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Figure 1: An overview of FIOVA. The overall workflow is divided into three steps (i.e., construction
of FIOVA.png dataset (see Section 2), collection responses of LVLMs (see Section 3), and fine-
grained evaluation and analysis (see Section 4)), culminating in a benchmark that comprehensively
compares the video understanding capabilities of humans and LVLMs.
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ABSTRACT

Large vision-language models (LVLMs) have made significant strides in address-
ing complex video tasks, sparking researchers’ interest in their human-like mul-
timodal understanding capabilities. Video description serves as a fundamental
task for evaluating video comprehension, necessitating a deep understanding of
spatial and temporal dynamics, which presents challenges for both humans and
machines. Thus, investigating whether LVLMs can describe videos as comprehen-
sively as humans—through reasonable human-machine comparisons using video
captioning as a proxy task—will enhance our understanding and application of
these models. However, current benchmarks for video comprehension have no-
table limitations, including short video durations, brief annotations, and reliance
on a single annotator’s perspective. These factors hinder a comprehensive assess-
ment of LVLMs’ ability to understand complex, lengthy videos and prevent the
establishment of a robust human baseline that accurately reflects human video
comprehension capabilities. To address these issues, we propose a novel bench-
mark, FIOVA (Five In One Video Annotations), designed to evaluate the differ-
ences between LVLMs and human understanding more comprehensively. FIOVA
includes 3,002 long video sequences (averaging 33.6 seconds) that cover diverse
scenarios with complex spatiotemporal relationships. Each video is annotated by
five distinct annotators, capturing a wide range of perspectives and resulting in
captions that are 4∼ 15 times longer than existing benchmarks, thereby establish-
ing a robust baseline that represents human understanding comprehensively for the
first time in video description tasks. Using the FIOVA benchmark, we conducted
an in-depth evaluation of six state-of-the-art LVLMs (VideoLLaMA2, LLaVA-
NEXT-Video, Video-LLaVA, VideoChat2, Tarsier, and ShareGPT4Video), com-
paring their performance with humans. Results show that while current LVLMs
demonstrate some perception and reasoning capabilities, they still struggle with
information omission and descriptive depth. Moreover, we found significant dis-
crepancies between LVLMs and humans in complex videos, particularly where
human annotators exhibited substantial disagreement, whereas LVLMs tended to
rely on uniform strategies for challenging content. These findings underscore the
limitations of using a single human annotator as the groundtruth for evaluation
and highlight the need for new evaluation perspectives. We believe this work of-
fers valuable insights into the differences between LVLMs and humans, ultimately
guiding future advancements toward human-level video comprehension. More re-
lated resources will be released at: https://huuuuusy.github.io/fiova/.

1 INTRODUCTION

Large Language Models (LLMs) have made significant strides in Natural Language Processing
(NLP), excelling in tasks such as text generation (Li et al. (2024a;c); Mahapatra & Garain (2024); Li
et al. (2024b)) and question answering (Zhuang et al. (2023); Saito et al. (2024)). Building on these
advancements, large vision-language models (LVLMs), including GPT-4V (Achiam et al. (2023))
and LLaVA (Liu et al. (2024)), extend LLM capabilities into multimodal domains. LVLMs excel
in integrating text, images, and videos, demonstrating remarkable progress in applications such as
text-to-video generation (Huang et al. (2024b)) and video captioning (Huang et al. (2024a)). How-
ever, evaluating the true capabilities of LVLMs remains challenging, as traditional evaluation meth-
ods—typically based on text matching or embedding distances—often fail to capture the nuanced
understanding required for human-like video comprehension (Hu et al. (2024b;a; 2022)).

This leads to the fundamental question: “Can video-based LVLMs describe videos as comprehen-
sively as humans?” Video captioning (Aafaq et al. (2019); Ramanishka et al. (2016)) serves as a key
task to assess a model’s ability to perceive, comprehend, and generate meaningful video descrip-
tions. Unlike structured tasks like object recognition (Logothetis & Sheinberg (1996)) or question
answering (Antol et al. (2015)), video captioning demands an in-depth understanding of both spa-
tial and temporal dynamics, presenting significant challenges for both machines and humans. Thus,
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Table 1: Comparison of FIOVA and other video caption datasets. We split the datasets into two
groups: automatic caption by ASR (Automatic Speech Recognition) (Miech et al. (2019); Lee et al.
(2021); Zellers et al. (2021); Xue et al. (2022); Chen et al. (2024b)) or LVLM, and manual caption
(Chen & Dolan (2011); Xu et al. (2016); Zhou et al. (2018); Caba Heilbron et al. (2015); Anne Hen-
dricks et al. (2017); Rohrbach et al. (2015); Wang et al. (2019a)). It is worth noting that FIOVA is
the only dataset that provides multiple annotations for each video, and the length of a single video
description is much longer than other datasets.

Dataset Text Domain #Videos Avg/Total Video Len Avg Text Len

HowTo100M Automatic caption (by ASR) Open 136M 3.6s 134.5Kh 4.0 words
ACAV Automatic caption (by ASR) Open 100M 10.0s 277.7Kh -
YT-Temporal-180M Automatic caption (by ASR) Open 180M - - -
HD-VILA-100M Automatic caption (by ASR) Open 103M 13.4s 371.5Kh 32.5 words
Panda-70M Automatic caption (by LVLM) Open 70.8M 8.5s 166.8Kh 13.2 words

MSVD Manual caption (1 person) Open 1,970 9.7s 5.3h 8.7 words
LSMDC Manual caption (1 person) Movie 118K 4.8s 158h 7.0 words
MSR-VTT Manual caption (1 person) Open 10K 15.0s 40h 9.3 words
DiDeMo Manual caption (1 person) Flickr 27K 6.9s 87h 8.0 words
ActivityNet Manual caption (1 person) Action 100K 36.0s 849h 13.5 words
YouCook2 Manual caption (1 person) Cooking 14K 19.6s 176h 8.8 words
VATEX Manual caption (1 person) Open 41K ∼10s ∼115h 15.2 words

FIOVA (Ours) Manual caption (5 people) Open 3K 33.6s 28.3h 63.28 words

investigating this question through reasonable human-machine comparisons using video captioning
as a proxy task will enhance our understanding and application of these LVLMs.

However, current benchmarks (Miech et al. (2019); Lee et al. (2021); Chen & Dolan (2011);
Caba Heilbron et al. (2015); Xu et al. (2016); Chen et al. (2024b); Zhou et al. (2018)) exhibit several
major limitations: they typically feature simple scenarios (videos lasting about 10 seconds), provide
brief annotations (averaging 15 words), and rely on single annotators (see Tab. 1). These constraints
limit the insight into LVLMs’ understanding of complex, long-duration videos and prevent the es-
tablishment of a robust human baseline that accurately reflects human comprehension capabilities
(Chang et al. (2024)).

To address these challenges, we propose a novel benchmark, FIOVA (Five In One Video
Annotations), designed to provide a comprehensive evaluation of the differences between LVLMs
and human understanding. As shown in Fig. 1, FIOVA encompasses three key contributions: (1)
Comprehensive dataset construction: We curated a dataset of 3,002 long video sequences (aver-
aging 33.6 seconds) that cover diverse scenarios with complex spatiotemporal relationships. Each
video is annotated by five distinct annotators, capturing a wide range of human perspectives and re-
sulting in captions that are 4 to 15 times longer than existing benchmarks, establishing a robust base-
line that comprehensively represents human understanding in video description tasks (see Section 2).
(2) Evaluation of state-of-the-art LVLMs: We conducted an in-depth evaluation of six representa-
tive open-source LVLMs (VideoLLaMA2, LLaVA-NEXT-Video, Video-LLaVA, VideoChat2, Tar-
sier, and ShareGPT4Video), ensuring our evaluation reflects the latest advancements in the field.
Additionally, we applied diverse processing techniques to model outputs, enabling a more compre-
hensive assessment of their capabilities and limitations (see Section 3). (3) Fine-grained human-
machine comparative analysis: Leveraging the FIOVA benchmark, we performed detailed experi-
ments to analyze the differences between LVLMs and human annotations across various aspects of
video comprehension. This comparative study offers critical insights into the limitations of LVLMs
and underscores the need for new evaluation perspectives that capture semantic understanding, flu-
ency, and content relevance (see Section 4).

By providing a benchmark with multiple human annotations, FIOVA aims to bridge the gap be-
tween LVLM and human video understanding, offering insights into the current state of LVLMs and
guiding the development of future AI systems for video comprehension tasks.
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(d) Word cloud (based on GT) (b) Annotation length distribution for five people (c) Average human caption length with video frames
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(a) Statistics of average video frames and video sequences for each theme 

Figure 2: Statistical analysis of key aspects in FIOVA. (a) Statistics of average video frames and
video sequences for each theme, see Tab. A1 for details of each theme. (b) Annotation length
distribution for five people. The distribution of description lengths across human annotators remains
highly consistent. (c) Average human caption length with video frames. The length of human
descriptions increases with the length of the video, but the increase is not large and no redundant
descriptions occur. (d) The word cloud of human descriptions (based on the groundtruth).

2 CONSTRUCTION OF FIOVA DATASET

Fig. 1 illustrates an overview of our work. In this section, we will introduce the first step in
detail. Initially, we gathered FIOVA dataset D = {(V1, C1), . . . , (Vn, Cn)}, in which Ci =
{ci1, ci2, ci3.ci4, ci5} represents the set of human annotations for video Vi (see Section 2.1). On
this basis, we also combined Ci to form a groundtruth gi as a comprehensive baseline for human
understanding of video Vi (see Section 2.3). Totally, FIOVA contains 3,002 (Vi, Ci, gi) pairs (i.e.,
3,002 videos, 15,010 human original descriptions, and 3,002 groundtruth descriptions).

2.1 VIDEO COLLECTION AND ANNOTATION

We curated a dataset consisting of 3,002 videos and 15,010 descriptions, specifically designed to
evaluate the video comprehension capabilities of LVLMs. It spans 38 diverse themes, encompass-
ing a wide range of real-world scenarios and interactions (see Appendix B.1). These range from
“Accidents,” which capture traffic incidents, to “Family Activities,” depicting everyday family inter-
actions. This thematic diversity ensures that the dataset serves as a robust platform for evaluating
models across various contexts and content types.

To ensure high-quality annotations, each video was annotated by five individuals, focusing solely
on the visual content, excluding audio or subtitles, except for naturally occurring text within the
scene. This process emphasizes observable video elements, enhancing the dataset’s relevance for
video comprehension tasks. Annotators followed standardized guidelines to ensure consistency (see
Appendix B.2), which included details like time of day, location, and prominent objects or actions,
while avoiding literary or emotionally charged language. Public figures were described generically,
and descriptions strictly adhered to the chronological order of events. These guidelines ensured
neutrality, clarity, and factual accuracy, providing a reliable foundation for evaluation.

FIOVA presents additional challenges that distinguish it from existing datasets, making it more de-
manding for video understanding tasks. As shown in Fig. A1, FIOVA includes videos with varying
resolutions and aspect ratios, requiring models to adapt to different visual formats. Frequent cam-
era switches and diverse main subjects add complexity, challenging models to accurately follow
transitions and identify critical elements. Moreover, FIOVA features footage with lens distortions,
such as those from fisheye lenses, further complicating the interpretation of spatial relationships.
These challenges are intended to stress-test LVLMs, pushing them to achieve higher adaptability
and robustness in video comprehension.
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Each video sequence is paired with five distinct English descriptions written by human annotators as
coherent paragraphs of multiple declarative sentences. The number of sentences varied depending
on the video’s complexity, allowing for detailed accounts of events and transitions. With an aver-
age video length of 33.6 seconds, the dataset captures complex actions and interactions, making it
ideal for tasks that require deep video understanding. The dataset’s broad thematic diversity, de-
tailed descriptions, and rigorous annotation process provide a valuable resource for advancing video
comprehension research and assessing LVLM capabilities. Tab. 1 compares FIOVA with other ex-
isting datasets, and Fig. 2 presents statistical dimensions of FIOVA. Compared to others, FIOVA is
annotated by multiple annotators and features more detailed and precise descriptions.

2.2 CAPTION QUALITY ASSESSMENT

a b

cd

e
f

Figure 3: Distribution of scores from human annotators across
multi-dimensions. (a-e) The distribution of human annotation
scores as evaluated by GPT-3.5-turbo, focusing on the dimen-
sions of consistency, context, correctness, detail orientation, and
temporality. (f) The distribution of disagreement in video de-
scriptions, measured by the average CV (coefficient of variation)
among human annotators across multi-dimensions.

In Section 2.1, we constructed
a multidimensional understand-
ing of video content by provid-
ing descriptions from five dif-
ferent annotators for each video.
This multi-annotator approach
effectively captures the diver-
sity and variability in human un-
derstanding, forming a compre-
hensive human cognition base-
line, which is a crucial dis-
tinction from previous studies.
In addition to capturing diverse
perspectives, we also generated
a consolidated human descrip-
tion for each video as the final
groundtruth. This groundtruth
serves as a refined summary
of the video content, support-
ing traditional video captioning
evaluation and serving as an es-
sential reference for further as-
sessments.

The first step in generating
the groundtruth involved thor-
oughly evaluating the annota-
tions. Different annotators may
provide varying descriptions of
the same video, with differences
in word choice, focus, and lan-
guage style. To address these
variations, we collected video-description pairs and used the GPT-3.5-turbo model—similar to the
approach used in Video-ChatGPT (Maaz et al. (2023)) and Tarsier (Wang et al. (2024))—to evalu-
ate each description across five key dimensions. Following VideoLLaMA2 (Cheng et al. (2024)),
these dimensions are: (1) Consistency: Whether the description is logically coherent and aligned
with the video content. (2) Context: Whether the description accurately captures scene changes
and relationships between events. (3) Correctness: Whether the information is accurate and free
from misleading content. (4) Detail Orientation: Whether the description captures critical details,
such as people, objects, scenes, and events. (5) Temporality: Whether the description follows the
chronological order of events without skipping or over-summarizing. GPT-3.5-turbo assigned scores
ranging from 1 to 10 for each caption across five dimensions (see Appendix D.1.1). This scoring
allowed us to comprehensively analyze the quality of each annotator’s description and identify those
with the highest consistency and accuracy.

To better visualize the evaluation results, we plotted the score distribution of human annotators
across all videos and all five dimensions. As shown in Fig. 3 (a-e), the score distributions are rela-
tively consistent across different dimensions, indicating that the annotations are representative and
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Figure 4: An example of our dataset.

reflect an average human understanding with reasonable cognitive abilities. Notably, the distribution
for Detail Orientation differs slightly from other dimensions, suggesting that human captions gener-
ally provide above-average coverage of content and details, capturing most of the critical points in
the videos. However, there are still deficiencies in specific details or comprehensiveness.

Building on this, we further examined the variability among annotators. To quantify this variabil-
ity, we calculated the coefficient of variation (CV) based on the standard deviation and mean of
the scores. A higher CV for a particular video indicates greater annotation variability, suggesting
divergent interpretations among annotators. We refer to this variability as disagreement, reflect-
ing differences in understanding among annotators. To perform a more detailed analysis of these
disagreements, we added a sixth dimension—Annotation Length (see Fig. 2 (b))—to the existing
five evaluation dimensions. By calculating the average CV for each video across all six dimensions
(see Algorithm A1), we divided the dataset into eight distinct sub-groups based on the CV values
(see Fig. 3 (f) and Appendix B.4). Videos with lower CVs (Group A) indicate high similarity in
annotators’ descriptions across multiple dimensions, while higher CVs (Group H) signify greater
discrepancies. This classification not only provides insight into the variability in human annotations
but also lays a foundation for subsequent algorithm evaluation, allowing us to compare different
LVLMs to human groups in terms of video comprehension.

2.3 GROUNDTRUTH GENERATION

We used the GPT-3.5-turbo model to synthesize the five human-provided descriptions into a single,
comprehensive video description that serves as the final groundtruth (see Appendix D.1.2). During
this synthesis, the model integrates key elements from each of the five descriptions, balancing the
diversity of perspectives with consistency and coherence. This ensures that the final groundtruth
captures the most salient and informative aspects of the video while maintaining logical flow and
completeness across all relevant dimensions, as illustrated in Fig. 4.

Using GPT-3.5-turbo for synthesis provides a systematic way to combine multiple viewpoints, re-
ducing subjective bias and ensuring that no crucial detail is omitted. Each synthesized groundtruth
represents a consolidated understanding of the video, balancing detail orientation, contextual rele-
vance, and temporal accuracy. By combining the strengths of multiple human annotations, the gen-
erated groundtruth not only supplements individual descriptions but also sets a higher standard of
quality, serving as a more stringent and standardized benchmark for evaluating model performance.

6
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3 LVLMS RESPONSE COLLECTION

As illustrated in step 2 of Fig. 1, in this section, each video Vi is processed by several LVLMs to form
a benchmark of video & description & response pairs, denoted as B = {(Vi, Ci, Ri) | (Vi, Ci) ∈
D}, in which Ri = {ri1, ri2, . . . , rin} represents the set of LVLMs’ response for video Vi.

3.1 BASELINE MODELS SELECTION

Figure 5: Response length distribution for six LVLMs.

We utilized six state-of-the-art
open-source LVLMs for our
study: VideoLLaMA2 (Cheng
et al. (2024)), Video-LLaVA
(Lin et al. (2023)), LLaVA-
NEXT-Video (Zhang et al.
(2024)), Tarsier (Wang et al.
(2024)), VideoChat2 (Li et al.
(2023)), and ShareGPT4Video
(Chen et al. (2024a)). More
detailed introductions for
these LVLMs can refer to
Appendix A.1. These models
were prompted with video
description tasks, generating
18,012 responses (see Ap-
pendix D.2). The distribution
of response lengths for each
LVLM is shown in Fig. 5, which
provides insight into the variability of model outputs. Besides, each model was fine-tuned for video
caption generation with specific configurations to optimize performance. VideoLLaMA2 used
default settings with a temperature of 0.2 and a maximum token limit of 1,024. VideoChat2 and
ShareGPT4Video were configured with default settings, a temperature of 1.0, top p of 0.9, and a
maximum token limit of 1,024. Video-LLaVA had a temperature of 0.1 and the same token limit.
Tarsier and LLaVA-NEXT-Video were set with a temperature of 0, top p of 1, and a maximum
token limit of 1,024. All models processed 8 frames using four RTX 3090 GPUs.

3.2 EVENT GENERATION

The video descriptions generated by the LVLMs in the previous section are suitable for evaluation
using traditional metrics. However, the recently proposed AutoCQ (Automatic Caption Quality)
method (Wang et al. (2024)) offers a novel evaluation approach by focusing on event extraction
from both reference and model-generated captions, enabling a more fine-grained assessment based
on event matching (see Section 4.1). As shown in Fig. 6, to support a broader range of evaluation
metrics and achieve a comprehensive analysis, we used GPT-3.5-turbo to perform event extraction
on both the groundtruth gi and the j-th LVLM’s generated output rij (see Appendix D.1.3). This
ensures consistency and accuracy in event extraction. From this, event collections Egt

i for gi and
Er

ij for rij are generated to support subsequent analysis. This event extraction allows us to utilize
both traditional evaluation metrics and detailed event-based assessments, thereby enhancing our
understanding of the alignment between model-generated captions and human annotations.

4 FINE-GRAINED EVALUATION AND ANALYSIS

As shown in step 3 of Fig. 1, based on the FIOVA benchmark D, we compare LVLMs with both the
representative human baseline (groundtruth) and the human interval (annotations by five individuals)
across multiple dimensions. This allows for an in-depth analysis of the similarities and differences
in video understanding between humans and LVLMs.
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4.1 EVALUATION METHODS

Traditional metrics like BLEU (Papineni et al. (2002)) have limitations in evaluating detailed and
longer video descriptions, often failing to capture the semantic nuances and contextual accuracy
required for comprehensive assessment. Recent studies have attempted to use models such as Chat-
GPT for content rating (Maaz et al. (2023); Achiam et al. (2023)), but the lack of interpretability in
score assignment remains a challenge (see Appendix A.3). Therefore, we adopted AutoCQ (Wang
et al. (2024)), which extends traditional metrics like BLEU, GLEU, and METEOR by integrating
text and semantic similarity, providing a more holistic evaluation of the alignment between LVLM-
generated captions and human annotations.

Groundtruth: A child wearing a hat is riding a 
baby carriage forward, and then the car falls. 
The child stands for a while and falls off when 
he crosses his leg out from the car. The child 
lies on the ground, strokes his hand, and then 
points to the camera with a finger. A little boy, 
wearing a helmet, rides a bike without pedals 
during the day, using feet to support forward. 
He releases his hand, and the bike tilts down 
under him. The boy stands and looks down at 
the bike. He then crosses the car, goes to the 
side, falls to the ground, and smiles while 

reaching out his hand.

A LVLM’s Caption: The video shows a 
young boy wearing a helmet and riding a red 
bicycle down a street. He is riding the bike with 
both hands on the handlebars and appears to be 
enjoying himself. Suddenly, he loses his 
balance and falls off the bike, landing on the 
ground. The boy seems to be okay and gets up 
quickly, brushing himself off. The video ends 
with a caption that reads "on bit of reaction it 
takes to make it." Overall, the video captures a 
typical moment of a child learning to ride a bike 
and the importance of being prepared for 

unexpected events.

1."Child rides baby carriage forward",
2."Car falls",
3."Child falls off car",
4."Boy rides bike without pedals",
5."Boy releases hand",
6."Bike tilts down",
7."Boy looks down at bike",
8."Boy crosses car",
9."Boy falls to ground",
10."Boy smiles while reaching out hand"

Event ExtractionEvent Extraction

1."Child rides baby carriage forward",
2."Car falls",
3."Child falls off car",
4."Boy rides bike without pedals",
5."Boy releases hand",
6."Bike tilts down",
7."Boy looks down at bike",
8."Boy crosses car",
9."Boy falls to ground",
10."Boy smiles while reaching out hand"

Event Extraction

1."Young boy riding red bicycle down street",
2."Boy losing balance and falling off bike",
3."Boy landing on ground",
4."Boy getting up quickly",
5."Boy brushing himself off",
6."Video ending with caption"

Event ExtractionEvent Extraction

1."Young boy riding red bicycle down street",
2."Boy losing balance and falling off bike",
3."Boy landing on ground",
4."Boy getting up quickly",
5."Boy brushing himself off",
6."Video ending with caption"

Event Extraction

Precision=2/6

Recall=5/10

Cross 
Checking

Figure 6: The pipeline of AutoCQ (Wang et al. (2024)). We use
GPT-3.5-turbo to implement event extraction and cross checking.
These results can support more fine-grained evaluations.

The AutoCQ evaluation process
consists of two main stages. In
the first stage, events are gener-
ated from both the groundtruth
caption (Egti) and the LVLM-
generated caption (Erij), as de-
scribed in Section 3.2. In the
second stage, two ratios are
computed: (1) the ratio of events
in Egti that are also present in
Erij (i.e., recall, which indi-
cates the extent to which the
LVLM’s caption captures the
groundtruth events), and (2) the
ratio of events in Erij that are
also present in Egti (i.e., preci-
sion, which reflects the accuracy
of the LVLM’s output in align-
ing with the groundtruth events).
Then, the harmonic mean of pre-
cision and recall (i.e., F1 score)
is calculated to provide a bal-
anced measure of the model’s
performance. Fig. 6 illustrates
an example of this process.

Finally, we used both traditional
metrics (BLEU, GLEU, and
METEOR) and AutoCQ-based
metrics (F1, Precision, and Re-
call) for evaluation. These met-
rics facilitate two main tasks: (1) Overall evaluation: Assigns quality scores to each generated
caption, assessing whether LVLMs can describe videos at a level comparable to humans using both
traditional and AutoCQ-based metrics. (2) Batch evaluation: Evaluates the relative performance
of multiple model outputs, providing a nuanced understanding of the models’ ability to produce
human-like descriptions. LVLMs are ranked based on F1 scores across different videos, reflecting
their descriptive ability in various scenarios.

4.2 OVERALL EVALUATION FOR LVLMS

Traditional metrics. For results based on traditional metrics in Tab. 2, Tarsier performs exception-
ally well on most indicators. In contrast, ShareGPT4Video shows the poorest performance, with its
scores significantly lower than those of other models on these metrics.

Tarsier’s strong performance can be largely attributed to a high degree of lexical overlap with the
groundtruth, meaning that its generated captions frequently use words identical to those in the refer-
ence descriptions. However, Tarsier performs less effectively in areas involving synonym usage and
morphological variation, as reflected in its lower METEOR score compared to BLEU and GLEU
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Table 2: Comparison of LVLMs via traditional and AutoCQ-based metrics. The background color
represents the performance of the metric. The darker the green, the better the performance.

Traditional Metrics AutoCQ-based Metrics
LVLMs BLEU (↑) METEOR (↑) GLEU (↑) F1 (↑) Recall (↑) Precision (↑)

Tarsier 0.035 0.225 0.106 0.372 0.264 0.628
VIdeoLLaMA2 0.028 0.240 0.088 0.339 0.227 0.668
LLaVA-NEXT-Video 0.022 0.255 0.069 0.310 0.203 0.659
Video-LLaVA 0.027 0.235 0.081 0.300 0.192 0.694
ShareGPT4Video 0.013 0.218 0.043 0.298 0.188 0.715
VideoChat2 0.034 0.250 0.098 0.324 0.216 0.647

scores. This suggests that while Tarsier effectively aligns with the vocabulary of the groundtruth, it
still exhibits limitations in terms of linguistic diversity and expressive range.

Conversely, ShareGPT4Video has demonstrated notable strengths in its ability to generate sliding
window-based video captions rapidly, integrate descriptions across different segments, and produce
detailed captions based on prompts. These capabilities have resulted in promising results on vari-
ous video understanding benchmarks. However, its performance on FIOVA was the weakest among
the tested models. Detailed analysis indicates that the captions produced by ShareGPT4Video con-
tain considerable redundancy, which negatively impacts its scores on traditional metrics. Metrics
such as BLEU, GLEU, and METEOR focus on lexical similarity, simple synonym use, and basic
morphological variation, and therefore penalize repetitive and redundant content.

These findings highlight a balanced approach should not only ensure lexical similarity but also
enhance linguistic diversity and reduce redundancy for comprehensive video description quality.

AutoCQ-based metrics. To further evaluate the models’ performance, we utilized AutoCQ to as-
sess the LVLMs’ video captioning capabilities (see Tab. 2). AutoCQ evaluates captions by extract-
ing events and performing fine-grained segmentation of both the model-generated captions and the
groundtruth. This approach enables an assessment of the models’ comprehension of video content
in terms of completeness and granularity.

Tarsier demonstrates the highest performance in F1 and Recall, indicating that its generated captions
cover a substantial portion of the events included in the groundtruth, reflecting a higher level of con-
tent completeness. However, Tarsier’s weakest performance is in Precision, suggesting challenges
in achieving descriptive accuracy. This implies that while Tarsier shows a solid overall understand-
ing of the video content, it struggles with precise control, often including irrelevant or incorrect
information in its generated captions.

Conversely, ShareGPT4Video achieves the highest Precision score but the lowest Recall score. The
high Precision indicates that the descriptions produced by ShareGPT4Video are accurate and pre-
dominantly consist of correct events. However, the low Recall reveals that the model omits a sig-
nificant amount of crucial information, indicating a conservative approach to caption generation.
Although ShareGPT4Video is less prone to generating erroneous content, it often fails to capture
significant aspects of the video, resulting in incomplete content coverage.

The other LVLMs perform between these two models, demonstrating a balanced trade-off between
Recall and Precision with moderate scores for both metrics. These results illustrate the varying
strategies employed by different LVLMs for video captioning—some prioritize completeness, while
others focus on accuracy. The AutoCQ evaluation underscores the necessity of developing a bal-
anced model that can comprehensively cover video content while maintaining high descriptive ac-
curacy to produce quality video captions.

4.3 BATCH EVALUATION FOR LVLMS

Batch score evaluation for LVLMs. In addition to evaluating the overall score, we conducted batch
score evaluations across eight sub-groups (see Fig. 7). AutoCQ’s performance trends were consis-
tent with the overall evaluation, with Tarsier continuing to excel in F1 and Recall metrics. However,
we observed a general decline in performance for most LVLMs in Group H. Group H consists of
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Figure 7: Radar plot of LVLMs on FIOVA and 8 sub-groups, based on traditional metrics and
AutoCQ-based metrics. See Appendix E.2 for details.

nine videos featuring multiple camera switches and frequent scene changes, with a coefficient of
variation (CV) among human annotators exceeding 70%. These videos represent some of the most
challenging content in the FIOVA dataset, making them particularly difficult to describe accurately.
As expected, most LVLMs struggled to maintain descriptive completeness for Group H, resulting
in notable omissions despite relatively accurate content. Interestingly, Tarsier performed better than
other models in this group, likely due to its superior ability to capture temporal changes. This indi-
cates that Tarsier is more capable of maintaining coherence amid rapid scene transitions, a critical
factor for generating high-quality descriptions of complex sequences.

In terms of Precision, LVLMs demonstrated relatively consistent performance across different sub-
groups, indicating their ability to accurately capture key details regardless of video complexity.
However, unlike AutoCQ, Tarsier’s BLEU score was suboptimal in Group H, whereas its GLEU
score remained stable across all sub-groups. GLEU allows for greater variation and emphasizes the
fluency and overall quality of generated content, while BLEU focuses more on literal precision in
word matching. Thus, when the generated text is semantically similar to the reference but differs in
phrasing or word order, GLEU tends to assign a higher score, while BLEU is less favorable.

These observations underscore the limitations of traditional metrics, which may not accurately re-
flect model performance in open-ended video captioning tasks. Metrics focusing solely on lexical
matching often fail to capture the semantic alignment and fluency critical for high-quality video
descriptions, particularly in complex videos with frequent scene changes.

Batch ranking for LVLMs. We use Algorithm A2 to calculate the CV of LVLMs. Additionally,
we compute the CV rankings for both humans and models, along with the difference between these
rankings (see Algorithm A3). As shown in Fig. 8 (a), the CV of model performance gradually
decreases from Group A to Group H. This trend indicates that for videos that are relatively easier
to describe (e.g., Group A), the models show significant variability in performance. In contrast, for
more challenging videos (e.g., Group H), their performance becomes more consistent.

The higher CV values observed in Groups A and B indicate substantial differences in descriptive
performance among the models for simpler videos. This variability can be attributed to the diverse
strategies employed by the models when handling straightforward content, resulting in a broader
range of descriptive quality. As video complexity increases, the CV values gradually decline, as
seen in Groups E, F, G, and H, suggesting that models produce more stable descriptions for complex
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a b

Figure 8: Comparison between humans and LVLMs based on the ranking of CV (coefficient of
variation). (a) Ranking of CV for six LVLMs. (b) Difference between the ranking of CV for six
LVLMs and humans.

content. One possible explanation for this trend is that the increased difficulty of later groups (e.g.,
Group H) imposes stricter requirements on the models’ descriptive capabilities, prompting them to
adopt more uniform approaches, thereby reducing output variability. This finding highlights the
value of evaluating models with complex and diverse content, as it reveals their ability to generalize
and maintain stability under challenging conditions.

Batch ranking for LVLMs and humans. Fig. 8 (b) shows that as the difficulty of accurately
describing videos increases for humans (from Group A to Group H), the negative regions (such as
Groups A and B) indicate that for easily describable videos, human annotators demonstrate more
consistent performance, whereas models exhibit significant variations (see Fig. A12 in Appendix
E.4). This suggests that the models’ descriptive capabilities are inadequate for simpler video content,
failing to achieve the consistency demonstrated by humans.

Conversely, the positive regions (such as Group H) indicate that, for more challenging videos, human
annotators exhibit greater variability in their descriptions, while the models display more consistent
performance (see Fig. A14 in Appendix E.4). This consistency in models could be due to the
similar strategies or shared limitations they employ when describing complex scenarios, leading to
more uniform outputs. Most intermediate groups (such as C, D, and E) are close to zero, suggesting
that for these videos, the coefficient of variation is relatively similar between models and humans,
with no clear advantage for either (see Fig. A13 in Appendix E.4).

These findings align with the Overall Score and Batch Score Evaluations. In the Overall Score,
LVLMs achieve a Precision exceeding 0.6, significantly higher than Recall. This indicates that
while LVLMs accurately describe video content, they lack comprehensiveness and often miss certain
details. In Group H, most LVLMs show a decline in Recall scores while maintaining stable Precision
scores, consistent with the Batch Ranking results. This suggests that current LVLMs can provide
accurate descriptions even for challenging videos, demonstrating consistency and stability, but at the
expense of reduced content coverage, often omitting critical details in complex scenarios. Overall,
these findings highlight the trade-off between accuracy and comprehensiveness in the descriptive
capabilities of LVLMs, particularly when handling videos of varying difficulty. This underscores
the need for improvements in models that achieve both high precision and comprehensive content
coverage, especially in complex video contexts where human variability is significant.

4.4 SUMMARY

Based on the above results, we conclude that existing LVLMs possess certain perception and rea-
soning capabilities, enabling them to describe video content accurately to some extent. However,
most LVLMs still suffer from information omissions, limiting their ability to provide comprehensive
descriptions. Among the six LVLMs evaluated, Tarsier demonstrated the best performance, largely
due to its effective use of temporal relationships, which enhances its ability to describe complex
videos comprehensively. Nevertheless, Tarsier still requires improvement in enhancing descriptive
precision and reducing irrelevant content.

When compared to human-generated captions, significant discrepancies were observed in LVLMs
for simpler videos, indicating that they often fail to capture nuances that human annotators read-
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ily identify. In contrast, LVLMs showed greater consistency and stability than humans for more
complex videos, likely because increased complexity prompts LVLMs to adopt uniform strategies,
resulting in stable outputs. For videos of moderate complexity, LVLMs performed comparably to
human annotators, achieving a balance between accuracy and completeness. Additionally, some
models consistently performed well or poorly across specific videos, as illustrated in Fig. A16 and
A15. In other cases, models experienced severe issues like hallucinations and redundant outputs
(see Fig. A17 for details). All six LVLMs performed well in simple scenarios, such as Brazilian
Jiu-Jitsu practice, but their performance significantly declined when faced with spatiotemporal in-
consistencies, suggesting that current LVLMs need substantial improvement in handling complex
video scenes involving intricate spatiotemporal relationships and frequent scene transitions.

Our experiments also highlight the limitations of traditional evaluation metrics, such as BLEU and
METEOR. These metrics often fall short in assessing the quality of open-ended video descriptions,
especially given the evolving complexity of tasks, models, and data in the era of LLMs. To adapt to
this dynamic environment, it is crucial to develop new evaluation metrics that can effectively capture
the diverse capabilities of LVLMs and accurately reflect their performance. Such metrics should
go beyond simple word matching and incorporate semantic understanding, fluency, and content
relevance, thereby providing a more comprehensive assessment of model capabilities.

5 CONCLUSIONS

In this paper, we propose FIOVA, a new benchmark designed to evaluate the judgment capabilities of
LVLMs in video captioning across different evaluation settings and to assess their consistency with
human judgments. Our findings indicate that while Tarsier performs well in terms of precision and
temporal utilization, it often generates brief captions that lack detail, limiting comprehensiveness. In
contrast, ShareGPT4Video, although comparable to GPT-4V in its claimed understanding, suffers
from hallucinations and redundancy in its outputs. The FIOVA benchmark provides a complex
environment for comparing LVLMs to human assessments, offering insights into their respective
strengths and limitations across diverse video scenarios. Our results also emphasize the need for
improved LVLMs that can effectively balance accuracy, comprehensiveness, and content relevance,
particularly in complex settings. We hope that FIOVA will support further research in advancing
video description and understanding.
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APPENDIX

A COMPREHENSIVE RELATED WORKS

A.1 LVLMS FOR VIDEO CAPTION

In recent years, research on Large Vision-Language Models (LVLMs) has seen a notable surge, with
some models even claiming to achieve performance on par with GPT-4V (Achiam et al. (2023))
in handling general video tasks such as visual question answering and video description. These
advanced models aim to bridge the gap between visual and linguistic understanding, allowing for
more sophisticated interactions with video content.

One of the standout models in this domain is Tarsier (Wang et al. (2024)), which employs CLIP-
ViT to encode individual video frames and leverages a Large Language Model (LLM) to model
the temporal relationships between these frames. Through a carefully crafted two-stage training
process, Tarsier demonstrates superior capabilities in generating video descriptions compared to
existing open-source models, making it a leading player in this rapidly evolving space.

Building on earlier innovations, VideoLLaMA2 (Cheng et al. (2024)) advances video captioning by
improving on its predecessor, VideoLLaMA (Zhang et al. (2023)). It introduces a custom-designed
Spatio-Temporal Convolution (STC) connector that effectively captures the complex interplay be-
tween spatial and temporal elements in video data. This enhancement enables the model to generate
more accurate and context-aware video descriptions and address broader video understanding tasks.

Another notable development comes from ShareGPT4Video (Chen et al. (2024a)), which advances
video understanding in LVLMs and video generation in text-to-video models (T2VM) to new lev-
els. By generating dense, detailed, and precise captions, ShareGPT4Video achieves state-of-the-art
(SOTA) performance across three advanced video benchmarks, significantly enhancing the quality
of video descriptions and the overall understanding of complex video content.

Video-LLaVA (Lin et al. (2023)) further pushes the boundaries of foundational LLMs by align-
ing visual representations with the language feature space, working towards a more unified LVLM
architecture. This alignment is critical in enhancing the model’s ability to understand and gener-
ate coherent, contextually appropriate captions that seamlessly integrate both visual and linguistic
elements.

VideoChat2 (Li et al. (2023)) stands out for its impressive capabilities in spatio-temporal reasoning,
event localization, and causal reasoning. By integrating a video backbone with a large language
model via a learnable neural interface, VideoChat2 excels in tasks that require a deeper understand-
ing of temporal sequences and the causal relationships between events in video data. This makes it
particularly effective in scenarios that demand detailed analysis and interaction with dynamic video
content.

The emergence of these models has prompted researchers to ask a fundamental question: “Can
video-based LVLMs describe videos like humans and exhibit human-level understanding?” This
question forms the basis of our work. We selected these state-of-the-art models as evaluation sub-
jects and conducted a comprehensive comparison of human and machine video understanding using
the FIOVA benchmark.

A.2 VIDEO CAPTION DATASET

As the field of video understanding continues to evolve, researchers have introduced a growing
number of video description datasets that cater to various levels of complexity and diversity in video
content. These datasets play a crucial role in advancing video captioning models by providing
training and evaluation materials that reflect real-world challenges.

One of the well-known datasets in this field is YouCook-II (Zhou et al. (2018)), which comprises
2,000 cooking videos evenly distributed across 89 distinct recipes. These videos, sourced from
YouTube, encompass a wide range of cooking techniques and present various challenges typical of
open-domain videos. The dataset features variations in camera angles, camera movement, lighting
conditions, and background changes, making it an excellent resource for testing models on dynamic
and complex scenarios.
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The Microsoft Video Description (MSVD) (Chen & Dolan (2011)) dataset offers another founda-
tional benchmark for video captioning tasks. It includes 1,970 short video clips from YouTube, each
paired with human-annotated sentences that provide natural language descriptions of the video con-
tent. This dataset is widely used for training and evaluating models, given its open-domain nature
and the diversity of content it covers.

Further expanding the scope, the MSR-Video to Text (MSR-VTT) (Xu et al. (2016)) dataset offers
a larger and more diverse collection of open-domain videos for captioning tasks. It consists of
7,180 videos subdivided into 10,000 clips, organized into 20 distinct categories that encompass a
broad range of scenarios, from sports to news events, and more. The MSR-VTT dataset serves as a
benchmark for evaluating a model’s capability to handle diverse, real-world video content, making it
an important resource for researchers seeking to enhance the generalization abilities of their models.

Currently the largest dataset in the field, Panda-70M (Chen et al. (2024b)), features an astounding
70 million videos paired with high-quality text captions. This extensive dataset has significantly
accelerated the development of video understanding by providing a vast array of training examples
that capture a wide spectrum of real-world video content. Its scale and diversity allow researchers
to train more robust models capable of handling complex, open-world scenarios.

Notably, FIOVA stands out as the only dataset that provides multiple annotations for each video,
offering richer insights into how different viewers perceive and describe the same content. Addi-
tionally, the length of the video descriptions in FIOVA is considerably longer than in other datasets,
providing more detailed and nuanced explanations of the video content. This makes FIOVA an
exceptional resource for testing the ability of models to generate comprehensive, contextually rich
descriptions, pushing the boundaries of what video captioning systems can achieve.

A.3 VIDEO CAPTION EVALUATION

In the early stages of video description research, the primary focus was on pretraining video-
language models, followed by fine-tuning on specific datasets for video captioning tasks. The
performance of these models was typically assessed using well-established metrics such as BLEU
(Papineni et al. (2002)), GLEU (Mutton et al. (2007)), METEOR (Banerjee & Lavie (2005)), and
CIDEr (Vedantam et al. (2015)). These metrics, while useful for measuring the quality of gener-
ated descriptions based on syntactic and semantic alignment, often led to models that could achieve
impressive results on specific datasets. However, a significant limitation was that these models fre-
quently struggled to generalize well beyond their training data, especially when confronted with
more diverse or open-world videos (Wang et al. (2024)).

To address this challenge, recent research efforts have shifted towards developing models capa-
ble of zero-shot video description (Tewel et al. (2022); Wang et al. (2019b); Zhou et al. (2024)).
These models aim to generate accurate captions for unseen videos without requiring fine-tuning
on task-specific datasets. Although promising, the simplicity of many standard video description
benchmarks limits their ability to fully evaluate these models’ capabilities. These benchmarks often
focus on straightforward, short videos with basic actions, which fails to stress-test models on more
complex, nuanced content.

As the complexity of videos increases—whether in terms of length, visual diversity, or intricate
narrative structure—traditional evaluation metrics struggle to reflect the true quality and relevance
of the generated captions. This mismatch highlights the need for more sophisticated evaluation
methods. In response, researchers have recently proposed using advanced language models, such
as ChatGPT, for automatic evaluation (Sottana et al. (2023)), which has gained popularity for tasks
like open-ended question answering. While this approach offers more flexibility in evaluating the
nuances of video descriptions, directly assigning a numerical score to an entire video description
often lacks interpretability, with the meaning of each score level being ambiguous and inconsistent
(Maaz et al. (2023)).

To overcome the limitations of traditional evaluation metrics, we adopted AutoCQ (Wang et al.
(2024)), a recently proposed approach for automatic scoring. AutoCQ offers significant advantages
over traditional methods, as it combines both text similarity and semantic similarity to evaluate
the alignment between the LVLMs’ video captions and human-generated captions. This approach
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enables a more comprehensive evaluation of both the lexical accuracy and the semantic integrity of
the descriptions, making it better suited for assessing the quality of detailed, nuanced video captions.

The AutoCQ evaluation process involves two main stages. First, events are extracted from both
the groundtruth and the LVLM-generated captions. In the next stage, these events are compared to
calculate two key metrics: recall, which measures how much of the groundtruth’s events are cap-
tured by the model-generated caption, and precision, which evaluates how accurately the generated
content aligns with the events present in the groundtruth. Finally, the F1 score—a balanced measure
of precision and recall—is used to provide an overall assessment of the model’s performance. This
method allows for a more nuanced understanding of how effectively a model captures the content of
a video, considering both completeness and accuracy.

In our evaluation of LVLMs using the FIOVA benchmark, we employed both traditional metrics
(such as BLEU, GLEU, and METEOR) and the advanced AutoCQ approach. By combining these
evaluation methods, we aim to provide a more comprehensive analysis of model performance, cap-
turing both the lexical alignment and the deeper semantic relationships that are crucial for effective
video comprehension. This combined approach ensures a scientifically rigorous comparison be-
tween LVLMs and human-generated video captions, particularly in complex video scenarios.
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B DETAILED INFORMATION OF FIOVA DATASET

B.1 THEME ABBREVIATIONS AND CORRESPONDING MEANINGS

Table A1: The video theme of the FIOVA dataset.

Prefix Video Theme & Description

acc Accident: This category encompasses records of sudden events such as traffic accidents and unexpected colli-
sions.

ad Advertisement: This category includes video content of commercial advertisements and product promotions for
marketing communication.

ch Children: This category captures scenes of children’s daily activities, play, and interactions.
di Dialogue: This category includes video content featuring conversations, discussions, and communicative inter-

actions.
do Daily Observations: This category records observations and events from everyday life.
doc Documentary: This category encompasses documentaries with educational, informational, or historical content.
duc Daily Unique Content: This category showcases videos of unique or unusual events in daily life.
ear Event Action Record: This category records actions and behaviors during specific activities or events.
ex Examination: This category involves records of exams, tests, or other assessment activities.
fa Family Activities: This category captures scenes of family activities, parent-child interactions, and family life.
fi Film Industry: This category includes video content related to film production, actor performances, and behind-

the-scenes of movies.
fu Fun: This category includes videos with entertaining, fun, or humorous content.
gar Gathering Activities Recordings: This category records videos of social activities, gatherings, and collective

events.
goa Games of Action: This category includes videos of action games, sports competitions, and outdoor activities.
hom Home: This category captures scenes of home environments, domestic life, and family relationships.
ken Kinetic Engaging Narratives: This category includes videos with dynamic participation, physical activities, and

interactive narratives.
ki Kids Interaction: This category records interactions and social activities among children.
mo Motion: This category involves videos of physical movement, action displays, and dynamic expressions.
mod Movement Onsite Display: This category showcases videos of on-site activities, movements, and mobility.
mot Motor: This category includes videos of mechanical motion, vehicle operation, and engine functionality.
mu Music: This category records videos of music performances, music creation, and musical activities.
ne News Event: This category includes videos of news reports, news events, and news interviews.
pon People’s Ordinary Narratives: This category records videos of ordinary people’s daily lives and personal stories.
pu Public Utility: This category showcases videos of public services, public utilities, and municipal engineering.
rab Recreational Activities and Behavior: This category includes videos of recreational activities, leisure behaviors,

and entertainment venues.
sad Sports and Daily Activities: This category records videos of sports activities, daily exercises, and outdoor

activities.
sc Scholarly Contexts: This category includes videos of scholarly research, educational contexts, and academic

discussions.
sch Social and Cultural Happenings: This category records videos of social events, cultural activities, and commu-

nity life.
sp Sports and Physical activities: This category includes videos of sports, physical exercises, and competitive

activities.
the Typical Human Experiences: This category records videos of typical human experiences, universal emotions,

and everyday challenges.
tr Thematic Representation: This category includes videos of thematic presentations, topic discussions, and the-

matic events.
va Vacation and Activities: This category records videos of vacation activities, leisure travel, and holiday experi-

ences.
vi Various Interactions: This category includes videos of various interactions, social activities, and interpersonal

relationships.
wat Wildlife and Adventure Themes: This category records videos of wildlife, adventure activities, and nature

exploration.
win Warm Interactive Narratives: This category includes videos of warm interactions, touching stories, and positive

communications.
xin Experiences Interactions Narratives: This category records videos of experiential interactions, event narratives,

and personal experiences.
you Youthful Unison Observed: This category records videos of collective activities among young people, team-

work, and youthful vitality.
zok Zoom Occurrences Kinetics: This category includes videos of fast-paced actions, dynamic events, and high-

energy activities.
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Figure A1: The representative data of FIOVA. Each video is strictly selected based on themes.
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B.2 HUMAN ANNOTATION RULES

Annotation Scheme and Standards.

1. Annotators should label based solely on the visual content of the video, without referring
to the audio content or any subtitles in the video, except for the text that appears naturally in
the scene (such as store signs, road signs, etc.). Annotators can choose to use this information or
not, based on their judgment.
- Example: If a news image appears with the title “Earthquake Report,” this text can be
referenced. However, if text appears in the form of movie subtitles at the bottom of the video, it
should not be used.

2. Annotators should describe each video using a few simple declarative sentences to form
a paragraph. The number of sentences depends on the changes in events and scenes in the
video, and the content can be appropriately enriched.

3. Introduce simple and observable scene information, such as time (morning, noon, evening,
late night), location (e.g., on a basketball court, beside a highway, in a bar), and the main objects
and their positions in the scene (e.g., a truck overturned in the middle of the road, spectators
filling the stands around the stadium). Avoid using overly literary descriptions.

4. Do not include the names of public figures in the video, such as Obama, Clinton, Sun Yang,
Yao Ming, Yang Mi, etc.Use third-person references such as “a man,” “a woman,” “a boy,” “a
girl,” “he,” “she,” etc., instead.

5. Optionally include observable details of characters, such as clothing, hairstyle and color,
age, etc., e.g., “A basketball player wearing a white jersey dribbled past another player wearing
a black jersey.”

6. Describe the behaviors and actions of individual characters as well as interactions
between them. For interactions between multiple people, use references such as “this person,
that person,” “one person, another person,” “the one on the left, in the middle, on the right,” or
“this group, that group” to refer to different entities. There are no strict requirements for the
specific language used, but the relationships and actions must be clearly and concisely described.

7. Do not use emotionally biased words (mostly adjectives or adverbs), such as “pitiful,”
“disgusting,” “joyfully,” etc.

8. Do not use idioms (e.g., “a dime a dozen”), proverbs (e.g., “No pain no gain”), or internet
slang (e.g., “imho (in my humble opinion)”).

9. Do not use overly literary descriptions or speculate on the psychological state of characters.
For example: “As she thought of her youth slipping away, a faint sorrow appeared on her face.”

10. Do not use subjective inference terms, such as “obviously.” Sentences should be concise;
use shorter phrases where possible, e.g., replace “at the same time” with “meantime.”

11. Do not use unnecessary conjunctions if there is no causal relationship between events in
the video.

12. Avoid redundant or conversational language. For example: instead of “Just after Andy
rode his bike home, he immediately ran out again,” simplify to “After a boy rode home, he ran
out again” or “A boy rode home and then ran out again.”

13. The events in the video must be described in the order in which they occur, without
skipping ahead or using summarizing language.
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B.3 WORD CLOUD FOR FIVE PEOPLE ANNOTATION AND LVLMS CAPTION

(h) Human2 

(d) Tarsier

(h) Human2 

(d) Tarsier

(k) Human5

(g) Human1 

(c) VideoChat2 

(k) Human5

(g) Human1 

(c) VideoChat2 

(j) Human4 

(f) LLaVA-NEXT-Video 

(b) VideoLLaMA2

(j) Human4 

(f) LLaVA-NEXT-Video 

(b) VideoLLaMA2

(i) Human3 

(e) ShareGPT4Video

(a) Video-LLaVA 

(i) Human3 

(e) ShareGPT4Video

(a) Video-LLaVA 

Figure A2: Word cloud for five people annotation and LVLMs caption.
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B.4 DISTRIBUTION OF DISAGREEMENT AMONG HUMAN ANNOTATORS (BASED ON MULTIPLE
DIMENSIONS)
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Figure A3: The distribution of the multi-dimensional coefficient of variation for 8 groups. Please
refer to Section 2.2 for more details. The dataset is divided based on the coefficient of variation
(CV) of human annotators across multiple dimensions, resulting in 8 groups. Each group represents
a different degree of disagreement among the 5 annotators, ranging from the smallest (Group A) to
the largest (Group H).
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Figure A4: Distribution of multiple dimensions coefficient of variation (CV) and their mean value
on FIOVA.
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C CALCULATION PROCESS OF COEFFICIENT OF VARIATION (CV)

Algorithm A1 Framework for CV calculation between humans
Input: D = {(V1, C1), . . . , (Vn, Cn)}: FIOVA dataset;
Ci = {ci1, ci2, ci3, ci4, ci5}: human annotations for video Vi;
E = {Consistency,Context,Correctness,Detail Orientation,Temporality,Length}: evaluation di-
mensions;
Output: CV human

dimension: Dictionary of coefficient of variation between humans for each evaluation
dimension;

CV human
video : Dictionary of mean coefficient of variation between humans for each video;

Intervals: Dictionary of intervals dividing CV human
video

/* Step 1: Calculate CV for each dimension */

1 Initialize CV human
dimension ← {} // Dictionary to store CV for each dimension

2 for d← 1 to |E| do
3 Initialize CVE[d] ← {} // Dictionary to store CV for each video in dimension E[d]

4 for i← 1 to |D| do
5 Initialize scores list Si ← []

for j ← 1 to |Ci| do
6 sij ← score of cij in E[d]

Append sij to Si

7 Calculate mean µi of Si

Calculate standard deviation σi of Si

Calculate coefficient of variation cvi ← σi

µi

CVE[d][i]← cvi // Store CV for video Vi

8 CV human
dimension[E[d]]← CVE[d]

/* Step 2: Calculate mean CV for each video */

9 Initialize CV human
video ← {} // Dictionary to store mean CV for each video

10 for i← 1 to |D| do
11 Initialize sum of CVs sumCV ← 0

for d← 1 to |E| do
12 sumCV ← sumCV + CV human

dimension[E[d]][i]

13 Calculate mean meanCV ← sumCV

|E|
CV human

video [i]← meanCV // Store mean CV for video Vi

/* Step 3: Divide CV human
video into intervals based on the maximum value */

14 Sort CV human
video in ascending order by value and store sorted keys as sorted keys

Calculate max CV ← max(CV human
video .values())

Calculate number of intervals N ← ⌈max CV × 10⌉ // Each interval represents 10%

15 Initialize Intervals← {} // Dictionary to store interval information for each video

16 for i← 1 to |sorted keys| do
17 video id← sorted keys[i]

cv ← CV human
video [video id]

Calculate interval index index← ⌊cv × 10⌋
if index ≥ N then

18 index← N − 1

19 Intervals[video id]← index // Store interval for video Vi

20 return CV human
dimension, CV human

video , Intervals
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Algorithm A2 Framework for CV calculation between LVLMs
Input: D = {(V1, R1), . . . , (Vm, Rm)}: FIOVA dataset;
Ri = {ri1, ri2, . . . , rin}: LVLMs’ responses for video Vi;
E = {F1,Recall,Precision,BLEU,METEOR,GLEU}: evaluation dimensions;
Output: CV lvlm

dimension: Dictionary of coefficient of variation for each evaluation dimension;
CV lvlm

video: Dictionary of mean coefficient of variation between LVLMs for each video;
/* Step 1: Calculate CV for each dimension */

21 Initialize CV lvlm
dimension ← {} // Dictionary to store CV for each dimension

22 for d← 1 to |E| do
23 Initialize CVE[d] ← {} // Dictionary to store CV for each video in dimension E[d]

24 for i← 1 to |D| do
25 Initialize scores list Si ← []

for j ← 1 to |Ri| do
26 sij ← score of rij in E[d]

Append sij to Si

27 Calculate mean µi of Si

Calculate standard deviation σi of Si

Calculate coefficient of variation cvi ← σi

µi

CVE[d][i]← cvi // Store CV for video Vi

28 CV lvlm
dimension[E[d]]← CVE[d]

/* Step 2: Calculate mean CV for each video */

29 Initialize CV lvlm
video ← {} // Dictionary to store mean CV for each video

30 for i← 1 to |D| do
31 Initialize sum of CVs sumCV ← 0

for d← 1 to |E| do
32 sumCV ← sumCV + CV lvlm

dimension[E[d]][i]

33 Calculate mean meanCV ← sumCV

|E|
CV lvlm

video[i]← meanCV // Store mean CV for video Vi

34 return CV lvlm
dimension, CV lvlm

video
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Algorithm A3 Calculate ranking differences
Input: CV lvlm

video: Dictionary of mean coefficient of variation between LVLMs for each video;
CV human

video : Dictionary of mean coefficient of variation between humans for each video;
Output: Rankingshuman: Dictionary of rankings based on humans’ CV;
Rankingslvlm: Dictionary of rankings based on LVLMs’ CV;
Rankingsdiff : Dictionary of difference between Rankingshuman and Rankingslvlm;
/* Step 1: Rank videos based on CV human

video and CV lvlm
video */

35 Sort CV human
video by value in ascending order and store the sorted video IDs as sorted idshuman

// Ranking by CV values from smallest to largest

36 Sort CV lvlm
video by value in ascending order and store the sorted video IDs as sorted idslvlm

// Ranking by CV values from smallest to largest

37 Initialize Rankingshuman ← {} // Dictionary to store human rankings

38 Initialize Rankingslvlm ← {} // Dictionary to store LVLM rankings

39 for rank ← 1 to |sorted idshuman| do
40 video id← sorted idshuman[rank]

Rankingshuman[video id]← rank

41 for rank ← 1 to |sorted idslvlm| do
42 video id← sorted idslvlm[rank]

Rankingslvlm[video id]← rank
/* Step 2: Calculate difference between rankings */

43 Initialize Rankingsdiff ← {} // Dictionary to store ranking differences

44 foreach video id ∈ CV human
video .keys() do

45 Rankingsdiff [video id]← |Rankingshuman[video id]−Rankingslvlm[video id]|
46 return Rankingshuman, Rankingslvlm, Rankingsdiff
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D PROMPTS

D.1 GPT-AIDED EVALUATION PROMPTS

D.1.1 PROMPT FOR EVALUATION OF HUMAN ANNOTATIONS

The Prompt for Consistency of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Focus on the consistency of the text with the expected content or background. The text should
correspond to the correct information and should not contain any contradictions or significant
differences.
- The text must be consistent in the information it provides about the content.
- Consider synonyms or paraphrases as valid matches, but only if they maintain the consistency
in the conveyed information.
- Evaluate the consistency of the text.
- DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a
single evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

The Prompt for Context of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Evaluate whether the text aligns with the overall context of the expected content or background.
It should not provide information that is out of context or misaligned.
- The text must capture the main themes and sentiments relevant to the content.
- Consider synonyms or paraphrases as valid matches.
- Provide your evaluation of the contextual understanding of the text.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.
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The Prompt for Correctness of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Focus on the factual correctness of the text. The text should not contain any misinterpretations
or misinformation.
- The text must be factually accurate and align with the expected content or context.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the factual accuracy of the text.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

The Prompt for Detailed Orientation of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Check if the text covers all major points relevant to the content. The text should not leave out
any key aspects.
- Evaluate whether the text includes specific details rather than just generic points. It should pro-
vide comprehensive information that is tied to specific elements of the content.
- Consider synonyms or paraphrases as valid matches.
- Provide a single evaluation score that reflects the level of detail orientation of the text, consid-
ering both completeness and specificity.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a sin-
gle evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

The Prompt for Temporality of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
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——
##INSTRUCTIONS:
- Focus on the temporal consistency of the text. It should correctly reflect the sequence of events
or details as they are presented.
- Consider synonyms or paraphrases as valid matches, but only if the temporal order is main-
tained.
- Evaluate the temporal accuracy of the text.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a sin-
gle evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

An Example of Evaluation Consistency of Annotation (by GPT).

Prompt: You are an intelligent chatbot designed for evaluating the factual accuracy of generative
outputs for video-based caption. Your task is to compare the provided text and determine if they
are factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Focus on the consistency of the text with the expected content or background. The text should
correspond to the correct information and should not contain any contradictions or significant
differences.
- The text must be consistent in the information it provides about the content.
- Consider synonyms or paraphrases as valid matches, but only if they maintain the consistency
in the conveyed information.
- Evaluate the consistency of the text.

- DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a
single evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “A silver car is running slowly on the road. A red motorcycle running
beside crashed on a red car. The motorcycle is overturned. The following vehicles began to
slow down. A man in a blue coat riding a motorcycle parked next to the fallen motorcycle.
From the red car two people came out. The slow motion of the vedio re-played.”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.
GPT: {“score”: 3}

D.1.2 PROMPT FOR GROUNDTRUTH GENERATION

The Prompt for Groundtruth Generation (by GPT).

Prompt
Given five video descriptions. Combine the five video descriptions into a single, coherent de-
scription that captures the essence of the video clip.
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Please generate the response in the form of a Python dictionary string with keys “gt”. The value
of “gt” is a List(str), of which is groundtruth for this video description.

User:
Video description 1: “{Caption1}”
Video description 2: “{Caption2}”
Video description 3: “{Caption3}”
Video description 4: “{Caption4}”
Video description 5: “{Caption5}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide one
Python dictionary string. For example, your response should look like this: {“gt”: [gt]}

An Example of Groundtruth Generation (by GPT).

Prompt: Given five video descriptions. Combine the five video descriptions into a single, coher-
ent description that captures the essence of the video clip.
Please generate the response in the form of a Python dictionary string with keys “gt”. The value
of “gt” is a List(str), of which is groundtruth for this video description.

User:
Video description 1: “A silver car is running slowly on the road. A red motorcycle running
beside crashed on a red car. The motorcycle is overturned. The following vehicles began to
slow down. A man in a blue coat riding a motorcycle parked next to the fallen motorcycle.
From the red car two people came out. The slow motion of the vedio re-played.”
Video description 2: “A silver business car on the side of the road is driving, followed by a
motorcycle, and a red car in front of a commercial car changing lanes crashed on a mo-
torcycle, and the man on the motorcycle fell to the ground. A white van in the following
stopped. The motorcycle driver in red stood up and the following motorcycle stoped, the
man in blue came down to help the blue men pick up the package. From the red car two
men and one women waled to the man in red. The crash process is re played back in slow
motion. ”
Video description 3: “The vehicle on the road was running normally. A red car crashed into
the motorcycle next to it when changing lanes. The motorcycle was knocked down and the
two men on the motorcycle fell. A motorcycle that passed by stopped to inquire about the
situation. The two men on the motorcycle stood up, and the red car stopped. From the car
down two men and a woman came. The crash scene is replayed again. ”
Video description 4: “On the highway cars were driving normal. A motorcycle when driving
hit a car which drove from the side lane to middle lane. The motorcycle driver fell in from
of a van and several motocycles passed by. A motorcycle driver helped the man stand on
the ground. A few people from the crashed car came over to check, and then slow down the
crash video. ”
Video description 5: “In the daytime, a front silver hatchback in the right side of the road
was running slowly. On the left side a motorcycle quickly passed, with two people. The mo-
torcycle passed the silver car, which collided with a red car in front which was turning left,
and the car was knocked to the ground and then climbed up. Rear vehicles stoped. From
the rear three motorcycles came, one of which stopped next to the one who was knocked
over. From the red car a woman and three men came out, and went to the people who was
hit. Slow motion played back the accident moment. ”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide one
Python dictionary string. For example, your response should look like this: {“gt”: [gt]}
GPT: { “gt”: [ “A silver car is running slowly on the road. A red motorcycle running beside
crashed on a red car. The motorcycle is overturned. The following vehicles began to slow down.
A man in a blue coat riding a motorcycle parked next to the fallen motorcycle. From the red
car two people came out. The slow motion of the video re-played. A red car crashed into the
motorcycle next to it when changing lanes. The motorcycle was knocked down and the two men
on the motorcycle fell. A motorcycle that passed by stopped to inquire about the situation. The
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two men on the motorcycle stood up, and the red car stopped. From the car down two men and a
woman came. The crash scene is replayed again. On the highway cars were driving normal. A
motorcycle when driving hit a car which drove from the side lane to middle lane. The motorcycle
driver fell in from of a van and several motorcycles passed by. A motorcycle driver helped the
man stand on the ground. A few people from the crashed car came over to check, and then slow
down the crash video. In the daytime, a front silver hatchback in the right side of the road was
running slowly. On the left side a motorcycle quickly passed, with two people. The motorcycle
passed the silver car, which collided with a red car in front which was turning left, and the car
was knocked to the ground and then climbed up. Rear vehicles stoped. From the rear three mo-
torcycles came, one of which stopped next to the one who was knocked over. From the red car a
woman and three men came out, and went to the people who was hit. Slow motion played back
the accident moment.” ] }

D.1.3 PROMPT FOR EVENT EXTRACTION

The Prompt for Event Extraction (by GPT).

Prompt
Given a video description. Extract at most 10 key events from the video description paragraph.
Requirements:
- Every event is represented by a brief sentence within 10 words, with a subject, a predicate and
optionally an object,avoid unnecessary appearance descriptions.
- Every event must be atomic, meaning that it can not be further split into multiple events.
- Scene cuts and camera motions are NOT events.
- Substitute pronouns by the nouns they refer to.
Please generate the response in the form of a Python dictionary string with keys “events”. The
value of “events” is a List(str), of which each item is an event.

User:
Video description: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the
Python dictionary string. For example, your response should look like this: {“events”: [event1,
event2,...]}

An Example of Event Extraction (by GPT).

Prompt:
Given a video description. Extract at most 10 key events from the video description paragraph.
Requirements:
- Every event is represented by a brief sentence within 10 words, with a subject, a predicate and
optionally an object,avoid unnecessary appearance descriptions.
- Every event must be atomic, meaning that it can not be further split into multiple events.
- Scene cuts and camera motions are NOT events.
- Substitute pronouns by the nouns they refer to.
Please generate the response in the form of a Python dictionary string with keys “events”. The

value of “events” is a List(str), of which each item is an event.

User:
Video description: A silver car is running slowly on the road. A red motorcycle running
beside crashed on a red car. The motorcycle is overturned. The following vehicles began to
slow down. A man in a blue coat riding a motorcycle parked next to the fallen motorcycle.
From the red car two people came out. The slow motion of the video re-played. A red car
crashed into the motorcycle next to it when changing lanes. The motorcycle was knocked
down and the two men on the motorcycle fell. A motorcycle that passed by stopped to in-
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quire about the situation. The two men on the motorcycle stood up, and the red car stopped.
From the car down two men and a woman came. The crash scene is replayed again. On
the highway cars were driving normal. A motorcycle when driving hit a car which drove
from the side lane to middle lane. The motorcycle driver fell in from of a van and several
motorcycles passed by. A motorcycle driver helped the man stand on the ground. A few
people from the crashed car came over to check, and then slow down the crash video. In
the daytime, a front silver hatchback in the right side of the road was running slowly. On
the left side a motorcycle quickly passed, with two people. The motorcycle passed the silver
car, which collided with a red car in front which was turning left, and the car was knocked
to the ground and then climbed up. Rear vehicles stoped. From the rear three motorcycles
came, one of which stopped next to the one who was knocked over. From the red car a
woman and three men came out, and went to the people who was hit. Slow motion played
back the accident moment.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the
Python dictionary string. For example, your response should look like this: {“events”: [event1,
event2,...]}
GPT:
{ “events”: [
“Silver car running slowly on road”,
“Red motorcycle crashing into red car”,
“Man in blue coat parking motorcycle”,
“Two people coming out from red car”,
“Motorcycle hitting car when changing lanes”,
“Passing motorcycle stopping to inquire”,
“Two men on motorcycle falling”,
“Two men on motorcycle standing up”,
“Crashed car stopping to check”,
“Red car colliding with car turning left” ]
}

D.1.4 PROMPT FOR CROSS CHECKING

The Prompt for Cross Checking (by GPT).

Prompt
Given a video description and a list of events. For each event, classify the relationship between
the video description and the event into three classes: entailment, neutral, contradiction.
- “entailment” means that the video description entails the event.
- “contradiction” means that some detail in the video description contradicts with the event.
- “neutral” means that the relationship is neither “entailment” or “contradiction”.
Output a list in Json format: [ {“event”: “copy an event here”, “relationship”: “put class name
here” }, ... ].

User:
Video description: “{Caption}”
Events: “{Event}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only output the
JSON. Output:

An Example of Cross Checking (by GPT).

Prompt:
Given a video description and a list of events. For each event, classify the relationship between
the video description and the event into three classes: entailment, neutral, contradiction.
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- “entailment” means that the video description entails the event.
- “contradiction” means that some detail in the video description contradicts with the event.
- “neutral” means that the relationship is neither “entailment” or “contradiction”.
Output a list in Json format: [ {“event”: “copy an event here”, “relationship”: “put class name

here” }, ... ].

User:
Video description: The video clip shows a road scene in Singapore. It begins with a view of
a wet road, possibly from rain. The scene then transitions to a road with moving vehicles,
including cars and buses. A silver car is prominently featured in the center, moving slowly
due to traffic. Motorcycles and other vehicles are seen passing by the car. On the right side
of the road, there is a group of people who appear to be involved in an incident or accident.
The background consists of trees and roadside barriers.
Events:
{ “events”: [
“Silver car running slowly on road”,
“Red motorcycle crashing into red car”,
“Man in blue coat parking motorcycle”,
“Two people coming out from red car”,
“Motorcycle hitting car when changing lanes”,
“Passing motorcycle stopping to inquire”,
“Two men on motorcycle falling”,
“Two men on motorcycle standing up”,
“Crashed car stopping to check”,
“Red car colliding with car turning left” ]
}
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only output the
JSON. Output:
GPT:
{ “event”: “Silver car running slowly on road”, “relationship”: “entailment” },
{ “event”: “Red motorcycle crashing into red car”, “relationship”: “neutral” },
{ “event”: “Man in blue coat parking motorcycle”, “relationship”: “contradiction” },
{ “event”: “Two people coming out from red car”, “relationship”: “contradiction” },
{ “event”: “Motorcycle hitting car when changing lanes”, “relationship”: “contradiction” },
{ “event”: “Passing motorcycle stopping to inquire”, “relationship”: “neutral” },
{ “event”: “Two men on motorcycle falling”, “relationship”: “neutral” },
{ “event”: “Two men on motorcycle standing up”, “relationship”: “neutral” },
{ “event”: “Crashed car stopping to check”, “relationship”: “neutral” },
{ “event”: “Red car colliding with car turning left”, “relationship”: “contradiction” }
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D.2 VIDEO CAPTION PROMPTS

We use the video description prompt provided by the official repository. If there is no official prompt,
we will use ‘Describe the video in details.’ as a standard prompt.

Table A2: The URLs of official LVLMs repository in this work.

LVLMs Main Creator #Parameters Access

VideoLLaMA2 (Cheng et al. (2024)) Alibaba Group 7B Weights
Video-LLaVA (Lin et al. (2023)) Peking University 7B Weights
ShareGPT4Video (Chen et al. (2024a)) University of Science and Technology of China 8B Weights
Tarsier (Wang et al. (2024)) ByteDance 7B Weights
VideoChat2 (Li et al. (2023)) Shanghai AI Laboratory 7B Weights
LLaVA-NEXT-Video (Zhang et al. (2024)) ByteDance 7B Weights

The Prompt for VideoLLaMA2, Video-LLaVA, ShareGPT4Video, Tarsier, and VideoChat2.

Describe the video in details.

The Prompt for LLaVA-NEXT-Video.

Please provide a detailed description of the video, focusing on the main subjects, their actions,
and the background scenes.
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E DETAILED EXPERIMENTAL RESULTS

E.1 LVLMS V.S. HUMANS ON TRADITIONAL METRICS

Table A3: Comparison of LVLMs and Humans on FIOVA based on traditional metrics (BLEU,
METEOR, and GLEU). The background color represents the performance of the metric. The darker
the green, the better the performance.

Metrics LVLMs Human1 Human2 Human3 Human4 Human5 GT

Tarsier 0.025 0.025 0.024 0.025 0.024 0.035
VideoLLaMA2 0.018 0.019 0.018 0.018 0.018 0.028
LLaVA-NEXT-Video 0.013 0.014 0.014 0.014 0.013 0.022
Video-LLaVA 0.017 0.019 0.018 0.018 0.017 0.027
ShareGPT4Video 0.006 0.007 0.006 0.006 0.006 0.013

BLEU (↑)

VideoChat2 0.021 0.024 0.023 0.022 0.022 0.034

Tarsier 0.232 0.232 0.229 0.230 0.231 0.225
VideoLLaMA2 0.245 0.248 0.246 0.247 0.247 0.240
LLaVA-NEXT-Video 0.246 0.249 0.248 0.249 0.247 0.255
Video-LLaVA 0.238 0.242 0.240 0.240 0.240 0.235
ShareGPT4Video 0.194 0.196 0.197 0.195 0.192 0.218

METEOR (↑)

VideoChat2 0.256 0.260 0.257 0.258 0.258 0.250

Tarsier 0.091 0.092 0.090 0.091 0.090 0.106
VideoLLaMA2 0.068 0.071 0.070 0.069 0.068 0.088
LLaVA-NEXT-Video 0.047 0.049 0.049 0.048 0.047 0.069
Video-LLaVA 0.061 0.063 0.063 0.062 0.061 0.081
ShareGPT4Video 0.027 0.028 0.027 0.027 0.026 0.043

GLEU (↑)

VideoChat2 0.075 0.078 0.078 0.077 0.076 0.098
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E.2 RESULTS ON DIFFERENT GROUPS

Table A4: Comparison of LVLMs on FIOVA based on traditional metrics (BLEU, METEOR, and
GLEU) and AutoCQ-based metrics (F1, Recall, and Precision). The background color represents
the performance of the metric. The darker the green, the better the performance.

Group
Metrics LVLMs A B C D E F G H All

Tarsier 0.046 0.034 0.034 0.036 0.036 0.035 0.044 0.028 0.035
VIdeoLLaMA2 0.030 0.029 0.027 0.029 0.028 0.026 0.028 0.022 0.028
LLaVA-NEXT-Video 0.027 0.022 0.022 0.022 0.022 0.020 0.022 0.013 0.022
Video-LLaVA 0.028 0.027 0.027 0.028 0.026 0.022 0.021 0.033 0.027
ShareGPT4Video 0.016 0.013 0.012 0.012 0.012 0.010 0.011 0.016 0.013

BLEU (↑)

VideoChat2 0.038 0.035 0.032 0.035 0.032 0.034 0.035 0.025 0.034

Tarsier 0.242 0.222 0.224 0.229 0.226 0.226 0.239 0.222 0.225
VIdeoLLaMA2 0.255 0.240 0.237 0.242 0.237 0.238 0.253 0.217 0.240
LLaVA-NEXT-Video 0.263 0.257 0.256 0.254 0.251 0.253 0.249 0.224 0.255
Video-LLaVA 0.251 0.239 0.234 0.237 0.228 0.224 0.222 0.237 0.235
ShareGPT4Video 0.234 0.221 0.218 0.215 0.214 0.209 0.204 0.219 0.218

METEOR (↑)

VideoChat2 0.267 0.254 0.247 0.252 0.246 0.245 0.246 0.229 0.250

Tarsier 0.118 0.105 0.105 0.107 0.107 0.105 0.111 0.109 0.106
VIdeoLLaMA2 0.093 0.088 0.088 0.089 0.087 0.087 0.086 0.086 0.088
LLaVA-NEXT-Video 0.074 0.069 0.069 0.069 0.069 0.069 0.068 0.070 0.069
Video-LLaVA 0.085 0.082 0.079 0.082 0.079 0.077 0.072 0.087 0.081
ShareGPT4Video 0.053 0.045 0.043 0.042 0.042 0.038 0.037 0.058 0.043

GLEU (↑)

VideoChat2 0.106 0.099 0.096 0.098 0.097 0.096 0.098 0.093 0.098

Tarsier 0.415 0.383 0.377 0.363 0.349 0.336 0.340 0.358 0.372
VIdeoLLaMA2 0.380 0.357 0.350 0.322 0.312 0.286 0.299 0.225 0.339
LLaVA-NEXT-Video 0.322 0.331 0.317 0.297 0.286 0.253 0.252 0.203 0.310
Video-LLaVA 0.299 0.317 0.313 0.291 0.259 0.277 0.258 0.230 0.300
ShareGPT4Video 0.327 0.309 0.304 0.282 0.264 0.249 0.207 0.158 0.298

F1 (↑)

VideoChat2 0.339 0.341 0.334 0.318 0.290 0.268 0.274 0.280 0.324

Tarsier 0.328 0.279 0.271 0.253 0.238 0.225 0.230 0.239 0.264
VIdeoLLaMA2 0.271 0.246 0.237 0.211 0.203 0.181 0.188 0.134 0.227
LLaVA-NEXT-Video 0.220 0.223 0.209 0.191 0.181 0.154 0.155 0.119 0.203
Video-LLaVA 0.195 0.208 0.202 0.183 0.158 0.168 0.155 0.134 0.192
ShareGPT4Video 0.225 0.204 0.197 0.179 0.163 0.151 0.122 0.090 0.188

Recall (↑)

VideoChat2 0.234 0.232 0.226 0.209 0.186 0.167 0.169 0.179 0.216

Tarsier 0.566 0.614 0.621 0.642 0.650 0.661 0.652 0.717 0.628
VIdeoLLaMA2 0.638 0.651 0.668 0.682 0.677 0.693 0.738 0.689 0.668
LLaVA-NEXT-Video 0.600 0.639 0.658 0.666 0.689 0.709 0.681 0.679 0.659
Video-LLaVA 0.639 0.666 0.699 0.704 0.717 0.775 0.773 0.800 0.694
ShareGPT4Video 0.600 0.639 0.658 0.666 0.689 0.709 0.681 0.679 0.715

Precision (↑)

VideoChat2 0.617 0.636 0.638 0.665 0.659 0.672 0.718 0.638 0.647
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E.3 COMPARISON BETWEEN HUMANS AND LVLMS IN CAPTION LENGTH

Figure A11: Correlation between LVLMs and humans in video description length (based on 8 sub-
groups). It can be seen that the blue dashed box represents the results of humans, and the description
length is highly consistent between human annotators. The yellow dashed box shows the results of
LVLMs. The description lengths between LVLMs vary greatly, especially for the descriptions of
Group H, which have basically no correlation. The green dashed line is a comparison between
Tarsier, the model with the best performance in multiple indicators, and humans. It can be seen that
Tarsier has a higher correlation with human description length than other models.
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E.4 MORE SPECIFIC EXAMPLES

Figure A12: Human performance is relatively consistent, but there is significant variation among
models, indicating that the models have poor descriptive ability in these scenarios. In some sim-
ple scenarios, humans are not only able to quickly capture key content in videos and describe it
effectively, but also show a high degree of consistency. In contrast, LVLMs often struggle to grasp
key details when handling such videos, leading to inadequate descriptive ability. This difficulty pri-
marily stems from the models’ limitations in understanding the overall context and interconnections
within the video, particularly in integrating video events with background information. As a result,
these models often fail to match human performance in terms of narrative coherence and accuracy.
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Figure A13: There is no significant difference in performance between the models and humans.
When key content in a video is very obvious and easy to identify (such as someone playing baseball
or a clear change of scenery), LVLMs can quickly capture these elements just like humans and gen-
erate corresponding descriptions. This type of video primarily relies on intuitive visual information
rather than deep contextual or cultural background.
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Figure A14: There is a significant variation in descriptions among humans, but the models perform
more consistently.
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Humans often vary in their descriptions of complex videos due to personal experiences, emotions,
cultural backgrounds, and individual preferences, which can make their descriptions differ signif-
icantly. In contrast, LVLMs tend to be more consistent in their descriptions. These models are
trained on vast datasets with the goal of learning a more universal, standardized way of describing.
The training of these models typically focuses on identifying and describing visual elements that
are widely recognized in most contexts, unaffected by individual traits. Thus, these models exhibit
higher consistency and predictability in generating descriptions.
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Figure A15: The performance of the various models was relatively poor in describing this video.
In this video, the performance of the models was unsatisfactory due to the depiction of a woman
immersed in her fantasies. The content of the fantasies and the environment around the woman con-
tain many details, such as camera transitions and temporal discontinuities. These complex elements
make it difficult for the models to accurately interpret and describe the video, resulting in an overall
description that is not clear or easy to understand.
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Figure A16: The models all demonstrated strong descriptive abilities for this video. Typically,
models excel in describing videos with simple scenes, such as this one showcasing Brazilian Jiu-
Jitsu practice, featuring stable camera work and clear temporal relationships. When dealing with
clear and structured video content, the models are better able to accurately recognize and describe
the activities and actions within the scene.
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Figure A17: In the six LVLMs, ShareGPT4Video exhibits more severe hallucination issues, as
shown in the image with its generation of a large amount of redundant and irrelevant descriptions.
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