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Abstract

Human visual search ability enables efficient and accurate tracking of an arbitrary
moving target, which is a significant research interest in cognitive neuroscience.
The recently proposed Central-Peripheral Dichotomy (CPD) theory sheds light on
how humans effectively process visual information and track moving targets in
complex environments. However, existing visual object tracking algorithms still
fall short of matching human performance in maintaining tracking over time, par-
ticularly in complex scenarios requiring robust visual search skills. These scenarios
often involve Spatio-Temporal Discontinuities (i.e., STDChallenge), prevalent in
long-term tracking and global instance tracking. To address this issue, we conduct
research from a human-like modeling perspective: (1) Inspired by the CPD, we pro-
pose a new tracker named CPDTrack to achieve human-like visual search ability.
The central vision of CPDTrack leverages the spatio-temporal continuity of videos
to introduce priors and enhance localization precision, while the peripheral vision
improves global awareness and detects object movements. (2) To further evaluate
and analyze STDChallenge, we create the STDChallenge Benchmark. Besides,
by incorporating human subjects, we establish a human baseline, creating a high-
quality environment specifically designed to assess trackers’ visual search abilities
in videos across STDChallenge. (3) Our extensive experiments demonstrate that the
proposed CPDTrack not only achieves state-of-the-art (SOTA) performance in this
challenge but also narrows the behavioral differences with humans. Additionally,
CPDTrack exhibits strong generalizability across various challenging benchmarks.
In summary, our research underscores the importance of human-like modeling and
offers strategic insights for advancing intelligent visual target tracking. Code and
models are available at https://github.com/ZhangDailing8/CPDTrack.

1 Introduction

In the real world, humans excel at locating an arbitrary moving target within complex backgrounds
and can resume tracking it even after temporary loss. This enduring question in cognitive neuroscience
has recently been explained to some extent by the Central-Peripheral Dichotomy (CPD) theory, which
suggests that the human eyes processes all visual inputs by sorting them into central and peripheral
visions [1, 2]. Central vision, decoded and understood by higher brain areas, focuses on interpreting
details and minimizing distractions; while peripheral vision, processed in the primary visual cortex
(V1), swiftly detects dynamic changes.
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Figure 1: Illustration of the STDChallenge, depicting the absent of targets and shotcut. STDChallenge
is quite challenging, but CPDTrack can maintain robust tracking performance, demonstrating stronger
visual search abilities compared to other trackers. (a) In the first column, most trackers fail; in the
second column, they can recover; in the third column, a STDChallenge occurs; in the fourth column,
all trackers except for CPDTrack fail; and in the fifth column, this remains the case, meaning trackers’
limited recovery. (b) shows the status of the target within the sequence of "095" from VideoCube [4],
and red dots means shotcut.

Meanwhile, in computer vision research, advancements in single object tracking (SOT) are increas-
ingly closing the gap between human dynamic visual ability (DVA) and proxy tasks [3, 4, 5]. In 2013,
the short-term tracking (STT) task and related benchmarks were proposed [6, 7, 8]. However, the
implicit assumption of continuous motion simplifies this task to continuously locating the target in
short videos of tens of seconds, which is far from human DVA. Drawing on human visual search skills,
the VOT community is broadening its scope by incorporating long-term tracking (LTT) [9, 10], which
includes target absent (i.e., the moving target can disappear and reappear in tracking), and global
instance tracking (GIT) [4], which involves shotcut (i.e., the video sequence may include different
viewpoints and scenes). We refer to these challenges collectively as spatio-temporal discontinuity
(STDChallenge), which demands enhanced visual search abilities from trackers, as shown in Fig. 1.

Unfortunately, mainstream machines have not kept pace with the aforementioned expansion of
task definitions to achieve human performance. Most mainstream trackers [11, 12, 13, 14, 15, 16],
influenced by the definition of STT, depend on the spatio-temporal continuity of the target. These
trackers typically perform local cropping based on the previous frame’s results within the motion
model, a module for calculating the search region on the current frame, as shown in Fig. 2(b-1).
Obviously, this modeling mechanism only simulates human central vision, making it far from
replicating human visual search ability, especially in scenarios where the STDChallenge increases
significantly, as shown in Fig. 6(a). Several studies [17, 18] have also demonstrated that STDChallenge
presents a significant challenge for trackers. Thus, a natural question is: what causes trackers to
overlook the importance of the STDChallenge in their modeling process?

Some possible reasons from the benchmark perspective may answer the above question: Limitation of
datasets. Although the definition of proxy tasks has been moving closer to human DVA (STT → LTT
→ GIT), most datasets are still influenced by the initial task characteristics (i.e., single-target, model-
free, causal-trackers, single-camera, and short-term) in data collection process [19, 20, 21, 9], as in
Fig. 10, resulting in the importance of the STDChallenge being overlooked. Consequently, trackers
can easily achieve good performance on most datasets without possessing sufficient visual search
ability to handle the STDChallenge. Limitation of evaluation. Researchers contend that integrating
insights from human DVA could address STDChallenge and enhance the real-world robustness
of machines [22, 3, 23]. However, the substantial differences in methodologies and experimental
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Figure 2: Comparison of tracking pipeline. Our CPDTrack differs from previous trackers in motion
model. (a) The core components of mainstream tracking frameworks consist of a motion model,
feature extraction, and a temporal module. (b-1) local tracker, which tracks targets in local areas and
has difficulty recovering after failure; (b-2) global tracker, which tracks targets globally in the current
frame, is susceptible to background interference and has lower efficiency; (b-3) local-global tracker,
which can switch between the above two, depending on the performance of the local tracker; (b-4)
our CPDTrack, which can model both central and peripheral information simultaneously.

approaches between computer science and cognitive science make it difficult to determine if current
technological advancements are truly bridging the gap between SOT machines and human DVA.
Consequently, there is a notable absence of mechanisms to assess the true visual intelligence of
trackers.

In summary, existing trackers lack consideration of human visual search ability in their modeling
mechanisms, making it difficult to cope with the STDChallenge. This limitation is not only due to
the algorithm design itself but also involves the limitations of datasets and evaluation. Therefore,
this work aims to address these aspects (algorithms and benchmark) and verifies the relevant results
through experimental analysis.

A new algorithm CPDTrack (Section 3). Our analysis of the tracker pipeline and understanding of
the CPD suggests that mainstream motion models, which crop local regions from the current frame,
as shown in Fig. 2, restrict the tracker’s ability to locate moving targets. Drawing on the distinction
between central and peripheral vision in CPD, we propose a new tracker named CPDTrack to divide
the current frame accordingly. Central vision captures detailed information, leveraging the video’s
spatio-temporal continuity to introduce priors, while peripheral vision manages global information to
enhance overall scene understanding, as shown in Fig. 3. CPDTrack also models the information
query, achieving top-down control based on cognitive outcomes.

A new STDChallenge Benchmark with Visual Turing Test (Section 4). To address the shortcomings
of existing benchmarks environments, we introduce a specialized challenge environment named
STDChallenge Benchmark to assess the visual search abilities of both machines and humans in
tracking an arbitrary moving target. This environment comprises sequences that represent the
STDChallenge, carefully selected from both LTT and GIT benchmarks. By sampling from a variety
of benchmarks, we ensure a reduction in dataset-specific biases. Simultaneously, we employ the
Visual Turing Test (VTT) [24, 25] on the STDChallenge Benchmark to assess the disparity in
intelligence between trackers and human DVA. Specifically, we examine error consistency [26]
to compare the performance of humans and machines, and explore behavioral differences among
machines with varying architectures and parameters in dynamic visual tasks. Building on these
results, we conduct a thorough and detailed analysis to reveal the impact of the STDChallenge on
trackers.

Comprehensive and integral experimental analyses (Section 5). Finally, analysis results from
extensive experimental settings show that, in the STDChallenge, CPDTrack not only achieved state-
of-the-art (SOTA) performance, getting 1.7% superior N-PRE and 1.4% PRE score on STDChallenge
Benchmark compared to the second algorithm, as shown in Table 1, but also demonstrated remarkable
alignment with human DVA, as shown in Fig. 4. Furthermore, it performed well across various
tracking benchmarks, particularly excelling in difficult benchmarks [4, 9, 27, 28].

Contributions. Our research explores the visual search ability of humans and trackers through
detailed analyses based on algorithmic strategies and benchmark evaluations.
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2 Related Work

Tracking Benchmark. In 2013, the VOT competition characterized SOT using five key terms:
single-target, model-free, causal-trackers, single-camera and short-term. The initial three terms serve
to differentiate SOT from other visual tasks [29, 30, 31, 32], whereas the last two, single-camera
and short-term, were introduced to simplify early-stage research [6, 7, 19, 21]. Since 2018, several
researchers have moved beyond the short-term limitation to embrace LTT [33, 9, 34], with the VOT
setting a new criterion that tasks permitting complete target disappearance qualify as long-term [10].
More recently, the introduction of GIT [4] has eliminated the single-camera restriction, thus offering
a more realistic simulation of the world. STDChallenge Benchmark is dedicated to examining the
distinctions between LTT and GIT compared to STT, and integrates human DVA to steer algorithmic
advances.

Visual Trackers. Deep learning trackers are typically categorized by motion models into local
and global trackers, as shown in Fig. 2. Local trackers, which are most popular method, crop a
search region in current frame [11, 12, 13, 15, 35, 16, 36]. These trackers continuously improved
by advancements in feature extractor and temporal analysis, have reached SOTA performance on
various benchmarks [9, 19, 21]. To tackle STDChallenge, it is common to switch to a global
detector when local trackers fail, though this transition depends on the local tracker’s performance
[37, 38, 39, 40, 41]. Local trackers often struggle with proactive global awareness, reducing their
robustness against STDChallenge. Global trackers, conversely, aim to identify targets throughout
the entire image, raising computational demands and easy to be confused by similar objects in the
background. Due to these limitations, they are less commonly employed [42, 43]. CPDTrack is
designed to model CPD by combining local and global information, thereby enabling precise and
efficient global modeling and offering insights for addressing the STDChallenge. For a detailed
analysis of these trackers, see Appendix D.

Visual Turing Test. Traditional evaluation methods, focused on "machine versus machine" com-
parisons, struggle to comprehensively assess the development of visual intelligence as they rely on
predefined metrics in experimental settings. The VTT, at the intersection of turing tests and computer
vision, is gaining attention for its "human versus machine" approach, which uses human visual
capabilities as a baseline to fully evaluate machine effectiveness [26, 44, 45, 46, 26, 25, 24]. This
paradigm has been applied in SOT that simulate human DVA: GIT[4] demonstrates that humans can
effectively resolve STDChallenge, and PathTracker [22, 47] has developed a circuit model to explain
human decision-making processes. We are going to explore the visual search ability of humans and
machines when tracking an arbitrary moving target.

3 Solving the STDChallenge

This section presents the proposed CPDTrack method in detail. We introduce CPD motion model,
which divides global information into central and peripheral vision to optimize feature extraction.
Additionally, we have developed a temporal clues module that serves as the information query
component within CPD theory, facilitating top-down control mechanisms.

3.1 CPD Motion Model

A crucial challenge is balancing the maintenance of local resolution and computational efficiency
during the extraction of global information. To address this, we incorporate insights from cognitive
neuroscience, specifically the fovea concept [48] and CPD, segmenting the current frame into central
and peripheral. Their computation is divided into the following steps:

Determine the position. For the central vision, as shown in Fig. 3, we use the tracking result
bt−1 = (bcxt−1, b

cy
t−1, wt−1, ht−1) on the previous frame to determine its position.

Central vision. To simulate the decay in visual sensitivity characteristic of the fovea, we employ
gaussian distribution model—a method that has found widespread application in vision science
[48, 49]. Visual sensitivity is defined as:

S(x) = S0 · exp(−
(
x− bcxt−1

)2
2 · σ2

), (1)
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Figure 3: The overall architecture of CPDTrack, referencing the latest one-stream trackers, models
CPD. (a) The encoding-selection-decoding framework of CPD. Visual selection is the process of
choosing the information to focus on, and visual decoding is the process of deeply understanding the
selected features and information to make cognitive decisions. On the left is a mathematical model of
visual selection, where we align human visual information processing with the resolution of devices
and machines. (b) Architecture of the proposed CPDTrack: The original frame is treated as encoded
visual data. We apply the acuity model described in (a) for visual selecting, which can be modulated
by information query from temporal. A transformer is employed to replicate the decoding processes
occurring in higher brain regions, facilitating complex cognitive tasks. The grey arrows running
through both parts highlight the correspondence between the two parts.

where S(x) is sensitivity in x and S0 is the sensitivity in central. we set the σ = W
6 based on the

overall size (H,W ) of the image and the 3-sigma rule. This approach ensures that the cumulative
visual sensitivity to current frame exceeds 99.7%, effectively covering the vast majority of the visual
field.

Sensitivity of central. We determine the sensitivity levels within this region using the values from
bt−1. Integrating sensitivity as:

sensx−1 =

∫ b
x2
t−1

b
x1
t−1

S(x)dx, (2)

where bx1
t−1 = bcxt−1 − wt−1

2 is the top-left coordinate of bt−1, and bx2
t−1 = bcxt−1 + wt−1

2 is the
bottom-right coordinate of bt−1.

Image crop resizing. As the central region is resized to a constant size, thus its width we
t−1 ∝ 1

sensx
and we

t−1 ∝ wt−1. Therefore, we
t−1 is determined to be:

we
t−1 =

wt−1

sensx−1
= S wt−1

2Φ( 3wt−1

W )− 1
, (3)

where S is a constant factor that can be adjusted, and Φ is the cumulative density function of the
standard normal distribution. Then, we get central region mt = (bcxt−1, b

cy
t−1, w

e
t−1, h

e
t−1).

As the lower limit of the bounding box is set, typically at 10 pixels in tracking, equation (3) will not a
division by zero error in practice.
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We prove the range we
t−1 in equation (3): First, take the derivative with respect to we

t−1(x), The
range of values for x is (0,W ]:

we
t−1

′
(x) =

2Φ( 3xW )− 1− 6
W xf( 3xW )

(2Φ( 3wt−1

W )− 1)2
, (4)

where f is the probability density function of the standard normal distribution. We define the
numerator as nw(x) and denominator as dw(x)

It is clear that dw(x) ≥ 0 when x > 0; differentiate nw(x):

n
′

w(x) = − 18

W 2
xf ′(

3x

W
). (5)

Clearly, f ′ < 0. Thus, nw(x) has its minimum value at x = 0, nw(x) ≥ 0. Therefore, we
t−1(x)is

a monotonically increasing function when x > 0. When x takes the maximum value, x = W ,
we

t−1(x) ≈ 0.9987SW .

Intuitively, the central area is determined by cropping around the target based on the bt−1. This differs
from traditional motion models, which typically use a static context ratio for cropping. In contrast,
the CPD model adapts the contextual range dynamically, offering more flexibility and precision, more
visualization in Appendix B.

For the peripheral area, we adjust the entire image to match the size of the central area. This resizing
facilitates the simulation of peripheral vision, aligning the scale both regions.

3.2 Information query

In CPD [2], the selection process is influenced by cognitive feedback through a top-down approach,
as illustrated in Fig. 3. Similarly to mode that humans can actively focus on areas of interest,
CPDTrack incorporates an information query mechanism. Spatially, we determine central vision
based on the results bt−1 of the previous frame. Semantically, we use the query to map high-level
semantic information from the previous frame downwards, achieving top-down control. Specifically,
each past frame is represented by a token while template is max-pooled into a query as initialization.
This query, using cross-attention, extracts refined high-level semantic insights from multiple past
frame tokens, then concatenated to images tokens and inputted into the ViT [50]. Within the ViT
backbone, the information query interacts with the global information of the current frame and the
online template, achieving implicit cognitive feedback’s top-down control. Simultaneously, this query
integrates the spatio-temporal information of the current frame for use in future frame computations.

4 The STDChallenge Benchmark

STDChallenge Benchmark is an integrated task closely associated with various object tracking
subtasks [7, 10, 4]. We select sequences with STDChallenge from established benchmarks based
on specific sequence level attributes. Furthermore, inspired by cognitive psychology [51], we have
designed a dynamic visual capability assessment framework to evaluate and compare the performances
of humans and machines when tackling STDChallenge. This evaluation directly informs and guides
machine development.

Construct STDChallenge Benchmark. Our objective is not to develop a new dataset to evaluate
trackers’ visual search ability. Rather, we aim to highlight the often-overlooked issue of STDChal-
lenge, already acknowledged by few recent datasets but underemphasized in algorithms design. We
have chosen existing benchmarks as our data sources to assess trackers’ proficiency with STDChal-
lenge, specifically selecting sequences from LaSOT [9], VOTLT2019 [52], and VideoCube [4] where
such challenges are existing. Drawing inspiration from cinematography, we introduce the metric

STD =
(na + ns) · la

l2
, (6)

to quantify STDChallenge, where na means the number of absent, ns means the number of shotcut,
la means the length of absent and l means the length of the sequence. This formula takes into account
the frequency and duration of absent, and the frequency of shotcut. A higher STD value indicates
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greater STDChallenge. From LaSOT [9], VOTLT2019 [52], and VideoCube [4], we have compiled
a dataset of 252 sequences that constitute the STDChallenge Benchmark, detailed attributes and
distribution would typically be visualized in Appendix C.

Visual Turing Test. Our investigation begins by assessing whether individuals can effectively handle
the STDChallenge. In line with methodologies from the field of static vision [26, 25], we organize
the study using a small-N design [51, 26], enlisting five participants aged 20 to 30. During the
experiment, participants watch videos and are instructed to track the target with a mouse cursor.
The cursor’s position is recorded at each frame by a background program. Sixteen videos (named
STDChallenge-Turing) sampled from STDChallenge Benchmark are displayed in 15 fps, each in a
different order across participants. Prior to starting, participants receive detailed training to familiarize
themselves with the experimental process and techniques, more details in Appendix E.

(a) N-PRE Score in STDChallenge-Turing

02

05

01

04

05

(c) Error consistency between humans and machines(b) Boxplot of Human and Machine

Figure 4: Quantitative indicators show that CPDTrack not only has higher accuracy in the STDChal-
lenge but also behaves more similarly to humans. (a) represents the N-PRE score on STDChallenge-
Turing. (b) represents the distribution of N-PRE scores of humans and machines on various sequences
of STDChallenge-Turing. (c) represents the error consistency between machines and humans, with
kappa representing the average error consistency.
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Figure 5: Human results do not necessarily mean correct, but humans can usually quickly re-locate
the target after STDChallenge. In the upper row, humans can recognize environmental factors closely
related to the target in the second image. In the lower row, even if the target is absent, humans are not
distracted by the background in the second image. Humans are robust to occlusions in the fifth image.

5 Experiments

5.1 Visual Turing Test in STDChallenge-Turing

Evaluation metrics. Given that human typically focuses on a single point and emphasizes an object’s
salient features rather than its center, we have adjusted our evaluation metrics and outputs accordingly.
For error consistency measurements refer to [26], human is successful if the point fall within the
groundtruth while trackers is successful if IoU > 0.5 in a frame. For performance measurements,
we employ the N-PRE metric [4], which evaluates the precision based on relative position between
the center of boundingbox and groundtruth, to assess the performance of both humans and machines.
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Table 1: State-of-the-art comparison on STDChallenge, VideoCube [4] and LaSOT [9]. The top three
results are highlight with red, blue and green fonts, respectively.

STDChallenge VideoCube VideoCube
R-OPE LaSOT

Motion Model Method N-PRE PRE SUC N-PRE PRE SUC N-PRE SUC Robust AUC P
CPD CPDTrack 84.2 73.3 65.9 82.9 67.1 70.4 89.5 75.6 75.3 66.1 73.0

SeqTrack [13] 81.9 71.9 66.8 76.8 54.0 63.5 88.3 72.5 74.6 69.9 76.3
OSTrack [12] 79.1 68.9 64.6 73.7 50.7 61.8 85.8 71.3 74.4 69.1 75.2
MixViT [11] 82.5 71.6 66.7 76.9 52.2 63.1 88.5 72.7 74.7 69.6 75.9
STARK [53] 80.7 68.2 64.5 76.3 49.4 62.1 86.8 70.4 74.5 67.1 -

KeepTrack [15] 80.4 64.3 62.8 73.0 37.9 54.3 83.0 64.4 73.8 67.1 70.2
Ocean [54] 57.1 39.9 40.7 53.9 19.5 34.2 74.8 51.2 73.7 56.0 56.6

SuperDiMP [55] 72.6 56.7 56.5 64.6 31.4 47.4 80.1 61.2 74.3 64.1 -
PrDiMP [55] 70.3 51.7 52.7 65.4 28.6 44.5 79.6 58.3 74.3 59.8 60.8
DiMP [56] 65.9 47.0 48.6 54.6 18.7 37.1 77.2 56.0 74.0 56.9 56.7

SiamRPN [35] 53.4 35.6 37.3 46.7 15.0 29.0 72.6 50.3 73.6 - -
ATOM [57] 57.8 39.8 40.8 43.6 14.0 26.7 75.2 53.1 73.8 51.5 50.5
KYS [58] 60.1 42.6 44.5 49.3 17.1 33.7 80.1 59.4 73.3 55.4 -

Local Crop

SiamFC [16] 33.6 21.2 20.6 15.8 3.6 7.4 52.1 35.6 72.7 33.6 33.9
SPLT [38] 60.9 38.2 40.3 56.5 15.7 33.7 72.4 47.6 73.5 39.9 42.6Local-Global DaSiamRPN [39] 53.4 35.4 37.1 46.3 14.4 29.1 72.2 50.4 73.6 42.7 44.8

SiamRCNN [43] 75.3 62.8 60.7 72.6 47.9 58.8 80.5 65.8 74.5 64.8 -Global GlobalTrack [42] 65.5 49.5 49.5 64.3 29.6 46.1 72.7 53.7 74.3 52.1 52.7

Experiments results. In the STDChallenge, humans outperform most trackers, indicating that the
DVA of trackers is still far from humans. Furthermore, while the performance of machines tends
to vary significantly with STD changing, human consistently exhibit stable tracking ability, as
shown in (b) of Fig. 4. Notably, as research progresses, the scores of SOTA trackers are gradually
approaching those of humans, suggesting a narrowing gap between machine and human performance.
Additionally, the low error consistency between trackers and humans suggest they employ different
tracking strategies in past studies. There’s a significant positive correlation between the N-PRE
of trackers in STDChallenge and their error consistency with humans, indicating that trackers are
incorporating some implicit human-like strategies to improve performance progressively. Among
them, CPDTracker, which explicitly models human strategies, achieved the highest score of 0.167.
This method not only effectively tackles the STDChallenge but also aids in guiding machines to
exceed the biases of evaluation benchmarks and adapt to real-world scenarios.

Some Reasoning. (i) Like global trackers as shown in Fig. 2, humans process entire image information
but can handle the STDChallenge more effectively at higher frame rates. This demonstrates the
superior efficiency of humans in video information processing. (ii) When a target is lost, humans not
only quickly become aware of this but also swiftly reacquire the target. This process involves the
integrated use of spatial cognition and temporal memory, demonstrating human DVA to understand
global information, in contrast to mainstream trackers that rely on local information. (iii) Furthermore,
our observations reveal that humans tend to focus on object’s salient features over its center when
tracking. This significantly leads to current evaluation metrics underestimating human capabilities,
while also highlighting the clear target recognition ability of humans.

Moreover, we examined how different modules within the trackers’ pipeline influence performance
and error consistency. For detailed findings, refer to the Appendix F.

5.2 Comparison with SOTA

STDChallenge Benchmark. The STDChallenge Benchmark is a newly proposed benchmark for LTT
that focuses on STDChallenge. Designed to refer human visual research ability, it tests capability of
trackers to reacquire lost targets. CPDTrack shows improvements of 1.7% N-PRE and 1.4% PRE over
the second-ranked tracker, as shown in Tab. 1. Given the long-tail distributions of STDChallenge, we
charted performance fluctuations across different STD. As illustrated in Fig. 6 (a), CPDTrack excels
in robustness and significantly outperforms SOTA trackers, especially in sequences with increasing
STDChallenge (the last 40%, consisting of 100 sequences). We assessed CPDTrack’s ability to search
targets during the STDChallenge. A recovery is deemed successful if IoU between bounding box and
groundtruth exceeds 0.5. As illustrated in Fig. 6 (b), CPDTrack reliably maintains target tracking
under STDChallenge. CPDTrack achieves a recovery success rate of 56.91% within the same time
period, significantly outperforming the next best tracker, mixvit.
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(a) SUC fluctuating with STD (b) Recoverability of different trackers

S
U

C

Figure 6: We further emphasize the visual search capabilities of CPDTrack, especially in challenging
STDChallenge scenarios. (a) performance of SUC as the STD changes. We have listed the SUC
scores on the toughest 100 sequences. (b) represents robustness when facing the STDChallenge,
where success rate refers to the percentage of frames in which the tracker successfully tracks the
target.

Table 2: Ablation studies of CPDTrack on STDChallenge and VideoCube. We conducted comparisons
of ’central-peripheral’ vision and information query.

# Method STDChallenge Benchmark VideoCube
consistency N-PRE PRE SUC N-PRE PRE SUC

1 baseline 0.159 83.8 72.9 65.6 82.7 67.0 70.2
2 central vision 0.137 81.5 72.2 66.8 77.7 57.7 65.9
3 peripheral vision 0.156 80.7 69.2 61.7 80.6 60.0 65.7
4 baseline+query 0.167 84.2 73.3 65.9 82.9 67.1 70.4
5 local as central 0.165 83.0 70.6 64.5 84.3 62.9 69.0

VideoCube. VideoCube is a detailed and challenging LTT benchmark aimed at simulating real-world
complexities, including View-point changes and disappearances. It features two evaluation methods:
One-Pass Evaluation (OPE) and Restarting OPE (R-OPE), the latter allows trackers to restart after
failure to evaluate their robustness. CPDTrack outperforms the second-ranked machine across all
performance metrics, with improvements ranging from 1.0% to 13.1%. Additionally, there has been
a notable enhancement in its robustness 75.8, as shown in Tab. 1.

LaSOT. LaSOT is a high-quality, large-scale benchmark for LTT featuring a test set of 280 videos
with an average of 2448 frames each sequence. We attribute underperformance of CPDTrack to the
limited STDChallenge scenarios and varying interpretations of groundtruth within these tests as in
Fig. 7.

5.3 Ablation and Analysis

Through ablation studies, we validate the effectiveness of each module of CPDTrack in STDChallenge.

We conducted ablation studies of CPDTrack in STDChallenge Benchmark and VideoCube, comparing
the impacts of "central-peripheral" vision dichotomy and the use of information query. Information
query was removed in #1 as baseline to examine the performance of the CPD Motion Model itself. #2
is traditional local crop, which can be considered as only containing central vision. #3 employed only
peripheral vision. #4 is the proposed CPDTrack to validate the effectiveness of cognitive feedback
control in ANN. Based on #2, peripheral vision and information query was added in #5 to demonstrate
the effectiveness of our designed CPD Motion Model.

The combination of central and peripheral vision performs better than using either alone. It can
be seen that performance metrics and error consistency of baseline #1 surpass those of #2 using only
central vision and #3 using only peripheral vision, with improvements range 0.7% to 9.3% in various
metrics on STDChallenge Benchmark and VideoCube and more like human, as in Tab. 2. However,
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(a) Tracking results on “lion-12” sequence

#000000 #000682 #001486 #002277 #002619#000000 #000682 #001486 #002277 #002619

#000000 #001064 #002011 #002942 #004194#000000 #001064 #002011 #002942 #004194

(b) Tracking results on “helicopter” sequence

GroundTruthGroundTruth OSTrack (ECCV22)OSTrack (ECCV22) SeqTrack (CVPR23)SeqTrack (CVPR23) MixViT (PAMI24)MixViT (PAMI24)CPDTrack (ours)CPDTrack (ours)

Figure 7: Visualizations of CPDTrack and some local trackers tracking results. This demonstrates
that CPDTrack, influenced by the global perspective, tends to frame the entire target, showing a
similarity to human cognition of objects, such as "a lion’s tail" or "the tail rotor of a helicopter." This
is not an error, but rather a bias introduced by the dataset’s setup.

central vision may be better at precise localization. We believe this demonstrates the complementarity
of central and peripheral vision, further validating CPD theory.

Information query is effective. It can be seen in Tab. 2, compared to baseline#1, #4 has improved
performance by 0.1%-0.4% on several metrics in STDChallenge Benchmark and VideoCube, and with
0.8% improvement in error consistency. This indicates that in tracking, utilizing higher-level semantic
information for top-down control is beneficial for trackers to understand sequence information. On
the other hand, information query can also be considered as the retrieval of short-term memory, which
suggests that combining short-term and long-term memory (online template) in tracking can better
address the STDChallenge.

Modeling central vision with Gaussian acuity is effective. Compared to the traditional local crop as
central vision #5, CPDTrack #4 has surpassed in performance metrics on STDChallenge Benchmark
and VideoCube, with improvements ranging from 1.2% to 4.2%, as in Tab. 2. The error consistency
is also higher than #5. This suggests that considering the bounding box and image size, dynamically
extracting context for central vision can better align with peripheral vision.

6 Conclusion.

Our study is inspired by the differences in dynamic visual abilities between humans and machines,
notably in challenging tasks like LTT and GIT. We attribute this gap primarily to the machines’
deficiency in essential visual search skills. Based on CPD from cognitive neuroscience, which
categorizes visual inputs into central and peripheral vision, we understand humans’ robust visual
search ability under limited computational resources.

We propose CPDTrack, extensively validated for its effectiveness and closer behavioral alignment
with humans in STDChallenge Benchmark. Ablation studies highlights that its success is due to the
efficient integration of central and peripheral vision. Our findings indicate that robust visual search
capabilities are crucial for gradually adapting trackers to real-world applications.
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evaluation methodology for long-term single-object tracking. IEEE transactions on cybernetics,
51(12):6305–6318, 2020.

[11] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer: End-to-end tracking
with iterative mixed attention. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 13608–13618, 2022.

[12] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Joint feature learning
and relation modeling for tracking: A one-stream framework. In European conference on
computer vision, pages 341–357. Springer, 2022.

[13] Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han Hu. Seqtrack: Sequence to
sequence learning for visual object tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14572–14581, 2023.

[14] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu. Transformer
tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pages 8126–8135, 2021.

[15] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and Luc Van Gool. Learning target
candidate association to keep track of what not to track. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 13444–13454, 2021.

[16] Miaobin Cen and Cheolkon Jung. Fully convolutional siamese fusion networks for object
tracking. In 2018 25Th IEEE international conference on image processing (ICIP), pages
3718–3722. IEEE, 2018.

11



[17] Heng Fan, Fan Yang, Peng Chu, Yuewei Lin, Lin Yuan, and Haibin Ling. Tracklinic: Diagnosis
of challenge factors in visual tracking. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 970–979, 2021.

[18] Shiyu Hu, Xin Zhao, and Kaiqi Huang. Sotverse: A user-defined task space of single object
tracking. International Journal of Computer Vision, 132(3):872–930, 2024.

[19] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity benchmark
for generic object tracking in the wild. IEEE transactions on pattern analysis and machine
intelligence, 43(5):1562–1577, 2019.

[20] Xiao Wang, Xiujun Shu, Zhipeng Zhang, Bo Jiang, Yaowei Wang, Yonghong Tian, and Feng
Wu. Towards more flexible and accurate object tracking with natural language: Algorithms
and benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13763–13773, June 2021.

[21] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Track-
ingnet: A large-scale dataset and benchmark for object tracking in the wild. In Proceedings of
the European conference on computer vision (ECCV), pages 300–317, 2018.

[22] Drew Linsley, Girik Malik, Junkyung Kim, Lakshmi Narasimhan Govindarajan, Ennio Mingolla,
and Thomas Serre. Tracking without re-recognition in humans and machines. Advances in
Neural Information Processing Systems, 34:19473–19486, 2021.

[23] Xuchen Li, Shiyu Hu, Xiaokun Feng, Dailing Zhang, Meiqi Wu, Jing Zhang, and Kaiqi Huang.
Visual language tracking with multi-modal interaction: A robust benchmark. arXiv preprint
arXiv:2409.08887, 2024.

[24] Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and
Felix A Wichmann. Generalisation in humans and deep neural networks. Advances in neural
information processing systems, 31, 2018.

[25] Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias
Bethge, Felix A Wichmann, and Wieland Brendel. Partial success in closing the gap between
human and machine vision. Advances in Neural Information Processing Systems, 34:23885–
23899, 2021.

[26] Robert Geirhos, Kristof Meding, and Felix A Wichmann. Beyond accuracy: quantifying trial-
by-trial behaviour of cnns and humans by measuring error consistency. Advances in Neural
Information Processing Systems, 33:13890–13902, 2020.

[27] Xuchen Li, Shiyu Hu, Xiaokun Feng, Dailing Zhang, Meiqi Wu, Jing Zhang, and Kaiqi Huang.
Dtvlt: A multi-modal diverse text benchmark for visual language tracking based on llm. arXiv
preprint arXiv:2410.02492, 2024.

[28] Xuchen Li, Xiaokun Feng, Shiyu Hu, Meiqi Wu, Dailing Zhang, Jing Zhang, and Kaiqi Huang.
Dtllm-vlt: Diverse text generation for visual language tracking based on llm. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7283–7292,
2024.

[29] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto Tagliaferri,
and Francisco Herrera. Deep learning in video multi-object tracking: A survey. Neurocomputing,
381:61–88, 2020.

[30] Brian Q. Geuther, Sean P. Deats, Kai J. Fox, Steve A. Murray, Robert E. Braun, Jacqueline K.
White, Elissa J. Chesler, Cathleen M. Lutz, and Vivek Kumar. Robust mouse tracking in
complex environments using neural networks. bioRxiv, 2018.

[31] Shiyao Wang, Yucong Zhou, Junjie Yan, and Zhidong Deng. Fully motion-aware network for
video object detection. In Proceedings of the European conference on computer vision (ECCV),
pages 542–557, 2018.

12



[32] Andre Esteva, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mottaghi, Yun Liu,
Eric Topol, Jeff Dean, and Richard Socher. Deep learning-enabled medical computer vision.
NPJ digital medicine, 4(1):5, 2021.

[33] Jack Valmadre, Luca Bertinetto, Joao F Henriques, Ran Tao, Andrea Vedaldi, Arnold WM
Smeulders, Philip HS Torr, and Efstratios Gavves. Long-term tracking in the wild: A benchmark.
In Proceedings of the European conference on computer vision (ECCV), pages 670–685, 2018.

[34] Abhinav Moudgil and Vineet Gandhi. Long-term visual object tracking benchmark. In Computer
Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December
2–6, 2018, Revised Selected Papers, Part II 14, pages 629–645. Springer, 2019.

[35] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance visual tracking with
siamese region proposal network. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8971–8980, 2018.

[36] Yutong Kou, Jin Gao, Bing Li, Gang Wang, Weiming Hu, Yizheng Wang, and Liang Li.
Zoomtrack: Target-aware non-uniform resizing for efficient visual tracking. Advances in Neural
Information Processing Systems, 36, 2024.

[37] Yuqing Huang, Xin Li, Zikun Zhou, Yaowei Wang, Zhenyu He, and Ming-Hsuan Yang. Rtracker:
Recoverable tracking via pn tree structured memory. arXiv preprint arXiv:2403.19242, 2024.

[38] Bin Yan, Haojie Zhao, Dong Wang, Huchuan Lu, and Xiaoyun Yang. ’skimming-
perusal’tracking: A framework for real-time and robust long-term tracking. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 2385–2393, 2019.

[39] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware
siamese networks for visual object tracking. In Proceedings of the European conference on
computer vision (ECCV), pages 101–117, 2018.

[40] Haojie Zhao, Bin Yan, Dong Wang, Xuesheng Qian, Xiaoyun Yang, and Huchuan Lu. Effective
local and global search for fast long-term tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1):460–474, 2022.

[41] Yunhua Zhang, Lijun Wang, Dong Wang, Jinqing Qi, and Huchuan Lu. Learning regression and
verification networks for robust long-term tracking. International Journal of Computer Vision,
129(9):2536–2547, 2021.

[42] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Globaltrack: A simple and strong baseline for
long-term tracking. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 11037–11044, 2020.

[43] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bastian Leibe. Siam r-cnn: Visual
tracking by re-detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6578–6588, 2020.

[44] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[45] Sam Devlin, Raluca Georgescu, Ida Momennejad, Jaroslaw Rzepecki, Evelyn Zuniga, Gavin
Costello, Guy Leroy, Ali Shaw, and Katja Hofmann. Navigation turing test (ntt): Learning
to evaluate human-like navigation. In International Conference on Machine Learning, pages
2644–2653. PMLR, 2021.

[46] Thomas Langlois, Haicheng Zhao, Erin Grant, Ishita Dasgupta, Tom Griffiths, and Nori Jacoby.
Passive attention in artificial neural networks predicts human visual selectivity. Advances in
Neural Information Processing Systems, 34:27094–27106, 2021.

[47] Girik Malik, Drew Linsley, Thomas Serre, and Ennio Mingolla. The challenge of appearance-
free object tracking with feedforward neural networks. arXiv preprint arXiv:2110.02772,
2021.

13



[48] Andrew B Watson. A formula for human retinal ganglion cell receptive field density as a
function of visual field location. Journal of vision, 14(7):15–15, 2014.

[49] Guillaume Lio, Roberta Fadda, Giuseppe Doneddu, Jean-René Duhamel, and Angela Sirigu.
Digit-tracking as a new tactile interface for visual perception analysis. Nature Communications,
10(1):5392, 2019.

[50] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[51] Philip L Smith and Daniel R Little. Small is beautiful: In defense of the small-n design.
Psychonomic bulletin & review, 25:2083–2101, 2018.

[52] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Felsberg, Roman Pflugfelder, Joni-Kristian
Kamarainen, Luka ˇCehovin Zajc, Ondrej Drbohlav, Alan Lukezic, Amanda Berg, et al. The
seventh visual object tracking vot2019 challenge results. In Proceedings of the IEEE/CVF
international conference on computer vision workshops, pages 0–0, 2019.

[53] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio-temporal
transformer for visual tracking. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 10448–10457, 2021.

[54] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming Hu. Ocean: Object-aware
anchor-free tracking. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXI 16, pages 771–787. Springer, 2020.

[55] Martin Danelljan, Luc Van Gool, and Radu Timofte. Probabilistic regression for visual tracking.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
7183–7192, 2020.

[56] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning discriminative
model prediction for tracking. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 6182–6191, 2019.

[57] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. Atom: Accurate
tracking by overlap maximization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4660–4669, 2019.

[58] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Know your surroundings:
Exploiting scene information for object tracking. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages
205–221. Springer, 2020.

[59] Li Zhaoping and Yushi Liu. The central-peripheral dichotomy and metacontrast masking.
Perception, 51(8):549–564, 2022.

[60] Junhao Liang, Severin Maher, and Li Zhaoping. Eye movement evidence for v1 saliency
hypothesis and central-peripheral dichotomy in an anomalous visual search task. In Systems
Vision Science: Summer School & Symposium, 2023.

[61] Yushi Liu and Li Zhaoping. Testing a prediction of the central-peripheral dichotomy in visual
inference: visual backward masking is weaker in the peripheral visual field. In 42nd European
Conference on Visual Perception (ECVP 2019), page 188. Pion Ltd., 2019.

[62] Giorgio Roffo, Simone Melzi, et al. The visual object tracking vot2016 challenge results. In
Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part II, pages 777–823. Springer International Publishing, 2016.

[63] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Luka
ˇCehovin Zajc, Tomas Vojir, Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al.
The sixth visual object tracking vot2018 challenge results. In Proceedings of the European
conference on computer vision (ECCV) workshops, pages 0–0, 2018.

14



[64] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.
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Appendices

A Extended related work.

The attention bottleneck force animals to only process a subset of sensory input in depth. This
motivates a unifying central-peripheral dichotomy (CPD), categorizing multisensory processing into
central and peripheral senses based on their functions [1, 2, 48, 49, 59, 60, 61].

In the CPD theory, the encoding-selection-decoding framework combined with central and peripheral
sensations reflects how the brain processes sensory information in stages to optimize resource usage
and cope with environmental challenges.

The encoding stage involves the reception and preliminary processing of all initial sensory inputs
entering the sensory system. At this stage, sensory information is converted into signals that the brain
can further process.

The selection stage is the phase in CPD where ’central’ and ’peripheral’ selections are separated.
This process is driven not only by saliency mechanisms but also influenced by top-down expectations,
which are achieved through higher cognitive processes in the brain.

The decoding stage is the active part of ’central senses’ in CPD. After the selection stage, the selected
few central sensory inputs are transmitted to higher brain regions for in-depth analysis. This stage
requires complex cognitive processing, including integrating information, recognizing patterns, and
understanding the deep meaning of inputs. We draw from these principles to construct the CPDTrack.

B More details of central vision modeling

Using W = 1024, we sampled one hundred thousand points from 10 to W and visualized the
function.

𝑤
𝑡−
1

𝑒
 

𝑤𝑡−1 

Range of 𝑤𝑡−1
𝑒  

Figure 8: we
t−1 monotonically increases with wt−1. The green line represents we

t−1 = wt−1, while
the black line represents the image width W .
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C Detailed Components of STDChallenge

Table 3: Representative Benchmarks in STT, LTT, GIT and STDChallenge Benchmark

Subtask Benchmark Videos Min
frame

Mean
frame

Max
frame

Total
frame absent shotcut

STT

OTB2015[6] 100 71 590 3872 59K % %

VOT2016[62] 60 41 357 1500 21K % %

VOT2018[63] 60 41 356 1500 21K % %

VOT2019[52] 60 41 332 1500 20K % %

GOT-10k[19] 10000 29 149 1418 1.45M % %

LTT VOTLT2019[52] 50 1389 4305 29700 215K " %

LaSOT[9] 1400 1000 2502 11397 3.5M " %

GIT VideoCube[4] 500 4008 14920 29834 7.46M " "
LTT+
GIT STDChallenge Benchamrk 252 1000 5192 29700 1.3M " "

(a) (b) (c) 

Figure 9: The STDChallenge Benchmark is composed of high-difficulty sequences extracted from the
LTT and GIT benchmarks. Its STD still exhibits a long-tail distribution.

The STDChallenge integrates LTT and GIT tasks to assess the visual search capabilities of tracking
machines, which addresses the bias of single datasets, as shown in Fig. 11. This challenge incorporates
sequences drawn from the LaSOT [9], VOTLT2019 [52], and VideoCube [4], thereby inheriting
their characteristics. The sequence lengths vary, with the shortest being "yoyo-15" from LaSOT
and the longest "liverRun" from VOTLT2019. Notably, the extensive dataset of LaSOT contributes
significantly to the diversity and complexity of the challenges presented in STDChallenge.

STDChallenge is a sequence-level challenge in which we analyze the impact of frame-level challenges,
as shown in Fig. 10. These frame-level challenges are structured following SOTVerse [18], employing
the same computational methods. The STDChallenge benchmark is noted for its comprehensive
inclusion of various challenges, particularly in terms of blur_bbox, relative_scale, and relative_ratio.
Trackers that effectively manage these specific challenges are likely to achieve superior performance
within the STDChallenge framework.

It can be seen that on the STDChallenge Benchmark, the STD still shows a long-tail distribution,
where the majority of sequences exhibit fewer challenges, while a minority contain a higher number
of challenges. There have already been many large-scale benchmarks in target tracking, and how to
increase the amount of data under specific conditions is a promising direction.

In our setup, a sequence with shotcut or absent is deemed to include STDChallenge, naturally
integrating challenges found in new real-world scenarios. Thus, STDChallenge not only incorporates
but also enhances other challenging attributes to some extent, as depicted in Fig. 9(c). absent is often
associated with occlusions and out-of-view scenarios. Formally, STDChallenge does not exclude
other tasks (such as pathtracker [22]), but we advocate integrating STDChallenge with real-world
scenarios to avoid ill-posed issues (such as shotcut confusing same-looking blocks in pathtracker).
Comparison between CPDTrack and pathtracker are in Tab. 4
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(a) Absent challenge in LaSOT. 

(b) Absent challenge in LaSOText. 

(c) Absent challenge in TNL2k. 

(d) Absent challenge in VideoCube. 

Figure 10: STDChallenge exhibits a long-tail distribution across most datasets. The horizontal axis
represents the number of STDChallenge in each sequence, while the vertical axis represents the
number of sequences.

Table 4: From the model design perspective, we believe TransT+InT aims to address PathTracker, a
challenge that relies on trajectory information rather than appearance features, which diverges from
the Motivation of STDChallenge. We attempted to replicate TransT+InT in VideoCube and STDChal-
lenge; however, we did not achieve optimal performance due to the lack of clear documentation as
the issue in the github. Therefore, we believe these can partly explain the suboptimal performance of
TransT+InT on STDChallenge.

Motion Model Method Error Consistency STDChallenge VideoCube
N-PRE PRE SUC N-PRE PRE SUC

CPD CPDTrack 16.7 84.2 73.3 65.9 82.9 67.1 70.4

Local Crop TransT 13.9 73.9 62.2 59.1 69.2 42.9 55.1
TransT+InT 9.2 70.6 59.0 56.4 61.0 36.7 47.0
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(a) (b) (c)

Figure 11: The STDChallenge Benchmark is composed of multiple datasets and has a more rational
distribution of challenging attributes. Compared to VideoCube, it expands the range of STD and
lengths of sequence, mitigating biases in single dataset and thus providing a more comprehensive
assessment environment. It is recommended to view this in enlarged and color format for better
clarity.

D Machines.

D.1 Implementation Details

Model. We adopt ViT-B[50] as our encoder architecture for CPDTrack. The encoders are initialized
with the MAE[64] pre-trained parameters. The patch size is set to 16× 16. The decoder consists of
2 transformer blocks. The decoder hidden size is 256, the number of attention heads is 8, and the
hidden size of the feed forward network (FFN) is 1024. The number of quantization nbins and the
vocabulary size are all set to 4000. The dimension of word embedding is 256, which is consistent
with the decoder hidden size. The embedding-to-word sampling uses a 3-layer perceptron followed
by a softmax. The hidden dimension of the perceptron is 256. The output dimension is nbins, which
is aligned with the number of words in vocabulary . The word with the maximum likelihood is
sampled as the output word. In addition, we present model parameters, FLOPs, and inference speed
in Tab.5.

Training. Our training data includes the training splits of VideoCube[], LaSOT[9], GOT-10k[19],
and TrackingNet[21]. Aligned with VOT2020 evaluation protocol[65], we remove the 1k forbidden
videos in GOT-10k during training. For the evaluation on GOT-10k test set, we follow the official
requirements and only use the training split of GOT-10k. Brightness jittering are used for data
augmentation. We train the model with AdamW[66] optimizer and set the learning rate of the encoder
to 1e− 5, the decoder and remaining modules to 1e− 4, and the weight decay to 1e− 4. The model
is trained for a total of 300 epochs with 60k image pairs per epoch. The learning rate decreases by a
factor of 10 after 240 epochs. The model is trained on a server with four A5000 GPUs and is tested
on an A5000 GPU. The tracking speed is about 23 FPS

Inference. We use the first template and online template together with the central region and the
peripheral region as input of CPDTrack. The online template update interval T is set to 400 by default,
while the update threshold τ is set to 0.7. CPDTrack will attempt to update online template within 10
frames; if none meet the threshold, it will not update.

D.2 Local Crop Trackers

Table 5: Details of CPDTrack.

Model Encoder
Params

(M)
FLOPs

(G)
Speed
(fps)

CPDTrack ViT-B 119 88 23

OSTrack [12]. A novel single-stream tracking
framework has been proposed, which unifies fea-
ture learning and relationship modeling. At the
same time, an candidate prior elimination mod-
ule has been introduced to eliminate background
interference while improving computational ef-
ficiency.

MixViT [11]. MixViT proposes a Mixed Attention Module (MAM), used for simultaneously
extracting features and integrating target information. This synchronous modeling approach can
extract distinctive features of specific targets and facilitates extensive communication between the
target and the search area. In this version, ViT is used to compute attention.
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SeqTrack [13]. The predictive object bounding boxes are generated using an autoregressive method,
which simplifies the loss function.

STARK [53]. Using an encoder-decoder for relational modeling, and a head that directly predicts the
corners of bounding boxes has been proposed.

KeepTrack [15]. KeepTrack combines SuperDiMP with a target candidate association network to
achieve robust tracking. The authors retrained the target candidate association network on challenging
sequences extracted from LaSOT.

Ocean [54]. Ocean also adopts an anchor-free structure. The backbone network uses parameters
pre-trained on ImageNet for initialization.

PrDiMP and SuperDiMP [55]. PrDiMP and SuperDiMP use probabilistic regression to improve
accuracy.

DiMP [56]. Based on the framework proposed by ATOM, DiMP optimizes the loss function to
achieve stronger discriminative ability. The backbone network is initialized with ImageNet weights.

SiamRPN [35]. SiamRPN introduces a region proposal network to achieve precise object regression.

ATOM [57]. ATOM attempts to combine CF and SNN and proposes a new framework to take
advantage of offline training and online updates.

KYS [58]. KYS represents scene information as state vectors and combines them with the appearance
model to locate objects.

SiamFC [16]. As the pioneer of SNN-based trackers, SiamFC achieves satisfactory tracking perfor-
mance by matching features between the template area and the search area through a simple network
structure.

D.3 Local-Global Trackers

SPLT [38]. SPLT designed a verifier to switch between global search and local search. SPLT uses it
as a feature extractor and down-samples the spatial resolution of template features to 1X1 through
average pooling. In terms of the verification model, SPLT employs ResNet50 as the backbone of the
verifier.

Learning regression and verification networks for robust long-term tracking [41]. It employed a
verification network with local view to identify the target from the detected candidates. If the target
disappears, the learning based switching scheme determines whether to trigger the global search
mode.

Effective Local and Global Search for Fast Long-Term Tracking [40]. It used the score from a
target verifier within the local search module to decide whether to switch strategies.

DaSiamRPN [39]. DaSiamRPN uses data augmentation to enhance its discriminative ability.

RTracker [37]. RTracker uses a tree-structured memory to dynamically link the tracker and detector
by controlling the collection of positive and negative target samples, thereby enabling self-recovery
capabilities.

D.4 Global Trackers

SiamRCNN [43]. SiamRCNN utilizes a re-detection mechanism and a small trajectory dynamic
programming machine to address the issue of object disappearance. SiamRCNN is based on the
implementation of FasterRCNN, using ResNet-101-FPN as its backbone.

GlobalTrack [42]. GlobalTrack does not assume motion consistency and performs a full image
search to eliminate cumulative errors.
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E Experiment Organization.

This section provides a comprehensive overview of the experimental setup for the VTT, including
composition of test data, selection of equipment, experimental instructions, experimental procedures,
survey questionnaire, and grouping information.
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Figure 12: Representative sequences used in Visual Turing Test: (T) TEST video example, which
helps participants familiarize themselves with the operational process. (1) First group example from
the STDChallenge Benchmark. Lower difficulty, containing fewer absent, almost no shotcut, and
no changes in scenery. (2) Second group example from the STDChallenge Benchmark. Medium
difficulty, containing some absent, fewer shotcut, and some changes in scenery. (3) Third group
example from the STDChallenge Benchmark. Higher difficulty, containing many absent, more
shotcut, and significant changes in scenery.

E.1 Experiment Environment

In our dataset preparation, we initially categorize the STDChallenge benchmark into three distinct
groups based on the STD as previously described: sequences with STD < 10−4, sequences with
10−4 < STD < 10−3, and sequences with STD > 10−3. From each category, five sequences are
randomly selected and paired with a designated test sequence to establish the STDChallenge-Turing
test environment. This environment is composed of 16 sequences that represent a spectrum of chal-
lenges within STDChallenge Benchmark, providing a robust framework for evaluating performance
across varying difficulty levels.

E.2 Experiment Statement

We have communicated with our institution’s IRB, submitted the necessary materials, and obtained
IRB approval. The experimental tasks include watching videos and moving the mouse to track a
target. To avoid the risk of worsening the participants’ vision conditions, we allow participants to rest
between two videos. Additionally, participants are allowed to adjust their chairs and the distance to
the screen to achieve the most comfortable conditions. Participants will be compensated 100 RMB
per hour. The total amount used is 1000 RMB.

Participants were asked to review and sign the following declaration of consent:

Psychophysical research. You will be asked to watch video sequences on a computer screen and
track a target using a mouse. For completing a session, you will be compensated at a rate of 100
RMB per hour.
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Declaration of consent. I agree to participate in a behavioral experiment on visual perception. I
participate voluntarily in this study. I have been informed that I can stop the experiment at any time
without giving any reason and without any negative consequences. I know that I can contact the
experimenters at any time to ask questions about the research project.

Declaration of consent for data processing and data publication. I consent that the experimental
data obtained during the experiment may be used for scientific evaluation and publication in a semi-
anonymous form. I agree to have my personal data (such as name, phone number, address) stored
digitally; except for being used to contact me, it may not be used for any other purposes. These
personal data will only be retained within the researchers’ group and will never be transferred to third
parties.

E.3 Statistical Testing

Referencing [25], we focused on ensuring the accuracy and validity of data collected from a limited
number of subjects to accurately reflect human visual capabilities. Consequently, we implemented
measures to prevent out-of-distribution (OOD) responses, enabling the use of all responses. 1) We
did not use crowdsourcing platforms; instead, the Visual Turing Test were conducted in a laboratory
environment under supervision. 2) Before the experiment, we assessed participants’ cognitive and
perceptual levels to ensure normalcy, and allowed them to familiarize with the equipment through
basic exercises. 3) During the experiment, participants were permitted to pause the experiment a
certain number of times voluntarily to adjust their state. 4) In cases where the mouse cursor moved
off-screen, we retained the results from the previous frame until the cursor returned within the screen
area.

E.4 Questionnaire.

Q1. Your name:

Q2. Your id:

Q3. Your age:

Q4. Your vision condition:

Q5: Approximately how many times were you unable to locate the target?

Q6: How do you feel about the video playback speed?

Q7: Do you feel that the videos vary in difficulty, and which ones do you find more challenging?

E.5 Device Selection

Measuring human DVA is a crucial aspect of our research. Traditionally, studies have employed eye
trackers or computer mice to assess visual capabilities. Our preference for using a mouse over an eye
tracker is based on several considerations:

(1) Eye trackers, which passively record eye movements, are influenced by multiple factors including
device accuracy, user posture, the distance between the eye and the device, and the presence of
eyeglasses, leading to potential limitations in data accuracy.

(2) Eye trackers have greater cumulative errors. When errors occur, subjects can only adjust their
posture and cannot actively correct the capture results. However, when significant cumulative errors
occur with the mouse, we allow subjects to actively pause the video and correct the errors.

(3) Some researchers have also pointed out from a theoretical perspective that eye trackers are affected
by the tracking rate (i.e., the amount of eye movement data lost). Blinking or brief shifts in gaze can
result in a lower tracking rate, which requires subjects to remain highly focused while using the eye
tracker. However, the video sequences we test are long, inevitably affecting the performance of the
eye tracker due to the subject’s fatigue.

(4) The use of a mouse to document observation points is well-established within both academic and
industrial settings, providing a reliable and practical alternative for tracking visual observation in
long-duration tasks.
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E.6 Experiments Process

Process of DVA Experiments:

(1) Participants initially inspect the setup equipment and adjust their chair height, seating posture,
and their distance from the screen to ensure comfort and optimal viewing conditions.

(2) A test video then plays centrally on the screen. In the first frame, participants are tasked with
observing and memorizing specific features of a designated target, subsequently using the mouse to
track this target throughout the remaining video frames.

(3) Upon completion of the test, the lead researcher addresses any questions from participants,
clarifying any uncertainties.

(4) A series of 15 official videos from varied groups are sequentially displayed, with breaks between
videos to reduce visual strain. During these sessions, participants are required to diligently track the
target and accurately maintain the mouse’s position.

(5) Finally, participants complete a self-assessment questionnaire to evaluate their own performance
and experience during the test.

E.7 Group Information

Table 6: Subjects and corresponding videos. Everyone must watch the same videos, but in different
orders. One of the sequences is the TEST sequence, used to help subjects familiarize themselves with
the process.

index sequence STD length Exp_01 Exp_02 Exp_03 Exp_04 Exp_05
TEST cup-1 0.0 1433 TEST TEST TEST TEST TEST

01 kangaroo-5 4.996× 10−5 3119 13 01 02 14 02
02 tank-9 3.195× 10−5 1312 05 02 03 15 04
03 racing-15 4.279× 10−5 1070 15 03 10 10 08
04 mouse-17 5.105× 10−5 1608 09 04 07 05 13
05 sepia-8 3.363× 10−5 3694 02 05 04 13 15
06 362 2.807× 10−4 12704 06 06 01 11 06
07 squirrel-13 2.190× 10−4 2000 12 07 09 03 05
08 gametarget-2 2.473× 10−4 1834 10 08 06 09 14
09 436 4.611× 10−4 11531 01 09 08 07 12
10 bottle-12 2.361× 10−4 2400 07 10 05 08 10
11 015 6.290× 10−3 7710 03 11 15 02 03
12 373 4.037× 10−3 12972 08 12 14 12 07
13 401 4.860× 10−3 4978 14 13 11 06 09
14 350 1.159× 10−3 6648 11 14 13 01 11
15 033 4.074× 10−3 14300 04 15 12 04 01

length 89313 89313 89313 89313 89313 89313
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F Performance of Human and Machines

F.1 Error Consistency of Humans and Machines

Error consistency of Machine and Human
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Figure 13: The error consistency differs among decision-makers (machines/humans) in STDChallenge.
This represents the degree of behavioral similarity between different decision-makers. For each
sequence in the STDChallenge-Turing Benchmark, we calculate the error consistency o each frame
for different decision-makers, and then average these across all sequences to obtain the overall error
consistency among the decision-makers.

As shown in Fig. 13, CPDTrack exhibits a higher degree of consistency with human behavior
compared to other machines, yet it remains closely aligned with machines. Notably, it demonstrates a
higher level of consistency with trackers that utilize ViT as their backbone. This observation under-
scores the significant influence that backbone can have on algorithmic performance. Furthermore,
CPDTrack shares more similarities with trackers that implement a global strategy, under the same
network architecture. We attribute this similarity to the adoption of strategies that more closely mirror
human cognitive processes.

As shown in Fig. 13,ViT-based trackers display high similarity due to shared components like the
backbone and motion model. Enhanced parameters, increased resolution, and more training data have
improved their alignment with human error consistency. This is believed to result from the labels in
supervised learning being annotated by humans, enhancing the algorithms’ ability to fit these labels.
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As shown in Fig. 13, compared to ViT-based trackers, those based on CNN exhibit lower similarity
among themselves. Nonetheless, certain algorithms that build on others still achieve high consistency
in error consistency.

As shown in Fig. 13, the motion model plays a crucial role in this consistency, particularly affecting
how trackers process and interpret video sequences, a difference that becomes particularly pronounced
in high-resolution settings.

F.2 Effect of different modules in pipeline on trackers

(a) Impact of the temporal module. 
0-1:with/without temporal module

(b) Impact of different architecture. 
0,1-2-3-4:customized-snn+cf-snn-one_stream

(c) Impact of the motion model. 
0-1-2-3:local crop-local global-global-cpd

(d) Impact of Different contextual ratio
0-1-2-3-4-5:4(256)-4(384)-5-8-whole-cpd

(e) Impact of different parameters  
0-1-2-3-4-5:alexnet-resnet_18-resnet_50-

vit_base-vit_large
(f) Impact of different train data

Figure 14: Impact of different settings in tracker pipeline. We highlight the median in each setting.
In (f), "1" means the training set contains GOT-10k, COCO, TrackingNet, and LaSOT, while "2"
means the training set contains GOT-10k, COCO, TrackingNet, LaSOT, and VideoCube, "3" means
the training set contains GOT-10k, TrackingNet, LaSOT, and VideoCube.

(a) As shown in Fig. 14(a). Using temporal information is more effective and also more human-like.

(b) As shown in Fig. 14(b). Compared to other network architectures, one-stream is more effective
and also more human-like. However, since current one-stream trackers are all based on ViT, it is
unclear whether the effects are due to one-stream or ViT.

(c) As shown in Fig. 14(c). Undoubtedly, the CPD motion model has better effects and more
human-like behavior. At the same time, compared to the local-based motion model, the global one is
more human-like, as it treats the entire image as central vision, improving performance at the cost of
computational efficiency.
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(d) As shown in Fig. 14(d). Increasing the context ratio does not seem to change the performance
and error consistency, but after changing the resolution from 4(256) to 4(384), there has been an
improvement. How to maintain computational efficiency while increasing resolution is a promising
direction.

(e) As shown in Fig. 14(e). Obviously, increasing the number of parameters and switching to a newer
backbone can significantly improve performance and error consistency. We believe this is due to the
increased parameters enhancing the network’s ability to fit human labels. The error consistency of
vit_large has decreased, and we believe this might be because the network has learned some strategies
that surpass human capabilities.

(f) As shown in Fig. 14(f). Increasing training data does not necessarily mean an improvement in
performance, but it often enhances error consistency with humans. We believe this is because richer
human labels enhance the network’s learning capabilities.
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G Broader Impact and Limitation

Broader Impact. The fundamental objective of our research is to model human visual search
capabilities through CPD theory. The STDChallenge Benchmark facilitates our study by aligning
human and machine performances in a complex visual task designed to explore tracking strategies
under spatio-temporal discontinuity. Our developed CPD Motion Model has not only achieved
SOTA results in this task but has also enhanced the behavioral similarities between humans and
machines, substantiating CPD theory and illuminating the potent visual search abilities of humans
under constraints of limited information. This work underscores the significance of human-like
modeling in enhancing tracking algorithms.

However, we must be cautious about the potential misuse of this technology, particularly in surveil-
lance applications, which could have serious ethical implications. Similarly, the development of
highly human-like algorithms has already sparked some concerns, similar to those associated with
large language models (LLMs). Despite these challenges, the technology holds crucial potential for
beneficial applications in fields such as sports, autonomous driving, robotics, and broader machine
vision contexts in the real world. To promote responsible usage and further research into these
positive applications, we plan to make our code and data publicly available.

Limitation. CPDTrack focuses on the STDChallenge but neglects performance in simpler scenarios,
leading to its underperformance on some datasets compared to SOTA trackers, as shown in Tab. 7. In
the future, we plan to further improve it to adapt to various environments. The human-like modeling
approach adds overhead, making CPDTrack less immediately applicable to real-world applications as
it currently stands. STDChallenge in the STDChallenge Benchmark still shows a long-tail distribution,
meaning most sequences contain fewer STDChallenge. This is still far from the real world, and how
to increase data under specific challenges remains an open question.

Generalization of CPDTrack. We believe that many simple scenarios in Single Object Tracking
(SOT) are based on laboratory settings and even possess characteristics of toy scenarios (for example,
tracking smoothly moving targets within very short time) to some extent. In contrast, CPDTrack
extends much further into the real world:

Local trackers introduce stronger priors, which enhance their performance in STT scenarios. There-
fore, STDChallenge is fatal for them [18, 17]; however, CPDTrack effectively addresses this challenge.

Setup of the STDChallenge Benchmark is that any sequence containing at least one absent or shotcut
is considered to include the STDChallenge. It is evident that the STDChallenge Benchmark already
includes many relatively simple video environments, as shown in Fig. 12 (1).

"Experiments indicate that humans perform worse than SOTA trackers in simple scenes, likely due to
the precise focus of local trackers. While a global perspective, used by humans and CPDTrack, offers
a comprehensive view, it may not align with the dataset setup (e.g., ’lion’s tail’ or ’helicopter tail
rotor’; see Fig. 7)."

However, in complex scenarios, human capabilities to track moving targets surpass those of trackers,
a trait also inherited to some extent by the human-like modeling of CPDTrack.

Computation overhead of CPDTrack. We acknowledge that compared to some mainstream trackers,
CPDTrack’s human-like modeling causes some additional computational costs. However, in our
experimental setup, CPDTrack achieves 20-30 fps, which already meets the requirements for real-time
performance.

Moreover, the main contribution of our paper is to validate the effectiveness of human-like modeling
through CPDTrack, and the experimental conclusions have affirmed the motivation behind our work.
While there are computational costs, these do not overshadow the contributions of CPDTrack. We
greatly appreciate your questions and will continue to explore improvements in future work.

Table 7: Comparison with state-of-the-art methods on additional benchmarks, where is AUC scores
on TNL2k and LaSOText, and AO scores on GOT-10k. We add a symbol * over GOT-10k to indicate
that the corresponding models are only trained with the GOT-10k training set.

SiamFC[16] ECO[67] Ocean[54] ATOM[57] DiMP[56] TransT[14] OSTrack[12] SeqTrack[13] CPDTrack
TNL2k[20] 29.5 32.6 38.4 40.1 44.7 50.7 54.3 54.9 50.4

LaSOText[9] - - - 37.6 39.2 - 47.4 49.5 42.0
GOT-10k*[19] 34.8 31.6 61.1 55.6 61.1 67.1 71.0 74.7 63.7
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Justification: The main claims in the abstract and introduction accurately
summarize the key contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in detail in Sec. G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition machine may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed machines and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

28



Justification: For Gaussian modeling of central vision, we base our correct derivation on
results in published papers, more details in Sec. 3.1

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the model architecture in Sec. 3 and
Sec. D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new machine, the paper should make it clear how

to reproduce that machine.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used in this paper are all open-source datasets, available through
the provided references.We have not yet released the code, but the details of building the
model are described in Sec. 3 and Sec. D.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, inediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a detailed description of the implementation details in Sec. D.1
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
Justification: We have explained all the statistical results in Sec. F.1.
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• The answer NA means that the paper does not include experiments.
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text how
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in Sec. D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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Answer: [Yes]
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Answer: [Yes]

Justification: We discuss the broader impacts of this paper in Sec. G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Guidelines:
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• Released models that have a high risk for misuse or dual-use should be released with
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safety filters.
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should describe how they avoided releasing unsafe images.
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12. Licenses for existing assets
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and s of service
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• If assets are released, the license, copyright information, and s of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help deine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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the asset’s creators.

13. New Assets
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provided alongside the assets?
Answer: [NA]
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
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well as details about compensation (if any)?
Answer: [Yes]
Justification: We explained this before we recruited Human Subjects, and more details can
be found in the E.2.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: More details in Sec. E.2.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34


	Introduction
	Related Work
	Solving the STDChallenge
	CPD Motion Model
	Information query

	The STDChallenge Benchmark
	Experiments
	Visual Turing Test in STDChallenge-Turing
	Comparison with SOTA
	Ablation and Analysis

	Conclusion.
	Extended related work.
	More details of central vision modeling
	Detailed Components of STDChallenge
	Machines.
	Implementation Details
	Local Crop Trackers
	Local-Global Trackers
	Global Trackers

	Experiment Organization.
	Experiment Environment
	Experiment Statement
	Statistical Testing
	Questionnaire.
	Device Selection
	Experiments Process
	Group Information

	Performance of Human and Machines
	Error Consistency of Humans and Machines
	Effect of different modules in pipeline on trackers

	Broader Impact and Limitation

