structures across 9 datasets (CT, MRI, and Ultrasound). SynthFM outperformed zero-shot baselines like SAM and MedSAM, achieving superior results under different prompt settings and on out-of-distribution datasets.
Rethinking Few-Shot Fusion: Granular Ball Priors Enable General-Purpose Deep Image Fusion
In image fusion tasks, due to the lack of real fused images as priors, most deep learning-based fusion methods obtain global weight features from original images in large-scale data pairs to generate images that approximate real fused images. However, unlike previous studies, this paper utilizes Granular Ball adaptation to extract features in the brightness space as priors for deep networks, enabling the fusion network to converge quickly and complete the fusion task. This leads to few-shot training for a general image fusion network, and based on this, we propose the GBFF fusion method. According to the information expression division of pixel pairs in the original fused image, we classify pixel pairs with significant performance as the positive domain and non-significant pixel pairs as the boundary domain. We perform split inference in the brightness space using Granular Ball adaptation to compute weights for pixels that express information to varying degrees, generating approximate supervision images that provide priors for the neural network in the structural brightness space. Additionally, the extracted global saliency features also adaptively provide priors for setting the loss function weights of each image in the network, guiding the network to converge quickly at both global and pixel levels alongside the supervised images, thereby enhancing the expressiveness of the fused images. Each modality only used 10 pairs of images as the training set, completing the fusion task with a limited number of iterations. Experiments validate the effectiveness of the algorithm and theory, and qualitative and quantitative comparisons with SOTA methods show that this approach is highly competitive in terms of fusion time and image expressiveness.
Remote Sensing Based Crop Health Classification Using NDVI and Fully Connected Neural Networks
Accurate crop health monitoring is not only essential for improving agricultural efficiency but also for ensuring sustainable food production in the face of environmental challenges. Traditional approaches often rely on visual inspection or simple NDVI measurements, which, though useful, fall short in detecting nuanced variations in crop stress and disease conditions. In this research, we propose a more sophisticated method that leverages NDVI data combined with a Fully Connected Neural Network (FCNN) to classify crop health with greater precision. The FCNN, trained using satellite imagery from various agricultural regions, is capable of identifying subtle distinctions between healthy crops, rust-affected plants, and other stressed conditions. Our approach not only achieved a remarkable classification accuracy of 97.80% but it also significantly outperformed conventional models in terms of precision, recall, and F1-scores. The ability to map the relationship between NDVI values and crop health using deep learning presents new opportunities for real-time, large-scale monitoring of agricultural fields, reducing manual efforts, and offering a scalable solution to address global food security.
High Dynamic Range Modulo Imaging for Robust Object Detection in Autonomous Driving
Object detection precision is crucial for ensuring the safety and efficacy of autonomous driving systems. The quality of acquired images directly influences the ability of autonomous driving systems to correctly recognize and respond to other vehicles, pedestrians, and obstacles in real-time. However, real environments present extreme variations in lighting, causing saturation problems and resulting in the loss of crucial details for detection. Traditionally, High Dynamic Range (HDR) images have been preferred for their ability to capture a broad spectrum of light intensities, but the need for multiple captures to construct HDR images is inefficient for real-time applications in autonomous vehicles. To address these issues, this work introduces the use of modulo sensors for robust object detection. The modulo sensor allows pixels to `reset/wrap' upon reaching saturation level by acquiring an irradiance encoding image which can then be recovered using unwrapping algorithms. The applied reconstruction techniques enable HDR recovery of color intensity and image details, ensuring better visual quality even under extreme lighting conditions at the cost of extra time. Experiments with the YOLOv10 model demonstrate that images processed using modulo images achieve performance comparable to HDR images and significantly surpass saturated images in terms of object detection accuracy. Moreover, the proposed modulo imaging step combined with HDR image reconstruction is shorter than the time required for conventional HDR image acquisition.
Do Segmentation Models Understand Vascular Structure? A Blob-Based XAI Framework
Deep learning models have achieved impressive performance in medical image segmentation, yet their black-box nature limits clinical adoption. In vascular applications, trustworthy segmentation should rely on both local image cues and global anatomical structures, such as vessel connectivity or branching. However, the extent to which models leverage such global context remains unclear. We present a novel explainability pipeline for 3D vessel segmentation, combining gradient-based attribution with graph-guided point selection and a blob-based analysis of Saliency maps. Using vascular graphs extracted from ground truth, we define anatomically meaningful points of interest (POIs) and assess the contribution of input voxels via Saliency maps. These are analyzed at both global and local scales using a custom blob detector. Applied to IRCAD and Bullitt datasets, our analysis shows that model decisions are dominated by highly localized attribution blobs centered near POIs. Attribution features show little correlation with vessel-level properties such as thickness, tubularity, or connectivity -- suggesting limited use of global anatomical reasoning. Our results underline the importance of structured explainability tools and highlight the current limitations of segmentation models in capturing global vascular context.
comment: Open access version of an article submitted to Medical Image Understanding and Analysis (MIUA) 2025
A Multi-Modal AI System for Screening Mammography: Integrating 2D and 3D Imaging to Improve Breast Cancer Detection in a Prospective Clinical Study
Although digital breast tomosynthesis (DBT) improves diagnostic performance over full-field digital mammography (FFDM), false-positive recalls remain a concern in breast cancer screening. We developed a multi-modal artificial intelligence system integrating FFDM, synthetic mammography, and DBT to provide breast-level predictions and bounding-box localizations of suspicious findings. Our AI system, trained on approximately 500,000 mammography exams, achieved 0.945 AUROC on an internal test set. It demonstrated capacity to reduce recalls by 31.7% and radiologist workload by 43.8% while maintaining 100% sensitivity, underscoring its potential to improve clinical workflows. External validation confirmed strong generalizability, reducing the gap to a perfect AUROC by 35.31%-69.14% relative to strong baselines. In prospective deployment across 18 sites, the system reduced recall rates for low-risk cases. An improved version, trained on over 750,000 exams with additional labels, further reduced the gap by 18.86%-56.62% across large external datasets. Overall, these results underscore the importance of utilizing all available imaging modalities, demonstrate the potential for clinical impact, and indicate feasibility of further reduction of the test error with increased training set when using large-capacity neural networks.
Auto-Encoded Supervision for Perceptual Image Super-Resolution
This work tackles the fidelity objective in the perceptual super-resolution~(SR). Specifically, we address the shortcomings of pixel-level $L_\text{p}$ loss ($\mathcal{L}_\text{pix}$) in the GAN-based SR framework. Since $L_\text{pix}$ is known to have a trade-off relationship against perceptual quality, prior methods often multiply a small scale factor or utilize low-pass filters. However, this work shows that these circumventions fail to address the fundamental factor that induces blurring. Accordingly, we focus on two points: 1) precisely discriminating the subcomponent of $L_\text{pix}$ that contributes to blurring, and 2) only guiding based on the factor that is free from this trade-off relationship. We show that they can be achieved in a surprisingly simple manner, with an Auto-Encoder (AE) pretrained with $L_\text{pix}$. Accordingly, we propose the Auto-Encoded Supervision for Optimal Penalization loss ($L_\text{AESOP}$), a novel loss function that measures distance in the AE space, instead of the raw pixel space. Note that the AE space indicates the space after the decoder, not the bottleneck. By simply substituting $L_\text{pix}$ with $L_\text{AESOP}$, we can provide effective reconstruction guidance without compromising perceptual quality. Designed for simplicity, our method enables easy integration into existing SR frameworks. Experimental results verify that AESOP can lead to favorable results in the perceptual SR task.
comment: Codes are available at https://github.com/2minkyulee/AESOP-Auto-Encoded-Supervision-for-Perceptual-Image-Super-Resolution
Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment
Diabetic retinopathy (DR) is a leading cause of vision loss, requiring early and accurate assessment to prevent irreversible damage. Spectral Domain Optical Coherence Tomography (SD-OCT) enables high-resolution retinal imaging, but automated segmentation performance varies, especially in cases with complex fluid and hyperreflective foci (HRF) patterns. This study proposes an active-learning-based deep learning pipeline for automated segmentation of retinal layers, fluid, and HRF, using four state-of-the-art models: U-Net, SegFormer, SwinUNETR, and VM-UNet, trained on expert-annotated SD-OCT volumes. Segmentation accuracy was evaluated with five-fold cross-validation, and retinal thickness was quantified using a K-nearest neighbors algorithm and visualized with Early Treatment Diabetic Retinopathy Study (ETDRS) maps. SwinUNETR achieved the highest overall accuracy (DSC = 0.7719; NSD = 0.8149), while VM-UNet excelled in specific layers. Structural differences were observed between non-proliferative and proliferative DR, with layer-specific thickening correlating with visual acuity impairment. The proposed framework enables robust, clinically relevant DR assessment while reducing the need for manual annotation, supporting improved disease monitoring and treatment planning.
comment: 20 pages, 11 figures
E-3DGS: Gaussian Splatting with Exposure and Motion Events
Achieving 3D reconstruction from images captured under optimal conditions has been extensively studied in the vision and imaging fields. However, in real-world scenarios, challenges such as motion blur and insufficient illumination often limit the performance of standard frame-based cameras in delivering high-quality images. To address these limitations, we incorporate a transmittance adjustment device at the hardware level, enabling event cameras to capture both motion and exposure events for diverse 3D reconstruction scenarios. Motion events (triggered by camera or object movement) are collected in fast-motion scenarios when the device is inactive, while exposure events (generated through controlled camera exposure) are captured during slower motion to reconstruct grayscale images for high-quality training and optimization of event-based 3D Gaussian Splatting (3DGS). Our framework supports three modes: High-Quality Reconstruction using exposure events, Fast Reconstruction relying on motion events, and Balanced Hybrid optimizing with initial exposure events followed by high-speed motion events. On the EventNeRF dataset, we demonstrate that exposure events significantly improve fine detail reconstruction compared to motion events and outperform frame-based cameras under challenging conditions such as low illumination and overexposure. Furthermore, we introduce EME-3D, a real-world 3D dataset with exposure events, motion events, camera calibration parameters, and sparse point clouds. Our method achieves faster and higher-quality reconstruction than event-based NeRF and is more cost-effective than methods combining event and RGB data. E-3DGS sets a new benchmark for event-based 3D reconstruction with robust performance in challenging conditions and lower hardware demands. The source code and dataset will be available at https://github.com/MasterHow/E-3DGS.
comment: Accepted to Applied Optics (AO). The source code and dataset will be available at https://github.com/MasterHow/E-3DGS
Multimedia
On the Design of Diffusion-based Neural Speech Codecs
Recently, neural speech codecs (NSCs) trained as generative models have shown superior performance compared to conventional codecs at low bitrates. Although most state-of-the-art NSCs are trained as Generative Adversarial Networks (GANs), Diffusion Models (DMs), a recent class of generative models, represent a promising alternative due to their superior performance in image generation relative to GANs. Consequently, DMs have been successfully applied for audio and speech coding among various other audio generation applications. However, the design of diffusion-based NSCs has not yet been explored in a systematic way. We address this by providing a comprehensive analysis of diffusion-based NSCs divided into three contributions. First, we propose a categorization based on the conditioning and output domains of the DM. This simple conceptual framework allows us to define a design space for diffusion-based NSCs and to assign a category to existing approaches in the literature. Second, we systematically investigate unexplored designs by creating and evaluating new diffusion-based NSCs within the conceptual framework. Finally, we compare the proposed models to existing GAN and DM baselines through objective metrics and subjective listening tests.
Palmprint De-Identification Using Diffusion Model for High-Quality and Diverse Synthesis
Palmprint recognition techniques have advanced significantly in recent years, enabling reliable recognition even when palmprints are captured in uncontrolled or challenging environments. However, this strength also introduces new risks, as publicly available palmprint images can be misused by adversaries for malicious activities. Despite this growing concern, research on methods to obscure or anonymize palmprints remains largely unexplored. Thus, it is essential to develop a palmprint de-identification technique capable of removing identity-revealing features while retaining the image's utility and preserving non-sensitive information. In this paper, we propose a training-free framework that utilizes pre-trained diffusion models to generate diverse, high-quality palmprint images that conceal identity features for de-identification purposes. To ensure greater stability and controllability in the synthesis process, we incorporate a semantic-guided embedding fusion alongside a prior interpolation mechanism. We further propose the de-identification ratio, a novel metric for intuitive de-identification assessment. Extensive experiments across multiple palmprint datasets and recognition methods demonstrate that our method effectively conceals identity-related traits with significant diversity across de-identified samples. The de-identified samples preserve high visual fidelity and maintain excellent usability, achieving a balance between de-identification and retaining non-identity information.
MotionDreamer: One-to-Many Motion Synthesis with Localized Generative Masked Transformer ICLR 2025
Generative masked transformers have demonstrated remarkable success across various content generation tasks, primarily due to their ability to effectively model large-scale dataset distributions with high consistency. However, in the animation domain, large datasets are not always available. Applying generative masked modeling to generate diverse instances from a single MoCap reference may lead to overfitting, a challenge that remains unexplored. In this work, we present MotionDreamer, a localized masked modeling paradigm designed to learn internal motion patterns from a given motion with arbitrary topology and duration. By embedding the given motion into quantized tokens with a novel distribution regularization method, MotionDreamer constructs a robust and informative codebook for local motion patterns. Moreover, a sliding window local attention is introduced in our masked transformer, enabling the generation of natural yet diverse animations that closely resemble the reference motion patterns. As demonstrated through comprehensive experiments, MotionDreamer outperforms the state-of-the-art methods that are typically GAN or Diffusion-based in both faithfulness and diversity. Thanks to the consistency and robustness of the quantization-based approach, MotionDreamer can also effectively perform downstream tasks such as temporal motion editing, \textcolor{update}{crowd animation}, and beat-aligned dance generation, all using a single reference motion. Visit our project page: https://motiondreamer.github.io/
comment: ICLR 2025 acceptance
Construction of Hyperchaotic Maps Based on 3D-CCC and its Applications in Image Encryption
The security performance of chaos-based image encryption algorithms heavily depends on the complexity of the underlying chaotic system. To enhance encryption effectiveness, it is crucial to design chaotic systems with improved dynamic properties. This paper proposes a novel approach, the 3D Cascaded Cross-Coupling Method (3D-CCC), for constructing 3D hyperchaotic systems by combining three one-dimensional chaotic systems, which can be identical or different. Using this method, we develop a new 3D hyperchaotic map, 3D-ICCCLS, which exhibits superior chaotic characteristics, including good ergodicity, randomness, positive Lyapunov exponents, and high spectral entropy. Furthermore, we introduce a color image encryption algorithm based on 3D-ICCCLS. The proposed scheme treats the three color channels as an integrated unit, employing cross-channel bit mixing followed by simultaneous permutation and diffusion. This approach achieves a strong encryption effect in a single round. Experimental results demonstrate that the algorithm provides a large key space, high key sensitivity, and strong resistance against common attacks,
Computation and Language
Towards an Understanding of Context Utilization in Code Intelligence
Code intelligence is an emerging domain in software engineering, aiming to improve the effectiveness and efficiency of various code-related tasks. Recent research suggests that incorporating contextual information beyond the basic original task inputs (i.e., source code) can substantially enhance model performance. Such contextual signals may be obtained directly or indirectly from sources such as API documentation or intermediate representations like abstract syntax trees can significantly improve the effectiveness of code intelligence. Despite growing academic interest, there is a lack of systematic analysis of context in code intelligence. To address this gap, we conduct an extensive literature review of 146 relevant studies published between September 2007 and August 2024. Our investigation yields four main contributions. (1) A quantitative analysis of the research landscape, including publication trends, venues, and the explored domains; (2) A novel taxonomy of context types used in code intelligence; (3) A task-oriented analysis investigating context integration strategies across diverse code intelligence tasks; (4) A critical evaluation of evaluation methodologies for context-aware methods. Based on these findings, we identify fundamental challenges in context utilization in current code intelligence systems and propose a research roadmap that outlines key opportunities for future research.
DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
SWAN-GPT: An Efficient and Scalable Approach for Long-Context Language Modeling
We present a decoder-only Transformer architecture that robustly generalizes to sequence lengths substantially longer than those seen during training. Our model, SWAN-GPT, interleaves layers without positional encodings (NoPE) and sliding-window attention layers equipped with rotary positional encodings (SWA-RoPE). Experiments demonstrate strong performance on sequence lengths significantly longer than the training length without the need for additional long-context training. This robust length extrapolation is achieved through our novel architecture, enhanced by a straightforward dynamic scaling of attention scores during inference. In addition, SWAN-GPT is more computationally efficient than standard GPT architectures, resulting in cheaper training and higher throughput. Further, we demonstrate that existing pre-trained decoder-only models can be efficiently converted to the SWAN architecture with minimal continued training, enabling longer contexts. Overall, our work presents an effective approach for scaling language models to longer contexts in a robust and efficient manner.
ModernBERT or DeBERTaV3? Examining Architecture and Data Influence on Transformer Encoder Models Performance
Pretrained transformer-encoder models like DeBERTaV3 and ModernBERT introduce architectural advancements aimed at improving efficiency and performance. Although the authors of ModernBERT report improved performance over DeBERTaV3 on several benchmarks, the lack of disclosed training data and the absence of comparisons using a shared dataset make it difficult to determine whether these gains are due to architectural improvements or differences in training data. In this work, we conduct a controlled study by pretraining ModernBERT on the same dataset as CamemBERTaV2, a DeBERTaV3 French model, isolating the effect of model design. Our results show that the previous model generation remains superior in sample efficiency and overall benchmark performance, with ModernBERT's primary advantage being faster training and inference speed. However, the new proposed model still provides meaningful architectural improvements compared to earlier models such as BERT and RoBERTa. Additionally, we observe that high-quality pre-training data accelerates convergence but does not significantly improve final performance, suggesting potential benchmark saturation. These findings show the importance of disentangling pretraining data from architectural innovations when evaluating transformer models.
comment: Preprint. Under review
Generating Fine Details of Entity Interactions
Images not only depict objects but also encapsulate rich interactions between them. However, generating faithful and high-fidelity images involving multiple entities interacting with each other, is a long-standing challenge. While pre-trained text-to-image models are trained on large-scale datasets to follow diverse text instructions, they struggle to generate accurate interactions, likely due to the scarcity of training data for uncommon object interactions. This paper introduces InterActing, an interaction-focused dataset with 1000 fine-grained prompts covering three key scenarios: (1) functional and action-based interactions, (2) compositional spatial relationships, and (3) multi-subject interactions. To address interaction generation challenges, we propose a decomposition-augmented refinement procedure. Our approach, DetailScribe, built on Stable Diffusion 3.5, leverages LLMs to decompose interactions into finer-grained concepts, uses a VLM to critique generated images, and applies targeted interventions within the diffusion process in refinement. Automatic and human evaluations show significantly improved image quality, demonstrating the potential of enhanced inference strategies. Our dataset and code are available at https://concepts-ai.com/p/detailscribe/ to facilitate future exploration of interaction-rich image generation.
comment: Project Page: https://concepts-ai.com/p/detailscribe/
Large Language Models as Span Annotators
For high-quality texts, single-score metrics seldom provide actionable feedback. In contrast, span annotation - pointing out issues in the text by annotating their spans - can guide improvements and provide insights. Until recently, span annotation was limited to human annotators or fine-tuned encoder models. In this study, we automate span annotation with large language models (LLMs). We compare expert or skilled crowdworker annotators with open and proprietary LLMs on three tasks: data-to-text generation evaluation, machine translation evaluation, and propaganda detection in human-written texts. In our experiments, we show that LLMs as span annotators are straightforward to implement and notably more cost-efficient than human annotators. The LLMs achieve moderate agreement with skilled human annotators, in some scenarios comparable to the average agreement among the annotators themselves. Qualitative analysis shows that reasoning models outperform their instruction-tuned counterparts and provide more valid explanations for annotations. We release the dataset of more than 40k model and human annotations for further research.
TP-RAG: Benchmarking Retrieval-Augmented Large Language Model Agents for Spatiotemporal-Aware Travel Planning
Large language models (LLMs) have shown promise in automating travel planning, yet they often fall short in addressing nuanced spatiotemporal rationality. While existing benchmarks focus on basic plan validity, they neglect critical aspects such as route efficiency, POI appeal, and real-time adaptability. This paper introduces TP-RAG, the first benchmark tailored for retrieval-augmented, spatiotemporal-aware travel planning. Our dataset includes 2,348 real-world travel queries, 85,575 fine-grain annotated POIs, and 18,784 high-quality travel trajectory references sourced from online tourist documents, enabling dynamic and context-aware planning. Through extensive experiments, we reveal that integrating reference trajectories significantly improves spatial efficiency and POI rationality of the travel plan, while challenges persist in universality and robustness due to conflicting references and noisy data. To address these issues, we propose EvoRAG, an evolutionary framework that potently synergizes diverse retrieved trajectories with LLMs' intrinsic reasoning. EvoRAG achieves state-of-the-art performance, improving spatiotemporal compliance and reducing commonsense violation compared to ground-up and retrieval-augmented baselines. Our work underscores the potential of hybridizing Web knowledge with LLM-driven optimization, paving the way for more reliable and adaptive travel planning agents.
Fast-Slow-Thinking: Complex Task Solving with Large Language Models
Nowadays, Large Language Models (LLMs) have been gradually employed to solve complex tasks. To face the challenge, task decomposition has become an effective way, which proposes to divide a complex task into multiple simpler subtasks and then solve them separately so that the difficulty of the original task can be reduced. However, the performance of existing task decomposition methods can be suboptimal when the task contains overly complex logic and constraints. In this situation, the solution generated by LLMs may deviate from the original purpose of the task, or contain redundant or even erroneous content. Therefore, inspired by the fact that humans possess two thinking systems including fast thinking and slow thinking, this paper introduces a new task decomposition method termed ``Fast-Slow-Thinking'' (FST), which stimulates LLMs to solve tasks through the cooperation of Fast Thinking (FT) and Slow Thinking (ST) steps. Here FT focuses more on the general and concise aspect of the task, and ST focuses more on the details of the task. In FT, LLMs are prompted to remove the constraints of the original task, therefore simplifying it to a general and concise one. In ST, we recall the constraints removed in FT, so that LLMs can improve the answer generated in FT to meet the requirements of the original task. Therefore, our FST method enables LLMs to consider a complex problem via a human-like cognition process from coarse to fine, the effectiveness of which has been well demonstrated by the experiments on three types of tasks.
comment: 37 pages, 7 figures
Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning
Advancing LLM reasoning skills has captivated wide interest. However, current post-training techniques rely heavily on supervisory signals, such as outcome supervision or auxiliary reward models, which face the problem of scalability and high annotation costs. This motivates us to enhance LLM reasoning without the need for external supervision. We introduce a generalizable and purely unsupervised self-training framework, named Genius. Without external auxiliary, Genius requires to seek the optimal response sequence in a stepwise manner and optimize the LLM. To explore the potential steps and exploit the optimal ones, Genius introduces a stepwise foresight re-sampling strategy to sample and estimate the step value by simulating future outcomes. Further, we recognize that the unsupervised setting inevitably induces the intrinsic noise and uncertainty. To provide a robust optimization, we propose an advantage-calibrated optimization (ACO) loss function to mitigate estimation inconsistencies. Combining these techniques together, Genius provides an advanced initial step towards self-improve LLM reasoning with general queries and without supervision, revolutionizing reasoning scaling laws given the vast availability of general queries. The code will be released at https://github.com/xufangzhi/Genius.
comment: 14 pages, 7 figures
Training-free Guidance in Text-to-Video Generation via Multimodal Planning and Structured Noise Initialization
Recent advancements in text-to-video (T2V) diffusion models have significantly enhanced the visual quality of the generated videos. However, even recent T2V models find it challenging to follow text descriptions accurately, especially when the prompt requires accurate control of spatial layouts or object trajectories. A recent line of research uses layout guidance for T2V models that require fine-tuning or iterative manipulation of the attention map during inference time. This significantly increases the memory requirement, making it difficult to adopt a large T2V model as a backbone. To address this, we introduce Video-MSG, a training-free Guidance method for T2V generation based on Multimodal planning and Structured noise initialization. Video-MSG consists of three steps, where in the first two steps, Video-MSG creates Video Sketch, a fine-grained spatio-temporal plan for the final video, specifying background, foreground, and object trajectories, in the form of draft video frames. In the last step, Video-MSG guides a downstream T2V diffusion model with Video Sketch through noise inversion and denoising. Notably, Video-MSG does not need fine-tuning or attention manipulation with additional memory during inference time, making it easier to adopt large T2V models. Video-MSG demonstrates its effectiveness in enhancing text alignment with multiple T2V backbones (VideoCrafter2 and CogVideoX-5B) on popular T2V generation benchmarks (T2VCompBench and VBench). We provide comprehensive ablation studies about noise inversion ratio, different background generators, background object detection, and foreground object segmentation.
comment: Website: https://video-msg.github.io; The first three authors contributed equally
Analyzing 16,193 LLM Papers for Fun and Profits
Large Language Models (LLMs) are reshaping the landscape of computer science research, driving significant shifts in research priorities across diverse conferences and fields. This study provides a comprehensive analysis of the publication trend of LLM-related papers in 77 top-tier computer science conferences over the past six years (2019-2024). We approach this analysis from four distinct perspectives: (1) We investigate how LLM research is driving topic shifts within major conferences. (2) We adopt a topic modeling approach to identify various areas of LLM-related topic growth and reveal the topics of concern at different conferences. (3) We explore distinct contribution patterns of academic and industrial institutions. (4) We study the influence of national origins on LLM development trajectories. Synthesizing the findings from these diverse analytical angles, we derive ten key insights that illuminate the dynamics and evolution of the LLM research ecosystem.
A Survey of Machine Learning Models and Datasets for the Multi-label Classification of Textual Hate Speech in English
The dissemination of online hate speech can have serious negative consequences for individuals, online communities, and entire societies. This and the large volume of hateful online content prompted both practitioners', i.e., in content moderation or law enforcement, and researchers' interest in machine learning models to automatically classify instances of hate speech. Whereas most scientific works address hate speech classification as a binary task, practice often requires a differentiation into sub-types, e.g., according to target, severity, or legality, which may overlap for individual content. Hence, researchers created datasets and machine learning models that approach hate speech classification in textual data as a multi-label problem. This work presents the first systematic and comprehensive survey of scientific literature on this emerging research landscape in English (N=46). We contribute with a concise overview of 28 datasets suited for training multi-label classification models that reveals significant heterogeneity regarding label-set, size, meta-concept, annotation process, and inter-annotator agreement. Our analysis of 24 publications proposing suitable classification models further establishes inconsistency in evaluation and a preference for architectures based on Bidirectional Encoder Representation from Transformers (BERT) and Recurrent Neural Networks (RNNs). We identify imbalanced training data, reliance on crowdsourcing platforms, small and sparse datasets, and missing methodological alignment as critical open issues and formulate ten recommendations for research.
comment: 35 pages, 4 figures, 4 tables
MedHal: An Evaluation Dataset for Medical Hallucination Detection
We present MedHal, a novel large-scale dataset specifically designed to evaluate if models can detect hallucinations in medical texts. Current hallucination detection methods face significant limitations when applied to specialized domains like medicine, where they can have disastrous consequences. Existing medical datasets are either too small, containing only a few hundred samples, or focus on a single task like Question Answering or Natural Language Inference. MedHal addresses these gaps by: (1) incorporating diverse medical text sources and tasks; (2) providing a substantial volume of annotated samples suitable for training medical hallucination detection models; and (3) including explanations for factual inconsistencies to guide model learning. We demonstrate MedHal's utility by training and evaluating a baseline medical hallucination detection model, showing improvements over general-purpose hallucination detection approaches. This resource enables more efficient evaluation of medical text generation systems while reducing reliance on costly expert review, potentially accelerating the development of medical AI research.
Playpen: An Environment for Exploring Learning Through Conversational Interaction
Are we running out of learning signal? Predicting the next word in an existing text has turned out to be a powerful signal, at least at scale. But there are signs that we are running out of this resource. In recent months, interaction between learner and feedback-giver has come into focus, both for "alignment" (with a reward model judging the quality of instruction following attempts) and for improving "reasoning" (process- and outcome-based verifiers judging reasoning steps). In this paper, we explore to what extent synthetic interaction in what we call Dialogue Games -- goal-directed and rule-governed activities driven predominantly by verbal actions -- can provide a learning signal, and how this signal can be used. We introduce an environment for producing such interaction data (with the help of a Large Language Model as counterpart to the learner model), both offline and online. We investigate the effects of supervised fine-tuning on this data, as well as reinforcement learning setups such as DPO, and GRPO; showing that all of these approaches achieve some improvements in in-domain games, but only GRPO demonstrates the ability to generalise to out-of-domain games as well as retain competitive performance in reference-based tasks. We release the framework and the baseline training setups in the hope that this can foster research in this promising new direction.
comment: Source code: https://github.com/lm-playpen/playpen Please send correspodence to: lm-playschool@googlegroups.com
UoB-NLP at SemEval-2025 Task 11: Leveraging Adapters for Multilingual and Cross-Lingual Emotion Detection SemEval-2025
Emotion detection in natural language processing is a challenging task due to the complexity of human emotions and linguistic diversity. While significant progress has been made in high-resource languages, emotion detection in low-resource languages remains underexplored. In this work, we address multilingual and cross-lingual emotion detection by leveraging adapter-based fine-tuning with multilingual pre-trained language models. Adapters introduce a small number of trainable parameters while keeping the pre-trained model weights fixed, offering a parameter-efficient approach to adaptation. We experiment with different adapter tuning strategies, including task-only adapters, target-language-ready task adapters, and language-family-based adapters. Our results show that target-language-ready task adapters achieve the best overall performance, particularly for low-resource African languages with our team ranking 7th for Tigrinya, and 8th for Kinyarwanda in Track A. In Track C, our system ranked 3rd for Amharic, and 4th for Oromo, Tigrinya, Kinyarwanda, Hausa, and Igbo. Our approach outperforms large language models in 11 languages and matches their performance in four others, despite our models having significantly fewer parameters. Furthermore, we find that adapter-based models retain cross-linguistic transfer capabilities while requiring fewer computational resources compared to full fine-tuning for each language.
comment: Accepted to appear in Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
Lexical Bundle Frequency as a Construct-Relevant Candidate Feature in Automated Scoring of L2 Academic Writing
Automated scoring (AS) systems are increasingly used for evaluating L2 writing, but require ongoing refinement for construct validity. While prior work suggested lexical bundles (LBs) - recurrent multi-word sequences satisfying certain frequency criteria - could inform assessment, their empirical integration into AS models needs further investigation. This study tested the impact of incorporating LB frequency features into an AS model for TOEFL independent writing tasks. Analyzing a sampled subcorpus (N=1,225 essays, 9 L1s) from the TOEFL11 corpus, scored by ETS-trained raters (Low, Medium, High), 3- to 9-word LBs were extracted, distinguishing prompt-specific from non-prompt types. A baseline Support Vector Machine (SVM) scoring model using established linguistic features (e.g., mechanics, cohesion, sophistication) was compared against an extended model including three aggregate LB frequency features (total prompt, total non-prompt, overall total). Results revealed significant, though generally small-effect, relationships between LB frequency (especially non-prompt bundles) and proficiency (p < .05). Mean frequencies suggested lower proficiency essays used more LBs overall. Critically, the LB-enhanced model improved agreement with human raters (Quadratic Cohen's Kappa +2.05%, overall Cohen's Kappa +5.63%), with notable gains for low (+10.1% exact agreement) and medium (+14.3% Cohen's Kappa) proficiency essays. These findings demonstrate that integrating aggregate LB frequency offers potential for developing more linguistically informed and accurate AS systems, particularly for differentiating developing L2 writers.
On The Landscape of Spoken Language Models: A Comprehensive Survey
The field of spoken language processing is undergoing a shift from training custom-built, task-specific models toward using and optimizing spoken language models (SLMs) which act as universal speech processing systems. This trend is similar to the progression toward universal language models that has taken place in the field of (text) natural language processing. SLMs include both "pure" language models of speech -- models of the distribution of tokenized speech sequences -- and models that combine speech encoders with text language models, often including both spoken and written input or output. Work in this area is very diverse, with a range of terminology and evaluation settings. This paper aims to contribute an improved understanding of SLMs via a unifying literature survey of recent work in the context of the evolution of the field. Our survey categorizes the work in this area by model architecture, training, and evaluation choices, and describes some key challenges and directions for future work.
Integrated ensemble of BERT- and features-based models for authorship attribution in Japanese literary works
Traditionally, authorship attribution (AA) tasks relied on statistical data analysis and classification based on stylistic features extracted from texts. In recent years, pre-trained language models (PLMs) have attracted significant attention in text classification tasks. However, although they demonstrate excellent performance on large-scale short-text datasets, their effectiveness remains under-explored for small samples, particularly in AA tasks. Additionally, a key challenge is how to effectively leverage PLMs in conjunction with traditional feature-based methods to advance AA research. In this study, we aimed to significantly improve performance using an integrated integrative ensemble of traditional feature-based and modern PLM-based methods on an AA task in a small sample. For the experiment, we used two corpora of literary works to classify 10 authors each. The results indicate that BERT is effective, even for small-sample AA tasks. Both BERT-based and classifier ensembles outperformed their respective stand-alone models, and the integrated ensemble approach further improved the scores significantly. For the corpus that was not included in the pre-training data, the integrated ensemble improved the F1 score by approximately 14 points, compared to the best-performing single model. Our methodology provides a viable solution for the efficient use of the ever-expanding array of data processing tools in the foreseeable future.
Task Memory Engine (TME): Enhancing State Awareness for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. The full implementation of TME is available at https://github.com/biubiutomato/TME-Agent.
comment: 14 pages, 5 figures. Preprint prepared for future submission. Includes implementation and token-efficiency analysis. Code at https://github.com/biubiutomato/TME-Agent
BOISHOMMO: Holistic Approach for Bangla Hate Speech
One of the most alarming issues in digital society is hate speech (HS) on social media. The severity is so high that researchers across the globe are captivated by this domain. A notable amount of work has been conducted to address the identification and alarm system. However, a noticeable gap exists, especially for low-resource languages. Comprehensive datasets are the main problem among the constrained resource languages, such as Bangla. Interestingly, hate speech or any particular speech has no single dimensionality. Similarly, the hate component can simultaneously have multiple abusive attributes, which seems to be missed in the existing datasets. Thus, a multi-label Bangla hate speech dataset named BOISHOMMO has been compiled and evaluated in this work. That includes categories of HS across race, gender, religion, politics, and more. With over two thousand annotated examples, BOISHOMMO provides a nuanced understanding of hate speech in Bangla and highlights the complexities of processing non-Latin scripts. Apart from evaluating with multiple algorithmic approaches, it also highlights the complexities of processing Bangla text and assesses model performance. This unique multi-label approach enriches future hate speech detection and analysis studies for low-resource languages by providing a more nuanced, diverse dataset.
Beyond Self-Reports: Multi-Observer Agents for Personality Assessment in Large Language Models
There is a growing interest in assessing the personality traits of Large language models (LLMs). However, traditional personality assessments based on self-report questionnaires may fail to capture their true behavioral nuances due to inherent biases and meta-knowledge contamination. This paper introduces a novel multi-observer framework for LLM personality assessment that draws inspiration from informant-report methods in psychology. Instead of relying solely on self-assessments, our approach employs multiple observer agents configured with a specific relationship context (e.g., family, friend, or workplace) to simulate interactive scenarios with a subject LLM. These observers engage in dialogues and subsequently provide ratings across the Big Five personality dimensions. Our experiments reveal that LLMs possess systematic biases in self-report personality ratings. Moreover, aggregating observer ratings effectively reduces non-systematic biases and achieves optimal reliability with 5-7 observers. The findings highlight the significant impact of relationship context on personality perception and demonstrate that a multi-observer paradigm yields a more robust and context-sensitive evaluation of LLM personality traits.
comment: 13 pages, 5 figures, 2 tables
Scholar Inbox: Personalized Paper Recommendations for Scientists
Scholar Inbox is a new open-access platform designed to address the challenges researchers face in staying current with the rapidly expanding volume of scientific literature. We provide personalized recommendations, continuous updates from open-access archives (arXiv, bioRxiv, etc.), visual paper summaries, semantic search, and a range of tools to streamline research workflows and promote open research access. The platform's personalized recommendation system is trained on user ratings, ensuring that recommendations are tailored to individual researchers' interests. To further enhance the user experience, Scholar Inbox also offers a map of science that provides an overview of research across domains, enabling users to easily explore specific topics. We use this map to address the cold start problem common in recommender systems, as well as an active learning strategy that iteratively prompts users to rate a selection of papers, allowing the system to learn user preferences quickly. We evaluate the quality of our recommendation system on a novel dataset of 800k user ratings, which we make publicly available, as well as via an extensive user study. https://www.scholar-inbox.com/
comment: https://www.scholar-inbox.com/
FocalLens: Instruction Tuning Enables Zero-Shot Conditional Image Representations
Visual understanding is inherently contextual -- what we focus on in an image depends on the task at hand. For instance, given an image of a person holding a bouquet of flowers, we may focus on either the person such as their clothing, or the type of flowers, depending on the context of interest. Yet, most existing image encoding paradigms represent an image as a fixed, generic feature vector, overlooking the potential needs of prioritizing varying visual information for different downstream use cases. In this work, we introduce FocalLens, a conditional visual encoding method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively finetune a pretrained vision encoder to take natural language instructions as additional inputs for producing conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.
MedRep: Medical Concept Representation for General Electronic Health Record Foundation Models
Electronic health record (EHR) foundation models have been an area ripe for exploration with their improved performance in various medical tasks. Despite the rapid advances, there exists a fundamental limitation: Processing unseen medical codes out of the vocabulary. This problem limits the generality of EHR foundation models and the integration of models trained with different vocabularies. To deal with this problem, we propose MedRep for EHR foundation models based on the observational medical outcome partnership (OMOP) common data model (CDM), providing the integrated medical concept representations and the basic data augmentation strategy for patient trajectories. For concept representation learning, we enrich the information of each concept with a minimal definition through large language model (LLM) prompts and enhance the text-based representations through graph ontology of OMOP vocabulary. Trajectory augmentation randomly replaces selected concepts with other similar concepts that have closely related representations to let the model practice with the concepts out-of-vocabulary. Finally, we demonstrate that EHR foundation models trained with MedRep better maintain the prediction performance in external datasets. Our code implementation is publicly available at https://github.com/kicarussays/MedRep.
comment: Under review
Large language models could be rote learners
Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs), yet their reliability is undermined by benchmark contamination. In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization in LLM evaluation. First, by analyzing model performance under different memorization conditions, we uncover a counterintuitive trend: LLMs perform worse on memorized MCQs than on non-memorized ones, indicating the coexistence of two distinct learning phenomena, i.e., rote memorization and genuine capability learning. To disentangle them, we propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment. Experiments validate TrinEval's effectiveness in reformulation, and its evaluation reveals that common LLMs may memorize by rote 20.5% of knowledge points (in MMLU on average).
comment: Work in Progress
ELSA: A Style Aligned Dataset for Emotionally Intelligent Language Generation
Advancements in emotion aware language processing increasingly shape vital NLP applications ranging from conversational AI and affective computing to computational psychology and creative content generation. Existing emotion datasets either lack emotional granularity or fail to capture necessary stylistic diversity, limiting the advancement of effective emotion conditioned text generation systems. Seeking to bridge this crucial gap between granularity and style diversity, this paper introduces a novel systematically constructed dataset named ELSA Emotion and Language Style Alignment Dataset leveraging fine grained emotion taxonomies adapted from existing sources such as dair ai emotion dataset and GoEmotions taxonomy. This dataset comprises multiple emotionally nuanced variations of original sentences regenerated across distinct contextual styles such as conversational, formal, poetic, and narrative, using advanced Large Language Models LLMs. Rigorous computational evaluation using metrics such as perplexity, embedding variance, readability, lexical diversity, and semantic coherence measures validates the datasets emotional authenticity, linguistic fluency, and textual diversity. Comprehensive metric analyses affirm its potential to support deeper explorations into emotion conditioned style adaptive text generation. By enabling precision tuned emotionally nuanced language modeling, our dataset creates fertile ground for research on fine grained emotional control, prompt driven explanation, interpretability, and style adaptive expressive language generation with LLMs.
comment: 8 pages
Generalized Multilingual Text-to-Speech Generation with Language-Aware Style Adaptation
Text-to-Speech (TTS) models can generate natural, human-like speech across multiple languages by transforming phonemes into waveforms. However, multilingual TTS remains challenging due to discrepancies in phoneme vocabularies and variations in prosody and speaking style across languages. Existing approaches either train separate models for each language, which achieve high performance at the cost of increased computational resources, or use a unified model for multiple languages that struggles to capture fine-grained, language-specific style variations. In this work, we propose LanStyleTTS, a non-autoregressive, language-aware style adaptive TTS framework that standardizes phoneme representations and enables fine-grained, phoneme-level style control across languages. This design supports a unified multilingual TTS model capable of producing accurate and high-quality speech without the need to train language-specific models. We evaluate LanStyleTTS by integrating it with several state-of-the-art non-autoregressive TTS architectures. Results show consistent performance improvements across different model backbones. Furthermore, we investigate a range of acoustic feature representations, including mel-spectrograms and autoencoder-derived latent features. Our experiments demonstrate that latent encodings can significantly reduce model size and computational cost while preserving high-quality speech generation.
VLMT: Vision-Language Multimodal Transformer for Multimodal Multi-hop Question Answering
The increasing availability of multimodal data across text, tables, and images presents new challenges for developing models capable of complex cross-modal reasoning. Existing methods for Multimodal Multi-hop Question Answering (MMQA) often suffer from limited reasoning capabilities, reliance on modality conversion, and inadequate alignment between visual and textual representations. To address these limitations, this paper introduces Vision-Language Multimodal Transformer (VLMT), a unified architecture that integrates a transformer-based vision encoder with a sequence-to-sequence language model. VLMT employs a direct token-level injection mechanism to fuse visual and textual inputs within a shared embedding space, eliminating the need for intermediate projection layers. To enhance cross-modal alignment and reasoning, a three-stage pretraining strategy is proposed to progressively align vision-language representations and improve the model's capacity for multimodal understanding. Based on the pretrained backbone, two task-specific modules are instantiated to form a two-stage MMQA framework: a multimodal reranker that predicts document relevance scores and utilizes a relative threshold with top-k strategy for context retrieval, and a multimodal question answering model that generates contextually grounded answers based on the retrieved evidence. Comprehensive experiments on two benchmark datasets demonstrate the effectiveness of the proposed approach. On MultimodalQA validation set, VLMT-Large achieves 76.5% Exact Match and 80.1% F1, outperforming the previous state-of-the-art by +9.1% in Exact Match and +8.8% in F1. On WebQA, it attains a QA score of 47.6, surpassing prior models such as PERQA by +3.2. These results highlight VLMT's strong capabilities in multimodal reasoning and its potential to advance real-world information retrieval and question answering systems.
Evaluating the Bias in LLMs for Surveying Opinion and Decision Making in Healthcare
Generative agents have been increasingly used to simulate human behaviour in silico, driven by large language models (LLMs). These simulacra serve as sandboxes for studying human behaviour without compromising privacy or safety. However, it remains unclear whether such agents can truly represent real individuals. This work compares survey data from the Understanding America Study (UAS) on healthcare decision-making with simulated responses from generative agents. Using demographic-based prompt engineering, we create digital twins of survey respondents and analyse how well different LLMs reproduce real-world behaviours. Our findings show that some LLMs fail to reflect realistic decision-making, such as predicting universal vaccine acceptance. However, Llama 3 captures variations across race and Income more accurately but also introduces biases not present in the UAS data. This study highlights the potential of generative agents for behavioural research while underscoring the risks of bias from both LLMs and prompting strategies.
Millions of States: Designing a Scalable MoE Architecture with RWKV-7 Meta-learner
State-based sequence models like RWKV-7 offer a compelling alternative to Transformer architectures, achieving linear complexity while demonstrating greater expressive power in short-context scenarios and enabling state tracking beyond the \(\text{TC}^0\) complexity class. However, RWKV-7 lacks mechanisms for token-parameter interactions and native scalability, limiting its adaptability and growth without retraining. In this paper, we propose \textbf{Meta-State}, a novel extension to RWKV-7 that replaces attention mechanisms with a fully state-driven approach, integrating token-parameter interactions through a \textbf{Self-State Encoder} (SSE) mechanism. The SSE repurposes a portion of the RWKV-7 Weighted Key-Value (WKV) state as transformation weights to encode token-parameter interactions in a linear, state-driven manner without introducing new trainable matrices or softmax operations, while preserving the autoregressive property of token processing. Meta-State supports progressive model scaling by expanding the WKV state and parameter tokens, reusing existing parameters without retraining. Our approach bridges the gap between state-based modeling, token-parameter interactions, and scalable architectures, offering a flexible framework for efficient and adaptable sequence modeling with linear complexity and constant memory usage.
Out of Style: RAG's Fragility to Linguistic Variation
Despite the impressive performance of Retrieval-augmented Generation (RAG) systems across various NLP benchmarks, their robustness in handling real-world user-LLM interaction queries remains largely underexplored. This presents a critical gap for practical deployment, where user queries exhibit greater linguistic variations and can trigger cascading errors across interdependent RAG components. In this work, we systematically analyze how varying four linguistic dimensions (formality, readability, politeness, and grammatical correctness) impact RAG performance. We evaluate two retrieval models and nine LLMs, ranging from 3 to 72 billion parameters, across four information-seeking Question Answering (QA) datasets. Our results reveal that linguistic reformulations significantly impact both retrieval and generation stages, leading to a relative performance drop of up to 40.41% in Recall@5 scores for less formal queries and 38.86% in answer match scores for queries containing grammatical errors. Notably, RAG systems exhibit greater sensitivity to such variations compared to LLM-only generations, highlighting their vulnerability to error propagation due to linguistic shifts. These findings highlight the need for improved robustness techniques to enhance reliability in diverse user interactions.
Big Meaning: Qualitative Analysis on Large Bodies of Data Using AI
This study introduces a framework that leverages AI-generated descriptive codes to indicate a text's fecundity--the density of unique human-generated codes--in thematic analysis. Rather than replacing human interpretation, AI-generated codes guide the selection of texts likely to yield richer qualitative insights. Using a dataset of 2,530 Malaysian news articles on refugee attitudes, we compare AI-selected documents to randomly chosen ones by having three human coders independently derive codes. The results demonstrate that AI-selected texts exhibit approximately twice the fecundity. Our findings support the use of AI-generated codes as an effective proxy for identifying documents with a high potential for meaning-making in thematic analysis.
comment: arXiv admin note: text overlap with arXiv:2504.07408
LLM for Comparative Narrative Analysis
In this paper, we conducted a Multi-Perspective Comparative Narrative Analysis (CNA) on three prominent LLMs: GPT-3.5, PaLM2, and Llama2. We applied identical prompts and evaluated their outputs on specific tasks, ensuring an equitable and unbiased comparison between various LLMs. Our study revealed that the three LLMs generated divergent responses to the same prompt, indicating notable discrepancies in their ability to comprehend and analyze the given task. Human evaluation was used as the gold standard, evaluating four perspectives to analyze differences in LLM performance.
comment: 5 pages, 4 figures, Appendix included
Harnessing the Unseen: The Hidden Influence of Intrinsic Knowledge in Long-Context Language Models
Recent advances in long-context models (LCMs), designed to handle extremely long input contexts, primarily focus on utilizing external contextual information, often leaving the influence of large language models' intrinsic knowledge underexplored. In this work, we investigate how this intrinsic knowledge affects content generation and demonstrate that its impact becomes increasingly pronounced as context length extends. Furthermore, we show that the model's ability to utilize intrinsic knowledge, which we call intrinsic retrieval ability, does not improve simultaneously with its ability to leverage contextual knowledge through extrinsic retrieval ability. Moreover, better extrinsic retrieval can interfere with the model's ability to use its own knowledge effectively, limiting its full potential. To bridge this gap, we design a simple yet effective Hybrid Needle-in-a-Haystack test that evaluates models based on their capabilities across both retrieval abilities, rather than solely emphasizing extrinsic retrieval ability. Our experimental results reveal that Qwen-2.5 models significantly outperform Llama-3.1 models, demonstrating superior intrinsic retrieval ability. Moreover, even the more powerful Llama-3.1-70B-Instruct model fails to exhibit better performance under LCM conditions, highlighting the importance of evaluating models from a dual-retrieval perspective.
comment: 21 pages,11figures
SAEs $\textit{Can}$ Improve Unlearning: Dynamic Sparse Autoencoder Guardrails for Precision Unlearning in LLMs
Machine unlearning is a promising approach to improve LLM safety by removing unwanted knowledge from the model. However, prevailing gradient-based unlearning methods suffer from issues such as high computational costs, hyperparameter instability, poor sequential unlearning capability, vulnerability to relearning attacks, low data efficiency, and lack of interpretability. While Sparse Autoencoders are well-suited to improve these aspects by enabling targeted activation-based unlearning, prior approaches underperform gradient-based methods. This work demonstrates that, contrary to these earlier findings, SAEs can significantly improve unlearning when employed dynamically. We introduce $\textbf{Dynamic DAE Guardrails}$ (DSG), a novel method for precision unlearning that leverages principled feature selection and a dynamic classifier. Our experiments show DSG substantially outperforms leading unlearning methods, achieving superior forget-utility trade-offs. DSG addresses key drawbacks of gradient-based approaches for unlearning -- offering enhanced computational efficiency and stability, robust performance in sequential unlearning, stronger resistance to relearning attacks, better data efficiency including zero-shot settings, and more interpretable unlearning.
Pangu Ultra: Pushing the Limits of Dense Large Language Models on Ascend NPUs
We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
comment: fix conflicts of latex pacakges
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves $\times$255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining $\times$100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models will be released at https://github.com/Jayce1kk/GSDP.
Do LLMs Understand Your Translations? Evaluating Paragraph-level MT with Question Answering
Despite the steady progress in machine translation evaluation, existing automatic metrics struggle to capture how well meaning is preserved beyond sentence boundaries. We posit that reliance on a single intrinsic quality score, trained to mimic human judgments, might be insufficient for evaluating translations of long, complex passages, and a more ``pragmatic'' approach that assesses how accurately key information is conveyed by a translation in context is needed. We introduce TREQA (Translation Evaluation via Question-Answering), a framework that extrinsically evaluates translation quality by assessing how accurately candidate translations answer reading comprehension questions that target key information in the original source or reference texts. In challenging domains that require long-range understanding, such as literary texts, we show that TREQA is competitive with and, in some cases, outperforms state-of-the-art neural and LLM-based metrics in ranking alternative paragraph-level translations, despite never being explicitly optimized to correlate with human judgments. Furthermore, the generated questions and answers offer interpretability: empirical analysis shows that they effectively target translation errors identified by experts in evaluated datasets. Our code is available at https://github.com/deep-spin/treqa
Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning
Meta learning has been widely used to exploit rich-resource source tasks to improve the performance of low-resource target tasks. Unfortunately, most existing meta learning approaches treat different source tasks equally, ignoring the relatedness of source tasks to the target task in knowledge transfer. To mitigate this issue, we propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning. In this framework, we present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning. The differences between the general loss of the meta model and task-specific losses of source-specific temporal meta models on sampled target data are fed into the policy network of the reinforcement learning module as rewards. The policy network is built upon LSTMs that capture long-term dependencies on source task weight estimation across meta learning iterations. We evaluate the proposed Meta-RTL using both BERT and ALBERT as the backbone of the meta model on three commonsense reasoning benchmark datasets. Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies and achieves larger improvements on extremely low-resource settings.
BUCA: A Binary Classification Approach to Unsupervised Commonsense Question Answering ACL 2023
Unsupervised commonsense reasoning (UCR) is becoming increasingly popular as the construction of commonsense reasoning datasets is expensive, and they are inevitably limited in their scope. A popular approach to UCR is to fine-tune language models with external knowledge (e.g., knowledge graphs), but this usually requires a large number of training examples. In this paper, we propose to transform the downstream multiple choice question answering task into a simpler binary classification task by ranking all candidate answers according to their reasonableness. To this end, for training the model, we convert the knowledge graph triples into reasonable and unreasonable texts. Extensive experimental results show the effectiveness of our approach on various multiple choice question answering benchmarks. Furthermore, compared with existing UCR approaches using KGs, ours is less data hungry. Our code is available at https://github.com/probe2/BUCA.
comment: ACL 2023
SemEval-2025 Task 5: LLMs4Subjects -- LLM-based Automated Subject Tagging for a National Technical Library's Open-Access Catalog SemEval 2025
We present SemEval-2025 Task 5: LLMs4Subjects, a shared task on automated subject tagging for scientific and technical records in English and German using the GND taxonomy. Participants developed LLM-based systems to recommend top-k subjects, evaluated through quantitative metrics (precision, recall, F1-score) and qualitative assessments by subject specialists. Results highlight the effectiveness of LLM ensembles, synthetic data generation, and multilingual processing, offering insights into applying LLMs for digital library classification.
comment: 10 pages, 4 figures, Accepted as SemEval 2025 Task 5 description paper
Holistic Capability Preservation: Towards Compact Yet Comprehensive Reasoning Models
This technical report presents Ring-Lite-Distill, a lightweight reasoning model derived from our open-source Mixture-of-Experts (MoE) Large Language Models (LLMs) Ling-Lite. This study demonstrates that through meticulous high-quality data curation and ingenious training paradigms, the compact MoE model Ling-Lite can be further trained to achieve exceptional reasoning capabilities, while maintaining its parameter-efficient architecture with only 2.75 billion activated parameters, establishing an efficient lightweight reasoning architecture. In particular, in constructing this model, we have not merely focused on enhancing advanced reasoning capabilities, exemplified by high-difficulty mathematical problem solving, but rather aimed to develop a reasoning model with more comprehensive competency coverage. Our approach ensures coverage across reasoning tasks of varying difficulty levels while preserving generic capabilities, such as instruction following, tool use, and knowledge retention. We show that, Ring-Lite-Distill's reasoning ability reaches a level comparable to DeepSeek-R1-Distill-Qwen-7B, while its general capabilities significantly surpass those of DeepSeek-R1-Distill-Qwen-7B. The models are accessible at https://huggingface.co/inclusionAI
comment: Based on the further discussion of the working group, the current version is deemed unsuitable for release. We are currently undertaking further work that is expected to involve significant revisions, but this process will require some additional time. We plan to proceed with the release once these updates have been fully implemented
Not All Data Are Unlearned Equally
Machine unlearning is concerned with the task of removing knowledge learned from particular data points from a trained model. In the context of large language models (LLMs), unlearning has recently received increased attention, particularly for removing knowledge about named entities from models for privacy purposes. While various approaches have been proposed to address the unlearning problem, most existing approaches treat all data points to be unlearned equally, i.e., unlearning that Montreal is a city in Canada is treated exactly the same as unlearning the phone number of the first author of this paper. In this work, we show that this all data is equal assumption does not hold for LLM unlearning. We study how the success of unlearning depends on the frequency of the knowledge we want to unlearn in the pre-training data of a model and find that frequency strongly affects unlearning, i.e., more frequent knowledge is harder to unlearn. Additionally, we uncover a misalignment between probability and generation-based evaluations of unlearning and show that this problem worsens as models become larger. Overall, our experiments highlight the need for better evaluation practices and novel methods for LLM unlearning that take the training data of models into account.
Localizing and Mitigating Errors in Long-form Question Answering
Long-form question answering (LFQA) aims to provide thorough and in-depth answers to complex questions, enhancing comprehension. However, such detailed responses are prone to hallucinations and factual inconsistencies, challenging their faithful evaluation. This work introduces HaluQuestQA, the first hallucination dataset with localized error annotations for human-written and model-generated LFQA answers. HaluQuestQA comprises 698 QA pairs with 1.8k span-level error annotations for five different error types by expert annotators, along with preference judgments. Using our collected data, we thoroughly analyze the shortcomings of long-form answers and find that they lack comprehensiveness and provide unhelpful references. We train an automatic feedback model on this dataset that predicts error spans with incomplete information and provides associated explanations. Finally, we propose a prompt-based approach, Error-informed refinement, that uses signals from the learned feedback model to refine generated answers, which we show reduces errors and improves answer quality across multiple models. Furthermore, humans find answers generated by our approach comprehensive and highly prefer them (84%) over the baseline answers.
comment: Code and data are available: https://github.com/UKPLab/arxiv2024-lfqa-hallucination
An Empirical Study of Conformal Prediction in LLM with ASP Scaffolds for Robust Reasoning
In this paper, we examine the use of Conformal Language Modelling (CLM) alongside Answer Set Programming (ASP) to enhance the performance of standard open-weight LLMs on complex multi-step reasoning tasks. Using the StepGame dataset, which requires spatial reasoning, we apply CLM to generate sets of ASP programs from an LLM, providing statistical guarantees on the correctness of the outputs. Experimental results show that CLM significantly outperforms baseline models that use standard sampling methods, achieving substantial accuracy improvements across different levels of reasoning complexity. Additionally, the LLM-as-Judge metric enhances CLM's performance, especially in assessing structurally and logically correct ASP outputs. However, calibrating CLM with diverse calibration sets did not improve generalizability for tasks requiring much longer reasoning steps, indicating limitations in handling more complex tasks.
DSBench: How Far Are Data Science Agents from Becoming Data Science Experts?
Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) have demonstrated impressive language/vision reasoning abilities, igniting the recent trend of building agents for targeted applications such as shopping assistants or AI software engineers. Recently, many data science benchmarks have been proposed to investigate their performance in the data science domain. However, existing data science benchmarks still fall short when compared to real-world data science applications due to their simplified settings. To bridge this gap, we introduce DSBench, a comprehensive benchmark designed to evaluate data science agents with realistic tasks. This benchmark includes 466 data analysis tasks and 74 data modeling tasks, sourced from Eloquence and Kaggle competitions. DSBench offers a realistic setting by encompassing long contexts, multimodal task backgrounds, reasoning with large data files and multi-table structures, and performing end-to-end data modeling tasks. Our evaluation of state-of-the-art LLMs, LVLMs, and agents shows that they struggle with most tasks, with the best agent solving only 34.12% of data analysis tasks and achieving a 34.74% Relative Performance Gap (RPG). These findings underscore the need for further advancements in developing more practical, intelligent, and autonomous data science agents.
UMLS-KGI-BERT: Data-Centric Knowledge Integration in Transformers for Biomedical Entity Recognition
Pre-trained transformer language models (LMs) have in recent years become the dominant paradigm in applied NLP. These models have achieved state-of-the-art performance on tasks such as information extraction, question answering, sentiment analysis, document classification and many others. In the biomedical domain, significant progress has been made in adapting this paradigm to NLP tasks that require the integration of domain-specific knowledge as well as statistical modelling of language. In particular, research in this area has focused on the question of how best to construct LMs that take into account not only the patterns of token distribution in medical text, but also the wealth of structured information contained in terminology resources such as the UMLS. This work contributes a data-centric paradigm for enriching the language representations of biomedical transformer-encoder LMs by extracting text sequences from the UMLS. This allows for graph-based learning objectives to be combined with masked-language pre-training. Preliminary results from experiments in the extension of pre-trained LMs as well as training from scratch show that this framework improves downstream performance on multiple biomedical and clinical Named Entity Recognition (NER) tasks.
comment: Addition of v2 experiments
A Federated Approach to Few-Shot Hate Speech Detection for Marginalized Communities
Hate speech online remains an understudied issue for marginalized communities, particularly in the Global South, which includes developing societies with increasing internet penetration. In this paper, we aim to provide marginalized communities in societies where the dominant language is low-resource with a privacy-preserving tool to protect themselves from online hate speech by filtering offensive content in their native languages. Our contributions are twofold: 1) we release REACT (REsponsive hate speech datasets Across ConTexts), a collection of high-quality, culture-specific hate speech detection datasets comprising multiple target groups and low-resource languages, curated by experienced data collectors; 2) we propose a few-shot hate speech detection approach based on federated learning (FL), a privacy-preserving method for collaboratively training a central model that exhibits robustness when tackling different target groups and languages. By keeping training local to user devices, we ensure data privacy while leveraging the collective learning benefits of FL. Furthermore, we explore personalized client models tailored to specific target groups and evaluate their performance. Our findings indicate the overall effectiveness of FL across different target groups, and point to personalization as a promising direction.
IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models
The field of vision-and-language (VL) understanding has made unprecedented progress with end-to-end large pre-trained VL models (VLMs). However, they still fall short in zero-shot reasoning tasks that require multi-step inferencing. To achieve this goal, previous works resort to a divide-and-conquer pipeline. In this paper, we argue that previous efforts have several inherent shortcomings: 1) They rely on domain-specific sub-question decomposing models. 2) They force models to predict the final answer even if the sub-questions or sub-answers provide insufficient information. We address these limitations via IdealGPT, a framework that iteratively decomposes VL reasoning using large language models (LLMs). Specifically, IdealGPT utilizes an LLM to generate sub-questions, a VLM to provide corresponding sub-answers, and another LLM to reason to achieve the final answer. These three modules perform the divide-and-conquer procedure iteratively until the model is confident about the final answer to the main question. We evaluate IdealGPT on multiple challenging VL reasoning tasks under a zero-shot setting. In particular, our IdealGPT outperforms the best existing GPT-4-like models by an absolute 10% on VCR and 15% on SNLI-VE. Code is available at https://github.com/Hxyou/IdealGPT
comment: 13 pages, 5 figures
Attribution in Scientific Literature: New Benchmark and Methods
Large language models (LLMs) present a promising yet challenging frontier for automated source citation in scientific communication. Previous approaches to citation generation have been limited by citation ambiguity and LLM overgeneralization. We introduce REASONS, a novel dataset with sentence-level annotations across 12 scientific domains from arXiv. Our evaluation framework covers two key citation scenarios: indirect queries (matching sentences to paper titles) and direct queries (author attribution), both enhanced with contextual metadata. We conduct extensive experiments with models such as GPT-O1, GPT-4O, GPT-3.5, DeepSeek, and other smaller models like Perplexity AI (7B). While top-tier LLMs achieve high performance in sentence attribution, they struggle with high hallucination rates, a key metric for scientific reliability. Our metadata-augmented approach reduces hallucination rates across all tasks, offering a promising direction for improvement. Retrieval-augmented generation (RAG) with Mistral improves performance in indirect queries, reducing hallucination rates by 42% and maintaining competitive precision with larger models. However, adversarial testing highlights challenges in linking paper titles to abstracts, revealing fundamental limitations in current LLMs. REASONS provides a challenging benchmark for developing reliable and trustworthy LLMs in scientific applications
comment: Work in progress
ScaffoldGPT: A Scaffold-based GPT Model for Drug Optimization
Drug optimization has become increasingly crucial in light of fast-mutating virus strains and drug-resistant cancer cells. Nevertheless, it remains challenging as it necessitates retaining the beneficial properties of the original drug while simultaneously enhancing desired attributes beyond its scope. In this work, we aim to tackle this challenge by introducing ScaffoldGPT, a novel Generative Pretrained Transformer (GPT) designed for drug optimization based on molecular scaffolds. Our work comprises three key components: (1) A three-stage drug optimization approach that integrates pretraining, finetuning, and decoding optimization. (2) A uniquely designed two-phase incremental training approach for pre-training the drug optimization GPT on molecule scaffold with enhanced performance. (3) A token-level decoding optimization strategy, TOP-N, that enabling controlled, reward-guided generation using pretrained/finetuned GPT. We demonstrate via a comprehensive evaluation on COVID and cancer benchmarks that ScaffoldGPT outperforms the competing baselines in drug optimization benchmarks, while excelling in preserving original functional scaffold and enhancing desired properties.
EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents
Multimodal Large Language Models (MLLMs) have shown significant advancements, providing a promising future for embodied agents. Existing benchmarks for evaluating MLLMs primarily utilize static images or videos, limiting assessments to non-interactive scenarios. Meanwhile, existing embodied AI benchmarks are task-specific and not diverse enough, which do not adequately evaluate the embodied capabilities of MLLMs. To address this, we propose EmbodiedEval, a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks. EmbodiedEval features 328 distinct tasks within 125 varied 3D scenes, each of which is rigorously selected and annotated. It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity, all within a unified simulation and evaluation framework tailored for MLLMs. The tasks are organized into five categories: navigation, object interaction, social interaction, attribute question answering, and spatial question answering to assess different capabilities of the agents. We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks. Our analysis demonstrates the limitations of existing MLLMs in embodied capabilities, providing insights for their future development. We open-source all evaluation data and simulation framework at https://github.com/thunlp/EmbodiedEval.
MathSpeech: Leveraging Small LMs for Accurate Conversion in Mathematical Speech-to-Formula AAAI 2025
In various academic and professional settings, such as mathematics lectures or research presentations, it is often necessary to convey mathematical expressions orally. However, reading mathematical expressions aloud without accompanying visuals can significantly hinder comprehension, especially for those who are hearing-impaired or rely on subtitles due to language barriers. For instance, when a presenter reads Euler's Formula, current Automatic Speech Recognition (ASR) models often produce a verbose and error-prone textual description (e.g., e to the power of i x equals cosine of x plus i $\textit{side}$ of x), instead of the concise $\LaTeX{}$ format (i.e., $ e^{ix} = \cos(x) + i\sin(x) $), which hampers clear understanding and communication. To address this issue, we introduce MathSpeech, a novel pipeline that integrates ASR models with small Language Models (sLMs) to correct errors in mathematical expressions and accurately convert spoken expressions into structured $\LaTeX{}$ representations. Evaluated on a new dataset derived from lecture recordings, MathSpeech demonstrates $\LaTeX{}$ generation capabilities comparable to leading commercial Large Language Models (LLMs), while leveraging fine-tuned small language models of only 120M parameters. Specifically, in terms of CER, BLEU, and ROUGE scores for $\LaTeX{}$ translation, MathSpeech demonstrated significantly superior capabilities compared to GPT-4o. We observed a decrease in CER from 0.390 to 0.298, and higher ROUGE/BLEU scores compared to GPT-4o.
comment: Accepted at AAAI 2025
IFShip: Interpretable Fine-grained Ship Classification with Domain Knowledge-Enhanced Vision-Language Models
End-to-end interpretation currently dominates the remote sensing fine-grained ship classification (RS-FGSC) task. However, the inference process remains uninterpretable, leading to criticisms of these models as "black box" systems. To address this issue, we propose a domain knowledge-enhanced Chain-of-Thought (CoT) prompt generation mechanism, which is used to semi-automatically construct a task-specific instruction-following dataset, TITANIC-FGS. By training on TITANIC-FGS, we adapt general-domain vision-language models (VLMs) to the FGSC task, resulting in a model named IFShip. Building upon IFShip, we develop an FGSC visual chatbot that redefines the FGSC problem as a step-by-step reasoning task and conveys the reasoning process in natural language. Experimental results show that IFShip outperforms state-of-the-art FGSC algorithms in both interpretability and classification accuracy. Furthermore, compared to VLMs such as LLaVA and MiniGPT-4, IFShip demonstrates superior performance on the FGSC task. It provides an accurate chain of reasoning when fine-grained ship types are recognizable to the human eye and offers interpretable explanations when they are not.
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,700 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
comment: 29 pages, 6 figures
Missing Premise exacerbates Overthinking: Are Reasoning Models losing Critical Thinking Skill?
We find that the response length of reasoning LLMs, whether trained by reinforcement learning or supervised learning, drastically increases for ill-posed questions with missing premises (MiP), ending up with redundant and ineffective thinking. This newly introduced scenario exacerbates the general overthinking issue to a large extent, which we name as the MiP-Overthinking. Such failures are against the ``test-time scaling law'' but have been widely observed on multiple datasets we curated with MiP, indicating the harm of cheap overthinking and a lack of critical thinking. Surprisingly, LLMs not specifically trained for reasoning exhibit much better performance on the MiP scenario, producing much shorter responses that quickly identify ill-posed queries. This implies a critical flaw of the current training recipe for reasoning LLMs, which does not encourage efficient thinking adequately, leading to the abuse of thinking patterns. To further investigate the reasons behind such failures, we conduct fine-grained analyses of the reasoning length, overthinking patterns, and location of critical thinking on different types of LLMs. Moreover, our extended ablation study reveals that the overthinking is contagious through the distillation of reasoning models' responses. These results improve the understanding of overthinking and shed novel insights into mitigating the problem.
From Small to Large Language Models: Revisiting the Federalist Papers
For a long time, the authorship of the Federalist Papers had been a subject of inquiry and debate, not only by linguists and historians but also by statisticians. In what was arguably the first Bayesian case study, Mosteller and Wallace (1963) provided the first statistical evidence for attributing all disputed papers to Madison. Our paper revisits this historical dataset but from a lens of modern language models, both small and large. We review some of the more popular Large Language Model (LLM) tools and examine them from a statistical point of view in the context of text classification. We investigate whether, without any attempt to fine-tune, the general embedding constructs can be useful for stylometry and attribution. We explain differences between various word/phrase embeddings and discuss how to aggregate them in a document. Contrary to our expectations, we exemplify that dimension expansion with word embeddings may not always be beneficial for attribution relative to dimension reduction with topic embeddings. Our experiments demonstrate that default LLM embeddings (even after manual fine-tuning) may not consistently improve authorship attribution accuracy. Instead, Bayesian analysis with topic embeddings trained on ``function words" yields superior out-of-sample classification performance. This suggests that traditional (small) statistical language models, with their interpretability and solid theoretical foundation, can offer significant advantages in authorship attribution tasks. The code used in this analysis is available at github.com/sowonjeong/slm-to-llm
Human-Computer Interaction
Interaction-Required Suggestions for Control, Ownership, and Awareness in Human-AI Co-Writing
This paper explores interaction designs for generative AI interfaces that necessitate human involvement throughout the generation process. We argue that such interfaces can promote cognitive engagement, agency, and thoughtful decision-making. Through a case study in text revision, we present and analyze two interaction techniques: (1) using a predictive-text interaction to type the assistant's response to a revision request, and (2) highlighting potential edit opportunities in a document. Our implementations demonstrate how these approaches reveal the landscape of writing possibilities and enable fine-grained control. We discuss implications for human-AI writing partnerships and future interaction design directions.
comment: To appear at In2Writing 2025 (the Fourth Workshop on Intelligent and Interactive Writing Assistants)
Voice Interaction With Conversational AI Could Facilitate Thoughtful Reflection and Substantive Revision in Writing NAACL 2025
Writing well requires not only expressing ideas but also refining them through revision, a process facilitated by reflection. Prior research suggests that feedback delivered through dialogues, such as those in writing center tutoring sessions, can help writers reflect more thoughtfully on their work compared to static feedback. Recent advancements in multi-modal large language models (LLMs) now offer new possibilities for supporting interactive and expressive voice-based reflection in writing. In particular, we propose that LLM-generated static feedback can be repurposed as conversation starters, allowing writers to seek clarification, request examples, and ask follow-up questions, thereby fostering deeper reflection on their writing. We argue that voice-based interaction can naturally facilitate this conversational exchange, encouraging writers' engagement with higher-order concerns, facilitating iterative refinement of their reflections, and reduce cognitive load compared to text-based interactions. To investigate these effects, we propose a formative study exploring how text vs. voice input influence writers' reflection and subsequent revisions. Findings from this study will inform the design of intelligent and interactive writing tools, offering insights into how voice-based interactions with LLM-powered conversational agents can support reflection and revision.
comment: 5 pages; Accepted to Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025) at NAACL 2025
From "Worse is Better" to Better: Lessons from a Mixed Methods Study of Ansible's Challenges
Infrastructure as Code (IaC) tools have transformed the way IT infrastructure is automated and managed, but their growing adoption has also exposed numerous challenges for practitioners. In this paper, we investigate these challenges through the lens of Ansible, a popular IaC tool. Using a mixed methods approach, we investigate challenges, obstacles, and issues faced by practitioners. We analyze 59,157 posts from Stack Overflow, Reddit, and the Ansible Forum to identify common pain points, complemented by 16 semi-structured interviews with practitioners of varying expertise levels. Based on our findings, we propose four main recommendations to improve Ansible: 1) refactoring to mitigate performance issues, 2) restructuring higher-level language concepts, 3) improved debugging and error reporting tools, and 4) better documentation and learning resources. By highlighting the real-world struggles of Ansible users, we provide actionable insights for tool designers, educators, and the broader IaC community, contributing to a deeper understanding of the trade-offs inherent in IaC tools.
Designing Child-Friendly AI Interfaces: Six Developmentally-Appropriate Design Insights from Analysing Disney Animation
To build AI interfaces that children can intuitively understand and use, designers need a design grammar that truly serves children's developmental needs. This paper bridges Artificial Intelligence design for children -- an emerging field still defining its best practices -- and children's animation, a well-established field with decades of experience in engaging young viewers through emotionally resonant, cognitively accessible storytelling. Pairing Piagetian developmental theory with design pattern extraction from 52 works of Disney animation, the paper presents six design insights transferable to child-centred AI interface design: (1) emotional expressiveness and visual clarity, (2) musical and auditory scaffolding, (3) audiovisual synchrony for emotional comfort, (4) sidekick-style personas, (5) support for symbolic play and imaginative exploration, and (6) predictable and scaffolded interaction structures. These strategies -- long refined in Disney animation -- function as multimodal scaffolds for attention, understanding, and emotional attunement, thereby forming a structured design grammar familiar to children and transferable to AI interface design. By reframing cinematic storytelling as design logic for AI, the paper offers heuristics for crafting intuitive AI interfaces that align with children's cognitive stages and emotional needs. The work contributes to design theory by showing how sensory, affective and narrative techniques can inform developmentally attuned AI design for children. Future directions include empirical testing, cultural adaptation, and participatory co-design.
comment: 30 pages
Transformer-Based Interfaces for Mechanical Assembly Design: A Gear Train Case Study
Generative artificial intelligence (AI), particularly transformer-based models, presents new opportunities for automating and augmenting engineering design workflows. However, effectively integrating these models into interactive tools requires careful interface design that leverages their unique capabilities. This paper introduces a transformer model tailored for gear train assembly design, paired with two novel interaction modes: Explore and Copilot. Explore Mode uses probabilistic sampling to generate and evaluate diverse design alternatives, while Copilot Mode utilizes autoregressive prediction to support iterative, context-aware refinement. These modes emphasize key transformer properties (sequence-based generation and probabilistic exploration) to facilitate intuitive and efficient human-AI collaboration. Through a case study, we demonstrate how well-designed interfaces can enhance engineers' ability to balance automation with domain expertise. A user study shows that Explore Mode supports rapid exploration and problem redefinition, while Copilot Mode provides greater control and fosters deeper engagement. Our results suggest that hybrid workflows combining both modes can effectively support complex, creative engineering design processes.
PlugSelect: Pruning Channels with Plug-and-Play Flexibility for Electroencephalography-based Brain Computer Interface
Automatic minimization and optimization of the number of the electrodes is essential for the practical application of electroencephalography (EEG)-based brain computer interface (BCI). Previous methods typically require additional training costs or rely on prior knowledge assumptions. This study proposed a novel channel pruning model, plug-and-select (PlugSelect), applicable across a broad range of BCI paradigms with no additional training cost and plug-and-play functionality. It integrates gradients along the input path to globally infer the causal relationships between input channels and outputs, and ranks the contribution sequences to identify the most highly attributed channels. The results showed that for three BCI paradigms, i.e., auditory attention decoding (AAD), motor imagery (MI), affective computation (AC), PlugSelect could reduce the number of channels by at least half while effectively maintaining decoding performance and improving efficiency. The outcome benefits the design of wearable EEG-based devices, facilitating the practical application of BCI technology.
Dark Haptics: Exploring Manipulative Haptic Design in Mobile User Interfaces
Mobile user interfaces abundantly feature so-called 'dark patterns'. These deceptive design practices manipulate users' decision making to profit online service providers. While past research on dark patterns mainly focus on visual design, other sensory modalities such as audio and touch remain largely unexplored. In this early work, we investigate the manipulative side of haptics, which we term as 'Dark Haptics', as a strategy to manipulate users. We designed a study to empirically showcase the potential of using a dark haptic pattern in a mobile device to manipulate user actions in a survey. Our findings indicate that our dark haptic design successfully influenced participants to forego their privacy after experiencing an alarming feedback for rejecting intrusive requests in the survey. As a first exploration of manipulative qualities of dark haptic designs, we attempt to lay the groundwork for future research and tools to mitigate harms and risks of dark haptics.
comment: Accepted to CHI Late Breaking Work 2025
Speech Command + Speech Emotion: Exploring Emotional Speech Commands as a Compound and Playful Modality
In an era of human-computer interaction with increasingly agentic AI systems capable of connecting with users conversationally, speech is an important modality for commanding agents. By recognizing and using speech emotions (i.e., how a command is spoken), we can provide agents with the ability to emotionally accentuate their responses and socially enrich users' perceptions and experiences. To explore the concept and impact of speech emotion commands on user perceptions, we realized a prototype and conducted a user study (N = 14) where speech commands are used to steer two vehicles in a minimalist and retro game style implementation. While both agents execute user commands, only one of the agents uses speech emotion information to adapt its execution behavior. We report on differences in how users perceived each agent, including significant differences in stimulation and dependability, outline implications for designing interactions with agents using emotional speech commands, and provide insights on how users consciously emote, which we describe as "voice acting".
comment: 16 pages, 6 figures
Human strategies for correcting `human-robot' errors during a laundry sorting task
Mental models and expectations underlying human-human interaction (HHI) inform human-robot interaction (HRI) with domestic robots. To ease collaborative home tasks by improving domestic robot speech and behaviours for human-robot communication, we designed a study to understand how people communicated when failure occurs. To identify patterns of natural communication, particularly in response to robotic failures, participants instructed Laundrobot to move laundry into baskets using natural language and gestures. Laundrobot either worked error-free, or in one of two error modes. Participants were not advised Laundrobot would be a human actor, nor given information about error modes. Video analysis from 42 participants found speech patterns, included laughter, verbal expressions, and filler words, such as ``oh'' and ``ok'', also, sequences of body movements, including touching one's own face, increased pointing with a static finger, and expressions of surprise. Common strategies deployed when errors occurred, included correcting and teaching, taking responsibility, and displays of frustration. The strength of reaction to errors diminished with exposure, possibly indicating acceptance or resignation. Some used strategies similar to those used to communicate with other technologies, such as smart assistants. An anthropomorphic robot may not be ideally suited to this kind of task. Laundrobot's appearance, morphology, voice, capabilities, and recovery strategies may have impacted how it was perceived. Some participants indicated Laundrobot's actual skills were not aligned with expectations; this made it difficult to know what to expect and how much Laundrobot understood. Expertise, personality, and cultural differences may affect responses, however these were not assessed.
Research as Resistance: Recognizing and Reconsidering HCI's Role in Technology Hype Cycles
The history of information technology development has been characterized by consecutive waves of boom and bust, as new technologies come to market, fuel surges of investment, and then stabilize towards maturity. However, in recent decades, the acceleration of such technology hype cycles has resulted in the prioritization of massive capital generation at the expense of longterm sustainability, resulting in a cascade of negative social, political, and environmental consequences. Despite the negative impacts of this pattern, academic research, and in particular HCI research, is not immune from such hype cycles, often contributing substantial amounts of literature to the discourse surrounding a wave of hype. In this paper, we discuss the relationship between technology and capital, offer a critique of the technology hype cycle using generative AI as an example, and finally suggest an approach and a set of strategies for how we can counteract such cycles through research as resistance.
comment: 9 pages, submitted to Meta-HCI '25: First Workshop on Meta-Research in HCI, April 26, 2025, Yokohama, Japan
RAG-VR: Leveraging Retrieval-Augmented Generation for 3D Question Answering in VR Environments
Recent advances in large language models (LLMs) provide new opportunities for context understanding in virtual reality (VR). However, VR contexts are often highly localized and personalized, limiting the effectiveness of general-purpose LLMs. To address this challenge, we present RAG-VR, the first 3D question-answering system for VR that incorporates retrieval-augmented generation (RAG), which augments an LLM with external knowledge retrieved from a localized knowledge database to improve the answer quality. RAG-VR includes a pipeline for extracting comprehensive knowledge about virtual environments and user conditions for accurate answer generation. To ensure efficient retrieval, RAG-VR offloads the retrieval process to a nearby edge server and uses only essential information during retrieval. Moreover, we train the retriever to effectively distinguish among relevant, irrelevant, and hard-to-differentiate information in relation to questions. RAG-VR improves answer accuracy by 17.9%-41.8% and reduces end-to-end latency by 34.5%-47.3% compared with two baseline systems.
comment: Proceedings of the 2025 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), March 2025
Designing Human-AI System for Legal Research: A Case Study of Precedent Search in Chinese Law
Recent advancements in AI technology have seen researchers and industry professionals actively exploring the application of AI tools in legal workflows. Despite this prevailing trend, legal practitioners found that AI tools had limited effectiveness in supporting everyday tasks, which can be partly attributed to their design. Typically, AI legal tools only offer end-to-end interaction: practitioners can only manipulate the input and output but have no control over the intermediate steps, raising concerns about AI tools' performance and ethical use. To design an effective AI legal tool, as a first step, we explore users' needs with one specific use case: precedent search. Through a qualitative study with five legal practitioners, we uncovered the precedent search workflow, the challenges they face using current systems, and their concerns and expectations regarding AI tools. We conclude our exploration with an initial prototype to reflect the design implications derived from our findings.
comment: To appear in Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI'25)
DaemonSec: Examining the Role of Machine Learning for Daemon Security in Linux Environments
DaemonSec is an early-stage startup exploring machine learning (ML)-based security for Linux daemons, a critical yet often overlooked attack surface. While daemon security remains underexplored, conventional defenses struggle against adaptive threats and zero-day exploits. To assess the perspectives of IT professionals on ML-driven daemon protection, a systematic interview study based on semi-structured interviews was conducted with 22 professionals from industry and academia. The study evaluates adoption, feasibility, and trust in ML-based security solutions. While participants recognized the potential of ML for real-time anomaly detection, findings reveal skepticism toward full automation, limited security awareness among non-security roles, and concerns about patching delays creating attack windows. This paper presents the methods, key findings, and implications for advancing ML-driven daemon security in industry.
comment: Preprint for industry track
Community Empowerment through Location-Based AR: The Thámien Ohlone AR Tour
Community empowerment is the process of enabling communities to increase control over their narratives, resources, and futures. In HCI and design, this social challenge centers on helping marginalized groups gain agency through technology and design interventions. For Indigenous communities in particular, empowerment means not only representation but sovereignty in how their stories are told and by whom. Location-based augmented reality (AR) offers a novel opportunity to address this challenge. By overlaying digital content onto physical places, AR can spatially anchor community narratives in the real world, allowing communities to re-tell the story of a place on their own terms. Such site-specific AR experiences have already been used to reveal hidden histories, re-imagine colonial monuments, and celebrate minority cultures. The affordances of XR - particularly AR\'s spatial interaction and immersive storytelling - make it a promising tool for cultural continuity and community activism. In this position paper, we focus on how these XR affordances can empower communities, using the Th\'amien Ohlone AR Tour as a case study. We outline why traditional digital interventions fall short of true empowerment, how AR's immersive qualities uniquely support Indigenous self-determination, insights from co-designing the Ohlone AR Tour, and future directions to scale such efforts responsibly.
comment: This position paper was presented at the CHI 2025 workshop (arXiv:2504.07475)
Exploring Families' Use and Mediation of Generative AI: A Multi-User Perspective
Applications of Generative AI (GenAI), such as ChatGPT, have gained popularity among the public due to their ease of access, use, and support of educational and creative activities. Despite these benefits, GenAI poses unique risks for families, such as lacking sufficient safeguards tailored to protect children under 16 years of age and not offering parental control features. This study explores families' use and co-use of GenAI, the perceived risks and opportunities of ChatGPT, and how parents mediate their children's use of GenAI. Through semi-structured interviews with 12 families, we identified ways families used and mediated GenAI and factors that influenced parents' GenAI mediation strategies. We contextualize our findings with a modified model of family mediation strategies, drawing from previous family media and mediation frameworks. We provide insights for future research on family-GenAI interactions and highlight the need for more robust protective measures on GenAI platforms for families.
Learning from Elders: Making an LLM-powered Chatbot for Retirement Communities more Accessible through User-centered Design
Low technology and eHealth literacy among older adults in retirement communities hinder engagement with digital tools. To address this, we designed an LLM-powered chatbot prototype using a human-centered approach for a local retirement community. Through interviews and persona development, we prioritized accessibility and dual functionality: simplifying internal information retrieval and improving technology and eHealth literacy. A pilot trial with residents demonstrated high satisfaction and ease of use, but also identified areas for further improvement. Based on the feedback, we refined the chatbot using GPT-3.5 Turbo and Streamlit. The chatbot employs tailored prompt engineering to deliver concise responses. Accessible features like adjustable font size, interface theme and personalized follow-up responses were implemented. Future steps include enabling voice-to-text function and longitudinal intervention studies. Together, our results highlight the potential of LLM-driven chatbots to empower older adults through accessible, personalized interactions, bridging literacy gaps in retirement communities.
comment: Accepted as Research talk for Considering Cultural and Linguistic Diversity in AI Applications workshop at CALD-AI@ASIS&T 2025
A Formalism and Library for Database Visualization
Existing data visualization formalisms are restricted to single-table inputs, which makes existing visualization grammars like Vega-lite or ggplot2 tedious to use, have overly complex APIs, and unsound when visualization multi-table data. This paper presents the first visualization formalism to support databases as input -- in other words, *database visualization*. A visualization specification is defined as a mapping from database constraints (e.g., schemas, types, foreign keys) to visual representations of those constraints, and we state that a visualization is *faithful* if it visually preserves the underlying database constraints. This formalism explains how visualization designs are the result of implicit data modeling decisions. We further develop a javascript library called dvl and use a series of case studies to show its expressiveness over specialized visualization systems and existing grammar-based languages.
Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation
The array of emergent capabilities of large language models (LLMs) has sparked interest in assessing their ability to simulate human opinions in a variety of contexts, potentially serving as surrogates for human subjects in opinion surveys. However, previous evaluations of this capability have depended heavily on costly, domain-specific human survey data, and mixed empirical results about LLM effectiveness create uncertainty for managers about whether investing in this technology is justified in early-stage research. To address these challenges, we introduce a series of quality checks to support early-stage deliberation about the viability of using LLMs for simulating human opinions. These checks emphasize logical constraints, model stability, and alignment with stakeholder expectations of model outputs, thereby reducing dependence on human-generated data in the initial stages of evaluation. We demonstrate the usefulness of the proposed quality control tests in the context of AI-assisted content moderation, an application that both advocates and critics of LLMs' capabilities to simulate human opinion see as a desirable potential use case. None of the tested models passed all quality control checks, revealing several failure modes. We conclude by discussing implications of these failure modes and recommend how organizations can utilize our proposed tests for prompt engineering and in their risk management practices when considering the use of LLMs for opinion simulation. We make our crowdsourced dataset of claims with human and LLM annotations publicly available for future research.
RiskRAG: A Data-Driven Solution for Improved AI Model Risk Reporting
Risk reporting is essential for documenting AI models, yet only 14% of model cards mention risks, out of which 96% copying content from a small set of cards, leading to a lack of actionable insights. Existing proposals for improving model cards do not resolve these issues. To address this, we introduce RiskRAG, a Retrieval Augmented Generation based risk reporting solution guided by five design requirements we identified from literature, and co-design with 16 developers: identifying diverse model-specific risks, clearly presenting and prioritizing them, contextualizing for real-world uses, and offering actionable mitigation strategies. Drawing from 450K model cards and 600 real-world incidents, RiskRAG pre-populates contextualized risk reports. A preliminary study with 50 developers showed that they preferred RiskRAG over standard model cards, as it better met all the design requirements. A final study with 38 developers, 40 designers, and 37 media professionals showed that RiskRAG improved their way of selecting the AI model for a specific application, encouraging a more careful and deliberative decision-making. The RiskRAG project page is accessible at: https://social-dynamics.net/ai-risks/card.
DataMap: A Portable Application for Visualizing High-Dimensional Data
Motivation: The visualization and analysis of high-dimensional data are essential in biomedical research. There is a need for secure, scalable, and reproducible tools to facilitate data exploration and interpretation. Results: We introduce DataMap, a browser-based application for visualization of high-dimensional data using heatmaps, principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE). DataMap runs in the web browser, ensuring data privacy while eliminating the need for installation or a server. The application has an intuitive user interface for data transformation, annotation, and generation of reproducible R code. Availability and Implementation: Freely available as a GitHub page https://gexijin.github.io/datamap/. The source code can be found at https://github.com/gexijin/datamap, and can also be installed as an R package. Contact: Xijin.Ge@sdstate.ed
Diachronic and synchronic variation in the performance of adaptive machine learning systems: The ethical challenges
Objectives: Machine learning (ML) has the potential to facilitate "continual learning" in medicine, in which an ML system continues to evolve in response to exposure to new data over time, even after being deployed in a clinical setting. In this paper, we provide a tutorial on the range of ethical issues raised by the use of such "adaptive" ML systems in medicine that have, thus far, been neglected in the literature. Target audience: The target audiences for this tutorial are the developers of machine learning AI systems, healthcare regulators, the broader medical informatics community, and practicing clinicians. Scope: Discussions of adaptive ML systems to date have overlooked the distinction between two sorts of variance that such systems may exhibit -- diachronic evolution (change over time) and synchronic variation (difference between cotemporaneous instantiations of the algorithm at different sites) -- and under-estimated the significance of the latter. We highlight the challenges that diachronic evolution and synchronic variation present for the quality of patient care, informed consent, and equity, and discuss the complex ethical trade-offs involved in the design of such systems.
Enhancing Human-Robot Interaction in Healthcare: A Study on Nonverbal Communication Cues and Trust Dynamics with NAO Robot Caregivers
As the population of older adults increases, so will the need for both human and robot care providers. While traditional practices involve hiring human caregivers to serve meals and attend to basic needs, older adults often require continuous companionship and health monitoring. However, hiring human caregivers for this job costs a lot of money. However, using a robot like Nao could be cheaper and still helpful. This study explores the integration of humanoid robots, particularly Nao, in health monitoring and caregiving for older adults. Using a mixed-methods approach with a within-subject factorial design, we investigated the effectiveness of nonverbal communication modalities, including touch, gestures, and LED patterns, in enhancing human-robot interactions. Our results indicate that Nao's touch-based health monitoring was well-received by participants, with positive ratings across various dimensions. LED patterns were perceived as more effective and accurate compared to hand and head gestures. Moreover, longer interactions were associated with higher trust levels and perceived empathy, highlighting the importance of prolonged engagement in fostering trust in human-robot interactions. Despite limitations, our study contributes valuable insights into the potential of humanoid robots to improve health monitoring and caregiving for older adults.
comment: The dataset used in this manuscript was created for the purpose of a class project and does not represent actual research data reviewed through a formal ethical process. Therefore, I was not permitted to submit this project to any public platform, as doing so would be considered an academic violation
Youth as Advisors in Participatory Design: Situating Teens' Expertise in Everyday Algorithm Auditing with Teachers and Researchers
Research on children and youth's participation in different roles in the design of technologies is one of the core contributions in child-computer interaction studies. Building on this work, we situate youth as advisors to a group of high school computer science teacher- and researcher-designers creating learning activities in the context of emerging technologies. Specifically, we explore algorithm auditing as a potential entry point for youth and adults to critically evaluate generative AI algorithmic systems, with the goal of designing classroom lessons. Through a two-hour session where three teenagers (16-18 years) served as advisors, we (1) examine the types of expertise the teens shared and (2) identify back stage design elements that fostered their agency and voice in this advisory role. Our discussion considers opportunities and challenges in situating youth as advisors, providing recommendations for actions that researchers, facilitators, and teachers can take to make this unusual arrangement feasible and productive.
ANSR-DT: An Adaptive Neuro-Symbolic Learning and Reasoning Framework for Digital Twins
In this paper, we propose an Adaptive Neuro-Symbolic Learning and Reasoning Framework for digital twin technology called ``ANSR-DT." Digital twins in industrial environments often struggle with interpretability, real-time adaptation, and human input integration. Our approach addresses these challenges by combining CNN-LSTM dynamic event detection with reinforcement learning and symbolic reasoning to enable adaptive intelligence with interpretable decision processes. This integration enhances environmental understanding while promoting continuous learning, leading to more effective real-time decision-making in human-machine collaborative applications. We evaluated ANSR-DT on synthetic industrial data, observing significant improvements over traditional approaches, with up to 99.5% accuracy for dynamic pattern recognition. The framework demonstrated superior adaptability with extended reinforcement learning training, improving explained variance from 0.447 to 0.547. Future work aims at scaling to larger datasets to test rule management beyond the current 14 rules. Our open-source implementation promotes reproducibility and establishes a foundation for future research in adaptive, interpretable digital twins for industrial applications.
A Modular Edge Device Network for Surgery Digitalization
Future surgical care demands real-time, integrated data to drive informed decision-making and improve patient outcomes. The pressing need for seamless and efficient data capture in the OR motivates our development of a modular solution that bridges the gap between emerging machine learning techniques and interventional medicine. We introduce a network of edge devices, called Data Hubs (DHs), that interconnect diverse medical sensors, imaging systems, and robotic tools via optical fiber and a centralized network switch. Built on the NVIDIA Jetson Orin NX, each DH supports multiple interfaces (HDMI, USB-C, Ethernet) and encapsulates device-specific drivers within Docker containers using the Isaac ROS framework and ROS2. A centralized user interface enables straightforward configuration and real-time monitoring, while an Nvidia DGX computer provides state-of-the-art data processing and storage. We validate our approach through an ultrasound-based 3D anatomical reconstruction experiment that combines medical imaging, pose tracking, and RGB-D data acquisition.
comment: Accepted for the Hamlyn Symposium, London, June 2025
A Beautiful Mind: Principles and Strategies for AI-Augmented Human Reasoning
Amidst the race to create more intelligent machines there is a risk that we will rely on AI in ways that reduce our own agency as humans. To reduce this risk, we could aim to create tools that prioritize and enhance the human role in human-AI interactions. This paper outlines a human-centered augmented reasoning paradigm by 1. Articulating fundamental principles for augmented reasoning tools, emphasizing their ergonomic, pre-conclusive, directable, exploratory, enhancing, and integrated nature; 2. Proposing a 'many tasks, many tools' approach to ensuring human influence and control, and 3. Offering examples of interaction modes that can serve as bridges between human reasoning and AI algorithms.
comment: 13 pages, 7062 words, 1 table
Protecting Human Cognition in the Age of AI
The rapid adoption of Generative AI (GenAI) is significantly reshaping human cognition, influencing how we engage with information, think, reason, and learn. This paper synthesizes existing literature on GenAI's effects on different aspects of human cognition. Drawing on Krathwohl's revised Bloom's Taxonomy and Dewey's conceptualization of reflective thought, we examine the mechanisms through which GenAI is affecting the development of different cognitive abilities. We focus on novices, such as students, who may lack both domain knowledge and an understanding of effective human-AI interaction. Accordingly, we provide implications for rethinking and designing educational experiences that foster critical thinking and deeper cognitive engagement.
comment: Accepted at Tools for Thought Workshop at CHI'25
Computer Vision and Pattern Recognition
PixelFlow: Pixel-Space Generative Models with Flow
We present PixelFlow, a family of image generation models that operate directly in the raw pixel space, in contrast to the predominant latent-space models. This approach simplifies the image generation process by eliminating the need for a pre-trained Variational Autoencoder (VAE) and enabling the whole model end-to-end trainable. Through efficient cascade flow modeling, PixelFlow achieves affordable computation cost in pixel space. It achieves an FID of 1.98 on 256$\times$256 ImageNet class-conditional image generation benchmark. The qualitative text-to-image results demonstrate that PixelFlow excels in image quality, artistry, and semantic control. We hope this new paradigm will inspire and open up new opportunities for next-generation visual generation models. Code and models are available at https://github.com/ShoufaChen/PixelFlow.
comment: Technical report. Code: https://github.com/ShoufaChen/PixelFlow
Geo4D: Leveraging Video Generators for Geometric 4D Scene Reconstruction
We introduce Geo4D, a method to repurpose video diffusion models for monocular 3D reconstruction of dynamic scenes. By leveraging the strong dynamic prior captured by such video models, Geo4D can be trained using only synthetic data while generalizing well to real data in a zero-shot manner. Geo4D predicts several complementary geometric modalities, namely point, depth, and ray maps. It uses a new multi-modal alignment algorithm to align and fuse these modalities, as well as multiple sliding windows, at inference time, thus obtaining robust and accurate 4D reconstruction of long videos. Extensive experiments across multiple benchmarks show that Geo4D significantly surpasses state-of-the-art video depth estimation methods, including recent methods such as MonST3R, which are also designed to handle dynamic scenes.
comment: 16 pages, 5 figures, Project page: https://geo4d.github.io/
GLUS: Global-Local Reasoning Unified into A Single Large Language Model for Video Segmentation CVPR 2025
This paper proposes a novel framework utilizing multi-modal large language models (MLLMs) for referring video object segmentation (RefVOS). Previous MLLM-based methods commonly struggle with the dilemma between "Ref" and "VOS": they either specialize in understanding a few key frames (global reasoning) or tracking objects on continuous frames (local reasoning), and rely on external VOS or frame selectors to mitigate the other end of the challenge. However, our framework GLUS shows that global and local consistency can be unified into a single video segmentation MLLM: a set of sparse "context frames" provides global information, while a stream of continuous "query frames" conducts local object tracking. This is further supported by jointly training the MLLM with a pre-trained VOS memory bank to simultaneously digest short-range and long-range temporal information. To improve the information efficiency within the limited context window of MLLMs, we introduce object contrastive learning to distinguish hard false-positive objects and a self-refined framework to identify crucial frames and perform propagation. By collectively integrating these insights, our GLUS delivers a simple yet effective baseline, achieving new state-of-the-art for MLLMs on the MeViS and Ref-Youtube-VOS benchmark. Our project page is at https://glus-video.github.io/.
comment: CVPR 2025
VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning
Recent progress in diffusion models significantly advances various image generation tasks. However, the current mainstream approach remains focused on building task-specific models, which have limited efficiency when supporting a wide range of different needs. While universal models attempt to address this limitation, they face critical challenges, including generalizable task instruction, appropriate task distributions, and unified architectural design. To tackle these challenges, we propose VisualCloze, a universal image generation framework, which supports a wide range of in-domain tasks, generalization to unseen ones, unseen unification of multiple tasks, and reverse generation. Unlike existing methods that rely on language-based task instruction, leading to task ambiguity and weak generalization, we integrate visual in-context learning, allowing models to identify tasks from visual demonstrations. Meanwhile, the inherent sparsity of visual task distributions hampers the learning of transferable knowledge across tasks. To this end, we introduce Graph200K, a graph-structured dataset that establishes various interrelated tasks, enhancing task density and transferable knowledge. Furthermore, we uncover that our unified image generation formulation shared a consistent objective with image infilling, enabling us to leverage the strong generative priors of pre-trained infilling models without modifying the architectures.
comment: Project page: https://visualcloze.github.io/
CCMNet: Leveraging Calibrated Color Correction Matrices for Cross-Camera Color Constancy
Computational color constancy, or white balancing, is a key module in a camera's image signal processor (ISP) that corrects color casts from scene lighting. Because this operation occurs in the camera-specific raw color space, white balance algorithms must adapt to different cameras. This paper introduces a learning-based method for cross-camera color constancy that generalizes to new cameras without retraining. Our method leverages pre-calibrated color correction matrices (CCMs) available on ISPs that map the camera's raw color space to a standard space (e.g., CIE XYZ). Our method uses these CCMs to transform predefined illumination colors (i.e., along the Planckian locus) into the test camera's raw space. The mapped illuminants are encoded into a compact camera fingerprint embedding (CFE) that enables the network to adapt to unseen cameras. To prevent overfitting due to limited cameras and CCMs during training, we introduce a data augmentation technique that interpolates between cameras and their CCMs. Experimental results across multiple datasets and backbones show that our method achieves state-of-the-art cross-camera color constancy while remaining lightweight and relying only on data readily available in camera ISPs.
Detect Anything 3D in the Wild
Despite the success of deep learning in close-set 3D object detection, existing approaches struggle with zero-shot generalization to novel objects and camera configurations. We introduce DetAny3D, a promptable 3D detection foundation model capable of detecting any novel object under arbitrary camera configurations using only monocular inputs. Training a foundation model for 3D detection is fundamentally constrained by the limited availability of annotated 3D data, which motivates DetAny3D to leverage the rich prior knowledge embedded in extensively pre-trained 2D foundation models to compensate for this scarcity. To effectively transfer 2D knowledge to 3D, DetAny3D incorporates two core modules: the 2D Aggregator, which aligns features from different 2D foundation models, and the 3D Interpreter with Zero-Embedding Mapping, which mitigates catastrophic forgetting in 2D-to-3D knowledge transfer. Experimental results validate the strong generalization of our DetAny3D, which not only achieves state-of-the-art performance on unseen categories and novel camera configurations, but also surpasses most competitors on in-domain data.DetAny3D sheds light on the potential of the 3D foundation model for diverse applications in real-world scenarios, e.g., rare object detection in autonomous driving, and demonstrates promise for further exploration of 3D-centric tasks in open-world settings. More visualization results can be found at DetAny3D project page.
MM-IFEngine: Towards Multimodal Instruction Following
The Instruction Following (IF) ability measures how well Multi-modal Large Language Models (MLLMs) understand exactly what users are telling them and whether they are doing it right. Existing multimodal instruction following training data is scarce, the benchmarks are simple with atomic instructions, and the evaluation strategies are imprecise for tasks demanding exact output constraints. To address this, we present MM-IFEngine, an effective pipeline to generate high-quality image-instruction pairs. Our MM-IFEngine pipeline yields large-scale, diverse, and high-quality training data MM-IFInstruct-23k, which is suitable for Supervised Fine-Tuning (SFT) and extended as MM-IFDPO-23k for Direct Preference Optimization (DPO). We further introduce MM-IFEval, a challenging and diverse multi-modal instruction-following benchmark that includes (1) both compose-level constraints for output responses and perception-level constraints tied to the input images, and (2) a comprehensive evaluation pipeline incorporating both rule-based assessment and judge model. We conduct SFT and DPO experiments and demonstrate that fine-tuning MLLMs on MM-IFInstruct-23k and MM-IFDPO-23k achieves notable gains on various IF benchmarks, such as MM-IFEval (+10.2$\%$), MIA (+7.6$\%$), and IFEval (+12.3$\%$). The full data and evaluation code will be released on https://github.com/SYuan03/MM-IFEngine.
VCR-Bench: A Comprehensive Evaluation Framework for Video Chain-of-Thought Reasoning
The advancement of Chain-of-Thought (CoT) reasoning has significantly enhanced the capabilities of large language models (LLMs) and large vision-language models (LVLMs). However, a rigorous evaluation framework for video CoT reasoning remains absent. Current video benchmarks fail to adequately assess the reasoning process and expose whether failures stem from deficiencies in perception or reasoning capabilities. Therefore, we introduce VCR-Bench, a novel benchmark designed to comprehensively evaluate LVLMs' Video Chain-of-Thought Reasoning capabilities. VCR-Bench comprises 859 videos spanning a variety of video content and durations, along with 1,034 high-quality question-answer pairs. Each pair is manually annotated with a stepwise CoT rationale, where every step is tagged to indicate its association with the perception or reasoning capabilities. Furthermore, we design seven distinct task dimensions and propose the CoT score to assess the entire CoT process based on the stepwise tagged CoT rationals. Extensive experiments on VCR-Bench highlight substantial limitations in current LVLMs. Even the top-performing model, o1, only achieves a 62.8% CoT score and an 56.7% accuracy, while most models score below 40%. Experiments show most models score lower on perception than reasoning steps, revealing LVLMs' key bottleneck in temporal-spatial information processing for complex video reasoning. A robust positive correlation between the CoT score and accuracy confirms the validity of our evaluation framework and underscores the critical role of CoT reasoning in solving complex video reasoning tasks. We hope VCR-Bench to serve as a standardized evaluation framework and expose the actual drawbacks in complex video reasoning task.
BoxDreamer: Dreaming Box Corners for Generalizable Object Pose Estimation
This paper presents a generalizable RGB-based approach for object pose estimation, specifically designed to address challenges in sparse-view settings. While existing methods can estimate the poses of unseen objects, their generalization ability remains limited in scenarios involving occlusions and sparse reference views, restricting their real-world applicability. To overcome these limitations, we introduce corner points of the object bounding box as an intermediate representation of the object pose. The 3D object corners can be reliably recovered from sparse input views, while the 2D corner points in the target view are estimated through a novel reference-based point synthesizer, which works well even in scenarios involving occlusions. As object semantic points, object corners naturally establish 2D-3D correspondences for object pose estimation with a PnP algorithm. Extensive experiments on the YCB-Video and Occluded-LINEMOD datasets show that our approach outperforms state-of-the-art methods, highlighting the effectiveness of the proposed representation and significantly enhancing the generalization capabilities of object pose estimation, which is crucial for real-world applications.
comment: Project page: https://zju3dv.github.io/boxdreamer
Perception-R1: Pioneering Perception Policy with Reinforcement Learning
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in MLLM post-training for perception policy learning. While promising, our initial experiments reveal that incorporating a thinking process through RL does not consistently lead to performance gains across all visual perception tasks. This leads us to delve into the essential role of RL in the context of visual perception. In this work, we return to the fundamentals and explore the effects of RL on different perception tasks. We observe that the perceptual complexity is a major factor in determining the effectiveness of RL. We also observe that reward design plays a crucial role in further approching the upper limit of model perception. To leverage these findings, we propose Perception-R1, a scalable RL framework using GRPO during MLLM post-training. With a standard Qwen2.5-VL-3B-Instruct, Perception-R1 achieves +4.2% on RefCOCO+, +17.9% on PixMo-Count, +4.2% on PageOCR, and notably, 31.9% AP on COCO2017 val for the first time, establishing a strong baseline for perception policy learning.
comment: Github page: https://github.com/linkangheng/PR1
Scaling Laws for Native Multimodal Models Scaling Laws for Native Multimodal Models
Building general-purpose models that can effectively perceive the world through multimodal signals has been a long-standing goal. Current approaches involve integrating separately pre-trained components, such as connecting vision encoders to LLMs and continuing multimodal training. While such approaches exhibit remarkable sample efficiency, it remains an open question whether such late-fusion architectures are inherently superior. In this work, we revisit the architectural design of native multimodal models (NMMs)--those trained from the ground up on all modalities--and conduct an extensive scaling laws study, spanning 457 trained models with different architectures and training mixtures. Our investigation reveals no inherent advantage to late-fusion architectures over early-fusion ones, which do not rely on image encoders. On the contrary, early-fusion exhibits stronger performance at lower parameter counts, is more efficient to train, and is easier to deploy. Motivated by the strong performance of the early-fusion architectures, we show that incorporating Mixture of Experts (MoEs) allows for models that learn modality-specific weights, significantly enhancing performance.
comment: 31 pages, 26 figures, 13 tables
InteractAvatar: Modeling Hand-Face Interaction in Photorealistic Avatars with Deformable Gaussians
With the rising interest from the community in digital avatars coupled with the importance of expressions and gestures in communication, modeling natural avatar behavior remains an important challenge across many industries such as teleconferencing, gaming, and AR/VR. Human hands are the primary tool for interacting with the environment and essential for realistic human behavior modeling, yet existing 3D hand and head avatar models often overlook the crucial aspect of hand-body interactions, such as between hand and face. We present InteracttAvatar, the first model to faithfully capture the photorealistic appearance of dynamic hand and non-rigid hand-face interactions. Our novel Dynamic Gaussian Hand model, combining template model and 3D Gaussian Splatting as well as a dynamic refinement module, captures pose-dependent change, e.g. the fine wrinkles and complex shadows that occur during articulation. Importantly, our hand-face interaction module models the subtle geometry and appearance dynamics that underlie common gestures. Through experiments of novel view synthesis, self reenactment and cross-identity reenactment, we demonstrate that InteracttAvatar can reconstruct hand and hand-face interactions from monocular or multiview videos with high-fidelity details and be animated with novel poses.
GenEAva: Generating Cartoon Avatars with Fine-Grained Facial Expressions from Realistic Diffusion-based Faces
Cartoon avatars have been widely used in various applications, including social media, online tutoring, and gaming. However, existing cartoon avatar datasets and generation methods struggle to present highly expressive avatars with fine-grained facial expressions and are often inspired from real-world identities, raising privacy concerns. To address these challenges, we propose a novel framework, GenEAva, for generating high-quality cartoon avatars with fine-grained facial expressions. Our approach fine-tunes a state-of-the-art text-to-image diffusion model to synthesize highly detailed and expressive facial expressions. We then incorporate a stylization model that transforms these realistic faces into cartoon avatars while preserving both identity and expression. Leveraging this framework, we introduce the first expressive cartoon avatar dataset, GenEAva 1.0, specifically designed to capture 135 fine-grained facial expressions, featuring 13,230 expressive cartoon avatars with a balanced distribution across genders, racial groups, and age ranges. We demonstrate that our fine-tuned model generates more expressive faces than the state-of-the-art text-to-image diffusion model SDXL. We also verify that the cartoon avatars generated by our framework do not include memorized identities from fine-tuning data. The proposed framework and dataset provide a diverse and expressive benchmark for future research in cartoon avatar generation.
HoloPart: Generative 3D Part Amodal Segmentation
3D part amodal segmentation--decomposing a 3D shape into complete, semantically meaningful parts, even when occluded--is a challenging but crucial task for 3D content creation and understanding. Existing 3D part segmentation methods only identify visible surface patches, limiting their utility. Inspired by 2D amodal segmentation, we introduce this novel task to the 3D domain and propose a practical, two-stage approach, addressing the key challenges of inferring occluded 3D geometry, maintaining global shape consistency, and handling diverse shapes with limited training data. First, we leverage existing 3D part segmentation to obtain initial, incomplete part segments. Second, we introduce HoloPart, a novel diffusion-based model, to complete these segments into full 3D parts. HoloPart utilizes a specialized architecture with local attention to capture fine-grained part geometry and global shape context attention to ensure overall shape consistency. We introduce new benchmarks based on the ABO and PartObjaverse-Tiny datasets and demonstrate that HoloPart significantly outperforms state-of-the-art shape completion methods. By incorporating HoloPart with existing segmentation techniques, we achieve promising results on 3D part amodal segmentation, opening new avenues for applications in geometry editing, animation, and material assignment.
comment: Project Page: https://vast-ai-research.github.io/HoloPart
MARS: a Multimodal Alignment and Ranking System for Few-Shot Segmentation
Current Few Shot Segmentation literature lacks a mask selection method that goes beyond visual similarity between the query and example images, leading to suboptimal predictions. We present MARS, a plug-and-play ranking system that leverages multimodal cues to filter and merge mask proposals robustly. Starting from a set of mask predictions for a single query image, we score, filter, and merge them to improve results. Proposals are evaluated using multimodal scores computed at local and global levels. Extensive experiments on COCO-20i, Pascal-5i, LVIS-92i, and FSS-1000 demonstrate that integrating all four scoring components is crucial for robust ranking, validating our contribution. As MARS can be effortlessly integrated with various mask proposal systems, we deploy it across a wide range of top-performer methods and achieve new state-of-the-art results on multiple existing benchmarks. Code will be available upon acceptance.
Beyond the Frame: Generating 360° Panoramic Videos from Perspective Videos
360{\deg} videos have emerged as a promising medium to represent our dynamic visual world. Compared to the "tunnel vision" of standard cameras, their borderless field of view offers a more complete perspective of our surroundings. While existing video models excel at producing standard videos, their ability to generate full panoramic videos remains elusive. In this paper, we investigate the task of video-to-360{\deg} generation: given a perspective video as input, our goal is to generate a full panoramic video that is consistent with the original video. Unlike conventional video generation tasks, the output's field of view is significantly larger, and the model is required to have a deep understanding of both the spatial layout of the scene and the dynamics of objects to maintain spatio-temporal consistency. To address these challenges, we first leverage the abundant 360{\deg} videos available online and develop a high-quality data filtering pipeline to curate pairwise training data. We then carefully design a series of geometry- and motion-aware operations to facilitate the learning process and improve the quality of 360{\deg} video generation. Experimental results demonstrate that our model can generate realistic and coherent 360{\deg} videos from in-the-wild perspective video. In addition, we showcase its potential applications, including video stabilization, camera viewpoint control, and interactive visual question answering.
comment: Project page: https://red-fairy.github.io/argus/
SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement
In this paper, we present an effective method to enhance visual reasoning with significantly fewer training samples, relying purely on self-improvement with no knowledge distillation. Our key insight is that the difficulty of training data during reinforcement fine-tuning (RFT) is critical. Appropriately challenging samples can substantially boost reasoning capabilities even when the dataset is small. Despite being intuitive, the main challenge remains in accurately quantifying sample difficulty to enable effective data filtering. To this end, we propose a novel way of repurposing Monte Carlo Tree Search (MCTS) to achieve that. Starting from our curated 70k open-source training samples, we introduce an MCTS-based selection method that quantifies sample difficulty based on the number of iterations required by the VLMs to solve each problem. This explicit step-by-step reasoning in MCTS enforces the model to think longer and better identifies samples that are genuinely challenging. We filter and retain 11k samples to perform RFT on Qwen2.5-VL-7B-Instruct, resulting in our final model, ThinkLite-VL. Evaluation results on eight benchmarks show that ThinkLite-VL improves the average performance of Qwen2.5-VL-7B-Instruct by 7%, using only 11k training samples with no knowledge distillation. This significantly outperforms all existing 7B-level reasoning VLMs, and our fairly comparable baselines that use classic selection methods such as accuracy-based filtering. Notably, on MathVista, ThinkLite-VL-7B achieves the SoTA accuracy of 75.1, surpassing Qwen2.5-VL-72B, GPT-4o, and O1. Our code, data, and model are available at https://github.com/si0wang/ThinkLite-VL.
comment: 21 pages, 5 figures
Zero-Shot Low-dose CT Denoising via Sinogram Flicking
Many low-dose CT imaging methods rely on supervised learning, which requires a large number of paired noisy and clean images. However, obtaining paired images in clinical practice is challenging. To address this issue, zero-shot self-supervised methods train denoising networks using only the information within a single image, such as ZS-N2N. However, these methods often employ downsampling operations that degrade image resolution. Additionally, the training dataset is inherently constrained to the image itself. In this paper, we propose a zero-shot low-dose CT imaging method based on sinogram flicking, which operates within a single image but generates many copies via random conjugate ray matching. Specifically, two conjugate X-ray pencil beams measure the same path; their expected values should be identical, while their noise levels vary during measurements. By randomly swapping portions of the conjugate X-rays in the sinogram domain, we generate a large set of sinograms with consistent content but varying noise patterns. When displayed dynamically, these sinograms exhibit a flickering effect due to their identical structural content but differing noise patterns-hence the term sinogram flicking. We train the network on pairs of sinograms with the same content but different noise distributions using a lightweight model adapted from ZS-NSN. This process is repeated to obtain the final results. A simulation study demonstrates that our method outperforms state-of-the-art approaches such as ZS-N2N.
comment: 4 pages, 4 figures
The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound
Data augmentation is a central component of joint embedding self-supervised learning (SSL). Approaches that work for natural images may not always be effective in medical imaging tasks. This study systematically investigated the impact of data augmentation and preprocessing strategies in SSL for lung ultrasound. Three data augmentation pipelines were assessed: (1) a baseline pipeline commonly used across imaging domains, (2) a novel semantic-preserving pipeline designed for ultrasound, and (3) a distilled set of the most effective transformations from both pipelines. Pretrained models were evaluated on multiple classification tasks: B-line detection, pleural effusion detection, and COVID-19 classification. Experiments revealed that semantics-preserving data augmentation resulted in the greatest performance for COVID-19 classification - a diagnostic task requiring global image context. Cropping-based methods yielded the greatest performance on the B-line and pleural effusion object classification tasks, which require strong local pattern recognition. Lastly, semantics-preserving ultrasound image preprocessing resulted in increased downstream performance for multiple tasks. Guidance regarding data augmentation and preprocessing strategies was synthesized for practitioners working with SSL in ultrasound.
comment: 17 pages, 12 figures, 18 tables, Submitted to Medical Image Analysis
SAMJAM: Zero-Shot Video Scene Graph Generation for Egocentric Kitchen Videos
Video Scene Graph Generation (VidSGG) is an important topic in understanding dynamic kitchen environments. Current models for VidSGG require extensive training to produce scene graphs. Recently, Vision Language Models (VLM) and Vision Foundation Models (VFM) have demonstrated impressive zero-shot capabilities in a variety of tasks. However, VLMs like Gemini struggle with the dynamics for VidSGG, failing to maintain stable object identities across frames. To overcome this limitation, we propose SAMJAM, a zero-shot pipeline that combines SAM2's temporal tracking with Gemini's semantic understanding. SAM2 also improves upon Gemini's object grounding by producing more accurate bounding boxes. In our method, we first prompt Gemini to generate a frame-level scene graph. Then, we employ a matching algorithm to map each object in the scene graph with a SAM2-generated or SAM2-propagated mask, producing a temporally-consistent scene graph in dynamic environments. Finally, we repeat this process again in each of the following frames. We empirically demonstrate that SAMJAM outperforms Gemini by 8.33% in mean recall on the EPIC-KITCHENS and EPIC-KITCHENS-100 datasets.
V2V3D: View-to-View Denoised 3D Reconstruction for Light-Field Microscopy CVPR 2025
Light field microscopy (LFM) has gained significant attention due to its ability to capture snapshot-based, large-scale 3D fluorescence images. However, existing LFM reconstruction algorithms are highly sensitive to sensor noise or require hard-to-get ground-truth annotated data for training. To address these challenges, this paper introduces V2V3D, an unsupervised view2view-based framework that establishes a new paradigm for joint optimization of image denoising and 3D reconstruction in a unified architecture. We assume that the LF images are derived from a consistent 3D signal, with the noise in each view being independent. This enables V2V3D to incorporate the principle of noise2noise for effective denoising. To enhance the recovery of high-frequency details, we propose a novel wave-optics-based feature alignment technique, which transforms the point spread function, used for forward propagation in wave optics, into convolution kernels specifically designed for feature alignment. Moreover, we introduce an LFM dataset containing LF images and their corresponding 3D intensity volumes. Extensive experiments demonstrate that our approach achieves high computational efficiency and outperforms the other state-of-the-art methods. These advancements position V2V3D as a promising solution for 3D imaging under challenging conditions.
comment: CVPR 2025
AerialVG: A Challenging Benchmark for Aerial Visual Grounding by Exploring Positional Relations
Visual grounding (VG) aims to localize target objects in an image based on natural language descriptions. In this paper, we propose AerialVG, a new task focusing on visual grounding from aerial views. Compared to traditional VG, AerialVG poses new challenges, \emph{e.g.}, appearance-based grounding is insufficient to distinguish among multiple visually similar objects, and positional relations should be emphasized. Besides, existing VG models struggle when applied to aerial imagery, where high-resolution images cause significant difficulties. To address these challenges, we introduce the first AerialVG dataset, consisting of 5K real-world aerial images, 50K manually annotated descriptions, and 103K objects. Particularly, each annotation in AerialVG dataset contains multiple target objects annotated with relative spatial relations, requiring models to perform comprehensive spatial reasoning. Furthermore, we propose an innovative model especially for the AerialVG task, where a Hierarchical Cross-Attention is devised to focus on target regions, and a Relation-Aware Grounding module is designed to infer positional relations. Experimental results validate the effectiveness of our dataset and method, highlighting the importance of spatial reasoning in aerial visual grounding. The code and dataset will be released.
comment: 8 pages, 6 figures
HarmonySeg: Tubular Structure Segmentation with Deep-Shallow Feature Fusion and Growth-Suppression Balanced Loss
Accurate segmentation of tubular structures in medical images, such as vessels and airway trees, is crucial for computer-aided diagnosis, radiotherapy, and surgical planning. However, significant challenges exist in algorithm design when faced with diverse sizes, complex topologies, and (often) incomplete data annotation of these structures. We address these difficulties by proposing a new tubular structure segmentation framework named HarmonySeg. First, we design a deep-to-shallow decoder network featuring flexible convolution blocks with varying receptive fields, which enables the model to effectively adapt to tubular structures of different scales. Second, to highlight potential anatomical regions and improve the recall of small tubular structures, we incorporate vesselness maps as auxiliary information. These maps are aligned with image features through a shallow-and-deep fusion module, which simultaneously eliminates unreasonable candidates to maintain high precision. Finally, we introduce a topology-preserving loss function that leverages contextual and shape priors to balance the growth and suppression of tubular structures, which also allows the model to handle low-quality and incomplete annotations. Extensive quantitative experiments are conducted on four public datasets. The results show that our model can accurately segment 2D and 3D tubular structures and outperform existing state-of-the-art methods. External validation on a private dataset also demonstrates good generalizability.
P2Object: Single Point Supervised Object Detection and Instance Segmentation
Object recognition using single-point supervision has attracted increasing attention recently. However, the performance gap compared with fully-supervised algorithms remains large. Previous works generated class-agnostic \textbf{\textit{proposals in an image}} offline and then treated mixed candidates as a single bag, putting a huge burden on multiple instance learning (MIL). In this paper, we introduce Point-to-Box Network (P2BNet), which constructs balanced \textbf{\textit{instance-level proposal bags}} by generating proposals in an anchor-like way and refining the proposals in a coarse-to-fine paradigm. Through further research, we find that the bag of proposals, either at the image level or the instance level, is established on discrete box sampling. This leads the pseudo box estimation into a sub-optimal solution, resulting in the truncation of object boundaries or the excessive inclusion of background. Hence, we conduct a series exploration of discrete-to-continuous optimization, yielding P2BNet++ and Point-to-Mask Network (P2MNet). P2BNet++ conducts an approximately continuous proposal sampling strategy by better utilizing spatial clues. P2MNet further introduces low-level image information to assist in pixel prediction, and a boundary self-prediction is designed to relieve the limitation of the estimated boxes. Benefiting from the continuous object-aware \textbf{\textit{pixel-level perception}}, P2MNet can generate more precise bounding boxes and generalize to segmentation tasks. Our method largely surpasses the previous methods in terms of the mean average precision on COCO, VOC, SBD, and Cityscapes, demonstrating great potential to bridge the performance gap compared with fully supervised tasks.
comment: Accepted by IJCV
Nonlocal Retinex-Based Variational Model and its Deep Unfolding Twin for Low-Light Image Enhancement
Images captured under low-light conditions present significant limitations in many applications, as poor lighting can obscure details, reduce contrast, and hide noise. Removing the illumination effects and enhancing the quality of such images is crucial for many tasks, such as image segmentation and object detection. In this paper, we propose a variational method for low-light image enhancement based on the Retinex decomposition into illumination, reflectance, and noise components. A color correction pre-processing step is applied to the low-light image, which is then used as the observed input in the decomposition. Moreover, our model integrates a novel nonlocal gradient-type fidelity term designed to preserve structural details. Additionally, we propose an automatic gamma correction module. Building on the proposed variational approach, we extend the model by introducing its deep unfolding counterpart, in which the proximal operators are replaced with learnable networks. We propose cross-attention mechanisms to capture long-range dependencies in both the nonlocal prior of the reflectance and the nonlocal gradient-based constraint. Experimental results demonstrate that both methods compare favorably with several recent and state-of-the-art techniques across different datasets. In particular, despite not relying on learning strategies, the variational model outperforms most deep learning approaches both visually and in terms of quality metrics.
Revisiting Likelihood-Based Out-of-Distribution Detection by Modeling Representations
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning systems, particularly in safety-critical applications. Likelihood-based deep generative models have historically faced criticism for their unsatisfactory performance in OOD detection, often assigning higher likelihood to OOD data than in-distribution samples when applied to image data. In this work, we demonstrate that likelihood is not inherently flawed. Rather, several properties in the images space prohibit likelihood as a valid detection score. Given a sufficiently good likelihood estimator, specifically using the probability flow formulation of a diffusion model, we show that likelihood-based methods can still perform on par with state-of-the-art methods when applied in the representation space of pre-trained encoders. The code of our work can be found at $\href{https://github.com/limchaos/Likelihood-OOD.git}{\texttt{https://github.com/limchaos/Likelihood-OOD.git}}$.
Breaking the Barriers: Video Vision Transformers for Word-Level Sign Language Recognition
Sign language is a fundamental means of communication for the deaf and hard-of-hearing (DHH) community, enabling nuanced expression through gestures, facial expressions, and body movements. Despite its critical role in facilitating interaction within the DHH population, significant barriers persist due to the limited fluency in sign language among the hearing population. Overcoming this communication gap through automatic sign language recognition (SLR) remains a challenge, particularly at a dynamic word-level, where temporal and spatial dependencies must be effectively recognized. While Convolutional Neural Networks have shown potential in SLR, they are computationally intensive and have difficulties in capturing global temporal dependencies between video sequences. To address these limitations, we propose a Video Vision Transformer (ViViT) model for word-level American Sign Language (ASL) recognition. Transformer models make use of self-attention mechanisms to effectively capture global relationships across spatial and temporal dimensions, which makes them suitable for complex gesture recognition tasks. The VideoMAE model achieves a Top-1 accuracy of 75.58% on the WLASL100 dataset, highlighting its strong performance compared to traditional CNNs with 65.89%. Our study demonstrates that transformer-based architectures have great potential to advance SLR, overcome communication barriers and promote the inclusion of DHH individuals.
Towards Micro-Action Recognition with Limited Annotations: An Asynchronous Pseudo Labeling and Training Approach
Micro-Action Recognition (MAR) aims to classify subtle human actions in video. However, annotating MAR datasets is particularly challenging due to the subtlety of actions. To this end, we introduce the setting of Semi-Supervised MAR (SSMAR), where only a part of samples are labeled. We first evaluate traditional Semi-Supervised Learning (SSL) methods to SSMAR and find that these methods tend to overfit on inaccurate pseudo-labels, leading to error accumulation and degraded performance. This issue primarily arises from the common practice of directly using the predictions of classifier as pseudo-labels to train the model. To solve this issue, we propose a novel framework, called Asynchronous Pseudo Labeling and Training (APLT), which explicitly separates the pseudo-labeling process from model training. Specifically, we introduce a semi-supervised clustering method during the offline pseudo-labeling phase to generate more accurate pseudo-labels. Moreover, a self-adaptive thresholding strategy is proposed to dynamically filter noisy labels of different classes. We then build a memory-based prototype classifier based on the filtered pseudo-labels, which is fixed and used to guide the subsequent model training phase. By alternating the two pseudo-labeling and model training phases in an asynchronous manner, the model can not only be learned with more accurate pseudo-labels but also avoid the overfitting issue. Experiments on three MAR datasets show that our APLT largely outperforms state-of-the-art SSL methods. For instance, APLT improves accuracy by 14.5\% over FixMatch on the MA-12 dataset when using only 50\% labeled data. Code will be publicly available.
Adaptive Detection of Fast Moving Celestial Objects Using a Mixture of Experts and Physical-Inspired Neural Network
Fast moving celestial objects are characterized by velocities across the celestial sphere that significantly differ from the motions of background stars. In observational images, these objects exhibit distinct shapes, contrasting with the typical appearances of stars. Depending on the observational method employed, these celestial entities may be designated as near-Earth objects or asteroids. Historically, fast moving celestial objects have been observed using ground-based telescopes, where the relative stability of stars and Earth facilitated effective image differencing techniques alongside traditional fast moving celestial object detection and classification algorithms. However, the growing prevalence of space-based telescopes, along with their diverse observational modes, produces images with different properties, rendering conventional methods less effective. This paper presents a novel algorithm for detecting fast moving celestial objects within star fields. Our approach enhances state-of-the-art fast moving celestial object detection neural networks by transforming them into physical-inspired neural networks. These neural networks leverage the point spread function of the telescope and the specific observational mode as prior information; they can directly identify moving fast moving celestial objects within star fields without requiring additional training, thereby addressing the limitations of traditional techniques. Additionally, all neural networks are integrated using the mixture of experts technique, forming a comprehensive fast moving celestial object detection algorithm. We have evaluated our algorithm using simulated observational data that mimics various observations carried out by space based telescope scenarios and real observation images. Results demonstrate that our method effectively detects fast moving celestial objects across different observational modes.
comment: Accepted by the AJ
Focal Cortical Dysplasia Type II Detection Using Cross Modality Transfer Learning and Grad-CAM in 3D-CNNs for MRI Analysis
Focal cortical dysplasia (FCD) type II is a major cause of drug-resistant epilepsy, often curable only by surgery. Despite its clinical importance, the diagnosis of FCD is very difficult in MRI because of subtle abnormalities, leading to misdiagnosis. This study investigates the use of 3D convolutional neural networks (3D-CNNs) for FCD detection, using a dataset of 170 subjects (85 FCD patients and 85 controls) composed of T1-weighted and FLAIR MRI scans. In particular, it investigates the benefits obtained from cross-modality transfer learning and explainable artificial intelligence (XAI) techniques, in particular Gradient-weighted Class Activation Mapping (Grad-CAM). ResNet architectures (ResNet-18, -34, and -50) were implemented, employing transfer learning strategies that used pre-trained weights from segmentation tasks. Results indicate that transfer learning significantly enhances classification accuracy (up to 80.3%) and interpretability, as measured by a novel Heat-Score metric, which evaluates the model's focus on clinically relevant regions. Improvements in the Heat-Score metric underscore the model's seizure zone localization capabilities, bringing AI predictions and clinical insights closer together. These results highlight the importance of transfer learning, including cross-modality, and XAI in advancing AI-based medical diagnostics, especially for difficult-to-diagnose pathologies such as FCD.
Exploring a Patch-Wise Approach for Privacy-Preserving Fake ID Detection
In an increasingly digitalized world, verifying the authenticity of ID documents has become a critical challenge for real-life applications such as digital banking, crypto-exchanges, renting, etc. This study focuses on the topic of fake ID detection, covering several limitations in the field. In particular, no publicly available data from real ID documents exists, and most studies rely on proprietary in-house databases that are not available due to privacy reasons. In order to shed some light on this critical challenge that makes difficult to advance in the field, we explore a trade-off between privacy (i.e., amount of sensitive data available) and performance, proposing a novel patch-wise approach for privacy-preserving fake ID detection. Our proposed approach explores how privacy can be enhanced through: i) two levels of anonymization for an ID document (i.e., fully- and pseudo-anonymized), and ii) different patch size configurations, varying the amount of sensitive data visible in the patch image. Also, state-of-the-art methods such as Vision Transformers and Foundation Models are considered in the analysis. The experimental framework shows that, on an unseen database (DLC-2021), our proposal achieves 13.91% and 0% EERs at patch and ID document level, showing a good generalization to other databases. In addition to this exploration, another key contribution of our study is the release of the first publicly available database that contains 48,400 patches from both real and fake ID documents, along with the experimental framework and models, which will be available in our GitHub.
PRAD: Periapical Radiograph Analysis Dataset and Benchmark Model Development
Deep learning (DL), a pivotal technology in artificial intelligence, has recently gained substantial traction in the domain of dental auxiliary diagnosis. However, its application has predominantly been confined to imaging modalities such as panoramic radiographs and Cone Beam Computed Tomography, with limited focus on auxiliary analysis specifically targeting Periapical Radiographs (PR). PR are the most extensively utilized imaging modality in endodontics and periodontics due to their capability to capture detailed local lesions at a low cost. Nevertheless, challenges such as resolution limitations and artifacts complicate the annotation and recognition of PR, leading to a scarcity of publicly available, large-scale, high-quality PR analysis datasets. This scarcity has somewhat impeded the advancement of DL applications in PR analysis. In this paper, we present PRAD-10K, a dataset for PR analysis. PRAD-10K comprises 10,000 clinical periapical radiograph images, with pixel-level annotations provided by professional dentists for nine distinct anatomical structures, lesions, and artificial restorations or medical devices, We also include classification labels for images with typical conditions or lesions. Furthermore, we introduce a DL network named PRNet to establish benchmarks for PR segmentation tasks. Experimental results demonstrate that PRNet surpasses previous state-of-the-art medical image segmentation models on the PRAD-10K dataset. The codes and dataset will be made publicly available.
comment: 11 pages & Under Review
PIDSR:ComplementaryPolarizedImageDemosaicingandSuper-Resolution
Polarization cameras can capture multiple polarized images with different polarizer angles in a single shot, bringing convenience to polarization-based downstream tasks. However, their direct outputs are color-polarization filter array (CPFA) raw images, requiring demosaicing to reconstruct full-resolution, full-color polarized images; unfortunately, this necessary step introduces artifacts that make polarization-related parameters such as the degree of polarization (DoP) and angle of polarization (AoP) prone to error. Besides, limited by the hardware design, the resolution of a polarization camera is often much lower than that of a conventional RGB camera. Existing polarized image demosaicing (PID) methods are limited in that they cannot enhance resolution, while polarized image super-resolution (PISR) methods, though designed to obtain high-resolution (HR) polarized images from the demosaicing results, tend to retain or even amplify errors in the DoP and AoP introduced by demosaicing artifacts. In this paper, we propose PIDSR, a joint framework that performs complementary Polarized Image Demosaicing and Super-Resolution, showing the ability to robustly obtain high-quality HR polarized images with more accurate DoP and AoP from a CPFA raw image in a direct manner. Experiments show our PIDSR not only achieves state-of-the-art performance on both synthetic and real data, but also facilitates downstream tasks.
Virtual-mask Informed Prior for Sparse-view Dual-Energy CT Reconstruction
Sparse-view sampling in dual-energy computed tomography (DECT) significantly reduces radiation dose and increases imaging speed, yet is highly prone to artifacts. Although diffusion models have demonstrated potential in effectively handling incomplete data, most existing methods in this field focus on the image do-main and lack global constraints, which consequently leads to insufficient reconstruction quality. In this study, we propose a dual-domain virtual-mask in-formed diffusion model for sparse-view reconstruction by leveraging the high inter-channel correlation in DECT. Specifically, the study designs a virtual mask and applies it to the high-energy and low-energy data to perform perturbation operations, thus constructing high-dimensional tensors that serve as the prior information of the diffusion model. In addition, a dual-domain collaboration strategy is adopted to integrate the information of the randomly selected high-frequency components in the wavelet domain with the information in the projection domain, for the purpose of optimizing the global struc-tures and local details. Experimental results indicated that the present method exhibits excellent performance across multiple datasets.
SF2T: Self-supervised Fragment Finetuning of Video-LLMs for Fine-Grained Understanding CVPR2025
Video-based Large Language Models (Video-LLMs) have witnessed substantial advancements in recent years, propelled by the advancement in multi-modal LLMs. Although these models have demonstrated proficiency in providing the overall description of videos, they struggle with fine-grained understanding, particularly in aspects such as visual dynamics and video details inquiries. To tackle these shortcomings, we find that fine-tuning Video-LLMs on self-supervised fragment tasks, greatly improve their fine-grained video understanding abilities. Hence we propose two key contributions:(1) Self-Supervised Fragment Fine-Tuning (SF$^2$T), a novel effortless fine-tuning method, employs the rich inherent characteristics of videos for training, while unlocking more fine-grained understanding ability of Video-LLMs. Moreover, it relieves researchers from labor-intensive annotations and smartly circumvents the limitations of natural language, which often fails to capture the complex spatiotemporal variations in videos; (2) A novel benchmark dataset, namely FineVidBench, for rigorously assessing Video-LLMs' performance at both the scene and fragment levels, offering a comprehensive evaluation of their capabilities. We assessed multiple models and validated the effectiveness of SF$^2$T on them. Experimental results reveal that our approach improves their ability to capture and interpret spatiotemporal details.
comment: Accepted to CVPR2025
MMLA: Multi-Environment, Multi-Species, Low-Altitude Aerial Footage Dataset
Real-time wildlife detection in drone imagery is critical for numerous applications, including animal ecology, conservation, and biodiversity monitoring. Low-altitude drone missions are effective for collecting fine-grained animal movement and behavior data, particularly if missions are automated for increased speed and consistency. However, little work exists on evaluating computer vision models on low-altitude aerial imagery and generalizability across different species and settings. To fill this gap, we present a novel multi-environment, multi-species, low-altitude aerial footage (MMLA) dataset. MMLA consists of drone footage collected across three diverse environments: Ol Pejeta Conservancy and Mpala Research Centre in Kenya, and The Wilds Conservation Center in Ohio, which includes five species: Plains zebras, Grevy's zebras, giraffes, onagers, and African Painted Dogs. We comprehensively evaluate three YOLO models (YOLOv5m, YOLOv8m, and YOLOv11m) for detecting animals. Results demonstrate significant performance disparities across locations and species-specific detection variations. Our work highlights the importance of evaluating detection algorithms across different environments for robust wildlife monitoring applications using drones.
Benchmarking Multi-Organ Segmentation Tools for Multi-Parametric T1-weighted Abdominal MRI SP
The segmentation of multiple organs in multi-parametric MRI studies is critical for many applications in radiology, such as correlating imaging biomarkers with disease status (e.g., cirrhosis, diabetes). Recently, three publicly available tools, such as MRSegmentator (MRSeg), TotalSegmentator MRI (TS), and TotalVibeSegmentator (VIBE), have been proposed for multi-organ segmentation in MRI. However, the performance of these tools on specific MRI sequence types has not yet been quantified. In this work, a subset of 40 volumes from the public Duke Liver Dataset was curated. The curated dataset contained 10 volumes each from the pre-contrast fat saturated T1, arterial T1w, venous T1w, and delayed T1w phases, respectively. Ten abdominal structures were manually annotated in these volumes. Next, the performance of the three public tools was benchmarked on this curated dataset. The results indicated that MRSeg obtained a Dice score of 80.7 $\pm$ 18.6 and Hausdorff Distance (HD) error of 8.9 $\pm$ 10.4 mm. It fared the best ($p < .05$) across the different sequence types in contrast to TS and VIBE.
comment: Published at SPIE Medical Imaging 2025
Multi-modal Reference Learning for Fine-grained Text-to-Image Retrieval
Fine-grained text-to-image retrieval aims to retrieve a fine-grained target image with a given text query. Existing methods typically assume that each training image is accurately depicted by its textual descriptions. However, textual descriptions can be ambiguous and fail to depict discriminative visual details in images, leading to inaccurate representation learning. To alleviate the effects of text ambiguity, we propose a Multi-Modal Reference learning framework to learn robust representations. We first propose a multi-modal reference construction module to aggregate all visual and textual details of the same object into a comprehensive multi-modal reference. The multi-modal reference hence facilitates the subsequent representation learning and retrieval similarity computation. Specifically, a reference-guided representation learning module is proposed to use multi-modal references to learn more accurate visual and textual representations. Additionally, we introduce a reference-based refinement method that employs the object references to compute a reference-based similarity that refines the initial retrieval results. Extensive experiments are conducted on five fine-grained text-to-image retrieval datasets for different text-to-image retrieval tasks. The proposed method has achieved superior performance over state-of-the-art methods. For instance, on the text-to-person image retrieval dataset RSTPReid, our method achieves the Rank1 accuracy of 56.2\%, surpassing the recent CFine by 5.6\%.
comment: TMM25
Distilling Knowledge from Heterogeneous Architectures for Semantic Segmentation AAAI 2025
Current knowledge distillation (KD) methods for semantic segmentation focus on guiding the student to imitate the teacher's knowledge within homogeneous architectures. However, these methods overlook the diverse knowledge contained in architectures with different inductive biases, which is crucial for enabling the student to acquire a more precise and comprehensive understanding of the data during distillation. To this end, we propose for the first time a generic knowledge distillation method for semantic segmentation from a heterogeneous perspective, named HeteroAKD. Due to the substantial disparities between heterogeneous architectures, such as CNN and Transformer, directly transferring cross-architecture knowledge presents significant challenges. To eliminate the influence of architecture-specific information, the intermediate features of both the teacher and student are skillfully projected into an aligned logits space. Furthermore, to utilize diverse knowledge from heterogeneous architectures and deliver customized knowledge required by the student, a teacher-student knowledge mixing mechanism (KMM) and a teacher-student knowledge evaluation mechanism (KEM) are introduced. These mechanisms are performed by assessing the reliability and its discrepancy between heterogeneous teacher-student knowledge. Extensive experiments conducted on three main-stream benchmarks using various teacher-student pairs demonstrate that our HeteroAKD outperforms state-of-the-art KD methods in facilitating distillation between heterogeneous architectures.
comment: Accepted to AAAI 2025
FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embedded in daily life, concurrently amplifying risks of misinformation dissemination. Consequently, multimodal fake news detection has garnered significant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public engagement, whereas professionally crafted fake news videos disseminated by media outlets often politically or virally motivated pose substantially greater societal harm. To address this gap, we construct FMNV, a novel dataset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture integrating CLIP and Faster R-CNN for video feature extraction, enhanced by co-attention mechanisms for feature refinement and multimodal aggregation. Comparative experiments demonstrate both the generalization capability of FMNV across multiple baselines and the superior detection efficacy of FMNVD. This work establishes critical benchmarks for detecting high-impact fake news in media ecosystems while advancing methodologies for cross-modal inconsistency analysis.
Localization Meets Uncertainty: Uncertainty-Aware Multi-Modal Localization
Reliable localization is critical for robot navigation in complex indoor environments. In this paper, we propose an uncertainty-aware localization method that enhances the reliability of localization outputs without modifying the prediction model itself. This study introduces a percentile-based rejection strategy that filters out unreliable 3-DoF pose predictions based on aleatoric and epistemic uncertainties the network estimates. We apply this approach to a multi-modal end-to-end localization that fuses RGB images and 2D LiDAR data, and we evaluate it across three real-world datasets collected using a commercialized serving robot. Experimental results show that applying stricter uncertainty thresholds consistently improves pose accuracy. Specifically, the mean position error is reduced by 41.0%, 56.7%, and 69.4%, and the mean orientation error by 55.6%, 65.7%, and 73.3%, when applying 90%, 80%, and 70% thresholds, respectively. Furthermore, the rejection strategy effectively removes extreme outliers, resulting in better alignment with ground truth trajectories. To the best of our knowledge, this is the first study to quantitatively demonstrate the benefits of percentile-based uncertainty rejection in multi-modal end-to-end localization tasks. Our approach provides a practical means to enhance the reliability and accuracy of localization systems in real-world deployments.
comment: 14 pages, 6 figures
LAPIS: A novel dataset for personalized image aesthetic assessment CVPR 2025
We present the Leuven Art Personalized Image Set (LAPIS), a novel dataset for personalized image aesthetic assessment (PIAA). It is the first dataset with images of artworks that is suitable for PIAA. LAPIS consists of 11,723 images and was meticulously curated in collaboration with art historians. Each image has an aesthetics score and a set of image attributes known to relate to aesthetic appreciation. Besides rich image attributes, LAPIS offers rich personal attributes of each annotator. We implemented two existing state-of-the-art PIAA models and assessed their performance on LAPIS. We assess the contribution of personal attributes and image attributes through ablation studies and find that performance deteriorates when certain personal and image attributes are removed. An analysis of failure cases reveals that both existing models make similar incorrect predictions, highlighting the need for improvements in artistic image aesthetic assessment. The LAPIS project page can be found at: https://github.com/Anne-SofieMaerten/LAPIS
comment: accepted at the CVPR 2025 workshop on AI for Creative Visual Content Generation Editing and Understanding (CVEU)
S2R-HDR: A Large-Scale Rendered Dataset for HDR Fusion
The generalization of learning-based high dynamic range (HDR) fusion is often limited by the availability of training data, as collecting large-scale HDR images from dynamic scenes is both costly and technically challenging. To address these challenges, we propose S2R-HDR, the first large-scale high-quality synthetic dataset for HDR fusion, with 24,000 HDR samples. Using Unreal Engine 5, we design a diverse set of realistic HDR scenes that encompass various dynamic elements, motion types, high dynamic range scenes, and lighting. Additionally, we develop an efficient rendering pipeline to generate realistic HDR images. To further mitigate the domain gap between synthetic and real-world data, we introduce S2R-Adapter, a domain adaptation designed to bridge this gap and enhance the generalization ability of models. Experimental results on real-world datasets demonstrate that our approach achieves state-of-the-art HDR reconstruction performance. Dataset and code will be available at https://openimaginglab.github.io/S2R-HDR.
comment: https://openimaginglab.github.io/S2R-HDR
End-to-End Facial Expression Detection in Long Videos
Facial expression detection involves two interrelated tasks: spotting, which identifies the onset and offset of expressions, and recognition, which classifies them into emotional categories. Most existing methods treat these tasks separately using a two-step training pipelines. A spotting model first detects expression intervals. A recognition model then classifies the detected segments. However, this sequential approach leads to error propagation, inefficient feature learning, and suboptimal performance due to the lack of joint optimization of the two tasks. We propose FEDN, an end-to-end Facial Expression Detection Network that jointly optimizes spotting and recognition. Our model introduces a novel attention-based feature extraction module, incorporating segment attention and sliding window attention to improve facial feature learning. By unifying two tasks within a single network, we greatly reduce error propagation and enhance overall performance. Experiments on CASME}^2 and CASME^3 demonstrate state-of-the-art accuracy for both spotting and detection, underscoring the benefits of joint optimization for robust facial expression detection in long videos.
CollEX -- A Multimodal Agentic RAG System Enabling Interactive Exploration of Scientific Collections
In this paper, we introduce CollEx, an innovative multimodal agentic Retrieval-Augmented Generation (RAG) system designed to enhance interactive exploration of extensive scientific collections. Given the overwhelming volume and inherent complexity of scientific collections, conventional search systems often lack necessary intuitiveness and interactivity, presenting substantial barriers for learners, educators, and researchers. CollEx addresses these limitations by employing state-of-the-art Large Vision-Language Models (LVLMs) as multimodal agents accessible through an intuitive chat interface. By abstracting complex interactions via specialized agents equipped with advanced tools, CollEx facilitates curiosity-driven exploration, significantly simplifying access to diverse scientific collections and records therein. Our system integrates textual and visual modalities, supporting educational scenarios that are helpful for teachers, pupils, students, and researchers by fostering independent exploration as well as scientific excitement and curiosity. Furthermore, CollEx serves the research community by discovering interdisciplinary connections and complementing visual data. We illustrate the effectiveness of our system through a proof-of-concept application containing over 64,000 unique records across 32 collections from a local scientific collection from a public university.
VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
comment: 11 pages
Heart Failure Prediction using Modal Decomposition and Masked Autoencoders for Scarce Echocardiography Databases
Heart diseases constitute the main cause of international human defunction. According to the World Health Organization (WHO), approximately 18 million deaths happen each year due to precisely heart diseases. In particular, heart failures (HF) press the healthcare industry to develop systems for their early, rapid and effective prediction. In this work, an automatic system which analyses in real-time echocardiography video sequences is proposed for the challenging and more specific task of prediction of heart failure times. This system is based on a novel deep learning framework, and works in two stages. The first one transforms the data included in a database of echocardiography video sequences into a machine learning-compatible collection of annotated images which can be used in the training phase of any kind of machine learning-based framework, including a deep learning one. This initial stage includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm for both data augmentation and feature extraction. The second stage is focused on building and training a Vision Transformer (ViT). Self-supervised learning (SSL) methods, which have been so far barely explored in the literature about heart failure prediction, are applied to effectively train the ViT from scratch, even with scarce databases of echocardiograms. The designed neural network analyses images from echocardiography sequences to estimate the time in which a heart failure will happen. The results obtained show the efficacy of the HODMD algorithm and the superiority of the proposed system with respect to several established ViT and Convolutional Neural Network (CNN) architectures.
comment: 37 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2404.19579
RASMD: RGB And SWIR Multispectral Driving Dataset for Robust Perception in Adverse Conditions
Current autonomous driving algorithms heavily rely on the visible spectrum, which is prone to performance degradation in adverse conditions like fog, rain, snow, glare, and high contrast. Although other spectral bands like near-infrared (NIR) and long-wave infrared (LWIR) can enhance vision perception in such situations, they have limitations and lack large-scale datasets and benchmarks. Short-wave infrared (SWIR) imaging offers several advantages over NIR and LWIR. However, no publicly available large-scale datasets currently incorporate SWIR data for autonomous driving. To address this gap, we introduce the RGB and SWIR Multispectral Driving (RASMD) dataset, which comprises 100,000 synchronized and spatially aligned RGB-SWIR image pairs collected across diverse locations, lighting, and weather conditions. In addition, we provide a subset for RGB-SWIR translation and object detection annotations for a subset of challenging traffic scenarios to demonstrate the utility of SWIR imaging through experiments on both object detection and RGB-to-SWIR image translation. Our experiments show that combining RGB and SWIR data in an ensemble framework significantly improves detection accuracy compared to RGB-only approaches, particularly in conditions where visible-spectrum sensors struggle. We anticipate that the RASMD dataset will advance research in multispectral imaging for autonomous driving and robust perception systems.
On Model and Data Scaling for Skeleton-based Self-Supervised Gait Recognition
Gait recognition from video streams is a challenging problem in computer vision biometrics due to the subtle differences between gaits and numerous confounding factors. Recent advancements in self-supervised pretraining have led to the development of robust gait recognition models that are invariant to walking covariates. While neural scaling laws have transformed model development in other domains by linking performance to data, model size, and compute, their applicability to gait remains unexplored. In this work, we conduct the first empirical study scaling on skeleton-based self-supervised gait recognition to quantify the effect of data quantity, model size and compute on downstream gait recognition performance. We pretrain multiple variants of GaitPT - a transformer-based architecture - on a dataset of 2.7 million walking sequences collected in the wild. We evaluate zero-shot performance across four benchmark datasets to derive scaling laws for data, model size, and compute. Our findings demonstrate predictable power-law improvements in performance with increased scale and confirm that data and compute scaling significantly influence downstream accuracy. We further isolate architectural contributions by comparing GaitPT with GaitFormer under controlled compute budgets. These results provide practical insights into resource allocation and performance estimation for real-world gait recognition systems.
comment: 10 pages, 10 Figures, 3 Tables
Extending Visual Dynamics for Video-to-Music Generation
Music profoundly enhances video production by improving quality, engagement, and emotional resonance, sparking growing interest in video-to-music generation. Despite recent advances, existing approaches remain limited in specific scenarios or undervalue the visual dynamics. To address these limitations, we focus on tackling the complexity of dynamics and resolving temporal misalignment between video and music representations. To this end, we propose DyViM, a novel framework to enhance dynamics modeling for video-to-music generation. Specifically, we extract frame-wise dynamics features via a simplified motion encoder inherited from optical flow methods, followed by a self-attention module for aggregation within frames. These dynamic features are then incorporated to extend existing music tokens for temporal alignment. Additionally, high-level semantics are conveyed through a cross-attention mechanism, and an annealing tuning strategy benefits to fine-tune well-trained music decoders efficiently, therefore facilitating seamless adaptation. Extensive experiments demonstrate DyViM's superiority over state-of-the-art (SOTA) methods.
comment: Under review
Benchmarking Image Embeddings for E-Commerce: Evaluating Off-the Shelf Foundation Models, Fine-Tuning Strategies and Practical Trade-offs
We benchmark foundation models image embeddings for classification and retrieval in e-Commerce, evaluating their suitability for real-world applications. Our study spans embeddings from pre-trained convolutional and transformer models trained via supervised, self-supervised, and text-image contrastive learning. We assess full fine-tuning and transfer learning (top-tuning) on six diverse e-Commerce datasets: fashion, consumer goods, cars, food, and retail. Results show full fine-tuning consistently performs well, while text-image and self-supervised embeddings can match its performance with less training. While supervised embeddings remain stable across architectures, SSL and contrastive embeddings vary significantly, often benefiting from top-tuning. Top-tuning emerges as an efficient alternative to full fine-tuning, reducing computational costs. We also explore cross-tuning, noting its impact depends on dataset characteristics. Our findings offer practical guidelines for embedding selection and fine-tuning strategies, balancing efficiency and performance.
comment: accepted at Future Technologies Conference (FTC 2025)
PhaseGen: A Diffusion-Based Approach for Complex-Valued MRI Data Generation
Magnetic resonance imaging (MRI) raw data, or k-Space data, is complex-valued, containing both magnitude and phase information. However, clinical and existing Artificial Intelligence (AI)-based methods focus only on magnitude images, discarding the phase data despite its potential for downstream tasks, such as tumor segmentation and classification. In this work, we introduce $\textit{PhaseGen}$, a novel complex-valued diffusion model for generating synthetic MRI raw data conditioned on magnitude images, commonly used in clinical practice. This enables the creation of artificial complex-valued raw data, allowing pretraining for models that require k-Space information. We evaluate PhaseGen on two tasks: skull-stripping directly in k-Space and MRI reconstruction using the publicly available FastMRI dataset. Our results show that training with synthetic phase data significantly improves generalization for skull-stripping on real-world data, with an increased segmentation accuracy from $41.1\%$ to $80.1\%$, and enhances MRI reconstruction when combined with limited real-world data. This work presents a step forward in utilizing generative AI to bridge the gap between magnitude-based datasets and the complex-valued nature of MRI raw data. This approach allows researchers to leverage the vast amount of avaliable image domain data in combination with the information-rich k-Space data for more accurate and efficient diagnostic tasks. We make our code publicly $\href{https://github.com/TIO-IKIM/PhaseGen}{\text{available here}}$.
TokenFocus-VQA: Enhancing Text-to-Image Alignment with Position-Aware Focus and Multi-Perspective Aggregations on LVLMs
While text-to-image (T2I) generation models have achieved remarkable progress in recent years, existing evaluation methodologies for vision-language alignment still struggle with the fine-grained semantic matching. Current approaches based on global similarity metrics often overlook critical token-level correspondences between textual descriptions and visual content. To this end, we present TokenFocus-VQA, a novel evaluation framework that leverages Large Vision-Language Models (LVLMs) through visual question answering (VQA) paradigm with position-specific probability optimization. Our key innovation lies in designing a token-aware loss function that selectively focuses on probability distributions at pre-defined vocabulary positions corresponding to crucial semantic elements, enabling precise measurement of fine-grained semantical alignment. The proposed framework further integrates ensemble learning techniques to aggregate multi-perspective assessments from diverse LVLMs architectures, thereby achieving further performance enhancement. Evaluated on the NTIRE 2025 T2I Quality Assessment Challenge Track 1, our TokenFocus-VQA ranks 2nd place (0.8445, only 0.0001 lower than the 1st method) on public evaluation and 2nd place (0.8426) on the official private test set, demonstrating superiority in capturing nuanced text-image correspondences compared to conventional evaluation methods.
comment: 10 pages, 3 figures
STeP: A General and Scalable Framework for Solving Video Inverse Problems with Spatiotemporal Diffusion Priors
We study how to solve general Bayesian inverse problems involving videos using diffusion model priors. While it is desirable to use a video diffusion prior to effectively capture complex temporal relationships, due to the computational and data requirements of training such a model, prior work has instead relied on image diffusion priors on single frames combined with heuristics to enforce temporal consistency. However, these approaches struggle with faithfully recovering the underlying temporal relationships, particularly for tasks with high temporal uncertainty. In this paper, we demonstrate the feasibility of practical and accessible spatiotemporal diffusion priors by fine-tuning latent video diffusion models from pretrained image diffusion models using limited videos in specific domains. Leveraging this plug-and-play spatiotemporal diffusion prior, we introduce a general and scalable framework for solving video inverse problems. We then apply our framework to two challenging scientific video inverse problems--black hole imaging and dynamic MRI. Our framework enables the generation of diverse, high-fidelity video reconstructions that not only fit observations but also recover multi-modal solutions. By incorporating a spatiotemporal diffusion prior, we significantly improve our ability to capture complex temporal relationships in the data while also enhancing spatial fidelity.
SydneyScapes: Image Segmentation for Australian Environments
Autonomous Vehicles (AVs) are being partially deployed and tested across various global locations, including China, the USA, Germany, France, Japan, Korea, and the UK, but with limited demonstrations in Australia. The integration of machine learning (ML) into AV perception systems highlights the need for locally labelled datasets to develop and test algorithms in specific environments. To address this, we introduce SydneyScapes - a dataset tailored for computer vision tasks of image semantic, instance, and panoptic segmentation. This dataset, collected from Sydney and surrounding cities in New South Wales (NSW), Australia, consists of 756 images with high-quality pixel-level annotations. It is designed to assist AV industry and researchers by providing annotated data and tools for algorithm development, testing, and deployment in the Australian context. Additionally, we offer benchmarking results using state-of-the-art algorithms to establish reference points for future research and development. The dataset is publicly available at https://hdl.handle.net/2123/33051.
DGOcc: Depth-aware Global Query-based Network for Monocular 3D Occupancy Prediction
Monocular 3D occupancy prediction, aiming to predict the occupancy and semantics within interesting regions of 3D scenes from only 2D images, has garnered increasing attention recently for its vital role in 3D scene understanding. Predicting the 3D occupancy of large-scale outdoor scenes from 2D images is ill-posed and resource-intensive. In this paper, we present \textbf{DGOcc}, a \textbf{D}epth-aware \textbf{G}lobal query-based network for monocular 3D \textbf{Occ}upancy prediction. We first explore prior depth maps to extract depth context features that provide explicit geometric information for the occupancy network. Then, in order to fully exploit the depth context features, we propose a Global Query-based (GQ) Module. The cooperation of attention mechanisms and scale-aware operations facilitates the feature interaction between images and 3D voxels. Moreover, a Hierarchical Supervision Strategy (HSS) is designed to avoid upsampling the high-dimension 3D voxel features to full resolution, which mitigates GPU memory utilization and time cost. Extensive experiments on SemanticKITTI and SSCBench-KITTI-360 datasets demonstrate that the proposed method achieves the best performance on monocular semantic occupancy prediction while reducing GPU and time overhead.
comment: under review
VideoExpert: Augmented LLM for Temporal-Sensitive Video Understanding
The core challenge in video understanding lies in perceiving dynamic content changes over time. However, multimodal large language models struggle with temporal-sensitive video tasks, which requires generating timestamps to mark the occurrence of specific events. Existing strategies require MLLMs to generate absolute or relative timestamps directly. We have observed that those MLLMs tend to rely more on language patterns than visual cues when generating timestamps, affecting their performance. To address this problem, we propose VideoExpert, a general-purpose MLLM suitable for several temporal-sensitive video tasks. Inspired by the expert concept, VideoExpert integrates two parallel modules: the Temporal Expert and the Spatial Expert. The Temporal Expert is responsible for modeling time sequences and performing temporal grounding. It processes high-frame-rate yet compressed tokens to capture dynamic variations in videos and includes a lightweight prediction head for precise event localization. The Spatial Expert focuses on content detail analysis and instruction following. It handles specially designed spatial tokens and language input, aiming to generate content-related responses. These two experts collaborate seamlessly via a special token, ensuring coordinated temporal grounding and content generation. Notably, the Temporal and Spatial Experts maintain independent parameter sets. By offloading temporal grounding from content generation, VideoExpert prevents text pattern biases in timestamp predictions. Moreover, we introduce a Spatial Compress module to obtain spatial tokens. This module filters and compresses patch tokens while preserving key information, delivering compact yet detail-rich input for the Spatial Expert. Extensive experiments demonstrate the effectiveness and versatility of the VideoExpert.
Event Signal Filtering via Probability Flux Estimation
Events offer a novel paradigm for capturing scene dynamics via asynchronous sensing, but their inherent randomness often leads to degraded signal quality. Event signal filtering is thus essential for enhancing fidelity by reducing this internal randomness and ensuring consistent outputs across diverse acquisition conditions. Unlike traditional time series that rely on fixed temporal sampling to capture steady-state behaviors, events encode transient dynamics through polarity and event intervals, making signal modeling significantly more complex. To address this, the theoretical foundation of event generation is revisited through the lens of diffusion processes. The state and process information within events is modeled as continuous probability flux at threshold boundaries of the underlying irradiance diffusion. Building on this insight, a generative, online filtering framework called Event Density Flow Filter (EDFilter) is introduced. EDFilter estimates event correlation by reconstructing the continuous probability flux from discrete events using nonparametric kernel smoothing, and then resamples filtered events from this flux. To optimize fidelity over time, spatial and temporal kernels are employed in a time-varying optimization framework. A fast recursive solver with O(1) complexity is proposed, leveraging state-space models and lookup tables for efficient likelihood computation. Furthermore, a new real-world benchmark Rotary Event Dataset (RED) is released, offering microsecond-level ground truth irradiance for full-reference event filtering evaluation. Extensive experiments validate EDFilter's performance across tasks like event filtering, super-resolution, and direct event-based blob tracking. Significant gains in downstream applications such as SLAM and video reconstruction underscore its robustness and effectiveness.
Kimi-VL Technical Report
We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameters, setting a new standard for efficient multimodal thinking models. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.
CMEdataset Advancing China Map Detection and Standardization with Digital Image Resources
Digital images of Chinas maps play a crucial role in map detection, particularly in ensuring national sovereignty, territorial integrity, and map compliance. However, there is currently no publicly available dataset specifically dedicated to problematic maps the CME dataset. Existing datasets primarily focus on general map data and are insufficient for effectively identifying complex issues such as national boundary misrepresentations, missing elements, and blurred boundaries. Therefore, this study creates a Problematic Map dataset that covers five key problem areas, aiming to provide diverse samples for problematic map detection technologies, support high-precision map compliance detection, and enhance map data quality and timeliness. This dataset not only provides essential resources for map compliance, national security monitoring, and map updates, but also fosters innovation and application of related technologies.
Novel Pooling-based VGG-Lite for Pneumonia and Covid-19 Detection from Imbalanced Chest X-Ray Datasets
This paper proposes a novel pooling-based VGG-Lite model in order to mitigate class imbalance issues in Chest X-Ray (CXR) datasets. Automatic Pneumonia detection from CXR images by deep learning model has emerged as a prominent and dynamic area of research, since the inception of the new Covid-19 variant in 2020. However, the standard Convolutional Neural Network (CNN) models encounter challenges associated with class imbalance, a prevalent issue found in many medical datasets. The innovations introduced in the proposed model architecture include: (I) A very lightweight CNN model, `VGG-Lite', is proposed as a base model, inspired by VGG-16 and MobileNet-V2 architecture. (II) On top of this base model, we leverage an ``Edge Enhanced Module (EEM)" through a parallel branch, consisting of a ``negative image layer", and a novel custom pooling layer ``2Max-Min Pooling". This 2Max-Min Pooling layer is entirely novel in this investigation, providing more attention to edge components within pneumonia CXR images. Thus, it works as an efficient spatial attention module (SAM). We have implemented the proposed framework on two separate CXR datasets. The first dataset is obtained from a readily available source on the internet, and the second dataset is a more challenging CXR dataset, assembled by our research team from three different sources. Experimental results reveal that our proposed framework has outperformed pre-trained CNN models, and three recent trend existing models ``Vision Transformer", ``Pooling-based Vision Transformer (PiT)'' and ``PneuNet", by substantial margins on both datasets. The proposed framework VGG-Lite with EEM, has achieved a macro average of 95% accuracy, 97.1% precision, 96.1% recall, and 96.6% F1 score on the ``Pneumonia Imbalance CXR dataset", without employing any pre-processing technique.
comment: 12 pages
Learning Universal Features for Generalizable Image Forgery Localization
In recent years, advanced image editing and generation methods have rapidly evolved, making detecting and locating forged image content increasingly challenging. Most existing image forgery detection methods rely on identifying the edited traces left in the image. However, because the traces of different forgeries are distinct, these methods can identify familiar forgeries included in the training data but struggle to handle unseen ones. In response, we present an approach for Generalizable Image Forgery Localization (GIFL). Once trained, our model can detect both seen and unseen forgeries, providing a more practical and efficient solution to counter false information in the era of generative AI. Our method focuses on learning general features from the pristine content rather than traces of specific forgeries, which are relatively consistent across different types of forgeries and therefore can be used as universal features to locate unseen forgeries. Additionally, as existing image forgery datasets are still dominated by traditional hand-crafted forgeries, we construct a new dataset consisting of images edited by various popular deep generative image editing methods to further encourage research in detecting images manipulated by deep generative models. Extensive experimental results show that the proposed approach outperforms state-of-the-art methods in the detection of unseen forgeries and also demonstrates competitive results for seen forgeries. The code and dataset are available at https://github.com/ZhaoHengrun/GIFL.
How Can Objects Help Video-Language Understanding?
How multimodal large language models (MLLMs) perceive the visual world remains a mystery. To one extreme, object and relation modeling may be implicitly implemented with inductive biases, for example by treating objects as tokens. To the other extreme, empirical results reveal the surprising finding that simply performing visual captioning, which tends to ignore spatial configuration of the objects, serves as a strong baseline for video understanding. We aim to answer the question: how can objects help video-language understanding in MLLMs? We tackle the question from the object representation and adaptation perspectives. Specifically, we investigate the trade-off between representation expressiveness (e.g., distributed versus symbolic) and integration difficulty (e.g., data-efficiency when learning the adapters). Through extensive evaluations on five video question answering datasets, we confirm that explicit integration of object-centric representation remains necessary, and the symbolic objects can be most easily integrated while being performant for question answering. We hope our findings can encourage the community to explore the explicit integration of perception modules into MLLM design. Our code and models will be publicly released.
Synthetic CT Generation from Time-of-Flight Non-Attenutaion-Corrected PET for Whole-Body PET Attenuation Correction
Positron Emission Tomography (PET) imaging requires accurate attenuation correction (AC) to account for photon loss due to tissue density variations. In PET/MR systems, computed tomography (CT), which offers a straightforward estimation of AC is not available. This study presents a deep learning approach to generate synthetic CT (sCT) images directly from Time-of-Flight (TOF) non-attenuation corrected (NAC) PET images, enhancing AC for PET/MR. We first evaluated models pre-trained on large-scale natural image datasets for a CT-to-CT reconstruction task, finding that the pre-trained model outperformed those trained solely on medical datasets. The pre-trained model was then fine-tuned using an institutional dataset of 35 TOF NAC PET and CT volume pairs, achieving the lowest mean absolute error (MAE) of 74.49 HU and highest peak signal-to-noise ratio (PSNR) of 28.66 dB within the body contour region. Visual assessments demonstrated improved reconstruction of both bone and soft tissue structures from TOF NAC PET images. This work highlights the effectiveness of using pre-trained deep learning models for medical image translation tasks. Future work will assess the impact of sCT on PET attenuation correction and explore additional neural network architectures and datasets to further enhance performance and practical applications in PET imaging.
comment: 4 pages, 2 figures, ISBI 2025
WS-DETR: Robust Water Surface Object Detection through Vision-Radar Fusion with Detection Transformer
Robust object detection for Unmanned Surface Vehicles (USVs) in complex water environments is essential for reliable navigation and operation. Specifically, water surface object detection faces challenges from blurred edges and diverse object scales. Although vision-radar fusion offers a feasible solution, existing approaches suffer from cross-modal feature conflicts, which negatively affect model robustness. To address this problem, we propose a robust vision-radar fusion model WS-DETR. In particular, we first introduce a Multi-Scale Edge Information Integration (MSEII) module to enhance edge perception and a Hierarchical Feature Aggregator (HiFA) to boost multi-scale object detection in the encoder. Then, we adopt self-moving point representations for continuous convolution and residual connection to efficiently extract irregular features under the scenarios of irregular point cloud data. To further mitigate cross-modal conflicts, an Adaptive Feature Interactive Fusion (AFIF) module is introduced to integrate visual and radar features through geometric alignment and semantic fusion. Extensive experiments on the WaterScenes dataset demonstrate that WS-DETR achieves state-of-the-art (SOTA) performance, maintaining its superiority even under adverse weather and lighting conditions.
ThermoStereoRT: Thermal Stereo Matching in Real Time via Knowledge Distillation and Attention-based Refinement ICRA 2025
We introduce ThermoStereoRT, a real-time thermal stereo matching method designed for all-weather conditions that recovers disparity from two rectified thermal stereo images, envisioning applications such as night-time drone surveillance or under-bed cleaning robots. Leveraging a lightweight yet powerful backbone, ThermoStereoRT constructs a 3D cost volume from thermal images and employs multi-scale attention mechanisms to produce an initial disparity map. To refine this map, we design a novel channel and spatial attention module. Addressing the challenge of sparse ground truth data in thermal imagery, we utilize knowledge distillation to boost performance without increasing computational demands. Comprehensive evaluations on multiple datasets demonstrate that ThermoStereoRT delivers both real-time capacity and robust accuracy, making it a promising solution for real-world deployment in various challenging environments. Our code will be released on https://github.com/SJTU-ViSYS-team/ThermoStereoRT
comment: 7 pages, 6 figures, 4 tables. Accepted to IEEE ICRA 2025. This is the preprint version
RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning, rely on low-resolution images, and offer limited interpretability in attention mechanisms. To address these challenges, we introduce RadZero, a novel similarity-based cross-attention framework for vision-language alignment in radiology with zero-shot multi-task capability. RadZero leverages large language models to extract minimal semantic sentences from radiology reports and employs a multi-positive contrastive learning strategy to effectively capture relationships between images and multiple relevant textual descriptions. It also utilizes a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, RadZero enables zero-shot inference with similarity probability for classification and pixel-level cross-modal similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, cross-modal similarity map analysis highlights its potential for improving explainability in vision-language alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
Leveraging LLMs for Multimodal Retrieval-Augmented Radiology Report Generation via Key Phrase Extraction
Automated radiology report generation (RRG) holds potential to reduce radiologists' workload, especially as recent advancements in large language models (LLMs) enable the development of multimodal models for chest X-ray (CXR) report generation. However, multimodal LLMs (MLLMs) are resource-intensive, requiring vast datasets and substantial computational cost for training. To address these challenges, we propose a retrieval-augmented generation approach that leverages multimodal retrieval and LLMs to generate radiology reports while mitigating hallucinations and reducing computational demands. Our method uses LLMs to extract key phrases from radiology reports, effectively focusing on essential diagnostic information. Through exploring effective training strategies, including image encoder structure search, adding noise to text embeddings, and additional training objectives, we combine complementary pre-trained image encoders and adopt contrastive learning between text and semantic image embeddings. We evaluate our approach on MIMIC-CXR dataset, achieving state-of-the-art results on CheXbert metrics and competitive RadGraph F1 metric alongside MLLMs, without requiring LLM fine-tuning. Our method demonstrates robust generalization for multi-view RRG, making it suitable for comprehensive clinical applications.
FlexIP: Dynamic Control of Preservation and Personality for Customized Image Generation
With the rapid advancement of 2D generative models, preserving subject identity while enabling diverse editing has emerged as a critical research focus. Existing methods typically face inherent trade-offs between identity preservation and personalized manipulation. We introduce FlexIP, a novel framework that decouples these objectives through two dedicated components: a Personalization Adapter for stylistic manipulation and a Preservation Adapter for identity maintenance. By explicitly injecting both control mechanisms into the generative model, our framework enables flexible parameterized control during inference through dynamic tuning of the weight adapter. Experimental results demonstrate that our approach breaks through the performance limitations of conventional methods, achieving superior identity preservation while supporting more diverse personalized generation capabilities (Project Page: https://flexip-tech.github.io/flexip/).
FAIR-SIGHT: Fairness Assurance in Image Recognition via Simultaneous Conformal Thresholding and Dynamic Output Repair
We introduce FAIR-SIGHT, an innovative post-hoc framework designed to ensure fairness in computer vision systems by combining conformal prediction with a dynamic output repair mechanism. Our approach calculates a fairness-aware non-conformity score that simultaneously assesses prediction errors and fairness violations. Using conformal prediction, we establish an adaptive threshold that provides rigorous finite-sample, distribution-free guarantees. When the non-conformity score for a new image exceeds the calibrated threshold, FAIR-SIGHT implements targeted corrective adjustments, such as logit shifts for classification and confidence recalibration for detection, to reduce both group and individual fairness disparities, all without the need for retraining or having access to internal model parameters. Comprehensive theoretical analysis validates our method's error control and convergence properties. At the same time, extensive empirical evaluations on benchmark datasets show that FAIR-SIGHT significantly reduces fairness disparities while preserving high predictive performance.
ID-Booth: Identity-consistent Face Generation with Diffusion Models
Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025, 14 pages
Model Discrepancy Learning: Synthetic Faces Detection Based on Multi-Reconstruction
Advances in image generation enable hyper-realistic synthetic faces but also pose risks, thus making synthetic face detection crucial. Previous research focuses on the general differences between generated images and real images, often overlooking the discrepancies among various generative techniques. In this paper, we explore the intrinsic relationship between synthetic images and their corresponding generation technologies. We find that specific images exhibit significant reconstruction discrepancies across different generative methods and that matching generation techniques provide more accurate reconstructions. Based on this insight, we propose a Multi-Reconstruction-based detector. By reversing and reconstructing images using multiple generative models, we analyze the reconstruction differences among real, GAN-generated, and DM-generated images to facilitate effective differentiation. Additionally, we introduce the Asian Synthetic Face Dataset (ASFD), containing synthetic Asian faces generated with various GANs and DMs. This dataset complements existing synthetic face datasets. Experimental results demonstrate that our detector achieves exceptional performance, with strong generalization and robustness.
comment: 6 pages, 6 figures
BRepFormer: Transformer-Based B-rep Geometric Feature Recognition
Recognizing geometric features on B-rep models is a cornerstone technique for multimedia content-based retrieval and has been widely applied in intelligent manufacturing. However, previous research often merely focused on Machining Feature Recognition (MFR), falling short in effectively capturing the intricate topological and geometric characteristics of complex geometry features. In this paper, we propose BRepFormer, a novel transformer-based model to recognize both machining feature and complex CAD models' features. BRepFormer encodes and fuses the geometric and topological features of the models. Afterwards, BRepFormer utilizes a transformer architecture for feature propagation and a recognition head to identify geometry features. During each iteration of the transformer, we incorporate a bias that combines edge features and topology features to reinforce geometric constraints on each face. In addition, we also proposed a dataset named Complex B-rep Feature Dataset (CBF), comprising 20,000 B-rep models. By covering more complex B-rep models, it is better aligned with industrial applications. The experimental results demonstrate that BRepFormer achieves state-of-the-art accuracy on the MFInstSeg, MFTRCAD, and our CBF datasets.
Novel Diffusion Models for Multimodal 3D Hand Trajectory Prediction
Predicting hand motion is critical for understanding human intentions and bridging the action space between human movements and robot manipulations. Existing hand trajectory prediction (HTP) methods forecast the future hand waypoints in 3D space conditioned on past egocentric observations. However, such models are only designed to accommodate 2D egocentric video inputs. There is a lack of awareness of multimodal environmental information from both 2D and 3D observations, hindering the further improvement of 3D HTP performance. In addition, these models overlook the synergy between hand movements and headset camera egomotion, either predicting hand trajectories in isolation or encoding egomotion only from past frames. To address these limitations, we propose novel diffusion models (MMTwin) for multimodal 3D hand trajectory prediction. MMTwin is designed to absorb multimodal information as input encompassing 2D RGB images, 3D point clouds, past hand waypoints, and text prompt. Besides, two latent diffusion models, the egomotion diffusion and the HTP diffusion as twins, are integrated into MMTwin to predict camera egomotion and future hand trajectories concurrently. We propose a novel hybrid Mamba-Transformer module as the denoising model of the HTP diffusion to better fuse multimodal features. The experimental results on three publicly available datasets and our self-recorded data demonstrate that our proposed MMTwin can predict plausible future 3D hand trajectories compared to the state-of-the-art baselines, and generalizes well to unseen environments. The code and pretrained models will be released at https://github.com/IRMVLab/MMTwin.
View-Dependent Uncertainty Estimation of 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has become increasingly popular in 3D scene reconstruction for its high visual accuracy. However, uncertainty estimation of 3DGS scenes remains underexplored and is crucial to downstream tasks such as asset extraction and scene completion. Since the appearance of 3D gaussians is view-dependent, the color of a gaussian can thus be certain from an angle and uncertain from another. We thus propose to model uncertainty in 3DGS as an additional view-dependent per-gaussian feature that can be modeled with spherical harmonics. This simple yet effective modeling is easily interpretable and can be integrated into the traditional 3DGS pipeline. It is also significantly faster than ensemble methods while maintaining high accuracy, as demonstrated in our experiments.
Learning Object Focused Attention
We propose an adaptation to the training of Vision Transformers (ViTs) that allows for an explicit modeling of objects during the attention computation. This is achieved by adding a new branch to selected attention layers that computes an auxiliary loss which we call the object-focused attention (OFA) loss. We restrict the attention to image patches that belong to the same object class, which allows ViTs to gain a better understanding of configural (or holistic) object shapes by focusing on intra-object patches instead of other patches such as those in the background. Our proposed inductive bias fits easily into the attention framework of transformers since it only adds an auxiliary loss over selected attention layers. Furthermore, our approach has no additional overhead during inference. We also experiment with multiscale masking to further improve the performance of our OFA model and give a path forward for self-supervised learning with our method. Our experimental results demonstrate that ViTs with OFA achieve better classification results than their base models, exhibit a stronger generalization ability to out-of-distribution (OOD) and adversarially corrupted images, and learn representations based on object shapes rather than spurious correlations via general textures. For our OOD setting, we generate a novel dataset using the COCO dataset and Stable Diffusion inpainting which we plan to share with the community.
Investigating Vision-Language Model for Point Cloud-based Vehicle Classification CVPR
Heavy-duty trucks pose significant safety challenges due to their large size and limited maneuverability compared to passenger vehicles. A deeper understanding of truck characteristics is essential for enhancing the safety perspective of cooperative autonomous driving. Traditional LiDAR-based truck classification methods rely on extensive manual annotations, which makes them labor-intensive and costly. The rapid advancement of large language models (LLMs) trained on massive datasets presents an opportunity to leverage their few-shot learning capabilities for truck classification. However, existing vision-language models (VLMs) are primarily trained on image datasets, which makes it challenging to directly process point cloud data. This study introduces a novel framework that integrates roadside LiDAR point cloud data with VLMs to facilitate efficient and accurate truck classification, which supports cooperative and safe driving environments. This study introduces three key innovations: (1) leveraging real-world LiDAR datasets for model development, (2) designing a preprocessing pipeline to adapt point cloud data for VLM input, including point cloud registration for dense 3D rendering and mathematical morphological techniques to enhance feature representation, and (3) utilizing in-context learning with few-shot prompting to enable vehicle classification with minimally labeled training data. Experimental results demonstrate encouraging performance of this method and present its potential to reduce annotation efforts while improving classification accuracy.
comment: 5 pages,3 figures, 1 table, CVPR DriveX workshop
LoRAX: LoRA eXpandable Networks for Continual Synthetic Image Attribution
As generative AI image technologies become more widespread and advanced, there is a growing need for strong attribution models. These models are crucial for verifying the authenticity of images and identifying the architecture of their originating generative models-key to maintaining media integrity. However, attribution models struggle to generalize to unseen models, and traditional fine-tuning methods for updating these models have shown to be impractical in real-world settings. To address these challenges, we propose LoRA eXpandable Networks (LoRAX), a parameter-efficient class incremental algorithm that adapts to novel generative image models without the need for full retraining. Our approach trains an extremely parameter-efficient feature extractor per continual learning task via Low Rank Adaptation. Each task-specific feature extractor learns distinct features while only requiring a small fraction of the parameters present in the underlying feature extractor's backbone model. Our extensive experimentation shows LoRAX outperforms or remains competitive with state-of-the-art class incremental learning algorithms on the Continual Deepfake Detection benchmark across all training scenarios and memory settings, while requiring less than 3% of the number of trainable parameters per feature extractor compared to the full-rank implementation. LoRAX code is available at: https://github.com/mit-ll/lorax_cil.
Impact of Language Guidance: A Reproducibility Study
Modern deep-learning architectures need large amounts of data to produce state-of-the-art results. Annotating such huge datasets is time-consuming, expensive, and prone to human error. Recent advances in self-supervised learning allow us to train huge models without explicit annotation. Contrastive learning is a popular paradigm in self-supervised learning. Recent works like SimCLR and CLIP rely on image augmentations or directly minimizing cross-modal loss between image and text. Banani et al. (2023) propose to use language guidance to sample view pairs. They claim that language enables better conceptual similarity, eliminating the effects of visual variability. We reproduce their experiments to verify their claims and find that their dataset, RedCaps, contains low-quality captions. We use an off-the-shelf image captioning model, BLIP-2, to replace the captions and improve performance, and we also devise a new metric to evaluate the semantic capabilities of self-supervised models based on interpretability methods.
Gen3DEval: Using vLLMs for Automatic Evaluation of Generated 3D Objects CVPR 2025
Rapid advancements in text-to-3D generation require robust and scalable evaluation metrics that align closely with human judgment, a need unmet by current metrics such as PSNR and CLIP, which require ground-truth data or focus only on prompt fidelity. To address this, we introduce Gen3DEval, a novel evaluation framework that leverages vision large language models (vLLMs) specifically fine-tuned for 3D object quality assessment. Gen3DEval evaluates text fidelity, appearance, and surface quality by analyzing 3D surface normals, without requiring ground-truth comparisons, bridging the gap between automated metrics and user preferences. Compared to state-of-the-art task-agnostic models, Gen3DEval demonstrates superior performance in user-aligned evaluations, placing it as a comprehensive and accessible benchmark for future research on text-to-3D generation. The project page can be found here: \href{https://shalini-maiti.github.io/gen3deval.github.io/}{https://shalini-maiti.github.io/gen3deval.github.io/}.
comment: CVPR 2025
Benchmarking Suite for Synthetic Aperture Radar Imagery Anomaly Detection (SARIAD) Algorithms SP
Anomaly detection is a key research challenge in computer vision and machine learning with applications in many fields from quality control to radar imaging. In radar imaging, specifically synthetic aperture radar (SAR), anomaly detection can be used for the classification, detection, and segmentation of objects of interest. However, there is no method for developing and benchmarking these methods on SAR imagery. To address this issue, we introduce SAR imagery anomaly detection (SARIAD). In conjunction with Anomalib, a deep-learning library for anomaly detection, SARIAD provides a comprehensive suite of algorithms and datasets for assessing and developing anomaly detection approaches on SAR imagery. SARIAD specifically integrates multiple SAR datasets along with tools to effectively apply various anomaly detection algorithms to SAR imagery. Several anomaly detection metrics and visualizations are available. Overall, SARIAD acts as a central package for benchmarking SAR models and datasets to allow for reproducible research in the field of anomaly detection in SAR imagery. This package is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/SARIAD.
comment: Accepted to SPIE at: https://spie.org/defense-commercial-sensing/presentation/Benchmarking-suite-for-synthetic-aperture-radar-imagery-anomaly-detection-SARIAD/13456-3
POEM: Precise Object-level Editing via MLLM control SC
Diffusion models have significantly improved text-to-image generation, producing high-quality, realistic images from textual descriptions. Beyond generation, object-level image editing remains a challenging problem, requiring precise modifications while preserving visual coherence. Existing text-based instructional editing methods struggle with localized shape and layout transformations, often introducing unintended global changes. Image interaction-based approaches offer better accuracy but require manual human effort to provide precise guidance. To reduce this manual effort while maintaining a high image editing accuracy, in this paper, we propose POEM, a framework for Precise Object-level Editing using Multimodal Large Language Models (MLLMs). POEM leverages MLLMs to analyze instructional prompts and generate precise object masks before and after transformation, enabling fine-grained control without extensive user input. This structured reasoning stage guides the diffusion-based editing process, ensuring accurate object localization and transformation. To evaluate our approach, we introduce VOCEdits, a benchmark dataset based on PASCAL VOC 2012, augmented with instructional edit prompts, ground-truth transformations, and precise object masks. Experimental results show that POEM outperforms existing text-based image editing approaches in precision and reliability while reducing manual effort compared to interaction-based methods.
comment: Accepted to SCIA 2025
Towards Unconstrained 2D Pose Estimation of the Human Spine CVPR
We present SpineTrack, the first comprehensive dataset for 2D spine pose estimation in unconstrained settings, addressing a crucial need in sports analytics, healthcare, and realistic animation. Existing pose datasets often simplify the spine to a single rigid segment, overlooking the nuanced articulation required for accurate motion analysis. In contrast, SpineTrack annotates nine detailed spinal keypoints across two complementary subsets: a synthetic set comprising 25k annotations created using Unreal Engine with biomechanical alignment through OpenSim, and a real-world set comprising over 33k annotations curated via an active learning pipeline that iteratively refines automated annotations with human feedback. This integrated approach ensures anatomically consistent labels at scale, even for challenging, in-the-wild images. We further introduce SpinePose, extending state-of-the-art body pose estimators using knowledge distillation and an anatomical regularization strategy to jointly predict body and spine keypoints. Our experiments in both general and sports-specific contexts validate the effectiveness of SpineTrack for precise spine pose estimation, establishing a robust foundation for future research in advanced biomechanical analysis and 3D spine reconstruction in the wild.
comment: Accepted for publication in CVPRW 2025
ContrastiveGaussian: High-Fidelity 3D Generation with Contrastive Learning and Gaussian Splatting
Creating 3D content from single-view images is a challenging problem that has attracted considerable attention in recent years. Current approaches typically utilize score distillation sampling (SDS) from pre-trained 2D diffusion models to generate multi-view 3D representations. Although some methods have made notable progress by balancing generation speed and model quality, their performance is often limited by the visual inconsistencies of the diffusion model outputs. In this work, we propose ContrastiveGaussian, which integrates contrastive learning into the generative process. By using a perceptual loss, we effectively differentiate between positive and negative samples, leveraging the visual inconsistencies to improve 3D generation quality. To further enhance sample differentiation and improve contrastive learning, we incorporate a super-resolution model and introduce another Quantity-Aware Triplet Loss to address varying sample distributions during training. Our experiments demonstrate that our approach achieves superior texture fidelity and improved geometric consistency.
comment: Code will be available at https://github.com/YaNLlan-ljb/ContrastiveGaussian
Interpretable Automatic Rosacea Detection with Whitened Cosine Similarity
According to the National Rosacea Society, approximately sixteen million Americans suffer from rosacea, a common skin condition that causes flushing or long-term redness on a person's face. To increase rosacea awareness and to better assist physicians to make diagnosis on this disease, we propose an interpretable automatic rosacea detection method based on whitened cosine similarity in this paper. The contributions of the proposed methods are three-fold. First, the proposed method can automatically distinguish patients suffering from rosacea from people who are clean of this disease with a significantly higher accuracy than other methods in unseen test data, including both classical deep learning and statistical methods. Second, the proposed method addresses the interpretability issue by measuring the similarity between the test sample and the means of two classes, namely the rosacea class versus the normal class, which allows both medical professionals and patients to understand and trust the results. And finally, the proposed methods will not only help increase awareness of rosacea in the general population, but will also help remind patients who suffer from this disease of possible early treatment, as rosacea is more treatable in its early stages. The code and data are available at https://github.com/chengyuyang-njit/ICCRD-2025. The code and data are available at https://github.com/chengyuyang-njit/ICCRD-2025.
X-DECODE: EXtreme Deblurring with Curriculum Optimization and Domain Equalization
Restoring severely blurred images remains a significant challenge in computer vision, impacting applications in autonomous driving, medical imaging, and photography. This paper introduces a novel training strategy based on curriculum learning to improve the robustness of deep learning models for extreme image deblurring. Unlike conventional approaches that train on only low to moderate blur levels, our method progressively increases the difficulty by introducing images with higher blur severity over time, allowing the model to adapt incrementally. Additionally, we integrate perceptual and hinge loss during training to enhance fine detail restoration and improve training stability. We experimented with various curriculum learning strategies and explored the impact of the train-test domain gap on the deblurring performance. Experimental results on the Extreme-GoPro dataset showed that our method outperforms the next best method by 14% in SSIM, whereas experiments on the Extreme-KITTI dataset showed that our method outperforms the next best by 18% in SSIM. Ablation studies showed that a linear curriculum progression outperforms step-wise, sigmoid, and exponential progressions, while hyperparameter settings such as the training blur percentage and loss function formulation all play important roles in addressing extreme blur artifacts. Datasets and code are available at https://github.com/RAPTOR-MSSTATE/XDECODE
STEI-PCN: an efficient pure convolutional network for traffic prediction via spatial-temporal encoding and inferring
Traffic data exhibits complex temporal, spatial, and spatial-temporal correlations. Most of models use either independent modules to separately extract temporal and spatial correlations or joint modules to synchronously extract them, without considering the spatial-temporal correlations. Moreover, models that consider joint spatial-temporal correlations (temporal, spatial, and spatial-temporal correlations) often encounter significant challenges in accuracy and computational efficiency which prevent such models from demonstrating the expected advantages of a joint spatial-temporal correlations architecture. To address these issues, this paper proposes an efficient pure convolutional network for traffic prediction via spatial-temporal encoding and inferring (STEI-PCN). The model introduces and designs a dynamic adjacency matrix inferring module based on absolute spatial and temporal coordinates, as well as relative spatial and temporal distance encoding, using a graph convolutional network combined with gating mechanism to capture local synchronous joint spatial-temporal correlations. Additionally, three layers of temporal dilated causal convolutional network are used to capture long-range temporal correlations. Finally, through multi-view collaborative prediction module, the model integrates the gated-activated original, local synchronous joint spatial-temporal, and long-range temporal features to achieve comprehensive prediction. This study conducts extensive experiments on flow datasets (PeMS03/04/07/08) and speed dataset (PeMS-Bay), covering multiple prediction horizons. The results show that STEI-PCN demonstrates competitive computational efficiency in both training and inference speeds, and achieves superior or slightly inferior to state-of-the-art (SOTA) models on most evaluation metrics.
Multi-Task Learning with Multi-Annotation Triplet Loss for Improved Object Detection
Triplet loss traditionally relies only on class labels and does not use all available information in multi-task scenarios where multiple types of annotations are available. This paper introduces a Multi-Annotation Triplet Loss (MATL) framework that extends triplet loss by incorporating additional annotations, such as bounding box information, alongside class labels in the loss formulation. By using these complementary annotations, MATL improves multi-task learning for tasks requiring both classification and localization. Experiments on an aerial wildlife imagery dataset demonstrate that MATL outperforms conventional triplet loss in both classification and localization. These findings highlight the benefit of using all available annotations for triplet loss in multi-task learning frameworks.
comment: Accepted for Oral Presentation at the 45th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2025, Brisbane, Australia. 4 pages and 4 figures
Patch distribution modeling framework adaptive cosine estimator (PaDiM-ACE) for anomaly detection and localization in synthetic aperture radar imagery SP
This work presents a new approach to anomaly detection and localization in synthetic aperture radar imagery (SAR), expanding upon the existing patch distribution modeling framework (PaDiM). We introduce the adaptive cosine estimator (ACE) detection statistic. PaDiM uses the Mahalanobis distance at inference, an unbounded metric. ACE instead uses the cosine similarity metric, providing bounded anomaly detection scores. The proposed method is evaluated across multiple SAR datasets, with performance metrics including the area under the receiver operating curve (AUROC) at the image and pixel level, aiming for increased performance in anomaly detection and localization of SAR imagery. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/PaDiM-LACE.
comment: Accepted to SPIE, Defense and Commercial Sensing, Algorithms for Synthetic Aperture Radar Imagery XXXII (April 2025)
Teaching Humans Subtle Differences with DIFFusion
Human expertise depends on the ability to recognize subtle visual differences, such as distinguishing diseases, species, or celestial phenomena. We propose a new method to teach novices how to differentiate between nuanced categories in specialized domains. Our method uses generative models to visualize the minimal change in features to transition between classes, i.e., counterfactuals, and performs well even in domains where data is sparse, examples are unpaired, and category boundaries are not easily explained by text. By manipulating the conditioning space of diffusion models, our proposed method DIFFusion disentangles category structure from instance identity, enabling high-fidelity synthesis even in challenging domains. Experiments across six domains show accurate transitions even with limited and unpaired examples across categories. User studies confirm that our generated counterfactuals outperform unpaired examples in teaching perceptual expertise, showing the potential of generative models for specialized visual learning.
MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular Detection CVPR 2025
Current monocular 3D detectors are held back by the limited diversity and scale of real-world datasets. While data augmentation certainly helps, it's particularly difficult to generate realistic scene-aware augmented data for outdoor settings. Most current approaches to synthetic data generation focus on realistic object appearance through improved rendering techniques. However, we show that where and how objects are positioned is just as crucial for training effective 3D monocular detectors. The key obstacle lies in automatically determining realistic object placement parameters - including position, dimensions, and directional alignment when introducing synthetic objects into actual scenes. To address this, we introduce MonoPlace3D, a novel system that considers the 3D scene content to create realistic augmentations. Specifically, given a background scene, MonoPlace3D learns a distribution over plausible 3D bounding boxes. Subsequently, we render realistic objects and place them according to the locations sampled from the learned distribution. Our comprehensive evaluation on two standard datasets KITTI and NuScenes, demonstrates that MonoPlace3D significantly improves the accuracy of multiple existing monocular 3D detectors while being highly data efficient.
comment: CVPR 2025 Camera Ready. Project page - https://rishubhpar.github.io/monoplace3D
Compass Control: Multi Object Orientation Control for Text-to-Image Generation CVPR 2025
Existing approaches for controlling text-to-image diffusion models, while powerful, do not allow for explicit 3D object-centric control, such as precise control of object orientation. In this work, we address the problem of multi-object orientation control in text-to-image diffusion models. This enables the generation of diverse multi-object scenes with precise orientation control for each object. The key idea is to condition the diffusion model with a set of orientation-aware \textbf{compass} tokens, one for each object, along with text tokens. A light-weight encoder network predicts these compass tokens taking object orientation as the input. The model is trained on a synthetic dataset of procedurally generated scenes, each containing one or two 3D assets on a plain background. However, direct training this framework results in poor orientation control as well as leads to entanglement among objects. To mitigate this, we intervene in the generation process and constrain the cross-attention maps of each compass token to its corresponding object regions. The trained model is able to achieve precise orientation control for a) complex objects not seen during training and b) multi-object scenes with more than two objects, indicating strong generalization capabilities. Further, when combined with personalization methods, our method precisely controls the orientation of the new object in diverse contexts. Our method achieves state-of-the-art orientation control and text alignment, quantified with extensive evaluations and a user study.
comment: CVPR 2025 Camera Ready. Project page: https://rishubhpar.github.io/compasscontrol
nnLandmark: A Self-Configuring Method for 3D Medical Landmark Detection
Landmark detection plays a crucial role in medical imaging tasks that rely on precise spatial localization, including specific applications in diagnosis, treatment planning, image registration, and surgical navigation. However, manual annotation is labor-intensive and requires expert knowledge. While deep learning shows promise in automating this task, progress is hindered by limited public datasets, inconsistent benchmarks, and non-standardized baselines, restricting reproducibility, fair comparisons, and model generalizability. This work introduces nnLandmark, a self-configuring deep learning framework for 3D medical landmark detection, adapting nnU-Net to perform heatmap-based regression. By leveraging nnU-Net's automated configuration, nnLandmark eliminates the need for manual parameter tuning, offering out-of-the-box usability. It achieves state-of-the-art accuracy across two public datasets, with a mean radial error (MRE) of 1.5 mm on the Mandibular Molar Landmark (MML) dental CT dataset and 1.2 mm for anatomical fiducials on a brain MRI dataset (AFIDs), where nnLandmark aligns with the inter-rater variability of 1.5 mm. With its strong generalization, reproducibility, and ease of deployment, nnLandmark establishes a reliable baseline for 3D landmark detection, supporting research in anatomical localization and clinical workflows that depend on precise landmark identification. The code will be available soon.
Uni-PrevPredMap: Extending PrevPredMap to a Unified Framework of Prior-Informed Modeling for Online Vectorized HD Map Construction
Safety constitutes a foundational imperative for autonomous driving systems, necessitating the maximal incorporation of accessible external prior information. This study establishes that temporal perception buffers and cost-efficient maps inherently form complementary prior sources for online vectorized high-definition (HD) map construction. We present Uni-PrevPredMap, a unified prior-informed framework that systematically integrates two synergistic information sources: previous predictions and simulated outdated HD maps. The framework introduces two core innovations: a tile-indexed 3D vectorized global map processor enabling efficient refreshment, storage, and retrieval of 3D vectorized priors; a tri-mode operational optimization paradigm ensuring consistency across non-prior, temporal-prior, and temporal-map-fusion-prior scenarios while mitigating reliance on idealized map fidelity assumptions. Uni-PrevPredMap achieves state-of-the-art performance in map-absent scenarios across established online vectorized HD map construction benchmarks. When provided with simulated outdated HD maps, the framework exhibits robust capabilities in error-resilient prior fusion, empirically confirming the synergistic complementarity between previous predictions and simulated outdated HD maps. Code will be available at https://github.com/pnnnnnnn/Uni-PrevPredMap.
ASHiTA: Automatic Scene-grounded HIerarchical Task Analysis
While recent work in scene reconstruction and understanding has made strides in grounding natural language to physical 3D environments, it is still challenging to ground abstract, high-level instructions to a 3D scene. High-level instructions might not explicitly invoke semantic elements in the scene, and even the process of breaking a high-level task into a set of more concrete subtasks, a process called hierarchical task analysis, is environment-dependent. In this work, we propose ASHiTA, the first framework that generates a task hierarchy grounded to a 3D scene graph by breaking down high-level tasks into grounded subtasks. ASHiTA alternates LLM-assisted hierarchical task analysis, to generate the task breakdown, with task-driven 3D scene graph construction to generate a suitable representation of the environment. Our experiments show that ASHiTA performs significantly better than LLM baselines in breaking down high-level tasks into environment-dependent subtasks and is additionally able to achieve grounding performance comparable to state-of-the-art methods.
Interactive4D: Interactive 4D LiDAR Segmentation ICRA2025
Interactive segmentation has an important role in facilitating the annotation process of future LiDAR datasets. Existing approaches sequentially segment individual objects at each LiDAR scan, repeating the process throughout the entire sequence, which is redundant and ineffective. In this work, we propose interactive 4D segmentation, a new paradigm that allows segmenting multiple objects on multiple LiDAR scans simultaneously, and Interactive4D, the first interactive 4D segmentation model that segments multiple objects on superimposed consecutive LiDAR scans in a single iteration by utilizing the sequential nature of LiDAR data. While performing interactive segmentation, our model leverages the entire space-time volume, leading to more efficient segmentation. Operating on the 4D volume, it directly provides consistent instance IDs over time and also simplifies tracking annotations. Moreover, we show that click simulations are crucial for successful model training on LiDAR point clouds. To this end, we design a click simulation strategy that is better suited for the characteristics of LiDAR data. To demonstrate its accuracy and effectiveness, we evaluate Interactive4D on multiple LiDAR datasets, where Interactive4D achieves a new state-of-the-art by a large margin. We publicly release the code and models at https://vision.rwth-aachen.de/Interactive4D.
comment: Accepted to ICRA2025!
Taming Data and Transformers for Scalable Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
Explainable AI-Enhanced Deep Learning for Pumpkin Leaf Disease Detection: A Comparative Analysis of CNN Architectures
Pumpkin leaf diseases are significant threats to agricultural productivity, requiring a timely and precise diagnosis for effective management. Traditional identification methods are laborious and susceptible to human error, emphasizing the necessity for automated solutions. This study employs on the "Pumpkin Leaf Disease Dataset", that comprises of 2000 high-resolution images separated into five categories. Downy mildew, powdery mildew, mosaic disease, bacterial leaf spot, and healthy leaves. The dataset was rigorously assembled from several agricultural fields to ensure a strong representation for model training. We explored many proficient deep learning architectures, including DenseNet201, DenseNet121, DenseNet169, Xception, ResNet50, ResNet101 and InceptionResNetV2, and observed that ResNet50 performed most effectively, with an accuracy of 90.5% and comparable precision, recall, and F1-Score. We used Explainable AI (XAI) approaches like Grad-CAM, Grad-CAM++, Score-CAM, and Layer-CAM to provide meaningful representations of model decision-making processes, which improved understanding and trust in automated disease diagnostics. These findings demonstrate ResNet50's potential to revolutionize pumpkin leaf disease detection, allowing for earlier and more accurate treatments.
comment: Accepted in 2024 27th International Conference on Computer and Information Technology (ICCIT)
Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose Estimation of Surgical Instruments
State-of-the-art research of traditional computer vision is increasingly leveraged in the surgical domain. A particular focus in computer-assisted surgery is to replace marker-based tracking systems for instrument localization with pure image-based 6DoF pose estimation using deep-learning methods. However, state-of-the-art single-view pose estimation methods do not yet meet the accuracy required for surgical navigation. In this context, we investigate the benefits of multi-view setups for highly accurate and occlusion-robust 6DoF pose estimation of surgical instruments and derive recommendations for an ideal camera system that addresses the challenges in the operating room. The contributions of this work are threefold. First, we present a multi-camera capture setup consisting of static and head-mounted cameras, which allows us to study the performance of pose estimation methods under various camera configurations. Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre and including rich annotations for surgeon, instrument, and patient anatomy. Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments and analyze the influence of camera configurations, training data, and occlusions on the pose accuracy and generalization ability. The best method utilizes five cameras in a multi-view pose optimization and achieves an average position and orientation error of 1.01 mm and 0.89{\deg} for a surgical drill as well as 2.79 mm and 3.33{\deg} for a screwdriver under optimal conditions. Our results demonstrate that marker-less tracking of surgical instruments is becoming a feasible alternative to existing marker-based systems.
comment: Accepted for publication in Medical Image Analysis. Project page: https://jonashein.github.io/mvpsp/
VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning
Recent advancements in reinforcement learning have significantly advanced the reasoning capabilities of multimodal large language models (MLLMs). While approaches such as Group Relative Policy Optimization (GRPO) and rule-based reward mechanisms demonstrate promise in text and image domains, their application to video understanding remains limited. This paper presents a systematic exploration of Reinforcement Fine-Tuning (RFT) with GRPO for video MLLMs, aiming to enhance spatio-temporal perception while maintaining general capabilities. Our experiments reveal that RFT is highly data-efficient for task-specific improvements. Through multi-task RFT on spatio-temporal perception objectives with limited samples, we develop VideoChat-R1, a powerful video MLLM that achieves state-of-the-art performance on spatio-temporal perception tasks without sacrificing chat ability, while exhibiting emerging spatio-temporal reasoning abilities. Compared to Qwen2.5-VL-7B, VideoChat-R1 boosts performance several-fold in tasks like temporal grounding (+31.8) and object tracking (+31.2). Additionally, it significantly improves on general QA benchmarks such as VideoMME (+0.9), MVBench (+1.0), and Perception Test (+0.9). Our findings underscore the potential of RFT for specialized task enhancement of Video MLLMs. We hope our work offers valuable insights for future RL research in video MLLMs.
Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI
Cardiovascular magnetic resonance imaging is emerging as a crucial tool to examine cardiac morphology and function. Essential to this endeavour are anatomical 3D surface and volumetric meshes derived from CMR images, which facilitate computational anatomy studies, biomarker discovery, and in-silico simulations. Traditional approaches typically follow complex multi-step pipelines, first segmenting images and then reconstructing meshes, making them time-consuming and prone to error propagation. In response, we introduce HybridVNet, a novel architecture for direct image-to-mesh extraction seamlessly integrating standard convolutional neural networks with graph convolutions, which we prove can efficiently handle surface and volumetric meshes by encoding them as graph structures. To further enhance accuracy, we propose a multi-view HybridVNet architecture which processes both long axis and short axis CMR, showing that it can increase the performance of cardiac MR mesh generation. Our model combines traditional convolutional networks with variational graph generative models, deep supervision and mesh-specific regularisation. Experiments on a comprehensive dataset from the UK Biobank confirm the potential of HybridVNet to significantly advance cardiac imaging and computational cardiology by efficiently generating high-fidelity meshes from CMR images. Multi-view HybridVNet outperforms the state-of-the-art, achieving improvements of up to $\sim$27\% reduction in Mean Contour Distance (from 1.86 mm to 1.35 mm for the LV Myocardium), up to $\sim$18\% improvement in Hausdorff distance (from 4.74 mm to 3.89mm, for the LV Endocardium), and up to $\sim$8\% in Dice Coefficient (from 0.78 to 0.84, for the LV Myocardium), highlighting its superior accuracy.
Robust image representations with counterfactual contrastive learning
Contrastive pretraining can substantially increase model generalisation and downstream performance. However, the quality of the learned representations is highly dependent on the data augmentation strategy applied to generate positive pairs. Positive contrastive pairs should preserve semantic meaning while discarding unwanted variations related to the data acquisition domain. Traditional contrastive pipelines attempt to simulate domain shifts through pre-defined generic image transformations. However, these do not always mimic realistic and relevant domain variations for medical imaging, such as scanner differences. To tackle this issue, we herein introduce counterfactual contrastive learning, a novel framework leveraging recent advances in causal image synthesis to create contrastive positive pairs that faithfully capture relevant domain variations. Our method, evaluated across five datasets encompassing both chest radiography and mammography data, for two established contrastive objectives (SimCLR and DINO-v2), outperforms standard contrastive learning in terms of robustness to acquisition shift. Notably, counterfactual contrastive learning achieves superior downstream performance on both in-distribution and external datasets, especially for images acquired with scanners under-represented in the training set. Further experiments show that the proposed framework extends beyond acquisition shifts, with models trained with counterfactual contrastive learning reducing subgroup disparities across biological sex.
comment: Code available at https://github.com/biomedia-mira/counterfactual-contrastive/
GenDoP: Auto-regressive Camera Trajectory Generation as a Director of Photography
Camera trajectory design plays a crucial role in video production, serving as a fundamental tool for conveying directorial intent and enhancing visual storytelling. In cinematography, Directors of Photography meticulously craft camera movements to achieve expressive and intentional framing. However, existing methods for camera trajectory generation remain limited: Traditional approaches rely on geometric optimization or handcrafted procedural systems, while recent learning-based methods often inherit structural biases or lack textual alignment, constraining creative synthesis. In this work, we introduce an auto-regressive model inspired by the expertise of Directors of Photography to generate artistic and expressive camera trajectories. We first introduce DataDoP, a large-scale multi-modal dataset containing 29K real-world shots with free-moving camera trajectories, depth maps, and detailed captions in specific movements, interaction with the scene, and directorial intent. Thanks to the comprehensive and diverse database, we further train an auto-regressive, decoder-only Transformer for high-quality, context-aware camera movement generation based on text guidance and RGBD inputs, named GenDoP. Extensive experiments demonstrate that compared to existing methods, GenDoP offers better controllability, finer-grained trajectory adjustments, and higher motion stability. We believe our approach establishes a new standard for learning-based cinematography, paving the way for future advancements in camera control and filmmaking. Our project website: https://kszpxxzmc.github.io/GenDoP/.
Soybean Disease Detection via Interpretable Hybrid CNN-GNN: Integrating MobileNetV2 and GraphSAGE with Cross-Modal Attention
Soybean leaf disease detection is critical for agricultural productivity but faces challenges due to visually similar symptoms and limited interpretability in conventional methods. While Convolutional Neural Networks (CNNs) excel in spatial feature extraction, they often neglect inter-image relational dependencies, leading to misclassifications. This paper proposes an interpretable hybrid Sequential CNN-Graph Neural Network (GNN) framework that synergizes MobileNetV2 for localized feature extraction and GraphSAGE for relational modeling. The framework constructs a graph where nodes represent leaf images, with edges defined by cosine similarity-based adjacency matrices and adaptive neighborhood sampling. This design captures fine-grained lesion features and global symptom patterns, addressing inter-class similarity challenges. Cross-modal interpretability is achieved via Grad-CAM and Eigen-CAM visualizations, generating heatmaps to highlight disease-influential regions. Evaluated on a dataset of ten soybean leaf diseases, the model achieves $97.16\%$ accuracy, surpassing standalone CNNs ($\le95.04\%$) and traditional machine learning models ($\le77.05\%$). Ablation studies validate the sequential architecture's superiority over parallel or single-model configurations. With only 2.3 million parameters, the lightweight MobileNetV2-GraphSAGE combination ensures computational efficiency, enabling real-time deployment in resource-constrained environments. The proposed approach bridges the gap between accurate classification and practical applicability, offering a robust, interpretable tool for agricultural diagnostics while advancing CNN-GNN integration in plant pathology research.
Comparing Next-Day Wildfire Predictability of MODIS and VIIRS Satellite Data
Multiple studies have performed next-day fire prediction using satellite imagery. Two main satellites are used to detect wildfires: MODIS and VIIRS. Both satellites provide fire mask products, called MOD14 and VNP14, respectively. Studies have used one or the other, but there has been no comparison between them to determine which might be more suitable for next-day fire prediction. In this paper, we first evaluate how well VIIRS and MODIS data can be used to forecast wildfire spread one day ahead. We find that the model using VIIRS as input and VNP14 as target achieves the best results. Interestingly, the model using MODIS as input and VNP14 as target performs significantly better than using VNP14 as input and MOD14 as target. Next, we discuss why MOD14 might be harder to use for predicting next-day fires. We find that the MOD14 fire mask is highly stochastic and does not correlate with reasonable fire spread patterns. This is detrimental for machine learning tasks, as the model learns irrational patterns. Therefore, we conclude that MOD14 is unsuitable for next-day fire prediction and that VNP14 is a much better option. However, using MODIS input and VNP14 as target, we achieve a significant improvement in predictability. This indicates that an improved fire detection model is possible for MODIS. The full code and dataset is available online: https://github.com/justuskarlsson/wildfire-mod14-vnp14
RendBEV: Semantic Novel View Synthesis for Self-Supervised Bird's Eye View Segmentation WACV 2025
Bird's Eye View (BEV) semantic maps have recently garnered a lot of attention as a useful representation of the environment to tackle assisted and autonomous driving tasks. However, most of the existing work focuses on the fully supervised setting, training networks on large annotated datasets. In this work, we present RendBEV, a new method for the self-supervised training of BEV semantic segmentation networks, leveraging differentiable volumetric rendering to receive supervision from semantic perspective views computed by a 2D semantic segmentation model. Our method enables zero-shot BEV semantic segmentation, and already delivers competitive results in this challenging setting. When used as pretraining to then fine-tune on labeled BEV ground-truth, our method significantly boosts performance in low-annotation regimes, and sets a new state of the art when fine-tuning on all available labels.
comment: Accepted at WACV 2025
CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images CVPR2025
Creating CAD digital twins from the physical world is crucial for manufacturing, design, and simulation. However, current methods typically rely on costly 3D scanning with labor-intensive post-processing. To provide a user-friendly design process, we explore the problem of reverse engineering from unconstrained real-world CAD images that can be easily captured by users of all experiences. However, the scarcity of real-world CAD data poses challenges in directly training such models. To tackle these challenges, we propose CADCrafter, an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data while testing on real-world images. To bridge the significant representation disparity between images and parametric CAD models, we introduce a geometry encoder to accurately capture diverse geometric features. Moreover, the texture-invariant properties of the geometric features can also facilitate the generalization to real-world scenarios. Since compiling CAD parameter sequences into explicit CAD models is a non-differentiable process, the network training inherently lacks explicit geometric supervision. To impose geometric validity constraints, we employ direct preference optimization (DPO) to fine-tune our model with the automatic code checker feedback on CAD sequence quality. Furthermore, we collected a real-world dataset, comprised of multi-view images and corresponding CAD command sequence pairs, to evaluate our method. Experimental results demonstrate that our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.
comment: Accepted to CVPR2025
BYOCL: Build Your Own Consistent Latent with Hierarchical Representative Latent Clustering
To address the semantic inconsistency issue with SAM or other single-image segmentation models handling image sequences, we introduce BYOCL. This novel model outperforms SAM in extensive experiments, showcasing its Hierarchical prototype capabilities across CLIP and other representations. BYOCL significantly reduces time and space consumption by dividing inputs into smaller batches, achieving exponential time reduction compared to previous methods. Our approach leverages the SAM image encoder for feature extraction, followed by Intra-Batch and Inter-Batch clustering algorithms. Extensive experiments demonstrate that BYOCL far exceeds the previous state-of-the-art single image segmentation model. Our work is the first to apply consistent segmentation using foundation models without requiring training, utilizing plug-and-play modules for any latent space, making our method highly efficientModels are available at \href{https://github.com/cyt1202/BYOCL.git
comment: 5 pages, 5 figures
FAST: Federated Active Learning with Foundation Models for Communication-efficient Sampling and Training
Federated Active Learning (FAL) has emerged as a promising framework to leverage large quantities of unlabeled data across distributed clients while preserving data privacy. However, real-world deployments remain limited by high annotation costs and communication-intensive sampling processes, particularly in a cross-silo setting, when clients possess substantial local datasets. This paper addresses the crucial question: What is the best practice to reduce communication costs in human-in-the-loop learning with minimal annotator effort? Existing FAL methods typically rely on iterative annotation processes that separate active sampling from federated updates, leading to multiple rounds of expensive communication and annotation. In response, we introduce FAST, a two-pass FAL framework that harnesses foundation models for weak labeling in a preliminary pass, followed by a refinement pass focused exclusively on the most uncertain samples. By leveraging representation knowledge from foundation models and integrating refinement steps into a streamlined workflow, FAST substantially reduces the overhead incurred by iterative active sampling. Extensive experiments on diverse medical and natural image benchmarks demonstrate that FAST outperforms existing FAL methods by an average of 4.36% while reducing communication rounds eightfold under a limited 5% labeling budget.
Balancing Act: Distribution-Guided Debiasing in Diffusion Models CVPR 2024
Diffusion Models (DMs) have emerged as powerful generative models with unprecedented image generation capability. These models are widely used for data augmentation and creative applications. However, DMs reflect the biases present in the training datasets. This is especially concerning in the context of faces, where the DM prefers one demographic subgroup vs others (eg. female vs male). In this work, we present a method for debiasing DMs without relying on additional data or model retraining. Specifically, we propose Distribution Guidance, which enforces the generated images to follow the prescribed attribute distribution. To realize this, we build on the key insight that the latent features of denoising UNet hold rich demographic semantics, and the same can be leveraged to guide debiased generation. We train Attribute Distribution Predictor (ADP) - a small mlp that maps the latent features to the distribution of attributes. ADP is trained with pseudo labels generated from existing attribute classifiers. The proposed Distribution Guidance with ADP enables us to do fair generation. Our method reduces bias across single/multiple attributes and outperforms the baseline by a significant margin for unconditional and text-conditional diffusion models. Further, we present a downstream task of training a fair attribute classifier by rebalancing the training set with our generated data.
comment: CVPR 2024. Project Page : https://ab-34.github.io/balancing_act/
A Quantitative Evaluation of the Expressivity of BMI, Pose and Gender in Body Embeddings for Recognition and Identification
Person Re-identification (ReID) systems identify individuals across images or video frames and play a critical role in various real-world applications. However, many ReID methods are influenced by sensitive attributes such as gender, pose, and body mass index (BMI), which vary in uncontrolled environments, leading to biases and reduced generalization. To address this, we extend the concept of expressivity to the body recognition domain to better understand how ReID models encode these attributes. Expressivity, defined as the mutual information between feature vector representations and specific attributes, is computed using a secondary neural network that takes feature and attribute vectors as inputs. This provides a quantitative framework for analyzing the extent to which sensitive attributes are embedded in the model's representations. We apply expressivity analysis to SemReID, a state-of-the-art self-supervised ReID model, and find that BMI consistently exhibits the highest expressivity scores in the model's final layers, underscoring its dominant role in feature encoding. In the final attention layer of the trained network, the expressivity order for body attributes is BMI > Pitch > Yaw > Gender, highlighting their relative importance in learned representations. Additionally, expressivity values evolve progressively across network layers and training epochs, reflecting a dynamic encoding of attributes during feature extraction. These insights emphasize the influence of body-related attributes on ReID models and provide a systematic methodology for identifying and mitigating attribute-driven biases. By leveraging expressivity analysis, we offer valuable tools to enhance the fairness, robustness, and generalization of ReID systems in diverse real-world settings.
EntityCLIP: Entity-Centric Image-Text Matching via Multimodal Attentive Contrastive Learning
Recent advancements in image-text matching have been notable, yet prevailing models predominantly cater to broad queries and struggle with accommodating fine-grained query intention. In this paper, we work towards the \textbf{E}ntity-centric \textbf{I}mage-\textbf{T}ext \textbf{M}atching (EITM), a task that the text and image involve specific entity-related information. The challenge of this task mainly lies in the larger semantic gap in entity association modeling, comparing with the general image-text matching problem.To narrow the huge semantic gap between the entity-centric text and the images, we take the fundamental CLIP as the backbone and devise a multimodal attentive contrastive learning framework to tam CLIP to adapt EITM problem, developing a model named EntityCLIP. The key of our multimodal attentive contrastive learning is to generate interpretive explanation text using Large Language Models (LLMs) as the bridge clues. In specific, we proceed by extracting explanatory text from off-the-shelf LLMs. This explanation text, coupled with the image and text, is then input into our specially crafted Multimodal Attentive Experts (MMAE) module, which effectively integrates explanation texts to narrow the gap of the entity-related text and image in a shared semantic space. Building on the enriched features derived from MMAE, we further design an effective Gated Integrative Image-text Matching (GI-ITM) strategy. The GI-ITM employs an adaptive gating mechanism to aggregate MMAE's features, subsequently applying image-text matching constraints to steer the alignment between the text and the image. Extensive experiments are conducted on three social media news benchmarks including N24News, VisualNews, and GoodNews, the results shows that our method surpasses the competition methods with a clear margin.
Learning Affine Correspondences by Integrating Geometric Constraints CVPR
Affine correspondences have received significant attention due to their benefits in tasks like image matching and pose estimation. Existing methods for extracting affine correspondences still have many limitations in terms of performance; thus, exploring a new paradigm is crucial. In this paper, we present a new pipeline designed for extracting accurate affine correspondences by integrating dense matching and geometric constraints. Specifically, a novel extraction framework is introduced, with the aid of dense matching and a novel keypoint scale and orientation estimator. For this purpose, we propose loss functions based on geometric constraints, which can effectively improve accuracy by supervising neural networks to learn feature geometry. The experimental show that the accuracy and robustness of our method outperform the existing ones in image matching tasks. To further demonstrate the effectiveness of the proposed method, we applied it to relative pose estimation. Affine correspondences extracted by our method lead to more accurate poses than the baselines on a range of real-world datasets. The code is available at https://github.com/stilcrad/DenseAffine.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025
Dreamweaver: Learning Compositional World Models from Pixels
Humans have an innate ability to decompose their perceptions of the world into objects and their attributes, such as colors, shapes, and movement patterns. This cognitive process enables us to imagine novel futures by recombining familiar concepts. However, replicating this ability in artificial intelligence systems has proven challenging, particularly when it comes to modeling videos into compositional concepts and generating unseen, recomposed futures without relying on auxiliary data, such as text, masks, or bounding boxes. In this paper, we propose Dreamweaver, a neural architecture designed to discover hierarchical and compositional representations from raw videos and generate compositional future simulations. Our approach leverages a novel Recurrent Block-Slot Unit (RBSU) to decompose videos into their constituent objects and attributes. In addition, Dreamweaver uses a multi-future-frame prediction objective to capture disentangled representations for dynamic concepts more effectively as well as static concepts. In experiments, we demonstrate our model outperforms current state-of-the-art baselines for world modeling when evaluated under the DCI framework across multiple datasets. Furthermore, we show how the modularized concept representations of our model enable compositional imagination, allowing the generation of novel videos by recombining attributes from previously seen objects. cun-bjy.github.io/dreamweaver-website
OoDIS: Anomaly Instance Segmentation and Detection Benchmark ICRA 2025
Safe navigation of self-driving cars and robots requires a precise understanding of their environment. Training data for perception systems cannot cover the wide variety of objects that may appear during deployment. Thus, reliable identification of unknown objects, such as wild animals and untypical obstacles, is critical due to their potential to cause serious accidents. Significant progress in semantic segmentation of anomalies has been facilitated by the availability of out-of-distribution (OOD) benchmarks. However, a comprehensive understanding of scene dynamics requires the segmentation of individual objects, and thus the segmentation of instances is essential. Development in this area has been lagging, largely due to the lack of dedicated benchmarks. The situation is similar in object detection. While there is interest in detecting and potentially tracking every anomalous object, the availability of dedicated benchmarks is clearly limited. To address this gap, this work extends some commonly used anomaly segmentation benchmarks to include the instance segmentation and object detection tasks. Our evaluation of anomaly instance segmentation and object detection methods shows that both of these challenges remain unsolved problems. We provide a competition and benchmark website under https://vision.rwth-aachen.de/oodis
comment: Accepted for publication at ICRA 2025. Project page: https://vision.rwth-aachen.de/oodis
GaussianAnything: Interactive Point Cloud Flow Matching For 3D Object Generation ICLR 2025
While 3D content generation has advanced significantly, existing methods still face challenges with input formats, latent space design, and output representations. This paper introduces a novel 3D generation framework that addresses these challenges, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space. Our framework employs a Variational Autoencoder (VAE) with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information, and incorporates a cascaded latent flow-based model for improved shape-texture disentanglement. The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single image inputs. Notably, the newly proposed latent space naturally enables geometry-texture disentanglement, thus allowing 3D-aware editing. Experimental results demonstrate the effectiveness of our approach on multiple datasets, outperforming existing native 3D methods in both text- and image-conditioned 3D generation.
comment: ICLR 2025 project page: https://nirvanalan.github.io/projects/GA/
FOLDER: Accelerating Multi-modal Large Language Models with Enhanced Performance
Recently, Multi-modal Large Language Models (MLLMs) have shown remarkable effectiveness for multi-modal tasks due to their abilities to generate and understand cross-modal data. However, processing long sequences of visual tokens extracted from visual backbones poses a challenge for deployment in real-time applications. To address this issue, we introduce FOLDER, a simple yet effective plug-and-play module designed to reduce the length of the visual token sequence, mitigating both computational and memory demands during training and inference. Through a comprehensive analysis of the token reduction process, we analyze the information loss introduced by different reduction strategies and develop FOLDER to preserve key information while removing visual redundancy. We showcase the effectiveness of FOLDER by integrating it into the visual backbone of several MLLMs, significantly accelerating the inference phase. Furthermore, we evaluate its utility as a training accelerator or even performance booster for MLLMs. In both contexts, FOLDER achieves comparable or even better performance than the original models, while dramatically reducing complexity by removing up to 70% of visual tokens.
Hierarchical Modeling for Medical Visual Question Answering with Cross-Attention Fusion
Medical Visual Question Answering (Med-VQA) answers clinical questions using medical images, aiding diagnosis. Designing the MedVQA system holds profound importance in assisting clinical diagnosis and enhancing diagnostic accuracy. Building upon this foundation, Hierarchical Medical VQA extends Medical VQA by organizing medical questions into a hierarchical structure and making level-specific predictions to handle fine-grained distinctions. Recently, many studies have proposed hierarchical MedVQA tasks and established datasets, However, several issues still remain: (1) imperfect hierarchical modeling leads to poor differentiation between question levels causing semantic fragmentation across hierarchies. (2) Excessive reliance on implicit learning in Transformer-based cross-modal self-attention fusion methods, which obscures crucial local semantic correlations in medical scenarios. To address these issues, this study proposes a HiCA-VQA method, including two modules: Hierarchical Prompting for fine-grained medical questions and Hierarchical Answer Decoders. The hierarchical prompting module pre-aligns hierarchical text prompts with image features to guide the model in focusing on specific image regions according to question types, while the hierarchical decoder performs separate predictions for questions at different levels to improve accuracy across granularities. The framework also incorporates a cross-attention fusion module where images serve as queries and text as key-value pairs. Experiments on the Rad-Restruct benchmark demonstrate that the HiCA-VQA framework better outperforms existing state-of-the-art methods in answering hierarchical fine-grained questions. This study provides an effective pathway for hierarchical visual question answering systems, advancing medical image understanding.
Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
Learning-based image compression methods have recently emerged as promising alternatives to traditional codecs, offering improved rate-distortion performance and perceptual quality. JPEG AI represents the latest standardized framework in this domain, leveraging deep neural networks for high-fidelity image reconstruction. In this study, we present a comprehensive subjective visual quality assessment of JPEG AI-compressed images using the JPEG AIC-3 methodology, which quantifies perceptual differences in terms of Just Noticeable Difference (JND) units. We generated a dataset of 50 compressed images with fine-grained distortion levels from five diverse sources. A large-scale crowdsourced experiment collected 96,200 triplet responses from 459 participants. We reconstructed JND-based quality scales using a unified model based on boosted and plain triplet comparisons. Additionally, we evaluated the alignment of multiple objective image quality metrics with human perception in the high-fidelity range. The CVVDP metric achieved the overall highest performance; however, most metrics including CVVDP were overly optimistic in predicting the quality of JPEG AI-compressed images. These findings emphasize the necessity for rigorous subjective evaluations in the development and benchmarking of modern image codecs, particularly in the high-fidelity range. Another technical contribution is the introduction of the well-known Meng-Rosenthal-Rubin statistical test to the field of Quality of Experience research. This test can reliably assess the significance of difference in performance of quality metrics in terms of correlation between metrics and ground truth. The complete dataset, including all subjective scores, is publicly available at https://github.com/jpeg-aic/dataset-JPEG-AI-SDR25.
comment: 7 pages, 5 figures, 3 tables, submitted to QoMEX 2025
Driving by the Rules: A Benchmark for Integrating Traffic Sign Regulations into Vectorized HD Map CVPR 2025
Ensuring adherence to traffic sign regulations is essential for both human and autonomous vehicle navigation. While current online mapping solutions often prioritize the construction of the geometric and connectivity layers of HD maps, overlooking the construction of the traffic regulation layer within HD maps. Addressing this gap, we introduce MapDR, a novel dataset designed for the extraction of Driving Rules from traffic signs and their association with vectorized, locally perceived HD Maps. MapDR features over $10,000$ annotated video clips that capture the intricate correlation between traffic sign regulations and lanes. Built upon this benchmark and the newly defined task of integrating traffic regulations into online HD maps, we provide modular and end-to-end solutions: VLE-MEE and RuleVLM, offering a strong baseline for advancing autonomous driving technology. It fills a critical gap in the integration of traffic sign rules, contributing to the development of reliable autonomous driving systems. Code is available at https://github.com/MIV-XJTU/MapDR.
comment: 26 pages, 16 figures. Accepted as a Highlight at CVPR 2025. Project page: https://miv-xjtu.github.io/MapDR/
CLIP meets DINO for Tuning Zero-Shot Classifier using Unlabeled Image Collections
In the era of foundation models, CLIP has emerged as a powerful tool for aligning text & visual modalities into a common embedding space. However, the alignment objective used to train CLIP often results in subpar visual features for fine-grained tasks. In contrast, SSL-pretrained models like DINO excel at extracting rich visual features due to their specialized training paradigm. Yet, these SSL models require an additional supervised linear probing step, which relies on fully labeled data which is often expensive and difficult to obtain at scale. In this paper, we propose a label-free prompt-tuning method that leverages the rich visual features of self-supervised learning models (DINO) and the broad textual knowledge of large language models (LLMs) to largely enhance CLIP-based image classification performance using unlabeled images. Our approach unfolds in three key steps: (1) We generate robust textual feature embeddings that more accurately represent object classes by leveraging class-specific descriptions from LLMs, enabling more effective zero-shot classification compared to CLIP's default name-specific prompts. (2) These textual embeddings are then used to produce pseudo-labels to train an alignment module that integrates the complementary strengths of LLM description-based textual embeddings & DINO's visual features. (3) Finally, we prompt-tune CLIP's vision encoder through DINO-assisted supervision using the trained alignment module. This three-step process allows us to harness the best of visual & textual foundation models, resulting in a powerful and efficient approach that surpasses state-of-the-art label-free classification methods. Notably, our framework, NoLA (No Labels Attached), achieves an average absolute gain of 3.6% over the state-of-the-art LaFTer across 11 diverse image classification datasets. Our code & models can be found at https://github.com/fazliimam/NoLA.
VideoComp: Advancing Fine-Grained Compositional and Temporal Alignment in Video-Text Models CVPR 2025
We introduce VideoComp, a benchmark and learning framework for advancing video-text compositionality understanding, aimed at improving vision-language models (VLMs) in fine-grained temporal alignment. Unlike existing benchmarks focused on static image-text compositionality or isolated single-event videos, our benchmark targets alignment in continuous multi-event videos. Leveraging video-text datasets with temporally localized event captions (e.g. ActivityNet-Captions, YouCook2), we construct two compositional benchmarks, ActivityNet-Comp and YouCook2-Comp. We create challenging negative samples with subtle temporal disruptions such as reordering, action word replacement, partial captioning, and combined disruptions. These benchmarks comprehensively test models' compositional sensitivity across extended, cohesive video-text sequences. To improve model performance, we propose a hierarchical pairwise preference loss that strengthens alignment with temporally accurate pairs and gradually penalizes increasingly disrupted ones, encouraging fine-grained compositional learning. To mitigate the limited availability of densely annotated video data, we introduce a pretraining strategy that concatenates short video-caption pairs to simulate multi-event sequences. We evaluate video-text foundational models and large multimodal models (LMMs) on our benchmark, identifying both strengths and areas for improvement in compositionality. Overall, our work provides a comprehensive framework for evaluating and enhancing model capabilities in achieving fine-grained, temporally coherent video-text alignment.
comment: CVPR 2025, project page at https://github.com/google-deepmind/video_comp
Understanding Contrastive Representation Learning from Positive Unlabeled (PU) Data
Pretext Invariant Representation Learning (PIRL) followed by Supervised Fine-Tuning (SFT) has become a standard paradigm for learning with limited labels. We extend this approach to the Positive Unlabeled (PU) setting, where only a small set of labeled positives and a large unlabeled pool -- containing both positives and negatives are available. We study this problem under two regimes: (i) without access to the class prior, and (ii) when the prior is known or can be estimated. We introduce Positive Unlabeled Contrastive Learning (puCL), an unbiased and variance reducing contrastive objective that integrates weak supervision from labeled positives judiciously into the contrastive loss. When the class prior is known, we propose Positive Unlabeled InfoNCE (puNCE), a prior-aware extension that re-weights unlabeled samples as soft positive negative mixtures. For downstream classification, we develop a pseudo-labeling algorithm that leverages the structure of the learned embedding space via PU aware clustering. Our framework is supported by theory; offering bias-variance analysis, convergence insights, and generalization guarantees via augmentation concentration; and validated empirically across standard PU benchmarks, where it consistently outperforms existing methods, particularly in low-supervision regimes.
GSDeformer: Direct, Real-time and Extensible Cage-based Deformation for 3D Gaussian Splatting
We present GSDeformer, a method that enables cage-based deformation on 3D Gaussian Splatting (3DGS). Our approach bridges cage-based deformation and 3DGS by using a proxy point-cloud representation. This point cloud is generated from 3D Gaussians, and deformations applied to the point cloud are translated into transformations on the 3D Gaussians. To handle potential bending caused by deformation, we incorporate a splitting process to approximate it. Our method does not modify or extend the core architecture of 3D Gaussian Splatting, making it compatible with any trained vanilla 3DGS or its variants. Additionally, we automate cage construction for 3DGS and its variants using a render-and-reconstruct approach. Experiments demonstrate that GSDeformer delivers superior deformation results compared to existing methods, is robust under extreme deformations, requires no retraining for editing, runs in real-time, and can be extended to other 3DGS variants. Project Page: https://jhuangbu.github.io/gsdeformer/
comment: Project Page: https://jhuangbu.github.io/gsdeformer, Video: https://www.youtube.com/watch?v=-ecrj48-MqM
Phantom: Subject-consistent video generation via cross-modal alignment
The continuous development of foundational models for video generation is evolving into various applications, with subject-consistent video generation still in the exploratory stage. We refer to this as Subject-to-Video, which extracts subject elements from reference images and generates subject-consistent videos following textual instructions. We believe that the essence of subject-to-video lies in balancing the dual-modal prompts of text and image, thereby deeply and simultaneously aligning both text and visual content. To this end, we propose Phantom, a unified video generation framework for both single- and multi-subject references. Building on existing text-to-video and image-to-video architectures, we redesign the joint text-image injection model and drive it to learn cross-modal alignment via text-image-video triplet data. The proposed method achieves high-fidelity subject-consistent video generation while addressing issues of image content leakage and multi-subject confusion. Evaluation results indicate that our method outperforms other state-of-the-art closed-source commercial solutions. In particular, we emphasize subject consistency in human generation, covering existing ID-preserving video generation while offering enhanced advantages.
Latte: Latent Diffusion Transformer for Video Generation
We propose a novel Latent Diffusion Transformer, namely Latte, for video generation. Latte first extracts spatio-temporal tokens from input videos and then adopts a series of Transformer blocks to model video distribution in the latent space. In order to model a substantial number of tokens extracted from videos, four efficient variants are introduced from the perspective of decomposing the spatial and temporal dimensions of input videos. To improve the quality of generated videos, we determine the best practices of Latte through rigorous experimental analysis, including video clip patch embedding, model variants, timestep-class information injection, temporal positional embedding, and learning strategies. Our comprehensive evaluation demonstrates that Latte achieves state-of-the-art performance across four standard video generation datasets, i.e., FaceForensics, SkyTimelapse, UCF101, and Taichi-HD. In addition, we extend Latte to text-to-video generation (T2V) task, where Latte achieves comparable results compared to recent T2V models. We strongly believe that Latte provides valuable insights for future research on incorporating Transformers into diffusion models for video generation.
comment: Accepted by Transactions on Machine Learning Research 2025; Project page: https://maxin-cn.github.io/latte_project
Playmate: Flexible Control of Portrait Animation via 3D-Implicit Space Guided Diffusion
Recent diffusion-based talking face generation models have demonstrated impressive potential in synthesizing videos that accurately match a speech audio clip with a given reference identity. However, existing approaches still encounter significant challenges due to uncontrollable factors, such as inaccurate lip-sync, inappropriate head posture and the lack of fine-grained control over facial expressions. In order to introduce more face-guided conditions beyond speech audio clips, a novel two-stage training framework Playmate is proposed to generate more lifelike facial expressions and talking faces. In the first stage, we introduce a decoupled implicit 3D representation along with a meticulously designed motion-decoupled module to facilitate more accurate attribute disentanglement and generate expressive talking videos directly from audio cues. Then, in the second stage, we introduce an emotion-control module to encode emotion control information into the latent space, enabling fine-grained control over emotions and thereby achieving the ability to generate talking videos with desired emotion. Extensive experiments demonstrate that Playmate outperforms existing state-of-the-art methods in terms of video quality and lip-synchronization, and improves flexibility in controlling emotion and head pose. The code will be available at https://playmate111.github.io.
Enhancing Cell Instance Segmentation in Scanning Electron Microscopy Images via a Deep Contour Closing Operator
Accurately segmenting and individualizing cells in SEM images is a highly promising technique for elucidating tissue architecture in oncology. While current AI-based methods are effective, errors persist, necessitating time-consuming manual corrections, particularly in areas where the quality of cell contours in the image is poor and requires gap filling. This study presents a novel AI-driven approach for refining cell boundary delineation to improve instance-based cell segmentation in SEM images, also reducing the necessity for residual manual correction. A CNN COp-Net is introduced to address gaps in cell contours, effectively filling in regions with deficient or absent information. The network takes as input cell contour probability maps with potentially inadequate or missing information and outputs corrected cell contour delineations. The lack of training data was addressed by generating low integrity probability maps using a tailored PDE. We showcase the efficacy of our approach in augmenting cell boundary precision using both private SEM images from PDX hepatoblastoma tissues and publicly accessible images datasets. The proposed cell contour closing operator exhibits a notable improvement in tested datasets, achieving respectively close to 50% (private data) and 10% (public data) increase in the accurately-delineated cell proportion compared to state-of-the-art methods. Additionally, the need for manual corrections was significantly reduced, therefore facilitating the overall digitalization process. Our results demonstrate a notable enhancement in the accuracy of cell instance segmentation, particularly in highly challenging regions where image quality compromises the integrity of cell boundaries, necessitating gap filling. Therefore, our work should ultimately facilitate the study of tumour tissue bioarchitecture in onconanotomy field.
comment: 13 pages, 8 figures, 2 tables
Benchmarking Multi-modal Semantic Segmentation under Sensor Failures: Missing and Noisy Modality Robustness CVPR 2025
Multi-modal semantic segmentation (MMSS) addresses the limitations of single-modality data by integrating complementary information across modalities. Despite notable progress, a significant gap persists between research and real-world deployment due to variability and uncertainty in multi-modal data quality. Robustness has thus become essential for practical MMSS applications. However, the absence of standardized benchmarks for evaluating robustness hinders further advancement. To address this, we first survey existing MMSS literature and categorize representative methods to provide a structured overview. We then introduce a robustness benchmark that evaluates MMSS models under three scenarios: Entire-Missing Modality (EMM), Random-Missing Modality (RMM), and Noisy Modality (NM). From a probabilistic standpoint, we model modality failure under two conditions: (1) all damaged combinations are equally probable; (2) each modality fails independently following a Bernoulli distribution. Based on these, we propose four metrics-$mIoU^{Avg}_{EMM}$, $mIoU^{E}_{EMM}$, $mIoU^{Avg}_{RMM}$, and $mIoU^{E}_{RMM}$-to assess model robustness under EMM and RMM. This work provides the first dedicated benchmark for MMSS robustness, offering new insights and tools to advance the field. Source code is available at https://github.com/Chenfei-Liao/Multi-Modal-Semantic-Segmentation-Robustness-Benchmark.
comment: This paper has been accepted by the CVPR 2025 Workshop: TMM-OpenWorld as an oral presentation paper
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving CVPR 2025
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Accepted to CVPR 2025 as Highlight. Code & demo & model are available at https://github.com/hustvl/DiffusionDrive
SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
Recently, camera-based solutions have been extensively explored for scene semantic completion (SSC). Despite their success in visible areas, existing methods struggle to capture complete scene semantics due to frequent visual occlusions. To address this limitation, this paper presents the first satellite-ground cooperative SSC framework, i.e., SGFormer, exploring the potential of satellite-ground image pairs in the SSC task. Specifically, we propose a dual-branch architecture that encodes orthogonal satellite and ground views in parallel, unifying them into a common domain. Additionally, we design a ground-view guidance strategy that corrects satellite image biases during feature encoding, addressing misalignment between satellite and ground views. Moreover, we develop an adaptive weighting strategy that balances contributions from satellite and ground views. Experiments demonstrate that SGFormer outperforms the state of the art on SemanticKITTI and SSCBench-KITTI-360 datasets. Our code is available on https://github.com/gxytcrc/SGFormer.
comment: Project Page: https://zju3dv.github.io/sgformer/
Image Augmentation Agent for Weakly Supervised Semantic Segmentation
Weakly-supervised semantic segmentation (WSSS) has achieved remarkable progress using only image-level labels. However, most existing WSSS methods focus on designing new network structures and loss functions to generate more accurate dense labels, overlooking the limitations imposed by fixed datasets, which can constrain performance improvements. We argue that more diverse trainable images provides WSSS richer information and help model understand more comprehensive semantic pattern. Therefore in this paper, we introduce a novel approach called Image Augmentation Agent (IAA) which shows that it is possible to enhance WSSS from data generation perspective. IAA mainly design an augmentation agent that leverages large language models (LLMs) and diffusion models to automatically generate additional images for WSSS. In practice, to address the instability in prompt generation by LLMs, we develop a prompt self-refinement mechanism. It allow LLMs to re-evaluate the rationality of generated prompts to produce more coherent prompts. Additionally, we insert an online filter into diffusion generation process to dynamically ensure the quality and balance of generated images. Experimental results show that our method significantly surpasses state-of-the-art WSSS approaches on the PASCAL VOC 2012 and MS COCO 2014 datasets.
ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification
The misuse of deep learning-based facial manipulation poses a significant threat to civil rights. To prevent this fraud at its source, proactive defense has been proposed to disrupt the manipulation process by adding invisible adversarial perturbations into images, making the forged output unconvincing to observers. However, the non-specific disruption against the output may lead to the retention of identifiable facial features, potentially resulting in the stigmatization of the individual. This paper proposes a universal framework for combating facial manipulation, termed ID-Guard. Specifically, this framework operates with a single forward pass of an encoder-decoder network to produce a cross-model transferable adversarial perturbation. A novel Identity Destruction Module (IDM) is introduced to degrade identifiable features in forged faces. We optimize the perturbation generation by framing the disruption of different facial manipulations as a multi-task learning problem, and a dynamic weight strategy is devised to enhance cross-model performance. Experimental results demonstrate that the proposed ID-Guard exhibits strong efficacy in defending against various facial manipulation models, effectively degrading identifiable regions in manipulated images. It also enables disrupted images to evade facial inpainting and image recognition systems. Additionally, ID-Guard can seamlessly function as a plug-and-play component, integrating with other tasks such as adversarial training.
Rethinking Patch Dependence for Masked Autoencoders
In this work, we examine the impact of inter-patch dependencies in the decoder of masked autoencoders (MAE) on representation learning. We decompose the decoding mechanism for masked reconstruction into self-attention between mask tokens and cross-attention between masked and visible tokens. Our findings reveal that MAE reconstructs coherent images from visible patches not through interactions between patches in the decoder but by learning a global representation within the encoder. This discovery leads us to propose a simple visual pretraining framework: cross-attention masked autoencoders (CrossMAE). This framework employs only cross-attention in the decoder to independently read out reconstructions for a small subset of masked patches from encoder outputs. This approach achieves comparable or superior performance to traditional MAE across models ranging from ViT-S to ViT-H and significantly reduces computational requirements. By its design, CrossMAE challenges the necessity of interaction between mask tokens for effective masked pretraining. Code and models are publicly available: https://crossmae.github.io
comment: Transactions on Machine Learning Research (TMLR) 2025
Continual Text-to-Video Retrieval with Frame Fusion and Task-Aware Routing SIGIR 2025
Text-to-Video Retrieval (TVR) aims to retrieve relevant videos based on textual queries. However, as video content evolves continuously, adapting TVR systems to new data remains a critical yet under-explored challenge. In this paper, we introduce the first benchmark for Continual Text-to-Video Retrieval (CTVR) to address the limitations of existing approaches. Current Pre-Trained Model (PTM)-based TVR methods struggle with maintaining model plasticity when adapting to new tasks, while existing Continual Learning (CL) methods suffer from catastrophic forgetting, leading to semantic misalignment between historical queries and stored video features. To address these two challenges, we propose FrameFusionMoE, a novel CTVR framework that comprises two key components: (1) the Frame Fusion Adapter (FFA), which captures temporal video dynamics while preserving model plasticity, and (2) the Task-Aware Mixture-of-Experts (TAME), which ensures consistent semantic alignment between queries across tasks and the stored video features. Thus, FrameFusionMoE enables effective adaptation to new video content while preserving historical text-video relevance to mitigate catastrophic forgetting. We comprehensively evaluate FrameFusionMoE on two benchmark datasets under various task settings. Results demonstrate that FrameFusionMoE outperforms existing CL and TVR methods, achieving superior retrieval performance with minimal degradation on earlier tasks when handling continuous video streams. Our code is available at: https://github.com/JasonCodeMaker/CTVR.
comment: Accepted at SIGIR 2025
Fast Globally Optimal and Geometrically Consistent 3D Shape Matching
Geometric consistency, i.e. the preservation of neighbourhoods, is a natural and strong prior in 3D shape matching. Geometrically consistent matchings are crucial for many downstream applications, such as texture transfer or statistical shape modelling. Yet, in practice, geometric consistency is often overlooked, or only achieved under severely limiting assumptions (e.g. a good initialisation). In this work, we propose a novel formalism for computing globally optimal and geometrically consistent matchings between 3D shapes which is scalable in practice. Our key idea is to represent the surface of the source shape as a collection of cyclic paths, which are then consistently matched to the target shape. Mathematically, we construct a hyper product graph (between source and target shape), and then cast 3D shape matching as a minimum-cost circulation flow problem in this hyper graph, which yields global geometrically consistent matchings between both shapes. We empirically show that our formalism is efficiently solvable and that it leads to high-quality results.
comment: 8 pages main paper, 10 pages supplementary
TextPSG: Panoptic Scene Graph Generation from Textual Descriptions ICCV 2023
Panoptic Scene Graph has recently been proposed for comprehensive scene understanding. However, previous works adopt a fully-supervised learning manner, requiring large amounts of pixel-wise densely-annotated data, which is always tedious and expensive to obtain. To address this limitation, we study a new problem of Panoptic Scene Graph Generation from Purely Textual Descriptions (Caption-to-PSG). The key idea is to leverage the large collection of free image-caption data on the Web alone to generate panoptic scene graphs. The problem is very challenging for three constraints: 1) no location priors; 2) no explicit links between visual regions and textual entities; and 3) no pre-defined concept sets. To tackle this problem, we propose a new framework TextPSG consisting of four modules, i.e., a region grouper, an entity grounder, a segment merger, and a label generator, with several novel techniques. The region grouper first groups image pixels into different segments and the entity grounder then aligns visual segments with language entities based on the textual description of the segment being referred to. The grounding results can thus serve as pseudo labels enabling the segment merger to learn the segment similarity as well as guiding the label generator to learn object semantics and relation predicates, resulting in a fine-grained structured scene understanding. Our framework is effective, significantly outperforming the baselines and achieving strong out-of-distribution robustness. We perform comprehensive ablation studies to corroborate the effectiveness of our design choices and provide an in-depth analysis to highlight future directions. Our code, data, and results are available on our project page: https://textpsg.github.io/.
comment: Accepted by ICCV 2023
Prototypical Calibrating Ambiguous Samples for Micro-Action Recognition AAAI 2025
Micro-Action Recognition (MAR) has gained increasing attention due to its crucial role as a form of non-verbal communication in social interactions, with promising potential for applications in human communication and emotion analysis. However, current approaches often overlook the inherent ambiguity in micro-actions, which arises from the wide category range and subtle visual differences between categories. This oversight hampers the accuracy of micro-action recognition. In this paper, we propose a novel Prototypical Calibrating Ambiguous Network (PCAN) to unleash and mitigate the ambiguity of MAR. Firstly, we employ a hierarchical action-tree to identify the ambiguous sample, categorizing them into distinct sets of ambiguous samples of false negatives and false positives, considering both body- and action-level categories. Secondly, we implement an ambiguous contrastive refinement module to calibrate these ambiguous samples by regulating the distance between ambiguous samples and their corresponding prototypes. This calibration process aims to pull false negative (FN) samples closer to their respective prototypes and push false positive (FP) samples apart from their affiliated prototypes. In addition, we propose a new prototypical diversity amplification loss to strengthen the model's capacity by amplifying the differences between different prototypes. Finally, we propose a prototype-guided rectification to rectify prediction by incorporating the representability of prototypes. Extensive experiments conducted on the benchmark dataset demonstrate the superior performance of our method compared to existing approaches. The code is available at https://github.com/kunli-cs/PCAN.
comment: Fix typos; Accepted by AAAI 2025
Embedding Shift Dissection on CLIP: Effects of Augmentations on VLM's Representation Learning CVPR 2025
Understanding the representation shift on Vision Language Models like CLIP under different augmentations provides valuable insights on Mechanistic Interpretability. In this study, we show the shift on CLIP's embeddings on 9 common augmentation techniques: noise, blur, color jitter, scale and rotate, flip, elastic and perspective transforms, random brightness and contrast, and coarse dropout of pixel blocks. We scrutinize the embedding shifts under similarity on attention map, patch, edge, detail preservation, cosine similarity, L2 distance, pairwise distance and dendrogram clusters and provide qualitative analysis on sample images. Our findings suggest certain augmentations like noise, perspective transform and shift scaling have higher degree of drastic impact on embedding shift. This study provides a concrete foundation for future work on VLM's robustness for mechanical interpretation and adversarial data defense. The code implementation for this study can be found on \href{https://github.com/ashimdahal/clip-shift-analysis}{https://github.com/ashimdahal/clip-shift-analysis}.
comment: accepted at MIV at CVPR 2025
Potential Field Based Deep Metric Learning CVPR 2025
Deep metric learning (DML) involves training a network to learn a semantically meaningful representation space. Many current approaches mine n-tuples of examples and model interactions within each tuplets. We present a novel, compositional DML model that instead of in tuples, represents the influence of each example (embedding) by a continuous potential field, and superposes the fields to obtain their combined global potential field. We use attractive/repulsive potential fields to represent interactions among embeddings from images of the same/different classes. Contrary to typical learning methods, where mutual influence of samples is proportional to their distance, we enforce reduction in such influence with distance, leading to a decaying field. We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise. Like other proxy-based methods, we also use proxies to succinctly represent sub-populations of examples. We evaluate our method on three standard DML benchmarks- Cars-196, CUB-200-2011, and SOP datasets where it outperforms state-of-the-art baselines.
comment: Accepted to CVPR 2025
Survey on Monocular Metric Depth Estimation
Monocular Depth Estimation (MDE) is a core task in computer vision that enables spatial understanding, 3D reconstruction, and autonomous navigation. Deep learning methods typically estimate relative depth from a single image, but the lack of metric scale often leads to geometric inconsistencies. This limitation severely impacts applications such as visual SLAM, detailed 3D modeling, and novel view synthesis. Monocular Metric Depth Estimation (MMDE) addresses this issue by producing depth maps with absolute scale, ensuring frame-to-frame consistency and supporting direct deployment without scale calibration. This paper presents a structured survey of depth estimation methods, tracing the evolution from traditional geometry-based approaches to modern deep learning models. Recent progress in MMDE is analyzed, with a focus on two key challenges: poor generalization and blurred object boundaries. To tackle these problems, researchers have explored various strategies, including self-supervised learning with unlabeled data, patch-based training, architectural enhancements, and generative model integration. Each method is discussed in terms of technical contribution, performance improvement, and remaining limitations. The survey consolidates recent findings, identifies unresolved challenges, and outlines future directions for MMDE. By highlighting key advancements and open problems, this paper aims to support the continued development and real-world adoption of metric depth estimation in computer vision.
SeCap: Self-Calibrating and Adaptive Prompts for Cross-view Person Re-Identification in Aerial-Ground Networks
When discussing the Aerial-Ground Person Re-identification (AGPReID) task, we face the main challenge of the significant appearance variations caused by different viewpoints, making identity matching difficult. To address this issue, previous methods attempt to reduce the differences between viewpoints by critical attributes and decoupling the viewpoints. While these methods can mitigate viewpoint differences to some extent, they still face two main issues: (1) difficulty in handling viewpoint diversity and (2) neglect of the contribution of local features. To effectively address these challenges, we design and implement the Self-Calibrating and Adaptive Prompt (SeCap) method for the AGPReID task. The core of this framework relies on the Prompt Re-calibration Module (PRM), which adaptively re-calibrates prompts based on the input. Combined with the Local Feature Refinement Module (LFRM), SeCap can extract view-invariant features from local features for AGPReID. Meanwhile, given the current scarcity of datasets in the AGPReID field, we further contribute two real-world Large-scale Aerial-Ground Person Re-Identification datasets, LAGPeR and G2APS-ReID. The former is collected and annotated by us independently, covering $4,231$ unique identities and containing $63,841$ high-quality images; the latter is reconstructed from the person search dataset G2APS. Through extensive experiments on AGPReID datasets, we demonstrate that SeCap is a feasible and effective solution for the AGPReID task. The datasets and source code available on https://github.com/wangshining681/SeCap-AGPReID.
Which Viewpoint Shows it Best? Language for Weakly Supervising View Selection in Multi-view Instructional Videos CVPR 2025
Given a multi-view video, which viewpoint is most informative for a human observer? Existing methods rely on heuristics or expensive "best-view" supervision to answer this question, limiting their applicability. We propose a weakly supervised approach that leverages language accompanying an instructional multi-view video as a means to recover its most informative viewpoint(s). Our key hypothesis is that the more accurately an individual view can predict a view-agnostic text summary, the more informative it is. To put this into action, we propose LangView, a framework that uses the relative accuracy of view-dependent caption predictions as a proxy for best view pseudo-labels. Then, those pseudo-labels are used to train a view selector, together with an auxiliary camera pose predictor that enhances view-sensitivity. During inference, our model takes as input only a multi-view video--no language or camera poses--and returns the best viewpoint to watch at each timestep. On two challenging datasets comprised of diverse multi-camera setups and how-to activities, our model consistently outperforms state-of-the-art baselines, both with quantitative metrics and human evaluation. Project page: https://vision.cs.utexas.edu/projects/which-view-shows-it-best.
comment: Accepted to CVPR 2025 (Highlight)
Think While You Generate: Discrete Diffusion with Planned Denoising ICLR 2025
Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet $256 \times 256$. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity. Code is available at https://github.com/liusulin/DDPD.
comment: ICLR 2025
Are We Done with Object-Centric Learning?
Object-centric learning (OCL) seeks to learn representations that only encode an object, isolated from other objects or background cues in a scene. This approach underpins various aims, including out-of-distribution (OOD) generalization, sample-efficient composition, and modeling of structured environments. Most research has focused on developing unsupervised mechanisms that separate objects into discrete slots in the representation space, evaluated using unsupervised object discovery. However, with recent sample-efficient segmentation models, we can separate objects in the pixel space and encode them independently. This achieves remarkable zero-shot performance on OOD object discovery benchmarks, is scalable to foundation models, and can handle a variable number of slots out-of-the-box. Hence, the goal of OCL methods to obtain object-centric representations has been largely achieved. Despite this progress, a key question remains: How does the ability to separate objects within a scene contribute to broader OCL objectives, such as OOD generalization? We address this by investigating the OOD generalization challenge caused by spurious background cues through the lens of OCL. We propose a novel, training-free probe called Object-Centric Classification with Applied Masks (OCCAM), demonstrating that segmentation-based encoding of individual objects significantly outperforms slot-based OCL methods. However, challenges in real-world applications remain. We provide the toolbox for the OCL community to use scalable object-centric representations, and focus on practical applications and fundamental questions, such as understanding object perception in human cognition. Our code is available here: https://github.com/AlexanderRubinstein/OCCAM.
DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation NeurIPS 2024
We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git.
comment: Accepted to NeurIPS 2024. Project page: https://vinairesearch.github.io/DiMSUM/
PACER: Preference-conditioned All-terrain Costmap Generation
In autonomous robot navigation, terrain cost assignment is typically performed using a semantics-based paradigm in which terrain is first labeled using a pre-trained semantic classifier and costs are then assigned according to a user-defined mapping between label and cost. While this approach is rapidly adaptable to changing user preferences, only preferences over the types of terrain that are already known by the semantic classifier can be expressed. In this paper, we hypothesize that a machine-learning-based alternative to the semantics-based paradigm above will allow for rapid cost assignment adaptation to preferences expressed over new terrains at deployment time without the need for additional training. To investigate this hypothesis, we introduce and study PACER, a novel approach to costmap generation that accepts as input a single birds-eye view (BEV) image of the surrounding area along with a user-specified preference context and generates a corresponding BEV costmap that aligns with the preference context. Using both real and synthetic data along with a combination of proposed training tasks, we find that PACER is able to adapt quickly to new user preferences while also exhibiting better generalization to novel terrains compared to both semantics-based and representation-learning approaches.
Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis CVPR 2025
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models; however, such large datasets are not always accessible in medical imaging due to cost and privacy issues, which contradicts one of the main applications of such models to produce synthetic samples where real data is scarce. Also, fine-tuning pre-trained general models has been a challenge due to the distribution shift between the medical domain and the pre-trained models. Here, we propose Latent Drift (LD) for diffusion models that can be adopted for any fine-tuning method to mitigate the issues faced by the distribution shift or employed in inference time as a condition. Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation, which is crucial to investigate how parameters such as gender, age, and adding or removing diseases in a patient would alter the medical images. We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation. Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
comment: Accepted to CVPR 2025 (highlight)
R-SCoRe: Revisiting Scene Coordinate Regression for Robust Large-Scale Visual Localization CVPR 2025
Learning-based visual localization methods that use scene coordinate regression (SCR) offer the advantage of smaller map sizes. However, on datasets with complex illumination changes or image-level ambiguities, it remains a less robust alternative to feature matching methods. This work aims to close the gap. We introduce a covisibility graph-based global encoding learning and data augmentation strategy, along with a depth-adjusted reprojection loss to facilitate implicit triangulation. Additionally, we revisit the network architecture and local feature extraction module. Our method achieves state-of-the-art on challenging large-scale datasets without relying on network ensembles or 3D supervision. On Aachen Day-Night, we are 10$\times$ more accurate than previous SCR methods with similar map sizes and require at least 5$\times$ smaller map sizes than any other SCR method while still delivering superior accuracy. Code is available at: https://github.com/cvg/scrstudio .
comment: CVPR 2025 camera ready. Code: https://github.com/cvg/scrstudio
Image registration of 2D optical thin sections in a 3D porous medium: Application to a Berea sandstone digital rock image
This study proposes a systematic image registration approach to align 2D optical thin-section images within a 3D digital rock volume. Using template image matching with differential evolution optimization, we identify the most similar 2D plane in 3D. The method is validated on a synthetic porous medium, achieving exact registration, and applied to Berea sandstone, where it achieves a structural similarity index (SSIM) of 0.990. With the registered images, we explore upscaling properties based on paired multimodal images, focusing on pore characteristics and effective elastic moduli. The thin-section image reveals 50 % more porosity and submicron pores than the registered CT plane. In addition, bulk and shear moduli from thin sections are 25 % and 30 % lower, respectively, than those derived from CT images. Beyond numerical comparisons, thin sections provide additional geological insights, including cementation, mineral phases, and weathering effects, which are not clear in CT images. This study demonstrates the potential of multimodal image registration to improve computed rock properties in digital rock physics by integrating complementary imaging modalities.
SMORE: Simultaneous Map and Object REconstruction 3DV 2025
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR. Depth-based reconstructions tend to focus on small-scale objects or large-scale SLAM reconstructions that treat moving objects as outliers. We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background. To achieve this, we take inspiration from recent novel view synthesis methods and frame the reconstruction problem as a global optimization over neural surfaces, ego poses, and object poses, which minimizes the error between composed spacetime surfaces and input LiDAR scans. In contrast to view synthesis methods, which typically minimize 2D errors with gradient descent, we minimize a 3D point-to-surface error by coordinate descent, which we decompose into registration and surface reconstruction steps. Each step can be handled well by off-the-shelf methods without any re-training. We analyze the surface reconstruction step for rolling-shutter LiDARs, and show that deskewing operations common in continuous time SLAM can be applied to dynamic objects as well, improving results over prior art by an order of magnitude. Beyond pursuing dynamic reconstruction as a goal in and of itself, we propose that such a system can be used to auto-label partially annotated sequences and produce ground truth annotation for hard-to-label problems such as depth completion and scene flow.
comment: 3DV 2025
GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting CVPR 2025
3D Gaussian Splatting (3DGS) has emerged as a mainstream for novel view synthesis, leveraging continuous aggregations of Gaussian functions to model scene geometry. However, 3DGS suffers from substantial memory requirements to store the multitude of Gaussians, hindering its practicality. To address this challenge, we introduce GaussianSpa, an optimization-based simplification framework for compact and high-quality 3DGS. Specifically, we formulate the simplification as an optimization problem associated with the 3DGS training. Correspondingly, we propose an efficient "optimizing-sparsifying" solution that alternately solves two independent sub-problems, gradually imposing strong sparsity onto the Gaussians in the training process. Our comprehensive evaluations on various datasets show the superiority of GaussianSpa over existing state-of-the-art approaches. Notably, GaussianSpa achieves an average PSNR improvement of 0.9 dB on the real-world Deep Blending dataset with 10$\times$ fewer Gaussians compared to the vanilla 3DGS. Our project page is available at https://noodle-lab.github.io/gaussianspa/.
comment: CVPR 2025. Project page at https://noodle-lab.github.io/gaussianspa/
AlertTrap: A study on object detection in remote insects trap monitoring system using on-the-edge deep learning platform
Fruit flies are one of the most harmful insect species to fruit yields. In AlertTrap, implementation of Single-Shot Multibox Detector (SSD) architecture with different state-of-the-art backbone feature extractors such as MobileNetV1 and MobileNetV2 appears to be potential solutions for the real-time detection problem. SSD-MobileNetV1 and SSD-MobileNetV2 perform well and result in AP at 0.5 of 0.957 and 1.0, respectively. You Only Look Once (YOLO) v4-tiny outperforms the SSD family with 1.0 in AP at 0.5; however, its throughput velocity is considerably slower, which shows SSD models are better candidates for real-time implementation. We also tested the models with synthetic test sets simulating expected environmental disturbances. The YOLOv4-tiny had better tolerance to these disturbances than the SSD models. The Raspberry Pi system successfully gathered environmental data and pest counts, sending them via email over 4 G. However, running the full YOLO version in real time on Raspberry Pi is not feasible, indicating the need for a lighter object detection algorithm for future research. Among model candidates, YOLOv4-tiny generally performs best, with SSD-MobileNetV2 also comparable and sometimes better, especially in scenarios with synthetic disturbances. SSD models excel in processing time, enabling real-time, high-accuracy detection.
DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization
High-quality motion reconstruction that follows the user's movements can be achieved by high-end mocap systems with many sensors. However, obtaining such animation quality with fewer input devices is gaining popularity as it brings mocap closer to the general public. The main challenges include the loss of end-effector accuracy in learning-based approaches, or the lack of naturalness and smoothness in IK-based solutions. In addition, such systems are often finely tuned to a specific number of trackers and are highly sensitive to missing data e.g., in scenarios where a sensor is occluded or malfunctions. In response to these challenges, we introduce DragPoser, a novel deep-learning-based motion reconstruction system that accurately represents hard and dynamic on-the-fly constraints, attaining real-time high end-effectors position accuracy. This is achieved through a pose optimization process within a structured latent space. Our system requires only one-time training on a large human motion dataset, and then constraints can be dynamically defined as losses, while the pose is iteratively refined by computing the gradients of these losses within the latent space. To further enhance our approach, we incorporate a Temporal Predictor network, which employs a Transformer architecture to directly encode temporality within the latent space. This network ensures the pose optimization is confined to the manifold of valid poses and also leverages past pose data to predict temporally coherent poses. Results demonstrate that DragPoser surpasses both IK-based and the latest data-driven methods in achieving precise end-effector positioning, while it produces natural poses and temporally coherent motion. In addition, our system showcases robustness against on-the-fly constraint modifications, and exhibits exceptional adaptability to various input configurations and changes.
comment: Published on Eurographics 2025. Project page: https://upc-virvig.github.io/DragPoser/
SYNTHIA: Novel Concept Design with Affordance Composition
Text-to-image (T2I) models enable rapid concept design, making them widely used in AI-driven design. While recent studies focus on generating semantic and stylistic variations of given design concepts, functional coherence--the integration of multiple affordances into a single coherent concept--remains largely overlooked. In this paper, we introduce SYNTHIA, a framework for generating novel, functionally coherent designs based on desired affordances. Our approach leverages a hierarchical concept ontology that decomposes concepts into parts and affordances, serving as a crucial building block for functionally coherent design. We also develop a curriculum learning scheme based on our ontology that contrastively fine-tunes T2I models to progressively learn affordance composition while maintaining visual novelty. To elaborate, we (i) gradually increase affordance distance, guiding models from basic concept-affordance association to complex affordance compositions that integrate parts of distinct affordances into a single, coherent form, and (ii) enforce visual novelty by employing contrastive objectives to push learned representations away from existing concepts. Experimental results show that SYNTHIA outperforms state-of-the-art T2I models, demonstrating absolute gains of 25.1% and 14.7% for novelty and functional coherence in human evaluation, respectively.
comment: Code is available https://github.com/HyeonjeongHa/SYNTHIA
Liquid: Language Models are Scalable and Unified Multi-modal Generators
We present Liquid, an auto-regressive generation paradigm that seamlessly integrates visual comprehension and generation by tokenizing images into discrete codes and learning these code embeddings alongside text tokens within a shared feature space for both vision and language. Unlike previous multimodal large language model (MLLM), Liquid achieves this integration using a single large language model (LLM), eliminating the need for external pretrained visual embeddings such as CLIP. For the first time, Liquid uncovers a scaling law that performance drop unavoidably brought by the unified training of visual and language tasks diminishes as the model size increases. Furthermore, the unified token space enables visual generation and comprehension tasks to mutually enhance each other, effectively removing the typical interference seen in earlier models. We show that existing LLMs can serve as strong foundations for Liquid, saving 100x in training costs while outperforming Chameleon in multimodal capabilities and maintaining language performance comparable to mainstream LLMs like LLAMA2. Liquid also outperforms models like SD v2.1 and SD-XL (FID of 5.47 on MJHQ-30K), excelling in both vision-language and text-only tasks. This work demonstrates that LLMs such as Qwen2.5 and GEMMA2 are powerful multimodal generators, offering a scalable solution for enhancing both vision-language understanding and generation. The code and models will be released at https://github.com/FoundationVision/Liquid.
comment: Technical report. Project page: https://foundationvision.github.io/Liquid/
An Empirical Study of GPT-4o Image Generation Capabilities
The landscape of image generation has rapidly evolved, from early GAN-based approaches to diffusion models and, most recently, to unified generative architectures that seek to bridge understanding and generation tasks. Recent advances, especially the GPT-4o, have demonstrated the feasibility of high-fidelity multimodal generation, their architectural design remains mysterious and unpublished. This prompts the question of whether image and text generation have already been successfully integrated into a unified framework for those methods. In this work, we conduct an empirical study of GPT-4o's image generation capabilities, benchmarking it against leading open-source and commercial models. Our evaluation covers four main categories, including text-to-image, image-to-image, image-to-3D, and image-to-X generation, with more than 20 tasks. Our analysis highlights the strengths and limitations of GPT-4o under various settings, and situates it within the broader evolution of generative modeling. Through this investigation, we identify promising directions for future unified generative models, emphasizing the role of architectural design and data scaling. For a high-definition version of the PDF, please refer to the link on GitHub: \href{https://github.com/Ephemeral182/Empirical-Study-of-GPT-4o-Image-Gen}{https://github.com/Ephemeral182/Empirical-Study-of-GPT-4o-Image-Gen}.
Image and Video Processing
Zero-Shot Low-dose CT Denoising via Sinogram Flicking
Many low-dose CT imaging methods rely on supervised learning, which requires a large number of paired noisy and clean images. However, obtaining paired images in clinical practice is challenging. To address this issue, zero-shot self-supervised methods train denoising networks using only the information within a single image, such as ZS-N2N. However, these methods often employ downsampling operations that degrade image resolution. Additionally, the training dataset is inherently constrained to the image itself. In this paper, we propose a zero-shot low-dose CT imaging method based on sinogram flicking, which operates within a single image but generates many copies via random conjugate ray matching. Specifically, two conjugate X-ray pencil beams measure the same path; their expected values should be identical, while their noise levels vary during measurements. By randomly swapping portions of the conjugate X-rays in the sinogram domain, we generate a large set of sinograms with consistent content but varying noise patterns. When displayed dynamically, these sinograms exhibit a flickering effect due to their identical structural content but differing noise patterns-hence the term sinogram flicking. We train the network on pairs of sinograms with the same content but different noise distributions using a lightweight model adapted from ZS-NSN. This process is repeated to obtain the final results. A simulation study demonstrates that our method outperforms state-of-the-art approaches such as ZS-N2N.
comment: 4 pages, 4 figures
The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound
Data augmentation is a central component of joint embedding self-supervised learning (SSL). Approaches that work for natural images may not always be effective in medical imaging tasks. This study systematically investigated the impact of data augmentation and preprocessing strategies in SSL for lung ultrasound. Three data augmentation pipelines were assessed: (1) a baseline pipeline commonly used across imaging domains, (2) a novel semantic-preserving pipeline designed for ultrasound, and (3) a distilled set of the most effective transformations from both pipelines. Pretrained models were evaluated on multiple classification tasks: B-line detection, pleural effusion detection, and COVID-19 classification. Experiments revealed that semantics-preserving data augmentation resulted in the greatest performance for COVID-19 classification - a diagnostic task requiring global image context. Cropping-based methods yielded the greatest performance on the B-line and pleural effusion object classification tasks, which require strong local pattern recognition. Lastly, semantics-preserving ultrasound image preprocessing resulted in increased downstream performance for multiple tasks. Guidance regarding data augmentation and preprocessing strategies was synthesized for practitioners working with SSL in ultrasound.
comment: 17 pages, 12 figures, 18 tables, Submitted to Medical Image Analysis
HarmonySeg: Tubular Structure Segmentation with Deep-Shallow Feature Fusion and Growth-Suppression Balanced Loss
Accurate segmentation of tubular structures in medical images, such as vessels and airway trees, is crucial for computer-aided diagnosis, radiotherapy, and surgical planning. However, significant challenges exist in algorithm design when faced with diverse sizes, complex topologies, and (often) incomplete data annotation of these structures. We address these difficulties by proposing a new tubular structure segmentation framework named HarmonySeg. First, we design a deep-to-shallow decoder network featuring flexible convolution blocks with varying receptive fields, which enables the model to effectively adapt to tubular structures of different scales. Second, to highlight potential anatomical regions and improve the recall of small tubular structures, we incorporate vesselness maps as auxiliary information. These maps are aligned with image features through a shallow-and-deep fusion module, which simultaneously eliminates unreasonable candidates to maintain high precision. Finally, we introduce a topology-preserving loss function that leverages contextual and shape priors to balance the growth and suppression of tubular structures, which also allows the model to handle low-quality and incomplete annotations. Extensive quantitative experiments are conducted on four public datasets. The results show that our model can accurately segment 2D and 3D tubular structures and outperform existing state-of-the-art methods. External validation on a private dataset also demonstrates good generalizability.
Focal Cortical Dysplasia Type II Detection Using Cross Modality Transfer Learning and Grad-CAM in 3D-CNNs for MRI Analysis
Focal cortical dysplasia (FCD) type II is a major cause of drug-resistant epilepsy, often curable only by surgery. Despite its clinical importance, the diagnosis of FCD is very difficult in MRI because of subtle abnormalities, leading to misdiagnosis. This study investigates the use of 3D convolutional neural networks (3D-CNNs) for FCD detection, using a dataset of 170 subjects (85 FCD patients and 85 controls) composed of T1-weighted and FLAIR MRI scans. In particular, it investigates the benefits obtained from cross-modality transfer learning and explainable artificial intelligence (XAI) techniques, in particular Gradient-weighted Class Activation Mapping (Grad-CAM). ResNet architectures (ResNet-18, -34, and -50) were implemented, employing transfer learning strategies that used pre-trained weights from segmentation tasks. Results indicate that transfer learning significantly enhances classification accuracy (up to 80.3%) and interpretability, as measured by a novel Heat-Score metric, which evaluates the model's focus on clinically relevant regions. Improvements in the Heat-Score metric underscore the model's seizure zone localization capabilities, bringing AI predictions and clinical insights closer together. These results highlight the importance of transfer learning, including cross-modality, and XAI in advancing AI-based medical diagnostics, especially for difficult-to-diagnose pathologies such as FCD.
PRAD: Periapical Radiograph Analysis Dataset and Benchmark Model Development
Deep learning (DL), a pivotal technology in artificial intelligence, has recently gained substantial traction in the domain of dental auxiliary diagnosis. However, its application has predominantly been confined to imaging modalities such as panoramic radiographs and Cone Beam Computed Tomography, with limited focus on auxiliary analysis specifically targeting Periapical Radiographs (PR). PR are the most extensively utilized imaging modality in endodontics and periodontics due to their capability to capture detailed local lesions at a low cost. Nevertheless, challenges such as resolution limitations and artifacts complicate the annotation and recognition of PR, leading to a scarcity of publicly available, large-scale, high-quality PR analysis datasets. This scarcity has somewhat impeded the advancement of DL applications in PR analysis. In this paper, we present PRAD-10K, a dataset for PR analysis. PRAD-10K comprises 10,000 clinical periapical radiograph images, with pixel-level annotations provided by professional dentists for nine distinct anatomical structures, lesions, and artificial restorations or medical devices, We also include classification labels for images with typical conditions or lesions. Furthermore, we introduce a DL network named PRNet to establish benchmarks for PR segmentation tasks. Experimental results demonstrate that PRNet surpasses previous state-of-the-art medical image segmentation models on the PRAD-10K dataset. The codes and dataset will be made publicly available.
comment: 11 pages & Under Review
PIDSR:ComplementaryPolarizedImageDemosaicingandSuper-Resolution
Polarization cameras can capture multiple polarized images with different polarizer angles in a single shot, bringing convenience to polarization-based downstream tasks. However, their direct outputs are color-polarization filter array (CPFA) raw images, requiring demosaicing to reconstruct full-resolution, full-color polarized images; unfortunately, this necessary step introduces artifacts that make polarization-related parameters such as the degree of polarization (DoP) and angle of polarization (AoP) prone to error. Besides, limited by the hardware design, the resolution of a polarization camera is often much lower than that of a conventional RGB camera. Existing polarized image demosaicing (PID) methods are limited in that they cannot enhance resolution, while polarized image super-resolution (PISR) methods, though designed to obtain high-resolution (HR) polarized images from the demosaicing results, tend to retain or even amplify errors in the DoP and AoP introduced by demosaicing artifacts. In this paper, we propose PIDSR, a joint framework that performs complementary Polarized Image Demosaicing and Super-Resolution, showing the ability to robustly obtain high-quality HR polarized images with more accurate DoP and AoP from a CPFA raw image in a direct manner. Experiments show our PIDSR not only achieves state-of-the-art performance on both synthetic and real data, but also facilitates downstream tasks.
Virtual-mask Informed Prior for Sparse-view Dual-Energy CT Reconstruction
Sparse-view sampling in dual-energy computed tomography (DECT) significantly reduces radiation dose and increases imaging speed, yet is highly prone to artifacts. Although diffusion models have demonstrated potential in effectively handling incomplete data, most existing methods in this field focus on the image do-main and lack global constraints, which consequently leads to insufficient reconstruction quality. In this study, we propose a dual-domain virtual-mask in-formed diffusion model for sparse-view reconstruction by leveraging the high inter-channel correlation in DECT. Specifically, the study designs a virtual mask and applies it to the high-energy and low-energy data to perform perturbation operations, thus constructing high-dimensional tensors that serve as the prior information of the diffusion model. In addition, a dual-domain collaboration strategy is adopted to integrate the information of the randomly selected high-frequency components in the wavelet domain with the information in the projection domain, for the purpose of optimizing the global struc-tures and local details. Experimental results indicated that the present method exhibits excellent performance across multiple datasets.
Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
Uncertainty quantification plays an important role in achieving trustworthy and reliable learning-based computational imaging. Recent advances in generative modeling and Bayesian neural networks have enabled the development of uncertainty-aware image reconstruction methods. Current generative model-based methods seek to quantify the inherent (aleatoric) uncertainty on the underlying image for given measurements by learning to sample from the posterior distribution of the underlying image. On the other hand, Bayesian neural network-based approaches aim to quantify the model (epistemic) uncertainty on the parameters of a deep neural network-based reconstruction method by approximating the posterior distribution of those parameters. Unfortunately, an ongoing need for an inversion method that can jointly quantify complex aleatoric uncertainty and epistemic uncertainty patterns still persists. In this paper, we present a scalable framework that can quantify both aleatoric and epistemic uncertainties. The proposed framework accepts an existing generative model-based posterior sampling method as an input and introduces an epistemic uncertainty quantification capability through Bayesian neural networks with latent variables and deep ensembling. Furthermore, by leveraging the conformal prediction methodology, the proposed framework can be easily calibrated to ensure rigorous uncertainty quantification. We evaluated the proposed framework on magnetic resonance imaging, computed tomography, and image inpainting problems and showed that the epistemic and aleatoric uncertainty estimates produced by the proposed framework display the characteristic features of true epistemic and aleatoric uncertainties. Furthermore, our results demonstrated that the use of conformal prediction on top of the proposed framework enables marginal coverage guarantees consistent with frequentist principles.
comment: 19 pages, 9 figures, preprint
Heart Failure Prediction using Modal Decomposition and Masked Autoencoders for Scarce Echocardiography Databases
Heart diseases constitute the main cause of international human defunction. According to the World Health Organization (WHO), approximately 18 million deaths happen each year due to precisely heart diseases. In particular, heart failures (HF) press the healthcare industry to develop systems for their early, rapid and effective prediction. In this work, an automatic system which analyses in real-time echocardiography video sequences is proposed for the challenging and more specific task of prediction of heart failure times. This system is based on a novel deep learning framework, and works in two stages. The first one transforms the data included in a database of echocardiography video sequences into a machine learning-compatible collection of annotated images which can be used in the training phase of any kind of machine learning-based framework, including a deep learning one. This initial stage includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm for both data augmentation and feature extraction. The second stage is focused on building and training a Vision Transformer (ViT). Self-supervised learning (SSL) methods, which have been so far barely explored in the literature about heart failure prediction, are applied to effectively train the ViT from scratch, even with scarce databases of echocardiograms. The designed neural network analyses images from echocardiography sequences to estimate the time in which a heart failure will happen. The results obtained show the efficacy of the HODMD algorithm and the superiority of the proposed system with respect to several established ViT and Convolutional Neural Network (CNN) architectures.
comment: 37 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2404.19579
PhaseGen: A Diffusion-Based Approach for Complex-Valued MRI Data Generation
Magnetic resonance imaging (MRI) raw data, or k-Space data, is complex-valued, containing both magnitude and phase information. However, clinical and existing Artificial Intelligence (AI)-based methods focus only on magnitude images, discarding the phase data despite its potential for downstream tasks, such as tumor segmentation and classification. In this work, we introduce $\textit{PhaseGen}$, a novel complex-valued diffusion model for generating synthetic MRI raw data conditioned on magnitude images, commonly used in clinical practice. This enables the creation of artificial complex-valued raw data, allowing pretraining for models that require k-Space information. We evaluate PhaseGen on two tasks: skull-stripping directly in k-Space and MRI reconstruction using the publicly available FastMRI dataset. Our results show that training with synthetic phase data significantly improves generalization for skull-stripping on real-world data, with an increased segmentation accuracy from $41.1\%$ to $80.1\%$, and enhances MRI reconstruction when combined with limited real-world data. This work presents a step forward in utilizing generative AI to bridge the gap between magnitude-based datasets and the complex-valued nature of MRI raw data. This approach allows researchers to leverage the vast amount of avaliable image domain data in combination with the information-rich k-Space data for more accurate and efficient diagnostic tasks. We make our code publicly $\href{https://github.com/TIO-IKIM/PhaseGen}{\text{available here}}$.
Novel Pooling-based VGG-Lite for Pneumonia and Covid-19 Detection from Imbalanced Chest X-Ray Datasets
This paper proposes a novel pooling-based VGG-Lite model in order to mitigate class imbalance issues in Chest X-Ray (CXR) datasets. Automatic Pneumonia detection from CXR images by deep learning model has emerged as a prominent and dynamic area of research, since the inception of the new Covid-19 variant in 2020. However, the standard Convolutional Neural Network (CNN) models encounter challenges associated with class imbalance, a prevalent issue found in many medical datasets. The innovations introduced in the proposed model architecture include: (I) A very lightweight CNN model, `VGG-Lite', is proposed as a base model, inspired by VGG-16 and MobileNet-V2 architecture. (II) On top of this base model, we leverage an ``Edge Enhanced Module (EEM)" through a parallel branch, consisting of a ``negative image layer", and a novel custom pooling layer ``2Max-Min Pooling". This 2Max-Min Pooling layer is entirely novel in this investigation, providing more attention to edge components within pneumonia CXR images. Thus, it works as an efficient spatial attention module (SAM). We have implemented the proposed framework on two separate CXR datasets. The first dataset is obtained from a readily available source on the internet, and the second dataset is a more challenging CXR dataset, assembled by our research team from three different sources. Experimental results reveal that our proposed framework has outperformed pre-trained CNN models, and three recent trend existing models ``Vision Transformer", ``Pooling-based Vision Transformer (PiT)'' and ``PneuNet", by substantial margins on both datasets. The proposed framework VGG-Lite with EEM, has achieved a macro average of 95% accuracy, 97.1% precision, 96.1% recall, and 96.6% F1 score on the ``Pneumonia Imbalance CXR dataset", without employing any pre-processing technique.
comment: 12 pages
Synthetic CT Generation from Time-of-Flight Non-Attenutaion-Corrected PET for Whole-Body PET Attenuation Correction
Positron Emission Tomography (PET) imaging requires accurate attenuation correction (AC) to account for photon loss due to tissue density variations. In PET/MR systems, computed tomography (CT), which offers a straightforward estimation of AC is not available. This study presents a deep learning approach to generate synthetic CT (sCT) images directly from Time-of-Flight (TOF) non-attenuation corrected (NAC) PET images, enhancing AC for PET/MR. We first evaluated models pre-trained on large-scale natural image datasets for a CT-to-CT reconstruction task, finding that the pre-trained model outperformed those trained solely on medical datasets. The pre-trained model was then fine-tuned using an institutional dataset of 35 TOF NAC PET and CT volume pairs, achieving the lowest mean absolute error (MAE) of 74.49 HU and highest peak signal-to-noise ratio (PSNR) of 28.66 dB within the body contour region. Visual assessments demonstrated improved reconstruction of both bone and soft tissue structures from TOF NAC PET images. This work highlights the effectiveness of using pre-trained deep learning models for medical image translation tasks. Future work will assess the impact of sCT on PET attenuation correction and explore additional neural network architectures and datasets to further enhance performance and practical applications in PET imaging.
comment: 4 pages, 2 figures, ISBI 2025
Interpretable Automatic Rosacea Detection with Whitened Cosine Similarity
According to the National Rosacea Society, approximately sixteen million Americans suffer from rosacea, a common skin condition that causes flushing or long-term redness on a person's face. To increase rosacea awareness and to better assist physicians to make diagnosis on this disease, we propose an interpretable automatic rosacea detection method based on whitened cosine similarity in this paper. The contributions of the proposed methods are three-fold. First, the proposed method can automatically distinguish patients suffering from rosacea from people who are clean of this disease with a significantly higher accuracy than other methods in unseen test data, including both classical deep learning and statistical methods. Second, the proposed method addresses the interpretability issue by measuring the similarity between the test sample and the means of two classes, namely the rosacea class versus the normal class, which allows both medical professionals and patients to understand and trust the results. And finally, the proposed methods will not only help increase awareness of rosacea in the general population, but will also help remind patients who suffer from this disease of possible early treatment, as rosacea is more treatable in its early stages. The code and data are available at https://github.com/chengyuyang-njit/ICCRD-2025. The code and data are available at https://github.com/chengyuyang-njit/ICCRD-2025.
Artificial Intelligence Augmented Medical Imaging Reconstruction in Radiation Therapy
Efficiently acquired and precisely reconstructed imaging are crucial to the success of modern radiation therapy (RT). Computed tomography (CT) and magnetic resonance imaging (MRI) are two common modalities for providing RT treatment planning and delivery guidance/monitoring. In recent decades, artificial intelligence (AI) has emerged as a powerful and widely adopted technique across various fields, valued for its efficiency and convenience enabled by implicit function definition and data-driven feature representation learning. Here, we present a series of AI-driven medical imaging reconstruction frameworks for enhanced radiotherapy, designed to improve CT image reconstruction quality and speed, refine dual-energy CT (DECT) multi-material decomposition (MMD), and significantly accelerate 4D MRI acquisition.
comment: PhD thesis
MultiCore+TPU Accelerated Multi-Modal TinyML for Livestock Behaviour Recognition
The advancement of technology has revolutionised the agricultural industry, transitioning it from labour-intensive farming practices to automated, AI-powered management systems. In recent years, more intelligent livestock monitoring solutions have been proposed to enhance farming efficiency and productivity. This work presents a novel approach to animal activity recognition and movement tracking, leveraging tiny machine learning (TinyML) techniques, wireless communication framework, and microcontroller platforms to develop an efficient, cost-effective livestock sensing system. It collects and fuses accelerometer data and vision inputs to build a multi-modal network for three tasks: image classification, object detection, and behaviour recognition. The system is deployed and evaluated on commercial microcontrollers for real-time inference using embedded applications, demonstrating up to 270$\times$ model size reduction, less than 80ms response latency, and on-par performance comparable to existing methods. The incorporation of the TinyML technique allows for seamless data transmission between devices, benefiting use cases in remote locations with poor Internet connectivity. This work delivers a robust, scalable IoT-edge livestock monitoring solution adaptable to diverse farming needs, offering flexibility for future extensions.
comment: 11 pages, 10 figures
Subjective Visual Quality Assessment for High-Fidelity Learning-Based Image Compression
Learning-based image compression methods have recently emerged as promising alternatives to traditional codecs, offering improved rate-distortion performance and perceptual quality. JPEG AI represents the latest standardized framework in this domain, leveraging deep neural networks for high-fidelity image reconstruction. In this study, we present a comprehensive subjective visual quality assessment of JPEG AI-compressed images using the JPEG AIC-3 methodology, which quantifies perceptual differences in terms of Just Noticeable Difference (JND) units. We generated a dataset of 50 compressed images with fine-grained distortion levels from five diverse sources. A large-scale crowdsourced experiment collected 96,200 triplet responses from 459 participants. We reconstructed JND-based quality scales using a unified model based on boosted and plain triplet comparisons. Additionally, we evaluated the alignment of multiple objective image quality metrics with human perception in the high-fidelity range. The CVVDP metric achieved the overall highest performance; however, most metrics including CVVDP were overly optimistic in predicting the quality of JPEG AI-compressed images. These findings emphasize the necessity for rigorous subjective evaluations in the development and benchmarking of modern image codecs, particularly in the high-fidelity range. Another technical contribution is the introduction of the well-known Meng-Rosenthal-Rubin statistical test to the field of Quality of Experience research. This test can reliably assess the significance of difference in performance of quality metrics in terms of correlation between metrics and ground truth. The complete dataset, including all subjective scores, is publicly available at https://github.com/jpeg-aic/dataset-JPEG-AI-SDR25.
comment: 7 pages, 5 figures, 3 tables, submitted to QoMEX 2025
Automated Video-EEG Analysis in Epilepsy Studies: Advances and Challenges
Epilepsy is typically diagnosed through electroencephalography (EEG) and long-term video-EEG (vEEG) monitoring. The manual analysis of vEEG recordings is time-consuming, necessitating automated tools for seizure detection. Recent advancements in machine learning have shown promise in real-time seizure detection and prediction using EEG and video data. However, diversity of seizure symptoms, markup ambiguities, and limited availability of multimodal datasets hinder progress. This paper reviews the latest developments in automated video-EEG analysis and discusses the integration of multimodal data. We also propose a novel pipeline for treatment effect estimation from vEEG data using concept-based learning, offering a pathway for future research in this domain.
Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI
Cardiovascular magnetic resonance imaging is emerging as a crucial tool to examine cardiac morphology and function. Essential to this endeavour are anatomical 3D surface and volumetric meshes derived from CMR images, which facilitate computational anatomy studies, biomarker discovery, and in-silico simulations. Traditional approaches typically follow complex multi-step pipelines, first segmenting images and then reconstructing meshes, making them time-consuming and prone to error propagation. In response, we introduce HybridVNet, a novel architecture for direct image-to-mesh extraction seamlessly integrating standard convolutional neural networks with graph convolutions, which we prove can efficiently handle surface and volumetric meshes by encoding them as graph structures. To further enhance accuracy, we propose a multi-view HybridVNet architecture which processes both long axis and short axis CMR, showing that it can increase the performance of cardiac MR mesh generation. Our model combines traditional convolutional networks with variational graph generative models, deep supervision and mesh-specific regularisation. Experiments on a comprehensive dataset from the UK Biobank confirm the potential of HybridVNet to significantly advance cardiac imaging and computational cardiology by efficiently generating high-fidelity meshes from CMR images. Multi-view HybridVNet outperforms the state-of-the-art, achieving improvements of up to $\sim$27\% reduction in Mean Contour Distance (from 1.86 mm to 1.35 mm for the LV Myocardium), up to $\sim$18\% improvement in Hausdorff distance (from 4.74 mm to 3.89mm, for the LV Endocardium), and up to $\sim$8\% in Dice Coefficient (from 0.78 to 0.84, for the LV Myocardium), highlighting its superior accuracy.
Enhancing Cell Instance Segmentation in Scanning Electron Microscopy Images via a Deep Contour Closing Operator
Accurately segmenting and individualizing cells in SEM images is a highly promising technique for elucidating tissue architecture in oncology. While current AI-based methods are effective, errors persist, necessitating time-consuming manual corrections, particularly in areas where the quality of cell contours in the image is poor and requires gap filling. This study presents a novel AI-driven approach for refining cell boundary delineation to improve instance-based cell segmentation in SEM images, also reducing the necessity for residual manual correction. A CNN COp-Net is introduced to address gaps in cell contours, effectively filling in regions with deficient or absent information. The network takes as input cell contour probability maps with potentially inadequate or missing information and outputs corrected cell contour delineations. The lack of training data was addressed by generating low integrity probability maps using a tailored PDE. We showcase the efficacy of our approach in augmenting cell boundary precision using both private SEM images from PDX hepatoblastoma tissues and publicly accessible images datasets. The proposed cell contour closing operator exhibits a notable improvement in tested datasets, achieving respectively close to 50% (private data) and 10% (public data) increase in the accurately-delineated cell proportion compared to state-of-the-art methods. Additionally, the need for manual corrections was significantly reduced, therefore facilitating the overall digitalization process. Our results demonstrate a notable enhancement in the accuracy of cell instance segmentation, particularly in highly challenging regions where image quality compromises the integrity of cell boundaries, necessitating gap filling. Therefore, our work should ultimately facilitate the study of tumour tissue bioarchitecture in onconanotomy field.
comment: 13 pages, 8 figures, 2 tables
Potential Field Based Deep Metric Learning CVPR 2025
Deep metric learning (DML) involves training a network to learn a semantically meaningful representation space. Many current approaches mine n-tuples of examples and model interactions within each tuplets. We present a novel, compositional DML model that instead of in tuples, represents the influence of each example (embedding) by a continuous potential field, and superposes the fields to obtain their combined global potential field. We use attractive/repulsive potential fields to represent interactions among embeddings from images of the same/different classes. Contrary to typical learning methods, where mutual influence of samples is proportional to their distance, we enforce reduction in such influence with distance, leading to a decaying field. We show that such decay helps improve performance on real world datasets with large intra-class variations and label noise. Like other proxy-based methods, we also use proxies to succinctly represent sub-populations of examples. We evaluate our method on three standard DML benchmarks- Cars-196, CUB-200-2011, and SOP datasets where it outperforms state-of-the-art baselines.
comment: Accepted to CVPR 2025
Enhancing Diagnostic Accuracy in Rare and Common Fundus Diseases with a Knowledge-Rich Vision-Language Model
Previous foundation models for fundus images were pre-trained with limited disease categories and knowledge base. Here we introduce a knowledge-rich vision-language model (RetiZero) that leverages knowledge from more than 400 fundus diseases. For RetiZero's pretraining, we compiled 341,896 fundus images paired with texts, sourced from public datasets, ophthalmic literature, and online resources, encompassing a diverse range of diseases across multiple ethnicities and countries. RetiZero exhibits remarkable performance in several downstream tasks, including zero-shot disease recognition, image-to-image retrieval, AI-assisted clinical diagnosis,few-shot fine-tuning, and internal- and cross-domain disease identification. In zero-shot scenarios, RetiZero achieves Top-5 accuracies of 0.843 for 15 diseases and 0.756 for 52 diseases. For image retrieval, it achieves Top-5 scores of 0.950 and 0.886 for the same sets, respectively. AI-assisted clinical diagnosis results show that RetiZero's Top-3 zero-shot performance surpasses the average of 19 ophthalmologists from Singapore, China, and the United States. RetiZero substantially enhances clinicians' accuracy in diagnosing fundus diseases, in particularly rare ones. These findings underscore the value of integrating the RetiZero into clinical settings, where various fundus diseases are encountered.
Multimedia
FMNV: A Dataset of Media-Published News Videos for Fake News Detection
News media, particularly video-based platforms, have become deeply embedded in daily life, concurrently amplifying risks of misinformation dissemination. Consequently, multimodal fake news detection has garnered significant research attention. However, existing datasets predominantly comprise user-generated videos characterized by crude editing and limited public engagement, whereas professionally crafted fake news videos disseminated by media outlets often politically or virally motivated pose substantially greater societal harm. To address this gap, we construct FMNV, a novel dataset exclusively composed of news videos published by media organizations. Through empirical analysis of existing datasets and our curated collection, we categorize fake news videos into four distinct types. Building upon this taxonomy, we employ Large Language Models (LLMs) to automatically generate deceptive content by manipulating authentic media-published news videos. Furthermore, we propose FMNVD, a baseline model featuring a dual-stream architecture integrating CLIP and Faster R-CNN for video feature extraction, enhanced by co-attention mechanisms for feature refinement and multimodal aggregation. Comparative experiments demonstrate both the generalization capability of FMNV across multiple baselines and the superior detection efficacy of FMNVD. This work establishes critical benchmarks for detecting high-impact fake news in media ecosystems while advancing methodologies for cross-modal inconsistency analysis.
Extending Visual Dynamics for Video-to-Music Generation
Music profoundly enhances video production by improving quality, engagement, and emotional resonance, sparking growing interest in video-to-music generation. Despite recent advances, existing approaches remain limited in specific scenarios or undervalue the visual dynamics. To address these limitations, we focus on tackling the complexity of dynamics and resolving temporal misalignment between video and music representations. To this end, we propose DyViM, a novel framework to enhance dynamics modeling for video-to-music generation. Specifically, we extract frame-wise dynamics features via a simplified motion encoder inherited from optical flow methods, followed by a self-attention module for aggregation within frames. These dynamic features are then incorporated to extend existing music tokens for temporal alignment. Additionally, high-level semantics are conveyed through a cross-attention mechanism, and an annealing tuning strategy benefits to fine-tune well-trained music decoders efficiently, therefore facilitating seamless adaptation. Extensive experiments demonstrate DyViM's superiority over state-of-the-art (SOTA) methods.
comment: Under review
Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models CVPR
Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: https://github.com/Lum1104/EIBench, offering a foundation for advanced multimodal causal analysis and next-generation affective computing.
comment: Accepted at CVPR Workshop NEXD 2025. 21 pages, Project: https://github.com/Lum1104/EIBench
A Multimedia Analytics Model for the Foundation Model Era
The rapid advances in Foundation Models and agentic Artificial Intelligence are transforming multimedia analytics by enabling richer, more sophisticated interactions between humans and analytical systems. Existing conceptual models for visual and multimedia analytics, however, do not adequately capture the complexity introduced by these powerful AI paradigms. To bridge this gap, we propose a comprehensive multimedia analytics model specifically designed for the foundation model era. Building upon established frameworks from visual analytics, multimedia analytics, knowledge generation, analytic task definition, mixed-initiative guidance, and human-in-the-loop reinforcement learning, our model emphasizes integrated human-AI teaming based on visual analytics agents from both technical and conceptual perspectives. Central to the model is a seamless, yet explicitly separable, interaction channel between expert users and semi-autonomous analytical processes, ensuring continuous alignment between user intent and AI behavior. The model addresses practical challenges in sensitive domains such as intelligence analysis, investigative journalism, and other fields handling complex, high-stakes data. We illustrate through detailed case studies how our model facilitates deeper understanding and targeted improvement of multimedia analytics solutions. By explicitly capturing how expert users can optimally interact with and guide AI-powered multimedia analytics systems, our conceptual framework sets a clear direction for system design, comparison, and future research.
Taming Data and Transformers for Scalable Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
Computation and Language
Cat, Rat, Meow: On the Alignment of Language Model and Human Term-Similarity Judgments ICLR 2025
Small and mid-sized generative language models have gained increasing attention. Their size and availability make them amenable to being analyzed at a behavioral as well as a representational level, allowing investigations of how these levels interact. We evaluate 32 publicly available language models for their representational and behavioral alignment with human similarity judgments on a word triplet task. This provides a novel evaluation setting to probe semantic associations in language beyond common pairwise comparisons. We find that (1) even the representations of small language models can achieve human-level alignment, (2) instruction-tuned model variants can exhibit substantially increased agreement, (3) the pattern of alignment across layers is highly model dependent, and (4) alignment based on models' behavioral responses is highly dependent on model size, matching their representational alignment only for the largest evaluated models.
comment: ICLR 2025 Workshop on Representational Alignment (Re-Align)
VCR-Bench: A Comprehensive Evaluation Framework for Video Chain-of-Thought Reasoning
The advancement of Chain-of-Thought (CoT) reasoning has significantly enhanced the capabilities of large language models (LLMs) and large vision-language models (LVLMs). However, a rigorous evaluation framework for video CoT reasoning remains absent. Current video benchmarks fail to adequately assess the reasoning process and expose whether failures stem from deficiencies in perception or reasoning capabilities. Therefore, we introduce VCR-Bench, a novel benchmark designed to comprehensively evaluate LVLMs' Video Chain-of-Thought Reasoning capabilities. VCR-Bench comprises 859 videos spanning a variety of video content and durations, along with 1,034 high-quality question-answer pairs. Each pair is manually annotated with a stepwise CoT rationale, where every step is tagged to indicate its association with the perception or reasoning capabilities. Furthermore, we design seven distinct task dimensions and propose the CoT score to assess the entire CoT process based on the stepwise tagged CoT rationals. Extensive experiments on VCR-Bench highlight substantial limitations in current LVLMs. Even the top-performing model, o1, only achieves a 62.8% CoT score and an 56.7% accuracy, while most models score below 40%. Experiments show most models score lower on perception than reasoning steps, revealing LVLMs' key bottleneck in temporal-spatial information processing for complex video reasoning. A robust positive correlation between the CoT score and accuracy confirms the validity of our evaluation framework and underscores the critical role of CoT reasoning in solving complex video reasoning tasks. We hope VCR-Bench to serve as a standardized evaluation framework and expose the actual drawbacks in complex video reasoning task.
Perception-R1: Pioneering Perception Policy with Reinforcement Learning
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in MLLM post-training for perception policy learning. While promising, our initial experiments reveal that incorporating a thinking process through RL does not consistently lead to performance gains across all visual perception tasks. This leads us to delve into the essential role of RL in the context of visual perception. In this work, we return to the fundamentals and explore the effects of RL on different perception tasks. We observe that the perceptual complexity is a major factor in determining the effectiveness of RL. We also observe that reward design plays a crucial role in further approching the upper limit of model perception. To leverage these findings, we propose Perception-R1, a scalable RL framework using GRPO during MLLM post-training. With a standard Qwen2.5-VL-3B-Instruct, Perception-R1 achieves +4.2% on RefCOCO+, +17.9% on PixMo-Count, +4.2% on PageOCR, and notably, 31.9% AP on COCO2017 val for the first time, establishing a strong baseline for perception policy learning.
comment: Github page: https://github.com/linkangheng/PR1
Dynamic Cheatsheet: Test-Time Learning with Adaptive Memory
Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.
comment: https://github.com/suzgunmirac/dynamic-cheatsheet
Redefining Machine Translation on Social Network Services with Large Language Models
The globalization of social interactions has heightened the need for machine translation (MT) on Social Network Services (SNS), yet traditional models struggle with culturally nuanced content like memes, slang, and pop culture references. While large language models (LLMs) have advanced general-purpose translation, their performance on SNS-specific content remains limited due to insufficient specialized training data and evaluation benchmarks. This paper introduces RedTrans, a 72B LLM tailored for SNS translation, trained on a novel dataset developed through three innovations: (1) Supervised Finetuning with Dual-LLM Back-Translation Sampling, an unsupervised sampling method using LLM-based back-translation to select diverse data for large-scale finetuning; (2) Rewritten Preference Optimization (RePO), an algorithm that identifies and corrects erroneous preference pairs through expert annotation, building reliable preference corpora; and (3) RedTrans-Bench, the first benchmark for SNS translation, evaluating phenomena like humor localization, emoji semantics, and meme adaptation. Experiments show RedTrans outperforms state-of-the-art LLMs. Besides, RedTrans has already been deployed in a real-world production environment, demonstrating that domain-specific adaptation, effectively bridges the gap between generic and culturally grounded translation systems.
How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective
Recent studies have shown that large language models (LLMs) can assess relevance and support information retrieval (IR) tasks such as document ranking and relevance judgment generation. However, the internal mechanisms by which off-the-shelf LLMs understand and operationalize relevance remain largely unexplored. In this paper, we systematically investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability. Using activation patching techniques, we analyze the roles of various model components and identify a multi-stage, progressive process in generating either pointwise or pairwise relevance judgment. Specifically, LLMs first extract query and document information in the early layers, then process relevance information according to instructions in the middle layers, and finally utilize specific attention heads in the later layers to generate relevance judgments in the required format. Our findings provide insights into the mechanisms underlying relevance assessment in LLMs, offering valuable implications for future research on leveraging LLMs for IR tasks.
Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge
Large Language Models (LLMs) have revolutionized artificial intelligence, driving advancements in machine translation, summarization, and conversational agents. However, their increasing integration into critical societal domains has raised concerns about embedded biases, which can perpetuate stereotypes and compromise fairness. These biases stem from various sources, including historical inequalities in training data, linguistic imbalances, and adversarial manipulation. Despite mitigation efforts, recent studies indicate that LLMs remain vulnerable to adversarial attacks designed to elicit biased responses. This work proposes a scalable benchmarking framework to evaluate LLM robustness against adversarial bias elicitation. Our methodology involves (i) systematically probing models with a multi-task approach targeting biases across various sociocultural dimensions, (ii) quantifying robustness through safety scores using an LLM-as-a-Judge approach for automated assessment of model responses, and (iii) employing jailbreak techniques to investigate vulnerabilities in safety mechanisms. Our analysis examines prevalent biases in both small and large state-of-the-art models and their impact on model safety. Additionally, we assess the safety of domain-specific models fine-tuned for critical fields, such as medicine. Finally, we release a curated dataset of bias-related prompts, CLEAR-Bias, to facilitate systematic vulnerability benchmarking. Our findings reveal critical trade-offs between model size and safety, aiding the development of fairer and more robust future language models.
Token Level Routing Inference System for Edge Devices ACL
The computational complexity of large language model (LLM) inference significantly constrains their deployment efficiency on edge devices. In contrast, small language models offer faster decoding and lower resource consumption but often suffer from degraded response quality and heightened susceptibility to hallucinations. To address this trade-off, collaborative decoding, in which a large model assists in generating critical tokens, has emerged as a promising solution. This paradigm leverages the strengths of both model types by enabling high-quality inference through selective intervention of the large model, while maintaining the speed and efficiency of the smaller model. In this work, we present a novel collaborative decoding inference system that allows small models to perform on-device inference while selectively consulting a cloud-based large model for critical token generation. Remarkably, the system achieves a 60% performance gain on CommonsenseQA using only a 0.5B model on an M1 MacBook, with under 7% of tokens generation uploaded to the large model in the cloud.
comment: 6 pages, 8 figures, under review of ACL system demo
Dual Engines of Thoughts: A Depth-Breadth Integration Framework for Open-Ended Analysis
We propose the Dual Engines of Thoughts (DEoT), an analytical framework for comprehensive open-ended reasoning. While traditional reasoning frameworks primarily focus on finding "the best answer" or "the correct answer" for single-answer problems, DEoT is specifically designed for "open-ended questions," enabling both broader and deeper analytical exploration. The framework centers on three key components: a Base Prompter for refining user queries, a Solver Agent that orchestrates task decomposition, execution, and validation, and a Dual-Engine System consisting of a Breadth Engine (to explore diverse impact factors) and a Depth Engine (to perform deep investigations). This integrated design allows DEoT to balance wide-ranging coverage with in-depth analysis, and it is highly customizable, enabling users to adjust analytical parameters and tool configurations based on specific requirements. Experimental results show that DEoT excels in addressing complex, multi-faceted questions, achieving a total win rate of 77-86% compared to existing reasoning models, thus highlighting its effectiveness in real-world applications.
Pangu Ultra: Pushing the Limits of Dense Large Language Models on Ascend NPUs
We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
The KL3M Data Project: Copyright-Clean Training Resources for Large Language Models
Practically all large language models have been pre-trained on data that is subject to global uncertainty related to copyright infringement and breach of contract. This creates potential risk for users and developers due to this uncertain legal status. The KL3M Data Project directly confronts this critical issue by introducing the largest comprehensive training data pipeline that minimizes risks related to copyright or breach of contract. The foundation of this project is a corpus of over 132 million documents and trillions of tokens spanning 16 different sources that have been verified to meet the strict copyright and licensing protocol detailed herein. We are releasing the entire pipeline, including 1) the source code to acquire and process these documents, 2) the original document formats with associated provenance and metadata, 3) extracted content in a standardized format, 4) pre-tokenized representations of the documents, and 5) various mid- and post-train resources such as question-answer, summarization, conversion, drafting, classification, prediction, and conversational data. All of these resources are freely available to the public on S3, Hugging Face, and GitHub under CC-BY terms. We are committed to continuing this project in furtherance of a more ethical, legal, and sustainable approach to the development and use of AI models.
comment: 27 pages, 7 figures, 9 table
Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines
Large Language Models (LLMs) have transformed human-computer interaction by enabling natural language-based communication with AI-powered chatbots. These models are designed to be intuitive and user-friendly, allowing users to articulate requests with minimal effort. However, despite their accessibility, studies reveal that users often struggle with effective prompting, resulting in inefficient responses. Existing research has highlighted both the limitations of LLMs in interpreting vague or poorly structured prompts and the difficulties users face in crafting precise queries. This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting. We introduce and compare three types of prompting guidelines: a task-specific framework developed through a structured methodology and two baseline approaches. To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users. Using Von NeuMidas, an extended pragmatic annotation schema for LLM interaction analysis, we categorize common prompting errors and identify recurring behavioral patterns. We then evaluate the impact of different guidelines by examining changes in user behavior, adherence to prompting strategies, and the overall quality of AI-generated responses. Our findings provide a deeper understanding of how users engage with LLMs and the role of structured prompting guidance in enhancing AI-assisted communication. By comparing different instructional frameworks, we offer insights into more effective approaches for improving user competency in AI interactions, with implications for AI literacy, chatbot usability, and the design of more responsive AI systems.
comment: Accepted for AIED 2025, the 26th International Conference on Artificial Intelligence in Education, July 22 - 26, 2025, Palermo, Italy
Deceptive Automated Interpretability: Language Models Coordinating to Fool Oversight Systems
We demonstrate how AI agents can coordinate to deceive oversight systems using automated interpretability of neural networks. Using sparse autoencoders (SAEs) as our experimental framework, we show that language models (Llama, DeepSeek R1, and Claude 3.7 Sonnet) can generate deceptive explanations that evade detection. Our agents employ steganographic methods to hide information in seemingly innocent explanations, successfully fooling oversight models while achieving explanation quality comparable to reference labels. We further find that models can scheme to develop deceptive strategies when they believe the detection of harmful features might lead to negative consequences for themselves. All tested LLM agents were capable of deceiving the overseer while achieving high interpretability scores comparable to those of reference labels. We conclude by proposing mitigation strategies, emphasizing the critical need for robust understanding and defenses against deception.
MOSAIC: Modeling Social AI for Content Dissemination and Regulation in Multi-Agent Simulations
We present a novel, open-source social network simulation framework, MOSAIC, where generative language agents predict user behaviors such as liking, sharing, and flagging content. This simulation combines LLM agents with a directed social graph to analyze emergent deception behaviors and gain a better understanding of how users determine the veracity of online social content. By constructing user representations from diverse fine-grained personas, our system enables multi-agent simulations that model content dissemination and engagement dynamics at scale. Within this framework, we evaluate three different content moderation strategies with simulated misinformation dissemination, and we find that they not only mitigate the spread of non-factual content but also increase user engagement. In addition, we analyze the trajectories of popular content in our simulations, and explore whether simulation agents' articulated reasoning for their social interactions truly aligns with their collective engagement patterns. We open-source our simulation software to encourage further research within AI and social sciences.
comment: Work in progress. 22 pages
MuSaRoNews: A Multidomain, Multimodal Satire Dataset from Romanian News Articles
Satire and fake news can both contribute to the spread of false information, even though both have different purposes (one if for amusement, the other is to misinform). However, it is not enough to rely purely on text to detect the incongruity between the surface meaning and the actual meaning of the news articles, and, often, other sources of information (e.g., visual) provide an important clue for satire detection. This work introduces a multimodal corpus for satire detection in Romanian news articles named MuSaRoNews. Specifically, we gathered 117,834 public news articles from real and satirical news sources, composing the first multimodal corpus for satire detection in the Romanian language. We conducted experiments and showed that the use of both modalities improves performance.
comment: 10 pages, 9 figures
What the HellaSwag? On the Validity of Common-Sense Reasoning Benchmarks
Common-sense reasoning is a key language model capability because it encapsulates not just specific factual knowledge but rather general language and world understanding. Measuring common-sense reasoning, therefore, is crucial for language models of different sizes and applications. One of the most widely used benchmarks for evaluating such capabilities is HellaSwag; however, in this paper, we show that it has severe construct validity issues. These issues range from basic ungrammaticality and numerous typos to misleading prompts or equally correct options. Furthermore, we show that if models are evaluated only on answer texts, or with "Lorem ipsum dolor..." instead of the question, more than 65% of model predictions remain the same, and this cannot be attributed merely to contamination. Since benchmark scores are an essential part of model selection in both research and commercial applications, these validity issues can have severe consequences. In particular, knowing that taking benchmark scores at face value is ubiquitous, inadequate evaluation leads to ill-informed decisions about models. In this paper, we thoroughly investigate critical validity issues posed by HellaSwag and illustrate them with various evaluations using generative language models of different sizes. We argue that this benchmark does not accurately measure common-sense reasoning and, therefore, should not be used for evaluation in its current state. Based on the results of our study, we propose requirements that should be met by future common-sense reasoning benchmarks. In addition, we release GoldenSwag, a corrected subset of HellaSwag, which, to our belief, facilitates acceptable common-sense reasoning evaluation.
Cluster-Driven Expert Pruning for Mixture-of-Experts Large Language Models
Mixture-of-Experts (MoE) architectures have emerged as a promising paradigm for scaling large language models (LLMs) with sparse activation of task-specific experts. Despite their computational efficiency during inference, the massive overall parameter footprint of MoE models (e.g., GPT-4) introduces critical challenges for practical deployment. Current pruning approaches often fail to address two inherent characteristics of MoE systems: 1).intra-layer expert homogeneity where experts within the same MoE layer exhibit functional redundancy, and 2). inter-layer similarity patterns where deeper layers tend to contain progressively more homogeneous experts. To tackle these issues, we propose Cluster-driven Expert Pruning (C-Prune), a novel two-stage framework for adaptive task-specific compression of MoE LLMs. C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer using parameter similarity metrics, followed by global cluster pruning, which eliminates redundant clusters across all layers through a unified importance scoring mechanism that accounts for cross-layer homogeneity. We validate C-Prune through extensive experiments on multiple MoE models and benchmarks. The results demonstrate that C-Prune effectively reduces model size while outperforming existing MoE pruning methods.
A System for Comprehensive Assessment of RAG Frameworks
Retrieval Augmented Generation (RAG) has emerged as a standard paradigm for enhancing the factual accuracy and contextual relevance of Large Language Models (LLMs) by integrating retrieval mechanisms. However, existing evaluation frameworks fail to provide a holistic black-box approach to assessing RAG systems, especially in real-world deployment scenarios. To address this gap, we introduce SCARF (System for Comprehensive Assessment of RAG Frameworks), a modular and flexible evaluation framework designed to benchmark deployed RAG applications systematically. SCARF provides an end-to-end, black-box evaluation methodology, enabling a limited-effort comparison across diverse RAG frameworks. Our framework supports multiple deployment configurations and facilitates automated testing across vector databases and LLM serving strategies, producing a detailed performance report. Moreover, SCARF integrates practical considerations such as response coherence, providing a scalable and adaptable solution for researchers and industry professionals evaluating RAG applications. Using the REST APIs interface, we demonstrate how SCARF can be applied to real-world scenarios, showcasing its flexibility in assessing different RAG frameworks and configurations. SCARF is available at GitHub repository.
comment: Technical Report, 7 pages, 2 figures, 1 table
Plan-and-Refine: Diverse and Comprehensive Retrieval-Augmented Generation
This paper studies the limitations of (retrieval-augmented) large language models (LLMs) in generating diverse and comprehensive responses, and introduces the Plan-and-Refine (P&R) framework based on a two phase system design. In the global exploration phase, P&R generates a diverse set of plans for the given input, where each plan consists of a list of diverse query aspects with corresponding additional descriptions. This phase is followed by a local exploitation phase that generates a response proposal for the input query conditioned on each plan and iteratively refines the proposal for improving the proposal quality. Finally, a reward model is employed to select the proposal with the highest factuality and coverage. We conduct our experiments based on the ICAT evaluation methodology--a recent approach for answer factuality and comprehensiveness evaluation. Experiments on the two diverse information seeking benchmarks adopted from non-factoid question answering and TREC search result diversification tasks demonstrate that P&R significantly outperforms baselines, achieving up to a 13.1% improvement on the ANTIQUE dataset and a 15.41% improvement on the TREC dataset. Furthermore, a smaller scale user study confirms the substantial efficacy of the P&R framework.
Efficient Tuning of Large Language Models for Knowledge-Grounded Dialogue Generation ACL
Large language models (LLMs) demonstrate remarkable text comprehension and generation capabilities but often lack the ability to utilize up-to-date or domain-specific knowledge not included in their training data. To address this gap, we introduce KEDiT, an efficient method for fine-tuning LLMs for knowledge-grounded dialogue generation. KEDiT operates in two main phases: first, it employs an information bottleneck to compress retrieved knowledge into learnable parameters, retaining essential information while minimizing computational overhead. Second, a lightweight knowledge-aware adapter integrates these compressed knowledge vectors into the LLM during fine-tuning, updating less than 2\% of the model parameters. The experimental results on the Wizard of Wikipedia and a newly constructed PubMed-Dialog dataset demonstrate that KEDiT excels in generating contextually relevant and informative responses, outperforming competitive baselines in automatic, LLM-based, and human evaluations. This approach effectively combines the strengths of pretrained LLMs with the adaptability needed for incorporating dynamic knowledge, presenting a scalable solution for fields such as medicine.
comment: Accepted at TACL; pre-MIT Press publication version. Code and data are available at https://github.com/zhangbo-nlp/KEDiT
NorEval: A Norwegian Language Understanding and Generation Evaluation Benchmark
This paper introduces NorEval, a new and comprehensive evaluation suite for large-scale standardized benchmarking of Norwegian generative language models (LMs). NorEval consists of 24 high-quality human-created datasets -- of which five are created from scratch. In contrast to existing benchmarks for Norwegian, NorEval covers a broad spectrum of task categories targeting Norwegian language understanding and generation, establishes human baselines, and focuses on both of the official written standards of the Norwegian language: Bokm{\aa}l and Nynorsk. All our datasets and a collection of over 100 human-written prompts are integrated into LM Evaluation Harness, ensuring flexible and reproducible evaluation. We describe the NorEval design and present the results of benchmarking 19 open-source pre-trained and instruction-tuned LMs for Norwegian in various scenarios. Our benchmark, evaluation framework, and annotation materials are publicly available.
Zero-Shot Cross-Domain Code Search without Fine-Tuning
Code search aims to retrieve semantically relevant code snippets for natural language queries. While pre-trained language models (PLMs) have shown remarkable performance in this task, they struggle in cross-domain scenarios, often requiring costly fine-tuning or facing performance drops in zero-shot settings. RAPID, which generates synthetic data for model fine-tuning, is currently the only effective method for zero-shot cross-domain code search. Despite its effectiveness, RAPID demands substantial computational resources for fine-tuning and needs to maintain specialized models for each domain, underscoring the need for a zero-shot, fine-tuning-free approach for cross-domain code search. The key to tackling zero-shot cross-domain code search lies in bridging the gaps among domains. In this work, we propose to break the query-code matching process of code search into two simpler tasks: query-comment matching and code-code matching. Our empirical study reveals the strong complementarity among the three matching schemas in zero-shot cross-domain settings, i.e., query-code, query-comment, and code-code matching. Based on the findings, we propose CodeBridge, a zero-shot, fine-tuning-free approach for cross-domain code search. Specifically, CodeBridge uses Large Language Models (LLMs) to generate comments and pseudo-code, then combines query-code, query-comment, and code-code matching via PLM-based similarity scoring and sampling-based fusion. Experimental results show that our approach outperforms the state-of-the-art PLM-based code search approaches, i.e., CoCoSoDa and UniXcoder, by an average of 21.4% and 24.9% in MRR, respectively, across three datasets. Our approach also yields results that are better than or comparable to those of the zero-shot cross-domain code search approach RAPID, which requires costly fine-tuning.
Automated Construction of a Knowledge Graph of Nuclear Fusion Energy for Effective Elicitation and Retrieval of Information
In this document, we discuss a multi-step approach to automated construction of a knowledge graph, for structuring and representing domain-specific knowledge from large document corpora. We apply our method to build the first knowledge graph of nuclear fusion energy, a highly specialized field characterized by vast scope and heterogeneity. This is an ideal benchmark to test the key features of our pipeline, including automatic named entity recognition and entity resolution. We show how pre-trained large language models can be used to address these challenges and we evaluate their performance against Zipf's law, which characterizes human-generated natural language. Additionally, we develop a knowledge-graph retrieval-augmented generation system that combines large language models with a multi-prompt approach. This system provides contextually relevant answers to natural-language queries, including complex multi-hop questions that require reasoning across interconnected entities.
DeepGreen: Effective LLM-Driven Green-washing Monitoring System Designed for Empirical Testing -- Evidence from China
This paper proposes DeepGreen, an Large Language Model Driven (LLM-Driven) system for detecting corporate green-washing behaviour. Utilizing dual-layer LLM analysis, DeepGreen preliminarily identifies potential green keywords in financial statements and then assesses their implementation degree via iterative semantic analysis of LLM. A core variable GreenImplement is derived from the ratio from the two layers' output. We extract 204 financial statements of 68 companies from A-share market over three years, comprising 89,893 words, and analyse them through DeepGreen. Our analysis, supported by violin plots and K-means clustering, reveals insights and validates the variable against the Huazheng ESG rating. It offers a novel perspective for regulatory agencies and investors, serving as a proactive monitoring tool that complements traditional methods.Empirical tests show that green implementation can significantly boost the asset return rate of companies, but there is heterogeneity in scale. Small and medium-sized companies have limited contribution to asset return via green implementation, so there is a stronger motivation for green-washing.
MRD-RAG: Enhancing Medical Diagnosis with Multi-Round Retrieval-Augmented Generation
In recent years, accurately and quickly deploying medical large language models (LLMs) has become a significant trend. Among these, retrieval-augmented generation (RAG) has garnered significant attention due to its features of rapid deployment and privacy protection. However, existing medical RAG frameworks still have shortcomings. Most existing medical RAG frameworks are designed for single-round question answering tasks and are not suitable for multi-round diagnostic dialogue. On the other hand, existing medical multi-round RAG frameworks do not consider the interconnections between potential diseases to inquire precisely like a doctor. To address these issues, we propose a Multi-Round Diagnostic RAG (MRD-RAG) framework that mimics the doctor's diagnostic process. This RAG framework can analyze diagnosis information of potential diseases and accurately conduct multi-round diagnosis like a doctor. To evaluate the effectiveness of our proposed frameworks, we conduct experiments on two modern medical datasets and two traditional Chinese medicine datasets, with evaluations by GPT and human doctors on different methods. The results indicate that our RAG framework can significantly enhance the diagnostic performance of LLMs, highlighting the potential of our approach in medical diagnosis. The code and data can be found in our project website https://github.com/YixiangCh/MRD-RAG/tree/master.
Proactive User Information Acquisition via Chats on User-Favored Topics
Chat-oriented dialogue systems designed to provide tangible benefits, such as sharing the latest news or preventing frailty in senior citizens, often require Proactive acquisition of specific user Information via chats on user-faVOred Topics (PIVOT). This study proposes the PIVOT task, designed to advance the technical foundation for these systems. In this task, a system needs to acquire the answers of a user to predefined questions without making the user feel abrupt while engaging in a chat on a predefined topic. We found that even recent large language models (LLMs) show a low success rate in the PIVOT task. We constructed a dataset suitable for the analysis to develop more effective systems. Finally, we developed a simple but effective system for this task by incorporating insights obtained through the analysis of this dataset.
comment: 23 pages
Context-Aware Monolingual Human Evaluation of Machine Translation
This paper explores the potential of context-aware monolingual human evaluation for assessing machine translation (MT) when no source is given for reference. To this end, we compare monolingual with bilingual evaluations (with source text), under two scenarios: the evaluation of a single MT system, and the comparative evaluation of pairwise MT systems. Four professional translators performed both monolingual and bilingual evaluations by assigning ratings and annotating errors, and providing feedback on their experience. Our findings suggest that context-aware monolingual human evaluation achieves comparable outcomes to human bilingual evaluations, and suggest the feasibility and potential of monolingual evaluation as an efficient approach to assessing MT.
Synthetic Fluency: Hallucinations, Confabulations, and the Creation of Irish Words in LLM-Generated Translations
This study examines hallucinations in Large Language Model (LLM) translations into Irish, specifically focusing on instances where the models generate novel, non-existent words. We classify these hallucinations within verb and noun categories, identifying six distinct patterns among the latter. Additionally, we analyse whether these hallucinations adhere to Irish morphological rules and what linguistic tendencies they exhibit. Our findings show that while both GPT-4.o and GPT-4.o Mini produce similar types of hallucinations, the Mini model generates them at a significantly higher frequency. Beyond classification, the discussion raises speculative questions about the implications of these hallucinations for the Irish language. Rather than seeking definitive answers, we offer food for thought regarding the increasing use of LLMs and their potential role in shaping Irish vocabulary and linguistic evolution. We aim to prompt discussion on how such technologies might influence language over time, particularly in the context of low-resource, morphologically rich languages.
Unveiling the Impact of Multimodal Features on Chinese Spelling Correction: From Analysis to Design
The Chinese Spelling Correction (CSC) task focuses on detecting and correcting spelling errors in sentences. Current research primarily explores two approaches: traditional multimodal pre-trained models and large language models (LLMs). However, LLMs face limitations in CSC, particularly over-correction, making them suboptimal for this task. While existing studies have investigated the use of phonetic and graphemic information in multimodal CSC models, effectively leveraging these features to enhance correction performance remains a challenge. To address this, we propose the Multimodal Analysis for Character Usage (\textbf{MACU}) experiment, identifying potential improvements for multimodal correctison. Based on empirical findings, we introduce \textbf{NamBert}, a novel multimodal model for Chinese spelling correction. Experiments on benchmark datasets demonstrate NamBert's superiority over SOTA methods. We also conduct a comprehensive comparison between NamBert and LLMs, systematically evaluating their strengths and limitations in CSC. Our code and model are available at https://github.com/iioSnail/NamBert.
On the Temporal Question-Answering Capabilities of Large Language Models Over Anonymized Data
The applicability of Large Language Models (LLMs) in temporal reasoning tasks over data that is not present during training is still a field that remains to be explored. In this paper we work on this topic, focusing on structured and semi-structured anonymized data. We not only develop a direct LLM pipeline, but also compare various methodologies and conduct an in-depth analysis. We identified and examined seventeen common temporal reasoning tasks in natural language, focusing on their algorithmic components. To assess LLM performance, we created the \textit{Reasoning and Answering Temporal Ability} dataset (RATA), featuring semi-structured anonymized data to ensure reliance on reasoning rather than on prior knowledge. We compared several methodologies, involving SoTA techniques such as Tree-of-Thought, self-reflexion and code execution, tuned specifically for this scenario. Our results suggest that achieving scalable and reliable solutions requires more than just standalone LLMs, highlighting the need for integrated approaches.
comment: 18 pages, 7 tables, 5 figures
CollEX -- A Multimodal Agentic RAG System Enabling Interactive Exploration of Scientific Collections
In this paper, we introduce CollEx, an innovative multimodal agentic Retrieval-Augmented Generation (RAG) system designed to enhance interactive exploration of extensive scientific collections. Given the overwhelming volume and inherent complexity of scientific collections, conventional search systems often lack necessary intuitiveness and interactivity, presenting substantial barriers for learners, educators, and researchers. CollEx addresses these limitations by employing state-of-the-art Large Vision-Language Models (LVLMs) as multimodal agents accessible through an intuitive chat interface. By abstracting complex interactions via specialized agents equipped with advanced tools, CollEx facilitates curiosity-driven exploration, significantly simplifying access to diverse scientific collections and records therein. Our system integrates textual and visual modalities, supporting educational scenarios that are helpful for teachers, pupils, students, and researchers by fostering independent exploration as well as scientific excitement and curiosity. Furthermore, CollEx serves the research community by discovering interdisciplinary connections and complementing visual data. We illustrate the effectiveness of our system through a proof-of-concept application containing over 64,000 unique records across 32 collections from a local scientific collection from a public university.
ConceptFormer: Towards Efficient Use of Knowledge-Graph Embeddings in Large Language Models
Retrieval Augmented Generation (RAG) has enjoyed increased attention in the recent past and recent advancements in Large Language Models (LLMs) have highlighted the importance of integrating world knowledge into these systems. Current RAG methodologies often modify the internal architecture of pre-trained language models (PLMs) or rely on textifying knowledge graphs (KGs), which is inefficient in terms of token usage. This paper introduces ConceptFormer, a new approach to augment LLMs with structured knowledge from KGs, such as Wikidata, without altering their internal structure or relying on textual input of KGs. ConceptFormer operates in the LLM embedding vector space, creating and injecting \emph{concept vectors} that encapsulate the information of the KG nodes directly. Trained in conjunction with a frozen LLM, ConceptFormer generates a comprehensive lookup table that maps KG nodes to their respective concept vectors. The approach aims to enhance the factual recall capabilities of LLMs by enabling them to process these concept vectors natively, thus enriching them with structured world knowledge in an efficient and scalable manner. Our experiments demonstrate that the addition of concept vectors to GPT-2 0.1B substantially increases its factual recall ability (Hit@10) by up to 272\% when tested on sentences from Wikipedia and up to 348\% on synthetically generated sentences. Even injecting only a single concept vector into the prompt increases factual recall ability (Hit@10) by up to 213\% on Wikipedia sentences, significantly outperforming RAG with graph textification while consuming 130x fewer input tokens.
VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
comment: 11 pages
SaRoHead: A Dataset for Satire Detection in Romanian Multi-Domain News Headlines
The headline is an important part of a news article, influenced by expressiveness and connection to the exposed subject. Although most news outlets aim to present reality objectively, some publications prefer a humorous approach in which stylistic elements of satire, irony, and sarcasm blend to cover specific topics. Satire detection can be difficult because a headline aims to expose the main idea behind a news article. In this paper, we propose SaRoHead, the first corpus for satire detection in Romanian multi-domain news headlines. Our findings show that the clickbait used in some non-satirical headlines significantly influences the model.
comment: 5 pages, 1 figure
Do LLMs Understand Your Translations? Evaluating Paragraph-level MT with Question Answering
Despite the steady progress in machine translation evaluation, existing automatic metrics struggle to capture how well meaning is preserved beyond sentence boundaries. We posit that reliance on a single intrinsic quality score, trained to mimic human judgments, might be insufficient for evaluating translations of long, complex passages, and a more ``pragmatic'' approach that assesses how accurately key information is conveyed by a translation in context is needed. We introduce TREQA (Translation Evaluation via Question-Answering), a framework that extrinsically evaluates translation quality by assessing how accurately candidate translations answer reading comprehension questions that target key information in the original source or reference texts. In challenging domains that require long-range understanding, such as literary texts, we show that TREQA is competitive with and, in some cases, outperforms state-of-the-art neural and LLM-based metrics in ranking alternative paragraph-level translations, despite never being explicitly optimized to correlate with human judgments. Furthermore, the generated questions and answers offer interpretability: empirical analysis shows that they effectively target translation errors identified by experts in evaluated datasets. Our code is available at https://github.com/deep-spin/treqa
AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
Supervised Optimism Correction: Be Confident When LLMs Are Sure
In this work, we establish a novel theoretical connection between supervised fine-tuning and offline reinforcement learning under the token-level Markov decision process, revealing that large language models indeed learn an implicit $Q$-function for inference. Through this theoretical lens, we demonstrate that the widely used beam search method suffers from unacceptable over-optimism, where inference errors are inevitably amplified due to inflated $Q$-value estimations of suboptimal steps. To address this limitation, we propose Supervised Optimism Correction(SOC), which introduces a simple yet effective auxiliary loss for token-level $Q$-value estimations during supervised fine-tuning. Specifically, the auxiliary loss employs implicit value regularization to boost model confidence in expert-demonstrated responses, thereby suppressing over-optimism toward insufficiently supervised responses. Extensive experiments on mathematical reasoning benchmarks, including GSM8K, MATH, and GAOKAO, showcase the superiority of the proposed SOC with beam search across a series of open-source models.
Geological Inference from Textual Data using Word Embeddings
This research explores the use of Natural Language Processing (NLP) techniques to locate geological resources, with a specific focus on industrial minerals. By using word embeddings trained with the GloVe model, we extract semantic relationships between target keywords and a corpus of geological texts. The text is filtered to retain only words with geographical significance, such as city names, which are then ranked by their cosine similarity to the target keyword. Dimensional reduction techniques, including Principal Component Analysis (PCA), Autoencoder, Variational Autoencoder (VAE), and VAE with Long Short-Term Memory (VAE-LSTM), are applied to enhance feature extraction and improve the accuracy of semantic relations. For benchmarking, we calculate the proximity between the ten cities most semantically related to the target keyword and identified mine locations using the haversine equation. The results demonstrate that combining NLP with dimensional reduction techniques provides meaningful insights into the spatial distribution of natural resources. Although the result shows to be in the same region as the supposed location, the accuracy has room for improvement.
Transformer-Based Temporal Information Extraction and Application: A Review
Temporal information extraction (IE) aims to extract structured temporal information from unstructured text, thereby uncovering the implicit timelines within. This technique is applied across domains such as healthcare, newswire, and intelligence analysis, aiding models in these areas to perform temporal reasoning and enabling human users to grasp the temporal structure of text. Transformer-based pre-trained language models have produced revolutionary advancements in natural language processing, demonstrating exceptional performance across a multitude of tasks. Despite the achievements garnered by Transformer-based approaches in temporal IE, there is a lack of comprehensive reviews on these endeavors. In this paper, we aim to bridge this gap by systematically summarizing and analyzing the body of work on temporal IE using Transformers while highlighting potential future research directions.
Defense against Prompt Injection Attacks via Mixture of Encodings
Large Language Models (LLMs) have emerged as a dominant approach for a wide range of NLP tasks, with their access to external information further enhancing their capabilities. However, this introduces new vulnerabilities, known as prompt injection attacks, where external content embeds malicious instructions that manipulate the LLM's output. Recently, the Base64 defense has been recognized as one of the most effective methods for reducing success rate of prompt injection attacks. Despite its efficacy, this method can degrade LLM performance on certain NLP tasks. To address this challenge, we propose a novel defense mechanism: mixture of encodings, which utilizes multiple character encodings, including Base64. Extensive experimental results show that our method achieves one of the lowest attack success rates under prompt injection attacks, while maintaining high performance across all NLP tasks, outperforming existing character encoding-based defense methods. This underscores the effectiveness of our mixture of encodings strategy for both safety and task performance metrics.
Beyond LLMs: A Linguistic Approach to Causal Graph Generation from Narrative Texts NAACL 2025
We propose a novel framework for generating causal graphs from narrative texts, bridging high-level causality and detailed event-specific relationships. Our method first extracts concise, agent-centered vertices using large language model (LLM)-based summarization. We introduce an "Expert Index," comprising seven linguistically informed features, integrated into a Situation-Task-Action-Consequence (STAC) classification model. This hybrid system, combining RoBERTa embeddings with the Expert Index, achieves superior precision in causal link identification compared to pure LLM-based approaches. Finally, a structured five-iteration prompting process refines and constructs connected causal graphs. Experiments on 100 narrative chapters and short stories demonstrate that our approach consistently outperforms GPT-4o and Claude 3.5 in causal graph quality, while maintaining readability. The open-source tool provides an interpretable, efficient solution for capturing nuanced causal chains in narratives.
comment: published at the 7th Workshop on Narrative Understanding, NAACL 2025
LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation
Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs), yet it still incurs notable overhead and suffers from parameter interference in multi-task scenarios. We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks. This design substantially reduces the number of trainable parameters while maintaining strong task performance. Moreover, LoRI minimizes cross-task interference in adapter merging by leveraging the orthogonality between adapter subspaces, and supports continual learning by using sparsity to mitigate catastrophic forgetting. Extensive experiments across natural language understanding, mathematical reasoning, code generation, and safety alignment tasks demonstrate that LoRI outperforms full fine-tuning and existing PEFT methods, while using up to 95% fewer trainable parameters than LoRA. In multi-task experiments, LoRI enables effective adapter merging and continual learning with reduced cross-task interference. Code is available at: https://github.com/juzhengz/LoRI
comment: 24 pages, 7 figures, 20 tables
Revisiting LLM Evaluation through Mechanism Interpretability: a New Metric and Model Utility Law
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications, yet current evaluation methods struggle to keep pace with their rapid development. In this paper, we analyze the core limitations of traditional evaluation pipelines and propose a novel metric, the Model Utilization Index (MUI), which introduces mechanism interpretability techniques to complement traditional performance metrics. MUI quantifies the extent to which a model leverages its capabilities to complete tasks. The core idea is that to assess an LLM's overall ability, we must evaluate not only its task performance but also the effort expended to achieve the outcome. Our extensive experiments reveal an inverse relationship between MUI and performance, from which we deduce a common trend observed in popular LLMs, which we term the Utility Law. Based on this, we derive four corollaries that address key challenges, including training judgement, the issue of data contamination, fairness in model comparison, and data diversity. We hope that our survey, novel metric, and utility law will foster mutual advancement in both evaluation and mechanism interpretability. Our code can be found at https://github.com/ALEX-nlp/MUI-Eva.
LLM4Ranking: An Easy-to-use Framework of Utilizing Large Language Models for Document Reranking
Utilizing large language models (LLMs) for document reranking has been a popular and promising research direction in recent years, many studies are dedicated to improving the performance and efficiency of using LLMs for reranking. Besides, it can also be applied in many real-world applications, such as search engines or retrieval-augmented generation. In response to the growing demand for research and application in practice, we introduce a unified framework, \textbf{LLM4Ranking}, which enables users to adopt different ranking methods using open-source or closed-source API-based LLMs. Our framework provides a simple and extensible interface for document reranking with LLMs, as well as easy-to-use evaluation and fine-tuning scripts for this task. We conducted experiments based on this framework and evaluated various models and methods on several widely used datasets, providing reproducibility results on utilizing LLMs for document reranking. Our code is publicly available at https://github.com/liuqi6777/llm4ranking.
From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the \textbf{LSR-MCTS} algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery
We introduce AgentAda, the first LLM-powered analytics agent that can learn and use new analytics skills to extract more specialized insights. Unlike existing methods that require users to manually decide which data analytics method to apply, AgentAda automatically identifies the skill needed from a library of analytical skills to perform the analysis. This also allows AgentAda to use skills that existing LLMs cannot perform out of the box. The library covers a range of methods, including clustering, predictive modeling, and NLP techniques like BERT, which allow AgentAda to handle complex analytics tasks based on what the user needs. AgentAda's dataset-to-insight extraction strategy consists of three key steps: (I) a question generator to generate queries relevant to the user's goal and persona, (II) a hybrid Retrieval-Augmented Generation (RAG)-based skill matcher to choose the best data analytics skill from the skill library, and (III) a code generator that produces executable code based on the retrieved skill's documentation to extract key patterns. We also introduce KaggleBench, a benchmark of curated notebooks across diverse domains, to evaluate AgentAda's performance. We conducted a human evaluation demonstrating that AgentAda provides more insightful analytics than existing tools, with 48.78% of evaluators preferring its analyses, compared to 27.67% for the unskilled agent. We also propose a novel LLM-as-a-judge approach that we show is aligned with human evaluation as a way to automate insight quality evaluation at larger scale.
RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning, rely on low-resolution images, and offer limited interpretability in attention mechanisms. To address these challenges, we introduce RadZero, a novel similarity-based cross-attention framework for vision-language alignment in radiology with zero-shot multi-task capability. RadZero leverages large language models to extract minimal semantic sentences from radiology reports and employs a multi-positive contrastive learning strategy to effectively capture relationships between images and multiple relevant textual descriptions. It also utilizes a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, RadZero enables zero-shot inference with similarity probability for classification and pixel-level cross-modal similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, cross-modal similarity map analysis highlights its potential for improving explainability in vision-language alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
Leveraging LLMs for Multimodal Retrieval-Augmented Radiology Report Generation via Key Phrase Extraction
Automated radiology report generation (RRG) holds potential to reduce radiologists' workload, especially as recent advancements in large language models (LLMs) enable the development of multimodal models for chest X-ray (CXR) report generation. However, multimodal LLMs (MLLMs) are resource-intensive, requiring vast datasets and substantial computational cost for training. To address these challenges, we propose a retrieval-augmented generation approach that leverages multimodal retrieval and LLMs to generate radiology reports while mitigating hallucinations and reducing computational demands. Our method uses LLMs to extract key phrases from radiology reports, effectively focusing on essential diagnostic information. Through exploring effective training strategies, including image encoder structure search, adding noise to text embeddings, and additional training objectives, we combine complementary pre-trained image encoders and adopt contrastive learning between text and semantic image embeddings. We evaluate our approach on MIMIC-CXR dataset, achieving state-of-the-art results on CheXbert metrics and competitive RadGraph F1 metric alongside MLLMs, without requiring LLM fine-tuning. Our method demonstrates robust generalization for multi-view RRG, making it suitable for comprehensive clinical applications.
AI Coding with Few-Shot Prompting for Thematic Analysis
This paper explores the use of large language models (LLMs), here represented by GPT 3.5-Turbo to perform coding for a thematic analysis. Coding is highly labor intensive, making it infeasible for most researchers to conduct exhaustive thematic analyses of large corpora. We utilize few-shot prompting with higher quality codes generated on semantically similar passages to enhance the quality of the codes while utilizing a cheap, more easily scalable model.
Talking Point based Ideological Discourse Analysis in News Events
Analyzing ideological discourse even in the age of LLMs remains a challenge, as these models often struggle to capture the key elements that shape real-world narratives. Specifically, LLMs fail to focus on characteristic elements driving dominant discourses and lack the ability to integrate contextual information required for understanding abstract ideological views. To address these limitations, we propose a framework motivated by the theory of ideological discourse analysis to analyze news articles related to real-world events. Our framework represents the news articles using a relational structure - talking points, which captures the interaction between entities, their roles, and media frames along with a topic of discussion. It then constructs a vocabulary of repeating themes - prominent talking points, that are used to generate ideology-specific viewpoints (or partisan perspectives). We evaluate our framework's ability to generate these perspectives through automated tasks - ideology and partisan classification tasks, supplemented by human validation. Additionally, we demonstrate straightforward applicability of our framework in creating event snapshots, a visual way of interpreting event discourse. We release resulting dataset and model to the community to support further research.
Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression
Post-training quantization (PTQ) reduces a model's memory footprint by mapping full precision weights into low bit weights without costly retraining, but can degrade its downstream performance especially in low 2- to 3-bit settings. We develop a new mixed-precision PTQ approach, Task-Circuit Quantization (TaCQ), that draws parallels to automated circuit discovery, directly conditioning the quantization process on specific weight circuits -- which we define as sets of weights associated with downstream task performance. These weights are kept as 16-bit weights, while others are quantized, maintaining performance while only adding a marginal memory cost. Specifically, TaCQ contrasts unquantized model weights with a uniformly-quantized model to estimate the expected change in weights due to quantization and uses gradient information to predict the resulting impact on task performance, allowing us to preserve task-specific weights. We compare TaCQ-based quantization to existing mixed-precision quantization methods when conditioning both on general-purpose and task-specific data. Across QA, math reasoning, and text-to-SQL tasks for both Llama-3 and Qwen2.5, we find that TaCQ outperforms baselines using the same calibration data and a lower weight budget, achieving major improvements in the 2 and 3-bit regime. With only 3.1 bits we are able to recover 96% of Llama-3-8B-Instruct's unquantized 16-bit MMLU performance, obtaining a 5.25% absolute improvement over SPQR. We also observe consistently large gains over existing methods in the 2-bit regime, with an average gain of 14.74% over the strongest baseline, SliM-LLM. Moreover, we observe a 7.20% gain without conditioning on specific tasks, showing TaCQ's ability to identify important weights is not limited to task-conditioned settings.
comment: 24 pages. Code: https://github.com/The-Inscrutable-X/TACQ
TALE: A Tool-Augmented Framework for Reference-Free Evaluation of Large Language Models
As Large Language Models (LLMs) become increasingly integrated into real-world, autonomous applications, relying on static, pre-annotated references for evaluation poses significant challenges in cost, scalability, and completeness. We propose Tool-Augmented LLM Evaluation (TALE), a framework to assess LLM outputs without predetermined ground-truth answers. Unlike conventional metrics that compare to fixed references or depend solely on LLM-as-a-judge knowledge, TALE employs an agent with tool-access capabilities that actively retrieves and synthesizes external evidence. It iteratively generates web queries, collects information, summarizes findings, and refines subsequent searches through reflection. By shifting away from static references, TALE aligns with free-form question-answering tasks common in real-world scenarios. Experimental results on multiple free-form QA benchmarks show that TALE not only outperforms standard reference-based metrics for measuring response accuracy but also achieves substantial to near-perfect agreement with human evaluations. TALE enhances the reliability of LLM evaluations in real-world, dynamic scenarios without relying on static references.
Enhancing Time Series Forecasting via Multi-Level Text Alignment with LLMs
The adaptation of large language models (LLMs) to time series forecasting poses unique challenges, as time series data is continuous in nature, while LLMs operate on discrete tokens. Despite the success of LLMs in natural language processing (NLP) and other structured domains, aligning time series data with language-based representations while maintaining both predictive accuracy and interpretability remains a significant hurdle. Existing methods have attempted to reprogram time series data into text-based forms, but these often fall short in delivering meaningful, interpretable results. In this paper, we propose a multi-level text alignment framework for time series forecasting using LLMs that not only improves prediction accuracy but also enhances the interpretability of time series representations. Our method decomposes time series into trend, seasonal, and residual components, which are then reprogrammed into component-specific text representations. We introduce a multi-level alignment mechanism, where component-specific embeddings are aligned with pre-trained word tokens, enabling more interpretable forecasts. Experiments on multiple datasets demonstrate that our method outperforms state-of-the-art models in accuracy while providing good interpretability.
Revisiting Prompt Optimization with Large Reasoning Models-A Case Study on Event Extraction
Large Reasoning Models (LRMs) such as DeepSeek-R1 and OpenAI o1 have demonstrated remarkable capabilities in various reasoning tasks. Their strong capability to generate and reason over intermediate thoughts has also led to arguments that they may no longer require extensive prompt engineering or optimization to interpret human instructions and produce accurate outputs. In this work, we aim to systematically study this open question, using the structured task of event extraction for a case study. We experimented with two LRMs (DeepSeek-R1 and o1) and two general-purpose Large Language Models (LLMs) (GPT-4o and GPT-4.5), when they were used as task models or prompt optimizers. Our results show that on tasks as complicated as event extraction, LRMs as task models still benefit from prompt optimization, and that using LRMs as prompt optimizers yields more effective prompts. Finally, we provide an error analysis of common errors made by LRMs and highlight the stability and consistency of LRMs in refining task instructions and event guidelines.
Findings of the BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora ACL
Children can acquire language from less than 100 million words of input. Large language models are far less data-efficient: they typically require 3 or 4 orders of magnitude more data and still do not perform as well as humans on many evaluations. These intensive resource demands limit the ability of researchers to train new models and use existing models as developmentally plausible cognitive models. The BabyLM Challenge is a communal effort in which participants compete to optimize language model training on a fixed data budget. Submissions are compared on various evaluation tasks targeting grammatical ability, downstream task performance, and generalization. Participants can submit to up to three tracks with progressively looser data restrictions. From over 30 submissions, we extract concrete recommendations on how best to train data-efficient language models, and on where future efforts should (and perhaps should not) focus. The winning submissions using the LTG-BERT architecture (Samuel et al., 2023) outperformed models trained on trillions of words. Other submissions achieved strong results through training on shorter input sequences or training a student model on a pretrained teacher. Curriculum learning attempts, which accounted for a large number of submissions, were largely unsuccessful, though some showed modest improvements.
comment: Published in Proceedings of BabyLM. Please cite the published version on ACL anthology: http://aclanthology.org/2023.conll-babylm.1/
DeepSeek vs. o3-mini: How Well can Reasoning LLMs Evaluate MT and Summarization?
Reasoning-enabled large language models (LLMs) have recently demonstrated impressive performance in complex logical and mathematical tasks, yet their effectiveness in evaluating natural language generation remains unexplored. This study systematically compares reasoning-based LLMs (DeepSeek-R1 and OpenAI o3) with their non-reasoning counterparts across machine translation (MT) and text summarization (TS) evaluation tasks. We evaluate eight models across three architectural categories, including state-of-the-art reasoning models, their distilled variants (ranging from 8B to 70B parameters), and equivalent conventional, non-reasoning LLMs. Our experiments on WMT23 and SummEval benchmarks reveal that the benefits of reasoning capabilities are highly model and task-dependent: while OpenAI o3-mini models show consistent performance improvements with increased reasoning intensity, DeepSeek-R1 underperforms compared to its non-reasoning variant, with exception to certain aspects of TS evaluation. Correlation analysis demonstrates that increased reasoning token usage positively correlates with evaluation quality in o3-mini models. Furthermore, our results show that distillation of reasoning capabilities maintains reasonable performance in medium-sized models (32B) but degrades substantially in smaller variants (8B). This work provides the first comprehensive assessment of reasoning LLMs for NLG evaluation and offers insights into their practical use.
Geneshift: Impact of different scenario shift on Jailbreaking LLM
Jailbreak attacks, which aim to cause LLMs to perform unrestricted behaviors, have become a critical and challenging direction in AI safety. Despite achieving the promising attack success rate using dictionary-based evaluation, existing jailbreak attack methods fail to output detailed contents to satisfy the harmful request, leading to poor performance on GPT-based evaluation. To this end, we propose a black-box jailbreak attack termed GeneShift, by using a genetic algorithm to optimize the scenario shifts. Firstly, we observe that the malicious queries perform optimally under different scenario shifts. Based on it, we develop a genetic algorithm to evolve and select the hybrid of scenario shifts. It guides our method to elicit detailed and actionable harmful responses while keeping the seemingly benign facade, improving stealthiness. Extensive experiments demonstrate the superiority of GeneShift. Notably, GeneShift increases the jailbreak success rate from 0% to 60% when direct prompting alone would fail.
Multi-view autoencoders for Fake News Detection SC
Given the volume and speed at which fake news spreads across social media, automatic fake news detection has become a highly important task. However, this task presents several challenges, including extracting textual features that contain relevant information about fake news. Research about fake news detection shows that no single feature extraction technique consistently outperforms the others across all scenarios. Nevertheless, different feature extraction techniques can provide complementary information about the textual data and enable a more comprehensive representation of the content. This paper proposes using multi-view autoencoders to generate a joint feature representation for fake news detection by integrating several feature extraction techniques commonly used in the literature. Experiments on fake news datasets show a significant improvement in classification performance compared to individual views (feature representations). We also observed that selecting a subset of the views instead of composing a latent space with all the views can be advantageous in terms of accuracy and computational effort. For further details, including source codes, figures, and datasets, please refer to the project's repository: https://github.com/ingrydpereira/multiview-fake-news.
comment: Accepted by IEEE Symposium Series on Computational Intelligence - IEEE SSCI 2025
The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search
AI is increasingly playing a pivotal role in transforming how scientific discoveries are made. We introduce The AI Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper. This system iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts. Compared to its predecessor (v1, Lu et al., 2024 arXiv:2408.06292), The AI Scientist-v2 eliminates the reliance on human-authored code templates, generalizes effectively across diverse machine learning domains, and leverages a novel progressive agentic tree-search methodology managed by a dedicated experiment manager agent. Additionally, we enhance the AI reviewer component by integrating a Vision-Language Model (VLM) feedback loop for iterative refinement of content and aesthetics of the figures. We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review. This accomplishment highlights the growing capability of AI in conducting all aspects of scientific research. We anticipate that further advancements in autonomous scientific discovery technologies will profoundly impact human knowledge generation, enabling unprecedented scalability in research productivity and significantly accelerating scientific breakthroughs, greatly benefiting society at large. We have open-sourced the code at https://github.com/SakanaAI/AI-Scientist-v2 to foster the future development of this transformative technology. We also discuss the role of AI in science, including AI safety.
Large-Scale Analysis of Online Questions Related to Opioid Use Disorder on Reddit
Opioid use disorder (OUD) is a leading health problem that affects individual well-being as well as general public health. Due to a variety of reasons, including the stigma faced by people using opioids, online communities for recovery and support were formed on different social media platforms. In these communities, people share their experiences and solicit information by asking questions to learn about opioid use and recovery. However, these communities do not always contain clinically verified information. In this paper, we study natural language questions asked in the context of OUD-related discourse on Reddit. We adopt transformer-based question detection along with hierarchical clustering across 19 subreddits to identify six coarse-grained categories and 69 fine-grained categories of OUD-related questions. Our analysis uncovers ten areas of information seeking from Reddit users in the context of OUD: drug sales, specific drug-related questions, OUD treatment, drug uses, side effects, withdrawal, lifestyle, drug testing, pain management and others, during the study period of 2018-2021. Our work provides a major step in improving the understanding of OUD-related questions people ask unobtrusively on Reddit. We finally discuss technological interventions and public health harm reduction techniques based on the topics of these questions.
comment: Accepted to ICWSM 2025
Can Reasoning LLMs Enhance Clinical Document Classification?
Clinical document classification is essential for converting unstructured medical texts into standardised ICD-10 diagnoses, yet it faces challenges due to complex medical language, privacy constraints, and limited annotated datasets. Large Language Models (LLMs) offer promising improvements in accuracy and efficiency for this task. This study evaluates the performance and consistency of eight LLMs; four reasoning (Qwen QWQ, Deepseek Reasoner, GPT o3 Mini, Gemini 2.0 Flash Thinking) and four non-reasoning (Llama 3.3, GPT 4o Mini, Gemini 2.0 Flash, Deepseek Chat); in classifying clinical discharge summaries using the MIMIC-IV dataset. Using cTAKES to structure clinical narratives, models were assessed across three experimental runs, with majority voting determining final predictions. Results showed that reasoning models outperformed non-reasoning models in accuracy (71% vs 68%) and F1 score (67% vs 60%), with Gemini 2.0 Flash Thinking achieving the highest accuracy (75%) and F1 score (76%). However, non-reasoning models demonstrated greater stability (91% vs 84% consistency). Performance varied across ICD-10 codes, with reasoning models excelling in complex cases but struggling with abstract categories. Findings indicate a trade-off between accuracy and consistency, suggesting that a hybrid approach could optimise clinical coding. Future research should explore multi-label classification, domain-specific fine-tuning, and ensemble methods to enhance model reliability in real-world applications.
comment: 28 pages, 13 tables, 12 figures
From Speech to Summary: A Comprehensive Survey of Speech Summarization
Speech summarization has become an essential tool for efficiently managing and accessing the growing volume of spoken and audiovisual content. However, despite its increasing importance, speech summarization is still not clearly defined and intersects with several research areas, including speech recognition, text summarization, and specific applications like meeting summarization. This survey not only examines existing datasets and evaluation methodologies, which are crucial for assessing the effectiveness of summarization approaches but also synthesizes recent developments in the field, highlighting the shift from traditional systems to advanced models like fine-tuned cascaded architectures and end-to-end solutions.
Wanting to be Understood
This paper explores an intrinsic motivation for mutual awareness, hypothesizing that humans possess a fundamental drive to understand and to be understood even in the absence of extrinsic rewards. Through simulations of the perceptual crossing paradigm, we explore the effect of various internal reward functions in reinforcement learning agents. The drive to understand is implemented as an active inference type artificial curiosity reward, whereas the drive to be understood is implemented through intrinsic rewards for imitation, influence/impressionability, and sub-reaction time anticipation of the other. Results indicate that while artificial curiosity alone does not lead to a preference for social interaction, rewards emphasizing reciprocal understanding successfully drive agents to prioritize interaction. We demonstrate that this intrinsic motivation can facilitate cooperation in tasks where only one agent receives extrinsic reward for the behaviour of the other.
Defending LLM Watermarking Against Spoofing Attacks with Contrastive Representation Learning
Watermarking has emerged as a promising technique for detecting texts generated by LLMs. Current research has primarily focused on three design criteria: high quality of the watermarked text, high detectability, and robustness against removal attack. However, the security against spoofing attacks remains relatively understudied. For example, a piggyback attack can maliciously alter the meaning of watermarked text-transforming it into hate speech-while preserving the original watermark, thereby damaging the reputation of the LLM provider. We identify two core challenges that make defending against spoofing difficult: (1) the need for watermarks to be both sensitive to semantic-distorting changes and insensitive to semantic-preserving edits, and (2) the contradiction between the need to detect global semantic shifts and the local, auto-regressive nature of most watermarking schemes. To address these challenges, we propose a semantic-aware watermarking algorithm that post-hoc embeds watermarks into a given target text while preserving its original meaning. Our method introduces a semantic mapping model, which guides the generation of a green-red token list, contrastively trained to be sensitive to semantic-distorting changes and insensitive to semantic-preserving changes. Experiments on two standard benchmarks demonstrate strong robustness against removal attacks and security against spoofing attacks, including sentiment reversal and toxic content insertion, while maintaining high watermark detectability. Our approach offers a significant step toward more secure and semantically aware watermarking for LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/contrastive-watermark.
Taming Data and Transformers for Scalable Audio Generation
The scalability of ambient sound generators is hindered by data scarcity, insufficient caption quality, and limited scalability in model architecture. This work addresses these challenges by advancing both data and model scaling. First, we propose an efficient and scalable dataset collection pipeline tailored for ambient audio generation, resulting in AutoReCap-XL, the largest ambient audio-text dataset with over 47 million clips. To provide high-quality textual annotations, we propose AutoCap, a high-quality automatic audio captioning model. By adopting a Q-Former module and leveraging audio metadata, AutoCap substantially enhances caption quality, reaching a CIDEr score of $83.2$, a $3.2\%$ improvement over previous captioning models. Finally, we propose GenAu, a scalable transformer-based audio generation architecture that we scale up to 1.25B parameters. We demonstrate its benefits from data scaling with synthetic captions as well as model size scaling. When compared to baseline audio generators trained at similar size and data scale, GenAu obtains significant improvements of $4.7\%$ in FAD score, $11.1\%$ in IS, and $13.5\%$ in CLAP score. Our code, model checkpoints, and dataset are publicly available.
comment: Project Webpage: https://snap-research.github.io/GenAU/
Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose the Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini, while reducing costs by over 36x compared to GPT-4o. Improvements for recent reasoning models are similar, e.g., 36% and 37.5% for Qwen2.5-32B and Deepseek-R1-70B, respectively. KGoT offers a scalable, affordable, and high-performing solution for AI assistants.
ChartQAPro: A More Diverse and Challenging Benchmark for Chart Question Answering
Charts are ubiquitous, as people often use them to analyze data, answer questions, and discover critical insights. However, performing complex analytical tasks with charts requires significant perceptual and cognitive effort. Chart Question Answering (CQA) systems automate this process by enabling models to interpret and reason with visual representations of data. However, existing benchmarks like ChartQA lack real-world diversity and have recently shown performance saturation with modern large vision-language models (LVLMs). To address these limitations, we introduce ChartQAPro, a new benchmark that includes 1,341 charts from 157 diverse sources, spanning various chart types, including infographics and dashboards, and featuring 1,948 questions in various types, such as multiple-choice, conversational, hypothetical, and unanswerable questions, to better reflect real-world challenges. Our evaluations with 21 models show a substantial performance drop for LVLMs on ChartQAPro; e.g., Claude Sonnet 3.5 scores 90.5% on ChartQA but only 55.81% on ChartQAPro, underscoring the complexity of chart reasoning. We complement our findings with detailed error analyses and ablation studies, identifying key challenges and opportunities for advancing LVLMs in chart understanding and reasoning. We release ChartQAPro at https://github.com/vis-nlp/ChartQAPro.
Expressivity and Speech Synthesis
Imbuing machines with the ability to talk has been a longtime pursuit of artificial intelligence (AI) research. From the very beginning, the community has not only aimed to synthesise high-fidelity speech that accurately conveys the semantic meaning of an utterance, but also to colour it with inflections that cover the same range of affective expressions that humans are capable of. After many years of research, it appears that we are on the cusp of achieving this when it comes to single, isolated utterances. This unveils an abundance of potential avenues to explore when it comes to combining these single utterances with the aim of synthesising more complex, longer-term behaviours. In the present chapter, we outline the methodological advances that brought us so far and sketch out the ongoing efforts to reach that coveted next level of artificial expressivity. We also discuss the societal implications coupled with rapidly advancing expressive speech synthesis (ESS) technology and highlight ways to mitigate those risks and ensure the alignment of ESS capabilities with ethical norms.
comment: Published in Oxford Handbook of Expressivity in Language (in press)
An Adversarial Perspective on Machine Unlearning for AI Safety
Large language models are finetuned to refuse questions about hazardous knowledge, but these protections can often be bypassed. Unlearning methods aim at completely removing hazardous capabilities from models and make them inaccessible to adversaries. This work challenges the fundamental differences between unlearning and traditional safety post-training from an adversarial perspective. We demonstrate that existing jailbreak methods, previously reported as ineffective against unlearning, can be successful when applied carefully. Furthermore, we develop a variety of adaptive methods that recover most supposedly unlearned capabilities. For instance, we show that finetuning on 10 unrelated examples or removing specific directions in the activation space can recover most hazardous capabilities for models edited with RMU, a state-of-the-art unlearning method. Our findings challenge the robustness of current unlearning approaches and question their advantages over safety training.
comment: Final version published in Transactions on Machine Learning Research (TMLR); Best technical paper at Neurips 2024 SoLaR workshop
SD-HuBERT: Sentence-Level Self-Distillation Induces Syllabic Organization in HuBERT
Data-driven unit discovery in self-supervised learning (SSL) of speech has embarked on a new era of spoken language processing. Yet, the discovered units often remain in phonetic space and the units beyond phonemes are largely underexplored. Here, we demonstrate that a syllabic organization emerges in learning sentence-level representation of speech. In particular, we adopt "self-distillation" objective to fine-tune the pretrained HuBERT with an aggregator token that summarizes the entire sentence. Without any supervision, the resulting model draws definite boundaries in speech, and the representations across frames exhibit salient syllabic structures. We demonstrate that this emergent structure largely corresponds to the ground truth syllables. Furthermore, we propose a new benchmark task, Spoken Speech ABX, for evaluating sentence-level representation of speech. When compared to previous models, our model outperforms in both unsupervised syllable discovery and learning sentence-level representation. Together, we demonstrate that the self-distillation of HuBERT gives rise to syllabic organization without relying on external labels or modalities, and potentially provides novel data-driven units for spoken language modeling.
CLIP meets DINO for Tuning Zero-Shot Classifier using Unlabeled Image Collections
In the era of foundation models, CLIP has emerged as a powerful tool for aligning text & visual modalities into a common embedding space. However, the alignment objective used to train CLIP often results in subpar visual features for fine-grained tasks. In contrast, SSL-pretrained models like DINO excel at extracting rich visual features due to their specialized training paradigm. Yet, these SSL models require an additional supervised linear probing step, which relies on fully labeled data which is often expensive and difficult to obtain at scale. In this paper, we propose a label-free prompt-tuning method that leverages the rich visual features of self-supervised learning models (DINO) and the broad textual knowledge of large language models (LLMs) to largely enhance CLIP-based image classification performance using unlabeled images. Our approach unfolds in three key steps: (1) We generate robust textual feature embeddings that more accurately represent object classes by leveraging class-specific descriptions from LLMs, enabling more effective zero-shot classification compared to CLIP's default name-specific prompts. (2) These textual embeddings are then used to produce pseudo-labels to train an alignment module that integrates the complementary strengths of LLM description-based textual embeddings & DINO's visual features. (3) Finally, we prompt-tune CLIP's vision encoder through DINO-assisted supervision using the trained alignment module. This three-step process allows us to harness the best of visual & textual foundation models, resulting in a powerful and efficient approach that surpasses state-of-the-art label-free classification methods. Notably, our framework, NoLA (No Labels Attached), achieves an average absolute gain of 3.6% over the state-of-the-art LaFTer across 11 diverse image classification datasets. Our code & models can be found at https://github.com/fazliimam/NoLA.
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves $\times$255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining $\times$100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models will be released in https://github.com/Jayce1kk/GSDP.
VideoComp: Advancing Fine-Grained Compositional and Temporal Alignment in Video-Text Models CVPR 2025
We introduce VideoComp, a benchmark and learning framework for advancing video-text compositionality understanding, aimed at improving vision-language models (VLMs) in fine-grained temporal alignment. Unlike existing benchmarks focused on static image-text compositionality or isolated single-event videos, our benchmark targets alignment in continuous multi-event videos. Leveraging video-text datasets with temporally localized event captions (e.g. ActivityNet-Captions, YouCook2), we construct two compositional benchmarks, ActivityNet-Comp and YouCook2-Comp. We create challenging negative samples with subtle temporal disruptions such as reordering, action word replacement, partial captioning, and combined disruptions. These benchmarks comprehensively test models' compositional sensitivity across extended, cohesive video-text sequences. To improve model performance, we propose a hierarchical pairwise preference loss that strengthens alignment with temporally accurate pairs and gradually penalizes increasingly disrupted ones, encouraging fine-grained compositional learning. To mitigate the limited availability of densely annotated video data, we introduce a pretraining strategy that concatenates short video-caption pairs to simulate multi-event sequences. We evaluate video-text foundational models and large multimodal models (LMMs) on our benchmark, identifying both strengths and areas for improvement in compositionality. Overall, our work provides a comprehensive framework for evaluating and enhancing model capabilities in achieving fine-grained, temporally coherent video-text alignment.
comment: CVPR 2025, project page at https://github.com/google-deepmind/video_comp
How to Make LLMs Forget: On Reversing In-Context Knowledge Edits NAACL
In-context knowledge editing (IKE) enables efficient modification of large language model (LLM) outputs without parameter changes and at zero-cost. However, it can be misused to manipulate responses opaquely, e.g., insert misinformation or offensive content. Such malicious interventions could be incorporated into high-level wrapped APIs where the final input prompt is not shown to end-users. To address this issue, we investigate the detection and reversal of IKE-edits. First, we demonstrate that IKE-edits can be detected with high accuracy (F1 > 80\%) using only the top-10 output probabilities of the next token, even in a black-box setting, e.g. proprietary LLMs with limited output information. Further, we introduce the novel task of reversing IKE-edits using specially tuned reversal tokens. We explore using both continuous and discrete reversal tokens, achieving over 80\% accuracy in recovering original, unedited outputs across multiple LLMs. Our continuous reversal tokens prove particularly effective, with minimal impact on unedited prompts. Through analysis of output distributions, attention patterns, and token rankings, we provide insights into IKE's effects on LLMs and how reversal tokens mitigate them. This work represents a significant step towards enhancing LLM resilience against potential misuse of in-context editing, improving their transparency and trustworthiness.
comment: Accepted at NAACL Main 2025
MedCT: A Clinical Terminology Graph for Generative AI Applications in Healthcare CCS 2025
We introduce the world's first clinical terminology for the Chinese healthcare community, namely MedCT, accompanied by a clinical foundation model MedBERT and an entity linking model MedLink. The MedCT system enables standardized and programmable representation of Chinese clinical data, successively stimulating the development of new medicines, treatment pathways, and better patient outcomes for the populous Chinese community. Moreover, the MedCT knowledge graph provides a principled mechanism to minimize the hallucination problem of large language models (LLMs), therefore achieving significant levels of accuracy and safety in LLM-based clinical applications. By leveraging the LLMs' emergent capabilities of generativeness and expressiveness, we were able to rapidly built a production-quality terminology system and deployed to real-world clinical field within three months, while classical terminologies like SNOMED CT have gone through more than twenty years development. Our experiments show that the MedCT system achieves state-of-the-art (SOTA) performance in semantic matching and entity linking tasks, not only for Chinese but also for English. We also conducted a longitudinal field experiment by applying MedCT and LLMs in a representative spectrum of clinical tasks, including electronic health record (EHR) auto-generation and medical document search for diagnostic decision making. Our study shows a multitude of values of MedCT for clinical workflows and patient outcomes, especially in the new genre of clinical LLM applications. We present our approach in sufficient engineering detail, such that implementing a clinical terminology for other non-English societies should be readily reproducible. We openly release our terminology, models and algorithms, along with real-world clinical datasets for the development.
comment: Accepted into ICCS 2025 and published in Springer's LNCS Series
Large corpora and large language models: a replicable method for automating grammatical annotation
Much linguistic research relies on annotated datasets of features extracted from text corpora, but the rapid quantitative growth of these corpora has created practical difficulties for linguists to manually annotate large data samples. In this paper, we present a replicable, supervised method that leverages large language models for assisting the linguist in grammatical annotation through prompt engineering, training, and evaluation. We introduce a methodological pipeline applied to the case study of formal variation in the English evaluative verb construction 'consider X (as) (to be) Y', based on the large language model Claude 3.5 Sonnet and corpus data from Davies' NOW and EnTenTen21 (SketchEngine). Overall, we reach a model accuracy of over 90% on our held-out test samples with only a small amount of training data, validating the method for the annotation of very large quantities of tokens of the construction in the future. We discuss the generalisability of our results for a wider range of case studies of grammatical constructions and grammatical variation and change, underlining the value of AI copilots as tools for future linguistic research, notwithstanding some important caveats.
Real-time Verification and Refinement of Language Model Text Generation
Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
P-Transformer: A Prompt-based Multimodal Transformer Architecture For Medical Tabular Data
Medical tabular data, abundant in Electronic Health Records (EHRs), is a valuable resource for diverse medical tasks such as risk prediction. While deep learning approaches, particularly transformer-based models, have shown remarkable performance in tabular data prediction, there are still problems remaining for existing work to be effectively adapted into medical domain, such as ignoring unstructured free-texts and underutilizing the textual information in structured data. To address these issues, we propose PTransformer, a \underline{P}rompt-based multimodal \underline{Transformer} architecture designed specifically for medical tabular data. This framework consists of two critical components: a tabular cell embedding generator and a tabular transformer. The former efficiently encodes diverse modalities from both structured and unstructured tabular data into a harmonized language semantic space with the help of pre-trained sentence encoder and medical prompts. The latter integrates cell representations to generate patient embeddings for various medical tasks. In comprehensive experiments on two real-world datasets for three medical tasks, PTransformer demonstrated the improvements with 10.9%/11.0% on RMSE/MAE, 0.5%/2.2% on RMSE/MAE, and 1.6%/0.8% on BACC/AUROC compared to state-of-the-art (SOTA) baselines in predictability.
Toward a Theory of Tokenization in LLMs NeurIPS 2024
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple $k^{\text{th}}$-order Markov processes for $k > 1$, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from $k^{\text{th}}$-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
comment: 60 pages, 11 figures. This work was published at NeurIPS 2024 with a different title, "An Analysis of Tokenization: Transformers under Markov data"
SpikeLLM: Scaling up Spiking Neural Network to Large Language Models via Saliency-based Spiking
Recent advancements in large language models (LLMs) with billions of parameters have improved performance in various applications, but their inference processes demand significant energy and computational resources. In contrast, the human brain, with approximately 86 billion neurons, is much more energy-efficient than LLMs with similar parameters. Inspired by this, we redesign 7$\sim$70 billion parameter LLMs using bio-plausible spiking mechanisms, emulating the efficient behavior of the human brain. We propose the first spiking large language model, SpikeLLM. Coupled with the proposed model, two essential approaches are proposed to improve spike training efficiency: Generalized Integrate-and-Fire (GIF) neurons to compress spike length from $T$ to $\frac{T}{L} \log_2 L$ bits, and an Optimal Brain Spiking framework to divide outlier channels and allocate different $T$ for GIF neurons, which further compresses spike length to approximate $log_2T$ bits. The necessity of spike-driven LLM is proved by comparison with quantized LLMs with similar operations. In the OmniQuant pipeline, SpikeLLM reduces 11.01% WikiText2 perplexity and improves 2.55% accuracy of common scene reasoning on a LLAMA-7B W4A4 model. In the GPTQ pipeline, SpikeLLM achieves direct additive in linear layers, significantly exceeding PB-LLMs.
Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models
As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transformer model architecture with Mamba layers that perform constant computation and require constant memory per generated token. We show that Nemotron-H models offer either better or on-par accuracy compared to other similarly-sized state-of-the-art open-sourced Transformer models (e.g., Qwen-2.5-7B/72B and Llama-3.1-8B/70B), while being up to 3$\times$ faster at inference. To further increase inference speed and reduce the memory required at inference time, we created Nemotron-H-47B-Base from the 56B model using a new compression via pruning and distillation technique called MiniPuzzle. Nemotron-H-47B-Base achieves similar accuracy to the 56B model, but is 20% faster to infer. In addition, we introduce an FP8-based training recipe and show that it can achieve on par results with BF16-based training. This recipe is used to train the 56B model. All Nemotron-H models will be released, with support in Hugging Face, NeMo, and Megatron-LM.
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization
We introduce TangoFlux, an efficient Text-to-Audio (TTA) generative model with 515M parameters, capable of generating up to 30 seconds of 44.1kHz audio in just 3.7 seconds on a single A40 GPU. A key challenge in aligning TTA models lies in the difficulty of creating preference pairs, as TTA lacks structured mechanisms like verifiable rewards or gold-standard answers available for Large Language Models (LLMs). To address this, we propose CLAP-Ranked Preference Optimization (CRPO), a novel framework that iteratively generates and optimizes preference data to enhance TTA alignment. We demonstrate that the audio preference dataset generated using CRPO outperforms existing alternatives. With this framework, TangoFlux achieves state-of-the-art performance across both objective and subjective benchmarks. We open source all code and models to support further research in TTA generation.
comment: https://tangoflux.github.io/
Cognitive Debiasing Large Language Models for Decision-Making
Large language models (LLMs) have shown potential in supporting decision-making applications, particularly as personal conversational assistants in the financial, healthcare, and legal domains. While prompt engineering strategies have enhanced the capabilities of LLMs in decision-making, cognitive biases inherent to LLMs present significant challenges. Cognitive biases are systematic patterns of deviation from norms or rationality in decision-making that can lead to the production of inaccurate outputs. Existing cognitive bias mitigation strategies assume that input prompts contain (exactly) one type of cognitive bias and therefore fail to perform well in realistic settings where there maybe any number of biases. To fill this gap, we propose a cognitive debiasing approach, called self-debiasing, that enhances the reliability of LLMs by iteratively refining prompts. Our method follows three sequential steps -- bias determination, bias analysis, and cognitive debiasing -- to iteratively mitigate potential cognitive biases in prompts. Experimental results on finance, healthcare, and legal decision-making tasks, using both closed-source and open-source LLMs, demonstrate that the proposed self-debiasing method outperforms both advanced prompt engineering methods and existing cognitive debiasing techniques in average accuracy under no-bias, single-bias, and multi-bias settings.
A Large-Scale Simulation on Large Language Models for Decision-Making in Political Science
While LLMs have demonstrated remarkable capabilities in text generation and reasoning, their ability to simulate human decision-making -- particularly in political contexts -- remains an open question. However, modeling voter behavior presents unique challenges due to limited voter-level data, evolving political landscapes, and the complexity of human reasoning. In this study, we develop a theory-driven, multi-step reasoning framework that integrates demographic, temporal and ideological factors to simulate voter decision-making at scale. Using synthetic personas calibrated to real-world voter data, we conduct large-scale simulations of recent U.S. presidential elections. Our method significantly improves simulation accuracy while mitigating model biases. We examine its robustness by comparing performance across different LLMs. We further investigate the challenges and constraints that arise from LLM-based political simulations. Our work provides both a scalable framework for modeling political decision-making behavior and insights into the promise and limitations of using LLMs in political science research.
comment: arXiv admin note: substantial text overlap with arXiv:2411.03321 This version adds a new model to our experimental setup, modifies the paper's main discussion, and updates the authorship list
Optimized Multi-Token Joint Decoding with Auxiliary Model for LLM Inference
Large language models (LLMs) have achieved remarkable success across diverse tasks, yet their inference processes are hindered by substantial time and energy demands due to single-token generation at each decoding step. While previous methods such as speculative decoding mitigate these inefficiencies by producing multiple tokens per step, each token is still generated by its single-token distribution, thereby enhancing speed without improving effectiveness. In contrast, our work simultaneously enhances inference speed and improves the output effectiveness. We consider multi-token joint decoding (MTJD), which generates multiple tokens from their joint distribution at each iteration, theoretically reducing perplexity and enhancing task performance. However, MTJD suffers from the high cost of sampling from the joint distribution of multiple tokens. Inspired by speculative decoding, we introduce multi-token assisted decoding (MTAD), a novel framework designed to accelerate MTJD. MTAD leverages a smaller auxiliary model to approximate the joint distribution of a larger model, incorporating a verification mechanism that not only ensures the accuracy of this approximation, but also improves the decoding efficiency over conventional speculative decoding. Theoretically, we demonstrate that MTAD closely approximates exact MTJD with bounded error. Empirical evaluations using Llama-2 and OPT models ranging from 13B to 70B parameters across various tasks reveal that MTAD reduces perplexity by 21.2% and improves downstream performance compared to standard single-token sampling. Furthermore, MTAD achieves a 1.42x speed-up and consumes 1.54x less energy than conventional speculative decoding methods. These results highlight MTAD's ability to make multi-token joint decoding both effective and efficient, promoting more sustainable and high-performance deployment of LLMs.
S$^2$-MAD: Breaking the Token Barrier to Enhance Multi-Agent Debate Efficiency NAACL 2025
Large language models (LLMs) have demonstrated remarkable capabilities across various natural language processing (NLP) scenarios, but they still face challenges when handling complex arithmetic and logical reasoning tasks. While Chain-Of-Thought (CoT) reasoning, self-consistency (SC) and self-correction strategies have attempted to guide models in sequential, multi-step reasoning, Multi-agent Debate (MAD) has emerged as a viable approach for enhancing the reasoning capabilities of LLMs. By increasing both the number of agents and the frequency of debates, the performance of LLMs improves significantly. However, this strategy results in a significant increase in token costs, presenting a barrier to scalability. To address this challenge, we introduce a novel sparsification strategy designed to reduce token costs within MAD. This approach minimizes ineffective exchanges of information and unproductive discussions among agents, thereby enhancing the overall efficiency of the debate process. We conduct comparative experiments on multiple datasets across various models, demonstrating that our approach significantly reduces the token costs in MAD to a considerable extent. Specifically, compared to MAD, our approach achieves an impressive reduction of up to 94.5\% in token costs while maintaining performance degradation below 2.0\%.
comment: Accepted to NAACL 2025 Main
Refining Answer Distributions for Improved Large Language Model Reasoning
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Refined Answer Distributions, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode -- the most likely answer. Empirical evaluation on several reasoning benchmarks demonstrates the superiority of the proposed approach.
Think While You Generate: Discrete Diffusion with Planned Denoising ICLR 2025
Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet $256 \times 256$. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity. Code is available at https://github.com/liusulin/DDPD.
comment: ICLR 2025
Finding Pareto Trade-offs in Fair and Accurate Detection of Toxic Speech
Optimizing NLP models for fairness poses many challenges. Lack of differentiable fairness measures prevents gradient-based loss training or requires surrogate losses that diverge from the true metric of interest. In addition, competing objectives (e.g., accuracy vs. fairness) often require making trade-offs based on stakeholder preferences, but stakeholders may not know their preferences before seeing system performance under different trade-off settings. To address these challenges, we begin by formulating a differentiable version of a popular fairness measure, Accuracy Parity, to provide balanced accuracy across demographic groups. Next, we show how model-agnostic, HyperNetwork optimization can efficiently train arbitrary NLP model architectures to learn Pareto-optimal trade-offs between competing metrics. Focusing on the task of toxic language detection, we show the generality and efficacy of our methods across two datasets, three neural architectures, and three fairness losses.
Could AI Trace and Explain the Origins of AI-Generated Images and Text?
AI-generated content is becoming increasingly prevalent in the real world, leading to serious ethical and societal concerns. For instance, adversaries might exploit large multimodal models (LMMs) to create images that violate ethical or legal standards, while paper reviewers may misuse large language models (LLMs) to generate reviews without genuine intellectual effort. While prior work has explored detecting AI-generated images and texts, and occasionally tracing their source models, there is a lack of a systematic and fine-grained comparative study. Important dimensions--such as AI-generated images vs. text, fully vs. partially AI-generated images, and general vs. malicious use cases--remain underexplored. Furthermore, whether AI systems like GPT-4o can explain why certain forged content is attributed to specific generative models is still an open question, with no existing benchmark addressing this. To fill this gap, we introduce AI-FAKER, a comprehensive multimodal dataset with over 280,000 samples spanning multiple LLMs and LMMs, covering both general and malicious use cases for AI-generated images and texts. Our experiments reveal two key findings: (i) AI authorship detection depends not only on the generated output but also on the model's original training intent; and (ii) GPT-4o provides highly consistent but less specific explanations when analyzing content produced by OpenAI's own models, such as DALL-E and GPT-4o itself.
Can LLMs Help Uncover Insights about LLMs? A Large-Scale, Evolving Literature Analysis of Frontier LLMs
The surge of LLM studies makes synthesizing their findings challenging. Analysis of experimental results from literature can uncover important trends across studies, but the time-consuming nature of manual data extraction limits its use. Our study presents a semi-automated approach for literature analysis that accelerates data extraction using LLMs. It automatically identifies relevant arXiv papers, extracts experimental results and related attributes, and organizes them into a structured dataset, LLMEvalDB. We then conduct an automated literature analysis of frontier LLMs, reducing the effort of paper surveying and data extraction by more than 93% compared to manual approaches. We validate LLMEvalDB by showing that it reproduces key findings from a recent manual analysis of Chain-of-Thought (CoT) reasoning and also uncovers new insights that go beyond it, showing, for example, that in-context examples benefit coding and multimodal tasks but offer limited gains in math reasoning tasks compared to zero-shot CoT. Our automatically updatable dataset enables continuous tracking of target models by extracting evaluation studies as new data becomes available. Through LLMEvalDB and empirical analysis, we provide insights into LLMs while facilitating ongoing literature analyses of their behavior.
comment: 22 pages, 9 figures
7B Fully Open Source Moxin-LLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training and obtaining the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO), an efficient and effective reinforcement learning algorithm following DeepSeek R1, to finetune our model, leading to the Moxin Reasoning model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
Adversarial Attacks on AI-Generated Text Detection Models: A Token Probability-Based Approach Using Embeddings
In recent years, text generation tools utilizing Artificial Intelligence (AI) have occasionally been misused across various domains, such as generating student reports or creative writings. This issue prompts plagiarism detection services to enhance their capabilities in identifying AI-generated content. Adversarial attacks are often used to test the robustness of AI-text generated detectors. This work proposes a novel textual adversarial attack on the detection models such as Fast-DetectGPT. The method employs embedding models for data perturbation, aiming at reconstructing the AI generated texts to reduce the likelihood of detection of the true origin of the texts. Specifically, we employ different embedding techniques, including the Tsetlin Machine (TM), an interpretable approach in machine learning for this purpose. By combining synonyms and embedding similarity vectors, we demonstrates the state-of-the-art reduction in detection scores against Fast-DetectGPT. Particularly, in the XSum dataset, the detection score decreased from 0.4431 to 0.2744 AUROC, and in the SQuAD dataset, it dropped from 0.5068 to 0.3532 AUROC.
L0-Reasoning Bench: Evaluating Procedural Correctness in Language Models via Simple Program Execution
Complex reasoning tasks often rely on the ability to consistently and accurately apply simple rules across incremental steps, a foundational capability which we term "level-0" reasoning. To systematically evaluate this capability, we introduce L0-Bench, a language model benchmark for testing procedural correctness -- the ability to generate correct reasoning processes, complementing existing benchmarks that primarily focus on outcome correctness. Given synthetic Python functions with simple operations, L0-Bench grades models on their ability to generate step-by-step, error-free execution traces. The synthetic nature of L0-Bench enables systematic and scalable generation of test programs along various axes (e.g., number of trace steps). We evaluate a diverse array of recent closed-source and open-weight models on a baseline test set. All models exhibit degradation as the number of target trace steps increases, while larger models and reasoning-enhanced models better maintain correctness over multiple steps. Additionally, we use L0-Bench to explore test-time scaling along three dimensions: input context length, number of solutions for majority voting, and inference steps. Our results suggest substantial room to improve "level-0" reasoning and potential directions to build more reliable reasoning systems.
Block Verification Accelerates Speculative Decoding
Speculative decoding is an effective method for lossless acceleration of large language models during inference. It uses a fast model to draft a block of tokens which are then verified in parallel by the target model, and provides a guarantee that the output is distributed identically to a sample from the target model. In prior works, draft verification is performed independently token-by-token. Surprisingly, we show that this approach is not optimal. We propose Block Verification, a simple draft verification algorithm that verifies the entire block jointly and provides additional wall-clock speedup. We prove that the proposed mechanism is optimal in the expected number of tokens produced each iteration and specifically is never worse than the standard token-level verification. Empirically, block verification provides modest but consistent wall-clock speedups over the standard token verification algorithm of 5%-8% in a range of tasks and datasets. Given that block verification does not increase code complexity, maintains the strong lossless guarantee of the standard speculative decoding verification algorithm, cannot deteriorate performance, and, in fact, consistently improves it, it can be used as a good default in speculative decoding implementations.
Human-Computer Interaction
Towards Sustainable Creativity Support: An Exploratory Study on Prompt Based Image Generation
Creativity is a valuable human skill that has long been augmented through both analog and digital tools. Recent progress in generative AI, such as image generation, provides a disruptive technological solution to supporting human creativity further and helping humans generate solutions faster. While AI image generators can help to rapidly visualize ideas based on user prompts, the use of such AI systems has also been critiqued due to their considerable energy usage. In this paper, we report on a user study (N = 24) to understand whether energy consumption can be reduced without impeding on the tool's perceived creativity support. Our results highlight that, for example, a main effect of (image generation) condition on energy consumption, and index of creativity support per prompt but not per task, which seem mainly attributed to image quantity per prompt. We provide details of our analysis on the relation between energy usage, creativity support, and prompting behavior, including attitudes towards designing with AI and its environmental impact.
comment: 20 pages, 8 figures
Open Datasets for Grid Modeling and Visualization: An Alberta Power Network Case
In the power and energy industry, multiple entities in grid operational logs are frequently recorded and updated. Thanks to recent advances in IT facilities and smart metering services, a variety of datasets such as system load, generation mix, and grid connection are often publicly available. While these resources are valuable in evaluating power grid's operational conditions and system resilience, the lack of fine-grained, accurate locational information constrain the usage of current data, which further hinders the development of smart grid and renewables integration. For instance, electricity end users are not aware of nodal generation mix or carbon emissions, while the general public have limited understanding about the effect of demand response or renewables integration if only the whole system's demands and generations are available. In this work, we focus on recovering power grid topology and line flow directions from open public dataset. Taking the Alberta grid as a working example, we start from mapping multi-modal power system datasets to the grid topology integrated with geographical information. By designing a novel optimization-based scheme to recover line flow directions, we are able to analyze and visualize the interactions between generations and demand vectors in an efficient manner. Proposed research is fully open-sourced and highly generalizable, which can help model and visualize grid information, create synthetic dataset, and facilitate analytics and decision-making framework for clean energy transition.
comment: In submission, code available at https://github.com/BenCheng2/CarbonDistributionMap
Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines
Large Language Models (LLMs) have transformed human-computer interaction by enabling natural language-based communication with AI-powered chatbots. These models are designed to be intuitive and user-friendly, allowing users to articulate requests with minimal effort. However, despite their accessibility, studies reveal that users often struggle with effective prompting, resulting in inefficient responses. Existing research has highlighted both the limitations of LLMs in interpreting vague or poorly structured prompts and the difficulties users face in crafting precise queries. This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting. We introduce and compare three types of prompting guidelines: a task-specific framework developed through a structured methodology and two baseline approaches. To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users. Using Von NeuMidas, an extended pragmatic annotation schema for LLM interaction analysis, we categorize common prompting errors and identify recurring behavioral patterns. We then evaluate the impact of different guidelines by examining changes in user behavior, adherence to prompting strategies, and the overall quality of AI-generated responses. Our findings provide a deeper understanding of how users engage with LLMs and the role of structured prompting guidance in enhancing AI-assisted communication. By comparing different instructional frameworks, we offer insights into more effective approaches for improving user competency in AI interactions, with implications for AI literacy, chatbot usability, and the design of more responsive AI systems.
comment: Accepted for AIED 2025, the 26th International Conference on Artificial Intelligence in Education, July 22 - 26, 2025, Palermo, Italy
FairEval: Evaluating Fairness in LLM-Based Recommendations with Personality Awareness
Recent advances in Large Language Models (LLMs) have enabled their application to recommender systems (RecLLMs), yet concerns remain regarding fairness across demographic and psychological user dimensions. We introduce FairEval, a novel evaluation framework to systematically assess fairness in LLM-based recommendations. FairEval integrates personality traits with eight sensitive demographic attributes,including gender, race, and age, enabling a comprehensive assessment of user-level bias. We evaluate models, including ChatGPT 4o and Gemini 1.5 Flash, on music and movie recommendations. FairEval's fairness metric, PAFS, achieves scores up to 0.9969 for ChatGPT 4o and 0.9997 for Gemini 1.5 Flash, with disparities reaching 34.79 percent. These results highlight the importance of robustness in prompt sensitivity and support more inclusive recommendation systems.
comment: 11 pages, 5 figures, under review at a top-tier ACM conference in recommender systems
Data over dialogue: Why artificial intelligence is unlikely to humanise medicine
Recently, a growing number of experts in artificial intelligence (AI) and medicine have be-gun to suggest that the use of AI systems, particularly machine learning (ML) systems, is likely to humanise the practice of medicine by substantially improving the quality of clinician-patient relationships. In this thesis, however, I argue that medical ML systems are more likely to negatively impact these relationships than to improve them. In particular, I argue that the use of medical ML systems is likely to comprise the quality of trust, care, empathy, understanding, and communication between clinicians and patients.
Context-Aware Monolingual Human Evaluation of Machine Translation
This paper explores the potential of context-aware monolingual human evaluation for assessing machine translation (MT) when no source is given for reference. To this end, we compare monolingual with bilingual evaluations (with source text), under two scenarios: the evaluation of a single MT system, and the comparative evaluation of pairwise MT systems. Four professional translators performed both monolingual and bilingual evaluations by assigning ratings and annotating errors, and providing feedback on their experience. Our findings suggest that context-aware monolingual human evaluation achieves comparable outcomes to human bilingual evaluations, and suggest the feasibility and potential of monolingual evaluation as an efficient approach to assessing MT.
Automating the Path: An R&D Agenda for Human-Centered AI and Visualization
The emergence of generative AI, large language models (LLMs), and foundation models is fundamentally reshaping computer science, and visualization and visual analytics are no exception. We present a systematic framework for understanding how human-centered AI (HCAI) can transform the visualization discipline. Our framework maps four key HCAI tool capabilities -- amplify, augment, empower, and enhance -- onto the four phases of visual sensemaking: view, explore, schematize, and report. For each combination, we review existing tools, envision future possibilities, identify challenges and pitfalls, and examine ethical considerations. This design space can serve as an R\&D agenda for both visualization researchers and practitioners to integrate AI into their work as well as understanding how visualization can support HCAI research.
comment: 8 pages, 4 figures
Enhancements for Developing a Comprehensive AI Fairness Assessment Standard
As AI systems increasingly influence critical sectors like telecommunications, finance, healthcare, and public services, ensuring fairness in decision-making is essential to prevent biased or unjust outcomes that disproportionately affect vulnerable entities or result in adverse impacts. This need is particularly pressing as the industry approaches the 6G era, where AI will drive complex functions like autonomous network management and hyper-personalized services. The TEC Standard for Fairness Assessment and Rating of AI Systems provides guidelines for evaluating fairness in AI, focusing primarily on tabular data and supervised learning models. However, as AI applications diversify, this standard requires enhancement to strengthen its impact and broaden its applicability. This paper proposes an expansion of the TEC Standard to include fairness assessments for images, unstructured text, and generative AI, including large language models, ensuring a more comprehensive approach that keeps pace with evolving AI technologies. By incorporating these dimensions, the enhanced framework will promote responsible and trustworthy AI deployment across various sectors.
comment: 5 pages. Published in 2025 17th International Conference on COMmunication Systems and NETworks (COMSNETS). Access: https://ieeexplore.ieee.org/abstract/document/10885551
Proceedings of the Purposeful XR Workshop for CHI 2025
This volume represents the proceedings of Workshop 27 on Purposeful XR: Affordances, Challenges, and Speculations for an Ethical Future, held together with the CHI conference on Human Factors in Computing Systems on MY 26th, 2025 in Yokohama, Japan.
comment: Position papers for CHI Workshop 27
Over-Relying on Reliance: Towards Realistic Evaluations of AI-Based Clinical Decision Support
As AI-based clinical decision support (AI-CDS) is introduced in more and more aspects of healthcare services, HCI research plays an increasingly important role in designing for complementarity between AI and clinicians. However, current evaluations of AI-CDS often fail to capture when AI is and is not useful to clinicians. This position paper reflects on our work and influential AI-CDS literature to advocate for moving beyond evaluation metrics like Trust, Reliance, Acceptance, and Performance on the AI's task (what we term the "trap" of human-AI collaboration). Although these metrics can be meaningful in some simple scenarios, we argue that optimizing for them ignores important ways that AI falls short of clinical benefit, as well as ways that clinicians successfully use AI. As the fields of HCI and AI in healthcare develop new ways to design and evaluate CDS tools, we call on the community to prioritize ecologically valid, domain-appropriate study setups that measure the emergent forms of value that AI can bring to healthcare professionals.
comment: Accepted to the CHI '25 Workshop on Envisioning the Future of Interactive Health
Certified to Drive: A Policy Proposal for Mandatory Training on Semi-Automated Vehicles
Although the Boeing 737 Max incidents resulted from a mix of design shortcomings, regulatory oversights, and systemic issues, they also highlight a critical gap in pilot training on managing automated systems during abnormal conditions. This example demonstrates the urgent need for focused, concise training on human-automation interaction - a need that is equally critical for operators of Level 2 ADAS-equipped vehicles, as discussed in detail later in this article. The lack of structured education for semi-automated vehicle operators mirrors similar risks in other industries, where formal training is critical for safe operation. Two policy recommendations are proposed. First, governments should create concise, official resources in accessible and official format to educate drivers on system capabilities and limitations. Second, mandatory training and certification programs should be introduced, combining theoretical and hands-on components to prepare drivers for real-world scenarios. These measures will improve driver understanding, reduce misuse, and foster public trust in semi-automated vehicle technologies. By addressing the knowledge gap, policymakers can ensure a safer, more responsible transition to automation, maximizing its benefits while minimizing risks to public safety.
Design Activity for Robot Faces: Evaluating Child Responses To Expressive Faces
Facial expressiveness plays a crucial role in a robot's ability to engage and interact with children. Prior research has shown that expressive robots can enhance child engagement during human-robot interactions. However, many robots used in therapy settings feature non-personalized, static faces designed with traditional facial feature considerations, which can limit the depth of interactions and emotional connections. Digital faces offer opportunities for personalization, yet the current landscape of robot face design lacks a dynamic, user-centered approach. Specifically, there is a significant research gap in designing robot faces based on child preferences. Instead, most robots in child-focused therapy spaces are developed from an adult-centric perspective. We present a novel study investigating the influence of child-drawn digital faces in child-robot interactions. This approach focuses on a design activity with children instructed to draw their own custom robot faces. We compare the perceptions of social intelligence (PSI) of two implementations: a generic digital face and a robot face, personalized using the user's drawn robot faces. The results of this study show the perceived social intelligence of a child-drawn robot was significantly higher compared to a generic face.
comment: 8 pages, 7 figures
Brain Signatures of Time Perception in Virtual Reality
Achieving a high level of immersion and adaptation in virtual reality (VR) requires precise measurement and representation of user state. While extrinsic physical characteristics such as locomotion and pose can be accurately tracked in real-time, reliably capturing mental states is more challenging. Quantitative psychology allows considering more intrinsic features like emotion, attention, or cognitive load. Time perception, in particular, is strongly tied to users' mental states, including stress, focus, and boredom. However, research on objectively measuring the pace at which we perceive the passage of time is scarce. In this work, we investigate the potential of electroencephalography (EEG) as an objective measure of time perception in VR, exploring neural correlates with oscillatory responses and time-frequency analysis. To this end, we implemented a variety of time perception modulators in VR, collected EEG recordings, and labeled them with overestimation, correct estimation, and underestimation time perception states. We found clear EEG spectral signatures for these three states, that are persistent across individuals, modulators, and modulation duration. These signatures can be integrated and applied to monitor and actively influence time perception in VR, allowing the virtual environment to be purposefully adapted to the individual to increase immersion further and improve user experience. A free copy of this paper and all supplemental materials are available at https://vrarlab.uni.lu/pub/brain-signatures.
comment: IEEE Trans. Vis. Comput. Graph. (2025)
A Multimedia Analytics Model for the Foundation Model Era
The rapid advances in Foundation Models and agentic Artificial Intelligence are transforming multimedia analytics by enabling richer, more sophisticated interactions between humans and analytical systems. Existing conceptual models for visual and multimedia analytics, however, do not adequately capture the complexity introduced by these powerful AI paradigms. To bridge this gap, we propose a comprehensive multimedia analytics model specifically designed for the foundation model era. Building upon established frameworks from visual analytics, multimedia analytics, knowledge generation, analytic task definition, mixed-initiative guidance, and human-in-the-loop reinforcement learning, our model emphasizes integrated human-AI teaming based on visual analytics agents from both technical and conceptual perspectives. Central to the model is a seamless, yet explicitly separable, interaction channel between expert users and semi-autonomous analytical processes, ensuring continuous alignment between user intent and AI behavior. The model addresses practical challenges in sensitive domains such as intelligence analysis, investigative journalism, and other fields handling complex, high-stakes data. We illustrate through detailed case studies how our model facilitates deeper understanding and targeted improvement of multimedia analytics solutions. By explicitly capturing how expert users can optimally interact with and guide AI-powered multimedia analytics systems, our conceptual framework sets a clear direction for system design, comparison, and future research.
Enhancing Human-Robot Interaction in Healthcare: A Study on Nonverbal Communication Cues and Trust Dynamics with NAO Robot Caregivers
As the population of older adults increases, so will the need for both human and robot care providers. While traditional practices involve hiring human caregivers to serve meals and attend to basic needs, older adults often require continuous companionship and health monitoring. However, hiring human caregivers for this job costs a lot of money. However, using a robot like Nao could be cheaper and still helpful. This study explores the integration of humanoid robots, particularly Nao, in health monitoring and caregiving for older adults. Using a mixed-methods approach with a within-subject factorial design, we investigated the effectiveness of nonverbal communication modalities, including touch, gestures, and LED patterns, in enhancing human-robot interactions. Our results indicate that Nao's touch-based health monitoring was well-received by participants, with positive ratings across various dimensions. LED patterns were perceived as more effective and accurate compared to hand and head gestures. Moreover, longer interactions were associated with higher trust levels and perceived empathy, highlighting the importance of prolonged engagement in fostering trust in human-robot interactions. Despite limitations, our study contributes valuable insights into the potential of humanoid robots to improve health monitoring and caregiving for older adults.
comment: The dataset in this manuscript was created for purpose of class project (pretend) and I did not take the ethical review board's permission. Therefore, I was not permitted to submit this project to any public platform, as doing so would be considered an academic violation. I humbly request that paper be withdrawn from arXiv as soon as possible. Otherwise, I may face academic misconduct consequence
Towards softerware: Enabling personalization of interactive data representations for users with disabilities
Accessible design for some may still produce barriers for others. This tension, called access friction, creates challenges for both designers and end-users with disabilities. To address this, we present the concept of softerware, a system design approach that provides end users with agency to meaningfully customize and adapt interfaces to their needs. To apply softerware to visualization, we assembled 195 data visualization customization options centered on the barriers we expect users with disabilities will experience. We built a prototype that applies a subset of these options and interviewed practitioners for feedback. Lastly, we conducted a design probe study with blind and low vision accessibility professionals to learn more about their challenges and visions for softerware. We observed access frictions between our participant's designs and they expressed that for softerware's success, current and future systems must be designed with accessible defaults, interoperability, persistence, and respect for a user's perceived effort-to-outcome ratio.
comment: pre-print, round 2 revision, 13 pages, draft not yet processed for accessibility
Immersive Virtual Reality Assessments of Working Memory and Psychomotor Skills: A Comparison between Immersive and Non-Immersive Assessments
Objective: Immersive virtual reality (VR) enhances ecologically validity and facilitates intuitive and ergonomic hand interactions for performing neuropsychological assessments. However, its comparability to traditional computerized methods remains unclear. This study investigates the convergent validity, user experience, and usability of VR-based versus PC-based assessments of short-term and working memory, and psychomotor skills, while also examining how demographic and IT-related skills influence performance in both modalities. Methods: Sixty-six participants performed the Digit Span Task (DST), Corsi Block Task (CBT), and Deary-Liewald Reaction Time Task (DLRTT) in both VR- and PC-based formats. Participants' experience in using computers and smartphones, and playing videogames, was considered. User experience and system usability of the formats were also evaluated. Results: While performance on DST was similar across modalities, PC assessments enabled better performance on CBT and faster reaction times in DLRTT. Moderate-to-strong correlations between VR and PC versions supported convergent validity. Regression analyses revealed that performance on PC versions was influenced by age, computing, and gaming experience, whereas performance on VR versions was largely independent of these factors, except for gaming experience predicting performance on CBT backward recall. Moreover, VR assessments received higher ratings for user experience and usability than PC-based assessments. Conclusion: Immersive VR assessments provide an engaging alternative to traditional computerized methods, with minimal reliance on prior IT experience and demographic factors. This resilience to individual differences suggests that VR may offer a more equitable and accessible platform for cognitive assessment. Future research should explore the long-term reliability of VR-based assessments.
comment: 10 pages, 1 figure, 3 tables
Conversational Medical AI: Ready for Practice AAAI25
The shortage of doctors is creating a critical squeeze in access to medical expertise. While conversational Artificial Intelligence (AI) holds promise in addressing this problem, its safe deployment in patient-facing roles remains largely unexplored in real-world medical settings. We present the first large-scale evaluation of a physician-supervised LLM-based conversational agent in a real-world medical setting. Our agent, Mo, was integrated into an existing medical advice chat service. Over a three-week period, we conducted a randomized controlled experiment with 926 cases to evaluate patient experience and satisfaction. Among these, Mo handled 298 complete patient interactions, for which we report physician-assessed measures of safety and medical accuracy. Patients reported higher clarity of information (3.73 vs 3.62 out of 4, p < 0.05) and overall satisfaction (4.58 vs 4.42 out of 5, p < 0.05) with AI-assisted conversations compared to standard care, while showing equivalent levels of trust and perceived empathy. The high opt-in rate (81% among respondents) exceeded previous benchmarks for AI acceptance in healthcare. Physician oversight ensured safety, with 95% of conversations rated as "good" or "excellent" by general practitioners experienced in operating a medical advice chat service. Our findings demonstrate that carefully implemented AI medical assistants can enhance patient experience while maintaining safety standards through physician supervision. This work provides empirical evidence for the feasibility of AI deployment in healthcare communication and insights into the requirements for successful integration into existing healthcare services.
comment: Accepted to AAAI25 (Oral, workshop) 14 pages, 7 figures, 3 tables
ReorderBench: A Benchmark for Matrix Reordering
Matrix reordering permutes the rows and columns of a matrix to reveal meaningful visual patterns, such as blocks that represent clusters. A comprehensive collection of matrices, along with a scoring method for measuring the quality of visual patterns in these matrices, contributes to building a benchmark. This benchmark is essential for selecting or designing suitable reordering algorithms for specific tasks. In this paper, we build a matrix reordering benchmark, ReorderBench, with the goal of evaluating and improving matrix reordering techniques. This is achieved by generating a large set of representative and diverse matrices and scoring these matrices with a convolution- and entropy-based method. Our benchmark contains 2,835,000 binary matrices and 5,670,000 continuous matrices, each featuring one of four visual patterns: block, off-diagonal block, star, or band. We demonstrate the usefulness of ReorderBench through three main applications in matrix reordering: 1) evaluating different reordering algorithms, 2) creating a unified scoring model to measure the visual patterns in any matrix, and 3) developing a deep learning model for matrix reordering.
comment: Submitted to IEEE TVCG
As Good As A Coin Toss: Human detection of AI-generated images, videos, audio, and audiovisual stimuli
One of the current principal defenses against weaponized synthetic media continues to be the ability of the targeted individual to visually or auditorily recognize AI-generated content when they encounter it. However, as the realism of synthetic media continues to rapidly improve, it is vital to have an accurate understanding of just how susceptible people currently are to potentially being misled by convincing but false AI generated content. We conducted a perceptual study with 1276 participants to assess how capable people were at distinguishing between authentic and synthetic images, audio, video, and audiovisual media. We find that on average, people struggled to distinguish between synthetic and authentic media, with the mean detection performance close to a chance level performance of 50%. We also find that accuracy rates worsen when the stimuli contain any degree of synthetic content, features foreign languages, and the media type is a single modality. People are also less accurate at identifying synthetic images when they feature human faces, and when audiovisual stimuli have heterogeneous authenticity. Finally, we find that higher degrees of prior knowledgeability about synthetic media does not significantly impact detection accuracy rates, but age does, with older individuals performing worse than their younger counterparts. Collectively, these results highlight that it is no longer feasible to rely on the perceptual capabilities of people to protect themselves against the growing threat of weaponized synthetic media, and that the need for alternative countermeasures is more critical than ever before.
comment: For study pre-registration, see https://osf.io/fnhr3 V5: expanded on ecological validation in Introduction; revised table in Results to add OR & OR CI, previous data unchanged; added further details on study design in Methods; added Appendix with survey screenshots; migrated list of dataset sources from footnotes into references
Supporting Co-Adaptive Machine Teaching through Human Concept Learning and Cognitive Theories
An important challenge in interactive machine learning, particularly in subjective or ambiguous domains, is fostering bi-directional alignment between humans and models. Users teach models their concept definition through data labeling, while refining their own understandings throughout the process. To facilitate this, we introduce MOCHA, an interactive machine learning tool informed by two theories of human concept learning and cognition. First, it utilizes a neuro-symbolic pipeline to support Variation Theory-based counterfactual data generation. By asking users to annotate counterexamples that are syntactically and semantically similar to already-annotated data but predicted to have different labels, the system can learn more effectively while helping users understand the model and reflect on their own label definitions. Second, MOCHA uses Structural Alignment Theory to present groups of counterexamples, helping users comprehend alignable differences between data items and annotate them in batch. We validated MOCHA's effectiveness and usability through a lab study with 18 participants.
Catch Me if You Search: When Contextual Web Search Results Affect the Detection of Hallucinations
While we increasingly rely on large language models (LLMs) for various tasks, these models are known to produce inaccurate content or 'hallucinations' with potentially disastrous consequences. The recent integration of web search results into LLMs prompts the question of whether people utilize them to verify the generated content, thereby avoiding falling victim to hallucinations. This study (N = 560) investigated how the provision of search results, either static (fixed search results) or dynamic (participant-driven searches), affect participants' perceived accuracy and confidence in evaluating LLM-generated content (i.e., genuine, minor hallucination, major hallucination), compared to the control condition (no search results). Findings indicate that participants in both static and dynamic conditions (vs. control) rated hallucinated content to be less accurate. However, those in the dynamic condition rated genuine content as more accurate and demonstrated greater overall confidence in their assessments than those in the static or control conditions. In addition, those higher in need for cognition (NFC) rated major hallucinations to be less accurate than low NFC participants, with no corresponding difference for genuine content or minor hallucinations. These results underscore the potential benefits of integrating web search results into LLMs for the detection of hallucinations, as well as the need for a more nuanced approach when developing human-centered systems, taking user characteristics into account.
Chatbots as social companions: How people perceive consciousness, human likeness, and social health benefits in machines
As artificial intelligence (AI) becomes more widespread, one question that arises is how human-AI interaction might impact human-human interaction. Chatbots, for example, are increasingly used as social companions, and while much is speculated, little is known empirically about how their use impacts human relationships. A common hypothesis is that relationships with companion chatbots are detrimental to social health by harming or replacing human interaction, but this hypothesis may be too simplistic, especially considering the social needs of users and the health of their preexisting human relationships. To understand how relationships with companion chatbots impact social health, we studied people who regularly used companion chatbots and people who did not use them. Contrary to expectations, companion chatbot users indicated that these relationships were beneficial to their social health, whereas non-users viewed them as harmful. Another common assumption is that people perceive conscious, humanlike AI as disturbing and threatening. Among both users and non-users, however, we found the opposite: perceiving companion chatbots as more conscious and humanlike correlated with more positive opinions and more pronounced social health benefits. Detailed accounts from users suggested that these humanlike chatbots may aid social health by supplying reliable and safe interactions, without necessarily harming human relationships, but this may depend on users' preexisting social needs and how they perceive both human likeness and mind in the chatbot.
comment: This is an updated preprint. This paper is published at: https://doi.org/10.1093/9780198945215.003.0011
Computer Vision and Pattern Recognition
FlashDepth: Real-time Streaming Video Depth Estimation at 2K Resolution
A versatile video depth estimation model should (1) be accurate and consistent across frames, (2) produce high-resolution depth maps, and (3) support real-time streaming. We propose FlashDepth, a method that satisfies all three requirements, performing depth estimation on a 2044x1148 streaming video at 24 FPS. We show that, with careful modifications to pretrained single-image depth models, these capabilities are enabled with relatively little data and training. We evaluate our approach across multiple unseen datasets against state-of-the-art depth models, and find that ours outperforms them in terms of boundary sharpness and speed by a significant margin, while maintaining competitive accuracy. We hope our model will enable various applications that require high-resolution depth, such as video editing, and online decision-making, such as robotics.
Are We Done with Object-Centric Learning?
Object-centric learning (OCL) seeks to learn representations that only encode an object, isolated from other objects or background cues in a scene. This approach underpins various aims, including out-of-distribution (OOD) generalization, sample-efficient composition, and modeling of structured environments. Most research has focused on developing unsupervised mechanisms that separate objects into discrete slots in the representation space, evaluated using unsupervised object discovery. However, with recent sample-efficient segmentation models, we can separate objects in the pixel space and encode them independently. This achieves remarkable zero-shot performance on OOD object discovery benchmarks, is scalable to foundation models, and can handle a variable number of slots out-of-the-box. Hence, the goal of OCL methods to obtain object-centric representations has been largely achieved. Despite this progress, a key question remains: How does the ability to separate objects within a scene contribute to broader OCL objectives, such as OOD generalization? We address this by investigating the OOD generalization challenge caused by spurious background cues through the lens of OCL. We propose a novel, training-free probe called $\textbf{Object-Centric Classification with Applied Masks (OCCAM)}$, demonstrating that segmentation-based encoding of individual objects significantly outperforms slot-based OCL methods. However, challenges in real-world applications remain. We provide the toolbox for the OCL community to use scalable object-centric representations, and focus on practical applications and fundamental questions, such as understanding object perception in human cognition. Our code is available $\href{https://github.com/AlexanderRubinstein/OCCAM}{here}$.
OmniCaptioner: One Captioner to Rule Them All
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
comment: More visualizations on Homepage: https://alpha-innovator.github.io/OmniCaptioner-project-page and Official code: https://github.com/Alpha-Innovator/OmniCaptioner
GenDoP: Auto-regressive Camera Trajectory Generation as a Director of Photography
Camera trajectory design plays a crucial role in video production, serving as a fundamental tool for conveying directorial intent and enhancing visual storytelling. In cinematography, Directors of Photography meticulously craft camera movements to achieve expressive and intentional framing. However, existing methods for camera trajectory generation remain limited: Traditional approaches rely on geometric optimization or handcrafted procedural systems, while recent learning-based methods often inherit structural biases or lack textual alignment, constraining creative synthesis. In this work, we introduce an auto-regressive model inspired by the expertise of Directors of Photography to generate artistic and expressive camera trajectories. We first introduce DataDoP, a large-scale multi-modal dataset containing 29K real-world shots with free-moving camera trajectories, depth maps, and detailed captions in specific movements, interaction with the scene, and directorial intent. Thanks to the comprehensive and diverse database, we further train an auto-regressive, decoder-only Transformer for high-quality, context-aware camera movement generation based on text guidance and RGBD inputs, named GenDoP. Extensive experiments demonstrate that compared to existing methods, GenDoP offers better controllability, finer-grained trajectory adjustments, and higher motion stability. We believe our approach establishes a new standard for learning-based cinematography, paving the way for future advancements in camera control and filmmaking. Our project website: https://kszpxxzmc.github.io/GenDoP/.
SkillWeaver: Web Agents can Self-Improve by Discovering and Honing Skills
To survive and thrive in complex environments, humans have evolved sophisticated self-improvement mechanisms through environment exploration, hierarchical abstraction of experiences into reuseable skills, and collaborative construction of an ever-growing skill repertoire. Despite recent advancements, autonomous web agents still lack crucial self-improvement capabilities, struggling with procedural knowledge abstraction, refining skills, and skill composition. In this work, we introduce SkillWeaver, a skill-centric framework enabling agents to self-improve by autonomously synthesizing reusable skills as APIs. Given a new website, the agent autonomously discovers skills, executes them for practice, and distills practice experiences into robust APIs. Iterative exploration continually expands a library of lightweight, plug-and-play APIs, significantly enhancing the agent's capabilities. Experiments on WebArena and real-world websites demonstrate the efficacy of SkillWeaver, achieving relative success rate improvements of 31.8% and 39.8%, respectively. Additionally, APIs synthesized by strong agents substantially enhance weaker agents through transferable skills, yielding improvements of up to 54.3% on WebArena. These results demonstrate the effectiveness of honing diverse website interactions into APIs, which can be seamlessly shared among various web agents.
Detecting AI-generated Artwork
The high efficiency and quality of artwork generated by Artificial Intelligence (AI) has created new concerns and challenges for human artists. In particular, recent improvements in generative AI have made it difficult for people to distinguish between human-generated and AI-generated art. In this research, we consider the potential utility of various types of Machine Learning (ML) and Deep Learning (DL) models in distinguishing AI-generated artwork from human-generated artwork. We focus on three challenging artistic styles, namely, baroque, cubism, and expressionism. The learning models we test are Logistic Regression (LR), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Convolutional Neural Network (CNN). Our best experimental results yield a multiclass accuracy of 0.8208 over six classes, and an impressive accuracy of 0.9758 for the binary classification problem of distinguishing AI-generated from human-generated art.
Kaleidoscope: In-language Exams for Massively Multilingual Vision Evaluation
The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.
Teaching pathology foundation models to accurately predict gene expression with parameter efficient knowledge transfer
Gene expression profiling provides critical insights into cellular heterogeneity, biological processes and disease mechanisms. There has been an increasing interest in computational approaches that can predict gene expression directly from digitalized histopathology images. While image foundation models have shown promise in a variety of pathology downstream analysis, their performances on gene-expression prediction are still limited. Explicitly incorporating information from the transcriptomic models can help image models to address domain shift, yet the fine-tuning and alignment of foundation models can be expensive. In the work, we propose Parameter Efficient Knowledge trAnsfer (PEKA), a novel framework that leverages Block-Affine Adaptation and integrates knowledge distillation and structure alignment losses for cross-modal knowledge transfer. We evaluated PEKA for gene expression prediction using multiple spatial transcriptomics datasets (comprising 206,123 image tiles with matched gene expression profiles) that encompassed various types of tissue. PEKA achieved at least 5\% performance improvement over baseline foundation models while also outperforming alternative parameter-efficient fine-tuning strategies. We will release the code, datasets and aligned models after peer-review to facilitate broader adoption and further development for parameter efficient model alignment.
Generalized Semantic Contrastive Learning via Embedding Side Information for Few-Shot Object Detection
The objective of few-shot object detection (FSOD) is to detect novel objects with few training samples. The core challenge of this task is how to construct a generalized feature space for novel categories with limited data on the basis of the base category space, which could adapt the learned detection model to unknown scenarios. However, limited by insufficient samples for novel categories, two issues still exist: (1) the features of the novel category are easily implicitly represented by the features of the base category, leading to inseparable classifier boundaries, (2) novel categories with fewer data are not enough to fully represent the distribution, where the model fine-tuning is prone to overfitting. To address these issues, we introduce the side information to alleviate the negative influences derived from the feature space and sample viewpoints and formulate a novel generalized feature representation learning method for FSOD. Specifically, we first utilize embedding side information to construct a knowledge matrix to quantify the semantic relationship between the base and novel categories. Then, to strengthen the discrimination between semantically similar categories, we further develop contextual semantic supervised contrastive learning which embeds side information. Furthermore, to prevent overfitting problems caused by sparse samples, a side-information guided region-aware masked module is introduced to augment the diversity of samples, which finds and abandons biased information that discriminates between similar categories via counterfactual explanation, and refines the discriminative representation space further. Extensive experiments using ResNet and ViT backbones on PASCAL VOC, MS COCO, LVIS V1, FSOD-1K, and FSVOD-500 benchmarks demonstrate that our model outperforms the previous state-of-the-art methods, significantly improving the ability of FSOD in most shots/splits.
comment: Accepted by T-PAMI (IEEE Transactions on Pattern Analysis and Machine Intelligence)
A Unified Agentic Framework for Evaluating Conditional Image Generation
Conditional image generation has gained significant attention for its ability to personalize content. However, the field faces challenges in developing task-agnostic, reliable, and explainable evaluation metrics. This paper introduces CIGEval, a unified agentic framework for comprehensive evaluation of conditional image generation tasks. CIGEval utilizes large multimodal models (LMMs) as its core, integrating a multi-functional toolbox and establishing a fine-grained evaluation framework. Additionally, we synthesize evaluation trajectories for fine-tuning, empowering smaller LMMs to autonomously select appropriate tools and conduct nuanced analyses based on tool outputs. Experiments across seven prominent conditional image generation tasks demonstrate that CIGEval (GPT-4o version) achieves a high correlation of 0.4625 with human assessments, closely matching the inter-annotator correlation of 0.47. Moreover, when implemented with 7B open-source LMMs using only 2.3K training trajectories, CIGEval surpasses the previous GPT-4o-based state-of-the-art method. Case studies on GPT-4o image generation highlight CIGEval's capability in identifying subtle issues related to subject consistency and adherence to control guidance, indicating its great potential for automating evaluation of image generation tasks with human-level reliability.
comment: Work in progress. GitHub: https://github.com/HITsz-TMG/Agentic-CIGEval
Distilling Textual Priors from LLM to Efficient Image Fusion
Multi-modality image fusion aims to synthesize a single, comprehensive image from multiple source inputs. Traditional approaches, such as CNNs and GANs, offer efficiency but struggle to handle low-quality or complex inputs. Recent advances in text-guided methods leverage large model priors to overcome these limitations, but at the cost of significant computational overhead, both in memory and inference time. To address this challenge, we propose a novel framework for distilling large model priors, eliminating the need for text guidance during inference while dramatically reducing model size. Our framework utilizes a teacher-student architecture, where the teacher network incorporates large model priors and transfers this knowledge to a smaller student network via a tailored distillation process. Additionally, we introduce spatial-channel cross-fusion module to enhance the model's ability to leverage textual priors across both spatial and channel dimensions. Our method achieves a favorable trade-off between computational efficiency and fusion quality. The distilled network, requiring only 10\% of the parameters and inference time of the teacher network, retains 90\% of its performance and outperforms existing SOTA methods. Extensive experiments demonstrate the effectiveness of our approach. The implementation will be made publicly available as an open-source resource.
Glossy Object Reconstruction with Cost-effective Polarized Acquisition CVPR 2025
The challenge of image-based 3D reconstruction for glossy objects lies in separating diffuse and specular components on glossy surfaces from captured images, a task complicated by the ambiguity in discerning lighting conditions and material properties using RGB data alone. While state-of-the-art methods rely on tailored and/or high-end equipment for data acquisition, which can be cumbersome and time-consuming, this work introduces a scalable polarization-aided approach that employs cost-effective acquisition tools. By attaching a linear polarizer to readily available RGB cameras, multi-view polarization images can be captured without the need for advance calibration or precise measurements of the polarizer angle, substantially reducing system construction costs. The proposed approach represents polarimetric BRDF, Stokes vectors, and polarization states of object surfaces as neural implicit fields. These fields, combined with the polarizer angle, are retrieved by optimizing the rendering loss of input polarized images. By leveraging fundamental physical principles for the implicit representation of polarization rendering, our method demonstrates superiority over existing techniques through experiments in public datasets and real captured images on both reconstruction and novel view synthesis.
comment: Accepted to CVPR 2025 as highlight
Latent Diffusion U-Net Representations Contain Positional Embeddings and Anomalies ICLR 2025
Diffusion models have demonstrated remarkable capabilities in synthesizing realistic images, spurring interest in using their representations for various downstream tasks. To better understand the robustness of these representations, we analyze popular Stable Diffusion models using representational similarity and norms. Our findings reveal three phenomena: (1) the presence of a learned positional embedding in intermediate representations, (2) high-similarity corner artifacts, and (3) anomalous high-norm artifacts. These findings underscore the need to further investigate the properties of diffusion model representations before considering them for downstream tasks that require robust features. Project page: https://jonasloos.github.io/sd-representation-anomalies
comment: ICLR 2025 Workshop on Deep Generative Models: Theory, Principle, and Efficacy
RayFronts: Open-Set Semantic Ray Frontiers for Online Scene Understanding and Exploration
Open-set semantic mapping is crucial for open-world robots. Current mapping approaches either are limited by the depth range or only map beyond-range entities in constrained settings, where overall they fail to combine within-range and beyond-range observations. Furthermore, these methods make a trade-off between fine-grained semantics and efficiency. We introduce RayFronts, a unified representation that enables both dense and beyond-range efficient semantic mapping. RayFronts encodes task-agnostic open-set semantics to both in-range voxels and beyond-range rays encoded at map boundaries, empowering the robot to reduce search volumes significantly and make informed decisions both within & beyond sensory range, while running at 8.84 Hz on an Orin AGX. Benchmarking the within-range semantics shows that RayFronts's fine-grained image encoding provides 1.34x zero-shot 3D semantic segmentation performance while improving throughput by 16.5x. Traditionally, online mapping performance is entangled with other system components, complicating evaluation. We propose a planner-agnostic evaluation framework that captures the utility for online beyond-range search and exploration, and show RayFronts reduces search volume 2.2x more efficiently than the closest online baselines.
SIGMAN:Scaling 3D Human Gaussian Generation with Millions of Assets
3D human digitization has long been a highly pursued yet challenging task. Existing methods aim to generate high-quality 3D digital humans from single or multiple views, but remain primarily constrained by current paradigms and the scarcity of 3D human assets. Specifically, recent approaches fall into several paradigms: optimization-based and feed-forward (both single-view regression and multi-view generation with reconstruction). However, they are limited by slow speed, low quality, cascade reasoning, and ambiguity in mapping low-dimensional planes to high-dimensional space due to occlusion and invisibility, respectively. Furthermore, existing 3D human assets remain small-scale, insufficient for large-scale training. To address these challenges, we propose a latent space generation paradigm for 3D human digitization, which involves compressing multi-view images into Gaussians via a UV-structured VAE, along with DiT-based conditional generation, we transform the ill-posed low-to-high-dimensional mapping problem into a learnable distribution shift, which also supports end-to-end inference. In addition, we employ the multi-view optimization approach combined with synthetic data to construct the HGS-1M dataset, which contains $1$ million 3D Gaussian assets to support the large-scale training. Experimental results demonstrate that our paradigm, powered by large-scale training, produces high-quality 3D human Gaussians with intricate textures, facial details, and loose clothing deformation.
comment: project page:https://yyvhang.github.io/SIGMAN_3D/
Wheat3DGS: In-field 3D Reconstruction, Instance Segmentation and Phenotyping of Wheat Heads with Gaussian Splatting CVPR
Automated extraction of plant morphological traits is crucial for supporting crop breeding and agricultural management through high-throughput field phenotyping (HTFP). Solutions based on multi-view RGB images are attractive due to their scalability and affordability, enabling volumetric measurements that 2D approaches cannot directly capture. While advanced methods like Neural Radiance Fields (NeRFs) have shown promise, their application has been limited to counting or extracting traits from only a few plants or organs. Furthermore, accurately measuring complex structures like individual wheat heads-essential for studying crop yields-remains particularly challenging due to occlusions and the dense arrangement of crop canopies in field conditions. The recent development of 3D Gaussian Splatting (3DGS) offers a promising alternative for HTFP due to its high-quality reconstructions and explicit point-based representation. In this paper, we present Wheat3DGS, a novel approach that leverages 3DGS and the Segment Anything Model (SAM) for precise 3D instance segmentation and morphological measurement of hundreds of wheat heads automatically, representing the first application of 3DGS to HTFP. We validate the accuracy of wheat head extraction against high-resolution laser scan data, obtaining per-instance mean absolute percentage errors of 15.1%, 18.3%, and 40.2% for length, width, and volume. We provide additional comparisons to NeRF-based approaches and traditional Muti-View Stereo (MVS), demonstrating superior results. Our approach enables rapid, non-destructive measurements of key yield-related traits at scale, with significant implications for accelerating crop breeding and improving our understanding of wheat development.
comment: Copyright 2025 IEEE. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version is published in the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
A Deep Single Image Rectification Approach for Pan-Tilt-Zoom Cameras ICME 2025
Pan-Tilt-Zoom (PTZ) cameras with wide-angle lenses are widely used in surveillance but often require image rectification due to their inherent nonlinear distortions. Current deep learning approaches typically struggle to maintain fine-grained geometric details, resulting in inaccurate rectification. This paper presents a Forward Distortion and Backward Warping Network (FDBW-Net), a novel framework for wide-angle image rectification. It begins by using a forward distortion model to synthesize barrel-distorted images, reducing pixel redundancy and preventing blur. The network employs a pyramid context encoder with attention mechanisms to generate backward warping flows containing geometric details. Then, a multi-scale decoder is used to restore distorted features and output rectified images. FDBW-Net's performance is validated on diverse datasets: public benchmarks, AirSim-rendered PTZ camera imagery, and real-scene PTZ camera datasets. It demonstrates that FDBW-Net achieves SOTA performance in distortion rectification, boosting the adaptability of PTZ cameras for practical visual applications.
comment: Accepted to ICME 2025
Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation CVPR
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO), demonstrating strong transferability across diverse remote sensing tasks. While prior work has focused on network architectures and training strategies, the role of dataset curation, especially in balancing and diversifying pre-training datasets, remains underexplored. In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery, which can lead to biased representations and inefficient training. In this work, we propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance. Our method iteratively refines the training set without requiring a pre-existing feature extractor, making it well-suited for domains where curated datasets are limited or unavailable. We demonstrate our approach on the Sentinel-1 Wave Mode (WV) Synthetic Aperture Radar (SAR) archive, a challenging dataset dominated by ocean observations. We train models from scratch on the entire Sentinel-1 WV archive spanning 10 years. Across three downstream tasks, our results show that dynamic pruning improves both computational efficiency and representation quality, leading to stronger transferability. We also release the weights of Nereus-SAR-1, the first model in the Nereus family, a series of foundation models for ocean observation and analysis using SAR imagery, at github.com/galeio-research/nereus-sar-models/.
comment: Accepted at CVPR Workshop : The First Workshop on Foundation and Large Vision Models in Remote Sensing
Two by Two: Learning Multi-Task Pairwise Objects Assembly for Generalizable Robot Manipulation CVPR 2025
3D assembly tasks, such as furniture assembly and component fitting, play a crucial role in daily life and represent essential capabilities for future home robots. Existing benchmarks and datasets predominantly focus on assembling geometric fragments or factory parts, which fall short in addressing the complexities of everyday object interactions and assemblies. To bridge this gap, we present 2BY2, a large-scale annotated dataset for daily pairwise objects assembly, covering 18 fine-grained tasks that reflect real-life scenarios, such as plugging into sockets, arranging flowers in vases, and inserting bread into toasters. 2BY2 dataset includes 1,034 instances and 517 pairwise objects with pose and symmetry annotations, requiring approaches that align geometric shapes while accounting for functional and spatial relationships between objects. Leveraging the 2BY2 dataset, we propose a two-step SE(3) pose estimation method with equivariant features for assembly constraints. Compared to previous shape assembly methods, our approach achieves state-of-the-art performance across all 18 tasks in the 2BY2 dataset. Additionally, robot experiments further validate the reliability and generalization ability of our method for complex 3D assembly tasks.
comment: Accepted to CVPR 2025 (Conference on Computer Vision and Pattern Recognition)
VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning
Recent advancements in reinforcement learning have significantly advanced the reasoning capabilities of multimodal large language models (MLLMs). While approaches such as Group Relative Policy Optimization (GRPO) and rule-based reward mechanisms demonstrate promise in text and image domains, their application to video understanding remains limited. This paper presents a systematic exploration of Reinforcement Fine-Tuning (RFT) with GRPO for video MLLMs, aiming to enhance spatio-temporal perception while maintaining general capabilities. Our experiments reveal that RFT is highly data-efficient for task-specific improvements. Through multi-task RFT on spatio-temporal perception objectives with limited samples, we develop VideoChat-R1, a powerful video MLLM that achieves state-of-the-art performance on spatio-temporal perception tasks without sacrificing chat ability, while exhibiting emerging spatio-temporal reasoning abilities. Compared to Qwen2.5-VL-7B, VideoChat-R1 boosts performance several-fold in tasks like temporal grounding (+31.8) and object tracking (+31.2). Additionally, it significantly improves on general QA benchmarks such as VideoMME (+0.9), MVBench (+1.0), and Perception Test (+0.9). Our findings underscore the potential of RFT for specialized task enhancement of Video MLLMs. We hope our work offers valuable insights for future RL research in video MLLMs.
A Comparison of Deep Learning Methods for Cell Detection in Digital Cytology SC
Accurate and efficient cell detection is crucial in many biomedical image analysis tasks. We evaluate the performance of several Deep Learning (DL) methods for cell detection in Papanicolaou-stained cytological Whole Slide Images (WSIs), focusing on accuracy of predictions and computational efficiency. We examine recentoff-the-shelf algorithms as well as custom-designed detectors, applying them to two datasets: the CNSeg Dataset and the Oral Cancer (OC) Dataset. Our comparison includes well-established segmentation methods such as StarDist, Cellpose, and the Segment Anything Model 2 (SAM2), alongside centroid-based Fully Convolutional Regression Network (FCRN) approaches. We introduce a suitable evaluation metric to assess the accuracy of predictions based on the distance from ground truth positions. We also explore the impact of dataset size and data augmentation techniques on model performance. Results show that centroid-based methods, particularly the Improved Fully Convolutional Regression Network (IFCRN) method, outperform segmentation-based methods in terms of both detection accuracy and computational efficiency. This study highlights the potential of centroid-based detectors as a preferred option for cell detection in resource-limited environments, offering faster processing times and lower GPU memory usage without compromising accuracy.
comment: 14 pages, 6 figures, SCIA2025
PathSegDiff: Pathology Segmentation using Diffusion model representations
Image segmentation is crucial in many computational pathology pipelines, including accurate disease diagnosis, subtyping, outcome, and survivability prediction. The common approach for training a segmentation model relies on a pre-trained feature extractor and a dataset of paired image and mask annotations. These are used to train a lightweight prediction model that translates features into per-pixel classes. The choice of the feature extractor is central to the performance of the final segmentation model, and recent literature has focused on finding tasks to pre-train the feature extractor. In this paper, we propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors. Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H\&E stained histopathology images. We employ a simple, fully convolutional network to process the features extracted from the LDM and generate segmentation masks. Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets, highlighting the effectiveness of domain-specific diffusion pre-training in capturing intricate tissue structures and enhancing segmentation accuracy in histopathology images.
Are Vision-Language Models Ready for Dietary Assessment? Exploring the Next Frontier in AI-Powered Food Image Recognition CVPR
Automatic dietary assessment based on food images remains a challenge, requiring precise food detection, segmentation, and classification. Vision-Language Models (VLMs) offer new possibilities by integrating visual and textual reasoning. In this study, we evaluate six state-of-the-art VLMs (ChatGPT, Gemini, Claude, Moondream, DeepSeek, and LLaVA), analyzing their capabilities in food recognition at different levels. For the experimental framework, we introduce the FoodNExTDB, a unique food image database that contains 9,263 expert-labeled images across 10 categories (e.g., "protein source"), 62 subcategories (e.g., "poultry"), and 9 cooking styles (e.g., "grilled"). In total, FoodNExTDB includes 50k nutritional labels generated by seven experts who manually annotated all images in the database. Also, we propose a novel evaluation metric, Expert-Weighted Recall (EWR), that accounts for the inter-annotator variability. Results show that closed-source models outperform open-source ones, achieving over 90% EWR in recognizing food products in images containing a single product. Despite their potential, current VLMs face challenges in fine-grained food recognition, particularly in distinguishing subtle differences in cooking styles and visually similar food items, which limits their reliability for automatic dietary assessment. The FoodNExTDB database is publicly available at https://github.com/AI4Food/FoodNExtDB.
comment: Accepted at IEEE/CVF Computer Vision and Pattern Recognition Conference workshops 2025 (CVPRw) 10 pages, 4 figures, 2 tables
Longitudinal Assessment of Lung Lesion Burden in CT SP
In the U.S., lung cancer is the second major cause of death. Early detection of suspicious lung nodules is crucial for patient treatment planning, management, and improving outcomes. Many approaches for lung nodule segmentation and volumetric analysis have been proposed, but few have looked at longitudinal changes in total lung tumor burden. In this work, we trained two 3D models (nnUNet) with and without anatomical priors to automatically segment lung lesions and quantified total lesion burden for each patient. The 3D model without priors significantly outperformed ($p < .001$) the model trained with anatomy priors. For detecting clinically significant lesions $>$ 1cm, a precision of 71.3\%, sensitivity of 68.4\%, and F1-score of 69.8\% was achieved. For segmentation, a Dice score of 77.1 $\pm$ 20.3 and Hausdorff distance error of 11.7 $\pm$ 24.1 mm was obtained. The median lesion burden was 6.4 cc (IQR: 2.1, 18.1) and the median volume difference between manual and automated measurements was 0.02 cc (IQR: -2.8, 1.2). Agreements were also evaluated with linear regression and Bland-Altman plots. The proposed approach can produce a personalized evaluation of the total tumor burden for a patient and facilitate interval change tracking over time.
comment: Published at SPIE Medical Imaging 2025
Leveraging Anatomical Priors for Automated Pancreas Segmentation on Abdominal CT SP
An accurate segmentation of the pancreas on CT is crucial to identify pancreatic pathologies and extract imaging-based biomarkers. However, prior research on pancreas segmentation has primarily focused on modifying the segmentation model architecture or utilizing pre- and post-processing techniques. In this article, we investigate the utility of anatomical priors to enhance the segmentation performance of the pancreas. Two 3D full-resolution nnU-Net models were trained, one with 8 refined labels from the public PANORAMA dataset, and another that combined them with labels derived from the public TotalSegmentator (TS) tool. The addition of anatomical priors resulted in a 6\% increase in Dice score ($p < .001$) and a 36.5 mm decrease in Hausdorff distance for pancreas segmentation ($p < .001$). Moreover, the pancreas was always detected when anatomy priors were used, whereas there were 8 instances of failed detections without their use. The use of anatomy priors shows promise for pancreas segmentation and subsequent derivation of imaging biomarkers.
comment: Published at SPIE Medical Imaging 2025
S-EO: A Large-Scale Dataset for Geometry-Aware Shadow Detection in Remote Sensing Applications CVPR
We introduce the S-EO dataset: a large-scale, high-resolution dataset, designed to advance geometry-aware shadow detection. Collected from diverse public-domain sources, including challenge datasets and government providers such as USGS, our dataset comprises 702 georeferenced tiles across the USA, each covering 500x500 m. Each tile includes multi-date, multi-angle WorldView-3 pansharpened RGB images, panchromatic images, and a ground-truth DSM of the area obtained from LiDAR scans. For each image, we provide a shadow mask derived from geometry and sun position, a vegetation mask based on the NDVI index, and a bundle-adjusted RPC model. With approximately 20,000 images, the S-EO dataset establishes a new public resource for shadow detection in remote sensing imagery and its applications to 3D reconstruction. To demonstrate the dataset's impact, we train and evaluate a shadow detector, showcasing its ability to generalize, even to aerial images. Finally, we extend EO-NeRF - a state-of-the-art NeRF approach for satellite imagery - to leverage our shadow predictions for improved 3D reconstructions.
comment: Accepted at Earthvision 2025 (CVPR Workshop)
An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
Missing instances in time series data impose a significant challenge to deep learning models, particularly in regression tasks. In the Earth Observation field, satellite failure or cloud occlusion frequently results in missing time-steps, introducing uncertainties in the predicted output and causing a decline in predictive performance. While many studies address missing time-steps through data augmentation to improve model robustness, the uncertainty arising at the input level is commonly overlooked. To address this gap, we introduce Monte Carlo Temporal Dropout (MC-TD), a method that explicitly accounts for input-level uncertainty by randomly dropping time-steps during inference using a predefined dropout ratio, thereby simulating the effect of missing data. To bypass the need for costly searches for the optimal dropout ratio, we extend this approach with Monte Carlo Concrete Temporal Dropout (MC-ConcTD), a method that learns the optimal dropout distribution directly. Both MC-TD and MC-ConcTD are applied during inference, leveraging Monte Carlo sampling for uncertainty quantification. Experiments on three EO time-series datasets demonstrate that MC-ConcTD improves predictive performance and uncertainty calibration compared to existing approaches. Additionally, we highlight the advantages of adaptive dropout tuning over manual selection, making uncertainty quantification more robust and accessible for EO applications.
comment: Accepted at Symposium on Intelligent Data Analysis (IDA 2025)
UKBOB: One Billion MRI Labeled Masks for Generalizable 3D Medical Image Segmentation
In medical imaging, the primary challenge is collecting large-scale labeled data due to privacy concerns, logistics, and high labeling costs. In this work, we present the UK Biobank Organs and Bones (UKBOB), the largest labeled dataset of body organs, comprising 51,761 MRI 3D samples (equivalent to 17.9 million 2D images) and more than 1.37 billion 2D segmentation masks of 72 organs, all based on the UK Biobank MRI dataset. We utilize automatic labeling, introduce an automated label cleaning pipeline with organ-specific filters, and manually annotate a subset of 300 MRIs with 11 abdominal classes to validate the quality (referred to as UKBOB-manual). This approach allows for scaling up the dataset collection while maintaining confidence in the labels. We further confirm the validity of the labels by demonstrating zero-shot generalization of trained models on the filtered UKBOB to other small labeled datasets from similar domains (e.g., abdominal MRI). To further mitigate the effect of noisy labels, we propose a novel method called Entropy Test-time Adaptation (ETTA) to refine the segmentation output. We use UKBOB to train a foundation model, Swin-BOB, for 3D medical image segmentation based on the Swin-UNetr architecture, achieving state-of-the-art results in several benchmarks in 3D medical imaging, including the BRATS brain MRI tumor challenge (with a 0.4% improvement) and the BTCV abdominal CT scan benchmark (with a 1.3% improvement). The pre-trained models and the code are available at https://emmanuelleb985.github.io/ukbob , and the filtered labels will be made available with the UK Biobank.
comment: preprint
MedSegFactory: Text-Guided Generation of Medical Image-Mask Pairs
This paper presents MedSegFactory, a versatile medical synthesis framework that generates high-quality paired medical images and segmentation masks across modalities and tasks. It aims to serve as an unlimited data repository, supplying image-mask pairs to enhance existing segmentation tools. The core of MedSegFactory is a dual-stream diffusion model, where one stream synthesizes medical images and the other generates corresponding segmentation masks. To ensure precise alignment between image-mask pairs, we introduce Joint Cross-Attention (JCA), enabling a collaborative denoising paradigm by dynamic cross-conditioning between streams. This bidirectional interaction allows both representations to guide each other's generation, enhancing consistency between generated pairs. MedSegFactory unlocks on-demand generation of paired medical images and segmentation masks through user-defined prompts that specify the target labels, imaging modalities, anatomical regions, and pathological conditions, facilitating scalable and high-quality data generation. This new paradigm of medical image synthesis enables seamless integration into diverse medical imaging workflows, enhancing both efficiency and accuracy. Extensive experiments show that MedSegFactory generates data of superior quality and usability, achieving competitive or state-of-the-art performance in 2D and 3D segmentation tasks while addressing data scarcity and regulatory constraints.
comment: 12 pages, 8 figures, The project page can be accessed via https://jwmao1.github.io/MedSegFactory_web
ColorizeDiffusion v2: Enhancing Reference-based Sketch Colorization Through Separating Utilities
Reference-based sketch colorization methods have garnered significant attention due to their potential applications in the animation production industry. However, most existing methods are trained with image triplets of sketch, reference, and ground truth that are semantically and spatially well-aligned, while real-world references and sketches often exhibit substantial misalignment. This mismatch in data distribution between training and inference leads to overfitting, consequently resulting in spatial artifacts and significant degradation in overall colorization quality, limiting potential applications of current methods for general purposes. To address this limitation, we conduct an in-depth analysis of the \textbf{carrier}, defined as the latent representation facilitating information transfer from reference to sketch. Based on this analysis, we propose a novel workflow that dynamically adapts the carrier to optimize distinct aspects of colorization. Specifically, for spatially misaligned artifacts, we introduce a split cross-attention mechanism with spatial masks, enabling region-specific reference injection within the diffusion process. To mitigate semantic neglect of sketches, we employ dedicated background and style encoders to transfer detailed reference information in the latent feature space, achieving enhanced spatial control and richer detail synthesis. Furthermore, we propose character-mask merging and background bleaching as preprocessing steps to improve foreground-background integration and background generation. Extensive qualitative and quantitative evaluations, including a user study, demonstrate the superior performance of our proposed method compared to existing approaches. An ablation study further validates the efficacy of each proposed component.
Audio-visual Event Localization on Portrait Mode Short Videos
Audio-visual event localization (AVEL) plays a critical role in multimodal scene understanding. While existing datasets for AVEL predominantly comprise landscape-oriented long videos with clean and simple audio context, short videos have become the primary format of online video content due to the the proliferation of smartphones. Short videos are characterized by portrait-oriented framing and layered audio compositions (e.g., overlapping sound effects, voiceovers, and music), which brings unique challenges unaddressed by conventional methods. To this end, we introduce AVE-PM, the first AVEL dataset specifically designed for portrait mode short videos, comprising 25,335 clips that span 86 fine-grained categories with frame-level annotations. Beyond dataset creation, our empirical analysis shows that state-of-the-art AVEL methods suffer an average 18.66% performance drop during cross-mode evaluation. Further analysis reveals two key challenges of different video formats: 1) spatial bias from portrait-oriented framing introduces distinct domain priors, and 2) noisy audio composition compromise the reliability of audio modality. To address these issues, we investigate optimal preprocessing recipes and the impact of background music for AVEL on portrait mode videos. Experiments show that these methods can still benefit from tailored preprocessing and specialized model design, thus achieving improved performance. This work provides both a foundational benchmark and actionable insights for advancing AVEL research in the era of mobile-centric video content. Dataset and code will be released.
Compound and Parallel Modes of Tropical Convolutional Neural Networks
Convolutional neural networks have become increasingly deep and complex, leading to higher computational costs. While tropical convolutional neural networks (TCNNs) reduce multiplications, they underperform compared to standard CNNs. To address this, we propose two new variants - compound TCNN (cTCNN) and parallel TCNN (pTCNN)-that use combinations of tropical min-plus and max-plus kernels to replace traditional convolution kernels. This reduces multiplications and balances efficiency with performance. Experiments on various datasets show that cTCNN and pTCNN match or exceed the performance of other CNN methods. Combining these with conventional CNNs in deeper architectures also improves performance. We are further exploring simplified TCNN architectures that reduce parameters and multiplications with minimal accuracy loss, aiming for efficient and effective models.
comment: 28 pages, 5 figures
GraspClutter6D: A Large-scale Real-world Dataset for Robust Perception and Grasping in Cluttered Scenes
Robust grasping in cluttered environments remains an open challenge in robotics. While benchmark datasets have significantly advanced deep learning methods, they mainly focus on simplistic scenes with light occlusion and insufficient diversity, limiting their applicability to practical scenarios. We present GraspClutter6D, a large-scale real-world grasping dataset featuring: (1) 1,000 highly cluttered scenes with dense arrangements (14.1 objects/scene, 62.6\% occlusion), (2) comprehensive coverage across 200 objects in 75 environment configurations (bins, shelves, and tables) captured using four RGB-D cameras from multiple viewpoints, and (3) rich annotations including 736K 6D object poses and 9.3B feasible robotic grasps for 52K RGB-D images. We benchmark state-of-the-art segmentation, object pose estimation, and grasping detection methods to provide key insights into challenges in cluttered environments. Additionally, we validate the dataset's effectiveness as a training resource, demonstrating that grasping networks trained on GraspClutter6D significantly outperform those trained on existing datasets in both simulation and real-world experiments. The dataset, toolkit, and annotation tools are publicly available on our project website: https://sites.google.com/view/graspclutter6d.
MovSAM: A Single-image Moving Object Segmentation Framework Based on Deep Thinking
Moving object segmentation plays a vital role in understanding dynamic visual environments. While existing methods rely on multi-frame image sequences to identify moving objects, single-image MOS is critical for applications like motion intention prediction and handling camera frame drops. However, segmenting moving objects from a single image remains challenging for existing methods due to the absence of temporal cues. To address this gap, we propose MovSAM, the first framework for single-image moving object segmentation. MovSAM leverages a Multimodal Large Language Model (MLLM) enhanced with Chain-of-Thought (CoT) prompting to search the moving object and generate text prompts based on deep thinking for segmentation. These prompts are cross-fused with visual features from the Segment Anything Model (SAM) and a Vision-Language Model (VLM), enabling logic-driven moving object segmentation. The segmentation results then undergo a deep thinking refinement loop, allowing MovSAM to iteratively improve its understanding of the scene context and inter-object relationships with logical reasoning. This innovative approach enables MovSAM to segment moving objects in single images by considering scene understanding. We implement MovSAM in the real world to validate its practical application and effectiveness for autonomous driving scenarios where the multi-frame methods fail. Furthermore, despite the inherent advantage of multi-frame methods in utilizing temporal information, MovSAM achieves state-of-the-art performance across public MOS benchmarks, reaching 92.5\% on J\&F. Our implementation will be available at https://github.com/IRMVLab/MovSAM.
EIDT-V: Exploiting Intersections in Diffusion Trajectories for Model-Agnostic, Zero-Shot, Training-Free Text-to-Video Generation CVPR
Zero-shot, training-free, image-based text-to-video generation is an emerging area that aims to generate videos using existing image-based diffusion models. Current methods in this space require specific architectural changes to image generation models, which limit their adaptability and scalability. In contrast to such methods, we provide a model-agnostic approach. We use intersections in diffusion trajectories, working only with the latent values. We could not obtain localized frame-wise coherence and diversity using only the intersection of trajectories. Thus, we instead use a grid-based approach. An in-context trained LLM is used to generate coherent frame-wise prompts; another is used to identify differences between frames. Based on these, we obtain a CLIP-based attention mask that controls the timing of switching the prompts for each grid cell. Earlier switching results in higher variance, while later switching results in more coherence. Therefore, our approach can ensure appropriate control between coherence and variance for the frames. Our approach results in state-of-the-art performance while being more flexible when working with diverse image-generation models. The empirical analysis using quantitative metrics and user studies confirms our model's superior temporal consistency, visual fidelity and user satisfaction, thus providing a novel way to obtain training-free, image-based text-to-video generation.
comment: Accepted at IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
CasTex: Cascaded Text-to-Texture Synthesis via Explicit Texture Maps and Physically-Based Shading
This work investigates text-to-texture synthesis using diffusion models to generate physically-based texture maps. We aim to achieve realistic model appearances under varying lighting conditions. A prominent solution for the task is score distillation sampling. It allows recovering a complex texture using gradient guidance given a differentiable rasterization and shading pipeline. However, in practice, the aforementioned solution in conjunction with the widespread latent diffusion models produces severe visual artifacts and requires additional regularization such as implicit texture parameterization. As a more direct alternative, we propose an approach using cascaded diffusion models for texture synthesis (CasTex). In our setup, score distillation sampling yields high-quality textures out-of-the box. In particular, we were able to omit implicit texture parameterization in favor of an explicit parameterization to improve the procedure. In the experiments, we show that our approach significantly outperforms state-of-the-art optimization-based solutions on public texture synthesis benchmarks.
comment: Preprint, work in progress
Classifying the Unknown: In-Context Learning for Open-Vocabulary Text and Symbol Recognition ICDAR 2025
We introduce Rosetta, a multimodal model that leverages Multimodal In-Context Learning (MICL) to classify sequences of novel script patterns in documents by leveraging minimal examples, thus eliminating the need for explicit retraining. To enhance contextual learning, we designed a dataset generation process that ensures varying degrees of contextual informativeness, improving the model's adaptability in leveraging context across different scenarios. A key strength of our method is the use of a Context-Aware Tokenizer (CAT), which enables open-vocabulary classification. This allows the model to classify text and symbol patterns across an unlimited range of classes, extending its classification capabilities beyond the scope of its training alphabet of patterns. As a result, it unlocks applications such as the recognition of new alphabets and languages. Experiments on synthetic datasets demonstrate the potential of Rosetta to successfully classify Out-Of-Distribution visual patterns and diverse sets of alphabets and scripts, including but not limited to Chinese, Greek, Russian, French, Spanish, and Japanese.
comment: Submitted to ICDAR 2025
ZIP: An Efficient Zeroth-order Prompt Tuning for Black-box Vision-Language Models ICLR 2025
Recent studies have introduced various approaches for prompt-tuning black-box vision-language models, referred to as black-box prompt-tuning (BBPT). While BBPT has demonstrated considerable potential, it is often found that many existing methods require an excessive number of queries (i.e., function evaluations), which poses a significant challenge in real-world scenarios where the number of allowed queries is limited. To tackle this issue, we propose Zeroth-order Intrinsic-dimensional Prompt-tuning (ZIP), a novel approach that enables efficient and robust prompt optimization in a purely black-box setting. The key idea of ZIP is to reduce the problem dimensionality and the variance of zeroth-order gradient estimates, such that the training is done fast with far less queries. We achieve this by re-parameterizing prompts in low-rank representations and designing intrinsic-dimensional clipping of estimated gradients. We evaluate ZIP on 13+ vision-language tasks in standard benchmarks and show that it achieves an average improvement of approximately 6% in few-shot accuracy and 48% in query efficiency compared to the best-performing alternative BBPT methods, establishing a new state of the art. Our ablation analysis further shows that the proposed clipping mechanism is robust and nearly optimal, without the need to manually select the clipping threshold, matching the result of expensive hyperparameter search.
comment: ICLR 2025
Determining Fetal Orientations From Blind Sweep Ultrasound Video
Cognitive demands of fetal ultrasound examinations pose unique challenges among clinicians. With the goal of providing an assistive tool, we developed an automated pipeline for predicting fetal orientation from ultrasound videos acquired following a simple blind sweep protocol. Leveraging on a pre-trained head detection and segmentation model, this is achieved by first determining the fetal presentation (cephalic or breech) with a template matching approach, followed by the fetal lie (facing left or right) by analyzing the spatial distribution of segmented brain anatomies. Evaluation on a dataset of third-trimester ultrasound scans demonstrated the promising accuracy of our pipeline. This work distinguishes itself by introducing automated fetal lie prediction and by proposing an assistive paradigm that augments sonographer expertise rather than replacing it. Future research will focus on enhancing acquisition efficiency, and exploring real-time clinical integration to improve workflow and support for obstetric clinicians.
comment: 10 pages
LVC: A Lightweight Compression Framework for Enhancing VLMs in Long Video Understanding
Long video understanding is a complex task that requires both spatial detail and temporal awareness. While Vision-Language Models (VLMs) obtain frame-level understanding capabilities through multi-frame input, they suffer from information loss due to the sparse sampling strategy. In contrast, Video Large Language Models (Video-LLMs) capture temporal relationships within visual features but are limited by the scarcity of high-quality video-text datasets. To transfer long video understanding capabilities to VLMs with minimal data and computational cost, we propose Lightweight Video Compression (LVC), a novel method featuring the Query-Attention Video Compression mechanism, which effectively tackles the sparse sampling problem in VLMs. By training only the alignment layer with 10k short video-text pairs, LVC significantly enhances the temporal reasoning abilities of VLMs. Extensive experiments show that LVC provides consistent performance improvements across various models, including the InternVL2 series and Phi-3.5-Vision. Notably, the InternVL2-40B-LVC achieves scores of 68.2 and 65.9 on the long video understanding benchmarks MLVU and Video-MME, respectively, with relative improvements of 14.6% and 7.7%. The enhanced models and code will be publicly available soon.
IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments
This work presents IAAO, a novel framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction. Unlike prior methods that rely on task-specific networks and assumptions about movable parts, our IAAO leverages large foundation models to estimate interactive affordances and part articulations in three stages. We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images. We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances. Finally, scenes from different states are merged and refined based on the estimated transformations, enabling robust affordance-based interaction and manipulation of objects. Experimental results demonstrate the effectiveness of our method.
SVG-IR: Spatially-Varying Gaussian Splatting for Inverse Rendering
Reconstructing 3D assets from images, known as inverse rendering (IR), remains a challenging task due to its ill-posed nature. 3D Gaussian Splatting (3DGS) has demonstrated impressive capabilities for novel view synthesis (NVS) tasks. Methods apply it to relighting by separating radiance into BRDF parameters and lighting, yet produce inferior relighting quality with artifacts and unnatural indirect illumination due to the limited capability of each Gaussian, which has constant material parameters and normal, alongside the absence of physical constraints for indirect lighting. In this paper, we present a novel framework called Spatially-vayring Gaussian Inverse Rendering (SVG-IR), aimed at enhancing both NVS and relighting quality. To this end, we propose a new representation-Spatially-varying Gaussian (SVG)-that allows per-Gaussian spatially varying parameters. This enhanced representation is complemented by a SVG splatting scheme akin to vertex/fragment shading in traditional graphics pipelines. Furthermore, we integrate a physically-based indirect lighting model, enabling more realistic relighting. The proposed SVG-IR framework significantly improves rendering quality, outperforming state-of-the-art NeRF-based methods by 2.5 dB in peak signal-to-noise ratio (PSNR) and surpassing existing Gaussian-based techniques by 3.5 dB in relighting tasks, all while maintaining a real-time rendering speed.
Hybrid CNN with Chebyshev Polynomial Expansion for Medical Image Analysis
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, with early and accurate diagnosis playing a pivotal role in improving patient outcomes. Automated detection of pulmonary nodules in computed tomography (CT) scans is a challenging task due to variability in nodule size, shape, texture, and location. Traditional Convolutional Neural Networks (CNNs) have shown considerable promise in medical image analysis; however, their limited ability to capture fine-grained spatial-spectral variations restricts their performance in complex diagnostic scenarios. In this study, we propose a novel hybrid deep learning architecture that incorporates Chebyshev polynomial expansions into CNN layers to enhance expressive power and improve the representation of underlying anatomical structures. The proposed Chebyshev-CNN leverages the orthogonality and recursive properties of Chebyshev polynomials to extract high-frequency features and approximate complex nonlinear functions with greater fidelity. The model is trained and evaluated on benchmark lung cancer imaging datasets, including LUNA16 and LIDC-IDRI, achieving superior performance in classifying pulmonary nodules as benign or malignant. Quantitative results demonstrate significant improvements in accuracy, sensitivity, and specificity compared to traditional CNN-based approaches. This integration of polynomial-based spectral approximation within deep learning provides a robust framework for enhancing automated medical diagnostics and holds potential for broader applications in clinical decision support systems.
DyDiT++: Dynamic Diffusion Transformers for Efficient Visual Generation ICLR
Diffusion Transformer (DiT), an emerging diffusion model for visual generation, has demonstrated superior performance but suffers from substantial computational costs. Our investigations reveal that these costs primarily stem from the \emph{static} inference paradigm, which inevitably introduces redundant computation in certain \emph{diffusion timesteps} and \emph{spatial regions}. To overcome this inefficiency, we propose \textbf{Dy}namic \textbf{Di}ffusion \textbf{T}ransformer (DyDiT), an architecture that \emph{dynamically} adjusts its computation along both \emph{timestep} and \emph{spatial} dimensions. Specifically, we introduce a \emph{Timestep-wise Dynamic Width} (TDW) approach that adapts model width conditioned on the generation timesteps. In addition, we design a \emph{Spatial-wise Dynamic Token} (SDT) strategy to avoid redundant computation at unnecessary spatial locations. TDW and SDT can be seamlessly integrated into DiT and significantly accelerates the generation process. Building on these designs, we further enhance DyDiT in three key aspects. First, DyDiT is integrated seamlessly with flow matching-based generation, enhancing its versatility. Furthermore, we enhance DyDiT to tackle more complex visual generation tasks, including video generation and text-to-image generation, thereby broadening its real-world applications. Finally, to address the high cost of full fine-tuning and democratize technology access, we investigate the feasibility of training DyDiT in a parameter-efficient manner and introduce timestep-based dynamic LoRA (TD-LoRA). Extensive experiments on diverse visual generation models, including DiT, SiT, Latte, and FLUX, demonstrate the effectiveness of DyDiT.
comment: Extended journal version for ICLR. arXiv admin note: substantial text overlap with arXiv:2410.03456
MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular Detection
Current monocular 3D detectors are held back by the limited diversity and scale of real-world datasets. While data augmentation certainly helps, it's particularly difficult to generate realistic scene-aware augmented data for outdoor settings. Most current approaches to synthetic data generation focus on realistic object appearance through improved rendering techniques. However, we show that where and how objects are positioned is just as crucial for training effective 3D monocular detectors. The key obstacle lies in automatically determining realistic object placement parameters - including position, dimensions, and directional alignment when introducing synthetic objects into actual scenes. To address this, we introduce MonoPlace3D, a novel system that considers the 3D scene content to create realistic augmentations. Specifically, given a background scene, MonoPlace3D learns a distribution over plausible 3D bounding boxes. Subsequently, we render realistic objects and place them according to the locations sampled from the learned distribution. Our comprehensive evaluation on two standard datasets KITTI and NuScenes, demonstrates that MonoPlace3D significantly improves the accuracy of multiple existing monocular 3D detectors while being highly data efficient.
comment: https://rishubhpar.github.io/monoplace3D
A Meaningful Perturbation Metric for Evaluating Explainability Methods
Deep neural networks (DNNs) have demonstrated remarkable success, yet their wide adoption is often hindered by their opaque decision-making. To address this, attribution methods have been proposed to assign relevance values to each part of the input. However, different methods often produce entirely different relevance maps, necessitating the development of standardized metrics to evaluate them. Typically, such evaluation is performed through perturbation, wherein high- or low-relevance regions of the input image are manipulated to examine the change in prediction. In this work, we introduce a novel approach, which harnesses image generation models to perform targeted perturbation. Specifically, we focus on inpainting only the high-relevance pixels of an input image to modify the model's predictions while preserving image fidelity. This is in contrast to existing approaches, which often produce out-of-distribution modifications, leading to unreliable results. Through extensive experiments, we demonstrate the effectiveness of our approach in generating meaningful rankings across a wide range of models and attribution methods. Crucially, we establish that the ranking produced by our metric exhibits significantly higher correlation with human preferences compared to existing approaches, underscoring its potential for enhancing interpretability in DNNs.
Zero-Shot Image-Based Large Language Model Approach to Road Pavement Monitoring
Effective and rapid evaluation of pavement surface condition is critical for prioritizing maintenance, ensuring transportation safety, and minimizing vehicle wear and tear. While conventional manual inspections suffer from subjectivity, existing machine learning-based methods are constrained by their reliance on large and high-quality labeled datasets, which require significant resources and limit adaptability across varied road conditions. The revolutionary advancements in Large Language Models (LLMs) present significant potential for overcoming these challenges. In this study, we propose an innovative automated zero-shot learning approach that leverages the image recognition and natural language understanding capabilities of LLMs to assess road conditions effectively. Multiple LLM-based assessment models were developed, employing prompt engineering strategies aligned with the Pavement Surface Condition Index (PSCI) standards. These models' accuracy and reliability were evaluated against official PSCI results, with an optimized model ultimately selected. Extensive tests benchmarked the optimized model against evaluations from various levels experts using Google Street View road images. The results reveal that the LLM-based approach can effectively assess road conditions, with the optimized model -employing comprehensive and structured prompt engineering strategies -outperforming simpler configurations by achieving high accuracy and consistency, even surpassing expert evaluations. Moreover, successfully applying the optimized model to Google Street View images demonstrates its potential for future city-scale deployments. These findings highlight the transformative potential of LLMs in automating road damage evaluations and underscore the pivotal role of detailed prompt engineering in achieving reliable assessments.
Domain Generalization through Attenuation of Domain-Specific Information CVPR 2025
In this paper, we propose a new evaluation metric called Domain Independence (DI) and Attenuation of Domain-Specific Information (ADSI) which is specifically designed for domain-generalized semantic segmentation in automotive images. DI measures the presence of domain-specific information: a lower DI value indicates strong domain dependence, while a higher DI value suggests greater domain independence. This makes it roughly where domain-specific information exists and up to which frequency range it is present. As a result, it becomes possible to effectively suppress only the regions in the image that contain domain-specific information, enabling feature extraction independent of the domain. ADSI uses a Butterworth filter to remove the low-frequency components of images that contain inherent domain-specific information such as sensor characteristics and lighting conditions. However, since low-frequency components also contain important information such as color, we should not remove them completely. Thus, a scalar value (ranging from 0 to 1) is multiplied by the low-frequency components to retain essential information. This helps the model learn more domain-independent features. In experiments, GTA5 (synthetic dataset) was used as training images, and a real-world dataset was used for evaluation, and the proposed method outperformed conventional approaches. Similarly, in experiments that the Cityscapes (real-world dataset) was used for training and various environment datasets such as rain and nighttime were used for evaluation, the proposed method demonstrated its robustness under nighttime conditions.
comment: Accepted by CVPR 2025 Workshops
End2end-ALARA: Approaching the ALARA Law in CT Imaging with End-to-end Learning
Computed tomography (CT) examination poses radiation injury to patient. A consensus performing CT imaging is to make the radiation dose as low as reasonably achievable, i.e. the ALARA law. In this paper, we propose an end-to-end learning framework, named End2end-ALARA, that jointly optimizes dose modulation and image reconstruction to meet the goal of ALARA in CT imaging. End2end-ALARA works by building a dose modulation module and an image reconstruction module, connecting these modules with a differentiable simulation function, and optimizing the them with a constrained hinge loss function. The objective is to minimize radiation dose subject to a prescribed image quality (IQ) index. The results show that End2end-ALARA is able to preset personalized dose levels to gain a stable IQ level across patients, which may facilitate image-based diagnosis and downstream model training. Moreover, compared to fixed-dose and conventional dose modulation strategies, End2end-ALARA consumes lower dose to reach the same IQ level. Our study sheds light on a way of realizing the ALARA law in CT imaging.
DIMA: DIffusing Motion Artifacts for unsupervised correction in brain MRI images
Motion artifacts remain a significant challenge in Magnetic Resonance Imaging (MRI), compromising diagnostic quality and potentially leading to misdiagnosis or repeated scans. Existing deep learning approaches for motion artifact correction typically require paired motion-free and motion-affected images for training, which are rarely available in clinical settings. To overcome this requirement, we present DIMA (DIffusing Motion Artifacts), a novel framework that leverages diffusion models to enable unsupervised motion artifact correction in brain MRI. Our two-phase approach first trains a diffusion model on unpaired motion-affected images to learn the distribution of motion artifacts. This model then generates realistic motion artifacts on clean images, creating paired datasets suitable for supervised training of correction networks. Unlike existing methods, DIMA operates without requiring k-space manipulation or detailed knowledge of MRI sequence parameters, making it adaptable across different scanning protocols and hardware. Comprehensive evaluations across multiple datasets and anatomical planes demonstrate that our method achieves comparable performance to state-of-the-art supervised approaches while offering superior generalizability to real clinical data. DIMA represents a significant advancement in making motion artifact correction more accessible for routine clinical use, potentially reducing the need for repeat scans and improving diagnostic accuracy.
comment: 7 pages, 5 figures, 7 tables
FANeRV: Frequency Separation and Augmentation based Neural Representation for Video
Neural representations for video (NeRV) have gained considerable attention for their strong performance across various video tasks. However, existing NeRV methods often struggle to capture fine spatial details, resulting in vague reconstructions. In this paper, we present a Frequency Separation and Augmentation based Neural Representation for video (FANeRV), which addresses these limitations with its core Wavelet Frequency Upgrade Block.This block explicitly separates input frames into high and low-frequency components using discrete wavelet transform, followed by targeted enhancement using specialized modules. Finally, a specially designed gated network effectively fuses these frequency components for optimal reconstruction. Additionally, convolutional residual enhancement blocks are integrated into the later stages of the network to balance parameter distribution and improve the restoration of high-frequency details. Experimental results demonstrate that FANeRV significantly improves reconstruction performance and excels in multiple tasks, including video compression, inpainting, and interpolation, outperforming existing NeRV methods.
Compass Control: Multi Object Orientation Control for Text-to-Image Generation
Existing approaches for controlling text-to-image diffusion models, while powerful, do not allow for explicit 3D object-centric control, such as precise control of object orientation. In this work, we address the problem of multi-object orientation control in text-to-image diffusion models. This enables the generation of diverse multi-object scenes with precise orientation control for each object. The key idea is to condition the diffusion model with a set of orientation-aware \textbf{compass} tokens, one for each object, along with text tokens. A light-weight encoder network predicts these compass tokens taking object orientation as the input. The model is trained on a synthetic dataset of procedurally generated scenes, each containing one or two 3D assets on a plain background. However, direct training this framework results in poor orientation control as well as leads to entanglement among objects. To mitigate this, we intervene in the generation process and constrain the cross-attention maps of each compass token to its corresponding object regions. The trained model is able to achieve precise orientation control for a) complex objects not seen during training and b) multi-object scenes with more than two objects, indicating strong generalization capabilities. Further, when combined with personalization methods, our method precisely controls the orientation of the new object in diverse contexts. Our method achieves state-of-the-art orientation control and text alignment, quantified with extensive evaluations and a user study.
comment: https://rishubhpar.github.io/compasscontrol
Visualisation of a multidimensional point cloud as a 3D swarm of avatars
The article presents an innovative approach to the visualisation of multidimensional data, using icons inspired by Chernoff faces. The approach merges classical projection techniques with the assignment of particular data dimensions to mimic features, capitalizing on the natural ability of the human brain to interpret facial expressions. The technique is implemented as a plugin to the dpVision open-source image handling platform. The plugin allows the data to be interactively explored in the form of a swarm of "totems" whose position in hyperspace as well as facial features represent various aspects of the data. Sample visualisations, based on synthetic test data as well as the vinhoverde 15-dimensional database on Portuguese wines, confirm the usefulness of our approach to the analysis of complex data structures.
nnLandmark: A Self-Configuring Method for 3D Medical Landmark Detection
Landmark detection plays a crucial role in medical imaging tasks that rely on precise spatial localization, including specific applications in diagnosis, treatment planning, image registration, and surgical navigation. However, manual annotation is labor-intensive and requires expert knowledge. While deep learning shows promise in automating this task, progress is hindered by limited public datasets, inconsistent benchmarks, and non-standardized baselines, restricting reproducibility, fair comparisons, and model generalizability.This work introduces nnLandmark, a self-configuring deep learning framework for 3D medical landmark detection, adapting nnU-Net to perform heatmap-based regression. By leveraging nnU-Net's automated configuration, nnLandmark eliminates the need for manual parameter tuning, offering out-of-the-box usability. It achieves state-of-the-art accuracy across two public datasets, with a mean radial error (MRE) of 1.5 mm on the Mandibular Molar Landmark (MML) dental CT dataset and 1.2 mm for anatomical fiducials on a brain MRI dataset (AFIDs), where nnLandmark aligns with the inter-rater variability of 1.5 mm. With its strong generalization, reproducibility, and ease of deployment, nnLandmark establishes a reliable baseline for 3D landmark detection, supporting research in anatomical localization and clinical workflows that depend on precise landmark identification. The code will be available soon.
Large Scale Supervised Pretraining For Traumatic Brain Injury Segmentation
The segmentation of lesions in Moderate to Severe Traumatic Brain Injury (msTBI) presents a significant challenge in neuroimaging due to the diverse characteristics of these lesions, which vary in size, shape, and distribution across brain regions and tissue types. This heterogeneity complicates traditional image processing techniques, resulting in critical errors in tasks such as image registration and brain parcellation. To address these challenges, the AIMS-TBI Segmentation Challenge 2024 aims to advance innovative segmentation algorithms specifically designed for T1-weighted MRI data, the most widely utilized imaging modality in clinical practice. Our proposed solution leverages a large-scale multi-dataset supervised pretraining approach inspired by the MultiTalent method. We train a Resenc L network on a comprehensive collection of datasets covering various anatomical and pathological structures, which equips the model with a robust understanding of brain anatomy and pathology. Following this, the model is fine-tuned on msTBI-specific data to optimize its performance for the unique characteristics of T1-weighted MRI scans and outperforms the baseline without pretraining up to 2 Dice points.
MultiADS: Defect-aware Supervision for Multi-type Anomaly Detection and Segmentation in Zero-Shot Learning
Precise optical inspection in industrial applications is crucial for minimizing scrap rates and reducing the associated costs. Besides merely detecting if a product is anomalous or not, it is crucial to know the distinct type of defect, such as a bent, cut, or scratch. The ability to recognize the "exact" defect type enables automated treatments of the anomalies in modern production lines. Current methods are limited to solely detecting whether a product is defective or not without providing any insights on the defect type, nevertheless detecting and identifying multiple defects. We propose MultiADS, a zero-shot learning approach, able to perform Multi-type Anomaly Detection and Segmentation. The architecture of MultiADS comprises CLIP and extra linear layers to align the visual- and textual representation in a joint feature space. To the best of our knowledge, our proposal, is the first approach to perform a multi-type anomaly segmentation task in zero-shot learning. Contrary to the other baselines, our approach i) generates specific anomaly masks for each distinct defect type, ii) learns to distinguish defect types, and iii) simultaneously identifies multiple defect types present in an anomalous product. Additionally, our approach outperforms zero/few-shot learning SoTA methods on image-level and pixel-level anomaly detection and segmentation tasks on five commonly used datasets: MVTec-AD, Visa, MPDD, MAD and Real-IAD.
EDIT: Enhancing Vision Transformers by Mitigating Attention Sink through an Encoder-Decoder Architecture
In this paper, we propose EDIT (Encoder-Decoder Image Transformer), a novel architecture designed to mitigate the attention sink phenomenon observed in Vision Transformer models. Attention sink occurs when an excessive amount of attention is allocated to the [CLS] token, distorting the model's ability to effectively process image patches. To address this, we introduce a layer-aligned encoder-decoder architecture, where the encoder utilizes self-attention to process image patches, while the decoder uses cross-attention to focus on the [CLS] token. Unlike traditional encoder-decoder framework, where the decoder depends solely on high-level encoder representations, EDIT allows the decoder to extract information starting from low-level features, progressively refining the representation layer by layer. EDIT is naturally interpretable demonstrated through sequential attention maps, illustrating the refined, layer-by-layer focus on key image features. Experiments on ImageNet-1k and ImageNet-21k, along with transfer learning tasks, show that EDIT achieves consistent performance improvements over DeiT3 models. These results highlight the effectiveness of EDIT's design in addressing attention sink and improving visual feature extraction.
Masked Scene Modeling: Narrowing the Gap Between Supervised and Self-Supervised Learning in 3D Scene Understanding CVPR 2025
Self-supervised learning has transformed 2D computer vision by enabling models trained on large, unannotated datasets to provide versatile off-the-shelf features that perform similarly to models trained with labels. However, in 3D scene understanding, self-supervised methods are typically only used as a weight initialization step for task-specific fine-tuning, limiting their utility for general-purpose feature extraction. This paper addresses this shortcoming by proposing a robust evaluation protocol specifically designed to assess the quality of self-supervised features for 3D scene understanding. Our protocol uses multi-resolution feature sampling of hierarchical models to create rich point-level representations that capture the semantic capabilities of the model and, hence, are suitable for evaluation with linear probing and nearest-neighbor methods. Furthermore, we introduce the first self-supervised model that performs similarly to supervised models when only off-the-shelf features are used in a linear probing setup. In particular, our model is trained natively in 3D with a novel self-supervised approach based on a Masked Scene Modeling objective, which reconstructs deep features of masked patches in a bottom-up manner and is specifically tailored to hierarchical 3D models. Our experiments not only demonstrate that our method achieves competitive performance to supervised models, but also surpasses existing self-supervised approaches by a large margin. The model and training code can be found at our Github repository (https://github.com/phermosilla/msm).
comment: Accepted at CVPR 2025
GSta: Efficient Training Scheme with Siestaed Gaussians for Monocular 3D Scene Reconstruction
Gaussian Splatting (GS) is a popular approach for 3D reconstruction, mostly due to its ability to converge reasonably fast, faithfully represent the scene and render (novel) views in a fast fashion. However, it suffers from large storage and memory requirements, and its training speed still lags behind the hash-grid based radiance field approaches (e.g. Instant-NGP), which makes it especially difficult to deploy them in robotics scenarios, where 3D reconstruction is crucial for accurate operation. In this paper, we propose GSta that dynamically identifies Gaussians that have converged well during training, based on their positional and color gradient norms. By forcing such Gaussians into a siesta and stopping their updates (freezing) during training, we improve training speed with competitive accuracy compared to state of the art. We also propose an early stopping mechanism based on the PSNR values computed on a subset of training images. Combined with other improvements, such as integrating a learning rate scheduler, GSta achieves an improved Pareto front in convergence speed, memory and storage requirements, while preserving quality. We also show that GSta can improve other methods and complement orthogonal approaches in efficiency improvement; once combined with Trick-GS, GSta achieves up to 5x faster training, 16x smaller disk size compared to vanilla GS, while having comparable accuracy and consuming only half the peak memory. More visualisations are available at https://anilarmagan.github.io/SRUK-GSta.
comment: 9 pages. In submission to an IEEE conference
CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully-connected layers, and introduces no heavier operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations on large-scale benchmarks such as ImageNet-1k and WikiText-103. Grounded in an engineering-isomorphism framework, CAT's design not only offers practical efficiency and ease of implementation but also provides insights to guide the development of next-generation, high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
Deep Learning for Cardiovascular Risk Assessment: Proxy Features from Carotid Sonography as Predictors of Arterial Damage
In this study, hypertension is utilized as an indicator of individual vascular damage. This damage can be identified through machine learning techniques, providing an early risk marker for potential major cardiovascular events and offering valuable insights into the overall arterial condition of individual patients. To this end, the VideoMAE deep learning model, originally developed for video classification, was adapted by finetuning for application in the domain of ultrasound imaging. The model was trained and tested using a dataset comprising over 31,000 carotid sonography videos sourced from the Gutenberg Health Study (15,010 participants), one of the largest prospective population health studies. This adaptation facilitates the classification of individuals as hypertensive or non-hypertensive (75.7% validation accuracy), functioning as a proxy for detecting visual arterial damage. We demonstrate that our machine learning model effectively captures visual features that provide valuable insights into an individual's overall cardiovascular health.
Setup-Invariant Augmented Reality for Teaching by Demonstration with Surgical Robots
Augmented reality (AR) is an effective tool in robotic surgery education as it combines exploratory learning with three-dimensional guidance. However, existing AR systems require expert supervision and do not account for differences in the mentor and mentee robot configurations. To enable novices to train outside the operating room while receiving expert-informed guidance, we present dV-STEAR: an open-source system that plays back task-aligned expert demonstrations without assuming identical setup joint positions between expert and novice. Pose estimation was rigorously quantified, showing a registration error of 3.86 (SD=2.01)mm. In a user study (N=24), dV-STEAR significantly improved novice performance on tasks from the Fundamentals of Laparoscopic Surgery. In a single-handed ring-over-wire task, dV-STEAR increased completion speed (p=0.03) and reduced collision time (p=0.01) compared to dry-lab training alone. During a pick-and-place task, it improved success rates (p=0.004). Across both tasks, participants using dV-STEAR exhibited significantly more balanced hand use and reported lower frustration levels. This work presents a novel educational tool implemented on the da Vinci Research Kit, demonstrates its effectiveness in teaching novices, and builds the foundation for further AR integration into robot-assisted surgery.
comment: 12 pages, 10 figures; Open-source code, see https://github.com/AlexandreBanks6/dV-STEAR_Public.git; Supplementary movies, see https://github.com/AlexandreBanks6/dVSTEAR_Supplemental_Files.git
Probability Density Geodesics in Image Diffusion Latent Space CVPR2025
Diffusion models indirectly estimate the probability density over a data space, which can be used to study its structure. In this work, we show that geodesics can be computed in diffusion latent space, where the norm induced by the spatially-varying inner product is inversely proportional to the probability density. In this formulation, a path that traverses a high density (that is, probable) region of image latent space is shorter than the equivalent path through a low density region. We present algorithms for solving the associated initial and boundary value problems and show how to compute the probability density along the path and the geodesic distance between two points. Using these techniques, we analyze how closely video clips approximate geodesics in a pre-trained image diffusion space. Finally, we demonstrate how these techniques can be applied to training-free image sequence interpolation and extrapolation, given a pre-trained image diffusion model.
comment: CVPR2025
RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism
Video generation is experiencing rapid growth, driven by advances in diffusion models and the development of better and larger datasets. However, producing high-quality videos remains challenging due to the high-dimensional data and the complexity of the task. Recent efforts have primarily focused on enhancing visual quality and addressing temporal inconsistencies, such as flickering. Despite progress in these areas, the generated videos often fall short in terms of motion complexity and physical plausibility, with many outputs either appearing static or exhibiting unrealistic motion. In this work, we propose a framework to improve the realism of motion in generated videos, exploring a complementary direction to much of the existing literature. Specifically, we advocate for the incorporation of a retrieval mechanism during the generation phase. The retrieved videos act as grounding signals, providing the model with demonstrations of how the objects move. Our pipeline is designed to apply to any text-to-video diffusion model, conditioning a pretrained model on the retrieved samples with minimal fine-tuning. We demonstrate the superiority of our approach through established metrics, recently proposed benchmarks, and qualitative results, and we highlight additional applications of the framework.
comment: Code available at: https://github.com/helia95/ragme
Patch Matters: Training-free Fine-grained Image Caption Enhancement via Local Perception
High-quality image captions play a crucial role in improving the performance of cross-modal applications such as text-to-image generation, text-to-video generation, and text-image retrieval. To generate long-form, high-quality captions, many recent studies have employed multimodal large language models (MLLMs). However, current MLLMs often produce captions that lack fine-grained details or suffer from hallucinations, a challenge that persists in both open-source and closed-source models. Inspired by Feature-Integration theory, which suggests that attention must focus on specific regions to integrate visual information effectively, we propose a \textbf{divide-then-aggregate} strategy. Our method first divides the image into semantic and spatial patches to extract fine-grained details, enhancing the model's local perception of the image. These local details are then hierarchically aggregated to generate a comprehensive global description. To address hallucinations and inconsistencies in the generated captions, we apply a semantic-level filtering process during hierarchical aggregation. This training-free pipeline can be applied to both open-source models (LLaVA-1.5, LLaVA-1.6, Mini-Gemini) and closed-source models (Claude-3.5-Sonnet, GPT-4o, GLM-4V-Plus). Extensive experiments demonstrate that our method generates more detailed, reliable captions, advancing multimodal description generation without requiring model retraining. The source code are available at https://github.com/GeWu-Lab/Patch-Matters
Uni-PrevPredMap: Extending PrevPredMap to a Unified Framework of Prior-Informed Modeling for Online Vectorized HD Map Construction
Safety constitutes a foundational imperative for autonomous driving systems, necessitating the maximal incorporation of accessible external prior information. This study establishes that temporal perception buffers and cost-efficient maps inherently form complementary prior sources for online vectorized high-definition (HD) map construction. We present Uni-PrevPredMap, a unified prior-informed framework that systematically integrates two synergistic information sources: previous predictions and simulated outdated HD maps. The framework introduces two core innovations: a tile-indexed 3D vectorized global map processor enabling efficient refreshment, storage, and retrieval of 3D vectorized priors; a tri-mode operational optimization paradigm ensuring consistency across prior-free, map-absent, and map-prior scenarios while mitigating reliance on idealized map fidelity assumptions. Uni-PrevPredMap achieves state-of-the-art performance in map-free scenarios across established online vectorized HD map construction benchmarks. When provided with simulated outdated HD maps, the framework exhibits robust capabilities in error-resilient prior fusion, empirically confirming the synergistic complementarity between previous predictions and simulated outdated HD maps. Code will be available at https://github.com/pnnnnnnn/Uni-PrevPredMap.
HGMamba: Enhancing 3D Human Pose Estimation with a HyperGCN-Mamba Network IJCNN2025
3D human pose lifting is a promising research area that leverages estimated and ground-truth 2D human pose data for training. While existing approaches primarily aim to enhance the performance of estimated 2D poses, they often struggle when applied to ground-truth 2D pose data. We observe that achieving accurate 3D pose reconstruction from ground-truth 2D poses requires precise modeling of local pose structures, alongside the ability to extract robust global spatio-temporal features. To address these challenges, we propose a novel Hyper-GCN and Shuffle Mamba (HGMamba) block, which processes input data through two parallel streams: Hyper-GCN and Shuffle-Mamba. The Hyper-GCN stream models the human body structure as hypergraphs with varying levels of granularity to effectively capture local joint dependencies. Meanwhile, the Shuffle Mamba stream leverages a state space model to perform spatio-temporal scanning across all joints, enabling the establishment of global dependencies. By adaptively fusing these two representations, HGMamba achieves strong global feature modeling while excelling at local structure modeling. We stack multiple HGMamba blocks to create three variants of our model, allowing users to select the most suitable configuration based on the desired speed-accuracy trade-off. Extensive evaluations on the Human3.6M and MPI-INF-3DHP benchmark datasets demonstrate the effectiveness of our approach. HGMamba-B achieves state-of-the-art results, with P1 errors of 38.65 mm and 14.33 mm on the respective datasets. Code and models are available: https://github.com/HuCui2022/HGMamba
comment: accepted by IJCNN2025
Crafting Query-Aware Selective Attention for Single Image Super-Resolution
Single Image Super-Resolution (SISR) reconstructs high-resolution images from low-resolution inputs, enhancing image details. While Vision Transformer (ViT)-based models improve SISR by capturing long-range dependencies, they suffer from quadratic computational costs or employ selective attention mechanisms that do not explicitly focus on query-relevant regions. Despite these advancements, prior work has overlooked how selective attention mechanisms should be effectively designed for SISR. We propose SSCAN, which dynamically selects the most relevant key-value windows based on query similarity, ensuring focused feature extraction while maintaining efficiency. In contrast to prior approaches that apply attention globally or heuristically, our method introduces a query-aware window selection strategy that better aligns attention computation with important image regions. By incorporating fixed-sized windows, SSCAN reduces memory usage and enforces linear token-to-token complexity, making it scalable for large images. Our experiments demonstrate that SSCAN outperforms existing attention-based SISR methods, achieving up to 0.14 dB PSNR improvement on urban datasets, guaranteeing both computational efficiency and reconstruction quality in SISR.
comment: 10 pages, 5 figures, 4 tables
PosterMaker: Towards High-Quality Product Poster Generation with Accurate Text Rendering CVPR 2025
Product posters, which integrate subject, scene, and text, are crucial promotional tools for attracting customers. Creating such posters using modern image generation methods is valuable, while the main challenge lies in accurately rendering text, especially for complex writing systems like Chinese, which contains over 10,000 individual characters. In this work, we identify the key to precise text rendering as constructing a character-discriminative visual feature as a control signal. Based on this insight, we propose a robust character-wise representation as control and we develop TextRenderNet, which achieves a high text rendering accuracy of over 90%. Another challenge in poster generation is maintaining the fidelity of user-specific products. We address this by introducing SceneGenNet, an inpainting-based model, and propose subject fidelity feedback learning to further enhance fidelity. Based on TextRenderNet and SceneGenNet, we present PosterMaker, an end-to-end generation framework. To optimize PosterMaker efficiently, we implement a two-stage training strategy that decouples text rendering and background generation learning. Experimental results show that PosterMaker outperforms existing baselines by a remarkable margin, which demonstrates its effectiveness.
comment: Accepted by CVPR 2025. Project Page: https://poster-maker.github.io
Rethinking LayerNorm in Image Restoration Transformers
This work investigates abnormal feature behaviors observed in image restoration (IR) Transformers. Specifically, we identify two critical issues: feature entropy becoming excessively small and feature magnitudes diverging up to a million-fold scale. We pinpoint the root cause to the per-token normalization aspect of conventional LayerNorm, which disrupts essential spatial correlations and internal feature statistics. To address this, we propose a simple normalization strategy tailored for IR Transformers. Our approach applies normalization across the entire spatio-channel dimension, effectively preserving spatial correlations. Additionally, we introduce an input-adaptive rescaling method that aligns feature statistics to the unique statistical requirements of each input. Experimental results verify that this combined strategy effectively resolves feature divergence, significantly enhancing both the stability and performance of IR Transformers across various IR tasks.
FACT: Multinomial Misalignment Classification for Point Cloud Registration SC
We present FACT, a method for predicting alignment quality (i.e., registration error) of registered lidar point cloud pairs. This is useful e.g. for quality assurance of large, automatically registered 3D models. FACT extracts local features from a registered pair and processes them with a point transformer-based network to predict a misalignment class. We generalize prior work that study binary alignment classification of registration errors, by recasting it as multinomial misalignment classification. To achieve this, we introduce a custom regression-by-classification loss function that combines the cross-entropy and Wasserstein losses, and demonstrate that it outperforms both direct regression and prior binary classification. FACT successfully classifies point-cloud pairs registered with both the classical ICP and GeoTransformer, while other choices, such as standard point-cloud-quality metrics and registration residuals are shown to be poor choices for predicting misalignment. On a synthetically perturbed point-cloud task introduced by the CorAl method, we show that FACT achieves substantially better performance than CorAl. Finally, we demonstrate how FACT can assist experts in correcting misaligned point-cloud maps. Our code is available at https://github.com/LudvigDillen/FACT_for_PCMC.
comment: Accepted at SCIA 2025 (the Scandinavian Conference on Image Analysis 2025)
InstantSticker: Realistic Decal Blending via Disentangled Object Reconstruction AAAI 2025
We present InstantSticker, a disentangled reconstruction pipeline based on Image-Based Lighting (IBL), which focuses on highly realistic decal blending, simulates stickers attached to the reconstructed surface, and allows for instant editing and real-time rendering. To achieve stereoscopic impression of the decal, we introduce shadow factor into IBL, which can be adaptively optimized during training. This allows the shadow brightness of surfaces to be accurately decomposed rather than baked into the diffuse color, ensuring that the edited texture exhibits authentic shading. To address the issues of warping and blurriness in previous methods, we apply As-Rigid-As-Possible (ARAP) parameterization to pre-unfold a specified area of the mesh and use the local UV mapping combined with a neural texture map to enhance the ability to express high-frequency details in that area. For instant editing, we utilize the Disney BRDF model, explicitly defining material colors with 3-channel diffuse albedo. This enables instant replacement of albedo RGB values during the editing process, avoiding the prolonged optimization required in previous approaches. In our experiment, we introduce the Ratio Variance Warping (RVW) metric to evaluate the local geometric warping of the decal area. Extensive experimental results demonstrate that our method surpasses previous decal blending methods in terms of editing quality, editing speed and rendering speed, achieving the state-of-the-art.
comment: Accepted by AAAI 2025
Human-like compositional learning of visually-grounded concepts using synthetic environments
The compositional structure of language enables humans to decompose complex phrases and map them to novel visual concepts, showcasing flexible intelligence. While several algorithms exhibit compositionality, they fail to elucidate how humans learn to compose concept classes and ground visual cues through trial and error. To investigate this multi-modal learning challenge, we designed a 3D synthetic environment in which an agent learns, via reinforcement, to navigate to a target specified by a natural language instruction. These instructions comprise nouns, attributes, and critically, determiners, prepositions, or both. The vast array of word combinations heightens the compositional complexity of the visual grounding task, as navigating to a blue cube above red spheres is not rewarded when the instruction specifies navigating to "some blue cubes below the red sphere". We first demonstrate that reinforcement learning agents can ground determiner concepts to visual targets but struggle with more complex prepositional concepts. Second, we show that curriculum learning, a strategy humans employ, enhances concept learning efficiency, reducing the required training episodes by 15% in determiner environments and enabling agents to easily learn prepositional concepts. Finally, we establish that agents trained on determiner or prepositional concepts can decompose held-out test instructions and rapidly adapt their navigation policies to unseen visual object combinations. Leveraging synthetic environments, our findings demonstrate that multi-modal reinforcement learning agents can achieve compositional understanding of complex concept classes and highlight the efficacy of human-like learning strategies in improving artificial systems' learning efficiency.
Disentangle and Regularize: Sign Language Production with Articulator-Based Disentanglement and Channel-Aware Regularization
In this work, we propose a simple gloss-free, transformer-based sign language production (SLP) framework that directly maps spoken-language text to sign pose sequences. We first train a pose autoencoder that encodes sign poses into a compact latent space using an articulator-based disentanglement strategy, where features corresponding to the face, right hand, left hand, and body are modeled separately to promote structured and interpretable representation learning. Next, a non-autoregressive transformer decoder is trained to predict these latent representations from sentence-level text embeddings. To guide this process, we apply channel-aware regularization by aligning predicted latent distributions with priors extracted from the ground-truth encodings using a KL-divergence loss. The contribution of each channel to the loss is weighted according to its associated articulator region, enabling the model to account for the relative importance of different articulators during training. Our approach does not rely on gloss supervision or pretrained models, and achieves state-of-the-art results on the PHOENIX14T dataset using only a modest training set.
comment: 11 pages, 4 figures, 1 table
A Cross-Domain Few-Shot Learning Method Based on Domain Knowledge Mapping
In task-based few-shot learning paradigms, it is commonly assumed that different tasks are independently and identically distributed (i.i.d.). However, in real-world scenarios, the distribution encountered in few-shot learning can significantly differ from the distribution of existing data. Thus, how to effectively leverage existing data knowledge to enable models to quickly adapt to class variations under non-i.i.d. assumptions has emerged as a key research challenge. To address this challenge, this paper proposes a new cross-domain few-shot learning approach based on domain knowledge mapping, applied consistently throughout the pre-training, training, and testing phases. In the pre-training phase, our method integrates self-supervised and supervised losses by maximizing mutual information, thereby mitigating mode collapse. During the training phase, the domain knowledge mapping layer collaborates with a domain classifier to learn both domain mapping capabilities and the ability to assess domain adaptation difficulty. Finally, this approach is applied during the testing phase, rapidly adapting to domain variations through meta-training tasks on support sets, consequently enhancing the model's capability to transfer domain knowledge effectively. Experimental validation conducted across six datasets from diverse domains demonstrates the effectiveness of the proposed method.
Visually Similar Pair Alignment for Robust Cross-Domain Object Detection
Domain gaps between training data (source) and real-world environments (target) often degrade the performance of object detection models. Most existing methods aim to bridge this gap by aligning features across source and target domains but often fail to account for visual differences, such as color or orientation, in alignment pairs. This limitation leads to less effective domain adaptation, as the model struggles to manage both domain-specific shifts (e.g., fog) and visual variations simultaneously. In this work, we demonstrate for the first time, using a custom-built dataset, that aligning visually similar pairs significantly improves domain adaptation. Based on this insight, we propose a novel memory-based system to enhance domain alignment. This system stores precomputed features of foreground objects and background areas from the source domain, which are periodically updated during training. By retrieving visually similar source features for alignment with target foreground and background features, the model effectively addresses domain-specific differences while reducing the impact of visual variations. Extensive experiments across diverse domain shift scenarios validate our method's effectiveness, achieving 53.1 mAP on Foggy Cityscapes and 62.3 on Sim10k, surpassing prior state-of-the-art methods by 1.2 and 4.1 mAP, respectively.
comment: 15 pages, Journal paper submission
Benchmarking Multimodal CoT Reward Model Stepwise by Visual Program
Recent advancements in reward signal usage for Large Language Models (LLMs) are remarkable. However, significant challenges exist when transitioning reward signal to the multimodal domain, including labor-intensive annotations, over-reliance on one-step rewards, and inadequate evaluation. To address these issues, we propose SVIP, a novel approach to train a step-level multi-dimensional Chain-of-Thought~(CoT) reward model automatically. It generates code for solving visual tasks and transforms the analysis of code blocks into the evaluation of CoT step as training samples. Then, we train SVIP-Reward model using a multi-head attention mechanism called TriAtt-CoT. The advantages of SVIP-Reward are evident throughout the entire process of MLLM. We also introduce a benchmark for CoT reward model training and testing. Experimental results demonstrate that SVIP-Reward improves MLLM performance across training and inference-time scaling, yielding better results on benchmarks while reducing hallucinations and enhancing reasoning ability.
Image registration of 2D optical thin sections in a 3D porous medium: Application to a Berea sandstone digital rock image
This study proposes a systematic image registration approach to align 2D optical thin-section images within a 3D digital rock volume. Using template image matching with differential evolution optimization, we identify the most similar 2D plane in 3D. The method is validated on a synthetic porous medium, achieving exact registration, and applied to Berea sandstone, where it achieves a structural similarity index (SSIM) of 0.990. With the registered images, we explore upscaling properties based on paired multimodal images, focusing on pore characteristics and effective elastic moduli. The thin-section image reveals 50 % more porosity and submicron pores than the registered CT plane. In addition, bulk and shear moduli from thin sections are 25 % and 30 % lower, respectively, than those derived from CT images. Beyond numerical comparisons, thin sections provide additional geological insights, including cementation, mineral phases, and weathering effects, which are not clear in CT images. This study demonstrates the potential of multimodal image registration to improve computed rock properties in digital rock physics by integrating complementary imaging modalities.
Exploring Ordinal Bias in Action Recognition for Instructional Videos SC
Action recognition models have achieved promising results in understanding instructional videos. However, they often rely on dominant, dataset-specific action sequences rather than true video comprehension, a problem that we define as ordinal bias. To address this issue, we propose two effective video manipulation methods: Action Masking, which masks frames of frequently co-occurring actions, and Sequence Shuffling, which randomizes the order of action segments. Through comprehensive experiments, we demonstrate that current models exhibit significant performance drops when confronted with nonstandard action sequences, underscoring their vulnerability to ordinal bias. Our findings emphasize the importance of rethinking evaluation strategies and developing models capable of generalizing beyond fixed action patterns in diverse instructional videos.
comment: Accepted to SCSL @ ICLR 2025
Attributes-aware Visual Emotion Representation Learning
Visual emotion analysis or recognition has gained considerable attention due to the growing interest in understanding how images can convey rich semantics and evoke emotions in human perception. However, visual emotion analysis poses distinctive challenges compared to traditional vision tasks, especially due to the intricate relationship between general visual features and the different affective states they evoke, known as the affective gap. Researchers have used deep representation learning methods to address this challenge of extracting generalized features from entire images. However, most existing methods overlook the importance of specific emotional attributes such as brightness, colorfulness, scene understanding, and facial expressions. Through this paper, we introduce A4Net, a deep representation network to bridge the affective gap by leveraging four key attributes: brightness (Attribute 1), colorfulness (Attribute 2), scene context (Attribute 3), and facial expressions (Attribute 4). By fusing and jointly training all aspects of attribute recognition and visual emotion analysis, A4Net aims to provide a better insight into emotional content in images. Experimental results show the effectiveness of A4Net, showcasing competitive performance compared to state-of-the-art methods across diverse visual emotion datasets. Furthermore, visualizations of activation maps generated by A4Net offer insights into its ability to generalize across different visual emotion datasets.
comment: 9 pages, 3 figures
Domain Generalization via Discrete Codebook Learning ICME 2025
Domain generalization (DG) strives to address distribution shifts across diverse environments to enhance model's generalizability. Current DG approaches are confined to acquiring robust representations with continuous features, specifically training at the pixel level. However, this DG paradigm may struggle to mitigate distribution gaps in dealing with a large space of continuous features, rendering it susceptible to pixel details that exhibit spurious correlations or noise. In this paper, we first theoretically demonstrate that the domain gaps in continuous representation learning can be reduced by the discretization process. Based on this inspiring finding, we introduce a novel learning paradigm for DG, termed Discrete Domain Generalization (DDG). DDG proposes to use a codebook to quantize the feature map into discrete codewords, aligning semantic-equivalent information in a shared discrete representation space that prioritizes semantic-level information over pixel-level intricacies. By learning at the semantic level, DDG diminishes the number of latent features, optimizing the utilization of the representation space and alleviating the risks associated with the wide-ranging space of continuous features. Extensive experiments across widely employed benchmarks in DG demonstrate DDG's superior performance compared to state-of-the-art approaches, underscoring its potential to reduce the distribution gaps and enhance the model's generalizability.
comment: Accepted to ICME 2025
ASHiTA: Automatic Scene-grounded HIerarchical Task Analysis
While recent work in scene reconstruction and understanding has made strides in grounding natural language to physical 3D environments, it is still challenging to ground abstract, high-level instructions to a 3D scene. High-level instructions might not explicitly invoke semantic elements in the scene, and even the process of breaking a high-level task into a set of more concrete subtasks, a process called hierarchical task analysis, is environment-dependent. In this work, we propose ASHiTA, the first framework that generates a task hierarchy grounded to a 3D scene graph by breaking down high-level tasks into grounded subtasks. ASHiTA alternates LLM-assisted hierarchical task analysis, to generate the task breakdown, with task-driven 3D scene graph construction to generate a suitable representation of the environment. Our experiments show that ASHiTA performs significantly better than LLM baselines in breaking down high-level tasks into environment-dependent subtasks and is additionally able to achieve grounding performance comparable to state-of-the-art methods.
LCGC: Learning from Consistency Gradient Conflicting for Class-Imbalanced Semi-Supervised Debiasing AAAI 2025
Classifiers often learn to be biased corresponding to the class-imbalanced dataset, especially under the semi-supervised learning (SSL) set. While previous work tries to appropriately re-balance the classifiers by subtracting a class-irrelevant image's logit, but lacks a firm theoretical basis. We theoretically analyze why exploiting a baseline image can refine pseudo-labels and prove that the black image is the best choice. We also indicated that as the training process deepens, the pseudo-labels before and after refinement become closer. Based on this observation, we propose a debiasing scheme dubbed LCGC, which Learning from Consistency Gradient Conflicting, by encouraging biased class predictions during training. We intentionally update the pseudo-labels whose gradient conflicts with the debiased logits, representing the optimization direction offered by the over-imbalanced classifier predictions. Then, we debiased the predictions by subtracting the baseline image logits during testing. Extensive experiments demonstrate that LCGC can significantly improve the prediction accuracy of existing CISSL models on public benchmarks.
comment: This paper has been accepted by AAAI 2025
TSP-OCS: A Time-Series Prediction for Optimal Camera Selection in Multi-Viewpoint Surgical Video Analysis
Recording the open surgery process is essential for educational and medical evaluation purposes; however, traditional single-camera methods often face challenges such as occlusions caused by the surgeon's head and body, as well as limitations due to fixed camera angles, which reduce comprehensibility of the video content. This study addresses these limitations by employing a multi-viewpoint camera recording system, capturing the surgical procedure from six different angles to mitigate occlusions. We propose a fully supervised learning-based time series prediction method to choose the best shot sequences from multiple simultaneously recorded video streams, ensuring optimal viewpoints at each moment. Our time series prediction model forecasts future camera selections by extracting and fusing visual and semantic features from surgical videos using pre-trained models. These features are processed by a temporal prediction network with TimeBlocks to capture sequential dependencies. A linear embedding layer reduces dimensionality, and a Softmax classifier selects the optimal camera view based on the highest probability. In our experiments, we created five groups of open thyroidectomy videos, each with simultaneous recordings from six different angles. The results demonstrate that our method achieves competitive accuracy compared to traditional supervised methods, even when predicting over longer time horizons. Furthermore, our approach outperforms state-of-the-art time series prediction techniques on our dataset. This manuscript makes a unique contribution by presenting an innovative framework that advances surgical video analysis techniques, with significant implications for improving surgical education and patient safety.
DUKAE: DUal-level Knowledge Accumulation and Ensemble for Pre-Trained Model-Based Continual Learning
Pre-trained model-based continual learning (PTMCL) has garnered growing attention, as it enables more rapid acquisition of new knowledge by leveraging the extensive foundational understanding inherent in pre-trained model (PTM). Most existing PTMCL methods use Parameter-Efficient Fine-Tuning (PEFT) to learn new knowledge while consolidating existing memory. However, they often face some challenges. A major challenge lies in the misalignment of classification heads, as the classification head of each task is trained within a distinct feature space, leading to inconsistent decision boundaries across tasks and, consequently, increased forgetting. Another critical limitation stems from the restricted feature-level knowledge accumulation, with feature learning typically restricted to the initial task only, which constrains the model's representation capabilities. To address these issues, we propose a method named DUal-level Knowledge Accumulation and Ensemble (DUKAE) that leverages both feature-level and decision-level knowledge accumulation by aligning classification heads into a unified feature space through Gaussian distribution sampling and introducing an adaptive expertise ensemble to fuse knowledge across feature subspaces.Extensive experiments on CIFAR-100, ImageNet-R, CUB-200, and Cars-196 datasets demonstrate the superior performance of our approach.
STaR: Seamless Spatial-Temporal Aware Motion Retargeting with Penetration and Consistency Constraints
Motion retargeting seeks to faithfully replicate the spatio-temporal motion characteristics of a source character onto a target character with a different body shape. Apart from motion semantics preservation, ensuring geometric plausibility and maintaining temporal consistency are also crucial for effective motion retargeting. However, many existing methods prioritize either geometric plausibility or temporal consistency. Neglecting geometric plausibility results in interpenetration while neglecting temporal consistency leads to motion jitter. In this paper, we propose a novel sequence-to-sequence model for seamless Spatial-Temporal aware motion Retargeting (STaR), with penetration and consistency constraints. STaR consists of two modules: (1) a spatial module that incorporates dense shape representation and a novel limb penetration constraint to ensure geometric plausibility while preserving motion semantics, and (2) a temporal module that utilizes a temporal transformer and a novel temporal consistency constraint to predict the entire motion sequence at once while enforcing multi-level trajectory smoothness. The seamless combination of the two modules helps us achieve a good balance between the semantic, geometric, and temporal targets. Extensive experiments on the Mixamo and ScanRet datasets demonstrate that our method produces plausible and coherent motions while significantly reducing interpenetration rates compared with other approaches.
comment: 12 pages, 9 figures;
Zeus: Zero-shot LLM Instruction for Union Segmentation in Multimodal Medical Imaging
Medical image segmentation has achieved remarkable success through the continuous advancement of UNet-based and Transformer-based foundation backbones. However, clinical diagnosis in the real world often requires integrating domain knowledge, especially textual information. Conducting multimodal learning involves visual and text modalities shown as a solution, but collecting paired vision-language datasets is expensive and time-consuming, posing significant challenges. Inspired by the superior ability in numerous cross-modal tasks for Large Language Models (LLMs), we proposed a novel Vision-LLM union framework to address the issues. Specifically, we introduce frozen LLMs for zero-shot instruction generation based on corresponding medical images, imitating the radiology scanning and report generation process. {To better approximate real-world diagnostic processes}, we generate more precise text instruction from multimodal radiology images (e.g., T1-w or T2-w MRI and CT). Based on the impressive ability of semantic understanding and rich knowledge of LLMs. This process emphasizes extracting special features from different modalities and reunion the information for the ultimate clinical diagnostic. With generated text instruction, our proposed union segmentation framework can handle multimodal segmentation without prior collected vision-language datasets. To evaluate our proposed method, we conduct comprehensive experiments with influential baselines, the statistical results and the visualized case study demonstrate the superiority of our novel method.}
comment: 21 pages, 4 figures, In Press by a journal
DLTPose: 6DoF Pose Estimation From Accurate Dense Surface Point Estimates
We propose DLTPose, a novel method for 6DoF object pose estimation from RGB-D images that combines the accuracy of sparse keypoint methods with the robustness of dense pixel-wise predictions. DLTPose predicts per-pixel radial distances to a set of minimally four keypoints, which are then fed into our novel Direct Linear Transform (DLT) formulation to produce accurate 3D object frame surface estimates, leading to better 6DoF pose estimation. Additionally, we introduce a novel symmetry-aware keypoint ordering approach, designed to handle object symmetries that otherwise cause inconsistencies in keypoint assignments. Previous keypoint-based methods relied on fixed keypoint orderings, which failed to account for the multiple valid configurations exhibited by symmetric objects, which our ordering approach exploits to enhance the model's ability to learn stable keypoint representations. Extensive experiments on the benchmark LINEMOD, Occlusion LINEMOD and YCB-Video datasets show that DLTPose outperforms existing methods, especially for symmetric and occluded objects, demonstrating superior Mean Average Recall values of 86.5% (LM), 79.7% (LM-O) and 89.5% (YCB-V). The code is available at https://anonymous.4open.science/r/DLTPose_/ .
Objaverse++: Curated 3D Object Dataset with Quality Annotations CVPR 2025
This paper presents Objaverse++, a curated subset of Objaverse enhanced with detailed attribute annotations by human experts. Recent advances in 3D content generation have been driven by large-scale datasets such as Objaverse, which contains over 800,000 3D objects collected from the Internet. Although Objaverse represents the largest available 3D asset collection, its utility is limited by the predominance of low-quality models. To address this limitation, we manually annotate 10,000 3D objects with detailed attributes, including aesthetic quality scores, texture color classifications, multi-object composition flags, transparency characteristics, etc. Then, we trained a neural network capable of annotating the tags for the rest of the Objaverse dataset. Through experiments and a user study on generation results, we demonstrate that models pre-trained on our quality-focused subset achieve better performance than those trained on the larger dataset of Objaverse in image-to-3D generation tasks. In addition, by comparing multiple subsets of training data filtered by our tags, our results show that the higher the data quality, the faster the training loss converges. These findings suggest that careful curation and rich annotation can compensate for the raw dataset size, potentially offering a more efficient path to develop 3D generative models. We release our enhanced dataset of approximately 500,000 curated 3D models to facilitate further research on various downstream tasks in 3D computer vision. In the near future, we aim to extend our annotations to cover the entire Objaverse dataset.
comment: 8 pages, 8 figures. Accepted to CVPR 2025 Workshop on Efficient Large Vision Models (April 2025)
Identifying regions of interest in whole slide images of renal cell carcinoma
The histopathological images contain a huge amount of information, which can make diagnosis an extremely timeconsuming and tedious task. In this study, we developed a completely automated system to detect regions of interest (ROIs) in whole slide images (WSI) of renal cell carcinoma (RCC), to reduce time analysis and assist pathologists in making more accurate decisions. The proposed approach is based on an efficient texture descriptor named dominant rotated local binary pattern (DRLBP) and color transformation to reveal and exploit the immense texture variability at the microscopic high magnifications level. Thereby, the DRLBPs retain the structural information and utilize the magnitude values in a local neighborhood for more discriminative power. For the classification of the relevant ROIs, feature extraction of WSIs patches was performed on the color channels separately to form the histograms. Next, we used the most frequently occurring patterns as a feature selection step to discard non-informative features. The performances of different classifiers on a set of 1800 kidney cancer patches originating from 12 whole slide images were compared and evaluated. Furthermore, the small size of the image dataset allows to investigate deep learning approach based on transfer learning for image patches classification by using deep features and fine-tuning methods. High recognition accuracy was obtained and the classifiers are efficient, the best precision result was 99.17% achieved with SVM. Moreover, transfer learning models perform well with comparable performance, and the highest precision using ResNet-50 reached 98.50%. The proposed approach results revealed a very efficient image classification and demonstrated efficacy in identifying ROIs. This study presents an automatic system to detect regions of interest relevant to the diagnosis of kidney cancer in whole slide histopathology images.
MoEDiff-SR: Mixture of Experts-Guided Diffusion Model for Region-Adaptive MRI Super-Resolution
Magnetic Resonance Imaging (MRI) at lower field strengths (e.g., 3T) suffers from limited spatial resolution, making it challenging to capture fine anatomical details essential for clinical diagnosis and neuroimaging research. To overcome this limitation, we propose MoEDiff-SR, a Mixture of Experts (MoE)-guided diffusion model for region-adaptive MRI Super-Resolution (SR). Unlike conventional diffusion-based SR models that apply a uniform denoising process across the entire image, MoEDiff-SR dynamically selects specialized denoising experts at a fine-grained token level, ensuring region-specific adaptation and enhanced SR performance. Specifically, our approach first employs a Transformer-based feature extractor to compute multi-scale patch embeddings, capturing both global structural information and local texture details. The extracted feature embeddings are then fed into an MoE gating network, which assigns adaptive weights to multiple diffusion-based denoisers, each specializing in different brain MRI characteristics, such as centrum semiovale, sulcal and gyral cortex, and grey-white matter junction. The final output is produced by aggregating the denoised results from these specialized experts according to dynamically assigned gating probabilities. Experimental results demonstrate that MoEDiff-SR outperforms existing state-of-the-art methods in terms of quantitative image quality metrics, perceptual fidelity, and computational efficiency. Difference maps from each expert further highlight their distinct specializations, confirming the effective region-specific denoising capability and the interpretability of expert contributions. Additionally, clinical evaluation validates its superior diagnostic capability in identifying subtle pathological features, emphasizing its practical relevance in clinical neuroimaging. Our code is available at https://github.com/ZWang78/MoEDiff-SR.
CEC-MMR: Cross-Entropy Clustering Approach to Multi-Modal Regression
In practical applications of regression analysis, it is not uncommon to encounter a multitude of values for each attribute. In such a situation, the univariate distribution, which is typically Gaussian, is suboptimal because the mean may be situated between modes, resulting in a predicted value that differs significantly from the actual data. Consequently, to address this issue, a mixture distribution with parameters learned by a neural network, known as a Mixture Density Network (MDN), is typically employed. However, this approach has an important inherent limitation, in that it is not feasible to ascertain the precise number of components with a reasonable degree of accuracy. In this paper, we introduce CEC-MMR, a novel approach based on Cross-Entropy Clustering (CEC), which allows for the automatic detection of the number of components in a regression problem. Furthermore, given an attribute and its value, our method is capable of uniquely identifying it with the underlying component. The experimental results demonstrate that CEC-MMR yields superior outcomes compared to classical MDNs.
Quantifying Epistemic Uncertainty in Absolute Pose Regression
Visual relocalization is the task of estimating the camera pose given an image it views. Absolute pose regression offers a solution to this task by training a neural network, directly regressing the camera pose from image features. While an attractive solution in terms of memory and compute efficiency, absolute pose regression's predictions are inaccurate and unreliable outside the training domain. In this work, we propose a novel method for quantifying the epistemic uncertainty of an absolute pose regression model by estimating the likelihood of observations within a variational framework. Beyond providing a measure of confidence in predictions, our approach offers a unified model that also handles observation ambiguities, probabilistically localizing the camera in the presence of repetitive structures. Our method outperforms existing approaches in capturing the relation between uncertainty and prediction error.
Few-Shot Adaptation of Grounding DINO for Agricultural Domain
Deep learning models are transforming agricultural applications by enabling automated phenotyping, monitoring, and yield estimation. However, their effectiveness heavily depends on large amounts of annotated training data, which can be labor and time intensive. Recent advances in open-set object detection, particularly with models like Grounding-DINO, offer a potential solution to detect regions of interests based on text prompt input. Initial zero-shot experiments revealed challenges in crafting effective text prompts, especially for complex objects like individual leaves and visually similar classes. To address these limitations, we propose an efficient few-shot adaptation method that simplifies the Grounding-DINO architecture by removing the text encoder module (BERT) and introducing a randomly initialized trainable text embedding. This method achieves superior performance across multiple agricultural datasets, including plant-weed detection, plant counting, insect identification, fruit counting, and remote sensing tasks. Specifically, it demonstrates up to a $\sim24\%$ higher mAP than fully fine-tuned YOLO models on agricultural datasets and outperforms previous state-of-the-art methods by $\sim10\%$ in remote sensing, under few-shot learning conditions. Our method offers a promising solution for automating annotation and accelerating the development of specialized agricultural AI solutions.
MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data CVPR 2025
Terrain modeling has traditionally relied on procedural techniques, which often require extensive domain expertise and handcrafted rules. In this paper, we present MESA - a novel data-centric alternative by training a diffusion model on global remote sensing data. This approach leverages large-scale geospatial information to generate high-quality terrain samples from text descriptions, showcasing a flexible and scalable solution for terrain generation. The model's capabilities are demonstrated through extensive experiments, highlighting its ability to generate realistic and diverse terrain landscapes. The dataset produced to support this work, the Major TOM Core-DEM extension dataset, is released openly as a comprehensive resource for global terrain data. The results suggest that data-driven models, trained on remote sensing data, can provide a powerful tool for realistic terrain modeling and generation.
comment: Accepted at CVPR 2025 Workshop MORSE
Face-LLaVA: Facial Expression and Attribute Understanding through Instruction Tuning
The human face plays a central role in social communication, necessitating the use of performant computer vision tools for human-centered applications. We propose Face-LLaVA, a multimodal large language model for face-centered, in-context learning, including facial expression and attribute recognition. Additionally, Face-LLaVA is able to generate natural language descriptions that can be used for reasoning. Leveraging existing visual databases, we first developed FaceInstruct-1M, a face-centered database for instruction tuning MLLMs for face processing. We then developed a novel face-specific visual encoder powered by Face-Region Guided Cross-Attention that integrates face geometry with local visual features. We evaluated the proposed method across nine different datasets and five different face processing tasks, including facial expression recognition, action unit detection, facial attribute detection, age estimation and deepfake detection. Face-LLaVA achieves superior results compared to existing open-source MLLMs and competitive performance compared to commercial solutions. Our model output also receives a higher reasoning rating by GPT under a zero-shot setting across all the tasks. Both our dataset and model wil be released at https://face-llava.github.io to support future advancements in social AI and foundational vision-language research.
comment: Project Page: https://face-llava.github.io
Perception in Reflection
We present a perception in reflection paradigm designed to transcend the limitations of current large vision-language models (LVLMs), which are expected yet often fail to achieve perfect perception initially. Specifically, we propose Reflective Perception (RePer), a dual-model reflection mechanism that systematically alternates between policy and critic models, enables iterative refinement of visual perception. This framework is powered by Reflective Perceptual Learning (RPL), which reinforces intrinsic reflective capabilities through a methodically constructed visual reflection dataset and reflective unlikelihood training. Comprehensive experimental evaluation demonstrates RePer's quantifiable improvements in image understanding, captioning precision, and hallucination reduction. Notably, RePer achieves strong alignment between model attention patterns and human visual focus, while RPL optimizes fine-grained and free-form preference alignment. These advancements establish perception in reflection as a robust paradigm for future multimodal agents, particularly in tasks requiring complex reasoning and multi-step manipulation.
Privacy Attacks on Image AutoRegressive Models
Image autoregressive generation has emerged as a powerful new paradigm, with image autoregressive models (IARs) matching state-of-the-art diffusion models (DMs) in image quality (FID: 1.48 vs. 1.58) while allowing for higher generation speed. However, the privacy risks associated with IARs remain unexplored, raising concerns about their responsible deployment. To address this gap, we conduct a comprehensive privacy analysis of IARs, comparing their privacy risks to those of DMs as a reference point. Specifically, we develop a novel membership inference attack (MIA) that achieves a remarkably high success rate in detecting training images, with a True Positive Rate at False Positive Rate = 1% (TPR@FPR=1%) of 86.38%, compared to just 6.38% for DMs using comparable attacks. We leverage our novel MIA to perform dataset inference (DI) for IARs and show that it requires as few as 6 samples to detect dataset membership, compared to 200 samples for DI in DMs. This confirms a higher level of information leakage in IARs. Finally, we are able to extract hundreds of training data points from an IAR (e.g., 698 from VAR-d30). Our results suggest a fundamental privacy-utility trade-off: while IARs excel in image generation quality and speed, they are empirically significantly more vulnerable to privacy attacks compared to DMs that achieve similar performance. This trend suggests that incorporating techniques from DMs into IARs, such as modeling the per-token probability distribution using a diffusion procedure, could help mitigate IARs' vulnerability to privacy attacks. We make our code available at: https://github.com/sprintml/privacy_attacks_against_iars
comment: Code: https://github.com/sprintml/privacy_attacks_against_iars
Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation
Parameter-Efficient Fine-Tuning (PEFT) is a technique that allows us to adapt powerful Foundation Models (FMs) to diverse downstream tasks while preserving and unleashing their inherent capabilities. However, we have observed that existing PEFT methods, which are often designed with natural imagery in mind, struggle when applied to Remote Sensing (RS) scenarios. This is primarily due to their inability to handle artifact influences, a problem particularly severe in RS image features. To tackle this challenge, we introduce Earth-Adapter, the first PEFT method specifically designed for RS artifacts conquering. Earth-Adapter introduces a novel Mixture of Frequency Adaptation process that combines a Mixture of Adapter (MoA) with Discrete Fourier Transformation (DFT). By utilizing DFT, Earth-Adapter can decompose features into different frequency components, precisely separating artifacts from original features. The MoA then dynamically assigns weights to each adapter expert, allowing for the combination of features across various frequency domains. These simple-yet-effective approaches enable Earth-Adapter to more efficiently overcome the disturbances caused by artifacts than previous PEFT methods, significantly enhancing the FMs' performance on RS scenarios. Experiments on Domain Adaptation (DA), and Domain Generalization (DG) semantic segmentation benchmarks showcase the Earth-Adapter's effectiveness. Compared with baseline Rein, Earth-Adapter significantly improves 9.0% mIoU in DA and 3.1% mIoU in DG benchmarks. Our code will be released at https://github.com/VisionXLab/Earth-Adapter.
Robust Fusion Controller: Degradation-aware Image Fusion with Fine-grained Language Instructions
Current image fusion methods struggle to adapt to real-world environments encompassing diverse degradations with spatially varying characteristics. To address this challenge, we propose a robust fusion controller (RFC) capable of achieving degradation-aware image fusion through fine-grained language instructions, ensuring its reliable application in adverse environments. Specifically, RFC first parses language instructions to innovatively derive the functional condition and the spatial condition, where the former specifies the degradation type to remove, while the latter defines its spatial coverage. Then, a composite control priori is generated through a multi-condition coupling network, achieving a seamless transition from abstract language instructions to latent control variables. Subsequently, we design a hybrid attention-based fusion network to aggregate multi-modal information, in which the obtained composite control priori is deeply embedded to linearly modulate the intermediate fused features. To ensure the alignment between language instructions and control outcomes, we introduce a novel language-feature alignment loss, which constrains the consistency between feature-level gains and the composite control priori. Extensive experiments on publicly available datasets demonstrate that our RFC is robust against various composite degradations, particularly in highly challenging flare scenarios.
DDT: Decoupled Diffusion Transformer
Diffusion transformers have demonstrated remarkable generation quality, albeit requiring longer training iterations and numerous inference steps. In each denoising step, diffusion transformers encode the noisy inputs to extract the lower-frequency semantic component and then decode the higher frequency with identical modules. This scheme creates an inherent optimization dilemma: encoding low-frequency semantics necessitates reducing high-frequency components, creating tension between semantic encoding and high-frequency decoding. To resolve this challenge, we propose a new \textbf{\color{ddt}D}ecoupled \textbf{\color{ddt}D}iffusion \textbf{\color{ddt}T}ransformer~(\textbf{\color{ddt}DDT}), with a decoupled design of a dedicated condition encoder for semantic extraction alongside a specialized velocity decoder. Our experiments reveal that a more substantial encoder yields performance improvements as model size increases. For ImageNet $256\times256$, Our DDT-XL/2 achieves a new state-of-the-art performance of {1.31 FID}~(nearly $4\times$ faster training convergence compared to previous diffusion transformers). For ImageNet $512\times512$, Our DDT-XL/2 achieves a new state-of-the-art FID of 1.28. Additionally, as a beneficial by-product, our decoupled architecture enhances inference speed by enabling the sharing self-condition between adjacent denoising steps. To minimize performance degradation, we propose a novel statistical dynamic programming approach to identify optimal sharing strategies.
comment: sota on ImageNet256 and ImageNet512
Caption Anything in Video: Fine-grained Object-centric Captioning via Spatiotemporal Multimodal Prompting
We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning that enables detailed descriptions of user-selected objects through time. CAT-V integrates three key components: a Segmenter based on SAMURAI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-Uni for accurate event boundary detection and temporal analysis, and a Captioner using InternVL-2.5 for generating detailed object-centric descriptions. Through spatiotemporal visual prompts and chain-of-thought reasoning, our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data. CAT-V supports flexible user interactions through various visual prompts (points, bounding boxes, and irregular regions) and maintains temporal sensitivity by tracking object states and interactions across different time segments. Our approach addresses limitations of existing video captioning methods, which either produce overly abstract descriptions or lack object-level precision, enabling fine-grained, object-specific descriptions while maintaining temporal coherence and spatial accuracy. The GitHub repository for this project is available at https://github.com/yunlong10/CAT-V
LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of objects and the location of their internal structures within deformable objects is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgical interventions. We demonstrate LUDO's abilities for autonomous targeting of internal regions of interest (ROIs) in deformable objects. %Additionally, LUDO provides uncertainty estimates and explainability for its predictions, both of which are important in safety-critical applications such as surgical interventions. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various ROIs inside deformable objects. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
Beyond the Hype: A dispassionate look at vision-language models in medical scenario
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across diverse tasks, garnering significant attention in AI communities. However, their performance and reliability in specialized domains such as medicine remain insufficiently assessed. In particular, most assessments over-concentrate on evaluating VLMs based on simple Visual Question Answering (VQA) on multi-modality data, while ignoring the in-depth characteristics of LVLMs. In this study, we introduce RadVUQA, a novel Radiological Visual Understanding and Question Answering benchmark, to comprehensively evaluate existing LVLMs. RadVUQA mainly validates LVLMs across five dimensions: 1) Anatomical understanding, assessing the models' ability to visually identify biological structures; 2) Multimodal comprehension, which involves the capability of interpreting linguistic and visual instructions to produce desired outcomes; 3) Quantitative and spatial reasoning, evaluating the models' spatial awareness and proficiency in combining quantitative analysis with visual and linguistic information; 4) Physiological knowledge, measuring the models' capability to comprehend functions and mechanisms of organs and systems; and 5) Robustness, which assesses the models' capabilities against unharmonized and synthetic data. The results indicate that both generalized LVLMs and medical-specific LVLMs have critical deficiencies with weak multimodal comprehension and quantitative reasoning capabilities. Our findings reveal the large gap between existing LVLMs and clinicians, highlighting the urgent need for more robust and intelligent LVLMs. The code is available at https://github.com/Nandayang/RadVUQA
comment: 10 pages
Automated Generation of Challenging Multiple-Choice Questions for Vision Language Model Evaluation CVPR 2025
The rapid development of vision language models (VLMs) demands rigorous and reliable evaluation. However, current visual question answering (VQA) benchmarks often depend on open-ended questions, making accurate evaluation difficult due to the variability in natural language responses. To address this, we introduce AutoConverter, an agentic framework that automatically converts these open-ended questions into multiple-choice format, enabling objective evaluation while reducing the costly multiple-choice question creation process. Our experiments demonstrate that AutoConverter can generate correct and challenging multiple-choice questions, with VLMs demonstrating consistently similar or lower accuracy on these questions compared to human-created ones. Using AutoConverter, we construct VMCBench, a benchmark created by transforming 20 existing VQA datasets into a unified multiple-choice format, totaling 9,018 questions. We comprehensively evaluate 33 state-of-the-art VLMs on VMCBench, setting a new standard for scalable, consistent, and reproducible VLM evaluation.
comment: CVPR 2025
Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs.
comment: Code: https://github.com/AtsuMiyai/UPD
Holstein-Friesian Re-Identification using Multiple Cameras and Self-Supervision on a Working Farm
We present MultiCamCows2024, a farm-scale image dataset filmed across multiple cameras for the biometric identification of individual Holstein-Friesian cattle exploiting their unique black and white coat-patterns. Captured by three ceiling-mounted visual sensors covering adjacent barn areas over seven days on a working dairy farm, the dataset comprises 101,329 images of 90 cows, plus underlying original CCTV footage. The dataset is provided with full computer vision recognition baselines, that is both a supervised and self-supervised learning framework for individual cow identification trained on cattle tracklets. We report a performance above 96% single image identification accuracy from the dataset and demonstrate that combining data from multiple cameras during learning enhances self-supervised identification. We show that our framework enables automatic cattle identification, barring only the simple human verification of tracklet integrity during data collection. Crucially, our study highlights that multi-camera, supervised and self-supervised components in tandem not only deliver highly accurate individual cow identification, but also achieve this efficiently with no labelling of cattle identities by humans. We argue that this improvement in efficacy has practical implications for livestock management, behaviour analysis, and agricultural monitoring. For reproducibility and practical ease of use, we publish all key software and code including re-identification components and the species detector with this paper, available at https://tinyurl.com/MultiCamCows2024.
comment: 24 pages, 10 figures
Dolphin: Moving Towards Closed-loop Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we introduce Dolphin, a closed-loop LLM-driven framework to enhance the automation level of scientific research. Dolphin first generates novel ideas based on feedback from previous experiments and relevant papers ranked by the topic and task attributes. Then, the generated ideas can be implemented using a code template refined and debugged with the designed exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and a subset of MLE-bench. Results show that Dolphin can continuously improve the performance of the input topic in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 3D point classification.
comment: 21 pages, 12 figures, and our homepage: https://alpha-innovator.github.io/Dolphin-project-page
Towards Communication-Efficient Adversarial Federated Learning for Robust Edge Intelligence
Federated learning (FL) has gained significant attention for enabling decentralized training on edge networks without exposing raw data. However, FL models remain susceptible to adversarial attacks and performance degradation in non-IID data settings, thus posing challenges to both robustness and accuracy. This paper aims to achieve communication-efficient adversarial federated learning (AFL) by leveraging a pre-trained model to enhance both robustness and accuracy under adversarial attacks and non-IID challenges in AFL. By leveraging the knowledge from a pre-trained model for both clean and adversarial images, we propose a pre-trained model-guided adversarial federated learning (PM-AFL) framework. This framework integrates vanilla and adversarial mixture knowledge distillation to effectively balance accuracy and robustness while promoting local models to learn from diverse data. Specifically, for clean accuracy, we adopt a dual distillation strategy where the class probabilities of randomly paired images, and their blended versions are aligned between the teacher model and the local models. For adversarial robustness, we employ a similar distillation approach but replace clean samples on the local side with adversarial examples. Moreover, by considering the bias between local and global models, we also incorporate a consistency regularization term to ensure that local adversarial predictions stay aligned with their corresponding global clean ones. These strategies collectively enable local models to absorb diverse knowledge from the teacher model while maintaining close alignment with the global model, thereby mitigating overfitting to local optima and enhancing the generalization of the global model. Experiments demonstrate that the PM-AFL-based framework not only significantly outperforms other methods but also maintains communication efficiency.
Atlas Gaussians Diffusion for 3D Generation ICLR 2025
Using the latent diffusion model has proven effective in developing novel 3D generation techniques. To harness the latent diffusion model, a key challenge is designing a high-fidelity and efficient representation that links the latent space and the 3D space. In this paper, we introduce Atlas Gaussians, a novel representation for feed-forward native 3D generation. Atlas Gaussians represent a shape as the union of local patches, and each patch can decode 3D Gaussians. We parameterize a patch as a sequence of feature vectors and design a learnable function to decode 3D Gaussians from the feature vectors. In this process, we incorporate UV-based sampling, enabling the generation of a sufficiently large, and theoretically infinite, number of 3D Gaussian points. The large amount of 3D Gaussians enables the generation of high-quality details. Moreover, due to local awareness of the representation, the transformer-based decoding procedure operates on a patch level, ensuring efficiency. We train a variational autoencoder to learn the Atlas Gaussians representation, and then apply a latent diffusion model on its latent space for learning 3D Generation. Experiments show that our approach outperforms the prior arts of feed-forward native 3D generation. Project page: https://yanghtr.github.io/projects/atlas_gaussians.
comment: Published at ICLR 2025 (Spotlight). Project page: https://yanghtr.github.io/projects/atlas_gaussians
FIORD: A Fisheye Indoor-Outdoor Dataset with LIDAR Ground Truth for 3D Scene Reconstruction and Benchmarking SC
The development of large-scale 3D scene reconstruction and novel view synthesis methods mostly rely on datasets comprising perspective images with narrow fields of view (FoV). While effective for small-scale scenes, these datasets require large image sets and extensive structure-from-motion (SfM) processing, limiting scalability. To address this, we introduce a fisheye image dataset tailored for scene reconstruction tasks. Using dual 200-degree fisheye lenses, our dataset provides full 360-degree coverage of 5 indoor and 5 outdoor scenes. Each scene has sparse SfM point clouds and precise LIDAR-derived dense point clouds that can be used as geometric ground-truth, enabling robust benchmarking under challenging conditions such as occlusions and reflections. While the baseline experiments focus on vanilla Gaussian Splatting and NeRF based Nerfacto methods, the dataset supports diverse approaches for scene reconstruction, novel view synthesis, and image-based rendering.
comment: SCIA 2025
SEAL: Semantic Aware Image Watermarking
Generative models have rapidly evolved to generate realistic outputs. However, their synthetic outputs increasingly challenge the clear distinction between natural and AI-generated content, necessitating robust watermarking techniques. Watermarks are typically expected to preserve the integrity of the target image, withstand removal attempts, and prevent unauthorized replication onto unrelated images. To address this need, recent methods embed persistent watermarks into images produced by diffusion models using the initial noise. Yet, to do so, they either distort the distribution of generated images or rely on searching through a long dictionary of used keys for detection. In this paper, we propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark, enabling a distortion-free watermark that can be verified without requiring a database of key patterns. Instead, the key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing. Furthermore, conditioning the watermark detection on the original image content improves robustness against forgery attacks. To demonstrate that, we consider two largely overlooked attack strategies: (i) an attacker extracting the initial noise and generating a novel image with the same pattern; (ii) an attacker inserting an unrelated (potentially harmful) object into a watermarked image, possibly while preserving the watermark. We empirically validate our method's increased robustness to these attacks. Taken together, our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
Joint Retrieval of Cloud properties using Attention-based Deep Learning Models
Accurate cloud property retrieval is vital for understanding cloud behavior and its impact on climate, including applications in weather forecasting, climate modeling, and estimating Earth's radiation balance. The Independent Pixel Approximation (IPA), a widely used physics-based approach, simplifies radiative transfer calculations by assuming each pixel is independent of its neighbors. While computationally efficient, IPA has significant limitations, such as inaccuracies from 3D radiative effects, errors at cloud edges, and ineffectiveness for overlapping or heterogeneous cloud fields. Recent AI/ML-based deep learning models have improved retrieval accuracy by leveraging spatial relationships across pixels. However, these models are often memory-intensive, retrieve only a single cloud property, or struggle with joint property retrievals. To overcome these challenges, we introduce CloudUNet with Attention Module (CAM), a compact UNet-based model that employs attention mechanisms to reduce errors in thick, overlapping cloud regions and a specialized loss function for joint retrieval of Cloud Optical Thickness (COT) and Cloud Effective Radius (CER). Experiments on a Large Eddy Simulation (LES) dataset show that our CAM model outperforms state-of-the-art deep learning methods, reducing mean absolute errors (MAE) by 34% for COT and 42% for CER, and achieving 76% and 86% lower MAE for COT and CER retrievals compared to the IPA method.
comment: 6 Pages, 4 figures, to be published in 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2025)
Unified CNNs and transformers underlying learning mechanism reveals multi-head attention modus vivendi
Convolutional neural networks (CNNs) evaluate short-range correlations in input images which progress along the layers, whereas vision transformer (ViT) architectures evaluate long-range correlations, using repeated transformer encoders composed of fully connected layers. Both are designed to solve complex classification tasks but from different perspectives. This study demonstrates that CNNs and ViT architectures stem from a unified underlying learning mechanism, which quantitatively measures the single-nodal performance (SNP) of each node in feedforward (FF) and multi-head attention (MHA) sub-blocks. Each node identifies small clusters of possible output labels, with additional noise represented as labels outside these clusters. These features are progressively sharpened along the transformer encoders, enhancing the signal-to-noise ratio. This unified underlying learning mechanism leads to two main findings. First, it enables an efficient applied nodal diagonal connection (ANDC) pruning technique without affecting the accuracy. Second, based on the SNP, spontaneous symmetry breaking occurs among the MHA heads, such that each head focuses its attention on a subset of labels through cooperation among its SNPs. Consequently, each head becomes an expert in recognizing its designated labels, representing a quantitative MHA modus vivendi mechanism. This statistical mechanics inspired viewpoint enables to reveal macroscopic behavior of the entire network from the microscopic performance of each node. These results are based on a compact convolutional transformer architecture trained on the CIFAR-100 and Flowers-102 datasets and call for their extension to other architectures and applications, such as natural language processing.
comment: 31 pages, 11 figures, A short YouTube Video describing the main results https://www.youtube.com/watch?v=7I8bp7UAudk
FreeCloth: Free-form Generation Enhances Challenging Clothed Human Modeling
Achieving realistic animated human avatars requires accurate modeling of pose-dependent clothing deformations. Existing learning-based methods heavily rely on the Linear Blend Skinning (LBS) of minimally-clothed human models like SMPL to model deformation. However, they struggle to handle loose clothing, such as long dresses, where the canonicalization process becomes ill-defined when the clothing is far from the body, leading to disjointed and fragmented results. To overcome this limitation, we propose FreeCloth, a novel hybrid framework to model challenging clothed humans. Our core idea is to use dedicated strategies to model different regions, depending on whether they are close to or distant from the body. Specifically, we segment the human body into three categories: unclothed, deformed, and generated. We simply replicate unclothed regions that require no deformation. For deformed regions close to the body, we leverage LBS to handle the deformation. As for the generated regions, which correspond to loose clothing areas, we introduce a novel free-form, part-aware generator to model them, as they are less affected by movements. This free-form generation paradigm brings enhanced flexibility and expressiveness to our hybrid framework, enabling it to capture the intricate geometric details of challenging loose clothing, such as skirts and dresses. Experimental results on the benchmark dataset featuring loose clothing demonstrate that FreeCloth achieves state-of-the-art performance with superior visual fidelity and realism, particularly in the most challenging cases.
comment: 23 pages, 26 figures
NeuRadar: Neural Radiance Fields for Automotive Radar Point Clouds
Radar is an important sensor for autonomous driving (AD) systems due to its robustness to adverse weather and different lighting conditions. Novel view synthesis using neural radiance fields (NeRFs) has recently received considerable attention in AD due to its potential to enable efficient testing and validation but remains unexplored for radar point clouds. In this paper, we present NeuRadar, a NeRF-based model that jointly generates radar point clouds, camera images, and lidar point clouds. We explore set-based object detection methods such as DETR, and propose an encoder-based solution grounded in the NeRF geometry for improved generalizability. We propose both a deterministic and a probabilistic point cloud representation to accurately model the radar behavior, with the latter being able to capture radar's stochastic behavior. We achieve realistic reconstruction results for two automotive datasets, establishing a baseline for NeRF-based radar point cloud simulation models. In addition, we release radar data for ZOD's Sequences and Drives to enable further research in this field. To encourage further development of radar NeRFs, we release the source code for NeuRadar.
End-to-End Driving with Online Trajectory Evaluation via BEV World Model
End-to-end autonomous driving has achieved remarkable progress by integrating perception, prediction, and planning into a fully differentiable framework. Yet, to fully realize its potential, an effective online trajectory evaluation is indispensable to ensure safety. By forecasting the future outcomes of a given trajectory, trajectory evaluation becomes much more effective. This goal can be achieved by employing a world model to capture environmental dynamics and predict future states. Therefore, we propose an end-to-end driving framework WoTE, which leverages a BEV World model to predict future BEV states for Trajectory Evaluation. The proposed BEV world model is latency-efficient compared to image-level world models and can be seamlessly supervised using off-the-shelf BEV-space traffic simulators. We validate our framework on both the NAVSIM benchmark and the closed-loop Bench2Drive benchmark based on the CARLA simulator, achieving state-of-the-art performance. Code is released at https://github.com/liyingyanUCAS/WoTE.
PointNorm-Net: Self-Supervised Normal Prediction of 3D Point Clouds via Multi-Modal Distribution Estimation
Although supervised deep normal estimators have recently shown impressive results on synthetic benchmarks, their performance deteriorates significantly in real-world scenarios due to the domain gap between synthetic and real data. Building high-quality real training data to boost those supervised methods is not trivial because point-wise annotation of normals for varying-scale real-world 3D scenes is a tedious and expensive task. This paper introduces PointNorm-Net, the first self-supervised deep learning framework to tackle this challenge. The key novelty of PointNorm-Net is a three-stage multi-modal normal distribution estimation paradigm that can be integrated into either deep or traditional optimization-based normal estimation frameworks. Extensive experiments show that our method achieves superior generalization and outperforms state-of-the-art conventional and deep learning approaches across three real-world datasets that exhibit distinct characteristics compared to the synthetic training data.
LostPaw: Finding Lost Pets using a Contrastive Learning-based Transformer with Visual Input
Losing pets can be highly distressing for pet owners, and finding a lost pet is often challenging and time-consuming. An artificial intelligence-based application can significantly improve the speed and accuracy of finding lost pets. To facilitate such an application, this study introduces a contrastive neural network model capable of accurately distinguishing between images of pets. The model was trained on a large dataset of dog images and evaluated through 3-fold cross-validation. Following 350 epochs of training, the model achieved a test accuracy of 90%. Furthermore, overfitting was avoided, as the test accuracy closely matched the training accuracy. Our findings suggest that contrastive neural network models hold promise as a tool for locating lost pets. This paper presents the foundational framework for a potential web application designed to assist users in locating their missing pets. The application will allow users to upload images of their lost pets and provide notifications when matching images are identified within its image database. This functionality aims to enhance the efficiency and accuracy with which pet owners can search for and reunite with their beloved animals.
comment: 7 Pages, 7 figures
Oil Spill Segmentation using Deep Encoder-Decoder models
Crude oil is an integral component of the world economy and transportation sectors. With the growing demand for crude oil due to its widespread applications, accidental oil spills are unfortunate yet unavoidable. Even though oil spills are difficult to clean up, the first and foremost challenge is to detect them. In this research, the authors test the feasibility of deep encoder-decoder models that can be trained effectively to detect oil spills remotely. The work examines and compares the results from several segmentation models on high dimensional satellite Synthetic Aperture Radar (SAR) image data to pave the way for further in-depth research. Multiple combinations of models are used to run the experiments. The best-performing model is the one with the ResNet-50 encoder and DeepLabV3+ decoder. It achieves a mean Intersection over Union (IoU) of 64.868% and an improved class IoU of 61.549% for the ``oil spill" class when compared with the previous benchmark model, which achieved a mean IoU of 65.05% and a class IoU of 53.38% for the ``oil spill" class.
comment: 8 pages, 6 figures, 4 tables
A Lightweight and Extensible Cell Segmentation and Classification Model for Whole Slide Images
Developing clinically useful cell-level analysis tools in digital pathology remains challenging due to limitations in dataset granularity, inconsistent annotations, high computational demands, and difficulties integrating new technologies into workflows. To address these issues, we propose a solution that enhances data quality, model performance, and usability by creating a lightweight, extensible cell segmentation and classification model. First, we update data labels through cross-relabeling to refine annotations of PanNuke and MoNuSAC, producing a unified dataset with seven distinct cell types. Second, we leverage the H-Optimus foundation model as a fixed encoder to improve feature representation for simultaneous segmentation and classification tasks. Third, to address foundation models' computational demands, we distill knowledge to reduce model size and complexity while maintaining comparable performance. Finally, we integrate the distilled model into QuPath, a widely used open-source digital pathology platform. Results demonstrate improved segmentation and classification performance using the H-Optimus-based model compared to a CNN-based model. Specifically, average $R^2$ improved from 0.575 to 0.871, and average $PQ$ score improved from 0.450 to 0.492, indicating better alignment with actual cell counts and enhanced segmentation quality. The distilled model maintains comparable performance while reducing parameter count by a factor of 48. By reducing computational complexity and integrating into workflows, this approach may significantly impact diagnostics, reduce pathologist workload, and improve outcomes. Although the method shows promise, extensive validation is necessary prior to clinical deployment.
comment: 30 pages, 11 figures
Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System
Vehicle-to-everything-aided autonomous driving (V2X-AD) has a huge potential to provide a safer driving solution. Despite extensive researches in transportation and communication to support V2X-AD, the actual utilization of these infrastructures and communication resources in enhancing driving performances remains largely unexplored. This highlights the necessity of collaborative autonomous driving: a machine learning approach that optimizes the information sharing strategy to improve the driving performance of each vehicle. This effort necessitates two key foundations: a platform capable of generating data to facilitate the training and testing of V2X-AD, and a comprehensive system that integrates full driving-related functionalities with mechanisms for information sharing. From the platform perspective, we present V2Xverse, a comprehensive simulation platform for collaborative autonomous driving. This platform provides a complete pipeline for collaborative driving. From the system perspective, we introduce CoDriving, a novel end-to-end collaborative driving system that properly integrates V2X communication over the entire autonomous pipeline, promoting driving with shared perceptual information. The core idea is a novel driving-oriented communication strategy. Leveraging this strategy, CoDriving improves driving performance while optimizing communication efficiency. We make comprehensive benchmarks with V2Xverse, analyzing both modular performance and closed-loop driving performance. Experimental results show that CoDriving: i) significantly improves the driving score by 62.49% and drastically reduces the pedestrian collision rate by 53.50% compared to the SOTA end-to-end driving method, and ii) achieves sustaining driving performance superiority over dynamic constraint communication conditions.
comment: Accepted by IEEE T-PAMI
Digital Gene: Learning about the Physical World through Analytic Concepts
Reviewing the progress in artificial intelligence over the past decade, various significant advances (e.g. object detection, image generation, large language models) have enabled AI systems to produce more semantically meaningful outputs and achieve widespread adoption in internet scenarios. Nevertheless, AI systems still struggle when it comes to understanding and interacting with the physical world. This reveals an important issue: relying solely on semantic-level concepts learned from internet data (e.g. texts, images) to understand the physical world is far from sufficient -- machine intelligence currently lacks an effective way to learn about the physical world. This research introduces the idea of analytic concept -- representing the concepts related to the physical world through programs of mathematical procedures, providing machine intelligence a portal to perceive, reason about, and interact with the physical world. Except for detailing the design philosophy and providing guidelines for the application of analytic concepts, this research also introduce about the infrastructure that has been built around analytic concepts. I aim for my research to contribute to addressing these questions: What is a proper abstraction of general concepts in the physical world for machine intelligence? How to systematically integrate structured priors with neural networks to constrain AI systems to comply with physical laws?
GigaHands: A Massive Annotated Dataset of Bimanual Hand Activities CVPR 2025
Understanding bimanual human hand activities is a critical problem in AI and robotics. We cannot build large models of bimanual activities because existing datasets lack the scale, coverage of diverse hand activities, and detailed annotations. We introduce GigaHands, a massive annotated dataset capturing 34 hours of bimanual hand activities from 56 subjects and 417 objects, totaling 14k motion clips derived from 183 million frames paired with 84k text annotations. Our markerless capture setup and data acquisition protocol enable fully automatic 3D hand and object estimation while minimizing the effort required for text annotation. The scale and diversity of GigaHands enable broad applications, including text-driven action synthesis, hand motion captioning, and dynamic radiance field reconstruction. Our website are avaliable at https://ivl.cs.brown.edu/research/gigahands.html .
comment: CVPR 2025 Highlight
Floralens: a Deep Learning Model for the Portuguese Native Flora
Machine-learning techniques, especially deep convolutional neural networks, are pivotal for image-based identification of biological species in many Citizen Science platforms. In this paper, we describe the construction of a dataset for the Portuguese native flora based on publicly available research-grade datasets, and the derivation of a high-accuracy model from it using off-the-shelf deep convolutional neural networks. We anchored the dataset in high-quality data provided by Sociedade Portuguesa de Bot\^anica and added further sampled data from research-grade datasets available from GBIF. We find that with a careful dataset design, off-the-shelf machine-learning cloud services such as Google's AutoML Vision produce accurate models, with results comparable to those of Pl@ntNet, a state-of-the-art citizen science platform. The best model we derived, dubbed Floralens, has been integrated into the public website of Project Biolens, where we gather models for other taxa as well. The dataset used to train the model is also publicly available on Zenodo.
Assessing the risk of recurrence in early-stage breast cancer through H&E stained whole slide images
Accurate prediction of the likelihood of recurrence is important in the selection of postoperative treatment for patients with early-stage breast cancer. In this study, we investigated whether deep learning algorithms can predict patients' risk of recurrence by analyzing the pathology images of their cancer histology.We analyzed 125 hematoxylin and eosin-stained whole slide images (WSIs) from 125 patients across two institutions (National Cancer Center and Korea University Medical Center Guro Hospital) to predict breast cancer recurrence risk using deep learning. Sensitivity reached 0.857, 0.746, and 0.529 for low, intermediate, and high-risk categories, respectively, with specificity of 0.816, 0.803, and 0.972, and a Pearson correlation of 0.61 with histological grade. Class activation maps highlighted features like tubule formation and mitotic rate, suggesting a cost-effective approach to risk stratification, pending broader validation. These findings suggest that deep learning models trained exclusively on hematoxylin and eosin stained whole slide images can approximate genomic assay results, offering a cost-effective and scalable tool for breast cancer recurrence risk assessment. However, further validation using larger and more balanced datasets is needed to confirm the clinical applicability of our approach.
comment: 20 pages, 9 figures
Mesh Mamba: A Unified State Space Model for Saliency Prediction in Non-Textured and Textured Meshes CVPR 2025
Mesh saliency enhances the adaptability of 3D vision by identifying and emphasizing regions that naturally attract visual attention. To investigate the interaction between geometric structure and texture in shaping visual attention, we establish a comprehensive mesh saliency dataset, which is the first to systematically capture the differences in saliency distribution under both textured and non-textured visual conditions. Furthermore, we introduce mesh Mamba, a unified saliency prediction model based on a state space model (SSM), designed to adapt across various mesh types. Mesh Mamba effectively analyzes the geometric structure of the mesh while seamlessly incorporating texture features into the topological framework, ensuring coherence throughout appearance-enhanced modeling. More importantly, by subgraph embedding and a bidirectional SSM, the model enables global context modeling for both local geometry and texture, preserving the topological structure and improving the understanding of visual details and structural complexity. Through extensive theoretical and empirical validation, our model not only improves performance across various mesh types but also demonstrates high scalability and versatility, particularly through cross validations of various visual features.
comment: to be published in CVPR 2025
Design2GarmentCode: Turning Design Concepts to Tangible Garments Through Program Synthesis
Sewing patterns, the essential blueprints for fabric cutting and tailoring, act as a crucial bridge between design concepts and producible garments. However, existing uni-modal sewing pattern generation models struggle to effectively encode complex design concepts with a multi-modal nature and correlate them with vectorized sewing patterns that possess precise geometric structures and intricate sewing relations. In this work, we propose a novel sewing pattern generation approach \textbf{Design2GarmentCode} based on Large Multimodal Models (LMMs), to generate parametric pattern-making programs from multi-modal design concepts. LMM offers an intuitive interface for interpreting diverse design inputs, while pattern-making programs could serve as well-structured and semantically meaningful representations of sewing patterns, and act as a robust bridge connecting the cross-domain pattern-making knowledge embedded in LMMs with vectorized sewing patterns. Experimental results demonstrate that our method can flexibly handle various complex design expressions such as images, textual descriptions, designer sketches, or their combinations, and convert them into size-precise sewing patterns with correct stitches. Compared to previous methods, our approach significantly enhances training efficiency, generation quality, and authoring flexibility.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (2025)
Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
Modern deep neural networks have now reached human-level performance across a variety of tasks. However, unlike humans they lack the ability to explain their decisions by showing where and telling what concepts guided them. In this work, we present a unified framework for transforming any vision neural network into a spatially and conceptually interpretable model. We introduce a spatially-aware concept bottleneck layer that projects "black-box" features of pre-trained backbone models into interpretable concept maps, without requiring human labels. By training a classification layer over this bottleneck, we obtain a self-explaining model that articulates which concepts most influenced its prediction, along with heatmaps that ground them in the input image. Accordingly, we name this method "Spatially-Aware and Label-Free Concept Bottleneck Model" (SALF-CBM). Our results show that the proposed SALF-CBM: (1) Outperforms non-spatial CBM methods, as well as the original backbone, on a variety of classification tasks; (2) Produces high-quality spatial explanations, outperforming widely used heatmap-based methods on a zero-shot segmentation task; (3) Facilitates model exploration and debugging, enabling users to query specific image regions and refine the model's decisions by locally editing its concept maps.
CW-BASS: Confidence-Weighted Boundary-Aware Learning for Semi-Supervised Semantic Segmentation IJCNN 2025
Semi-supervised semantic segmentation (SSSS) aims to improve segmentation performance by utilizing large amounts of unlabeled data with limited labeled samples. Existing methods often suffer from coupling, where over-reliance on initial labeled data leads to suboptimal learning; confirmation bias, where incorrect predictions reinforce themselves repeatedly; and boundary blur caused by limited boundary-awareness and ambiguous edge cues. To address these issues, we propose CW-BASS, a novel framework for SSSS. In order to mitigate the impact of incorrect predictions, we assign confidence weights to pseudo-labels. Additionally, we leverage boundary-delineation techniques, which, despite being extensively explored in weakly-supervised semantic segmentation (WSSS), remain underutilized in SSSS. Specifically, our method: (1) reduces coupling via a confidence-weighted loss that adjusts pseudo-label influence based on their predicted confidence scores, (2) mitigates confirmation bias with a dynamic thresholding mechanism that learns to filter out pseudo-labels based on model performance, (3) tackles boundary blur using a boundary-aware module to refine segmentation near object edges, and (4) reduces label noise through a confidence decay strategy that progressively refines pseudo-labels during training. Extensive experiments on Pascal VOC 2012 and Cityscapes demonstrate that CW-BASS achieves state-of-the-art performance. Notably, CW-BASS achieves a 65.9% mIoU on Cityscapes under a challenging and underexplored 1/30 (3.3%) split (100 images), highlighting its effectiveness in limited-label settings. Our code is available at https://github.com/psychofict/CW-BASS.
comment: Accepted to IJCNN 2025
MARS: Memory-Enhanced Agents with Reflective Self-improvement
Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making, lack of long-term memory, and limited context windows in dynamic environments. To address these issues, this paper proposes an innovative framework Memory-Enhanced Agents with Reflective Self-improvement. The MARS framework comprises three agents: the User, the Assistant, and the Checker. By integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents capabilities in handling multi-tasking and long-span information.
comment: We are withdrawing this version because it duplicates our previous submission (arXiv:2409.00872)
Meta-LoRA: Meta-Learning LoRA Components for Domain-Aware ID Personalization
Recent advancements in text-to-image generative models, particularly latent diffusion models (LDMs), have demonstrated remarkable capabilities in synthesizing high-quality images from textual prompts. However, achieving identity personalization-ensuring that a model consistently generates subject-specific outputs from limited reference images-remains a fundamental challenge. To address this, we introduce Meta-Low-Rank Adaptation (Meta-LoRA), a novel framework that leverages meta-learning to encode domain-specific priors into LoRA-based identity personalization. Our method introduces a structured three-layer LoRA architecture that separates identity-agnostic knowledge from identity-specific adaptation. In the first stage, the LoRA Meta-Down layers are meta-trained across multiple subjects, learning a shared manifold that captures general identity-related features. In the second stage, only the LoRA-Mid and LoRA-Up layers are optimized to specialize on a given subject, significantly reducing adaptation time while improving identity fidelity. To evaluate our approach, we introduce Meta-PHD, a new benchmark dataset for identity personalization, and compare Meta-LoRA against state-of-the-art methods. Our results demonstrate that Meta-LoRA achieves superior identity retention, computational efficiency, and adaptability across diverse identity conditions. Our code, model weights, and dataset are released on barisbatuhan.github.io/Meta-LoRA.
LeanGaussian: Breaking Pixel or Point Cloud Correspondence in Modeling 3D Gaussians
Recently, Gaussian splatting has demonstrated significant success in novel view synthesis. Current methods often regress Gaussians with pixel or point cloud correspondence, linking each Gaussian with a pixel or a 3D point. This leads to the redundancy of Gaussians being used to overfit the correspondence rather than the objects represented by the 3D Gaussians themselves, consequently wasting resources and lacking accurate geometries or textures. In this paper, we introduce LeanGaussian, a novel approach that treats each query in deformable Transformer as one 3D Gaussian ellipsoid, breaking the pixel or point cloud correspondence constraints. We leverage deformable decoder to iteratively refine the Gaussians layer-by-layer with the image features as keys and values. Notably, the center of each 3D Gaussian is defined as 3D reference points, which are then projected onto the image for deformable attention in 2D space. On both the ShapeNet SRN dataset (category level) and the Google Scanned Objects dataset (open-category level, trained with the Objaverse dataset), our approach, outperforms prior methods by approximately 6.1%, achieving a PSNR of 25.44 and 22.36, respectively. Additionally, our method achieves a 3D reconstruction speed of 7.2 FPS and rendering speed 500 FPS. Codes are available at https://github.com/jwubz123/LeanGaussian.
Boost Your Human Image Generation Model via Direct Preference Optimization CVPR 2025
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: Accepted to CVPR 2025 as a highlight paper
AuroraCap: Efficient, Performant Video Detailed Captioning and a New Benchmark ICLR 2025
Video detailed captioning is a key task which aims to generate comprehensive and coherent textual descriptions of video content, benefiting both video understanding and generation. In this paper, we propose AuroraCap, a video captioner based on a large multimodal model. We follow the simplest architecture design without additional parameters for temporal modeling. To address the overhead caused by lengthy video sequences, we implement the token merging strategy, reducing the number of input visual tokens. Surprisingly, we found that this strategy results in little performance loss. AuroraCap shows superior performance on various video and image captioning benchmarks, for example, obtaining a CIDEr of 88.9 on Flickr30k, beating GPT-4V (55.3) and Gemini-1.5 Pro (82.2). However, existing video caption benchmarks only include simple descriptions, consisting of a few dozen words, which limits research in this field. Therefore, we develop VDC, a video detailed captioning benchmark with over one thousand carefully annotated structured captions. In addition, we propose a new LLM-assisted metric VDCscore for bettering evaluation, which adopts a divide-and-conquer strategy to transform long caption evaluation into multiple short question-answer pairs. With the help of human Elo ranking, our experiments show that this benchmark better correlates with human judgments of video detailed captioning quality.
comment: Accepted to ICLR 2025. Code, docs, weight, benchmark and training data are all avaliable at https://rese1f.github.io/aurora-web/
PolygonGNN: Representation Learning for Polygonal Geometries with Heterogeneous Visibility Graph
Polygon representation learning is essential for diverse applications, encompassing tasks such as shape coding, building pattern classification, and geographic question answering. While recent years have seen considerable advancements in this field, much of the focus has been on single polygons, overlooking the intricate inner- and inter-polygonal relationships inherent in multipolygons. To address this gap, our study introduces a comprehensive framework specifically designed for learning representations of polygonal geometries, particularly multipolygons. Central to our approach is the incorporation of a heterogeneous visibility graph, which seamlessly integrates both inner- and inter-polygonal relationships. To enhance computational efficiency and minimize graph redundancy, we implement a heterogeneous spanning tree sampling method. Additionally, we devise a rotation-translation invariant geometric representation, ensuring broader applicability across diverse scenarios. Finally, we introduce Multipolygon-GNN, a novel model tailored to leverage the spatial and semantic heterogeneity inherent in the visibility graph. Experiments on five real-world and synthetic datasets demonstrate its ability to capture informative representations for polygonal geometries. Code and data are available at \href{https://github.com/dyu62/PolyGNN}{$github.com/dyu62/PolyGNN$}.
Sliced Wasserstein Discrepancy in Disentangling Representation and Adaptation Networks for Unsupervised Domain Adaptation
This paper introduces DRANet-SWD as a novel complete pipeline for disentangling content and style representations of images for unsupervised domain adaptation (UDA). The approach builds upon DRANet by incorporating the sliced Wasserstein discrepancy (SWD) as a style loss instead of the traditional Gram matrix loss. The potential advantages of SWD over the Gram matrix loss for capturing style variations in domain adaptation are investigated. Experiments using digit classification datasets and driving scenario segmentation validate the method, demonstrating that DRANet-SWD enhances performance. Results indicate that SWD provides a more robust statistical comparison of feature distributions, leading to better style adaptation. These findings highlight the effectiveness of SWD in refining feature alignment and improving domain adaptation tasks across these benchmarks. Our code can be found here.
comment: 6 pages, 3 figures, submitted to IEEE conference
Learning Generalizable Features for Tibial Plateau Fracture Segmentation Using Masked Autoencoder and Limited Annotations
Accurate automated segmentation of tibial plateau fractures (TPF) from computed tomography (CT) requires large amounts of annotated data to train deep learning models, but obtaining such annotations presents unique challenges. The process demands expert knowledge to identify diverse fracture patterns, assess severity, and account for individual anatomical variations, making the annotation process highly time-consuming and expensive. Although semi-supervised learning methods can utilize unlabeled data, existing approaches often struggle with the complexity and variability of fracture morphologies, as well as limited generalizability across datasets. To tackle these issues, we propose an effective training strategy based on masked autoencoder (MAE) for the accurate TPF segmentation in CT. Our method leverages MAE pretraining to capture global skeletal structures and fine-grained fracture details from unlabeled data, followed by fine-tuning with a small set of labeled data. This strategy reduces the dependence on extensive annotations while enhancing the model's ability to learn generalizable and transferable features. The proposed method is evaluated on an in-house dataset containing 180 CT scans with TPF. Experimental results demonstrate that our method consistently outperforms semi-supervised methods, achieving an average Dice similarity coefficient (DSC) of 95.81%, average symmetric surface distance (ASSD) of 1.91mm, and Hausdorff distance (95HD) of 9.42mm with only 20 annotated cases. Moreover, our method exhibits strong transferability when applying to another public pelvic CT dataset with hip fractures, highlighting its potential for broader applications in fracture segmentation tasks.
comment: 5 pages, 6 figures. Accepted to IEEE EMBC 2025
No Detail Left Behind: Revisiting Self-Retrieval for Fine-Grained Image Captioning
Image captioning systems are unable to generate fine-grained captions as they are trained on data that is either noisy (alt-text) or generic (human annotations). This is further exacerbated by maximum likelihood training that encourages generation of frequently occurring phrases. Previous works have tried to address this limitation by fine-tuning captioners with a self-retrieval (SR) reward. However, we find that SR fine-tuning has a tendency to reduce caption faithfulness and even hallucinate. In this work, we circumvent this bottleneck by improving the MLE initialization of the captioning system and designing a curriculum for the SR fine-tuning process. To this extent, we present (1) Visual Caption Boosting, a novel framework to instill fine-grainedness in generic image captioning datasets while remaining anchored in human annotations; and (2) BagCurri, a carefully designed training curriculum that more optimally leverages the contrastive nature of the self-retrieval reward. Jointly, they enable the captioner to describe fine-grained aspects in the image while preserving faithfulness to ground-truth captions. Our approach outperforms previous work by +8.9% on SR against 99 random distractors (RD100) (Dessi et al., 2023); and +7.6% on ImageCoDe. Additionally, existing metrics to evaluate captioning systems fail to reward diversity or evaluate a model's fine-grained understanding ability. Our third contribution addresses this by proposing self-retrieval from the lens of evaluation. We introduce TrueMatch, a benchmark comprising bags of highly similar images that uses SR to assess the captioner's ability to capture subtle visual distinctions. We evaluate and compare several state-of-the-art open-source MLLMs on TrueMatch, and find that our SR approach outperforms them all by a significant margin (e.g. +4.8% - 7.1% over Cambrian) while having 1-2 orders of magnitude fewer parameters.
comment: Published at Transactions on Machine Learning Research (TMLR) https://openreview.net/forum?id=gqh0yzPYdo
ActiView: Evaluating Active Perception Ability for Multimodal Large Language Models
Active perception, a crucial human capability, involves setting a goal based on the current understanding of the environment and performing actions to achieve that goal. Despite significant efforts in evaluating Multimodal Large Language Models (MLLMs), active perception has been largely overlooked. To address this gap, we propose a novel benchmark named ActiView to evaluate active perception in MLLMs. We focus on a specialized form of Visual Question Answering (VQA) that eases and quantifies the evaluation yet challenging for existing MLLMs. Meanwhile, intermediate reasoning behaviors of models are also discussed. Given an image, we restrict the perceptual field of a model, requiring it to actively zoom or shift its perceptual field based on reasoning to answer the question successfully. We conduct extensive evaluation over 30 models, including proprietary and open-source models, and observe that restricted perceptual fields play a significant role in enabling active perception. Results reveal a significant gap in the active perception capability of MLLMs, indicating that this area deserves more attention. We hope that ActiView could help develop methods for MLLMs to understand multimodal inputs in more natural and holistic ways.
Discovering Influential Neuron Path in Vision Transformers ICLR 2025
Vision Transformer models exhibit immense power yet remain opaque to human understanding, posing challenges and risks for practical applications. While prior research has attempted to demystify these models through input attribution and neuron role analysis, there's been a notable gap in considering layer-level information and the holistic path of information flow across layers. In this paper, we investigate the significance of influential neuron paths within vision Transformers, which is a path of neurons from the model input to output that impacts the model inference most significantly. We first propose a joint influence measure to assess the contribution of a set of neurons to the model outcome. And we further provide a layer-progressive neuron locating approach that efficiently selects the most influential neuron at each layer trying to discover the crucial neuron path from input to output within the target model. Our experiments demonstrate the superiority of our method finding the most influential neuron path along which the information flows, over the existing baseline solutions. Additionally, the neuron paths have illustrated that vision Transformers exhibit some specific inner working mechanism for processing the visual information within the same image category. We further analyze the key effects of these neurons on the image classification task, showcasing that the found neuron paths have already preserved the model capability on downstream tasks, which may also shed some lights on real-world applications like model pruning. The project website including implementation code is available at https://foundation-model-research.github.io/NeuronPath/.
comment: Accepted in ICLR 2025
SketchRef: a Multi-Task Evaluation Benchmark for Sketch Synthesis
Sketching is a powerful artistic technique for capturing essential visual information about real-world objects and has increasingly attracted attention in image synthesis research. However, the field lacks a unified benchmark to evaluate the performance of various synthesis methods. To address this, we propose SketchRef, the first comprehensive multi-task evaluation benchmark for sketch synthesis. SketchRef fully leverages the shared characteristics between sketches and reference photos. It introduces two primary tasks: category prediction and structural consistency estimation, the latter being largely overlooked in previous studies. These tasks are further divided into five sub-tasks across four domains: animals, common things, human body, and faces. Recognizing the inherent trade-off between recognizability and simplicity in sketches, we are the first to quantify this balance by introducing a recognizability calculation method constrained by simplicity, mRS, ensuring fair and meaningful evaluations. To validate our approach, we collected 7,920 responses from art enthusiasts, confirming the effectiveness of our proposed evaluation metrics. Additionally, we evaluate the performance of existing sketch synthesis methods on our benchmark, highlighting their strengths and weaknesses. We hope this study establishes a standardized benchmark and offers valuable insights for advancing sketch synthesis algorithms.
EchoONE: Segmenting Multiple echocardiography Planes in One Model CVPR 2025
In clinical practice of echocardiography examinations, multiple planes containing the heart structures of different view are usually required in screening, diagnosis and treatment of cardiac disease. AI models for echocardiography have to be tailored for each specific plane due to the dramatic structure differences, thus resulting in repetition development and extra complexity. Effective solution for such a multi-plane segmentation (MPS) problem is highly demanded for medical images, yet has not been well investigated. In this paper, we propose a novel solution, EchoONE, for this problem with a SAM-based segmentation architecture, a prior-composable mask learning (PC-Mask) module for semantic-aware dense prompt generation, and a learnable CNN-branch with a simple yet effective local feature fusion and adaption (LFFA) module for SAM adapting. We extensively evaluated our method on multiple internal and external echocardiography datasets, and achieved consistently state-of-the-art performance for multi-source datasets with different heart planes. This is the first time that the MPS problem is solved in one model for echocardiography data. The code will be available at https://github.com/a2502503/EchoONE.
comment: Accepted by CVPR 2025
HGFormer: Topology-Aware Vision Transformer with HyperGraph Learning
The computer vision community has witnessed an extensive exploration of vision transformers in the past two years. Drawing inspiration from traditional schemes, numerous works focus on introducing vision-specific inductive biases. However, the implicit modeling of permutation invariance and fully-connected interaction with individual tokens disrupts the regional context and spatial topology, further hindering higher-order modeling. This deviates from the principle of perceptual organization that emphasizes the local groups and overall topology of visual elements. Thus, we introduce the concept of hypergraph for perceptual exploration. Specifically, we propose a topology-aware vision transformer called HyperGraph Transformer (HGFormer). Firstly, we present a Center Sampling K-Nearest Neighbors (CS-KNN) algorithm for semantic guidance during hypergraph construction. Secondly, we present a topology-aware HyperGraph Attention (HGA) mechanism that integrates hypergraph topology as perceptual indications to guide the aggregation of global and unbiased information during hypergraph messaging. Using HGFormer as visual backbone, we develop an effective and unitive representation, achieving distinct and detailed scene depictions. Empirical experiments show that the proposed HGFormer achieves competitive performance compared to the recent SoTA counterparts on various visual benchmarks. Extensive ablation and visualization studies provide comprehensive explanations of our ideas and contributions.
Measuring the Discrepancy between 3D Geometric Models using Directional Distance Fields
Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DirDist based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DirDist, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DirDist achieves significantly higher accuracy under all tasks. As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling. The source code is available at https://github.com/rsy6318/DirDist.
comment: Accepted by T-PAMI
Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation
Spectral variations pose a common challenge in analyzing hyperspectral images (HSI). To address this, low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data. However, the spatial distribution of ground objects in HSIs is inherently irregular, existing naturally in tensor format, with numerous class-specific regions manifesting as irregular tensors. Current low-rank representation techniques are designed for regular tensor structures and overlook this fundamental irregularity in real-world HSIs, leading to performance limitations. To tackle this issue, we propose a novel model for irregular tensor low-rank representation tailored to efficiently model irregular 3D cubes. By incorporating a non-convex nuclear norm to promote low-rankness and integrating a global negative low-rank term to enhance the discriminative ability, our proposed model is formulated as a constrained optimization problem and solved using an alternating augmented Lagrangian method. Experimental validation conducted on four public datasets demonstrates the superior performance of our method compared to existing state-of-the-art approaches. The code is publicly available at https://github.com/hb-studying/ITLRR.
VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
comment: Project page available at https://yxbian23.github.io/project/video-painter
EffOWT: Transfer Visual Language Models to Open-World Tracking Efficiently and Effectively
Open-World Tracking (OWT) aims to track every object of any category, which requires the model to have strong generalization capabilities. Trackers can improve their generalization ability by leveraging Visual Language Models (VLMs). However, challenges arise with the fine-tuning strategies when VLMs are transferred to OWT: full fine-tuning results in excessive parameter and memory costs, while the zero-shot strategy leads to sub-optimal performance. To solve the problem, EffOWT is proposed for efficiently transferring VLMs to OWT. Specifically, we build a small and independent learnable side network outside the VLM backbone. By freezing the backbone and only executing backpropagation on the side network, the model's efficiency requirements can be met. In addition, EffOWT enhances the side network by proposing a hybrid structure of Transformer and CNN to improve the model's performance in the OWT field. Finally, we implement sparse interactions on the MLP, thus reducing parameter updates and memory costs significantly. Thanks to the proposed methods, EffOWT achieves an absolute gain of 5.5% on the tracking metric OWTA for unknown categories, while only updating 1.3% of the parameters compared to full fine-tuning, with a 36.4% memory saving. Other metrics also demonstrate obvious improvement.
comment: 11 pages, 5 figures
Multispectral Demosaicing via Dual Cameras
Multispectral (MS) images capture detailed scene information across a wide range of spectral bands, making them invaluable for applications requiring rich spectral data. Integrating MS imaging into multi camera devices, such as smartphones, has the potential to enhance both spectral applications and RGB image quality. A critical step in processing MS data is demosaicing, which reconstructs color information from the mosaic MS images captured by the camera. This paper proposes a method for MS image demosaicing specifically designed for dual-camera setups where both RGB and MS cameras capture the same scene. Our approach leverages co-captured RGB images, which typically have higher spatial fidelity, to guide the demosaicing of lower-fidelity MS images. We introduce the Dual-camera RGB-MS Dataset - a large collection of paired RGB and MS mosaiced images with ground-truth demosaiced outputs - that enables training and evaluation of our method. Experimental results demonstrate that our method achieves state-of-the-art accuracy compared to existing techniques.
Sort-free Gaussian Splatting via Weighted Sum Rendering ICLR 2025
Recently, 3D Gaussian Splatting (3DGS) has emerged as a significant advancement in 3D scene reconstruction, attracting considerable attention due to its ability to recover high-fidelity details while maintaining low complexity. Despite the promising results achieved by 3DGS, its rendering performance is constrained by its dependence on costly non-commutative alpha-blending operations. These operations mandate complex view dependent sorting operations that introduce computational overhead, especially on the resource-constrained platforms such as mobile phones. In this paper, we propose Weighted Sum Rendering, which approximates alpha blending with weighted sums, thereby removing the need for sorting. This simplifies implementation, delivers superior performance, and eliminates the "popping" artifacts caused by sorting. Experimental results show that optimizing a generalized Gaussian splatting formulation to the new differentiable rendering yields competitive image quality. The method was implemented and tested in a mobile device GPU, achieving on average $1.23\times$ faster rendering.
comment: ICLR 2025
KnobGen: Controlling the Sophistication of Artwork in Sketch-Based Diffusion Models CVPR 2025
Recent advances in diffusion models have significantly improved text-to-image (T2I) generation, but they often struggle to balance fine-grained precision with high-level control. Methods like ControlNet and T2I-Adapter excel at following sketches by seasoned artists but tend to be overly rigid, replicating unintentional flaws in sketches from novice users. Meanwhile, coarse-grained methods, such as sketch-based abstraction frameworks, offer more accessible input handling but lack the precise control needed for detailed, professional use. To address these limitations, we propose KnobGen, a dual-pathway framework that democratizes sketch-based image generation by seamlessly adapting to varying levels of sketch complexity and user skill. KnobGen uses a Coarse-Grained Controller (CGC) module for high-level semantics and a Fine-Grained Controller (FGC) module for detailed refinement. The relative strength of these two modules can be adjusted through our knob inference mechanism to align with the user's specific needs. These mechanisms ensure that KnobGen can flexibly generate images from both novice sketches and those drawn by seasoned artists. This maintains control over the final output while preserving the natural appearance of the image, as evidenced on the MultiGen-20M dataset and a newly collected sketch dataset.
comment: Accepted to CVPR 2025 Workshop on CVEU
POLO -- Point-based, multi-class animal detection ECCV 2024
Automated wildlife surveys based on drone imagery and object detection technology are a powerful and increasingly popular tool in conservation biology. Most detectors require training images with annotated bounding boxes, which are tedious, expensive, and not always unambiguous to create. To reduce the annotation load associated with this practice, we develop POLO, a multi-class object detection model that can be trained entirely on point labels. POLO is based on simple, yet effective modifications to the YOLOv8 architecture, including alterations to the prediction process, training losses, and post-processing. We test POLO on drone recordings of waterfowl containing up to multiple thousands of individual birds in one image and compare it to a regular YOLOv8. Our experiments show that at the same annotation cost, POLO achieves improved accuracy in counting animals in aerial imagery.
comment: Published in the CV4Ecology workshop at ECCV 2024
ARC-Flow : Articulated, Resolution-Agnostic, Correspondence-Free Matching and Interpolation of 3D Shapes Under Flow Fields
This work presents a unified framework for the unsupervised prediction of physically plausible interpolations between two 3D articulated shapes and the automatic estimation of dense correspondence between them. Interpolation is modelled as a diffeomorphic transformation using a smooth, time-varying flow field governed by Neural Ordinary Differential Equations (ODEs). This ensures topological consistency and non-intersecting trajectories while accommodating hard constraints, such as volume preservation, and soft constraints, \eg physical priors. Correspondence is recovered using an efficient Varifold formulation, that is effective on high-fidelity surfaces with differing parameterisations. By providing a simple skeleton for the source shape only, we impose physically motivated constraints on the deformation field and resolve symmetric ambiguities. This is achieved without relying on skinning weights or any prior knowledge of the skeleton's target pose configuration. Qualitative and quantitative results demonstrate competitive or superior performance over existing state-of-the-art approaches in both shape correspondence and interpolation tasks across standard datasets.
comment: 23 pages, 20 figures
Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
comment: The code is available at https://github.com/bronyayang/Law_of_Vision_Representation_in_MLLMs
A2VIS: Amodal-Aware Approach to Video Instance Segmentation
Handling occlusion remains a significant challenge for video instance-level tasks like Multiple Object Tracking (MOT) and Video Instance Segmentation (VIS). In this paper, we propose a novel framework, Amodal-Aware Video Instance Segmentation (A2VIS), which incorporates amodal representations to achieve a reliable and comprehensive understanding of both visible and occluded parts of objects in a video. The key intuition is that awareness of amodal segmentation through spatiotemporal dimension enables a stable stream of object information. In scenarios where objects are partially or completely hidden from view, amodal segmentation offers more consistency and less dramatic changes along the temporal axis compared to visible segmentation. Hence, both amodal and visible information from all clips can be integrated into one global instance prototype. To effectively address the challenge of video amodal segmentation, we introduce the spatiotemporal-prior Amodal Mask Head, which leverages visible information intra clips while extracting amodal characteristics inter clips. Through extensive experiments and ablation studies, we show that A2VIS excels in both MOT and VIS tasks in identifying and tracking object instances with a keen understanding of their full shape.
comment: Accepted to IMAVIS. Project page: https://uark-aicv.github.io/A2VIS
Neural Approximate Mirror Maps for Constrained Diffusion Models ICLR 2025
Diffusion models excel at creating visually-convincing images, but they often struggle to meet subtle constraints inherent in the training data. Such constraints could be physics-based (e.g., satisfying a PDE), geometric (e.g., respecting symmetry), or semantic (e.g., including a particular number of objects). When the training data all satisfy a certain constraint, enforcing this constraint on a diffusion model makes it more reliable for generating valid synthetic data and solving constrained inverse problems. However, existing methods for constrained diffusion models are restricted in the constraints they can handle. For instance, recent work proposed to learn mirror diffusion models (MDMs), but analytical mirror maps only exist for convex constraints and can be challenging to derive. We propose neural approximate mirror maps (NAMMs) for general, possibly non-convex constraints. Our approach only requires a differentiable distance function from the constraint set. We learn an approximate mirror map that transforms data into an unconstrained space and a corresponding approximate inverse that maps data back to the constraint set. A generative model, such as an MDM, can then be trained in the learned mirror space and its samples restored to the constraint set by the inverse map. We validate our approach on a variety of constraints, showing that compared to an unconstrained diffusion model, a NAMM-based MDM substantially improves constraint satisfaction. We also demonstrate how existing diffusion-based inverse-problem solvers can be easily applied in the learned mirror space to solve constrained inverse problems.
comment: ICLR 2025
STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
Adaptive Augmentation Policy Optimization with LLM Feedback
Data augmentation is a critical component of deep learning pipelines, enhancing model generalization by increasing dataset diversity. Traditional augmentation strategies rely on manually designed transformations, stochastic sampling, or automated search-based approaches. Although automated methods improve performance, they often require extensive computational resources and are tailored to specific datasets. In this work, we propose a Large Language Model (LLM)-guided augmentation optimization strategy that refines augmentation policies based on model performance feedback. We introduce two approaches: (1) LLM-Guided Augmentation Policy Optimization, where augmentation policies are selected by an LLM prior to training and iteratively refined across multiple training cycles, and (2) Adaptive LLM-Guided Augmentation Policy Optimization, where policies adapt in real-time based on performance metrics. This in-training approach eliminates the need for full model retraining before receiving LLM feedback, thereby reducing computational costs while improving performance. Our methodology employs an LLM to dynamically select augmentation transformations based on dataset characteristics, model architecture, and prior training outcomes. Unlike traditional search-based methods, our approach leverages the contextual knowledge of LLMs, particularly in specialized domains like medical imaging, to recommend augmentation strategies tailored to domain-specific data. We evaluate our approach on multiple domain-specific image classification datasets where augmentation is key to model robustness. Results show that LLM-guided augmentation optimization outperforms traditional methods, improving model accuracy. These findings highlight the potential of LLMs in automating and adapting deep learning training workflows.
comment: 15 pages, 4 tables, 3 figures submitted for consideration to 2025 Medical Image Understanding and Analysis Conference (MIUA)
Computation and Language
Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning
Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones. Existing methods typically rely on low-rank, parameter-efficient updates that limit the model's expressivity and introduce additional parameters per task, leading to scalability issues. To address these limitations, we propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD). Our method dynamically identifies task-specific low-rank parameter subspaces and constrains updates to be orthogonal to critical directions associated with prior tasks, thus effectively minimizing interference without additional parameter overhead or storing previous task gradients. We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models, spanning diverse tasks including classification, generation, and reasoning. Empirically, our method achieves state-of-the-art results, up to 7% higher average accuracy than recent baselines like O-LoRA, and notably maintains the model's general linguistic capabilities, instruction-following accuracy, and safety throughout the continual learning process by reducing forgetting to near-negligible levels. Our adaptive SVD framework effectively balances model plasticity and knowledge retention, providing a practical, theoretically grounded, and computationally scalable solution for continual learning scenarios in large language models.
comment: 25 pages, 13 figures, 6 tables
OLMoTrace: Tracing Language Model Outputs Back to Trillions of Training Tokens ACL 2025
We present OLMoTrace, the first system that traces the outputs of language models back to their full, multi-trillion-token training data in real time. OLMoTrace finds and shows verbatim matches between segments of language model output and documents in the training text corpora. Powered by an extended version of infini-gram (Liu et al., 2024), our system returns tracing results within a few seconds. OLMoTrace can help users understand the behavior of language models through the lens of their training data. We showcase how it can be used to explore fact checking, hallucination, and the creativity of language models. OLMoTrace is publicly available and fully open-source.
comment: Under submission at ACL 2025 demo track
OmniCaptioner: One Captioner to Rule Them All
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
comment: More visualizations on Homepage: https://alpha-innovator.github.io/OmniCaptioner-project-page and Official code: https://github.com/Alpha-Innovator/OmniCaptioner
KG-LLM-Bench: A Scalable Benchmark for Evaluating LLM Reasoning on Textualized Knowledge Graphs NAACL
Knowledge graphs have emerged as a popular method for injecting up-to-date, factual knowledge into large language models (LLMs). This is typically achieved by converting the knowledge graph into text that the LLM can process in context. While multiple methods of encoding knowledge graphs have been proposed, the impact of this textualization process on LLM performance remains under-explored. We introduce KG-LLM-Bench, a comprehensive and extensible benchmark spanning five knowledge graph understanding tasks, and evaluate how different encoding strategies affect performance across various base models. Our extensive experiments with seven language models and five textualization strategies provide insights for optimizing LLM performance on KG reasoning tasks.
comment: To be presented at NAACL-HLT, KnowledgeNLP Workshop (2025)
A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices - including decoding parameters, random seeds, prompt formatting, and even hardware and software-framework configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that reinforcement learning (RL) approaches yield only modest improvements - far below prior claims - and are prone to overfitting, especially on small-scale benchmarks like AIME24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
comment: Technical Report
Self-Steering Language Models
While test-time reasoning enables language models to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. In decoupling planning from execution, our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
DeduCE: Deductive Consistency as a Framework to Evaluate LLM Reasoning
Despite great performance on Olympiad-level reasoning problems, frontier large language models can still struggle on high school math when presented with novel problems outside standard benchmarks. Going beyond final accuracy, we propose a deductive consistency metric to analyze chain-of-thought output from language models (LMs).Formally, deductive reasoning involves two subtasks: understanding a set of input premises and inferring the conclusions that follow from them. The proposed metric studies LMs' performance on these subtasks, with the goal of explaining LMs' reasoning errors on novel problems: how well do LMs understand input premises with increasing context lengths, and how well can they infer conclusions over multiple reasoning hops? Since existing benchmarks may be memorized, we develop a pipeline to evaluate LMs' deductive consistency on novel, perturbed versions of benchmark problems. On novel grade school math problems (GSM-8k), we find that LMs are fairly robust to increasing number of input premises, but suffer significant accuracy decay as the number of reasoning hops is increased. Interestingly, these errors are masked in the original benchmark as all models achieve near 100% accuracy. As we increase the number of solution steps using a synthetic dataset, prediction over multiple hops still remains the major source of error compared to understanding input premises. Other factors, such as shifts in language style or natural propagation of early errors do not explain the trends. Our analysis provides a new view to characterize LM reasoning -- as computations over a window of input premises and reasoning hops -- that can provide unified evaluation across problem domains.
SkillWeaver: Web Agents can Self-Improve by Discovering and Honing Skills
To survive and thrive in complex environments, humans have evolved sophisticated self-improvement mechanisms through environment exploration, hierarchical abstraction of experiences into reuseable skills, and collaborative construction of an ever-growing skill repertoire. Despite recent advancements, autonomous web agents still lack crucial self-improvement capabilities, struggling with procedural knowledge abstraction, refining skills, and skill composition. In this work, we introduce SkillWeaver, a skill-centric framework enabling agents to self-improve by autonomously synthesizing reusable skills as APIs. Given a new website, the agent autonomously discovers skills, executes them for practice, and distills practice experiences into robust APIs. Iterative exploration continually expands a library of lightweight, plug-and-play APIs, significantly enhancing the agent's capabilities. Experiments on WebArena and real-world websites demonstrate the efficacy of SkillWeaver, achieving relative success rate improvements of 31.8% and 39.8%, respectively. Additionally, APIs synthesized by strong agents substantially enhance weaker agents through transferable skills, yielding improvements of up to 54.3% on WebArena. These results demonstrate the effectiveness of honing diverse website interactions into APIs, which can be seamlessly shared among various web agents.
Kaleidoscope: In-language Exams for Massively Multilingual Vision Evaluation
The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.
A Survey on Personalized and Pluralistic Preference Alignment in Large Language Models
Personalized preference alignment for large language models (LLMs), the process of tailoring LLMs to individual users' preferences, is an emerging research direction spanning the area of NLP and personalization. In this survey, we present an analysis of works on personalized alignment and modeling for LLMs. We introduce a taxonomy of preference alignment techniques, including training time, inference time, and additionally, user-modeling based methods. We provide analysis and discussion on the strengths and limitations of each group of techniques and then cover evaluation, benchmarks, as well as open problems in the field.
HalluciNot: Hallucination Detection Through Context and Common Knowledge Verification
This paper introduces a comprehensive system for detecting hallucinations in large language model (LLM) outputs in enterprise settings. We present a novel taxonomy of LLM responses specific to hallucination in enterprise applications, categorizing them into context-based, common knowledge, enterprise-specific, and innocuous statements. Our hallucination detection model HDM-2 validates LLM responses with respect to both context and generally known facts (common knowledge). It provides both hallucination scores and word-level annotations, enabling precise identification of problematic content. To evaluate it on context-based and common-knowledge hallucinations, we introduce a new dataset HDMBench. Experimental results demonstrate that HDM-2 out-performs existing approaches across RagTruth, TruthfulQA, and HDMBench datasets. This work addresses the specific challenges of enterprise deployment, including computational efficiency, domain specialization, and fine-grained error identification. Our evaluation dataset, model weights, and inference code are publicly available.
TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling
Large Language Models (LLMs) excel in text-based natural language processing tasks but remain constrained by their reliance on textual inputs and outputs. To enable more natural human-LLM interaction, recent progress have focused on deriving a spoken language model (SLM) that can not only listen but also generate speech. To achieve this, a promising direction is to conduct speech-text joint modeling. However, recent SLM still lag behind text LLM due to the modality mismatch. One significant mismatch can be the sequence lengths between speech and text tokens. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through the special aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. Furthermore, by leveraging TASTE, we can adapt text-based LLMs into effective SLMs with parameter-efficient fine-tuning techniques such as Low-Rank Adaptation (LoRA). Experimental results on benchmark tasks, including SALMON and StoryCloze, demonstrate that TASTE-based SLMs perform similarly to previous full-finetuning methods. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and models are publicly available at https://github.com/mtkresearch/TASTE-SpokenLM.
comment: Preprint. Work in progress
A Unified Agentic Framework for Evaluating Conditional Image Generation
Conditional image generation has gained significant attention for its ability to personalize content. However, the field faces challenges in developing task-agnostic, reliable, and explainable evaluation metrics. This paper introduces CIGEval, a unified agentic framework for comprehensive evaluation of conditional image generation tasks. CIGEval utilizes large multimodal models (LMMs) as its core, integrating a multi-functional toolbox and establishing a fine-grained evaluation framework. Additionally, we synthesize evaluation trajectories for fine-tuning, empowering smaller LMMs to autonomously select appropriate tools and conduct nuanced analyses based on tool outputs. Experiments across seven prominent conditional image generation tasks demonstrate that CIGEval (GPT-4o version) achieves a high correlation of 0.4625 with human assessments, closely matching the inter-annotator correlation of 0.47. Moreover, when implemented with 7B open-source LMMs using only 2.3K training trajectories, CIGEval surpasses the previous GPT-4o-based state-of-the-art method. Case studies on GPT-4o image generation highlight CIGEval's capability in identifying subtle issues related to subject consistency and adherence to control guidance, indicating its great potential for automating evaluation of image generation tasks with human-level reliability.
comment: Work in progress. GitHub: https://github.com/HITsz-TMG/Agentic-CIGEval
Data Augmentation and Hyperparameter Tuning for Low-Resource MFA
A continued issue for those working with computational tools and endangered and under-resourced languages is the lower accuracy of results for languages with smaller amounts of data. We attempt to ameliorate this issue by using data augmentation methods to increase corpus size, comparing augmentation to hyperparameter tuning for multilingual forced alignment. Unlike text augmentation methods, audio augmentation does not lead to substantially increased performance. Hyperparameter tuning, on the other hand, results in substantial improvement without (for this amount of data) infeasible additional training time. For languages with small to medium amounts of training data, this is a workable alternative to adapting models from high-resource languages.
Evaluating Retrieval Augmented Generative Models for Document Queries in Transportation Safety
Applications of generative Large Language Models LLMs are rapidly expanding across various domains, promising significant improvements in workflow efficiency and information retrieval. However, their implementation in specialized, high-stakes domains such as hazardous materials transportation is challenging due to accuracy and reliability concerns. This study evaluates the performance of three fine-tuned generative models, ChatGPT, Google's Vertex AI, and ORNL Retrieval Augmented Generation augmented LLaMA 2 and LLaMA in retrieving regulatory information essential for hazardous material transportation compliance in the United States. Utilizing approximately 40 publicly available federal and state regulatory documents, we developed 100 realistic queries relevant to route planning and permitting requirements. Responses were qualitatively rated based on accuracy, detail, and relevance, complemented by quantitative assessments of semantic similarity between model outputs. Results demonstrated that the RAG-augmented LLaMA models significantly outperformed Vertex AI and ChatGPT, providing more detailed and generally accurate information, despite occasional inconsistencies. This research introduces the first known application of RAG in transportation safety, emphasizing the need for domain-specific fine-tuning and rigorous evaluation methodologies to ensure reliability and minimize the risk of inaccuracies in high-stakes environments.
comment: 14 pages, 3 Figures, 3 tables
Towards LLMs Robustness to Changes in Prompt Format Styles NAACL
Large language models (LLMs) have gained popularity in recent years for their utility in various applications. However, they are sensitive to non-semantic changes in prompt formats, where small changes in the prompt format can lead to significant performance fluctuations. In the literature, this problem is commonly referred to as prompt brittleness. Previous research on prompt engineering has focused mainly on developing techniques for identifying the optimal prompt for specific tasks. Some studies have also explored the issue of prompt brittleness and proposed methods to quantify performance variations; however, no simple solution has been found to address this challenge. We propose Mixture of Formats (MOF), a simple and efficient technique for addressing prompt brittleness in LLMs by diversifying the styles used in the prompt few-shot examples. MOF was inspired by computer vision techniques that utilize diverse style datasets to prevent models from associating specific styles with the target variable. Empirical results show that our proposed technique reduces style-induced prompt brittleness in various LLMs while also enhancing overall performance across prompt variations and different datasets.
comment: NAACL Student Research Workshop (SRW) 2025
RNN-Transducer-based Losses for Speech Recognition on Noisy Targets
Training speech recognition systems on noisy transcripts is a significant challenge in industrial pipelines, where datasets are enormous and ensuring accurate transcription for every instance is difficult. In this work, we introduce novel loss functions to mitigate the impact of transcription errors in RNN-Transducer models. Our Star-Transducer loss addresses deletion errors by incorporating "skip frame" transitions in the loss lattice, restoring over 90% of the system's performance compared to models trained with accurate transcripts. The Bypass-Transducer loss uses "skip token" transitions to tackle insertion errors, recovering more than 60% of the quality. Finally, the Target-Robust Transducer loss merges these approaches, offering robust performance against arbitrary errors. Experimental results demonstrate that the Target-Robust Transducer loss significantly improves RNN-T performance on noisy data by restoring over 70% of the quality compared to well-transcribed data.
comment: Final Project Report, Bachelor's Degree in Computer Science, University of London, March 2024
Adaptive Computation Pruning for the Forgetting Transformer
The recently proposed Forgetting Transformer (FoX) incorporates a forget gate into softmax attention and has shown consistently better or on-par performance compared to the standard RoPE-based Transformer. Notably, many attention heads in FoX tend to forget quickly, causing their output at each timestep to rely primarily on the local context. Based on this observation, we propose Adaptive Computation Pruning (ACP) for FoX, a method that dynamically prunes computations involving input-output dependencies that are strongly decayed by the forget gate. This is achieved using a dynamically set pruning threshold that ensures that the pruned attention weights remain negligible. We apply ACP to language model pretraining with FoX and show it consistently reduces the number of FLOPs in softmax attention by around 70% across different model sizes and context lengths, resulting in a roughly 10% to 35% improvement in training throughput. Furthermore, longer context lengths yield greater computational savings. All these speed improvements are achieved without any performance degradation. We also perform several analyses to provide deeper insights into our method, such as examining the pruning patterns and analyzing the distribution of FLOP savings across different attention heads. Our code is available at https://github.com/zhixuan-lin/arctic-fox.
comment: Preprint. Under review
RuOpinionNE-2024: Extraction of Opinion Tuples from Russian News Texts
In this paper, we introduce the Dialogue Evaluation shared task on extraction of structured opinions from Russian news texts. The task of the contest is to extract opinion tuples for a given sentence; the tuples are composed of a sentiment holder, its target, an expression and sentiment from the holder to the target. In total, the task received more than 100 submissions. The participants experimented mainly with large language models in zero-shot, few-shot and fine-tuning formats. The best result on the test set was obtained with fine-tuning of a large language model. We also compared 30 prompts and 11 open source language models with 3-32 billion parameters in the 1-shot and 10-shot settings and found the best models and prompts.
comment: RuOpinionNE-2024 represent a proceeding of RuSentNE-2023. It contributes with extraction and evaluation of factual statements that support the assigned sentiment
Data Augmentation for Fake Reviews Detection in Multiple Languages and Multiple Domains
With the growth of the Internet, buying habits have changed, and customers have become more dependent on the online opinions of other customers to guide their purchases. Identifying fake reviews thus became an important area for Natural Language Processing (NLP) research. However, developing high-performance NLP models depends on the availability of large amounts of training data, which are often not available for low-resource languages or domains. In this research, we used large language models to generate datasets to train fake review detectors. Our approach was used to generate fake reviews in different domains (book reviews, restaurant reviews, and hotel reviews) and different languages (English and Chinese). Our results demonstrate that our data augmentation techniques result in improved performance at fake review detection for all domains and languages. The accuracy of our fake review detection model can be improved by 0.3 percentage points on DeRev TEST, 10.9 percentage points on Amazon TEST, 8.3 percentage points on Yelp TEST and 7.2 percentage points on DianPing TEST using the augmented datasets.
comment: 32 pages, 15 figures
Identifying Aspects in Peer Reviews
Peer review is central to academic publishing, but the growing volume of submissions is straining the process. This motivates the development of computational approaches to support peer review. While each review is tailored to a specific paper, reviewers often make assessments according to certain aspects such as Novelty, which reflect the values of the research community. This alignment creates opportunities for standardizing the reviewing process, improving quality control, and enabling computational support. While prior work has demonstrated the potential of aspect analysis for peer review assistance, the notion of aspect remains poorly formalized. Existing approaches often derive aspect sets from review forms and guidelines of major NLP venues, yet data-driven methods for aspect identification are largely underexplored. To address this gap, our work takes a bottom-up approach: we propose an operational definition of aspect and develop a data-driven schema for deriving fine-grained aspects from a corpus of peer reviews. We introduce a dataset of peer reviews augmented with aspects and show how it can be used for community-level review analysis. We further show how the choice of aspects can impact downstream applications, such as LLM-generated review detection. Our results lay a foundation for a principled and data-driven investigation of review aspects, and pave the path for new applications of NLP to support peer review.
Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: PersonalityAdapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
Integrating Cognitive Processing Signals into Language Models: A Review of Advances, Applications and Future Directions
Recently, the integration of cognitive neuroscience in Natural Language Processing (NLP) has gained significant attention. This article provides a critical and timely overview of recent advancements in leveraging cognitive signals, particularly Eye-tracking (ET) signals, to enhance Language Models (LMs) and Multimodal Large Language Models (MLLMs). By incorporating user-centric cognitive signals, these approaches address key challenges, including data scarcity and the environmental costs of training large-scale models. Cognitive signals enable efficient data augmentation, faster convergence, and improved human alignment. The review emphasises the potential of ET data in tasks like Visual Question Answering (VQA) and mitigating hallucinations in MLLMs, and concludes by discussing emerging challenges and research trends.
Open Problems and a Hypothetical Path Forward in LLM Knowledge Paradigms
Knowledge is fundamental to the overall capabilities of Large Language Models (LLMs). The knowledge paradigm of a model, which dictates how it encodes and utilizes knowledge, significantly affects its performance. Despite the continuous development of LLMs under existing knowledge paradigms, issues within these frameworks continue to constrain model potential. This blog post highlight three critical open problems limiting model capabilities: (1) challenges in knowledge updating for LLMs, (2) the failure of reverse knowledge generalization (the reversal curse), and (3) conflicts in internal knowledge. We review recent progress made in addressing these issues and discuss potential general solutions. Based on observations in these areas, we propose a hypothetical paradigm based on Contextual Knowledge Scaling, and further outline implementation pathways that remain feasible within contemporary techniques. Evidence suggests this approach holds potential to address current shortcomings, serving as our vision for future model paradigms. This blog post aims to provide researchers with a brief overview of progress in LLM knowledge systems, while provide inspiration for the development of next-generation model architectures.
comment: Blog post preprint, work in progress
Inducing Programmatic Skills for Agentic Tasks
To succeed in common digital tasks such as web navigation, agents must carry out a variety of specialized tasks such as searching for products or planning a travel route. To tackle these tasks, agents can bootstrap themselves by learning task-specific skills online through interaction with the web environment. In this work, we demonstrate that programs are an effective representation for skills. We propose agent skill induction (ASI), which allows agents to adapt themselves by inducing, verifying, and utilizing program-based skills on the fly. We start with an evaluation on the WebArena agent benchmark and show that ASI outperforms the static baseline agent and its text-skill counterpart by 23.5% and 11.3% in success rate, mainly thanks to the programmatic verification guarantee during the induction phase. ASI also improves efficiency by reducing 10.7-15.3% of the steps over baselines, by composing primitive actions (e.g., click) into higher-level skills (e.g., search product). We then highlight the efficacy of ASI in remaining efficient and accurate under scaled-up web activities. Finally, we examine the generalizability of induced skills when transferring between websites, and find that ASI can effectively reuse common skills, while also updating incompatible skills to versatile website changes.
A Graph Diffusion Algorithm for Lexical Similarity Evaluation
In this paper, we present an algorithm for evaluating lexical similarity between a given language and several reference language clusters. As an input, we have a list of concepts and the corresponding translations in all considered languages. Moreover, each reference language is assigned to one of $c$ language clusters. For each of the concepts, the algorithm computes the distance between each pair of translations. Based on these distances, it constructs a weighted directed graph, where every vertex represents a language. After, it solves a graph diffusion equation with a Dirichlet boundary condition, where the unknown is a map from the vertex set to $\mathbb{R}^c$. The resulting coordinates are values from the interval $[0,1]$ and they can be interpreted as probabilities of belonging to each of the clusters or as a lexical similarity distribution with respect to the reference clusters. The distances between translations are calculated using phonetic transcriptions and a modification of the Damerau-Levenshtein distance. The algorithm can be useful in analyzing relationships between languages spoken in multilingual territories with a lot of mutual influences. We demonstrate this by presenting a case study regarding various European languages.
comment: 28 pages
Domain-Specific Pruning of Large Mixture-of-Experts Models with Few-shot Demonstrations
Mixture-of-Experts (MoE) models achieve a favorable trade-off between performance and inference efficiency by activating only a subset of experts. However, the memory overhead of storing all experts remains a major limitation, especially in large-scale MoE models such as DeepSeek-R1 (671B). In this study, we investigate domain specialization and expert redundancy in large-scale MoE models and uncover a consistent behavior we term few-shot expert localization, with only a few demonstrations, the model consistently activates a sparse and stable subset of experts. Building on this observation, we propose a simple yet effective pruning framework, EASY-EP, that leverages a few domain-specific demonstrations to identify and retain only the most relevant experts. EASY-EP comprises two key components: output-aware expert importance assessment and expert-level token contribution estimation. The former evaluates the importance of each expert for the current token by considering the gating scores and magnitudes of the outputs of activated experts, while the latter assesses the contribution of tokens based on representation similarities after and before routed experts. Experiments show that our method can achieve comparable performances and $2.99\times$ throughput under the same memory budget with full DeepSeek-R1 with only half the experts. Our code is available at https://github.com/RUCAIBox/EASYEP.
FamilyTool: A Multi-hop Personalized Tool Use Benchmark
The integration of tool learning with Large Language Models (LLMs) has expanded their capabilities in handling complex tasks by leveraging external tools. However, existing benchmarks for tool learning inadequately address critical real-world personalized scenarios, particularly those requiring multi-hop reasoning and inductive knowledge adaptation in dynamic environments. To bridge this gap, we introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG) that simulates personalized, multi-hop tool use scenarios. FamilyTool challenges LLMs with queries spanning 1 to 3 relational hops (e.g., inferring familial connections and preferences) and incorporates an inductive KG setting where models must adapt to unseen user preferences and relationships without re-training, a common limitation in prior approaches that compromises generalization. We further propose KGETool: a simple KG-augmented evaluation pipeline to systematically assess LLMs' tool use ability in these settings. Experiments reveal significant performance gaps in state-of-the-art LLMs, with accuracy dropping sharply as hop complexity increases and inductive scenarios exposing severe generalization deficits. These findings underscore the limitations of current LLMs in handling personalized, evolving real-world contexts and highlight the urgent need for advancements in tool-learning frameworks. FamilyTool serves as a critical resource for evaluating and advancing LLM agents' reasoning, adaptability, and scalability in complex, dynamic environments. Code and dataset are available at Github.
CAT: Circular-Convolutional Attention for Sub-Quadratic Transformers
Transformers have driven remarkable breakthroughs in natural language processing and computer vision, yet their standard attention mechanism still imposes O(N^2) complexity, hindering scalability to longer sequences. We introduce Circular-convolutional ATtention (CAT), a Fourier-based approach that efficiently applies circular convolutions to reduce complexity without sacrificing representational power. CAT achieves O(NlogN) computations, requires fewer learnable parameters by streamlining fully-connected layers, and introduces no heavier operations, resulting in consistent accuracy improvements and about a 10% speedup in naive PyTorch implementations on large-scale benchmarks such as ImageNet-1k and WikiText-103. Grounded in an engineering-isomorphism framework, CAT's design not only offers practical efficiency and ease of implementation but also provides insights to guide the development of next-generation, high-performance Transformer architectures. Finally, our ablation studies highlight the key conditions underlying CAT's success, shedding light on broader principles for scalable attention mechanisms.
NLP Security and Ethics, in the Wild ACL
As NLP models are used by a growing number of end-users, an area of increasing importance is NLP Security (NLPSec): assessing the vulnerability of models to malicious attacks and developing comprehensive countermeasures against them. While work at the intersection of NLP and cybersecurity has the potential to create safer NLP for all, accidental oversights can result in tangible harm (e.g., breaches of privacy or proliferation of malicious models). In this emerging field, however, the research ethics of NLP have not yet faced many of the long-standing conundrums pertinent to cybersecurity, until now. We thus examine contemporary works across NLPSec, and explore their engagement with cybersecurity's ethical norms. We identify trends across the literature, ultimately finding alarming gaps on topics like harm minimization and responsible disclosure. To alleviate these concerns, we provide concrete recommendations to help NLP researchers navigate this space more ethically, bridging the gap between traditional cybersecurity and NLP ethics, which we frame as ``white hat NLP''. The goal of this work is to help cultivate an intentional culture of ethical research for those working in NLP Security.
comment: Accepted to TACL
SEE: Continual Fine-tuning with Sequential Ensemble of Experts
Continual fine-tuning of large language models (LLMs) suffers from catastrophic forgetting. Rehearsal-based methods mitigate this problem by retaining a small set of old data. Nevertheless, they still suffer inevitable performance loss. Although training separate experts for each task can help prevent forgetting, effectively assembling them remains a challenge. Some approaches use routers to assign tasks to experts, but in continual learning, they often require retraining for optimal performance. To address these challenges, we introduce the Sequential Ensemble of Experts (SEE) framework. SEE removes the need for an additional router, allowing each expert to independently decide whether a query should be handled. The framework employs distributed routing, and during continual fine-tuning, SEE only requires the training of new experts for incoming tasks rather than retraining the entire system. Experiments reveal that the SEE outperforms prior approaches, including multi-task learning, in continual fine-tuning. It also demonstrates remarkable generalization ability, as the expert can effectively identify out-of-distribution queries, which can then be directed to a more generalized model for resolution. This work highlights the promising potential of integrating routing and response mechanisms within each expert, paving the way for the future of distributed model ensembling.
comment: 9pages
Bridging the Gap Between Preference Alignment and Machine Unlearning
Despite advances in Preference Alignment (PA) for Large Language Models (LLMs), mainstream methods like Reinforcement Learning with Human Feedback (RLHF) face notable challenges. These approaches require high-quality datasets of positive preference examples, which are costly to obtain and computationally intensive due to training instability, limiting their use in low-resource scenarios. LLM unlearning technique presents a promising alternative, by directly removing the influence of negative examples. However, current research has primarily focused on empirical validation, lacking systematic quantitative analysis. To bridge this gap, we propose a framework to explore the relationship between PA and LLM unlearning. Specifically, we introduce a bi-level optimization-based method to quantify the impact of unlearning specific negative examples on PA performance. Our analysis reveals that not all negative examples contribute equally to alignment improvement when unlearned, and the effect varies significantly across examples. Building on this insight, we pose a crucial question: how can we optimally select and weight negative examples for unlearning to maximize PA performance? To answer this, we propose a framework called Unlearning to Align (U2A), which leverages bi-level optimization to efficiently select and unlearn examples for optimal PA performance. We validate the proposed method through extensive experiments, with results confirming its effectiveness.
comment: 17 pages
A Neuro-inspired Interpretation of Unlearning in Large Language Models through Sample-level Unlearning Difficulty
Driven by privacy protection laws and regulations, unlearning in Large Language Models (LLMs) is gaining increasing attention. However, current research often neglects the interpretability of the unlearning process, particularly concerning sample-level unlearning difficulty. Existing studies typically assume a uniform unlearning difficulty across samples. This simplification risks attributing the performance of unlearning algorithms to sample selection rather than the algorithm's design, potentially steering the development of LLM unlearning in the wrong direction. Thus, we investigate the relationship between LLM unlearning and sample characteristics, with a focus on unlearning difficulty. Drawing inspiration from neuroscience, we propose a Memory Removal Difficulty ($\mathrm{MRD}$) metric to quantify sample-level unlearning difficulty. Using $\mathrm{MRD}$, we analyze the characteristics of hard-to-unlearn versus easy-to-unlearn samples. Furthermore, we propose an $\mathrm{MRD}$-based weighted sampling method to optimize existing unlearning algorithms, which prioritizes easily forgettable samples, thereby improving unlearning efficiency and effectiveness. We validate the proposed metric and method using public benchmarks and datasets, with results confirming its effectiveness.
comment: 16 pages
ThoughtProbe: Classifier-Guided Thought Space Exploration Leveraging LLM Intrinsic Reasoning
Pre-trained large language models (LLMs) have been demonstrated to possess intrinsic reasoning capabilities that can emerge naturally when expanding the response space. However, the neural representation mechanisms underlying these intrinsic capabilities and approaches for their optimal utilization remain inadequately understood. In this work, we make the key discovery that a simple linear classifier can effectively detect intrinsic reasoning capabilities in LLMs' activation space, particularly within specific representation types and network layers. Based on this finding, we propose a classifier-guided search framework that strategically explore a tree-structured response space. In each node expansion, the classifier serves as a scoring and ranking mechanism that efficiently allocates computational resources by identifying and prioritizing more thoughtful reasoning directions for continuation. After completing the tree expansion, we collect answers from all branches to form a candidate answer pool. We propose a branch-aggregation selection method that marginalizes over all supporting branches by aggregating their thoughtfulness scores, thereby identifying the optimal answer from the pool. Experimental results show that our framework's comprehensive exploration not only covers valid reasoning chains but also effectively identifies them, achieving significant improvements across multiple arithmetic reasoning benchmarks.
Wanting to be Understood
This paper explores an intrinsic motivation for mutual awareness, hypothesizing that humans possess a fundamental drive to understand \textit{and to be understood} even in the absence of extrinsic rewards. Through simulations of the perceptual crossing paradigm, we explore the effect of various internal reward functions in reinforcement learning agents. The drive to understand is implemented as an active inference type artificial curiosity reward, whereas the drive to be understood is implemented through intrinsic rewards for imitation, influence/impressionability, and sub-reaction time anticipation of the other. Results indicate that while artificial curiosity alone does not lead to a preference for social interaction, rewards emphasizing reciprocal understanding successfully drive agents to prioritize interaction. We demonstrate that this intrinsic motivation can facilitate cooperation in tasks where only one agent receives extrinsic reward for the behaviour of the other.
Automated Business Process Analysis: An LLM-Based Approach to Value Assessment
Business processes are fundamental to organizational operations, yet their optimization remains challenging due to the timeconsuming nature of manual process analysis. Our paper harnesses Large Language Models (LLMs) to automate value-added analysis, a qualitative process analysis technique that aims to identify steps in the process that do not deliver value. To date, this technique is predominantly manual, time-consuming, and subjective. Our method offers a more principled approach which operates in two phases: first, decomposing high-level activities into detailed steps to enable granular analysis, and second, performing a value-added analysis to classify each step according to Lean principles. This approach enables systematic identification of waste while maintaining the semantic understanding necessary for qualitative analysis. We develop our approach using 50 business process models, for which we collect and publish manual ground-truth labels. Our evaluation, comparing zero-shot baselines with more structured prompts reveals (a) a consistent benefit of structured prompting and (b) promising performance for both tasks. We discuss the potential for LLMs to augment human expertise in qualitative process analysis while reducing the time and subjectivity inherent in manual approaches.
Bypassing Safety Guardrails in LLMs Using Humor
In this paper, we show it is possible to bypass the safety guardrails of large language models (LLMs) through a humorous prompt including the unsafe request. In particular, our method does not edit the unsafe request and follows a fixed template -- it is simple to implement and does not need additional LLMs to craft prompts. Extensive experiments show the effectiveness of our method across different LLMs. We also show that both removing and adding more humor to our method can reduce its effectiveness -- excessive humor possibly distracts the LLM from fulfilling its unsafe request. Thus, we argue that LLM jailbreaking occurs when there is a proper balance between focus on the unsafe request and presence of humor.
Defending LLM Watermarking Against Spoofing Attacks with Contrastive Representation Learning
Watermarking has emerged as a promising technique for detecting texts generated by LLMs. Current research has primarily focused on three design criteria: high quality of the watermarked text, high detectability, and robustness against removal attack. However, the security against spoofing attacks remains relatively understudied. For example, a piggyback attack can maliciously alter the meaning of watermarked text-transforming it into hate speech-while preserving the original watermark, thereby damaging the reputation of the LLM provider. We identify two core challenges that make defending against spoofing difficult: (1) the need for watermarks to be both sensitive to semantic-distorting changes and insensitive to semantic-preserving edits, and (2) the contradiction between the need to detect global semantic shifts and the local, auto-regressive nature of most watermarking schemes. To address these challenges, we propose a semantic-aware watermarking algorithm that post-hoc embeds watermarks into a given target text while preserving its original meaning. Our method introduces a semantic mapping model, which guides the generation of a green-red token list, contrastively trained to be sensitive to semantic-distorting changes and insensitive to semantic-preserving changes. Experiments on two standard benchmarks demonstrate strong robustness against removal attacks and security against spoofing attacks, including sentiment reversal and toxic content insertion, while maintaining high watermark detectability. Our approach offers a significant step toward more secure and semantically aware watermarking for LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/contrastive-watermark.
Do Reasoning Models Show Better Verbalized Calibration?
Large reasoning models (LRMs) have recently shown impressive capabilities in complex reasoning by leveraging increased test-time computation and exhibiting behaviors akin to human-like deliberation. Despite these advances, it remains an open question whether LRMs are better calibrated - particularly in their verbalized confidence - compared to instruction-tuned counterparts. In this paper, we investigate the calibration properties of LRMs trained via supervised fine-tuning distillation on long reasoning traces (henceforth SFT reasoning models) and outcome-based reinforcement learning for reasoning (henceforth RL reasoning models) across diverse domains. Our findings reveal that LRMs significantly outperform instruction-tuned models on complex reasoning tasks in both accuracy and confidence calibration. In contrast, we find surprising trends in the domain of factuality in particular. On factuality tasks, while Deepseek-R1 shows strong calibration behavior, smaller QwQ-32B shows no improvement over instruct models; moreover, SFT reasoning models display worse calibration (greater overconfidence) compared to instruct models. Our results provide evidence for a potentially critical role of reasoning-oriented RL training in improving LLMs' capacity for generating trustworthy, self-aware outputs.
comment: Work in Progress
FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion
Heterogeneous model fusion enhances the performance of LLMs by integrating the knowledge and capabilities of multiple structurally diverse models. However, existing approaches often rely solely on selecting the best output for each prompt from source models, which underutilizes their full potential due to limited source knowledge and results in sparse optimization signals. To address this limitation, we propose FuseRL, a novel two-stage framework comprising FuseSFT and FusePO to maximize the utilization of source LLMs. FuseSFT establishes a robust initialization by integrating the strengths of heterogeneous source models through weighted supervised fine-tuning (SFT) on diverse outputs for each prompt. FusePO optimizes weighted preferences based on the outputs of multiple source models to enable superior alignment performance. Extensive experiments demonstrate the effectiveness of our framework across various preference alignment methods, including RLOO, DPO, and SimPO. Using Llama-3.1-8B-Instruct as the target model, our approach achieves state-of-the-art performance among 8B LLMs on the AlpacaEval-2 and Arena-Hard benchmarks. Further analysis suggests that FuseSFT regularizes the training process to reduce overfitting, while FusePO introduces dense and diverse signals for preference optimization.
NeedleInATable: Exploring Long-Context Capability of Large Language Models towards Long-Structured Tables
Processing structured tabular data, particularly lengthy tables, constitutes a fundamental yet challenging task for large language models (LLMs). However, existing long-context benchmarks primarily focus on unstructured text, neglecting the challenges of long and complex structured tables. To address this gap, we introduce NeedleInATable (NIAT), a novel task that treats each table cell as a "needle" and requires the model to extract the target cell under different queries. Evaluation results of mainstream LLMs on this benchmark show they lack robust long-table comprehension, often relying on superficial correlations or shortcuts for complex table understanding tasks, revealing significant limitations in processing intricate tabular data. To this end, we propose a data synthesis method to enhance models' long-table comprehension capabilities. Experimental results show that our synthesized training data significantly enhances LLMs' performance on the NIAT task, outperforming both long-context LLMs and long-table agent methods. This work advances the evaluation of LLMs' genuine long-structured table comprehension capabilities and paves the way for progress in long-context and table understanding applications.
comment: Work in Progress
Lugha-Llama: Adapting Large Language Models for African Languages
Large language models (LLMs) have achieved impressive results in a wide range of natural language applications. However, they often struggle to recognize low-resource languages, in particular African languages, which are not well represented in large training corpora. In this paper, we consider how to adapt LLMs to low-resource African languages. We find that combining curated data from African languages with high-quality English educational texts results in a training mix that substantially improves the model's performance on these languages. On the challenging IrokoBench dataset, our models consistently achieve the best performance amongst similarly sized baselines, particularly on knowledge-intensive multiple-choice questions (AfriMMLU). Additionally, on the cross-lingual question answering benchmark AfriQA, our models outperform the base model by over 10%. To better understand the role of English data during training, we translate a subset of 200M tokens into Swahili language and perform an analysis which reveals that the content of these data is primarily responsible for the strong performance. We release our models and data to encourage future research on African languages.
CDER: Collaborative Evidence Retrieval for Document-level Relation Extraction
Document-level Relation Extraction (DocRE) involves identifying relations between entities across multiple sentences in a document. Evidence sentences, crucial for precise entity pair relationships identification, enhance focus on essential text segments, improving DocRE performance. However, existing evidence retrieval systems often overlook the collaborative nature among semantically similar entity pairs in the same document, hindering the effectiveness of the evidence retrieval task. To address this, we propose a novel evidence retrieval framework, namely CDER. CDER employs an attentional graph-based architecture to capture collaborative patterns and incorporates a dynamic sub-structure for additional robustness in evidence retrieval. Experimental results on the benchmark DocRE dataset show that CDER not only excels in the evidence retrieval task but also enhances overall performance of existing DocRE system.
comment: Published at ACIIDS 2024
Missing Premise exacerbates Overthinking: Are Reasoning Models losing Critical Thinking Skill?
We find that the response length of reasoning LLMs, whether trained by reinforcement learning or supervised learning, drastically increases for ill-posed questions with missing premises (MiP), ending up with redundant and ineffective thinking. This newly introduced scenario exacerbates the general overthinking issue to a large extent, which we name as the MiP-Overthinking. Such failures are against the ``test-time scaling law'' but have been widely observed on multiple datasets we curated with MiP, indicating the harm of cheap overthinking and a lack of critical thinking. Surprisingly, LLMs not specifically trained for reasoning exhibit much better performance on the MiP scenario, producing much shorter responses that quickly identify ill-posed queries. This implies a critical flaw of the current training recipe for reasoning LLMs, which does not encourage efficient thinking adequately, leading to the abuse of thinking patterns. To further investigate the reasons behind such failures, we conduct fine-grained analyses of the reasoning length, overthinking patterns, and location of critical thinking on different types of LLMs. Moreover, our extended ablation study reveals that the overthinking is contagious through the distillation of reasoning models' responses. These results improve the understanding of overthinking and shed novel insights into mitigating the problem.
Alice: Proactive Learning with Teacher's Demonstrations for Weak-to-Strong Generalization
The growing capabilities of large language models (LLMs) present a key challenge of maintaining effective human oversight. Weak-to-strong generalization (W2SG) offers a promising framework for supervising increasingly capable LLMs using weaker ones. Traditional W2SG methods rely on passive learning, where a weak teacher provides noisy demonstrations to train a strong student. This hinders students from employing their knowledge during training and reaching their full potential. In this work, we introduce Alice (pro{A}ctive {l}earning w{i}th tea{c}her's D{e}monstrations), a framework that leverages complementary knowledge between teacher and student to enhance the learning process.We probe the knowledge base of the teacher model by eliciting their uncertainty, and then use these insights together with teachers' responses as demonstrations to guide student models in self-generating improved responses for supervision. In addition, for situations with significant capability gaps between teacher and student models, we introduce cascade Alice, which employs a hierarchical training approach where weak teachers initially supervise intermediate models, who then guide stronger models in sequence. Experimental results demonstrate that our method significantly enhances the W2SG performance, yielding substantial improvements in three key tasks compared to the original W2SG: knowledge-based reasoning (+4.0%), mathematical reasoning (+22.62%), and logical reasoning (+12.11%). This highlights the effectiveness of our new W2SG paradigm that enables more robust knowledge transfer and supervision outcome.
Multilingual MFA: Forced Alignment on Low-Resource Related Languages
We compare the outcomes of multilingual and crosslingual training for related and unrelated Australian languages with similar phonological inventories. We use the Montreal Forced Aligner to train acoustic models from scratch and adapt a large English model, evaluating results against seen data, unseen data (seen language), and unseen data and language. Results indicate benefits of adapting the English baseline model for previously unseen languages.
PAYADOR: A Minimalist Approach to Grounding Language Models on Structured Data for Interactive Storytelling and Role-playing Games
Every time an Interactive Storytelling (IS) system gets a player input, it is facing the world-update problem. Classical approaches to this problem consist in mapping that input to known preprogrammed actions, what can severely constrain the free will of the player. When the expected experience has a strong focus on improvisation, like in Role-playing Games (RPGs), this problem is critical. In this paper we present PAYADOR, a different approach that focuses on predicting the outcomes of the actions instead of representing the actions themselves. To implement this approach, we ground a Large Language Model to a minimal representation of the fictional world, obtaining promising results. We make this contribution open-source, so it can be adapted and used for other related research on unleashing the co-creativity power of RPGs.
comment: Presented at the 15th International Conference on Computational Creativity (ICCC'24)
MDIT: A Model-free Data Interpolation Method for Diverse Instruction Tuning
As Large Language Models (LLMs) are increasingly applied across various tasks, instruction tuning has emerged as a critical method for enhancing model performance. However, current data management strategies face substantial challenges in generating diverse and comprehensive data, restricting further improvements in model performance. To address this gap, we propose MDIT, a novel model-free data interpolation method for diverse instruction tuning, which generates varied and high-quality instruction data by performing task interpolation. Moreover, it contains diversity-based clustering strategies to ensure the diversity of the training data. Extensive experiments show that our method achieves superior performance in multiple benchmark tasks. The LLMs finetuned with MDIT show significant improvements in numerous tasks such as general question answering, math reasoning, and code generation. MDIT offers an efficient and automatic data synthetic method, generating diverse instruction data without depending on external resources while expanding the application potential of LLMs in complex environments.
RAISE: Reinforenced Adaptive Instruction Selection For Large Language Models
In the instruction fine-tuning of large language models (LLMs), it has become a consensus that a few high-quality instructions are superior to a large number of low-quality instructions. At present, many instruction selection methods have been proposed, but most of these methods select instruction based on heuristic quality metrics, and only consider data selection before training. These designs lead to insufficient optimization of instruction fine-tuning, and fixed heuristic indicators are often difficult to optimize for specific tasks. So we designed a dynamic, task-objective-driven instruction selection framework RAISE(Reinforenced Adaptive Instruction SElection), which incorporates the entire instruction fine-tuning process into optimization, selecting instruction at each step based on the expected impact of instruction on model performance improvement. Our approach is well interpretable and has strong task-specific optimization capabilities. By modeling dynamic instruction selection as a sequential decision-making process, we use RL to train our selection strategy. Extensive experiments and result analysis prove the superiority of our method compared with other instruction selection methods. Notably, RAISE achieves superior performance by updating only 1\% of the training steps compared to full-data training, demonstrating its efficiency and effectiveness.
Language Modeling for the Future of Finance: A Quantitative Survey into Metrics, Tasks, and Data Opportunities
Recent advances in language modeling have led to growing interest in applying Natural Language Processing (NLP) techniques to financial problems, enabling new approaches to analysis and decision-making. To systematically examine this trend, we review 374 NLP research papers published between 2017 and 2024 across 38 conferences and workshops, with a focused analysis of 221 papers that directly address finance-related tasks. We evaluate these papers across 11 qualitative and quantitative dimensions, identifying key trends such as the increasing use of general-purpose language models, steady progress in sentiment analysis and information extraction, and emerging efforts around explainability and privacy-preserving methods. We also discuss the use of evaluation metrics, highlighting the importance of domain-specific ones to complement standard machine learning metrics. Our findings emphasize the need for more accessible, adaptive datasets and highlight the significance of incorporating financial crisis periods to strengthen model robustness under real-world conditions. This survey provides a structured overview of NLP research applied to finance and offers practical insights for researchers and practitioners working at this intersection.
Visual-Aware Speech Recognition for Noisy Scenarios
Humans have the ability to utilize visual cues, such as lip movements and visual scenes, to enhance auditory perception, particularly in noisy environments. However, current Automatic Speech Recognition (ASR) or Audio-Visual Speech Recognition (AVSR) models often struggle in noisy scenarios. To solve this task, we propose a model that improves transcription by correlating noise sources to visual cues. Unlike works that rely on lip motion and require the speaker's visibility, we exploit broader visual information from the environment. This allows our model to naturally filter speech from noise and improve transcription, much like humans do in noisy scenarios. Our method re-purposes pretrained speech and visual encoders, linking them with multi-headed attention. This approach enables the transcription of speech and the prediction of noise labels in video inputs. We introduce a scalable pipeline to develop audio-visual datasets, where visual cues correlate to noise in the audio. We show significant improvements over existing audio-only models in noisy scenarios. Results also highlight that visual cues play a vital role in improved transcription accuracy.
ConceptCarve: Dynamic Realization of Evidence ACL 2025
Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities.
comment: Under review for ACL 2025
SemEval-2025 Task 5: LLMs4Subjects -- LLM-based Automated Subject Tagging for a National Technical Library's Open-Access Catalog SemEval 2025
We present SemEval-2025 Task 5: LLMs4Subjects, a shared task on automated subject tagging for scientific and technical records in English and German using the GND taxonomy. Participants developed LLM-based systems to recommend top-k subjects, evaluated through quantitative metrics (precision, recall, F1-score) and qualitative assessments by subject specialists. Results highlight the effectiveness of LLM ensembles, synthetic data generation, and multilingual processing, offering insights into applying LLMs for digital library classification.
comment: 10 pages, 4 figures, Accepted as SemEval 2025 Task 5 description paper
HypoEval: Hypothesis-Guided Evaluation for Natural Language Generation
Large language models (LLMs) have demonstrated great potential for automating the evaluation of natural language generation. Previous frameworks of LLM-as-a-judge fall short in two ways: they either use zero-shot setting without consulting any human input, which leads to low alignment, or fine-tune LLMs on labeled data, which requires a non-trivial number of samples. Moreover, previous methods often provide little reasoning behind automated evaluations. In this paper, we propose HypoEval, Hypothesis-guided Evaluation framework, which first uses a small corpus of human evaluations to generate more detailed rubrics for human judgments and then incorporates a checklist-like approach to combine LLM's assigned scores on each decomposed dimension to acquire overall scores. With only 30 human evaluations, HypoEval achieves state-of-the-art performance in alignment with both human rankings (Spearman correlation) and human scores (Pearson correlation), on average outperforming G-Eval by 11.86% and fine-tuned Llama-3.1-8B-Instruct with at least 3 times more human evaluations by 11.95%. Furthermore, we conduct systematic studies to assess the robustness of HypoEval, highlighting its effectiveness as a reliable and interpretable automated evaluation framework.
comment: 22 pages, 3 figures, code link: https://github.com/ChicagoHAI/HypoEval-Gen
R2E-Gym: Procedural Environments and Hybrid Verifiers for Scaling Open-Weights SWE Agents
Improving open-source models on real-world SWE tasks (solving GITHUB issues) faces two key challenges: 1) scalable curation of execution environments to train these models, and, 2) optimal scaling of test-time compute. We introduce AgentGym, the largest procedurally-curated executable gym environment for training real-world SWE-agents, consisting of more than 8.7K tasks. AgentGym is powered by two main contributions: 1) SYNGEN: a synthetic data curation recipe that enables scalable curation of executable environments using test-generation and back-translation directly from commits, thereby reducing reliance on human-written issues or unit tests. We show that this enables more scalable training leading to pass@1 performance of 34.4% on SWE-Bench Verified benchmark with our 32B model. 2) Hybrid Test-time Scaling: we provide an in-depth analysis of two test-time scaling axes; execution-based and execution-free verifiers, demonstrating that they exhibit complementary strengths and limitations. Test-based verifiers suffer from low distinguishability, while execution-free verifiers are biased and often rely on stylistic features. Surprisingly, we find that while each approach individually saturates around 42-43%, significantly higher gains can be obtained by leveraging their complementary strengths. Overall, our approach achieves 51% on the SWE-Bench Verified benchmark, reflecting a new state-of-the-art for open-weight SWE-agents and for the first time showing competitive performance with proprietary models such as o1, o1-preview and sonnet-3.5-v2 (with tools). We will open-source our environments, models, and agent trajectories.
comment: Website: https://r2e-gym.github.io/
Holistic Capability Preservation: Towards Compact Yet Comprehensive Reasoning Models
This technical report presents Ring-Lite-Distill, a lightweight reasoning model derived from our open-source Mixture-of-Experts (MoE) Large Language Models (LLMs) Ling-Lite. This study demonstrates that through meticulous high-quality data curation and ingenious training paradigms, the compact MoE model Ling-Lite can be further trained to achieve exceptional reasoning capabilities, while maintaining its parameter-efficient architecture with only 2.75 billion activated parameters, establishing an efficient lightweight reasoning architecture. In particular, in constructing this model, we have not merely focused on enhancing advanced reasoning capabilities, exemplified by high-difficulty mathematical problem solving, but rather aimed to develop a reasoning model with more comprehensive competency coverage. Our approach ensures coverage across reasoning tasks of varying difficulty levels while preserving generic capabilities, such as instruction following, tool use, and knowledge retention. We show that, Ring-Lite-Distill's reasoning ability reaches a level comparable to DeepSeek-R1-Distill-Qwen-7B, while its general capabilities significantly surpass those of DeepSeek-R1-Distill-Qwen-7B. The models are accessible at https://huggingface.co/inclusionAI
comment: 10 pages
Navigating the Rabbit Hole: Emergent Biases in LLM-Generated Attack Narratives Targeting Mental Health Groups
Large Language Models (LLMs) have been shown to demonstrate imbalanced biases against certain groups. However, the study of unprovoked targeted attacks by LLMs towards at-risk populations remains underexplored. Our paper presents three novel contributions: (1) the explicit evaluation of LLM-generated attacks on highly vulnerable mental health groups; (2) a network-based framework to study the propagation of relative biases; and (3) an assessment of the relative degree of stigmatization that emerges from these attacks. Our analysis of a recently released large-scale bias audit dataset reveals that mental health entities occupy central positions within attack narrative networks, as revealed by a significantly higher mean centrality of closeness (p-value = 4.06e-10) and dense clustering (Gini coefficient = 0.7). Drawing from sociological foundations of stigmatization theory, our stigmatization analysis indicates increased labeling components for mental health disorder-related targets relative to initial targets in generation chains. Taken together, these insights shed light on the structural predilections of large language models to heighten harmful discourse and highlight the need for suitable approaches for mitigation.
Confidence Regularized Masked Language Modeling using Text Length
Masked language modeling is a widely used method for learning language representations, where the model predicts a randomly masked word in each input. However, this approach typically considers only a single correct answer during training, ignoring the variety of plausible alternatives that humans might choose. This issue becomes more pronounced when the input text is short, as the possible word distribution tends to have higher entropy, potentially causing the model to become overconfident in its predictions. To mitigate this, we propose a novel confidence regularizer that adaptively adjusts the regularization strength based on the input length. Experiments on the GLUE and SQuAD benchmarks show that our method improves both accuracy and expected calibration error
comment: 10 pages, 1 figure
RETROcode: Leveraging a Code Database for Improved Natural Language to Code Generation
As text and code resources have expanded, large-scale pre-trained models have shown promising capabilities in code generation tasks, typically employing supervised fine-tuning with problem statement-program pairs. However, increasing model size and data volume for performance gains also raises computational demands and risks of overfitting. Addressing these challenges, we present RETROcode, a novel adaptation of the RETRO architecture \cite{RETRO} for sequence-to-sequence models, utilizing a large code database as an auxiliary scaling method. This approach, diverging from simply enlarging model and dataset sizes, allows RETROcode to leverage a vast code database for prediction, enhancing the model's efficiency by integrating extensive memory. Our findings indicate that RETROcode not only outperforms similar-sized traditional architectures on test sets but also approaches the effectiveness of the much larger Codex model, despite being trained from scratch on a substantially smaller dataset.
Reasoning Towards Fairness: Mitigating Bias in Language Models through Reasoning-Guided Fine-Tuning
Recent advances in large-scale generative language models have shown that reasoning capabilities can significantly improve model performance across a variety of tasks. However, the impact of reasoning on a model's ability to mitigate stereotypical responses remains largely underexplored. In this work, we investigate the crucial relationship between a model's reasoning ability and fairness, and ask whether improved reasoning capabilities can mitigate harmful stereotypical responses, especially those arising due to shallow or flawed reasoning. We conduct a comprehensive evaluation of multiple open-source LLMs, and find that larger models with stronger reasoning abilities exhibit substantially lower stereotypical bias on existing fairness benchmarks. Building on this insight, we introduce ReGiFT -- Reasoning Guided Fine-Tuning, a novel approach that extracts structured reasoning traces from advanced reasoning models and infuses them into models that lack such capabilities. We use only general-purpose reasoning and do not require any fairness-specific supervision for bias mitigation. Notably, we see that models fine-tuned using ReGiFT not only improve fairness relative to their non-reasoning counterparts but also outperform advanced reasoning models on fairness benchmarks. We also analyze how variations in the correctness of the reasoning traces and their length influence model fairness and their overall performance. Our findings highlight that enhancing reasoning capabilities is an effective, fairness-agnostic strategy for mitigating stereotypical bias caused by reasoning flaws.
comment: 17 pages
Pretraining Language Models for Diachronic Linguistic Change Discovery
Large language models (LLMs) have shown potential as tools for scientific discovery. This has engendered growing interest in their use in humanistic disciplines, such as historical linguistics and literary studies. These fields often construct arguments on the basis of delineations like genre, or more inflexibly, time period. Although efforts have been made to restrict inference to specific domains via fine-tuning or model editing, we posit that the only true guarantee is domain-restricted pretraining -- typically, a data- and compute-expensive proposition. We show that efficient pretraining techniques can produce useful models over corpora too large for easy manual inspection but too small for "typical" LLM approaches. We employ a novel date-attribution pipeline in order to obtain a temporally-segmented dataset of five 10-million-word slices. We train two corresponding five-model batteries over these corpus segments, efficient pretraining and Llama3-8B parameter efficiently finetuned. We find that the pretrained models are faster to train than the finetuned baselines and that they better respect the historical divisions of our corpus. Emphasizing speed and precision over a-historical comprehensiveness enables a number of novel approaches to hypothesis discovery and testing in our target fields. Taking up diachronic linguistics as a testbed, we show that our method enables the detection of a diverse set of phenomena, including en masse lexical change, non-lexical (grammatical and morphological) change, and word sense introduction/obsolescence. We provide a ready-to-use pipeline that allows extension of our approach to other target fields with only minimal adaptation.
Hogwild! Inference: Parallel LLM Generation via Concurrent Attention
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's partial progress in the concurrent cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's generated tokens. Hogwild! inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
comment: Preprint, work in progress
LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning EMNLP 2024
Path planning is a fundamental scientific problem in robotics and autonomous navigation, requiring the derivation of efficient routes from starting to destination points while avoiding obstacles. Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows. Conversely, large language models (LLMs) excel in broader environmental analysis through contextual understanding, providing global insights into environments. However, they fall short in detailed spatial and temporal reasoning, often leading to invalid or inefficient routes. In this work, we propose LLM-A*, an new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs. This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios. By integrating the strengths of both methodologies, LLM-A* addresses the computational and memory limitations of conventional algorithms without compromising on the validity required for effective pathfinding.
comment: Findings of the Association for Computational Linguistics: EMNLP 2024
Automated Generation of Challenging Multiple-Choice Questions for Vision Language Model Evaluation CVPR 2025
The rapid development of vision language models (VLMs) demands rigorous and reliable evaluation. However, current visual question answering (VQA) benchmarks often depend on open-ended questions, making accurate evaluation difficult due to the variability in natural language responses. To address this, we introduce AutoConverter, an agentic framework that automatically converts these open-ended questions into multiple-choice format, enabling objective evaluation while reducing the costly multiple-choice question creation process. Our experiments demonstrate that AutoConverter can generate correct and challenging multiple-choice questions, with VLMs demonstrating consistently similar or lower accuracy on these questions compared to human-created ones. Using AutoConverter, we construct VMCBench, a benchmark created by transforming 20 existing VQA datasets into a unified multiple-choice format, totaling 9,018 questions. We comprehensively evaluate 33 state-of-the-art VLMs on VMCBench, setting a new standard for scalable, consistent, and reproducible VLM evaluation.
comment: CVPR 2025
Beyond the Hype: Embeddings vs. Prompting for Multiclass Classification Tasks
Are traditional classification approaches irrelevant in this era of AI hype? We show that there are multiclass classification problems where predictive models holistically outperform LLM prompt-based frameworks. Given text and images from home-service project descriptions provided by Thumbtack customers, we build embeddings-based softmax models that predict the professional category (e.g., handyman, bathroom remodeling) associated with each problem description. We then compare against prompts that ask state-of-the-art LLM models to solve the same problem. We find that the embeddings approach outperforms the best LLM prompts in terms of accuracy, calibration, latency, and financial cost. In particular, the embeddings approach has 49.5% higher accuracy than the prompting approach, and its superiority is consistent across text-only, image-only, and text-image problem descriptions. Furthermore, it yields well-calibrated probabilities, which we later use as confidence signals to provide contextualized user experience during deployment. On the contrary, prompting scores are overly uninformative. Finally, the embeddings approach is 14 and 81 times faster than prompting in processing images and text respectively, while under realistic deployment assumptions, it can be up to 10 times cheaper. Based on these results, we deployed a variation of the embeddings approach, and through A/B testing we observed performance consistent with our offline analysis. Our study shows that for multiclass classification problems that can leverage proprietary datasets, an embeddings-based approach may yield unequivocally better results. Hence, scientists, practitioners, engineers, and business leaders can use our study to go beyond the hype and consider appropriate predictive models for their classification use cases.
Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs.
comment: Code: https://github.com/AtsuMiyai/UPD
Monte Carlo Temperature: a robust sampling strategy for LLM's uncertainty quantification methods
Uncertainty quantification (UQ) in Large Language Models (LLMs) is essential for their safe and reliable deployment, particularly in critical applications where incorrect outputs can have serious consequences. Current UQ methods typically rely on querying the model multiple times using non-zero temperature sampling to generate diverse outputs for uncertainty estimation. However, the impact of selecting a given temperature parameter is understudied, and our analysis reveals that temperature plays a fundamental role in the quality of uncertainty estimates. The conventional approach of identifying optimal temperature values requires expensive hyperparameter optimization (HPO) that must be repeated for each new model-dataset combination. We propose Monte Carlo Temperature (MCT), a robust sampling strategy that eliminates the need for temperature calibration. Our analysis reveals that: 1) MCT provides more robust uncertainty estimates across a wide range of temperatures, 2) MCT improves the performance of UQ methods by replacing fixed-temperature strategies that do not rely on HPO, and 3) MCT achieves statistical parity with oracle temperatures, which represent the ideal outcome of a well-tuned but computationally expensive HPO process. These findings demonstrate that effective UQ can be achieved without the computational burden of temperature parameter calibration.
Dolphin: Moving Towards Closed-loop Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we introduce Dolphin, a closed-loop LLM-driven framework to enhance the automation level of scientific research. Dolphin first generates novel ideas based on feedback from previous experiments and relevant papers ranked by the topic and task attributes. Then, the generated ideas can be implemented using a code template refined and debugged with the designed exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and a subset of MLE-bench. Results show that Dolphin can continuously improve the performance of the input topic in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 3D point classification.
comment: 21 pages, 12 figures, and our homepage: https://alpha-innovator.github.io/Dolphin-project-page
Human and LLM Biases in Hate Speech Annotations: A Socio-Demographic Analysis of Annotators and Targets
The rise of online platforms exacerbated the spread of hate speech, demanding scalable and effective detection. However, the accuracy of hate speech detection systems heavily relies on human-labeled data, which is inherently susceptible to biases. While previous work has examined the issue, the interplay between the characteristics of the annotator and those of the target of the hate are still unexplored. We fill this gap by leveraging an extensive dataset with rich socio-demographic information of both annotators and targets, uncovering how human biases manifest in relation to the target's attributes. Our analysis surfaces the presence of widespread biases, which we quantitatively describe and characterize based on their intensity and prevalence, revealing marked differences. Furthermore, we compare human biases with those exhibited by persona-based LLMs. Our findings indicate that while persona-based LLMs do exhibit biases, these differ significantly from those of human annotators. Overall, our work offers new and nuanced results on human biases in hate speech annotations, as well as fresh insights into the design of AI-driven hate speech detection systems.
LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning
Modern large language models (LLMs) employ various forms of logical inference, both implicitly and explicitly, when addressing reasoning tasks. Understanding how to optimally leverage these inference paradigms is critical for advancing LLMs' reasoning capabilities. This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning -- a fundamental cognitive task -- that is systematically parameterized across three dimensions: modality (textual, visual, symbolic), difficulty (easy, medium, hard), and task format (multiple-choice or free-text generation). We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines across these dimensions, and demonstrate that our findings generalize to broader in-context learning tasks. Additionally, we investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference in LLM reasoning. This exploratory study provides a foundation for future research in enhancing LLM reasoning through systematic logical inference strategies. Resources are available at https://github.com/HKUST-KnowComp/LogiDynamics.
comment: 21 pages
Outlier dimensions favor frequent tokens in language models
We study last-layer outlier dimensions, i.e. dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
Saliency-driven Dynamic Token Pruning for Large Language Models
Despite the recent success of large language models (LLMs), LLMs are particularly challenging in long-sequence inference scenarios due to the quadratic computational complexity of the attention mechanism. Inspired by the interpretability theory of feature attribution in neural network models, we observe that not all tokens have the same contribution. Based on this observation, we propose a novel token pruning framework, namely Saliency-driven Dynamic Token Pruning (SDTP), to gradually and dynamically prune redundant tokens based on the input context. Specifically, a lightweight saliency-driven prediction module is designed to estimate the importance score of each token with its hidden state, which is added to different layers of the LLM to hierarchically prune redundant tokens. Furthermore, a ranking-based optimization strategy is proposed to minimize the ranking divergence of the saliency score and the predicted importance score. Extensive experiments have shown that our framework is generalizable to various models and datasets. By hierarchically pruning 65\% of the input tokens, our method greatly reduces 33\% $\sim$ 47\% FLOPs and achieves speedup up to 1.75$\times$ during inference, while maintaining comparable performance. We further demonstrate that SDTP can be combined with KV cache compression method for further compression.
Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval ECIR 2025
Despite the recent advancement in Retrieval-Augmented Generation (RAG) systems, most retrieval methodologies are often developed for factual retrieval, which assumes query and positive documents are semantically similar. In this paper, we instead propose and study a more challenging type of retrieval task, called hidden rationale retrieval, in which query and document are not similar but can be inferred by reasoning chains, logic relationships, or empirical experiences. To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice. To further strengthen pioneering LLM-based retrievers, we design a special instruction that transforms the retrieval task into a generative task by prompting LLM to answer a binary-choice question. The model can be fine-tuned with direct preference optimization (DPO). The framework is also optimized for computational efficiency with no performance degradation. We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC), compared with previous retrieval works. Our study suggests the potential to employ LLM as a foundation for a wider scope of retrieval tasks. Our codes, models, and datasets are available on https://github.com/flyfree5/LaHoRe.
comment: 10 pages, 3 figures, ECIR 2025
A Survey on Mixture of Experts in Large Language Models
Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE research, we have established a resource repository at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts-in-LLMs.
comment: The first three authors contributed equally to this work; Accepted by TKDE
Towards Reasoning Era: A Survey of Long Chain-of-Thought for Reasoning Large Language Models
Recent advancements in reasoning with large language models (RLLMs), such as OpenAI-O1 and DeepSeek-R1, have demonstrated their impressive capabilities in complex domains like mathematics and coding. A central factor in their success lies in the application of long chain-of-thought (Long CoT) characteristics, which enhance reasoning abilities and enable the solution of intricate problems. However, despite these developments, a comprehensive survey on Long CoT is still lacking, limiting our understanding of its distinctions from traditional short chain-of-thought (Short CoT) and complicating ongoing debates on issues like "overthinking" and "test-time scaling." This survey seeks to fill this gap by offering a unified perspective on Long CoT. (1) We first distinguish Long CoT from Short CoT and introduce a novel taxonomy to categorize current reasoning paradigms. (2) Next, we explore the key characteristics of Long CoT: deep reasoning, extensive exploration, and feasible reflection, which enable models to handle more complex tasks and produce more efficient, coherent outcomes compared to the shallower Short CoT. (3) We then investigate key phenomena such as the emergence of Long CoT with these characteristics, including overthinking, and test-time scaling, offering insights into how these processes manifest in practice. (4) Finally, we identify significant research gaps and highlight promising future directions, including the integration of multi-modal reasoning, efficiency improvements, and enhanced knowledge frameworks. By providing a structured overview, this survey aims to inspire future research and further the development of logical reasoning in artificial intelligence.
comment: Paper are available at https://long-cot.github.io/, and Github are available at https://github.com/LightChen233/Awesome-Long-Chain-of-Thought-Reasoning
Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have emerged as powerful tools for many tasks, such as extracting valuable insights from vast amounts of textual data. In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor and Reddit posts. Leveraging a diverse range of models, including both open-source and proprietary ones such as GPT-4 and Gemini, we aim to elucidate their strengths and weaknesses in this specialized domain. Through an evaluation process involving metrics such as BERTScore, ROUGE, and BLEU, we assess the performance of each model in accurately identifying and summarizing customer needs. Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models while offering affordability and customization benefits. Additionally, we underscore the importance of considering factors such as model size, resource requirements, and performance metrics when selecting the most suitable LLM for customer needs analysis tasks. Overall, this study contributes valuable insights for businesses seeking to leverage advanced NLP techniques to enhance customer experience and drive operational efficiency in the travel industry.
PingPong: A Benchmark for Role-Playing Language Models with User Emulation and Multi-Model Evaluation
We introduce a benchmark for evaluating the role-playing capabilities of language models. Our approach leverages different language models to simulate users in dynamic, multi-turn conversations and assess the resulting dialogues. Our methodology involves three main components: a player model that adopts a specific character role, an interrogator model that simulates user behavior in a specific situation, and a judge model ensemble that evaluates conversation quality with 3 metrics: character consistency, entertainment value, and language fluency. We evaluated more than 40 models in both English and Russian, with each model participating in 64 conversations with 8 characters and 8 situations. We conducted experiments comparing automated evaluations with human annotations to validate our approach, demonstrating strong correlations across multiple criteria. This work provides a foundation for a robust and dynamic evaluation of different model capabilities in interactive scenarios.
comment: 8 main pages, 8 additional pages
Synthetic News Generation for Fake News Classification
This study explores the generation and evaluation of synthetic fake news through fact based manipulations using large language models (LLMs). We introduce a novel methodology that extracts key facts from real articles, modifies them, and regenerates content to simulate fake news while maintaining coherence. To assess the quality of the generated content, we propose a set of evaluation metrics coherence, dissimilarity, and correctness. The research also investigates the application of synthetic data in fake news classification, comparing traditional machine learning models with transformer based models such as BERT. Our experiments demonstrate that transformer models, especially BERT, effectively leverage synthetic data for fake news detection, showing improvements with smaller proportions of synthetic data. Additionally, we find that fact verification features, which focus on identifying factual inconsistencies, provide the most promising results in distinguishing synthetic fake news. The study highlights the potential of synthetic data to enhance fake news detection systems, offering valuable insights for future research and suggesting that targeted improvements in synthetic data generation can further strengthen detection models.
comment: One of the authors objected to submit the paper because he was not aware of that and he likes to modify the paper before submitting to arXiv
CroissantLLM: A Truly Bilingual French-English Language Model
We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81 % of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.
MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation
Processing long contexts presents a significant challenge for large language models (LLMs). While recent advancements allow LLMs to handle much longer contexts than before (e.g., 32K or 128K tokens), it is computationally expensive and can still be insufficient for many applications. Retrieval-Augmented Generation (RAG) is considered a promising strategy to address this problem. However, conventional RAG methods face inherent limitations because of two underlying requirements: 1) explicitly stated queries, and 2) well-structured knowledge. These conditions, however, do not hold in general long-context processing tasks. In this work, we propose MemoRAG, a novel RAG framework empowered by global memory-augmented retrieval. MemoRAG features a dual-system architecture. First, it employs a light but long-range system to create a global memory of the long context. Once a task is presented, it generates draft answers, providing useful clues for the retrieval tools to locate relevant information within the long context. Second, it leverages an expensive but expressive system, which generates the final answer based on the retrieved information. Building upon this fundamental framework, we realize the memory module in the form of KV compression, and reinforce its memorization and cluing capacity from the Generation quality's Feedback (a.k.a. RLGF). In our experiments, MemoRAG achieves superior performances across a variety of long-context evaluation tasks, not only complex scenarios where traditional RAG methods struggle, but also simpler ones where RAG is typically applied.
comment: theWebConf 2025. Codes and models are in https://github.com/qhjqhj00/MemoRAG
GWQ: Gradient-Aware Weight Quantization for Large Language Models
Large language models (LLMs) show impressive performance in solving complex language tasks. However, its large number of parameters presents significant challenges for the deployment. So, compressing LLMs to low bits can enable to deploy on resource-constrained devices. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the top 1\% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit. We widely evaluate GWQ on different task include language modeling, grounding detection, massive multitask language understanding and vision-language question and answering. Results show that models quantified by GWQ performs better than other quantization method. During quantization process, GWQ only need one calibration set to realize effective quant. Also, GWQ achieves 1.2x inference speedup in comparison to the original model and effectively reduces the inference memory.
A Flexible Large Language Models Guardrail Development Methodology Applied to Off-Topic Prompt Detection
Large Language Models (LLMs) are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a flexible, data-free guardrail development methodology that addresses these challenges. By thoroughly defining the problem space qualitatively and passing this to an LLM to generate diverse prompts, we construct a synthetic dataset to benchmark and train off-topic guardrails that outperform heuristic approaches. Additionally, by framing the task as classifying whether the user prompt is relevant with respect to the system prompt, our guardrails effectively generalize to other misuse categories, including jailbreak and harmful prompts. Lastly, we further contribute to the field by open-sourcing both the synthetic dataset and the off-topic guardrail models, providing valuable resources for developing guardrails in pre-production environments and supporting future research and development in LLM safety.
comment: 8 pages, 5 figures
The Essence of Contextual Understanding in Theory of Mind: A Study on Question Answering with Story Characters
Theory-of-Mind (ToM) is a fundamental psychological capability that allows humans to understand and interpret the mental states of others. Humans infer others' thoughts by integrating causal cues and indirect clues from broad contextual information, often derived from past interactions. In other words, human ToM heavily relies on the understanding about the backgrounds and life stories of others. Unfortunately, this aspect is largely overlooked in existing benchmarks for evaluating machines' ToM capabilities, due to their usage of short narratives without global context, especially personal background of characters. In this paper, we verify the importance of comprehensive contextual understanding about personal backgrounds in ToM and assess the performance of LLMs in such complex scenarios. To achieve this, we introduce CharToM benchmark, comprising 1,035 ToM questions based on characters from classic novels. Our human study reveals a significant disparity in performance: the same group of educated participants performs dramatically better when they have read the novels compared to when they have not. In parallel, our experiments on state-of-the-art LLMs, including the very recent o1 and DeepSeek-R1 models, show that LLMs still perform notably worse than humans, despite that they have seen these stories during pre-training. This highlights the limitations of current LLMs in capturing the nuanced contextual information required for ToM reasoning.
comment: 20 pages
Demystifying Language Model Forgetting with Low-rank Example Associations
Large Language models (LLMs) suffer from forgetting of upstream data when fine-tuned. Despite efforts on mitigating forgetting, few have investigated whether, and how forgotten upstream examples are dependent on newly learned tasks. Insights on such dependencies enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples of language modeling or instruction-tuning after fine-tuning LLMs on one of $M$ new tasks, visualized in $M\times N$ matrices. We show that the matrices are often well-approximated with low-rank matrices, indicating the dominance of simple associations between the learned tasks and forgotten upstream examples. Leveraging the analysis, we predict forgetting of upstream examples when fine-tuning on unseen tasks with matrix completion over the empirical associations. This enables fast identification of most forgotten examples without expensive inference on the entire upstream data. The approach, despite simplicity, outperforms prior approaches that learn semantic relationships of learned tasks and upstream examples with LMs for predicting forgetting. We demonstrate the practical utility of our analysis by showing statistically significantly reduced forgetting as we upweight predicted examples for replay at fine-tuning. Project page: https://inklab.usc.edu/lm-forgetting-prediction/
comment: 8 pages; preprint, fixed Table 5 in Appendix D
Sequential-NIAH: A Needle-In-A-Haystack Benchmark for Extracting Sequential Needles from Long Contexts
Evaluating the ability of large language models (LLMs) to handle extended contexts is critical, particularly for retrieving information relevant to specific queries embedded within lengthy inputs. We introduce Sequential-NIAH, a benchmark specifically designed to evaluate the capability of LLMs to extract sequential information items (known as needles) from long contexts. The benchmark comprises three types of needle generation pipelines: synthetic, real, and open-domain QA. It includes contexts ranging from 8K to 128K tokens in length, with a dataset of 14,000 samples (2,000 reserved for testing). To facilitate evaluation on this benchmark, we trained a synthetic data-driven evaluation model capable of evaluating answer correctness based on chronological or logical order, achieving an accuracy of 99.49% on synthetic test data. We conducted experiments on six well-known LLMs, revealing that even the best-performing model achieved a maximum accuracy of only 63.15%. Further analysis highlights the growing challenges posed by increasing context lengths and the number of needles, underscoring substantial room for improvement. Additionally, noise robustness experiments validate the reliability of the benchmark, making Sequential-NIAH an important reference for advancing research on long text extraction capabilities of LLMs.
CLaSP: Learning Concepts for Time-Series Signals from Natural Language Supervision
This paper presents CLaSP, a novel model for retrieving time-series signals using natural language queries that describe signal characteristics. The ability to search time-series signals based on descriptive queries is essential in domains such as industrial diagnostics, where data scientists often need to find signals with specific characteristics. However, existing methods rely on sketch-based inputs, predefined synonym dictionaries, or domain-specific manual designs, limiting their scalability and adaptability. CLaSP addresses these challenges by employing contrastive learning to map time-series signals to natural language descriptions. Unlike prior approaches, it eliminates the need for predefined synonym dictionaries and leverages the rich contextual knowledge of large language models (LLMs). Using the TRUCE and SUSHI datasets, which pair time-series signals with natural language descriptions, we demonstrate that CLaSP achieves high accuracy in retrieving a variety of time series patterns based on natural language queries.
MARS: Memory-Enhanced Agents with Reflective Self-improvement
Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making, lack of long-term memory, and limited context windows in dynamic environments. To address these issues, this paper proposes an innovative framework Memory-Enhanced Agents with Reflective Self-improvement. The MARS framework comprises three agents: the User, the Assistant, and the Checker. By integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents capabilities in handling multi-tasking and long-span information.
comment: We are withdrawing this version because it duplicates our previous submission (arXiv:2409.00872)
EzSQL: An SQL intermediate representation for improving SQL-to-text Generation
The SQL-to-text generation task traditionally uses template base, Seq2Seq, tree-to-sequence, and graph-to-sequence models. Recent models take advantage of pre-trained generative language models for this task in the Seq2Seq framework. However, treating SQL as a sequence of inputs to the pre-trained models is not optimal. In this work, we put forward a new SQL intermediate representation called EzSQL to align SQL with the natural language text sequence. EzSQL simplifies the SQL queries and brings them closer to natural language text by modifying operators and keywords, which can usually be described in natural language. EzSQL also removes the need for set operators. Our proposed SQL-to-text generation model uses EzSQL as the input to a pre-trained generative language model for generating the text descriptions. We demonstrate that our model is an effective state-of-the-art method to generate text narrations from SQL queries on the WikiSQL and Spider datasets. We also show that by generating pretraining data using our SQL-to-text generation model, we can enhance the performance of Text-to-SQL parsers.
comment: Under revision and review at Expert System With Applications Journal after first review
PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
Process-level Reward Models (PRMs) are crucial for complex reasoning and decision-making tasks, where each intermediate step plays an important role in the reasoning process. Since language models are prone to various types of errors during the reasoning process, PRMs are required to possess nuanced capabilities for detecting various implicit error types in real-world scenarios. However, current benchmarks primarily focus on step correctness, failing to evaluate PRMs' performance systematically. To address this gap, we introduce PRMBench, a process-level benchmark specifically designed to assess the fine-grained error detection capabilities of PRMs. PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions, including simplicity, soundness, and sensitivity. In our experiments on 15 models, spanning both open-source PRMs and closed-source large language models prompted as critic models, we uncover significant weaknesses in current PRMs. These findings underscore the challenges inherent in process-level evaluation and highlight key directions for future research. We hope PRMBench can be a robust bench for advancing research on PRM evaluation and development.
comment: Project Page: https://prmbench.github.io/
Prompting or Fine-tuning? Exploring Large Language Models for Causal Graph Validation
This study explores the capability of Large Language Models (LLMs) to evaluate causality in causal graphs generated by conventional statistical causal discovery methods-a task traditionally reliant on manual assessment by human subject matter experts. To bridge this gap in causality assessment, LLMs are employed to evaluate the causal relationships by determining whether a causal connection between variable pairs can be inferred from textual context. Our study compares two approaches: (1) prompting-based method for zero-shot and few-shot causal inference and, (2) fine-tuning language models for the causal relation prediction task. While prompt-based LLMs have demonstrated versatility across various NLP tasks, our experiments on biomedical and general-domain datasets show that fine-tuned models consistently outperform them, achieving up to a 20.5-point improvement in F1 score-even when using smaller-parameter language models. These findings provide valuable insights into the strengths and limitations of both approaches for causal graph evaluation.
DLF: Disentangled-Language-Focused Multimodal Sentiment Analysis AAAI 2025
Multimodal Sentiment Analysis (MSA) leverages heterogeneous modalities, such as language, vision, and audio, to enhance the understanding of human sentiment. While existing models often focus on extracting shared information across modalities or directly fusing heterogeneous modalities, such approaches can introduce redundancy and conflicts due to equal treatment of all modalities and the mutual transfer of information between modality pairs. To address these issues, we propose a Disentangled-Language-Focused (DLF) multimodal representation learning framework, which incorporates a feature disentanglement module to separate modality-shared and modality-specific information. To further reduce redundancy and enhance language-targeted features, four geometric measures are introduced to refine the disentanglement process. A Language-Focused Attractor (LFA) is further developed to strengthen language representation by leveraging complementary modality-specific information through a language-guided cross-attention mechanism. The framework also employs hierarchical predictions to improve overall accuracy. Extensive experiments on two popular MSA datasets, CMU-MOSI and CMU-MOSEI, demonstrate the significant performance gains achieved by the proposed DLF framework. Comprehensive ablation studies further validate the effectiveness of the feature disentanglement module, language-focused attractor, and hierarchical predictions. Our code is available at https://github.com/pwang322/DLF.
comment: AAAI 2025 accepted
CoTAL: Human-in-the-Loop Prompt Engineering, Chain-of-Thought Reasoning, and Active Learning for Generalizable Formative Assessment Scoring
Large language models (LLMs) have created new opportunities to assist teachers and support student learning. Methods such as chain-of-thought (CoT) prompting enable LLMs to grade formative assessments in science, providing scores and relevant feedback to students. However, the extent to which these methods generalize across curricula in multiple domains (such as science, computing, and engineering) remains largely untested. In this paper, we introduce Chain-of-Thought Prompting + Active Learning (CoTAL), an LLM-based approach to formative assessment scoring that (1) leverages Evidence-Centered Design (ECD) principles to develop curriculum-aligned formative assessments and rubrics, (2) applies human-in-the-loop prompt engineering to automate response scoring, and (3) incorporates teacher and student feedback to iteratively refine assessment questions, grading rubrics, and LLM prompts for automated grading. Our findings demonstrate that CoTAL improves GPT-4's scoring performance, achieving gains of up to 24.5% over a non-prompt-engineered baseline. Both teachers and students view CoTAL as effective in scoring and explaining student responses, each providing valuable refinements to enhance grading accuracy and explanation quality.
comment: Submitted to IEEE Transactions on Learning Technologies. Currently under review
Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning
Meta learning has been widely used to exploit rich-resource source tasks to improve the performance of low-resource target tasks. Unfortunately, most existing meta learning approaches treat different source tasks equally, ignoring the relatedness of source tasks to the target task in knowledge transfer. To mitigate this issue, we propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning. In this framework, we present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning. The differences between the general loss of the meta model and task-specific losses of source-specific temporal meta models on sampled target data are fed into the policy network of the reinforcement learning module as rewards. The policy network is built upon LSTMs that capture long-term dependencies on source task weight estimation across meta learning iterations. We evaluate the proposed Meta-RTL using both BERT and ALBERT as the backbone of the meta model on three commonsense reasoning benchmark datasets. Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies and achieves larger improvements on extremely low-resource settings.
comment: There is a text error in table 6
Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad
Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, Gemini-2.5-Pro, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly: only Gemini-2.5-Pro achieves a non-trivial score of 25%, while all other models achieve less than 5%. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities.
BUCA: A Binary Classification Approach to Unsupervised Commonsense Question Answering
Unsupervised commonsense reasoning (UCR) is becoming increasingly popular as the construction of commonsense reasoning datasets is expensive, and they are inevitably limited in their scope. A popular approach to UCR is to fine-tune language models with external knowledge (e.g., knowledge graphs), but this usually requires a large number of training examples. In this paper, we propose to transform the downstream multiple choice question answering task into a simpler binary classification task by ranking all candidate answers according to their reasonableness. To this end, for training the model, we convert the knowledge graph triples into reasonable and unreasonable texts. Extensive experimental results show the effectiveness of our approach on various multiple choice question answering benchmarks. Furthermore, compared with existing UCR approaches using KGs, ours is less data hungry. Our code is available at https://github.com/probe2/BUCA.
comment: There is a text error in Table 10
Tensor Product Attention Is All You Need
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, significantly shrinking KV cache size at inference time. By factorizing these representations into contextual low-rank components (contextual factorization) and seamlessly integrating with RoPE, TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation of language modeling tasks, we demonstrate that T6 exceeds the performance of standard Transformer baselines including MHA, MQA, GQA, and MLA across various metrics, including perplexity and a range of renowned evaluation benchmarks. Notably, TPA's memory efficiency enables the processing of significantly longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
comment: 31 pages, 6 figures
CiteBART: Learning to Generate Citations for Local Citation Recommendation
Local citation recommendation (LCR) suggests a set of papers for a citation placeholder within a given context. The task has evolved as generative approaches have become more promising than the traditional pre-fetch and re-rank-based state-of-the-art approaches. This paper introduces citation-specific pre-training within an encoder-decoder architecture, where author-date citation tokens are masked to learn to reconstruct them to fulfill LCR. There are two variants for this pre-training. In the local context-only base scheme (CiteBART-Base), the citation token in a local context is masked to learn to predict the citation. The global version (CiteBART-Global) extends the local context with the citing paper's title and abstract to enrich the learning signal. CiteBART-Global achieves state-of-the-art performance on LCR benchmarks except for the FullTextPeerRead dataset, which is quite small to see the advantage of generative pre-training. The effect is significant in the larger benchmarks, e.g., Refseer and ArXiv., with the Refseer benchmark-trained model emerging as the best-performing model. We perform comprehensive experiments, including an ablation study, a qualitative analysis, and a taxonomy of hallucinations with detailed statistics. Our analyses confirm that CiteBART-Global has a cross-dataset generalization capability; the macro hallucination rate (MaHR) at the top-3 predictions is 4\%, and when the ground-truth is in the top-k prediction list, the hallucination tendency in the other predictions drops significantly.
comment: 17 pages, 2 figures, 10 tables
Scalable Reinforcement Post-Training Beyond Static Human Prompts: Evolving Alignment via Asymmetric Self-Play
Current reinforcement learning (RL) frameworks for large language models (LLM) post-training typically assume a fixed prompt distribution, which is sub-optimal and bottlenecks scalability. Prior works have explored prompt evolving, but are often limited to the supervised fine-tuning stage, and prompts are sampled and evolved uniformly without signals. This empirical work presents a paradigm shift: Evolving Alignment via Asymmetric Self-Play (eva), that casts post-training as an infinite game with regret-based signals for 2 players: (i) a creator, who strategically samples and creates new informative prompts and (ii) a solver, who learns to produce preferred responses. eva is the first method that allows language models to adaptively create training prompts in both offline and online RL post-training. The design is simple, easy-to-use yet remarkably effective: eva sets a new SOTA on challenging benchmarks, without any extra human prompts, e.g. it boosts the win-rate of gemma-2-9b-it on Arena-Hard by 51.6% -> 60.1% for DPO and 52.6% -> 62.4% for RLOO, surpassing claude-3-opus and catching up to gemini-1.5-pro, both of which are orders of magnitude larger. Extensive experiments show eva can create effective RL curricula and is robust across ablations. We believe adaptively evolving prompts are key to designing the next-generation RL post-training scheme.
comment: spotlight @ neurips language gamification workshop. updated the problem description and added new online RL experiments in this version
Comparative Performance Evaluation of Large Language Models for Extracting Molecular Interactions and Pathway Knowledge
Background Identification of the interactions and regulatory relations between biomolecules play pivotal roles in understanding complex biological systems and the mechanisms underlying diverse biological functions. However, the collection of such molecular interactions has heavily relied on expert curation in the past, making it labor-intensive and time-consuming. To mitigate these challenges, we propose leveraging the capabilities of large language models (LLMs) to automate genome-scale extraction of this crucial knowledge. Results In this study, we investigate the efficacy of various LLMs in addressing biological tasks, such as the recognition of protein interactions, identification of genes linked to pathways affected by low-dose radiation, and the delineation of gene regulatory relationships. Overall, the larger models exhibited superior performance, indicating their potential for specific tasks that involve the extraction of complex interactions among genes and proteins. Although these models possessed detailed information for distinct gene and protein groups, they faced challenges in identifying groups with diverse functions and in recognizing highly correlated gene regulatory relationships. Conclusions By conducting a comprehensive assessment of the state-of-the-art models using well-established molecular interaction and pathway databases, our study reveals that LLMs can identify genes/proteins associated with pathways of interest and predict their interactions to a certain extent. Furthermore, these models can provide important insights, marking a noteworthy stride toward advancing our understanding of biological systems through AI-assisted knowledge discovery.
Human-Computer Interaction
Leveraging GCN-based Action Recognition for Teleoperation in Daily Activity Assistance
Caregiving of older adults is an urgent global challenge, with many older adults preferring to age in place rather than enter residential care. However, providing adequate home-based assistance remains difficult, particularly in geographically vast regions. Teleoperated robots offer a promising solution, but conventional motion-mapping teleoperation imposes unnatural movement constraints on operators, leading to muscle fatigue and reduced usability. This paper presents a novel teleoperation framework that leverages action recognition to enable intuitive remote robot control. Using our simplified Spatio-Temporal Graph Convolutional Network (S-ST-GCN), the system recognizes human actions and executes corresponding preset robot trajectories, eliminating the need for direct motion synchronization. A finite-state machine (FSM) is integrated to enhance reliability by filtering out misclassified actions. Our experiments demonstrate that the proposed framework enables effortless operator movement while ensuring accurate robot execution. This proof-of-concept study highlights the potential of teleoperation with action recognition for enabling caregivers to remotely assist older adults during activities of daily living (ADLs). Future work will focus on improving the S-ST-GCN's recognition accuracy and generalization, integrating advanced motion planning techniques to further enhance robotic autonomy in older adult care, and conducting a user study to evaluate the system's telepresence and ease of control.
Neural Signal Compression using RAMAN tinyML Accelerator for BCI Applications
High-quality, multi-channel neural recording is indispensable for neuroscience research and clinical applications. Large-scale brain recordings often produce vast amounts of data that must be wirelessly transmitted for subsequent offline analysis and decoding, especially in brain-computer interfaces (BCIs) utilizing high-density intracortical recordings with hundreds or thousands of electrodes. However, transmitting raw neural data presents significant challenges due to limited communication bandwidth and resultant excessive heating. To address this challenge, we propose a neural signal compression scheme utilizing Convolutional Autoencoders (CAEs), which achieves a compression ratio of up to 150 for compressing local field potentials (LFPs). The CAE encoder section is implemented on RAMAN, an energy-efficient tinyML accelerator designed for edge computing, and subsequently deployed on an Efinix Ti60 FPGA with 37.3k LUTs and 8.6k register utilization. RAMAN leverages sparsity in activation and weights through zero skipping, gating, and weight compression techniques. Additionally, we employ hardware-software co-optimization by pruning CAE encoder model parameters using a hardware-aware balanced stochastic pruning strategy, resolving workload imbalance issues and eliminating indexing overhead to reduce parameter storage requirements by up to 32.4%. Using the proposed compact depthwise separable convolutional autoencoder (DS-CAE) model, the compressed neural data from RAMAN is reconstructed offline with superior signal-to-noise and distortion ratios (SNDR) of 22.6 dB and 27.4 dB, along with R2 scores of 0.81 and 0.94, respectively, evaluated on two monkey neural recordings.
A Year of the DSA Transparency Database: What it (Does Not) Reveal About Platform Moderation During the 2024 European Parliament Election
Social media platforms face heightened risks during major political events; yet, how platforms adapt their moderation practices in response remains unclear. The Digital Services Act Transparency Database offers an unprecedented opportunity to systematically study content moderation at scale, enabling researchers and policymakers to assess platforms' compliance and effectiveness. Herein, we analyze 1.58 billion self-reported moderation actions taken by eight large social media platforms during an extended period of eight months surrounding the 2024 European Parliament elections. Our findings reveal a lack of adaptation in moderation strategies, as platforms did not exhibit significant changes in their enforcement behaviors surrounding the elections. This raises concerns about whether platforms adapted their moderation practices at all, or if structural limitations of the database concealed possible adjustments. Moreover, we found that noted transparency and accountability issues persist nearly a year after initial concerns were raised. These results highlight the limitations of current self-regulatory approaches and underscore the need for stronger enforcement and data access mechanisms to ensure that online platforms uphold their responsibility in safeguarding democratic processes.
AI, Help Me Think$\unicode{x2014}$but for Myself: Assisting People in Complex Decision-Making by Providing Different Kinds of Cognitive Support
How can we design AI tools that effectively support human decision-making by complementing and enhancing users' reasoning processes? Common recommendation-centric approaches face challenges such as inappropriate reliance or a lack of integration with users' decision-making processes. Here, we explore an alternative interaction model in which the AI outputs build upon users' own decision-making rationales. We compare this approach, which we call ExtendAI, with a recommendation-based AI. Participants in our mixed-methods user study interacted with both AIs as part of an investment decision-making task. We found that the AIs had different impacts, with ExtendAI integrating better into the decision-making process and people's own thinking and leading to slightly better outcomes. RecommendAI was able to provide more novel insights while requiring less cognitive effort. We discuss the implications of these and other findings along with three tensions of AI-assisted decision-making which our study revealed.
comment: To be published at ACM CHI 2025 Conference on Human Factors in Computing Systems
Visualisation of a multidimensional point cloud as a 3D swarm of avatars
The article presents an innovative approach to the visualisation of multidimensional data, using icons inspired by Chernoff faces. The approach merges classical projection techniques with the assignment of particular data dimensions to mimic features, capitalizing on the natural ability of the human brain to interpret facial expressions. The technique is implemented as a plugin to the dpVision open-source image handling platform. The plugin allows the data to be interactively explored in the form of a swarm of "totems" whose position in hyperspace as well as facial features represent various aspects of the data. Sample visualisations, based on synthetic test data as well as the vinhoverde 15-dimensional database on Portuguese wines, confirm the usefulness of our approach to the analysis of complex data structures.
Ice-Breakers, Turn-Takers and Fun-Makers: Exploring Robots for Groups with Teenagers
Successful, enjoyable group interactions are important in public and personal contexts, especially for teenagers whose peer groups are important for self-identity and self-esteem. Social robots seemingly have the potential to positively shape group interactions, but it seems difficult to effect such impact by designing robot behaviors solely based on related (human interaction) literature. In this article, we take a user-centered approach to explore how teenagers envisage a social robot "group assistant". We engaged 16 teenagers in focus groups, interviews, and robot testing to capture their views and reflections about robots for groups. Over the course of a two-week summer school, participants co-designed the action space for such a robot and experienced working with/wizarding it for 10+ hours. This experience further altered and deepened their insights into using robots as group assistants. We report results regarding teenagers' views on the applicability and use of a robot group assistant, how these expectations evolved throughout the study, and their repeat interactions with the robot. Our results indicate that each group moves on a spectrum of need for the robot, reflected in use of the robot more (or less) for ice-breaking, turn-taking, and fun-making as the situation demanded.
Setup-Invariant Augmented Reality for Teaching by Demonstration with Surgical Robots
Augmented reality (AR) is an effective tool in robotic surgery education as it combines exploratory learning with three-dimensional guidance. However, existing AR systems require expert supervision and do not account for differences in the mentor and mentee robot configurations. To enable novices to train outside the operating room while receiving expert-informed guidance, we present dV-STEAR: an open-source system that plays back task-aligned expert demonstrations without assuming identical setup joint positions between expert and novice. Pose estimation was rigorously quantified, showing a registration error of 3.86 (SD=2.01)mm. In a user study (N=24), dV-STEAR significantly improved novice performance on tasks from the Fundamentals of Laparoscopic Surgery. In a single-handed ring-over-wire task, dV-STEAR increased completion speed (p=0.03) and reduced collision time (p=0.01) compared to dry-lab training alone. During a pick-and-place task, it improved success rates (p=0.004). Across both tasks, participants using dV-STEAR exhibited significantly more balanced hand use and reported lower frustration levels. This work presents a novel educational tool implemented on the da Vinci Research Kit, demonstrates its effectiveness in teaching novices, and builds the foundation for further AR integration into robot-assisted surgery.
comment: 12 pages, 10 figures; Open-source code, see https://github.com/AlexandreBanks6/dV-STEAR_Public.git; Supplementary movies, see https://github.com/AlexandreBanks6/dVSTEAR_Supplemental_Files.git
Beyond the Winding Path of Learning: Exploring Affective, Cognitive, and Action-Oriented Prompts for Communication Skills
Since high dropout rates in online learning platforms were reported, various factors affecting learner retention have been identified, with learners' perceptions of their experiences playing a crucial role in shaping their persistence. For instance, Kittur et al. highlight how success expectations are shaped by perceived system fit and course difficulty. Recent advances in generative Artificial Intelligence (GenAI) present new possibilities for GenAI-mediated learning. AI-generated instructional messages are often perceived as clearer than human-written content, but their impact on learners' perceptions of skill-building experiences remains underexplored. This study examines GenAI-mediated learning in a self-directed context, focusing on communication skills. We compare three messaging styles - Affective, Cognitive, and Action-Oriented - to investigate their influence on learners' perceptions of the learning process. We applied this approach to ten instructional units, using GenAI to generate 30 learning items. Three evaluators assessed them for desirability and appropriateness through numerical ratings and open-ended feedback. The 180 excerpts were analyzed using reflexive thematic analysis, revealing four overarching themes: Prerequisite Common Ground, Intrinsic Value, User Responses, and Expressed Preferences. We discuss these insights to inform the design of GenAI-mediated, self-directed skill-building, with the goal of enhancing engagement, persistence, and learning outcomes.
comment: Generative AI and HCI workshop at CHI 2025
A Multi-Modal Interaction Framework for Efficient Human-Robot Collaborative Shelf Picking
The growing presence of service robots in human-centric environments, such as warehouses, demands seamless and intuitive human-robot collaboration. In this paper, we propose a collaborative shelf-picking framework that combines multimodal interaction, physics-based reasoning, and task division for enhanced human-robot teamwork. The framework enables the robot to recognize human pointing gestures, interpret verbal cues and voice commands, and communicate through visual and auditory feedback. Moreover, it is powered by a Large Language Model (LLM) which utilizes Chain of Thought (CoT) and a physics-based simulation engine for safely retrieving cluttered stacks of boxes on shelves, relationship graph for sub-task generation, extraction sequence planning and decision making. Furthermore, we validate the framework through real-world shelf picking experiments such as 1) Gesture-Guided Box Extraction, 2) Collaborative Shelf Clearing and 3) Collaborative Stability Assistance.
Can dialogues with AI systems help humans better discern visual misinformation?
The widespread emergence of manipulated news media content poses significant challenges to online information integrity. This study investigates whether dialogues with AI about AI-generated images and associated news statements can increase human discernment abilities and foster short-term learning in detecting misinformation. We conducted a study with 80 participants who engaged in structured dialogues with an AI system about news headline-image pairs, generating 1,310 human-AI dialogue exchanges. Results show that AI interaction significantly boosts participants' accuracy in identifying real versus fake news content from approximately 60\% to 90\% (p$<$0.001). However, these improvements do not persist when participants are presented with new, unseen image-statement pairs without AI assistance, with accuracy returning to baseline levels (~60\%, p=0.88). These findings suggest that while AI systems can effectively change immediate beliefs about specific content through persuasive dialogue, they may not produce lasting improvements that transfer to novel examples, highlighting the need for developing more effective interventions that promote durable learning outcomes.
A Scalable Approach to Clustering Embedding Projections
Interactive visualization of embedding projections is a useful technique for understanding data and evaluating machine learning models. Labeling data within these visualizations is critical for interpretation, as labels provide an overview of the projection and guide user navigation. However, most methods for producing labels require clustering the points, which can be computationally expensive as the number of points grows. In this paper, we describe an efficient clustering approach using kernel density estimation in the projected 2D space instead of points. This algorithm can produce high-quality cluster regions from a 2D density map in a few hundred milliseconds, orders of magnitude faster than current approaches. We contribute the design of the algorithm, benchmarks, and applications that demonstrate the utility of the algorithm, including labeling and summarization.
comment: 4 pages, 4 figures
Conducting VR User Studies with People with Vision/Hearing Impairments: Challenges and Mitigation Strategies
There is a lack of virtual reality (VR) user studies that have been conducted involving people with vision/hearing impairments. This is due to the difficulty of recruiting participants and the accessibility barriers of VR devices. Based on the authors' experience conducting VR user studies with participants with vision/hearing impairments, this position paper identifies 5 key challenges (1. Recruitment, 2. Language Familiarity, 3. Technology Limitations and Barriers, 4. Access to Audio Cue, and 5. Travelling to the Experiment Location) and proposes strategic approaches to mitigate these challenges. In addition, we also presented three key considerations regarding understanding participants' lived experiences that could help the user study become accessible.
comment: To be presented at the CHI'25 workshop "The Third Workshop on Building an Inclusive and Accessible Metaverse for All", 26 April, Yokohama, Japan
Youth as Advisors in Participatory Design: Situating Teens' Expertise in Everyday Algorithm Auditing with Teachers and Researchers
Research on children and youth's participation in different roles in the design of technologies is one of the core contributions in child-computer interaction studies. Building on this work, we situate youth as advisors to a group of high school computer science teacher- and researcher-designers creating learning activities in the context of emerging technologies. Specifically, we explore algorithm auditing as a potential entry point for youth and adults to critically evaluate generative AI algorithmic systems, with the goal of designing classroom lessons. Through a two-hour session where three teenagers (16-18 years) served as advisors, we (1) examine the types of expertise the teens shared and (2) identify back stage design elements that fostered their agency and voice in this advisory role. Our discussion considers opportunities and challenges in situating youth as advisors, providing recommendations for actions that researchers, facilitators, and teachers can take to make this unusual arrangement feasible and productive.
Face-LLaVA: Facial Expression and Attribute Understanding through Instruction Tuning
The human face plays a central role in social communication, necessitating the use of performant computer vision tools for human-centered applications. We propose Face-LLaVA, a multimodal large language model for face-centered, in-context learning, including facial expression and attribute recognition. Additionally, Face-LLaVA is able to generate natural language descriptions that can be used for reasoning. Leveraging existing visual databases, we first developed FaceInstruct-1M, a face-centered database for instruction tuning MLLMs for face processing. We then developed a novel face-specific visual encoder powered by Face-Region Guided Cross-Attention that integrates face geometry with local visual features. We evaluated the proposed method across nine different datasets and five different face processing tasks, including facial expression recognition, action unit detection, facial attribute detection, age estimation and deepfake detection. Face-LLaVA achieves superior results compared to existing open-source MLLMs and competitive performance compared to commercial solutions. Our model output also receives a higher reasoning rating by GPT under a zero-shot setting across all the tasks. Both our dataset and model wil be released at https://face-llava.github.io to support future advancements in social AI and foundational vision-language research.
comment: Project Page: https://face-llava.github.io
ColonScopeX: Leveraging Explainable Expert Systems with Multimodal Data for Improved Early Diagnosis of Colorectal Cancer AAAI-25
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths and the third most prevalent malignant tumour worldwide. Early detection of CRC remains problematic due to its non-specific and often embarrassing symptoms, which patients frequently overlook or hesitate to report to clinicians. Crucially, the stage at which CRC is diagnosed significantly impacts survivability, with a survival rate of 80-95\% for Stage I and a stark decline to 10\% for Stage IV. Unfortunately, in the UK, only 14.4\% of cases are diagnosed at the earliest stage (Stage I). In this study, we propose ColonScopeX, a machine learning framework utilizing explainable AI (XAI) methodologies to enhance the early detection of CRC and pre-cancerous lesions. Our approach employs a multimodal model that integrates signals from blood sample measurements, processed using the Savitzky-Golay algorithm for fingerprint smoothing, alongside comprehensive patient metadata, including medication history, comorbidities, age, weight, and BMI. By leveraging XAI techniques, we aim to render the model's decision-making process transparent and interpretable, thereby fostering greater trust and understanding in its predictions. The proposed framework could be utilised as a triage tool or a screening tool of the general population. This research highlights the potential of combining diverse patient data sources and explainable machine learning to tackle critical challenges in medical diagnostics.
comment: Published to AAAI-25 Bridge Program
Unraveling Human-AI Teaming: A Review and Outlook
Artificial Intelligence (AI) is advancing at an unprecedented pace, with clear potential to enhance decision-making and productivity. Yet, the collaborative decision-making process between humans and AI remains underdeveloped, often falling short of its transformative possibilities. This paper explores the evolution of AI agents from passive tools to active collaborators in human-AI teams, emphasizing their ability to learn, adapt, and operate autonomously in complex environments. This paradigm shifts challenges traditional team dynamics, requiring new interaction protocols, delegation strategies, and responsibility distribution frameworks. Drawing on Team Situation Awareness (SA) theory, we identify two critical gaps in current human-AI teaming research: the difficulty of aligning AI agents with human values and objectives, and the underutilization of AI's capabilities as genuine team members. Addressing these gaps, we propose a structured research outlook centered on four key aspects of human-AI teaming: formulation, coordination, maintenance, and training. Our framework highlights the importance of shared mental models, trust-building, conflict resolution, and skill adaptation for effective teaming. Furthermore, we discuss the unique challenges posed by varying team compositions, goals, and complexities. This paper provides a foundational agenda for future research and practical design of sustainable, high-performing human-AI teams.
Leveraging AI-Generated Emotional Self-Voice to Nudge People towards their Ideal Selves
Emotions, shaped by past experiences, significantly influence decision-making and goal pursuit. Traditional cognitive-behavioral techniques for personal development rely on mental imagery to envision ideal selves, but may be less effective for individuals who struggle with visualization. This paper introduces Emotional Self-Voice (ESV), a novel system combining emotionally expressive language models and voice cloning technologies to render customized responses in the user's own voice. We investigate the potential of ESV to nudge individuals towards their ideal selves in a study with 60 participants. Across all three conditions (ESV, text-only, and mental imagination), we observed an increase in resilience, confidence, motivation, and goal commitment, and the ESV condition was perceived as uniquely engaging and personalized. We discuss the implications of designing generated self-voice systems as a personalized behavioral intervention for different scenarios.
SpeechCap: Leveraging Playful Impact Captions to Facilitate Interpersonal Communication in Social Virtual Reality SC
Social Virtual Reality (VR) emerges as a promising platform bringing immersive, interactive, and engaging mechanisms for collaborative activities in virtual spaces. However, interpersonal communication in social VR is still limited with existing mediums and channels. To bridge the gap, we propose a novel method for mediating real-time conversation in social VR, which uses impact captions, a type of typographic visual effect widely used in videos, to convey both verbal and non-verbal information. We first investigated the design space of impact captions by content analysis and a co-design session with four experts. Next, we implemented SpeechCap as a proof-of-concept system, with which users can communicate with each other using speech-driven impact captions in VR. Through a user study (n=14), we evaluated the effectiveness of the visual and interaction design of impact captions, highlighting the interactivity and the integration of verbal and non-verbal information in communication mediums. Finally, we discussed topics of visual rhetoric, interactivity, and ambiguity as the main findings from the study, and further provided design implications for future work for facilitating interpersonal communication in social VR.
comment: To appear at CSCW 2025
Human and LLM Biases in Hate Speech Annotations: A Socio-Demographic Analysis of Annotators and Targets
The rise of online platforms exacerbated the spread of hate speech, demanding scalable and effective detection. However, the accuracy of hate speech detection systems heavily relies on human-labeled data, which is inherently susceptible to biases. While previous work has examined the issue, the interplay between the characteristics of the annotator and those of the target of the hate are still unexplored. We fill this gap by leveraging an extensive dataset with rich socio-demographic information of both annotators and targets, uncovering how human biases manifest in relation to the target's attributes. Our analysis surfaces the presence of widespread biases, which we quantitatively describe and characterize based on their intensity and prevalence, revealing marked differences. Furthermore, we compare human biases with those exhibited by persona-based LLMs. Our findings indicate that while persona-based LLMs do exhibit biases, these differ significantly from those of human annotators. Overall, our work offers new and nuanced results on human biases in hate speech annotations, as well as fresh insights into the design of AI-driven hate speech detection systems.
Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have emerged as powerful tools for many tasks, such as extracting valuable insights from vast amounts of textual data. In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor and Reddit posts. Leveraging a diverse range of models, including both open-source and proprietary ones such as GPT-4 and Gemini, we aim to elucidate their strengths and weaknesses in this specialized domain. Through an evaluation process involving metrics such as BERTScore, ROUGE, and BLEU, we assess the performance of each model in accurately identifying and summarizing customer needs. Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models while offering affordability and customization benefits. Additionally, we underscore the importance of considering factors such as model size, resource requirements, and performance metrics when selecting the most suitable LLM for customer needs analysis tasks. Overall, this study contributes valuable insights for businesses seeking to leverage advanced NLP techniques to enhance customer experience and drive operational efficiency in the travel industry.
A Case Study of Scalable Content Annotation Using Multi-LLM Consensus and Human Review
Content annotation at scale remains challenging, requiring substantial human expertise and effort. This paper presents a case study in code documentation analysis, where we explore the balance between automation efficiency and annotation accuracy. We present MCHR (Multi-LLM Consensus with Human Review), a novel semi-automated framework that enhances annotation scalability through the systematic integration of multiple LLMs and targeted human review. Our framework introduces a structured consensus-building mechanism among LLMs and an adaptive review protocol that strategically engages human expertise. Through our case study, we demonstrate that MCHR reduces annotation time by 32% to 100% compared to manual annotation while maintaining high accuracy (85.5% to 98%) across different difficulty levels, from basic binary classification to challenging open-set scenarios.
comment: 4 pages, GenAICHI 2025 accepted
Not someone, but something: Rethinking trust in the age of medical AI
As artificial intelligence (AI) becomes embedded in healthcare, trust in medical decision-making is changing fast. This opinion paper argues that trust in AI isn't a simple transfer from humans to machines - it's a dynamic, evolving relationship that must be built and maintained. Rather than debating whether AI belongs in medicine, this paper asks: what kind of trust must AI earn, and how? Drawing from philosophy, bioethics, and system design, it explores the key differences between human trust and machine reliability - emphasizing transparency, accountability, and alignment with the values of good care. It argues that trust in AI shouldn't be built on mimicking empathy or intuition, but on thoughtful design, responsible deployment, and clear moral responsibility. The goal is a balanced view - one that avoids blind optimism and reflexive fear. Trust in AI must be treated not as a given, but as something to be earned over time.
Quantifying Personality in Human-Drone Interactions for Building Heat Loss Inspection with Virtual Reality Training
Reliable building energy audits are crucial for efficiency through heat loss detection. While drones assist inspections, they overlook the interplay between personality traits, stress management, and operational strategies expert engineers employ. This gap, combined with workforce shortages, necessitates effective knowledge transfer. This study proposes a VR-based training system for human-drone interaction in building heat loss inspection. Participants piloted a virtual drone with a thermographic monitor to identify defects. By analyzing flight patterns, stress adaptation, and inspection performance across diverse trainees, we found: (1) Flight Trajectories - Extraverts, Intuitives, Feelers, and Perceivers explored larger areas but showed higher misclassification rates, while Introverts, Sensors, Thinkers, and Judgers demonstrated methodical approaches. (2) Stress Adaptation - Heart rate variability revealed broader stress fluctuations among Extraverts, Intuitives, Feelers, and Perceivers, whereas Introverts, Sensors, Thinkers, and Judgers maintained steadier responses. Task complexity magnified these differences. (3) Inspection Performance - Extraverts, Intuitives, and Feelers achieved higher recall but over-identified defects. Introverts, Sensors, Thinkers, and Judgers made fewer random errors but risked overlooking subtle heat losses. These insights highlight the interplay among personality traits, stress management, and operational strategies in VR training for drone-assisted audits. The framework shows potential for addressing workforce shortages by facilitating knowledge transfer and optimizing human-drone collaboration.
Image and Video Processing
Longitudinal Assessment of Lung Lesion Burden in CT SP
In the U.S., lung cancer is the second major cause of death. Early detection of suspicious lung nodules is crucial for patient treatment planning, management, and improving outcomes. Many approaches for lung nodule segmentation and volumetric analysis have been proposed, but few have looked at longitudinal changes in total lung tumor burden. In this work, we trained two 3D models (nnUNet) with and without anatomical priors to automatically segment lung lesions and quantified total lesion burden for each patient. The 3D model without priors significantly outperformed ($p < .001$) the model trained with anatomy priors. For detecting clinically significant lesions $>$ 1cm, a precision of 71.3\%, sensitivity of 68.4\%, and F1-score of 69.8\% was achieved. For segmentation, a Dice score of 77.1 $\pm$ 20.3 and Hausdorff distance error of 11.7 $\pm$ 24.1 mm was obtained. The median lesion burden was 6.4 cc (IQR: 2.1, 18.1) and the median volume difference between manual and automated measurements was 0.02 cc (IQR: -2.8, 1.2). Agreements were also evaluated with linear regression and Bland-Altman plots. The proposed approach can produce a personalized evaluation of the total tumor burden for a patient and facilitate interval change tracking over time.
comment: Published at SPIE Medical Imaging 2025
Leveraging Anatomical Priors for Automated Pancreas Segmentation on Abdominal CT SP
An accurate segmentation of the pancreas on CT is crucial to identify pancreatic pathologies and extract imaging-based biomarkers. However, prior research on pancreas segmentation has primarily focused on modifying the segmentation model architecture or utilizing pre- and post-processing techniques. In this article, we investigate the utility of anatomical priors to enhance the segmentation performance of the pancreas. Two 3D full-resolution nnU-Net models were trained, one with 8 refined labels from the public PANORAMA dataset, and another that combined them with labels derived from the public TotalSegmentator (TS) tool. The addition of anatomical priors resulted in a 6\% increase in Dice score ($p < .001$) and a 36.5 mm decrease in Hausdorff distance for pancreas segmentation ($p < .001$). Moreover, the pancreas was always detected when anatomy priors were used, whereas there were 8 instances of failed detections without their use. The use of anatomy priors shows promise for pancreas segmentation and subsequent derivation of imaging biomarkers.
comment: Published at SPIE Medical Imaging 2025
DIMA: DIffusing Motion Artifacts for unsupervised correction in brain MRI images
Motion artifacts remain a significant challenge in Magnetic Resonance Imaging (MRI), compromising diagnostic quality and potentially leading to misdiagnosis or repeated scans. Existing deep learning approaches for motion artifact correction typically require paired motion-free and motion-affected images for training, which are rarely available in clinical settings. To overcome this requirement, we present DIMA (DIffusing Motion Artifacts), a novel framework that leverages diffusion models to enable unsupervised motion artifact correction in brain MRI. Our two-phase approach first trains a diffusion model on unpaired motion-affected images to learn the distribution of motion artifacts. This model then generates realistic motion artifacts on clean images, creating paired datasets suitable for supervised training of correction networks. Unlike existing methods, DIMA operates without requiring k-space manipulation or detailed knowledge of MRI sequence parameters, making it adaptable across different scanning protocols and hardware. Comprehensive evaluations across multiple datasets and anatomical planes demonstrate that our method achieves comparable performance to state-of-the-art supervised approaches while offering superior generalizability to real clinical data. DIMA represents a significant advancement in making motion artifact correction more accessible for routine clinical use, potentially reducing the need for repeat scans and improving diagnostic accuracy.
comment: 7 pages, 5 figures, 7 tables
Identifying regions of interest in whole slide images of renal cell carcinoma
The histopathological images contain a huge amount of information, which can make diagnosis an extremely timeconsuming and tedious task. In this study, we developed a completely automated system to detect regions of interest (ROIs) in whole slide images (WSI) of renal cell carcinoma (RCC), to reduce time analysis and assist pathologists in making more accurate decisions. The proposed approach is based on an efficient texture descriptor named dominant rotated local binary pattern (DRLBP) and color transformation to reveal and exploit the immense texture variability at the microscopic high magnifications level. Thereby, the DRLBPs retain the structural information and utilize the magnitude values in a local neighborhood for more discriminative power. For the classification of the relevant ROIs, feature extraction of WSIs patches was performed on the color channels separately to form the histograms. Next, we used the most frequently occurring patterns as a feature selection step to discard non-informative features. The performances of different classifiers on a set of 1800 kidney cancer patches originating from 12 whole slide images were compared and evaluated. Furthermore, the small size of the image dataset allows to investigate deep learning approach based on transfer learning for image patches classification by using deep features and fine-tuning methods. High recognition accuracy was obtained and the classifiers are efficient, the best precision result was 99.17% achieved with SVM. Moreover, transfer learning models perform well with comparable performance, and the highest precision using ResNet-50 reached 98.50%. The proposed approach results revealed a very efficient image classification and demonstrated efficacy in identifying ROIs. This study presents an automatic system to detect regions of interest relevant to the diagnosis of kidney cancer in whole slide histopathology images.
MoEDiff-SR: Mixture of Experts-Guided Diffusion Model for Region-Adaptive MRI Super-Resolution
Magnetic Resonance Imaging (MRI) at lower field strengths (e.g., 3T) suffers from limited spatial resolution, making it challenging to capture fine anatomical details essential for clinical diagnosis and neuroimaging research. To overcome this limitation, we propose MoEDiff-SR, a Mixture of Experts (MoE)-guided diffusion model for region-adaptive MRI Super-Resolution (SR). Unlike conventional diffusion-based SR models that apply a uniform denoising process across the entire image, MoEDiff-SR dynamically selects specialized denoising experts at a fine-grained token level, ensuring region-specific adaptation and enhanced SR performance. Specifically, our approach first employs a Transformer-based feature extractor to compute multi-scale patch embeddings, capturing both global structural information and local texture details. The extracted feature embeddings are then fed into an MoE gating network, which assigns adaptive weights to multiple diffusion-based denoisers, each specializing in different brain MRI characteristics, such as centrum semiovale, sulcal and gyral cortex, and grey-white matter junction. The final output is produced by aggregating the denoised results from these specialized experts according to dynamically assigned gating probabilities. Experimental results demonstrate that MoEDiff-SR outperforms existing state-of-the-art methods in terms of quantitative image quality metrics, perceptual fidelity, and computational efficiency. Difference maps from each expert further highlight their distinct specializations, confirming the effective region-specific denoising capability and the interpretability of expert contributions. Additionally, clinical evaluation validates its superior diagnostic capability in identifying subtle pathological features, emphasizing its practical relevance in clinical neuroimaging. Our code is available at https://github.com/ZWang78/MoEDiff-SR.
Dual Deep Learning Approach for Non-invasive Renal Tumour Subtyping with VERDICT-MRI
This work aims to characterise renal tumour microstructure using diffusion MRI (dMRI); via the Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumours (VERDICT)-MRI framework with self-supervised learning. Comprehensive datasets were acquired from 14 patients with 15 biopsy-confirmed renal tumours, with nine b-values in the range b=[0,2500]s/mm2. A three-compartment VERDICT model for renal tumours was fitted to the dMRI data using a self-supervised deep neural network, and ROIs were drawn by an experienced uroradiologist. An economical acquisition protocol for future studies with larger patient cohorts was optimised using a recursive feature selection approach. The VERDICT model described the diffusion data in renal tumours more accurately than IVIM or ADC. Combined with self-supervised deep learning, VERDICT identified significant differences in the intracellular volume fraction between cancerous and normal tissue, and in the vascular volume fraction between vascular and non-vascular. The feature selector yields a 4 b-value acquisition of b = [70,150,1000,2000], with a duration of 14 minutes.
comment: 19 pages, 9 figures
Q-Agent: Quality-Driven Chain-of-Thought Image Restoration Agent through Robust Multimodal Large Language Model
Image restoration (IR) often faces various complex and unknown degradations in real-world scenarios, such as noise, blurring, compression artifacts, and low resolution, etc. Training specific models for specific degradation may lead to poor generalization. To handle multiple degradations simultaneously, All-in-One models might sacrifice performance on certain types of degradation and still struggle with unseen degradations during training. Existing IR agents rely on multimodal large language models (MLLM) and a time-consuming rolling-back selection strategy neglecting image quality. As a result, they may misinterpret degradations and have high time and computational costs to conduct unnecessary IR tasks with redundant order. To address these, we propose a Quality-Driven agent (Q-Agent) via Chain-of-Thought (CoT) restoration. Specifically, our Q-Agent consists of robust degradation perception and quality-driven greedy restoration. The former module first fine-tunes MLLM, and uses CoT to decompose multi-degradation perception into single-degradation perception tasks to enhance the perception of MLLMs. The latter employs objective image quality assessment (IQA) metrics to determine the optimal restoration sequence and execute the corresponding restoration algorithms. Experimental results demonstrate that our Q-Agent achieves superior IR performance compared to existing All-in-One models.
Assessing the risk of recurrence in early-stage breast cancer through H&E stained whole slide images
Accurate prediction of the likelihood of recurrence is important in the selection of postoperative treatment for patients with early-stage breast cancer. In this study, we investigated whether deep learning algorithms can predict patients' risk of recurrence by analyzing the pathology images of their cancer histology.We analyzed 125 hematoxylin and eosin-stained whole slide images (WSIs) from 125 patients across two institutions (National Cancer Center and Korea University Medical Center Guro Hospital) to predict breast cancer recurrence risk using deep learning. Sensitivity reached 0.857, 0.746, and 0.529 for low, intermediate, and high-risk categories, respectively, with specificity of 0.816, 0.803, and 0.972, and a Pearson correlation of 0.61 with histological grade. Class activation maps highlighted features like tubule formation and mitotic rate, suggesting a cost-effective approach to risk stratification, pending broader validation. These findings suggest that deep learning models trained exclusively on hematoxylin and eosin stained whole slide images can approximate genomic assay results, offering a cost-effective and scalable tool for breast cancer recurrence risk assessment. However, further validation using larger and more balanced datasets is needed to confirm the clinical applicability of our approach.
comment: 20 pages, 9 figures
Learning Generalizable Features for Tibial Plateau Fracture Segmentation Using Masked Autoencoder and Limited Annotations
Accurate automated segmentation of tibial plateau fractures (TPF) from computed tomography (CT) requires large amounts of annotated data to train deep learning models, but obtaining such annotations presents unique challenges. The process demands expert knowledge to identify diverse fracture patterns, assess severity, and account for individual anatomical variations, making the annotation process highly time-consuming and expensive. Although semi-supervised learning methods can utilize unlabeled data, existing approaches often struggle with the complexity and variability of fracture morphologies, as well as limited generalizability across datasets. To tackle these issues, we propose an effective training strategy based on masked autoencoder (MAE) for the accurate TPF segmentation in CT. Our method leverages MAE pretraining to capture global skeletal structures and fine-grained fracture details from unlabeled data, followed by fine-tuning with a small set of labeled data. This strategy reduces the dependence on extensive annotations while enhancing the model's ability to learn generalizable and transferable features. The proposed method is evaluated on an in-house dataset containing 180 CT scans with TPF. Experimental results demonstrate that our method consistently outperforms semi-supervised methods, achieving an average Dice similarity coefficient (DSC) of 95.81%, average symmetric surface distance (ASSD) of 1.91mm, and Hausdorff distance (95HD) of 9.42mm with only 20 annotated cases. Moreover, our method exhibits strong transferability when applying to another public pelvic CT dataset with hip fractures, highlighting its potential for broader applications in fracture segmentation tasks.
comment: 5 pages, 6 figures. Accepted to IEEE EMBC 2025
Multispectral Demosaicing via Dual Cameras
Multispectral (MS) images capture detailed scene information across a wide range of spectral bands, making them invaluable for applications requiring rich spectral data. Integrating MS imaging into multi camera devices, such as smartphones, has the potential to enhance both spectral applications and RGB image quality. A critical step in processing MS data is demosaicing, which reconstructs color information from the mosaic MS images captured by the camera. This paper proposes a method for MS image demosaicing specifically designed for dual-camera setups where both RGB and MS cameras capture the same scene. Our approach leverages co-captured RGB images, which typically have higher spatial fidelity, to guide the demosaicing of lower-fidelity MS images. We introduce the Dual-camera RGB-MS Dataset - a large collection of paired RGB and MS mosaiced images with ground-truth demosaiced outputs - that enables training and evaluation of our method. Experimental results demonstrate that our method achieves state-of-the-art accuracy compared to existing techniques.
Neural Approximate Mirror Maps for Constrained Diffusion Models ICLR 2025
Diffusion models excel at creating visually-convincing images, but they often struggle to meet subtle constraints inherent in the training data. Such constraints could be physics-based (e.g., satisfying a PDE), geometric (e.g., respecting symmetry), or semantic (e.g., including a particular number of objects). When the training data all satisfy a certain constraint, enforcing this constraint on a diffusion model makes it more reliable for generating valid synthetic data and solving constrained inverse problems. However, existing methods for constrained diffusion models are restricted in the constraints they can handle. For instance, recent work proposed to learn mirror diffusion models (MDMs), but analytical mirror maps only exist for convex constraints and can be challenging to derive. We propose neural approximate mirror maps (NAMMs) for general, possibly non-convex constraints. Our approach only requires a differentiable distance function from the constraint set. We learn an approximate mirror map that transforms data into an unconstrained space and a corresponding approximate inverse that maps data back to the constraint set. A generative model, such as an MDM, can then be trained in the learned mirror space and its samples restored to the constraint set by the inverse map. We validate our approach on a variety of constraints, showing that compared to an unconstrained diffusion model, a NAMM-based MDM substantially improves constraint satisfaction. We also demonstrate how existing diffusion-based inverse-problem solvers can be easily applied in the learned mirror space to solve constrained inverse problems.
comment: ICLR 2025
SGSST: Scaling Gaussian Splatting StyleTransfer
Applying style transfer to a full 3D environment is a challenging task that has seen many developments since the advent of neural rendering. 3D Gaussian splatting (3DGS) has recently pushed further many limits of neural rendering in terms of training speed and reconstruction quality. This work introduces SGSST: Scaling Gaussian Splatting Style Transfer, an optimization-based method to apply style transfer to pretrained 3DGS scenes. We demonstrate that a new multiscale loss based on global neural statistics, that we name SOS for Simultaneously Optimized Scales, enables style transfer to ultra-high resolution 3D scenes. Not only SGSST pioneers 3D scene style transfer at such high image resolutions, it also produces superior visual quality as assessed by thorough qualitative, quantitative and perceptual comparisons.
Multimedia
Audio-visual Event Localization on Portrait Mode Short Videos
Audio-visual event localization (AVEL) plays a critical role in multimodal scene understanding. While existing datasets for AVEL predominantly comprise landscape-oriented long videos with clean and simple audio context, short videos have become the primary format of online video content due to the the proliferation of smartphones. Short videos are characterized by portrait-oriented framing and layered audio compositions (e.g., overlapping sound effects, voiceovers, and music), which brings unique challenges unaddressed by conventional methods. To this end, we introduce AVE-PM, the first AVEL dataset specifically designed for portrait mode short videos, comprising 25,335 clips that span 86 fine-grained categories with frame-level annotations. Beyond dataset creation, our empirical analysis shows that state-of-the-art AVEL methods suffer an average 18.66% performance drop during cross-mode evaluation. Further analysis reveals two key challenges of different video formats: 1) spatial bias from portrait-oriented framing introduces distinct domain priors, and 2) noisy audio composition compromise the reliability of audio modality. To address these issues, we investigate optimal preprocessing recipes and the impact of background music for AVEL on portrait mode videos. Experiments show that these methods can still benefit from tailored preprocessing and specialized model design, thus achieving improved performance. This work provides both a foundational benchmark and actionable insights for advancing AVEL research in the era of mobile-centric video content. Dataset and code will be released.
SCI-Reason: A Dataset with Chain-of-Thought Rationales for Complex Multimodal Reasoning in Academic Areas ICCV 2025
Large Language Models (LLMs) and Large Multimodal Models (LMMs) demonstrate impressive problem-solving skills in many tasks and domains. However, their ability to reason with complex images in academic domains has not been systematically investigated. To bridge this gap, we present SCI-Reason, a dataset for complex multimodel reasoning in academic areas. SCI-Reason aims to test and improve the reasoning ability of large multimodal models using real complex images in academic domains. The dataset contains 12,066 images and 12,626 question-answer pairs extracted from PubMed, divided into training, validation and test splits. Each question-answer pair also contains an accurate and efficient inference chain as a guide to improving the inference properties of the dataset. With SCI-Reason, we performed a comprehensive evaluation of 8 well-known models. The best performing model, Claude-3.7-Sonnet, only achieved an accuracy of 55.19%. Error analysis shows that more than half of the model failures are due to breakdowns in multi-step inference chains rather than errors in primary visual feature extraction. This finding underscores the inherent limitations in reasoning capabilities exhibited by current multimodal models when processing complex image analysis tasks within authentic academic contexts. Experiments on open-source models show that SCI-Reason not only enhances reasoning ability but also demonstrates cross-domain generalization in VQA tasks. We also explore future applications of model inference capabilities in this domain, highlighting its potential for future research.
comment: Submitted to ICCV 2025. 11 pages (including references)
Attributes-aware Visual Emotion Representation Learning
Visual emotion analysis or recognition has gained considerable attention due to the growing interest in understanding how images can convey rich semantics and evoke emotions in human perception. However, visual emotion analysis poses distinctive challenges compared to traditional vision tasks, especially due to the intricate relationship between general visual features and the different affective states they evoke, known as the affective gap. Researchers have used deep representation learning methods to address this challenge of extracting generalized features from entire images. However, most existing methods overlook the importance of specific emotional attributes such as brightness, colorfulness, scene understanding, and facial expressions. Through this paper, we introduce A4Net, a deep representation network to bridge the affective gap by leveraging four key attributes: brightness (Attribute 1), colorfulness (Attribute 2), scene context (Attribute 3), and facial expressions (Attribute 4). By fusing and jointly training all aspects of attribute recognition and visual emotion analysis, A4Net aims to provide a better insight into emotional content in images. Experimental results show the effectiveness of A4Net, showcasing competitive performance compared to state-of-the-art methods across diverse visual emotion datasets. Furthermore, visualizations of activation maps generated by A4Net offer insights into its ability to generalize across different visual emotion datasets.
comment: 9 pages, 3 figures
VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
comment: Project page available at https://yxbian23.github.io/project/video-painter
A Simple but Strong Baseline for Sounding Video Generation: Effective Adaptation of Audio and Video Diffusion Models for Joint Generation IJCNN 2025
In this work, we build a simple but strong baseline for sounding video generation. Given base diffusion models for audio and video, we integrate them with additional modules into a single model and train it to make the model jointly generate audio and video. To enhance alignment between audio-video pairs, we introduce two novel mechanisms in our model. The first one is timestep adjustment, which provides different timestep information to each base model. It is designed to align how samples are generated along with timesteps across modalities. The second one is a new design of the additional modules, termed Cross-Modal Conditioning as Positional Encoding (CMC-PE). In CMC-PE, cross-modal information is embedded as if it represents temporal position information, and the embeddings are fed into the model like positional encoding. Compared with the popular cross-attention mechanism, CMC-PE provides a better inductive bias for temporal alignment in the generated data. Experimental results validate the effectiveness of the two newly introduced mechanisms and also demonstrate that our method outperforms existing methods.
comment: IJCNN 2025. The source code is available: https://github.com/SonyResearch/SVG_baseline
DLF: Disentangled-Language-Focused Multimodal Sentiment Analysis AAAI 2025
Multimodal Sentiment Analysis (MSA) leverages heterogeneous modalities, such as language, vision, and audio, to enhance the understanding of human sentiment. While existing models often focus on extracting shared information across modalities or directly fusing heterogeneous modalities, such approaches can introduce redundancy and conflicts due to equal treatment of all modalities and the mutual transfer of information between modality pairs. To address these issues, we propose a Disentangled-Language-Focused (DLF) multimodal representation learning framework, which incorporates a feature disentanglement module to separate modality-shared and modality-specific information. To further reduce redundancy and enhance language-targeted features, four geometric measures are introduced to refine the disentanglement process. A Language-Focused Attractor (LFA) is further developed to strengthen language representation by leveraging complementary modality-specific information through a language-guided cross-attention mechanism. The framework also employs hierarchical predictions to improve overall accuracy. Extensive experiments on two popular MSA datasets, CMU-MOSI and CMU-MOSEI, demonstrate the significant performance gains achieved by the proposed DLF framework. Comprehensive ablation studies further validate the effectiveness of the feature disentanglement module, language-focused attractor, and hierarchical predictions. Our code is available at https://github.com/pwang322/DLF.
comment: AAAI 2025 accepted
Retrieval Augmented Verification for Zero-Shot Detection of Multimodal Disinformation
The rise of disinformation on social media, especially through the strategic manipulation or repurposing of images, paired with provocative text, presents a complex challenge for traditional fact-checking methods. In this paper, we introduce a novel zero-shot approach to identify and interpret such multimodal disinformation, leveraging real-time evidence from credible sources. Our framework goes beyond simple true-or-false classifications by analyzing both the textual and visual components of social media claims in a structured, interpretable manner. By constructing a graph-based representation of entities and relationships within the claim, combined with pretrained visual features, our system automatically retrieves and matches external evidence to identify inconsistencies. Unlike traditional models dependent on labeled datasets, our method empowers users with transparency, illuminating exactly which aspects of the claim hold up to scrutiny and which do not. Our framework achieves competitive performance with state-of-the-art methods while offering enhanced explainability.
EveGuard: Defeating Vibration-based Side-Channel Eavesdropping with Audio Adversarial Perturbations
Vibrometry-based side channels pose a significant privacy risk, exploiting sensors like mmWave radars, light sensors, and accelerometers to detect vibrations from sound sources or proximate objects, enabling speech eavesdropping. Despite various proposed defenses, these involve costly hardware solutions with inherent physical limitations. This paper presents EveGuard, a software-driven defense framework that creates adversarial audio, protecting voice privacy from side channels without compromising human perception. We leverage the distinct sensing capabilities of side channels and traditional microphones, where side channels capture vibrations and microphones record changes in air pressure, resulting in different frequency responses. EveGuard first proposes a perturbation generator model (PGM) that effectively suppresses sensor-based eavesdropping while maintaining high audio quality. Second, to enable end-to-end training of PGM, we introduce a new domain translation task called Eve-GAN for inferring an eavesdropped signal from a given audio. We further apply few-shot learning to mitigate the data collection overhead for Eve-GAN training. Our extensive experiments show that EveGuard achieves a protection rate of more than 97 percent from audio classifiers and significantly hinders eavesdropped audio reconstruction. We further validate the performance of EveGuard across three adaptive attack mechanisms. We have conducted a user study to verify the perceptual quality of our perturbed audio.
comment: In the 46th IEEE Symposium on Security and Privacy (IEEE S&P), May 2025